WorldWideScience

Sample records for sulfate proteoglycan production

  1. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  2. Syndecan heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Gomes, Angélica Maciel; Sinkeviciute, Dovile; Multhaupt, Hinke A.B.

    2016-01-01

    discuss how, in partial catabolic processes, new roles for HSPGs emerge that affect cell behavior. Examples from tumor studies are emphasized, since HSPGs may be altered in composition and distribution and may also represent targets for the development of new therapeutics....... signaling can therefore be complex, but it is now known that syndecans are capable of independent signaling. This review is divided in two sections, and will first discuss how the assembly of heparan sulfate, the anabolic process, encodes information related to ligand binding and signaling. Second, we...

  3. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  4. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  5. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  6. Basement membrane proteoglycans in glomerular morphogenesis: chondroitin sulfate proteoglycan is temporally and spatially restricted during development

    DEFF Research Database (Denmark)

    McCarthy, K J; Bynum, K; St John, P L

    1993-01-01

    We previously reported the presence of a basement membrane-specific chondroitin sulfate proteoglycan (BM-CSPG) in basement membranes of almost all adult tissues. However, an exception to this ubiquitous distribution was found in the kidney, where BM-CSPG was absent from the glomerular capillary......, the present study used light and electron microscopic immunohistochemistry to examine the distribution of BM-CSPG and basement membrane heparan sulfate proteoglycan (BM-HSPG) during prenatal and postnatal renal development in the rat. Our results show that the temporal and spatial pattern of expression of BM...

  7. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    International Nuclear Information System (INIS)

    Stevens, R.L.; Austen, K.F.; Fox, C.C.; Lichtenstein, L.M.

    1988-01-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of 35 S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although [ 35 S]heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate [ 35 S]sulfate into separate heparin and chondroitin sulfate proteoglycans in an ∼2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin [ 35 S]sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin [ 35 S]sulfate E proteoglycans and the [ 35 S]heparin proteoglycans were exocytosed from the [ 35 S]sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of 35 S-labeled proteoglycans reside in the secretory granules of these human lung mast cells

  8. Deglycosylation of chondroitin sulfate proteoglycan and derived peptides

    International Nuclear Information System (INIS)

    Campbell, S.C.; Krueger, R.C.; Schwartz, N.B.

    1990-01-01

    In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated [ 3 H]glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight. Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose activity comparable to the intact core protein

  9. Chlorate: a reversible inhibitor of proteoglycan sulfation

    International Nuclear Information System (INIS)

    Humphries, D.E.; Silbert, J.E.

    1988-01-01

    Bovine aorta endothelial cells were cultured in medium containing [ 3 H]glucosamine, [ 35 S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [ 3 H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation

  10. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory.

    Science.gov (United States)

    Foscarin, Simona; Raha-Chowdhury, Ruma; Fawcett, James W; Kwok, Jessica C F

    2017-06-28

    Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer's disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory.

  11. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  12. Basement membrane heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma

    DEFF Research Database (Denmark)

    Fenger, M; Wewer, U; Albrechtsen, R

    1984-01-01

    Heparan sulfate proteoglycan from the L2 rat yolk sac carcinoma has been purified and partially characterized. The proteoglycan has an apparent Mr of 750 000, 35% of which represents the core protein. The core protein seems to be homogeneous, whereas the heparan sulfate chains are heterogeneous...... with an Mr of about 50 000-70 000, with 30% of the glucosamine being N-sulfated. Antibodies raised against the core protein of the heparan sulfate proteoglycan reacted with basement membranes of various rat and human tissue....

  13. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    DEFF Research Database (Denmark)

    McCarthy, K J; Accavitti, M A; Couchman, J R

    1989-01-01

    with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were...... (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core...... sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component....

  14. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    DEFF Research Database (Denmark)

    Beavan, L A; Davies, M; Couchman, J R

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently......-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane...

  15. Perlecan and basement membrane-chondroitin sulfate proteoglycan (bamacan) are two basement membrane chondroitin/dermatan sulfate proteoglycans in the Engelbreth-Holm-Swarm tumor matrix

    DEFF Research Database (Denmark)

    Couchman, J R; Kapoor, R; Sthanam, M

    1996-01-01

    heparan sulfate proteoglycan, widespread in many basement membranes and connective tissues. We now identify two distinct proteoglycan species from this tumor source, which are substituted with galactosaminoglycans and which show basement membrane localization by immunohistochemistry. One species......The presence of proteoglycans bearing galactosaminoglycan chains has been reported, but none has been identified previously in the matrix of the Engelbreth-Holm-Swarm tumor, which is a source of several basement membrane components. This tumor matrix contains perlecan, a large, low buoyant density......-CSPG are distinct in core protein structure. Both are, however, basement membrane components, although there are tissue-specific differences in their distribution....

  16. In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus

    International Nuclear Information System (INIS)

    Beavan, L.A.; Davies, M.; Couchman, J.R.; Williams, M.A.; Mason, R.M.

    1989-01-01

    The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane

  17. Age-related changes in the incorporation of [35S]sulfate into two proteoglycan populations from human cartilage

    International Nuclear Information System (INIS)

    Triphaus, G.F.; Schmidt, A.; Buddecke, E.

    1980-01-01

    From human hyaline cartilage (processus xyphoid) preincubated in the presence of [ 35 S] sulfate, proteoglycans were extracted by 4M guanidinium chloride and divided into 6 age groups. Fractionation of proteoglycans by gel filtration under dissociative conditions resulted in two proteoglycan fractions (a and b) with different hydrodynamic volumes. The higher molecular weight fraction a contained chondroitin sulfate, the fraction b keratan sulfate as predominant glycosaminoglycan, the chondroitin sulfate/keratan sulfate ratio decreasing with increasing age in either fraction. The relative portion of proteoglycan fraction b and its 35 S-labelling increased with increasing age. From the specific 35 S radioactivities of the chondroitin sulfate and keratan sulfate preparations, the occurrence of two independent proteoglycan populations is suggested. A precursorproduct relationship between proteoglycan fraction a and b could be excluded. (orig.)

  18. Age-related changes in the incorporation of (/sup 35/S)sulfate into two proteoglycan populations from human cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Triphaus, G.F.; Schmidt, A.; Buddecke, E.

    1980-12-01

    From human hyaline cartilage (processus xyphoid) preincubated in the presence of (/sup 35/S) sulfate, proteoglycans were extracted by 4M guanidinium chloride and divided into 6 age groups. Fractionation of proteoglycans by gel filtration under dissociative conditions resulted in two proteoglycan fractions (a and b) with different hydrodynamic volumes. The higher molecular weight fraction a contained chondroitin sulfate, the fraction b keratan sulfate as predominant glycosaminoglycan, the chondroitin sulfate/keratan sulfate ratio decreasing with increasing age in either fraction. The relative portion of proteoglycan fraction b and its /sup 35/S-labelling increased with increasing age. From the specific /sup 35/S radioactivities of the chondroitin sulfate and keratan sulfate preparations, the occurrence of two independent proteoglycan populations is suggested. A precursorproduct relationship between proteoglycan fraction a and b could be excluded.

  19. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions

    DEFF Research Database (Denmark)

    Tumova, S; Woods, A; Couchman, J R

    2000-01-01

    Heparan sulfate proteoglycans are complex molecules composed of a core protein with covalently attached glycosaminoglycan chains. While the protein part determines localization of the proteoglycan on the cell surfaces or in the extracellular matrix, the glycosaminoglycan component, heparan sulfate......, mediates interactions with a variety of extracellular ligands such as growth factors and adhesion molecules. Through these interactions, heparan sulfate proteoglycans participate in many events during cell adhesion, migration, proliferation and differentiation. We are determining the multitude...... of proteoglycan functions, as their intricate roles in many pathways are revealed. They act as coreceptors for growth factors, participate in signalling during cell adhesion, modulate the activity of a broad range of molecules, and partake in many developmental and pathological processes, including tumorigenesis...

  20. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1988-01-01

    chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...... as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan...

  1. Heparan sulfate proteoglycans made by different basement-membrane-producing tumors have immunological and structural similarities

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R; Hassell, J R

    1985-01-01

    in the native basement membrane of surrounding normal murine tissues. Blocking and ELISA assays demonstrated that the antibodies recognized both antigens. Using techniques involving the chemical and enzymatic degradation of 35S-sulfate-labeled glycosaminoglycans, the mouse EHS tumor cells were found to produce...... proteoglycans obtained from these two sources immunoprecipitated the same precursor protein with a molecular mass of 400,000 daltons from 35S-methionine pulse-labeled cells of both tumors. Immunohistochemistry showed the heparan sulfate proteoglycan to be distributed in the extracellular matrix and also...

  2. Perlecan (basement membrane heparan sulfate proteoglycan and its role in oral malignancies: An overview

    Directory of Open Access Journals (Sweden)

    Mithilesh Mishra

    2011-01-01

    Full Text Available Perlecan means pearl-like structures. Perlecan is a large proteoglycan (400-500 kDa present in virtually all vascularized tissues with a distribution that is primarily confined to basement membranes including those of oral mucosa. It is a basement membrane-type heparan sulfate proteoglycan. Perlecan is synthesized by basal cells and fibroblasts adjacent to the basal lamina . Perlecan is also synthesized by vascular endothelial and smooth muscle cells present in the extracellular matrix. It has been demonstrated in recent years that perlecan is distributed in the stromal space of various pathophysiological conditions. The complex pleiotropy of perlecan suggests that this gene product is involved in several developmental processes, at both early and late stages of embryogenesis, as well as in cancer and diabetes. In the oral cavity, perlecan expression is reported to basal cells in normal mucosa and its expression increases in precancer and cancerous conditions. It is also expressed in various odontogenic tumors such as ameloblastoma, keratocyst odontogenic tumor, and also salivary gland tumors such as adenoid cystic carcinoma, mucoepidermoid carcinoma, etc.

  3. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J

    1994-01-01

    of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... to chondroitin sulfate chains confirmed these changes in cystic tubule basement membranes. During the recovery stage, interstitial chondroitin sulfate (representing a CSPG other than BM-CSPG) was greatly increased around these tubules, along with the glycoprotein fibronectin. Staining with antibody to a basement...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  4. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane

    NARCIS (Netherlands)

    Groffen, Alexander J.; Ruegg, Markus A.; Dijkman, Henri; Van De Velden, Thea J.; Buskens, Carin A.; Van Den Born, Jacob; Assmann, Karel J.; Monnens, Leo A.; Veerkamp, Jacques H.; Van Den Heuvel, Lambert P.

    Agrin is a heparan sulfate proteoglycan (HSPG) that is highly concentrated in the synaptic basal lamina at the neuromuscular junction (NMJ). Agrin-like immunoreactivity is also detected outside the NMJ. Here we show that agrin is a major HSPG component of the human glomerular basement membrane

  5. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J

    1992-01-01

    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity...

  6. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    International Nuclear Information System (INIS)

    Stevens, R.L.; Lee, T.D.G.; Seldin, D.C.; Austen, K.F.; Befus, A.D.; Bienenstock, J.

    1986-01-01

    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [ 35 S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35 S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans

  7. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis

    International Nuclear Information System (INIS)

    Klein, D.J.; Brown, D.M.; Moran, A.; Oegema, T.R. Jr.; Platt, J.L.

    1989-01-01

    Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs were taken up by kidneys more avidly than was free [ 35 S]sulfate. These 35 S-GAGs were degraded and reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis

  8. Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies

    DEFF Research Database (Denmark)

    Couchman, J R; Ljubimov, A V

    1989-01-01

    muscle, endothelia, peripheral nerve fibers and epithelia so far examined. In addition, two of the monoclonal antibodies show cross-species reactivity, staining bovine and human basement membranes, and immunoprecipitating proteoglycans from human endothelial cell cultures. These antibodies do not......A panel of nine monoclonal antibodies has been characterized, all of which have reactivity with the core protein of a large heparan sulfate proteoglycan derived from the murine EHS tumor matrix. These rat monoclonal antibodies stained mouse basement membranes intensely, including those of all...

  9. Modulation of the expression of chondroitin sulfate proteoglycan in stimulated human monocytes

    International Nuclear Information System (INIS)

    Uhlin-Hansen, L.; Eskeland, T.; Kolset, S.O.

    1989-01-01

    Proteoglycan biosynthesis was studied in human monocytes and monocyte-derived macrophages (MDM) after exposure to typical activators of the monocyte/macrophage system: interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA). By morphological examination, both monocytes and MDM were stimulated by these activators. Treatment with IFN-gamma resulted in a slight decrease in the expression of [35S]chondroitin sulfate proteoglycan (CSPG) in both monocytes and MDM, whereas LPS treatment increased the [35S]CSPG expression 1.8 and 2.2 times, respectively. PMA, in contrast, decreased the CSPG expression 0.4 times in monocytes, whereas MDM were stimulated to increase the biosynthesis 1.9 times. An increase in the sulfate density of the chondroitin sulfate chains was evident following differentiation of monocytes into MDM due to the expression of disulfated disaccharide units of the chondroitin sulfate E type (CS-E). However, monocytes exposed to PMA did also express disaccharides of the chondroitin sulfate E type. Furthermore, the expression of CS-E in MDM was increased 2 times following PMA treatment. An inactive phorbol ester, phorbol 12,13-diacetate, did not affect the expression of CS-E in either monocytes or MDM when compared with control cultures, suggesting that protein kinase C-dependent signal pathways may be involved in the regulation of sulfation of CSPG. Exposure to LPS or IFN-gamma did not lead to any changes in the sulfation of the chondroitin sulfate chains

  10. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling.

    Directory of Open Access Journals (Sweden)

    Neil Dani

    Full Text Available A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS 6-O-sulfotransferase (hs6st and sulfatase (sulf1, which bidirectionally control HS proteoglycan (HSPG sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st and increased (sulf1 neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg and BMP (Glass Bottom Boat; Gbb ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.

  11. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Christner, J E; Baker, J R

    1985-01-01

    distribution of 4- and 6-sulfated and unsulfated proteoglycans in tissue sections of cartilage and other noncartilaginous tissues. Digestion with chondroitinase ABC or ACII can be used to differentiate between chondroitin sulfate and dermatan sulfate proteoglycan in different connective tissues. In addition...

  12. Modulation of the Plasma Kallikrein-Kinin System Proteins Performed by Heparan Sulfate Proteoglycans

    OpenAIRE

    Motta, Guacyara; Tersariol, Ivarne L. S.

    2017-01-01

    Human plasma kallikrein-kinin system proteins are related to inflammation through bradykinin. In the proximity of its target cells, high molecular weight kininogen (H-kininogen) is the substrate of plasma kallikrein, which releases bradykinin from H-kininogen. Heparan sulfate proteoglycans (HSPGs) play a critical role in either recruiting kinin precursors from the plasma, or in the assembly of kallikrein-kinin system components on the cell surface. Furthermore, HSPGs mediate the endocytosis a...

  13. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    International Nuclear Information System (INIS)

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-01-01

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, [ 35 S]-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall

  14. Histamine and chondroitin sulfate E proteoglycan released by cultured human colonic mucosa: indication for possible presence of E mast cells

    International Nuclear Information System (INIS)

    Eliakim, R.; Gilead, L.; Ligumsky, M; Okon, E.; Rachmilewitz, D.; Razin, E.

    1986-01-01

    An association between the release of histamine and chondroitin sulfate E proteoglycan (PG) was demonstrates in human colonic mucosa (HCM). Colonic biopsy samples incorporated [ 35 S]sulfate into PG, which was partially released into the culture medium during the incubation period. Ascending thin-layer chromatography of the released 35 S-labeled PG after its digestion by chondroitin ABC lyase (chondroitinase, EC 4.2.2.4) followed by autoradiography yielded three products that migrated in the position of monosulfated disaccharides of N-acetylgalactosamine 4-sulfate and N-acetylgalactosoamine 6-sulfate and of an oversulfated disaccharide possessing N-acetylgalatosamine 4,6-disulfate. Cultured colonic mucosa released 23.6 +/- 3.7ng of histamine per mg of wet tissue without any special trigger. Comparison by linear regression analysis of the release of histamine and chondroitin [ 35 S]sulfate E PG revealed a correlation coefficient (r) of 0.7. Histological examination of the colonic biopsies revealed the presence of many mast cells in various degrees of degranulation in the mucosa and submucosa. The above correlation, the observation that most of the mast cells showed various degrees of degranulation, and the lack of heparin synthesis as opposed to the synthesis and immunological release of chondroitin sulfate E strongly suggest that the E mast cell exists in the human colon

  15. SRPX2 is a novel chondroitin sulfate proteoglycan that is overexpressed in gastrointestinal cancer.

    Directory of Open Access Journals (Sweden)

    Kaoru Tanaka

    Full Text Available SRPX2 (Sushi repeat-containing protein, X-linked 2 has recently emerged as a multifunctional protein that is involved in seizure disorders, angiogenesis and cellular adhesion. Here, we analyzed this protein biochemically. SRPX2 protein was secreted with a highly posttranslational modification. Chondroitinase ABC treatment completely decreased the molecular mass of purified SRPX2 protein to its predicted size, whereas heparitinase, keratanase and hyaluroinidase did not. Secreted SRPX2 protein was also detected using an anti-chondroitin sulfate antibody. These results indicate that SRPX2 is a novel chondroitin sulfate proteoglycan (CSPG. Furthermore, a binding assay revealed that hepatocyte growth factor dose-dependently binds to SRPX2 protein, and a ligand-glycosaminoglycans interaction was speculated to be likely in proteoglycans. Regarding its molecular architecture, SRPX2 has sushi repeat modules similar to four other CSPGs/lecticans; however, the molecular architecture of SRPX2 seems to be quite different from that of the lecticans. Taken together, we found that SRPX2 is a novel CSPG that is overexpressed in gastrointestinal cancer cells. Our findings provide key glycobiological insight into SRPX2 in cancer cells and demonstrate that SRPX2 is a new member of the cancer-related proteoglycan family.

  16. DISTRIBUTION OF GBM HEPARAN-SULFATE PROTEOGLYCAN CORE PROTEIN AND SIDE-CHAINS IN HUMAN GLOMERULAR-DISEASES

    NARCIS (Netherlands)

    VANDENBORN, J; VANDENHEUVEL, LPWJ; BAKKER, MAH; VEERKAMP, JH; ASSMANN, KJM; WEENING, JJ; BERDEN, JHM

    Using monoclonal antibodies (mAbs) recognizing either the core protein or the heparan sulfate (HS) side chain of human GBM heparan sulfate proteoglycan (HSPG), we investigated their glomerular distribution on cryostat sections of human kidney tissues. The study involved 95 biopsies comprising twelve

  17. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain

    OpenAIRE

    Nandi, Sayan; Akhter, Mohammed P.; Seifert, Mark F.; Dai, Xu-Ming; Stanley, E. Richard

    2006-01-01

    The primary macrophage growth factor, colony-stimulating factor-1 (CSF-1), is homodimeric and exists in 3 biologically active isoforms: a membrane-spanning, cell-surface glycoprotein (csCSF-1) and secreted glycoprotein (sgCSF-1) and proteoglycan (spCSF-1) isoforms. To investigate the in vivo role of the chondroitin sulfate glycosaminoglycan (GAG) chain of spCSF-1, we created mice that exclusively express, in a normal tissue-specific and developmental manner, either the secreted precursor of s...

  18. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  19. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  20. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans.

    Science.gov (United States)

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-10-03

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.

  1. Ultrastructural localization of the core protein of a basement membrane-specific chondroitin sulfate proteoglycan in adult rat skin

    DEFF Research Database (Denmark)

    McCarthy, K J; Horiguchi, Y; Couchman, J R

    1990-01-01

    Basement membranes are complex extracellular matrices present at epithelial/mesenchymal interfaces of tissues. The dermal-epidermal junction has been shown to contain numerous components, some of the most well known being laminin, types IV and VII collagens, heparan sulfate proteoglycan, fibronec...

  2. Evidence for the existence of multiple heparan sulfate proteoglycans in the human glomerular basement membrane and mesangial matrix

    NARCIS (Netherlands)

    Groffen, Alexander J A; Hop, Frank W H; Tryggvason, Karl; Dijkman, Henri; Assmann, Karel J M; Veerkamp, Jacques H.; Monnens, Leo A H; Van Den Heuvel, Lambert P W J

    1997-01-01

    Heparan sulfate proteoglycans (HSPGs) are essential components of the glomerular basement membrane (GBM) carrying a strong anionic charge. A well- characterized extracellular HSPG is perlecan, ubiquitously expressed in basement membranes. A cDNA construct encoding domains I and II of human perlecan

  3. Carrier of Wingless (Cow), a Secreted Heparan Sulfate Proteoglycan, Promotes Extracellular Transport of Wingless

    Science.gov (United States)

    Chang, Yung-Heng; Sun, Yi Henry

    2014-01-01

    Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen. PMID:25360738

  4. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types

    Directory of Open Access Journals (Sweden)

    Kristina M. Ilieva

    2018-01-01

    Full Text Available Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4 has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.

  5. Breast and ovarian cancers: a survey and possible roles for the cell surface heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Lendorf, Maria E; Couchman, John R

    2012-01-01

    . Occurrence of breast and ovarian cancer is high in older women. Common known risk factors of developing these cancers in addition to age are not having children or having children at a later age, the use of hormone replacement therapy, and mutations in certain genes. In addition, women with a history......Tumor markers are widely used in pathology not only for diagnostic purposes but also to assess the prognosis and to predict the treatment of the tumor. Because tumor marker levels may change over time, it is important to get a better understanding of the molecular changes during tumor progression...... of breast cancer may also develop ovarian cancer. Here, the authors review the different tumor markers of breast and ovarian carcinoma and discuss the expression, mutations, and possible roles of cell surface heparan sulfate proteoglycans during tumorigenesis of these carcinomas. The focus is on two groups...

  6. Deletion of the basement membrane heparan sulfate proteoglycan type XVIII collagen causes hypertriglyceridemia in mice and humans.

    Directory of Open Access Journals (Sweden)

    Joseph R Bishop

    2010-11-01

    Full Text Available Lipoprotein lipase (Lpl acts on triglyceride-rich lipoproteins in the peripheral circulation, liberating free fatty acids for energy metabolism or storage. This essential enzyme is synthesized in parenchymal cells of adipose tissue, heart, and skeletal muscle and migrates to the luminal side of the vascular endothelium where it acts upon circulating lipoproteins. Prior studies suggested that Lpl is immobilized by way of heparan sulfate proteoglycans on the endothelium, but genetically altering endothelial cell heparan sulfate had no effect on Lpl localization or lipolysis. The objective of this study was to determine if extracellular matrix proteoglycans affect Lpl distribution and triglyceride metabolism.We examined mutant mice defective in collagen XVIII (Col18, a heparan sulfate proteoglycan present in vascular basement membranes. Loss of Col18 reduces plasma levels of Lpl enzyme and activity, which results in mild fasting hypertriglyceridemia and diet-induced hyperchylomicronemia. Humans with Knobloch Syndrome caused by a null mutation in the vascular form of Col18 also present lower than normal plasma Lpl mass and activity and exhibit fasting hypertriglyceridemia.This is the first report demonstrating that Lpl presentation on the lumenal side of the endothelium depends on a basement membrane proteoglycan and demonstrates a previously unrecognized phenotype in patients lacking Col18.

  7. Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesis—Controlling Lineage Specification and Fate

    Directory of Open Access Journals (Sweden)

    Chieh Yu

    2017-10-01

    Full Text Available Unspecialized, self-renewing stem cells have extraordinary application to regenerative medicine due to their multilineage differentiation potential. Stem cell therapies through replenishing damaged or lost cells in the injured area is an attractive treatment of brain trauma and neurodegenerative neurological disorders. Several stem cell types have neurogenic potential including neural stem cells (NSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs. Currently, effective use of these cells is limited by our lack of understanding and ability to direct lineage commitment and differentiation of neural lineages. Heparan sulfate proteoglycans (HSPGs are ubiquitous proteins within the stem cell microenvironment or niche and are found localized on the cell surface and in the extracellular matrix (ECM, where they interact with numerous signaling molecules. The glycosaminoglycan (GAG chains carried by HSPGs are heterogeneous carbohydrates comprised of repeating disaccharides with specific sulfation patterns that govern ligand interactions to numerous factors including the fibroblast growth factors (FGFs and wingless-type MMTV integration site family (Wnts. As such, HSPGs are plausible targets for guiding and controlling neural stem cell lineage fate. In this review, we provide an overview of HSPG family members syndecans and glypicans, and perlecan and their role in neurogenesis. We summarize the structural changes and subsequent functional implications of heparan sulfate as cells undergo neural lineage differentiation as well as outline the role of HSPG core protein expression throughout mammalian neural development and their function as cell receptors and co-receptors. Finally, we highlight suitable biomimetic approaches for exploiting the role of HSPGs in mammalian neurogenesis to control and tailor cell differentiation into specific lineages. An improved ability to control stem cell specific neural

  8. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and Sulfated Glycan Chain

    OpenAIRE

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-01-01

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is...

  9. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties

    Directory of Open Access Journals (Sweden)

    Chajra H

    2016-12-01

    Full Text Available Hanane Chajra,1 Daniel Auriol,1 Francine Joly,2 Aurélie Pagnon,3 Magda Rodrigues,4 Sophie Allart,4 Gérard Redziniak,5 Fabrice Lefevre1 1Libragen, Induchem (Givaudan Active Beauty, Toulouse, 2Sephra Pharma, Puteaux, 3Novotec, Bron, 4Centre de Physiopathologie de Toulouse-Purpan, Toulouse, 5Cosmetic Inventions, Antony, France Background: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. Materials and methods: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. Results: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan

  10. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane.

    Science.gov (United States)

    Groffen, A J; Ruegg, M A; Dijkman, H; van de Velden, T J; Buskens, C A; van den Born, J; Assmann, K J; Monnens, L A; Veerkamp, J H; van den Heuvel, L P

    1998-01-01

    Agrin is a heparan sulfate proteoglycan (HSPG) that is highly concentrated in the synaptic basal lamina at the neuromuscular junction (NMJ). Agrin-like immunoreactivity is also detected outside the NMJ. Here we show that agrin is a major HSPG component of the human glomerular basement membrane (GBM). This is in addition to perlecan, a previously characterized HSPG of basement membranes. Antibodies against agrin and against an unidentified GBM HSPG produced a strong staining of the GBM and the NMJ, different from that observed with anti-perlecan antibodies. In addition, anti-agrin antisera recognized purified GBM HSPG and competed with an anti-GBM HSPG monoclonal antibody in ELISA. Furthermore, both antibodies recognized a molecule that migrated in SDS-PAGE as a smear and had a molecular mass of approximately 200-210 kD after deglycosylation. In immunoelectron microscopy, agrin showed a linear distribution along the GBM and was present throughout the width of the GBM. This was again different from perlecan, which was exclusively present on the endothelial side of the GBM and was distributed in a nonlinear manner. Quantitative ELISA showed that, compared with perlecan, the agrin-like GBM HSPG showed a sixfold higher molarity in crude glomerular extract. These results show that agrin is a major component of the GBM, indicating that it may play a role in renal ultrafiltration and cell matrix interaction. (J Histochem Cytochem 46:19-27, 1998)

  11. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Flonia Levy-Adam

    2008-06-01

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  12. Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture

    Directory of Open Access Journals (Sweden)

    Jingyu Jin

    2018-01-01

    Full Text Available As one major component of extracellular matrix (ECM in the central nervous system, chondroitin sulfate proteoglycans (CSPGs have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite outgrowth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, including cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concentration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.

  13. Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2017-03-01

    Full Text Available The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.

  14. Role of cellular heparan sulfate proteoglycans in infection of human adenovirus serotype 3 and 35.

    Directory of Open Access Journals (Sweden)

    Sebastian Tuve

    2008-10-01

    Full Text Available Species B human adenoviruses (Ads are increasingly associated with outbreaks of acute respiratory disease in U.S. military personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs. We subsequently found that HSPGs acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35 interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands. In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection.

  15. Modulation of the Plasma Kallikrein-Kinin System Proteins Performed by Heparan Sulfate Proteoglycans

    Directory of Open Access Journals (Sweden)

    Guacyara Motta

    2017-07-01

    Full Text Available Human plasma kallikrein-kinin system proteins are related to inflammation through bradykinin. In the proximity of its target cells, high molecular weight kininogen (H-kininogen is the substrate of plasma kallikrein, which releases bradykinin from H-kininogen. Heparan sulfate proteoglycans (HSPGs play a critical role in either recruiting kinin precursors from the plasma, or in the assembly of kallikrein-kinin system components on the cell surface. Furthermore, HSPGs mediate the endocytosis and activation of H-kininogen and plasma prekallikrein. In the presence of HSPGs (Chinese hamster ovary cell, CHO-K1, wild type cells both heparin and heparan sulfate strongly inhibit the H-kininogen interaction with the cell membrane. H-kininogen is internalized in endosomal acidic vesicles in CHO-K1 but not in CHO-745 cells (mutant cells deficient in glycosaminoglycan biosynthesis. The endocytosis process is lipid raft-mediated and is dependent on caveolae. Both types of CHO cells do not internalize bradykinin-free H-kininogen. At pH 7.35, bradykinin is released from H-kininogen on the surface of CHO-745 cells only by serine proteases; however, in CHO-K1 cells either serine or cysteine proteases are found to be involved. The CHO-K1 cell lysate contains different kininogenases. Plasma prekallikrein endocytosis in CHO-K1 cells is independent of H-kininogen, and also prekallikrein is not internalized by CHO-745 cells. Plasma prekallikrein cleavage/activation is independent of glycosaminoglycans but plasma kallikrein formation is more specific on H-kininogen assembled on the cell surface through glycosaminoglycans. In this mini-review, the importance of HSPGs in the regulation of plasma kallikrein-kinin system proteins is shown.

  16. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    Science.gov (United States)

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  17. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character

    International Nuclear Information System (INIS)

    Fernández-Vega, Iván; García-Suárez, Olivia; García, Beatriz; Crespo, Ainara; Astudillo, Aurora; Quirós, Luis M.

    2015-01-01

    Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Right sided CRCs show

  18. Characterization of a dermatan sulfate proteoglycan synthesized by murine parietal yolk sac (PYS-2) cells

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A; Höök, M

    1985-01-01

    -polyacrylamide gel electrophoresis of chondroitinase ABC-treated 125I-labeled proteoglycan reveals two polypeptides with molecular weights of 34,000 and 27,000. Results from papain digestion of the proteoglycan suggest that most of the polysaccharide chains are clustered at a papain-resistant segment of the core...

  19. Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans

    Directory of Open Access Journals (Sweden)

    CAVALCANTE LENY A.

    2002-01-01

    Full Text Available Bilaterally symmetric organisms need to exchange information between the left and right sides of their bodies to integrate sensory input and to coordinate motor control. Thus, an important choice point for developing axons is the Central Nervous System (CNS midline. Crossing of this choice point is influenced by highly conserved, soluble or membrane-bound molecules such as the L1 subfamily, laminin, netrins, slits, semaphorins, Eph-receptors and ephrins, etc. Furthermore, there is much circumstantial evidence for a role of proteoglycans (PGs or their glycosaminoglycan (GAG moieties on axonal growth and guidance, most of which was derived from simplified models. A model of intermediate complexity is that of cocultures of young neurons and astroglial carpets (confluent cultures obtained from medial and lateral sectors of the embryonic rodent midbrain soon after formation of its commissures. Neurite production in these cocultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exerted an inhibitory or non-permissive effect on neuritic growth that was correlated to a higher content of both heparan and chondroitin sulfates (HS and CS. Treatment with GAG lyases shows minor effects of CS and discloses a major inhibitory or non-permissive role for HS. The results are discussed in terms of available knowledge on the binding of HSPGs to interative proteins and underscore the importance of understanding glial polysaccharide arrays in addition to its protein complement for a better understanding of neuron-glial interactions.

  20. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer

    International Nuclear Information System (INIS)

    Fernández-Vega, Iván; García, Olivia; Crespo, Ainara; Castañón, Sonia; Menéndez, Primitiva; Astudillo, Aurora; Quirós, Luis M

    2013-01-01

    The expression of a specific set of genes controls the different structures of heparan sulfate proteoglycans (HSPGs), which are involved in the growth, invasion and metastatic properties of cancerous cells. The purpose of this study is to increase knowledge of HSPG alterations in breast cancer. Twenty-three infiltrating ductal adenocarcinomas (IDCs), both metastatic and non-metastatic were studied. A transcriptomic approach to the structure of heparan sulfate (HS) chains was used, employing qPCR to analyze both the expression of the enzymes involved in their biosynthesis and editing, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate chains, we extended the study to include the genes involved in the biosynthesis of these glycosaminoglycans. Histochemical techniques were also used to analyze tissular expression of particular genes showing significant expression differences, of potential interest. No significant change in transcription was detected in approximately 70% of analyzed genes. However, 13 demonstrated changes in both tumor types (40% showing more intense deregulation in the metastatic), while 5 genes showed changes only in non-metastatic tumors. Changes were related to 3 core proteins: overexpression of syndecan-1 and underexpression of glypican-3 and perlecan. HS synthesis was affected by lower levels of some 3-O-sulfotransferase transcripts, the expression of NDST4 and, only in non metastatic tumors, higher levels of extracellular sulfatases. Furthermore, the expression of chondroitin sulfate also was considerably affected, involving both the synthesis of the saccharidic chains and sulfations at all locations. However, the pro-metastatic enzyme heparanase did not exhibit significant changes in mRNA expression, although in metastatic tumors it appeared related to increased levels of the most stable form of mRNA. Finally, the expression of heparanase 2, which displays anti-metastatic features

  1. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Okolicsanyi, Rachel K; Oikari, Lotta E; Yu, Chieh; Griffiths, Lyn R; Haupt, Larisa M

    2018-01-01

    Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.

  2. NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production

    International Nuclear Information System (INIS)

    Xiong Jing; Wang Yang; Zhu, Zhonghua; Liu Jianshe; Wang Yumei; Zhang Chun; Hammes, Hans-Peter; Lang, Florian; Feng Yuxi

    2007-01-01

    As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM

  3. Heparan sulfate proteoglycan from the extracellular matrix of human lung fibroblasts. Isolation, purification, and core protein characterization

    International Nuclear Information System (INIS)

    Heremans, A.; Cassiman, J.J.; Van den Berghe, H.; David, G.

    1988-01-01

    Confluent cultured human lung fibroblasts were labeled with 35SO4(2-). After 48 h of labeling, the pericellular matrix was prepared by Triton X-100 and deoxycholate extraction of the monolayers. Heparan sulfate proteoglycan (HSPG) accounted for nearly 80% of the total matrix [35S]proteoglycans. After solubilization in 6 M guanidinium HCl and cesium chloride density gradient centrifugation, the majority (78%) of these [35S] HSPG equilibrated at an average buoyant density of 1.35 g/ml. This major HSPG fraction was purified by ion-exchange chromatography on Mono Q and by gel filtration on Sepharose CL-4B, and further characterized by gel electrophoresis and immunoblotting. Intact [35S]HSPG eluted with Kav 0.1 from Sepharose CL-4B, whereas the protein-free [35S]heparan sulfate chains, obtained by alkaline borohydride treatment of the proteoglycan fractions, eluted with Kav 0.45 (Mr approximately 72,000). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, core (protein) preparations, obtained by heparitinase digestion of 125I-labeled HSPG fractions, yielded one major labeled band with apparent molecular mass of approximately 300 kDa. Reduction with beta-mercaptoethanol slightly increased the apparent Mr of the labeled band, suggesting a single polypeptide structure and the presence of intrachain disulfide bonds. Immunoadsorption experiments and immunostaining of electrophoretically separated heparitinase-digested core proteins with monoclonal antibodies raised against matrix and cell surface-associated HSPG suggested that the major matrix-associated HSPG of cultured human lung fibroblasts is distinct from the HSPG that are anchored in the membranes of these cells. Binding studies suggested that this matrix HSPG interacts with several matrix components, both through its glycosaminoglycan chains and through its heparitinase-resistant core. (Abstract Truncated)

  4. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. (II.) Seven compounds containing 2 or 3 sulfate residues.

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Waard, P. de; Harada, T.; Sugahara, K.

    1992-01-01

    Shark cartilage proteoglycans bear predominantly chondroitin 6-sulfate. After exhaustive protease digestion, reductive beta-elimination and subsequent chondroitinase ABC digestion, 13 hexasaccharide alditols were obtained from the carbohydrate-protein linkage region and six of them contain 0 or 1

  5. Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia

    OpenAIRE

    1989-01-01

    Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison o...

  6. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders.

    Science.gov (United States)

    Farach-Carson, Mary C; Warren, Curtis R; Harrington, Daniel A; Carson, Daniel D

    2014-02-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously

  7. The dermatan sulfate proteoglycan decorin modulates α2β1 integrin and the vimentin intermediate filament system during collagen synthesis.

    Directory of Open Access Journals (Sweden)

    Oliver Jungmann

    Full Text Available Decorin, a small leucine-rich proteoglycan harboring a dermatan sulfate chain at its N-terminus, is involved in regulating matrix organization and cell signaling. Loss of the dermatan sulfate of decorin leads to an Ehlers-Danlos syndrome characterized by delayed wound healing. Decorin-null (Dcn(-/- mice display a phenotype similar to that of EDS patients. The fibrillar collagen phenotype of Dcn(-/- mice could be rescued in vitro by decorin but not with decorin lacking the glycosaminoglycan chain. We utilized a 3D cell culture model to investigate the impact of the altered extracellular matrix on Dcn(-/- fibroblasts. Using 2D gel electrophoresis followed by mass spectrometry, we identified vimentin as one of the proteins that was differentially upregulated by the presence of decorin. We discovered that a decorin-deficient matrix leads to abnormal nuclear morphology in the Dcn(-/- fibroblasts. This phenotype could be rescued by the decorin proteoglycan but less efficiently by the decorin protein core. Decorin treatment led to a significant reduction of the α2β1 integrin at day 6 in Dcn(-/- fibroblasts, whereas the protein core had no effect on β1. Interestingly, only the decorin core induced mRNA synthesis, phosphorylation and de novo synthesis of vimentin indicating that the proteoglycan decorin in the extracellular matrix stabilizes the vimentin intermediate filament system. We could support these results in vivo, because the dermis of wild-type mice have more vimentin and less β1 integrin compared to Dcn(-/-. Furthermore, the α2β1 null fibroblasts also showed a reduced amount of vimentin compared to wild-type. These data show for the first time that decorin has an impact on the biology of α2β1 integrin and the vimentin intermediate filament system. Moreover, our findings provide a mechanistic explanation for the reported defects in wound healing associated with the Dcn(-/- phenotype.

  8. Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain

    Directory of Open Access Journals (Sweden)

    Dacić Sanja

    2008-01-01

    Full Text Available The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs. In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.

  9. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    International Nuclear Information System (INIS)

    Calvo, J.C.; Rodbard, D.; Katki, A.; Chernick, S.; Yanagishita, M.

    1991-01-01

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with [35S]sulfate and [3H] glucosamine for 24 h and then extracted and analyzed. There was a 1.68 ± 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of ∼ 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of ∼ 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 ± 0.2-fold in media and 3.2 ± 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation

  10. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation.

    Directory of Open Access Journals (Sweden)

    Asya Rolls

    2008-08-01

    Full Text Available BACKGROUND: Chondroitin sulfate proteoglycan (CSPG is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study. METHODS AND FINDINGS: We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1 production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-alpha levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/macrophages via the CD44 receptor and modulated neurotrophic factor secretion by

  11. Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice

    NARCIS (Netherlands)

    McBride, P. A.; Wilson, M. I.; Eikelenboom, P.; Tunstall, A.; Bruce, M. E.

    1998-01-01

    Heparan sulfate proteoglycan (HSPG) has been found to be associated with amyloid deposits in a number of diseases including the cerebral amyloid plaques of Alzheimer's disease and the transmissible spongiform encephalopathies (TSEs). The role of HSPG in amyloid formation and the neurodegenerative

  12. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury

    NARCIS (Netherlands)

    Bartus, Katalin; James, Nicholas D; Didangelos, Athanasios; Bosch, Karen D; Verhaagen, J.; Yáñez-Muñoz, Rafael J; Rogers, John H; Schneider, Bernard L; Muir, Elizabeth M; Bradbury, Elizabeth J

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate

  13. Podocalyxin as a major pluripotent marker and novel keratan sulfate proteoglycan in human embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Toyoda, Hidenao; Nagai, Yuko; Kojima, Aya; Kinoshita-Toyoda, Akiko

    2017-04-01

    Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.

  14. Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-09-01

    In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans-type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, -2, -3 and -4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin- and Ki-67-immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.

  15. Changes in cardiac heparan sulfate proteoglycan expression and streptozotocin-induced diastolic dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Cestari Ismar N

    2011-04-01

    Full Text Available Abstract Background Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ-induced diabetes. Methods Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection, after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E diastolic filling and isovolumic relaxation time (IVRT indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.

  16. Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans.

    Science.gov (United States)

    Saied-Santiago, Kristian; Townley, Robert A; Attonito, John D; da Cunha, Dayse S; Díaz-Balzac, Carlos A; Tecle, Eillen; Bülow, Hannes E

    2017-08-01

    Heparan sulfates (HS) are linear polysaccharides with complex modification patterns, which are covalently bound via conserved attachment sites to core proteins to form heparan sulfate proteoglycans (HSPGs). HSPGs regulate many aspects of the development and function of the nervous system, including cell migration, morphology, and network connectivity. HSPGs function as cofactors for multiple signaling pathways, including the Wnt-signaling molecules and their Frizzled receptors. To investigate the functional interactions among the HSPG and Wnt networks, we conducted genetic analyses of each, and also between these networks using five cellular migrations in the nematode Caenorhabditis elegans We find that HSPG core proteins act genetically in a combinatorial fashion dependent on the cellular contexts. Double mutant analyses reveal distinct redundancies among HSPGs for different migration events, and different cellular migrations require distinct heparan sulfate modification patterns. Our studies reveal that the transmembrane HSPG SDN-1/Syndecan functions within the migrating cell to promote cellular migrations, while the GPI-linked LON-2/Glypican functions cell nonautonomously to establish the final cellular position. Genetic analyses with the Wnt-signaling system show that (1) a given HSPG can act with different Wnts and Frizzled receptors, and that (2) a given Wnt/Frizzled pair acts with different HSPGs in a context-dependent manner. Lastly, we find that distinct HSPG and Wnt/Frizzled combinations serve separate functions to promote cellular migration and establish position of specific neurons. Our studies suggest that HSPGs use structurally diverse glycans in coordination with Wnt-signaling pathways to control multiple cellular behaviors, including cellular and axonal migrations and, cellular positioning. Copyright © 2017 by the Genetics Society of America.

  17. ScFv Anti-Heparan Sulfate Antibodies Unexpectedly Activate Endothelial and Cancer Cells through p38 MAPK: Implications for Antibody-Based Targeting of Heparan Sulfate Proteoglycans in Cancer

    NARCIS (Netherlands)

    Christianson, H.C.; Kuppevelt, A.H. van; Belting, M.

    2012-01-01

    Tumor development requires angiogenesis and anti-angiogenic therapies have been introduced in the treatment of cancer. In this context, heparan sulfate proteoglycans (HSPGs) emerge as interesting targets, owing to their function as co-receptors of major, pro-angiogenic factors. Accordingly, previous

  18. Heparan sulfate proteoglycans of rat embryo fibroblasts. A hydrophobic form may link cytoskeleton and matrix components

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R; Höök, M

    1985-01-01

    properties in that it showed no affinity for octyl-Sepharose and could not be inserted into liposomes. The other HSPG type had an estimated Mr of 3-5 X 10(5), was retained on octyl-Sepharose, and could be inserted into liposomes. In addition, the cells contained low molecular weight heparan sulfate...

  19. Hair follicle proteoglycans

    DEFF Research Database (Denmark)

    Couchman, J R

    1993-01-01

    that are present in the epithelial and stromal compartments of hair follicles. However, the transmembrane proteoglycan syndecan may be important in follicle morphogenesis, both with respect to the epithelium and dermal papilla cells. Syndecan may possess both heparan and chondroitin sulfate chains, interacts...... basement membranes, including those surrounding the epithelial compartment of hair follicles. Additionally, and quite unlike the dermis, the dermal papilla is enriched in basement-membrane components, especially a chondroitin 6-sulfate-containing proteoglycan, BM-CSPG. The function of this proteoglycan...... is not known, but developmental studies indicate that it may have a role in stabilizing basement membranes. In the hair cycle, BM-CSPG decreases through catagen and is virtually absent from the telogen papilla. One or more heparan sulfate proteoglycans, including perlecan, are also present in papilla...

  20. Quantitative evaluation of experimental choroidal neovascularization by confocal scanning laser ophthalmoscopy: fluorescein angiogram parallels heparan sulfate proteoglycan expression

    Directory of Open Access Journals (Sweden)

    C.V. Regatieri

    2010-07-01

    Full Text Available The objective of the present study was to develop a quantitative method to evaluate laser-induced choroidal neovascularization (CNV in a rat model using Heidelberg Retina Angiograph 2 (HRA2 imaging. The expression of two heparan sulfate proteoglycans (HSPG related to inflammation and angiogenesis was also investigated. CNV lesions were induced with argon laser in 21 heterozygous Zucker rats and after three weeks a fluorescein angiogram and autofluorescence exams were performed using HRA2. The area and greatest linear dimension were measured by two observers not aware of the protocol. Bland-Altman plots showed agreement between the observers, suggesting that the technique was reproducible. After fluorescein angiogram, HSPG (perlecan and syndecan-4 were analyzed by real-time RT-PCR and immunohistochemistry. There was a significant increase in the expression of perlecan and syndecan-4 (P < 0.0001 in retinas bearing CNV lesions compared to control retinas. The expression of these two HSPG increased with increasing CNV area. Immunohistochemistry demonstrated that the rat retina damaged with laser shots presented increased expression of perlecan and syndecan-4. Moreover, we observed that the overexpression occurred in the outer layer of the retina, which is related to choroidal damage. It was possible to develop a standardized quantitative method to evaluate CNV in a rat model using HRA2. In addition, we presented data indicating that the expression of HSPG parallels the area of CNV lesion. The understanding of these events offers opportunities for studies of new therapeutic interventions targeting these HSPG.

  1. Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats.

    Science.gov (United States)

    Zhang, Yiqin; Rauch, Uwe; Perez, Maria-Thereza R

    2003-03-01

    To examine whether and how the retinal distribution of the chondroitin sulfate proteoglycan neurocan is affected after photoreceptor cell loss and whether it correlates with the multiple secondary cellular changes that accompany the photoreceptor degeneration. Retinas from normal rats (Sprague-Dawley; postnatal days [P]0-P70), RCS rats with dystrophic retinas (P0-P300), RCS-rdy(+) congenic rats with nondystrophic retinas (P0-202), and rhodopsin mutant rats, P23H (P0-P257) and S334ter (P0-P220), were processed for immunohistochemistry using a polyclonal antibody to rat neurocan. The overall distribution of neurocan was similar in all retinas examined. Neurocan immunostaining was detected over the nerve fiber layer, the plexiform layers, the photoreceptor outer segments region, and the ciliary epithelium. With age, labeling throughout the plexiform layers decreased continuously. In RCS rats however, conspicuous labeling was also seen in association with retinal vessels, from P15 onward. Accumulation of neurocan in association with the retinal vasculature does not correlate with photoreceptor cell loss, because it was not observed in the rhodopsin mutant rats. During the earliest stages of the disease, accumulation of debris in the subretinal space in RCS rats may be sufficient per se to initiate a cascade of metabolic changes that result in accumulation of neurocan. With time, the neurocan accumulated perivascularly may, by interaction with other matrix molecules, modulate at least some of the vascular alterations observed in this animal model.

  2. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  3. cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs

    DEFF Research Database (Denmark)

    Wu, R R; Couchman, J R

    1997-01-01

    Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now....... The protein sequence has low overall homology, apart from very small NH2- and COOH-terminal motifs. At the junctions between the distal globular domains and the coiled-coil regions lie glycosylation sites, with up to three N-linked oligosaccharides and probably three chondroitin chains. Three other Ser...

  4. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods: The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry......, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two......-tailed paired t-test and one-way ANOVA with Tukey¿s post-hoc test were used in the analysis of data. Results: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced...

  5. Transforming growth factor β-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways.

    Science.gov (United States)

    Jahan, Naima; Hannila, Sari S

    2015-01-01

    The expression of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes is a major factor contributing to glial scarring and regenerative failure after spinal cord injury, but the molecular mechanisms underlying CSPG expression remain largely undefined. One contributing factor is transforming growth factor β (TGFβ), which is upregulated after injury and has been shown to induce expression of CSPGs in vitro. TGFβ typically mediates its effects through the Smad2/3 signaling pathway, and it has been suggested that this pathway is responsible for CSPG expression. However, there is evidence that TGFβ can also activate non-Smad signaling pathways. In this study, we report that TGFβ-induced expression of three different CSPGs--neurocan, brevican, and aggrecan--is mediated through non-Smad signaling pathways. We observed significant increases in TGFβ-induced expression of neurocan, brevican, and aggrecan following siRNA knockdown of Smad2 or Smad4, which indicates that Smad signaling is not required for the expression of these CSPGs. In addition, we show that neurocan, aggrecan, and brevican levels are significantly reduced when TGFβ is administered in the presence of either the PI3K inhibitor LY294002 or the mTOR inhibitor rapamycin, but not the MEK1/2 inhibitor U0126. This suggests that TGFβ mediates this effect through non-Smad-dependent activation of the PI3K-Akt-mTOR signaling pathway, and targeting this pathway may therefore be an effective means of reducing CSPG expression in the injured CNS. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. An affinity adsorption media that mimics heparan sulfate proteoglycans for the treatment of drug-resistant bacteremia

    Science.gov (United States)

    McCrea, Keith R.; Ward, Robert S.

    2016-06-01

    Removal of several drug-resistant bacteria from blood by affinity adsorption onto a heparin-functional media is reported. Heparin is a chemical analogue of heparan sulfate (HS) proteoglycans, found on transmembrane proteins of endothelial cells. Many blood-borne human pathogens, including bacteria, viruses, parasites, and fungi have been reported to target HS as an initial step in their pathogenesis. Here, we demonstrate the binding and removal of Methicillin-resistant Staphylococcus aureus (MRSA), Extended-Spectrum Betalactamase Klebsiella pneumoniae (ESBL), and two Carbapenem-resistant Enterobacteriaceae (both CRE Escherichia coli and CRE K. pneumoniae) using 300 μm polyethylene beads surface modified with end-point-attached heparin. Depending on the specific bacteria, the amount removed ranged between 39% (ESBL) and 99.9% (CRE). The total amount of bacteria adsorbed ranged between 2.8 × 105 and 8.6 × 105 colony forming units (CFU) per gram of adsorption media. Based on a polymicrobial challenge which showed no competitive binding, MRSA and CRE apparently utilize different binding sequences on the immobilized heparin ligand. Since the total circulating bacterial load during bacteremia seldom exceeds 5 × 105 CFUs, it appears possible to significantly reduce bacterial concentration in infected patients by multi-pass recirculation of their blood through a small extracorporeal affinity filter containing the heparin-functional adsorption media. This 'dialysis-like therapy' is expected to improve patient outcomes and reduce the cost of care, particularly when there are no anti-infective drugs available to treat the infection.

  7. Structural characterization of proteoglycans produced by testicular peritubular cells and Sertoli cells

    International Nuclear Information System (INIS)

    Skinner, M.K.; Fritz, I.B.

    1985-01-01

    The structural characteristics of proteoglycans produced by seminiferous peritubular cells and by Sertoli cells are defined. Peritubular cells secrete two proteoglycans designated PC I and PC II. PC I is a high molecular mass protein containing chondroitin glycosaminoglycan (GAG) chains (maximum 70 kDa). PC II has a protein core of 45 kDa and also contains chondroitin GAG chains (maximum 70 kDa). Preliminary results imply that PC II may be a degraded or processed form of PC I. Sertoli cells secrete two different proteoglycans, designated SC I and SC II. SC I is a large protein containing both chondroitin (maximum 62 kDa) and heparin (maximum 15 kDa) GAG chains. Results obtained suggest that this novel proteoglycan contains both chondroitin and heparin GAG chains bound to the same core protein. SC II has a 50-kDa protein core and contains chondroitin (maximum 25 kDa) GAG chains. A proteoglycan obtained from extracts of Sertoli cells is described which contains heparin (maximum 48 kDa) GAG chains. In addition, Sertoli cells secrete a sulfoprotein, SC III, which is not a proteoglycan. The stimulation by follicle-stimulating hormone of the incorporation of [ 35 S]SO 2 ) -4 ) into moieties secreted by Sertoli cells is shown to represent an increased production or sulfation of SC III, and not an increased production or sulfation of proteoglycans. Results are discussed in relation to the possible functions of proteoglycans in the seminiferous tubule

  8. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen.

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Shi

    2011-01-01

    Full Text Available Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP expression in rat vascular smooth muscle cells (SMCs and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS chains from proteoglycan (PG core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1 suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13 expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction

  9. Macromolecular basis for homocystein-induced changes in proteoglycan structure in growth and arteriosclerosis.

    Science.gov (United States)

    McCully, K S

    1972-01-01

    Cell culture monolayers deficient in cystathionine synthetase bound more inorganic sulfate than normal cell monolayers during growth to confluence; this was correlated with the production of granular proteoglycan by the abnormal cells and fibrillar proteoglycan by normal cells. Homocysteine was demonstrated to be an active precursor of esterified sulfate, confirming our previous finding of this sulfation pathway in liver. The cell cultures deficient in cystathionine synthetase were found to assume an abnormal cellular distribution on the surface of the culture dish, resembling the distribution assumed by neoplastic cells with loss of contact inhibition; the degree of abnormality of the cellular distribution was correlated with the amount of granular proteoglycan produced by the cells and the amount of inorganic sulfate binding by the cell monolayers. Pyridoxine was found to increase the growth rate of cell cultures from a patient with pyridoxineresponsive homocystinuria and to increase the production of fibrillar proteoglycan by the cells; no effect of pyridoxine was observed in the cell cultures from a patient who failed to respond to pyridoxine therapy. The findings suggest that the change in macromolecular conformation of cellular proteoglycans from fibrillar to granular is due to increased sulfation of the carbohydrate envelope of the molecule. The significance of the findings is related to the pathogenesis of homocystinuria, the phenomenon of contact inhibition, the action of growth hormone and initiation of arteriosclerotic plaques.

  10. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.

    Science.gov (United States)

    Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On

    2017-08-10

    Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    Science.gov (United States)

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Human glomerular epithelial cell proteoglycans

    International Nuclear Information System (INIS)

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M.

    1990-01-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate

  13. Biomimetic sulfated polyethylene glycol hydrogel inhibits proteoglycan loss and tumor necrosis factor-α-induced expression pattern in an osteoarthritis in vitro model.

    Science.gov (United States)

    Hemmati-Sadeghi, Shabnam; Dey, Pradip; Ringe, Jochen; Haag, Rainer; Sittinger, Michael; Dehne, Tilo

    2018-04-16

    This study aimed to evaluate the potential of an anti-inflammatory polyethylene glycol (PEG) hydrogel for osteoarthritis (OA) management in an OA in vitro model. Freshly isolated porcine chondrocytes were maintained in high-density cultures to form cartilage-like three-dimensional micromasses. Recombinant porcine tumor necrosis factor-alpha (TNF-α) was used to induce OA-like changes. Normal and OA-like micromasses were treated with dendritic polyglycerol sulfate-based PEG hydrogel. Live/dead staining showed that all micromasses remained vital and presented similar morphological characteristics. Safranin-O staining demonstrated a typical depletion of glycosaminoglycans in TNF-α-treated micromasses but not in the presence of the hydrogel. There was no distinct difference in immunohistochemical detection of type II collagen. Microarray data showed that rheumatoid arthritis and TNF signaling pathways were down regulated in hydrogel-treated OA-like micromasses compared to nontreated OA-like micromasses. The hydrogel alone did not affect genes related to OA such as ANPEP, COMP, CXCL12, PTGS2, and TNFSF10, but it prevented their regulation caused by TNF-α. This study provides valuable insights toward a fully synthetic hydrogel for the intra-articular treatment of OA. The findings proved the potential of this hydrogel to prevent the development of TNF-α-induced OA with regard to proteoglycan loss and TNF-α-induced expression pattern without additional signs of differentiation and inflammation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  14. ScFv anti-heparan sulfate antibodies unexpectedly activate endothelial and cancer cells through p38 MAPK: implications for antibody-based targeting of heparan sulfate proteoglycans in cancer.

    Directory of Open Access Journals (Sweden)

    Helena C Christianson

    Full Text Available Tumor development requires angiogenesis and anti-angiogenic therapies have been introduced in the treatment of cancer. In this context, heparan sulfate proteoglycans (HSPGs emerge as interesting targets, owing to their function as co-receptors of major, pro-angiogenic factors. Accordingly, previous studies have suggested anti-tumor effects of heparin, i.e. over-sulfated HS, and various heparin mimetics; however, a significant drawback is their unspecific mechanism of action and potentially serious side-effects related to their anticoagulant properties. Here, we have explored the use of human ScFv anti-HS antibodies (αHS as a more rational approach to target HSPG function in endothelial cells (ECs. αHS were initially selected for their recognition of HS epitopes localized preferentially to the vasculature of patient glioblastoma tumors, i.e. highly angiogenic brain tumors. Unexpectedly, we found that these αHS exhibited potent pro-angiogenic effects in primary human ECs. αHS were shown to stimulate EC differentiation, which was associated with increased EC tube formation and proliferation. Moreover, αHS supported EC survival under hypoxia and starvation, i.e. conditions typical of the tumor microenvironment. Importantly, αHS-mediated proliferation was efficiently counter-acted by heparin and was absent in HSPG-deficient mutant cells, confirming HS-specific effects. On a mechanistic level, binding of αHS to HSPGs of ECs as well as glioblastoma cells was found to trigger p38 MAPK-dependent signaling resulting in increased proliferation. We conclude that several αHS that recognize HS epitopes abundant in the tumor vasculature may elicit a pro-angiogenic response, which has implications for the development of antibody-based targeting of HSPGs in cancer.

  15. Glycosaminoglycans and Proteoglycans

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2018-02-01

    Full Text Available In this editorial to MDPI Pharmaceuticals special issue “Glycosaminoglycans and Proteoglycans” we describe in outline the common structural features of glycosaminoglycans and the characteristics of proteoglycans, including the intracellular proteoglycan, serglycin, cell-surface proteoglycans, like syndecans and glypicans, and the extracellular matrix proteoglycans, like aggrecan, perlecan, and small leucine-rich proteoglycans. The context in which the pharmaceutical uses of glycosaminoglycans and proteoglycans are presented in this special issue is given at the very end.

  16. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1

    Directory of Open Access Journals (Sweden)

    Connor Joseph P

    2012-05-01

    Full Text Available Abstract Background Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC. In our previous work Decoy Receptor 3 (DcR3 was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. Methods We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. Results High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02. None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Conclusions Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The

  17. Three distinct molecular species of proteoglycan synthesized by the rat limb bud at the prechondrogenic stage

    International Nuclear Information System (INIS)

    Matsui, F.; Oohira, A.; Shoji, R.; Nogami, H.

    1989-01-01

    To characterize proteoglycans in the prechondrogenic limb bud, proteoglycans were extracted with 4 M guanidine HCl containing a detergent and protease inhibitors from Day 13 fetal rat limb buds which had been labeled with [35S]sulfate for 3 h in vitro. About 90% of 35S-labeled proteoglycans was solubilized under the conditions used. The proteoglycan preparation was separated by DEAE-Sephacel column chromatography into three peaks; peak I eluted at 0.45 M NaCl concentration, peak II at 0.52 M, and peak III at 1.4 M. Peaks I and III were identified as proteoglycans bearing heparan sulfate side chains. The heparan sulfate proteoglycan in peak III was larger in hydrodynamic size than the proteoglycan in peak I. The heparan sulfate side chains of peak III proteoglycan were smaller in the size and more abundant in N-sulfated glucosamine than those of peak I proteoglycan. Peak II contained a chondroitin sulfate proteoglycan with a core protein of a doublet of Mr 550,000 and 500,000. The chondroitin sulfate proteoglycan was easily solubilized with a physiological salt solution and the heparan sulfate proteoglycan in peak I was partially solubilized with the physiological salt solution. The remainder of the proteoglycan in peak I and the heparan sulfate proteoglycan in peak III could be solubilized effectively only with a solution containing a detergent, such as nonanoyl-N-methylglucamide. This observation indicates the difference in the localization among these three proteoglycans in the developing rat limb bud

  18. 212Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models

    Directory of Open Access Journals (Sweden)

    Benjamin B. Kasten

    2018-03-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs, as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4 is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC. The purpose of this study was to determine whether α-particle radioimmunotherapy (RIT targeting TNBC cells using the CSPG4-specific monoclonal antibody (mAb 225.28 as a carrier was effective at eliminating TNBC tumors in preclinical models. To this end, mAb 225.28 labeled with 212Pb (212Pb-225.28 as a source of α-particles for RIT was used for in vitro Scatchard assays and clonogenic survival assays with human TNBC cells (SUM159 and 2LMP grown as adherent cells or non-adherent CIC-enriched mammospheres. Immune-deficient mice bearing orthotopic SUM159 or 2LMP xenografts were injected i.v. with the targeted (225.28 or irrelevant isotype-matched control (F3-C25 mAbs, labeled with 99mTc, 125I, or 212Pb for in vivo imaging, biodistribution, or tumor growth inhibition studies. 212Pb-225.28 bound to adherent SUM159 and 2LMP cells and to CICs from SUM159 and 2LMP mammospheres with a mean affinity of 0.5 nM. Nearly ten times more binding sites per cell were present on SUM159 cells and CICs compared with 2LMP cells. 212Pb-225.28 was six to seven times more effective than 212Pb-F3-C25 at inhibiting SUM159 cell and CIC clonogenic survival (p < 0.05. Radiolabeled mAb 225.28 showed significantly higher uptake than radiolabeled mAb F3-C25 in SUM159 and 2LMP xenografts (p < 0.05, and the uptake of 212Pb-225.28 in TNBC xenografts was correlated with target epitope expression. 212Pb-225.28 caused dose

  19. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    Science.gov (United States)

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  20. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  1. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  2. Presynaptic proteoglycans: sweet organizers of synapse development.

    Science.gov (United States)

    Song, Yoo Sung; Kim, Eunjoon

    2013-08-21

    Synaptic adhesion molecules control neuronal synapse development. In this issue of Neuron, Siddiqui et al. (2013) and de Wit et al. (2013) demonstrate that LRRTM4, a postsynaptic adhesion molecule, trans-synaptically interacts with presynaptic heparan sulfate proteoglycans (HSPGs) to promote synapse development. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Digestion of proteoglycan by Bacteroides thetaiotaomicron.

    OpenAIRE

    Kuritza, A P; Salyers, A A

    1983-01-01

    It has been shown previously that Bacteroides thetaiotaomicron, a human colonic anaerobe, can utilize the tissue mucopolysaccharide chondroitin sulfate as a source of carbon and energy and that the enzymes involved in this utilization are all cell associated (A. A. Salyers and M. B. O'Brien, J. Bacteriol. 143:772-780, 1980). Since chondroitin sulfate does not generally occur in isolated form in tissue, but rather is bound covalently in proteoglycan, we investigated the extent to which chondro...

  4. Improved biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using recombinant host cells. More particularly, the present invention pertains to recombinant host cells comprising (e.g., expressing) a polypeptide having aryl sulfotransferase...... activity, wherein said recombinant host cells have been modified to have an increased uptake of sulfate compared to identical host cells that does not carry said modification. Further provided are processes for the production of aryl sulfates, such as zosteric acid, employing such recombinant host cells....

  5. Proteoglycan isolation and analysis

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Proteoglycans can be difficult molecules to isolate and analyze due to large mass, charge, and tendency to aggregate or form macromolecular complexes. This unit describes detailed methods for purification of matrix, cell surface, and cytoskeleton-linked proteoglycans. Methods for analysis...

  6. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion

    DEFF Research Database (Denmark)

    Faassen, A E; Schrager, J A; Klein, D J

    1992-01-01

    The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell...... collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG...... was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related...

  7. Differentiation of EL4 lymphoma cells by tumoral environment is associated with inappropriate expression of the large chondroitin sulfate proteoglycan PG-M and the tumor-associated antigen HTgp-175.

    Science.gov (United States)

    Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J

    1998-11-09

    Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.

  8. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    International Nuclear Information System (INIS)

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of [ 35 S]-sodium sulfate and [ 3 H]-serine or [ 3 H]-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of 35 S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect

  9. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  10. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Science.gov (United States)

    He, Pengzhen; Alexander, Becky; Geng, Lei; Chi, Xiyuan; Fan, Shidong; Zhan, Haicong; Kang, Hui; Zheng, Guangjie; Cheng, Yafang; Su, Hang; Liu, Cheng; Xie, Zhouqing

    2018-04-01

    Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42-)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m-3 with a mean of (141 ± 88 (1σ)) µg m-3, with SO42- representing 8-25 % of PM2.5 mass. The observed Δ17O(SO42-) varied from 0.1 to 1.6 ‰ with a mean of (0.9 ± 0.3) ‰. Δ17O(SO42-) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5 ≥ 75 µg m-3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III-V, heterogeneous sulfate production (Phet) was estimated to contribute 41-54 % to total sulfate formation with a mean of (48 ± 5) %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫ H2O + HSO3- + SO32-) oxidation by H2O2 in aerosol water accounted for 5-13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42-). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21-22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42-), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66-73 % of Phet. The assumption about the thermodynamic state of aerosols

  11. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    Directory of Open Access Journals (Sweden)

    P. He

    2018-04-01

    Full Text Available Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42− collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m−3 with a mean of (141  ±  88 (1σ µg m−3, with SO42− representing 8–25 % of PM2.5 mass. The observed Δ17O(SO42− varied from 0.1 to 1.6 ‰ with a mean of (0.9  ±  0.3 ‰. Δ17O(SO42− increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75 µg m−3 of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet was estimated to contribute 41–54 % to total sulfate formation with a mean of (48  ±  5 %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV ( =  SO2 ⚫ H2O + HSO3−  +  SO32− oxidation by H2O2 in aerosol water accounted for 5–13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−. Heterogeneous sulfate production via S(IV oxidation by O3 was estimated to contribute 21–22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−, such as S(IV oxidation by NO2 in aerosol water and/or by O2 via a

  12. Effects of glucosamine on proteoglycan loss by tendon, ligament and joint capsule explant cultures.

    Science.gov (United States)

    Ilic, M Z; Martinac, B; Samiric, T; Handley, C J

    2008-12-01

    To investigate the effect of glucosamine on the loss of newly synthesized radiolabeled large and small proteoglycans by bovine tendon, ligament and joint capsule. The kinetics of loss of (35)S-labeled large and small proteoglycans from explant cultures of tendon, ligament and joint capsule treated with 10mM glucosamine was investigated over a 10-day culture period. The kinetics of loss of (35)S-labeled small proteoglycans and the formation of free [(35)S]sulfate were determined for the last 10 days of a 15-day culture period. The proteoglycan core proteins were analyzed by gel electrophoresis followed by fluorography. The metabolism of tendon, ligament and joint capsule explants exposed to 10mM glucosamine was evaluated by incorporation of [(3)H]serine and [(35)S]sulfate into protein and glycosaminoglycans, respectively. Glucosamine at 10mM stimulated the loss of small proteoglycans from ligament explant cultures. This was due to the increased loss of both macromolecular and free [(35)S]sulfate to the medium indicating that glucosamine affected the release of small proteoglycans as well as their intracellular degradation. The degradation pattern of small proteoglycans in ligament was not affected by glucosamine. In contrast, glucosamine did not have an effect on the loss of large or small proteoglycans from tendon and joint capsule or large proteoglycans from ligament explant cultures. The metabolism of cells in tendon, ligament and joint capsule was not impaired by the presence of 10mM glucosamine. Glucosamine stimulated the loss of small proteoglycans from ligament but did not have an effect on small proteoglycan catabolism in joint capsule and tendon or large proteoglycan catabolism in ligament, tendon or synovial capsule. The consequences of glucosamine therapy at clinically relevant concentrations on proteoglycan catabolism in joint fibrous connective tissues need to be further assessed in an animal model.

  13. Transmembrane Signaling Proteoglycans

    DEFF Research Database (Denmark)

    Couchman, John R

    2010-01-01

    Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core prote...... proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins...... proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 26...

  14. Axonal transport of proteoglycans to the goldfish optic tectum

    International Nuclear Information System (INIS)

    Ripellino, J.A.; Elam, J.S.

    1988-01-01

    The study addressed the question of whether 35 SO 4 labeled molecules that have been delivered to the goldfish optic nerve terminals by rapid axonal transport include soluble proteoglycans. For analysis, tectal homogenates were subfractionated into a soluble fraction (soluble after centrifugation at 105,000 g), a lysis fraction (soluble after treatment with hypotonic buffer followed by centrifugation at 105,000 g) and a final 105,000 g pellet fraction. The soluble fraction contained 25.7% of incorporated radioactivity and upon DEAE chromatography was resolved into a fraction of sulfated glycoproteins eluting at 0-0.32 M NaCl and containing 39.5% of total soluble label and a fraction eluting at 0.32-0.60 M NaCl containing 53.9% of soluble label. This latter fraction was included on columns of Sepharose CL-6B with or without 4 M guanidine and after pronase digestion was found to have 51% of its radioactivity contained in the glycosaminoglycans (GAGs) heparan sulfate and chondroitin (4 or 6) sulfate in the ratio of 70% to 30%. Mobility of both intact proteoglycans and constituent GAGs on Sepharose CL-6B indicated a size distribution that is smaller than has been observed for proteoglycans and GAGs from cultured neuronal cell lines. Similar analysis of lysis fraction, containing 11.5% of incorporated 35 SO 4 , showed a mixture of heparan sulfate and chondroitin sulfate containing proteoglycans, apparent free heparan sulfate and few, if any, sulfated glycoproteins. Overall, the results support the hypothesis that soluble proteoglycans are among the molecules axonally transported in the visual system

  15. Glycoprotein and proteoglycan techniques

    International Nuclear Information System (INIS)

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  16. Producing ammonium sulfate from flue gas desulfurization by-products

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  17. Production of ferrous sulfate from residue from the iron mining

    International Nuclear Information System (INIS)

    Cardoso, K.A; Riella, H.G.; Abreu, E.F.; Carvalho, E.F. Urano de; Durazzo, M.

    2012-01-01

    This paper was developed from a residue obtained by processing iron ore exploited by the mining company Samarco S/A. The residue was characterized and the analyses showed that it contains about 70% of the mineral hematite (Fe 2 O 3 ) and also that some economically important products could be produced. One is the ferrous sulfate that can be used in pharmaceuticals and also that can be used in the treatment of iron deficiency anemia. The iron, in addition to is importance for the industrial production of steel and parts in general, also has great biological importance in all living beings. In order to produce ferrous sulfate from the byproduct in question, it was developed a obtaining route using metallic iron as hematite reductor and sulfuric acid to form the salt. (author)

  18. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    International Nuclear Information System (INIS)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E.

    1991-01-01

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  19. Production of Anti-triiodothyronine sulfate antibody for radioimmunoassay applications

    International Nuclear Information System (INIS)

    Elbanna, I.M.; Ragab, M.T.

    2000-01-01

    Triiodothyronine sulfate (T3S) may be an obligatory intermediate metabolic of the metabolism of thyroid gland hormones invertebrates in peripheral during the process of deiodination of the inactive form of the thyroid gland hormones, thyroxine(T4), into the active form triiodothyronine (1,2). Construction of a reliable procedure for the estimation of T3S accurately in blood serum will be of great importance for medical, biochemical and physiological investigations. In this work we developed a robust method for the production of anti-triiodothyronine sulfate polyclonal antiserum with good specifications using a derivatized immuno gen and a modified immunization process and a sensitive radioimmunoassay system was designed and developed

  20. Proteoglycan biosynthesis in murine monocytic leukemic (M1) cells before and after differentiation

    International Nuclear Information System (INIS)

    McQuillan, D.J.; Yanagishita, M.; Hascall, V.C.; Bickel, M.

    1989-01-01

    Murine monocytic leukemic (M1) cells were cultured in the presence of [ 3 H]glucosamine and [ 35 S]sulfate. Labeled proteoglycans were purified by anion exchange chromatography and characterized by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with chemical and enzymatic degradation. M1 cells synthesize a single predominant species of proteoglycan which distributes almost equally between the cell and medium after 17 h labeling. The cell-associated proteoglycan has an overall size of about 135 kDa and contains three to five chondroitin sulfate chains (28-31 kDa each) attached to a chondroitinase-generated core protein of 28 kDa. The synthesis and subsequent secretion of this proteoglycan was enhanced 4-5-fold in cells induced to differentiate into macrophages. This was not a phenomenon of arrest in the G0/G1 stage of the cell cycle, since density inhibited undifferentiated cells arrested at this stage did not increase proteoglycan synthesis. The chondroitin sulfate chains contained exclusively chondroitin 4- and 6-sulfate; however, the ratio of these two disaccharides differed between the medium- and cell-associated proteoglycans, and changed during progression of the cells into a fully differentiated phenotype. Pulse-chase kinetics indicate the presence of two distinct pools of proteoglycan; one that is secreted very rapidly from the cell after a approximately 1-h lag, and a second pool that is turned over in the cell with a half-time of approximately 3.5 h. Subtle differences in the glycosylation patterns of the medium- and cell-associated species are consistent with synthesis of two pools. Papain digestion suggests that the chondroitin sulfate chains are clustered on a small protease resistant peptide. The data suggest that this proteoglycan is similar to the serglycin proteoglycan family

  1. Distribution of two basement membrane proteoglycans through hair follicle development and the hair growth cycle in the rat

    DEFF Research Database (Denmark)

    Couchman, J R; King, J L; McCarthy, K J

    1990-01-01

    The distribution of two distinct populations of basement membrane proteoglycans has been monitored through hair growth development in the rat embryo and subsequent hair growth cycle. An antiserum against a small heparan sulfate proteoglycan uniformly stained the dermal-epidermal junction...... of embryonic rats throughout the period of hair follicle formation. On the other hand, monoclonal antibodies recognizing a basement membrane-specific chondroitin sulfate proteoglycan only weakly stained 16-d embryo dermal-epidermal junction, but strong staining was associated with hair follicle buds...... as they developed. Through the hair growth cycle, it was found that the heparan sulfate proteoglycan persisted around the follicles, while the chondroitin sulfate proteoglycan decreased in amount through catagen until it was undetectable at the base and dermal papilla of the telogen follicle. As anagen commenced...

  2. Purification and partial characterization of glycosaminoglycans and proteoglycans from cultured rabbit smooth muscle cells

    International Nuclear Information System (INIS)

    Sabatino, R.D.

    1985-01-01

    Glycosaminoglycans synthesized by cultured rabbit smooth muscle cells were isolated after incorporation of [ 3 H]-glucosamine into glycosaminoglycans in the presence or absence of 10% fetal bovine serum. Glycosaminoglycans were quantitated by two-dimensional electrophoresis after proteolytic digestion of the cell layers and media. The results show that the presence of serum has no effect on the chondroitin sulfate, heparan sulfate and dermatan sulfate content of the cell layers. The incorporation of [ 3 H]-glucosamine into hyaluronic acid of the cell layers was three times higher in the presence of serum. In the medium , the quantity of hyaluronic was two times higher in the presence of serum while the other glycosaminoglycans remained unchanged. The incorporation of [ 3 H]-glucosamine into hyaluronic acid was unaffected by the presence of serum. Specific proteoglycans were isolated from medium after with [ 35 S]-sulfate and [ 3 H]-serine by isopycnic ultracentrifugation and chromatography on Sepharose CL-4B and DEAE-cellulose. Preparations contained a chondroitin sulfate proteoglycan, a condroitin sulfate-dermatan sulfate proteoglycan and a heparan sulfate proteoglycan. Glycosaminoglycans and proteoglycans synthesized by rabbit aorta smooth muscle cells are similar to those from human aorta

  3. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tauchi Ryoji

    2012-03-01

    Full Text Available Abstract Background Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. Methods The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. Results ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. Conclusions Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.

  4. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  5. Low buoyant density proteoglycans from saline and dissociative extracts of embryonic chicken retinas

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.E.; Ting, Y.P.; Birkholz-Lambrecht, A.

    1984-03-01

    Retinas were labeled in culture with (/sup 3/H)glucosamine or (/sup 3/H)leucine and (/sup 35/S)sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sulfated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.

  6. Differential expression of proteoglycans in tissue remodeling and lymphangiogenesis after experimental renal transplantation in rats.

    Directory of Open Access Journals (Sweden)

    Heleen Rienstra

    Full Text Available BACKGROUND: Chronic transplant dysfunction explains the majority of late renal allograft loss and is accompanied by extensive tissue remodeling leading to transplant vasculopathy, glomerulosclerosis and interstitial fibrosis. Matrix proteoglycans mediate cell-cell and cell-matrix interactions and play key roles in tissue remodeling. The aim of this study was to characterize differential heparan sulfate proteoglycan and chondroitin sulfate proteoglycan expression in transplant vasculopathy, glomerulosclerosis and interstitial fibrosis in renal allografts with chronic transplant dysfunction. METHODS: Renal allografts were transplanted in the Dark Agouti-to-Wistar Furth rat strain combination. Dark Agouti-to-Dark Agouti isografts and non-transplanted Dark Agouti kidneys served as controls. Allograft and isograft recipients were sacrificed 66 and 81 days (mean after transplantation, respectively. Heparan sulfate proteoglycan (collXVIII, perlecan and agrin and chondroitin sulfate proteoglycan (versican expression, as well as CD31 and LYVE-1 (vascular and lymphatic endothelium, respectively expression were (semi- quantitatively analyzed using immunofluorescence. FINDINGS: Arteries with transplant vasculopathy and sclerotic glomeruli in allografts displayed pronounced neo-expression of collXVIII and perlecan. In contrast, in interstitial fibrosis expression of the chondroitin sulfate proteoglycan versican dominated. In the cortical tubular basement membranes in both iso- and allografts, induction of collXVIII was detected. Allografts presented extensive lymphangiogenesis (p<0.01 compared to isografts and non-transplanted controls, which was associated with induced perlecan expression underneath the lymphatic endothelium (p<0.05 and p<0.01 compared to isografts and non-transplanted controls, respectively. Both the magnitude of lymphangiogenesis and perlecan expression correlated with severity of interstitial fibrosis and impaired graft function

  7. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine.

    Science.gov (United States)

    Mundy, Christina; Yasuda, Tadashi; Kinumatsu, Takashi; Yamaguchi, Yu; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi; Koyama, Eiki; Pacifici, Maurizio

    2011-03-01

    Heparan sulfate proteoglycans (HSPGs) regulate a number of major developmental processes, but their roles in synovial joint formation remain unknown. Here we created conditional mouse embryo mutants lacking Ext1 in developing joints by mating Ext1(f/f) and Gdf5-Cre mice. Ext1 encodes a subunit of the Ext1/Ext2 Golgi-associated protein complex responsible for heparan sulfate (HS) synthesis. The proximal limb joints did form in the Gdf5-Cre;Ext1(f/f) mutants, but contained an uneven articulating superficial zone that expressed very low lubricin levels. The underlying cartilaginous epiphysis was deranged as well and displayed random patterns of cell proliferation and matrillin-1 and collagen IIA expression, indicative of an aberrant phenotypic definition of the epiphysis itself. Digit joints were even more affected, lacked a distinct mesenchymal interzone and were often fused likely as a result of local abnormal BMP and hedgehog activity and signaling. Interestingly, overall growth and lengthening of long bones were also delayed in the mutants. To test whether Ext1 function is needed for joint formation at other sites, we examined the spine. Indeed, entire intervertebral discs, normally composed by nucleus pulposus surrounded by the annulus fibrosus, were often missing in Gdf5-Cre;Ext1(f/f) mice. When disc remnants were present, they displayed aberrant organization and defective joint marker expression. Similar intervertebral joint defects and fusions occurred in Col2-Cre;β-catenin(f/f) mutants. The study provides novel evidence that local Ext1 expression and HS production are needed to maintain the phenotype and function of joint-forming cells and coordinate local signaling by BMP, hedgehog and Wnt/β-catenin pathways. The data indicate also that defects in joint formation reverberate on, and delay, overall long bone growth. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    International Nuclear Information System (INIS)

    Morales, T.I.

    1991-01-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated [35S]sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function

  9. Proteoglycan metabolism associated with mouse metanephric development: morphologic and biochemical effects of beta-D-xyloside

    International Nuclear Information System (INIS)

    Platt, J.L.; Brown, D.M.; Granlund, K.; Oegema, T.R.; Klein, D.J.

    1987-01-01

    Morphology and de novo incorporation of [ 35 S]sulfate into proteoglycans were studied in fetal mouse kidneys at the onset of organogenesis. Branching morphogenesis and nephron development in organ culture and in vivo were associated with de novo synthesis of chondroitin-SO 4 and heparan-SO 4 proteoglycans. The role of proteoglycan metabolism in metanephrogenesis was then studied by analysis of the effects of p-nitrophenyl-beta-D-xylopyranoside (beta-D-xyloside) on renal development and proteoglycan metabolism. Incubation of fetal kidneys in beta-D-xyloside at concentrations of 1.0 and 0.5 mM, but not at 0.1 mM, caused inhibition of ureteric branching and markedly diminished synthesis of a large Mr 2.0 X 10(6) Da chondroitin-SO 4 proteoglycan. Incorporation of [ 35 S]sulfate was stimulated at all beta-D-xyloside concentrations, reflecting synthesis of xyloside initiated dermatan- 35 SO 4 chains. In contrast to dramatic effects on chondroitin-SO 4 synthesis and ureteric branching, beta-D-xyloside had no effect on heparan-SO 4 synthesis or on development of the glomerulus and glomerular basement membrane. We thus characterize the proteoglycans synthesized early in the course of renal organogenesis and describe observations which suggest an association between metabolism of chondroitin-SO 4 proteoglycan and development of the ureter

  10. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kuivila, K.M.; Murray, J.W.; Devol, A.H. (Univ. of Washington, Seattle (USA)); Novelli, P.C. (Univ. of Colorado, Boulder (USA))

    1989-02-01

    Rates of methane production (both acetate fermentation and CO{sub 2} reduction) and sulfate reduction were directly measured as a function of depth in the sediments of Lake Washington. Although methanogenesis was the primary mode of anaerobic respiration (63%), the major zone of methane production existed only below the sulfate reduction zone (16 cm). Acetate fermentation accounted for 61 to 85% of the total methane production, which is consistent with other low sulfate environments. The observed spatial separation of methane production and sulfate reduction, which has been reported for marine sediments, is attributed to competition between the methane-producing and sulfate-reducing bacteria for acetate and hydrogen. This hypothesis is supported by the strong correlation between the measured distributions of acetate and hydrogen and the rates of methane produced from these two precursors in Lake Washington sediments. Acetate concentrations increased rapidly (from 10-16 {mu}M to 30-40 {mu}M) once the sulfate concentration decreased below 30 {mu}M and methane production via acetate fermentation began. A similar trend was observed for hydrogen concentrations, which increased from 7 to 22 nM up to 40 to 55 nM, at the onset of methanogenesis from CO{sub 2} and H{sub 2} (sulfate concentrations of 35-40 {mu}M). These results show, for the first time in a freshwater lake, the separation of methane production and sulfate reduction and the corresponding changes in acetate and hydrogen concentrations.

  11. Specificity of the human proteoglycan radioimmunoassay

    International Nuclear Information System (INIS)

    Gysen, P.; Heynen, G.; Franchimont, P.

    1981-01-01

    The human articular cartilagineous proteoglycans (PG) R.I.A. is highly specific. The PG used as the standard and the 125 I labelled molecule appear to be pure. Under these conditions, all the potential interfering substances which have been tested show no cross reaction. For instance, the Ag-Ab equilibrium is not affected by adding human IgG, human albumin, hyaluronic acid, chondroitin sulfate, rat type II collagen or total human serum proteins. This R.I.A. also exhibits a species spcificity since there is no cross reaction with rat PG and negligible cross section with dog PG. The results obtained after addition of enzymes to the antigen demonstrate that the antigenic sites are localized on the protein region and not on the glycosaminoglycan region of the molecule [fr

  12. Specificity of the human proteoglycan radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Gysen, P.; Heynen, G.; Franchimont, P. (Liege Univ. (Belgium))

    1981-01-01

    The human articular cartilagineous proteoglycans (PG) R.I.A. is highly specific. The PG used as the standard and the /sup 125/I labelled molecule appear to be pure. Under these conditions, all the potential interfering substances which have been tested show no cross reaction. For instance, the Ag-Ab equilibrium is not affected by adding human IgG, human albumin, hyaluronic acid, chondroitin sulfate, rat type II collagen or total human serum proteins. This R.I.A. also exhibits a species spcificity since there is no cross reaction with rat PG and negligible cross section with dog PG. The results obtained after addition of enzymes to the antigen demonstrate that the antigenic sites are localized on the protein region and not on the glycosaminoglycan region of the molecule.

  13. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    Science.gov (United States)

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. Copyright © 2016 Elsevier

  14. Decorin is one of the proteoglycans expressed in Walker 256 rat mammary carcinoma

    Directory of Open Access Journals (Sweden)

    S.M. Oba-Shinjo

    2003-08-01

    Full Text Available Proteoglycan and glycosaminoglycan content was analyzed in a model of rat mammary carcinoma to study the roles of these compounds in tumorigenesis. Hyaluronic acid and proteoglycans bearing chondroitin and/or dermatan sulfate chains were detected in solid tumors obtained after subcutaneous inoculation of Walker 256 rat carcinoma cells. About 10% of sulfated glycosaminoglycan chains corresponded to heparan sulfate. The small leucine-rich proteoglycan, decorin, was identified as one of the proteoglycans, in addition to others of higher molecular weight, by cross-reaction with an antiserum raised against pig laryngeal decorin and by N-terminal amino acid sequencing. Decorin was separated from other proteoglycans by hydrophobic chromatography and its complete structure was determined. It has a molecular weight of about 85 kDa and a dermatan chain of 45 kDa with 4-sulfated disaccharides. After degradation of the glycosaminoglycan chain, three core proteins of different molecular weight (36, 46 and 56 kDa were identified. The presence of hyaluronic acid and decorin has been reported in a variety of tumors and tumor cells. In the Walker 256 mammary carcinoma model, hyaluronic acid may play an important role in tumor progression, since it provides a more hydrated extracellular matrix. On the other hand, decorin, which is expressed by stromal cells, represents a host defense response to tumor growth.

  15. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    Science.gov (United States)

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  16. Effect of retinoic acid on proteoglycan turnover in bovine articular cartilage cultures

    International Nuclear Information System (INIS)

    Campbell, M.A.; Handley, C.J.

    1987-01-01

    This paper describes proteoglycan catabolism by adult bovine articular cartilage treated with retinoic acid as a means of stimulating the loss of this macromolecule from the extracellular matrix of cartilage. Addition of retinoic acid (10(-12)-10(-6) M) to adult bovine articular cartilage which had been labeled with [ 35 S]sulfate for 6 h after 5 days in culture, resulted in a dose-dependent increase in the rate of loss of 35 S-labeled proteoglycans from the matrix of the tissue. Concomitant with this loss was a decrease in the proteoglycan content of the tissue. Incubation of cultures treated with 1 microM retinoic acid, at 4 degrees C, or with 0.5 mM cycloheximide, resulted in a significant decrease in the rate of retinoic acid-induced loss of proteoglycans and demonstrated cellular involvement in this process. Analysis of the 35 S-labeled proteoglycans remaining in the matrix showed that the percentage of radioactivity associated with the small proteoglycan species extracted from the matrix of articular cartilage explants labeled with [ 35 S]sulfate after 5 days in culture was 15% and this increased to 22% in tissue maintained in medium alone. In tissue treated with 1 microM retinoic acid for 6 days, the percentage of radioactivity associated with the small proteoglycan was 58%. Approximately 93% of the 35 S-labeled proteoglycans released into the medium of control and retinoic acid-treated cultures was recovered in high density fractions after CsCl gradient centrifugation and eluted on Sepharose CL-2B as a broad peak with a Kav of 0.30-0.37. Less than 17% of these proteoglycans was capable of aggregating with hyaluronate. These results indicate that in both control and retinoic acid-treated cultures the larger proteoglycan species is lost to the medium at a greater rate than the small proteoglycan species. The effect of retinoic acid on proteoglycan turnover was shown to be reversible

  17. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    Middleton, P.; Kiang, C.S.

    1979-01-01

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  18. Kinetics of the direct sulfation of limestone at the initial stage of crystal growth of the solid product

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2011-01-01

    The direct sulfation of limestone was studied in a quartz bench scale fixed‐bed reactor with the technique of data deconvolution. The obtained results show that the direct sulfation of limestone has a two‐period kinetic behavior: a short initial sulfation period with high but fast decreasing...... such as SO2, O2, and CO2 and the temperature. The sulfation process in the initial stage of the period with product crystal growth can be described by the combination of the sulfation reaction at the gas–solid interface, diffusion of the product ions toward the product crystal grains, diffusion of carbonate...

  19. Extracellular matrix in canine mammary tumors with special focus on versican, a versatile extracellular proteoglycan

    NARCIS (Netherlands)

    Erdélyi, Ildikó

    2006-01-01

    The extracellular matrix (ECM) research has become fundamental to understand cancer. This thesis focuses on the exploration of ECM composition and organization in canine mammary tumors, with a special interest in the large chondroitin-sulfate proteoglycan (PG), versican. Chapter 1 gives an

  20. Engineering assessment of in situ sulfate production onboard aircraft at high altitude

    Science.gov (United States)

    Smith, J.; Dykema, J. A.; Keith, D.

    2016-12-01

    Stratospheric injection of scattering aerosols has been proposed as a way to reduce global temperature increases by decreasing net atmospheric radiative forcing. Several methods have been suggested as a means of implementing solar geoengineering, and high altitude aircraft have been identified as an accessible means delivering sulfate aerosols to the lower and mid-stratosphere. This research initiative analyzes the design features of an onboard open cycle chemical plant capable of in situ sulfur to sulfate conversion, and compares the required mass to that of transporting pre-fabricated gaseous or liquid sulfate aerosol precursors. Scaling from aero-derivative gas turbine engines, commercial catalytic converters, and existing aerospace materials indicate that aircraft equipped with such a system could provide a substantial mass benefit compared to direct transport of compound sulfate products.

  1. Biosynthesis and function of chondroitin sulfate.

    Science.gov (United States)

    Mikami, Tadahisa; Kitagawa, Hiroshi

    2013-10-01

    Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  3. Control of extracellular matrix assembly by syndecan-2 proteoglycan

    DEFF Research Database (Denmark)

    Klass, C M; Couchman, J R; Woods, A

    2000-01-01

    Extracellular matrix (ECM) deposition and organization is maintained by transmembrane signaling and integrins play major roles. We now show that a second transmembrane component, syndecan-2 heparan sulfate proteoglycan, is pivotal in matrix assembly. Chinese Hamster Ovary (CHO) cells were stably...... to rearrange laminin or fibronectin substrates into fibrils and to bind exogenous fibronectin. Transfection of activated alphaIIbalphaLdeltabeta3 integrin into alpha(5)-deficient CHO B2 cells resulted in reestablishment of the previously lost fibronectin matrix. However, cotransfection of this cell line with S...

  4. Stimulation of proteoglycans by IGF I and II in microvessel and large vessel endothelial cells

    International Nuclear Information System (INIS)

    Bar, R.S.; Dake, B.L.; Stueck, S.

    1987-01-01

    Endothelial cells were cultured from bovine capillaries and pulmonary arteries, and the effect of insulinlike growth factor (IGF) I and II (multiplication-stimulating activity) and insulin on the synthesis of proteoglycans was determined. IGF I and II stimulated 35 SO 4 incorporation into proteoglycans in a dose-dependent manner in both microvessel and pulmonary artery endothelial cells with maximum threefold increases. In pulmonary artery cells, the IGFs caused a general stimulation of all classes of glycosaminoglycan-containing proteoglycans. In microvessel endothelial cells, the IGFs appeared to preferentially increase heparan sulfate-containing proteoglycans. Insulin, at concentrations up to 10 -6 M, had no effect on the synthesis of proteoglycans in either microvessel or pulmonary arterial endothelial cells. Thus, the IGFs stimulate the synthesis of proteoglycans in both microvessel and large vessel endothelial cells, a property that is not mimicked by insulin. Because vascular endothelial cells are bathed by IGFs in vivo, such IGF-mediated functions are likely to be significant in both the normal physiology of vascular endothelium and in disease states such as diabetes mellitus

  5. Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Hoon; Choi, Jeong-A.; Bhatnagar, Amit; Kumar, Eva; Jeon, Byong-Hun [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Abou-Shanab, R.A.I. [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Department of Environmental Biotechnology, Mubarak City for Scientific Research, Alexandria (Egypt); Min, Booki [Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea); Song, Hocheol; Kim, Yong Je [Geologic Environment Division, KIGAM, Daejeon, 305-350 (Korea); Choi, Jaeyoung [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea); Lee, Eung Seok [Geological Sciences, College of Arts and Sciences, Ohio University, Athens, OH 45701-2979 (United States); Um, Sukkee [School of Mechanical Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791 (Korea); Lee, Dae Sung [Petroleum and Marine Research Department, KIGAM, Daejeon (Korea)

    2009-12-15

    The effects of varying sulfate concentrations with pH on continuous fermentative hydrogen production were studied using anaerobic mixed cultures growing on a glucose substrate in a chemostat reactor. The maximum hydrogen production rate was 2.8 L/day at pH 5.5 and sulfate concentration of 3000 mg/L. Hydrogen production and residual sulfate level decreased with increasing the pH from 5.5 to 6.2. The volatile fatty acids (VFAs) and ethanol fractions in the effluent were in the order of butyric acid (HBu) > acetic acid (HAc) > ethanol > propionic acid (HPr). Fluorescence In Situ Hybridization (FISH) analysis revealed the presence of hydrogen producing bacteria (HPB) under all pH ranges while sulfate reducing bacteria (SRB) were present at pH 5.8 and 6.2. The inhibition in hydrogen production by SRB at pH 6.2 diminished entirely by lowering to pH 5.5, at which activity of SRB is substantially suppressed. (author)

  6. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    International Nuclear Information System (INIS)

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous β-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in 35 SO 4 -labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed

  7. Rabbit chondrocytes maintained in serum-free medium. I. Synthesis and secretion of hydrodynamically-small proteoglycans

    International Nuclear Information System (INIS)

    Malemud, C.J.; Papay, R.S.

    1986-01-01

    The biosynthesis of sulfated proteoglycan in vitro by rabbit articular chondrocytes in first passage monolayer culture maintained in fetal bovine serum (FBS) or in serum-free conditions was compared. Neosynthesized proteoglycan in the culture medium in the most dense fraction of an associative CsCl density gradient (fraction dAl) declined with increasing time under serum-free conditions, but not when cells were maintained in the presence of serum. After one day, the major peak of incorporated 35 SO 4 in medium fraction dAl eluted as a retarded peak on Sepharose CL-2B, whether cells were maintained under serum-free or serum-containing conditions. The hydrodynamic size of proteoglycan monomer fraction dAlDl obtained after one day of exposure to serum-free culture media was smaller than dAlDl from serum-containing cultures. The hydrodynamic size of dAlDl obtained from serum-free culture media became even progressively smaller after 2 and 3 days' exposure to these conditions. Hydrodynamically small sulfated proteoglycans were identified in the cell-associated dAlDl fraction as early as one day after switching chondrocytes from serum-containing to serum-free medium. Proteoglycan monomer from serum-containing medium reaggregated more efficiently under both conditions. No change in the size of glycosaminoglycan chains was seen in the smaller proteoglycan subpopulations, nor was there any indication of marked changes in the glycosaminoglycan types

  8. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    to recover ammonia and sulfate from waste streams and thereby counteracting their toxicity during anaerobic digestion. Furthermore, hydrogen production and wastewater treatment were also accomplished. At an applied voltage of 1.2 V, nitrogen and sulfate fluxes of 5.1 g View the MathML sourceNH4+-N/m2/d...... and 18.9 g View the MathML sourceSO42−/m2/d were obtained, resulting in a Coulombic and current efficiencies of 23.6% and 77.4%, respectively. Meanwhile, H2 production of 0.29 L/L/d was achieved. Gas recirculation at the cathode increased the nitrogen and sulfate fluxes by 2.3 times. The applied voltage......Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed...

  9. SULFATE PRODUCTION IN CLOUDS IN EASTERN CHINA: OBSERVATIONS FROM MT. TAI

    Science.gov (United States)

    Collett, J. L.; Shen, X.; Lee, T.; Wang, X.; Wang, W.; Wang, T.

    2009-12-01

    The fate of China’s sulfur dioxide emissions depends, in part, on the ability of regional clouds to support rapid aqueous oxidation of these emissions to sulfate. Sulfur dioxide oxidized in regional clouds is more likely to be removed by wet deposition while sulfur dioxide that undergoes slower gas phase oxidation is expected to survive longer in the atmosphere and exert a radiative forcing impact over a broader spatial scale. Two 2008 field campaigns conducted at Mt. Tai, an isolated peak on the NE China plain, provide insight into the importance of various aqueous phase sulfur oxidation pathways in the region. Single and two-stage cloudwater collectors were used to collect bulk and drop size-resolved samples of cloudwater. Collected cloudwater was analyzed for key species that influence in-cloud sulfate production, including pH, S(IV), H2O2, Fe and Mn. Other major cloud solutes, including inorganic ions, total organic carbon, formaldehyde, and organic acids were also analyzed, as were gas phase concentrations of SO2, O3, and H2O2. A wide range of cloud pH was observed, from below 3 to above 6. High concentrations of cloudwater sulfate were consistent with abundant sulfur dioxide emissions in the region. Despite its fast aqueous reaction with sulfur dioxide, high concentrations of residual hydrogen peroxide were measured in some clouds implying a substantial capacity for additional sulfate production. Ozone was found to be an important S(IV) oxidant in some periods when cloud pH was high. This presentation will examine the importance of different oxidants (H2O2, O3, and O2 catalyzed by trace metals) for sulfur oxidation and the overall capacity of regional clouds to support rapid aqueous phase sulfate production.

  10. Bioavailability of iron in cottonseed meal, ferric sulfate, and two ferrous sulfate by-products of the galvanizing industry.

    Science.gov (United States)

    Boling, S D; Edwards, H M; Emmert, J L; Biehl, R R; Baker, D H

    1998-09-01

    Iron depletion-repletion assays were carried out with young chicks to establish Fe bioavailability values for Fe2(SO4)3.7H2O (22.7% Fe), Fe-ZnSO4.H2O (20.2% Fe, 13.0% Zn), Zn-FeSO4.H2O (20.2% Zn, 14.2% Fe), and cottonseed meal (200 mg Fe/kg). Standard hemoglobin response curves were established using feed-grade FeSO4.H2O (28.8% Fe) or reagent-grade FeSO4.7H2O (20.1% Fe) as standards such that relative bioavailability (RBV) could be assessed for the experimental sources of Fe. Weight gain, hemoglobin, and hematocrit responded linearly (P 0.10) from the standard. However, evaluation of all criteria of response (hemoglobin, hematocrit, weight gain) suggested that neither Fe-ZnSO4.H2O nor Zn-FeSO4.H2O had different Fe RBV values than FeSO4.H2O. Standard-curve calculations were used for assessment of Fe RBV in Fe2(SO4)3.7H2O and cottonseed meal, as only a single level of Fe addition was studied for each of these products. Iron RBV in Fe2(SO4)3.7H2O was estimated to be 37%, whereas Fe RBV in cottonseed meal was found to be 56%. Both of these values were lower (P galvanizing industry, are excellent sources of bioavailable Fe, whereas ferric sulfate and cottonseed meal are relatively poor sources of usable Fe.

  11. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    Directory of Open Access Journals (Sweden)

    Amanda J. Youker

    2013-01-01

    Full Text Available Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration on Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.

  12. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  13. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory

    Czech Academy of Sciences Publication Activity Database

    Foscarin, S.; Raha-Chowdhury, R.; Fawcett, James; Kwok, Jessica

    2017-01-01

    Roč. 9, č. 6 (2017), s. 1607-1622 ISSN 1945-4589 R&D Projects: GA MŠk(CZ) EF15_003/0000419 Institutional support: RVO:68378041 Keywords : aging * perineuronal net * plasticity * glycosaminoglycans Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.867, year: 2016

  14. Localization of the transmembrane proteoglycan syndecan-4 and its regulatory kinases in costameres of rat cardiomyocytes: a deconvolution microscopic study

    DEFF Research Database (Denmark)

    VanWinkle, W Barry; Snuggs, Mark B; De Hostos, Eugenio L

    2002-01-01

    Syndecan-4 (syn-4), a transmembrane heparan sulfate-containing proteoglycan, is unique among the four members of the syndecan family in its specific cellular localization to complex cytoskeletal adhesion sites, i.e., focal adhesions. During early phenotypic redifferentiation of neonatal cardiomyo...

  15. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  16. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  17. Increased proteoglycan synthesis by the cardiovascular system of coarctation hypertensive rats

    International Nuclear Information System (INIS)

    Lipke, D.W.; Couchman, J.R.

    1991-01-01

    Proteoglycan (PG) synthesis in the cardiovascular system of coarctation hypertensive rats was examined by in vivo and in vitro labeling of glycosaminoglycans with 35SO4 in rats made hypertensive for short (4 days) and longer (14 days) durations. With in vivo labeling, only tissues directly exposed to elevated pressure (left ventricle, LV and aorta above the clip, AOR increases) exhibited elevated PG synthesis after 4 days of hypertension. By 14 days, tissues both exposed to (LV and AOR increases) and protected from elevated pressure (right ventricle and kidney) exhibited elevated PG synthetic rates. Slight elevations in the proportion of galactosaminoglycans were observed with a concurrent proportional decrease in heparan sulfate PGs. Using the in vitro labeling procedure, no significant increases in PG synthesis were observed in any tissue at either 4 days or 14 days of hypertension. These data indicate that: (1) coarctation hypertension stimulates PG production that is dependent initially on increased pressure and later, on additional non-pressure related factors, (2) these other factors are responsible for enhanced PG production in tissues not directly exposed to pressure overload, (3) pressure and/or these other factors are essential for enhanced PG production in coarctation hypertension, and (4) synthesis of all GAG types appears to be affected

  18. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Energy Technology Data Exchange (ETDEWEB)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2017-03-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  19. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  20. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies...

  1. Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells

    NARCIS (Netherlands)

    Bartolini, B.; Thelin, M.A.; Svensson, L.; Ghiselli, G.; Kuppevelt, T.H. van; Malmstrom, A.; Maccarana, M.

    2013-01-01

    Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS

  2. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions

    NARCIS (Netherlands)

    Sugar, T.; Wassenhove-McCarthy, D.J.; Orr, A.W.; Green, J.; Kuppevelt, T.H. van; McCarthy, K.J.

    2016-01-01

    Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this

  3. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, Hannu-Petteri, E-mail: hmattila@abo.fi; Zevenhoven, Ron [Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku (Finland)

    2015-11-16

    Phosphogypsum (CaSO{sub 4}·2H{sub 2}O, PG) waste is produced in large amounts during phosphoric acid (H{sub 3}PO{sub 4}) production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred megatonnes of carbon dioxide (CO{sub 2}). For example, when gypsum is converted to ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}] with ammonia (NH{sub 3}) and CO{sub 2}, also solid calcium carbonate (CaCO{sub 3}) is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as, e.g., filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from PG to calcium carbonate are obtained. Scalenohedral, rhombohedral, and prismatic calcite particles can be produced, although the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  4. Management of ammonium sulfate fertilization on productive performance of corn grown after oats and wheat

    Directory of Open Access Journals (Sweden)

    Maria Anita Gonçalves Silva

    2014-02-01

    Full Text Available The time, dose and applied nutrients in corn have a direct effect on its productivity. Therefore, the objective was to study the application of N and S in corn as ammonium sulfate, in succession to wheat and oats and evaluate different forms of fertilizer management. The experiment was conducted in a randomized block design in Oxisol (Hapludox. The five treatments with N, at a dose of 120 kg ha-1 were applied in 20 plots (5x4, according to the management of fertilizer: T1-N (120 kg ha-1 full at sowing, T2-N (120 kg ha-1 total coverage; T3 –N (40 kg ha-1 at sowing and N (80 kg ha-1 in coverage; T4-N advance in wheat sowing and sowing oats (120 kg ha-1, T5- (control. The S doses were corresponding to their concentrations in the fertilizer. Only wheat received a dose of 24 kg N ha-1 at sowing all plots and oats received 24 kg N ha- 1 at sowing only the portions related to treatment with anticipation of corn N ( T4 . We evaluated the biomass production of winter crops (oats and wheat, according to the fertilization at sowing, and also the influence of winter crops and management of ammonium sulfate, the corn yield. The oats produced more dry matter in relation to wheat, positively influencing the corn yield, regardless of fertilizer management. The anticipation of ammonium sulfate, the sowing of oats, was favorable to corn yield, equating to other forms of management of fertilizer. Rotation corn and oats, forms management, ammonium sulphate, at seeding, topdressing or applied in split were equally efficient in corn yields.

  5. An introduction to proteoglycans and their localization

    DEFF Research Database (Denmark)

    Couchman, John R; Pataki, Andreea Csilla

    2012-01-01

    and in vivo location, and have important roles in invertebrate and vertebrate development, maintenance, and tissue repair. Many biologically potent small proteins can bind glycosaminoglycan chains as a key part of their function in the extracellular matrix, at the cell surface, and also in some intracellular...... locations. Therefore, the participation of proteoglycans in disease is receiving increased attention. In this short review, proteoglycan structure, function, and localizations are summarized, with reference to accompanying reviews in this issue as well as other recent literature. Included are some remarks...

  6. Comparison of ammonium sulfate and urea as nitrogen sources in rice production

    International Nuclear Information System (INIS)

    Bufogle, A. Jr.; Bollich, P.K.; Kovar, J.L.; Lindau, C.W.; Macchiavellid, R.E.

    1998-01-01

    Wetland rice agriculture is the major anthropogenic source of methane, an important greenhouse gas. Methane emissions are less when ammonium sulfate (AS) rather than urea is the nitrogen (N) source. However, an agronomic advantage of AS over urea has not been established. The objectives of this study were: (i) to compare the effectiveness of AS, urea, and urea plus elemental sulfur (S) as sources of N in flooded rice culture, (ii) to compare fertilizer recovery of each source of N from application at preflood (PF) and panicle initiation (PI), and (iii) to determine if there is a response to S by rice grown on a soil with a less than optimum level of available S. 'Cypress' rice was drill-seeded in a Crowley silt loam soil (fine, montmorillonitic, thermic Typic Albaqualf) of 7.25 to 10.75 mg S kg-1. Ammonium sulfate, urea, or urea plus S was applied in split applications of 101 kg N ha-1 PF and 50 kg N ha-1 PI. Microplots with retainers and 15N-labeled N were used. Unlabeled N was used in field plots. Microplots were harvested at 50% heading, while field plots were harvested at maturity. Dry matter and total N accumulation at 50% heading and at maturity were similar regardless of N source. Grain dry matter yields were 8.54, 8.47, and 8.79 Mg ha-1 for AS, urea, and urea plus S treatments, respectively. Greater N recovery was generally found from N application at PI than at PF, but this was not reflected by an increase in grain yield. No response to S was detected, although grain yields were slightly higher when S-containing fertilizers were used. Ammonium sulfate and urea were equally effective for flooded rice production in Louisiana

  7. Undersulfation of proteoglycans and proteins alter C6 glioma cells proliferation, adhesion and extracellular matrix organization.

    Science.gov (United States)

    Mendes de Aguiar, Claudia B N; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio; Trentin, Andréa Gonçalves

    2002-11-01

    Proteoglycans are considered to be important molecule in cell-microenvironment interactions. They are overexpressed in neoplastic cells modifying their growth and migration in hosts. In this work we verified that undersulfation of proteoglycans and other sulfated molecules, induced by sodium chlorate treatment, inhibited C6 glioma cells proliferation in a dose-dependent way. This effect was restored by the addition of exogenous heparin. We could not detect significant cell mortality in our culture condition. The treatment also impaired in a dose-dependent manner, C6 cell adhesion to extracellular matrix (ECM) proteins (collagen IV, laminin and fibronectin). In addition, sodium chlorate treatment altered C6 glioma cell morphology, from the fibroblast-like to a more rounded one. This effect was accompanied by increased synthesis of fibronectin and alterations in its extracellular network organization. However, we could not observe modifications on laminin organization and synthesis. The results suggest an important connection between sulfation degree with important tumor functions, such as proliferation and adhesion. We suggest that proteoglycans may modulate the glioma microenvironment network during tumor cell progression and invasion.

  8. Somite chrondrogenesis: alterations in cyclic AMP levels and proteoglycan synthesis

    International Nuclear Information System (INIS)

    Vasan, Nagaswamistri; Lamb, K.M.; Heick, A.E.

    1985-01-01

    Cyclic AMP (cAMP) levels have been shown to have a positive influence on chondrogenesis in limb buds and pelvic cartilage. In the present study the level of cAMP was measured during somite chondrogenesis in vitro and found to decrease from 1.38 pmol/μg DNA on day 0 to 0.9 pmol/μg DNA on day 6. Inclusion of notochord with somites caused a marked recution, with levels decreasing from 1.41 pmol/μg DNA on day 0 to 0.36 pmol/μg DNA on day 6. Concurrently, the incorporation of radioactive sulfate into sulfated glycosaminoglycans increased from day 3 to day 6 by 38% in somite and 77% in somite-notochord explants. The aggregation of proteoglycans was analyzed by gel chromatography and found to increase with a corresponding decrease in cAMP levels. The result indicate that a decrease in cAMP levels may be necessary for chondrogenic expression in somites. (author)

  9. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  10. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept. 2009 Elsevier B.V. All rights reserved.

  11. Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation

    Directory of Open Access Journals (Sweden)

    Nestor Sanchez

    2017-12-01

    Full Text Available Cachaza is a type of non-centrifugal sugarcane press-mud that, if it is not employed efficiently, generates water pollution, soil eutrophication, and the spread of possible pathogens. This biomass can be fermented to produce bioethanol. Our intention is to obtain bioethanol that can be catalytically reformed to produce hydrogen (H2 for further use in fuel cells for electricity production. However, some impurities could negatively affect the catalyst performance during the bioethanol reforming process. Hence, the aim of this study was to assess the fermentation of Cachaza using ammonium sulfate ((NH42SO4 loadings and Saccharomyces cerevisiae strain to produce the highest ethanol concentration with the minimum amount of impurities in anticipation of facilitating further bioethanol purification and reforming for H2 production. The results showed that ethanol production from Cachaza fermentation was about 50 g·L−1 and the (NH42SO4 addition did not affect its production. However, it significantly reduced the production of branched alcohols. When a 160 mg·L−1 (NH42SO4 was added to the fermentation culture, 2-methyl-1-propanol was reduced by 41% and 3-methyl-1-butanol was reduced by 6%, probably due to the repression of the catabolic nitrogen mechanism. Conversely, 1-propanol doubled its concentration likely due to the higher threonine synthesis promoted by the reducing sugar presence. Afterwards, we employed the modified Gompertz model to fit the ethanol, 2M1P, 3M1B, and 1-propanol production, which provided acceptable fits (R2 > 0.881 for the tested compounds during Cachaza fermentation. To the best of our knowledge, there are no reports of the modelling of aliphatic production during fermentation; this model will be employed to calculate yields with further scaling and for life cycle assessment.

  12. Bioavailability of zinc in two zinc sulfate by-products of the galvanizing industry.

    Science.gov (United States)

    Edwards, H M; Boling, S D; Emmert, J L; Baker, D H

    1998-10-01

    Two Zn depletion/repletion assays were conducted with chicks to determine the relative bioavailability (RBV) of Zn from two new by-products of the galvanizing industry. Using a soy concentrate-dextrose diet, slope-ratio methodology was employed to evaluate two different products: Fe-ZnSO4 x H2O with 20.2% Fe and 13.0% Zn, and Zn-FeSO4 x H2O with 14.2% Fe and 20.2% Zn. Feed-grade ZnSO4 x H2O was used as a standard. Weight gain, tibia Zn concentration, and total tibia Zn responded linearly (P 0.10) from the ZnSO4 standard (100%). Slope-ratio calculations based on total tibia Zn established average Zn RBV values of 126% for Fe-ZnSO4 x H2O and 127% for Zn-FeSO4 x H2O, and these values were greater (P < 0.01) than those of the ZnSO4 standard (100%). It is apparent that both mixed sulfate products of Fe and Zn are excellent sources of bioavailable Zn.

  13. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/beta-Catenin Signaling

    NARCIS (Netherlands)

    Prinz, R.D.; Willis, C.M.; Kuppevelt, T.H. van; Kluppel, M.

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional

  14. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tillage and water management for riceland productivity in acid sulfate soils of the Mekong delta, Vietnam.

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    1997-01-01

    Acid sulfate soils are characterized by low pH and high concentrations of aluminum, sulfate, iron and hydrogen sulfide. Removal of at least part of these substances is a prerequisite for land use, at least in severely acid soils. In this study, the effectiveness of harrowing and flushing with

  16. Podocyte-specific deletion of NDST1, a key enzyme in the sulfation of heparan sulfate glycosaminoglycans, leads to abnormalities in podocyte organization in vivo

    NARCIS (Netherlands)

    Sugar, T.; Wassenhove-McCarthy, D.J.; Esko, J.D.; Kuppevelt, T.H. van; Holzman, L.; McCarthy, K.J.

    2014-01-01

    Heparan sulfate proteoglycans have been shown to modulate podocyte adhesion to--and pedicel organization on--the glomerular basement membrane. Recent studies showed that foot process effacement developed in a mutant mouse model whose podocytes were unable to assemble heparan sulfate

  17. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment.

    Science.gov (United States)

    Wu, Qing-Lian; Guo, Wan-Qian; Bao, Xian; Yin, Ren-Li; Feng, Xiao-Chi; Zheng, He-Shan; Luo, Hai-Chao; Ren, Nan-Qi

    2017-09-01

    A new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.7%). Moreover, 20mg/g-TSS THPS pretreatment shortened fermentation time to 4days and improved VFA production to 2778mg COD/L (4.35 times than that in control). Therein, the sum of n-butyric, n-valeric and iso-valeric acids unexpectedly accounted for 60.5% of total VFA (only 20.1% of that in control). The more high molecular weight VFAs (C4-C5) than low molecular VFAs (C2-C3) resulted from THPS pretreatment benefited to subsequent medium-chain volatile acids (C6-C12) generation to realize the separation and recovery of organic carbon more efficiently. Copyright © 2017. Published by Elsevier Ltd.

  18. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production.

    Science.gov (United States)

    Chen, Xiao; Zhai, Xiao; Shi, Jiazi; Liu, Wen Wu; Tao, Hengyi; Sun, Xuejun; Kang, Zhimin

    2013-06-01

    Molecular hydrogen (H2) is a potent antioxidant and able to protect organs from oxidative stress injuries. Orally administered lactulose, a potent H2 inducer, is digested by colon microflora and significantly increases H2 production, indicating its potential anti-inflammatory action. To evaluate the anti-inflammatory effects of lactulose on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were randomly assigned into seven groups, receiving regular distilled water, H2-rich saline (peritoneal injection), DSS, oral lactulose (0.1, 0.15, 0.2 ml/10 g, respectively), and lactulose (0.2 ml/10 g) + oral antibiotics. The mouse model of human ulcerative colitis was established by supplying mice with water containing DSS. The H2 breath test was used to determine the exhaled H2 concentration. Body weight, colitis score, colon length, pathological features and tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), maleic dialdehyde (MDA) and marrow peroxidase (MPO) levels in colon lesions were evaluated. After 7 days, DSS-induced loss of body weight, increase of colitis score, shortening of colon length, pathological changes and elevated levels of TNF-α, IL-1β, MDA, and MPO in colon lesions, were significantly suppressed by oral lactulose administration and intraperitoneally injected H2-rich saline. Ingestion of antibiotics significantly compromised the anti-inflammatory effects of lactulose. The H2 breath test showed that lactulose administration significantly induced hydrogen production and that antibiotics administration could inhibit H2 production. Lactulose can prevent the development of DSS-induced colitis and alleviate oxidative stress in the colon, as measured by MDA and MPO, probably by increasing endogenous H2 production.

  19. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration

    Czech Academy of Sciences Publication Activity Database

    Yang, S.; Hilton, S.; Alves, J.N.; Saksida, L.M.; Bussey, T.; Matthews, R.T.; Kitagawa, H.; Spillantini, M.G.; Kwok, Jessica; Fawcett, James

    2017-01-01

    Roč. 59, nov (2017), s. 197-209 ISSN 0197-4580 Institutional support: RVO:68378041 Keywords : perineuronal nets * CSPGs * object recognition memory Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 5.117, year: 2016

  20. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production.

    Science.gov (United States)

    Willrodt, Christian; Hoschek, Anna; Bühler, Bruno; Schmid, Andreas; Julsing, Mattijs K

    2016-06-01

    The microbial production of isoprenoids has recently developed into a prime example for successful bottom-up synthetic biology or top-down systems biology strategies. Respective fermentation processes typically rely on growing recombinant microorganisms. However, the fermentative production of isoprenoids has to compete with cellular maintenance and growth for carbon and energy. Non-growing but metabolically active E. coli cells were evaluated in this study as alternative biocatalyst configurations to reduce energy and carbon loss towards biomass formation. The use of non-growing cells in an optimized fermentation medium resulted in more than fivefold increased specific limonene yields on cell dry weight and glucose, as compared to the traditional growing-cell-approach. Initially, the stability of the resting-cell activity was limited. This instability was overcome via the optimization of the minimal fermentation medium enabling high and stable limonene production rates for up to 8 h and a high specific yield of ≥50 mg limonene per gram cell dry weight. Omitting MgSO4 from the fermentation medium was very promising to prohibit growth and allow high productivities. Applying a MgSO4 -limitation also improved limonene formation by growing cells during non-exponential growth involving a reduced biomass yield on glucose and a fourfold increase in specific limonene yields on biomass as compared to non-limited cultures. The control of microbial growth via the medium composition was identified as a key but yet underrated strategy for efficient isoprenoid production. Biotechnol. Bioeng. 2016;113: 1305-1314. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Initial cytotoxicity assays of media for sulfate-reducing bacteria: An endodontic biopharmaceutical product under development.

    Science.gov (United States)

    Heggendorn, Fabiano Luiz; Silva, Gabriela Cristina de Carvalho; Cardoso, Elisama Azevedo; Castro, Helena Carla; Gonçalves, Lúcio Souza; Dias, Eliane Pedra; Lione, Viviane de Oliveira Freitas; Lutterbach, Márcia Teresa Soares

    2016-01-01

    This study assessed the cell viability of the inoculation vehicle of BACCOR (a combination of sulfate-reducing bacteria plus a culture media for bacteria), a biopharmaceutical product under development for dental use as aid in fractured endodontic file removal from the root canal. Different culture media for bacteria were evaluated: modified Postgate E (MCP-E mod), Modified Postgate E without Agar-agar (MCP-E w/Ag), Postgate C with Agar-agar (MCP-C Ag) and Postgate C without Agar-agar (MCP-C w/Ag). Cytotoxicity was quantified by the MTT test, exposing L929 and Vero cell lines to the vehicles over 24 h. The exposure of L929 cell line to MCP-E w/Ag resulted in biocompatibility (52% cell viability), while the exposure of the Vero kidney line revealed only MCP-E mod as cytotoxic. When diluted, all the vehicles showed biocompatibility with both cell lines. MCP-E w/Ag was the vehicle chosen for BACCOR, because of its biocompatibility with the cells used.

  2. Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Peter J Little

    2007-03-01

    Full Text Available Peter J Little1, 2, 3, Mandy L. Ballinger1, Narin Osman1,31Cell Biology of Diabetes Laboratory, Baker Heart Research Institute, Melbourne, Australia; Monash University, Departments of 2Medicine and 3Immunology, Central and Eastern Clinical School, Alfred Hospital, Melbourne, AustraliaAbstract: Atherosclerosis is the underlying pathology of most cardiovascular disease and it represents the major cause of premature death in modern societies. Current therapies target risk factors being hypertension, hypercholesterolemia, hypertriglyceridemia and hyperglycemia when diabetes is present however the maximum efficacy of these strategies is often 30% or less. Areas of vascular biology that may lead to the development of a complementary vascular wall directed therapy are: inflammation, oxidation, endothelial dysfunction, diabetes-specific factors —hyperglycemia and advanced glycation endproducts and lipid retention by vascular matrix specifically proteoglycans. The major structural features of proteoglycans that determine low-density lipoprotein (LDL binding are the length and sulfation pattern on the glycosaminoglycan (GAG chains. Emerging data discussed in this review indicates that these structural properties are subject to considerable regulation by vasoactive substances possibly using novel signaling pathways. For example, GAG elongation stimulated by platelet-derived growth factor is not blocked by the receptor tyrosine kinase antagonist, genistein suggesting that there may be a previously unknown signaling pathway involved in this response. Thus, modifying proteoglycan synthesis and structure may represent a prime target to prevent LDL binding and entrapment in the vessel wall and thus prevent the development and progression of atherosclerosis.Keywords: proteoglycans, signaling, lipoproteins, atherosclerosis

  3. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    International Nuclear Information System (INIS)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    1989-01-01

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with [35S] sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I

  4. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  5. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    International Nuclear Information System (INIS)

    Velasco, Antonio; Ramirez, Martha; Volke-Sepulveda, Tania; Gonzalez-Sanchez, Armando; Revah, Sergio

    2008-01-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO 4 2- ratio. This work relates the feed COD/SO 4 2- ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 ± 7 mg S/L was obtained at a feed COD/SO 4 2- ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 ± 10 mg S/L) was observed with a feed COD/SO 4 2- ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO 4 2- ratio of 1.5. It was found that the feed COD/SO 4 2- ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead

  6. Increased bioclogging and corrosion risk by sulfate addition during iodine recovery at a natural gas production plant.

    Science.gov (United States)

    Lim, Choon-Ping; Zhao, Dan; Takase, Yuta; Miyanaga, Kazuhiko; Watanabe, Tomoko; Tomoe, Yasuyoshi; Tanji, Yasunori

    2011-02-01

    Iodine recovery at a natural gas production plant in Japan involved the addition of sulfuric acid for pH adjustment, resulting in an additional about 200 mg/L of sulfate in the waste brine after iodine recovery. Bioclogging occurred at the waste brine injection well, causing a decrease in well injectivity. To examine the factors that contribute to bioclogging, an on-site experiment was conducted by amending 10 L of brine with different conditions and then incubating the brine for 5 months under open air. The control case was exposed to open air but did not receive additional chemicals. When sulfate addition was coupled with low iodine, there was a drastic increase in the total amount of accumulated biomass (and subsequently the risk of bioclogging) that was nearly six times higher than the control. The bioclogging-associated corrosion rate of carbon steel was 84.5 μm/year, which is four times higher than that observed under other conditions. Analysis of the microbial communities by denaturing gradient gel electrophoresis revealed that the additional sulfate established a sulfur cycle and induced the growth of phototrophic bacteria, including cyanobacteria and purple bacteria. In the presence of sulfate and low iodine levels, cyanobacteria and purple bacteria bloomed, and the accumulation of abundant biomass may have created a more conducive environment for anaerobic sulfate-reducing bacteria. It is believed that the higher corrosion rate was caused by a differential aeration cell that was established by the heterogeneous distribution of the biomass that covered the surface of the test coupons.

  7. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  8. Role of sulfate reduction and methane production by organic carbon degradation ineutrophic fjord sediments (Limfjorden, Denmark)

    DEFF Research Database (Denmark)

    Jørgensen, Bo Barker; Parkes, R. John

    2010-01-01

    , accompanied by peaks in sulfide (4-6 mmol L21) and high dissolved inorganic carbon (30-50 mmol L21). Pore-water acetate concentrations were 2-10 mmol L21. 14C-acetate was oxidized to 14CO2 in the sulfate zone and reduced to 14CH4 at and below the SMT. CO2 reduction was the predominant pathway....... A comparison of the burial flux of organic carbon below the sulfate zone and the returning flux of methane indicated that the diffusion modeling of pore-water sulfate strongly underestimated in situ SRRs, whereas the 35S data may have overestimated the rates at depth. Modeled and measured SRR could...

  9. Sound production in Japanese medaka (Oryzias latipes) and its alteration by exposure to aldicarb and copper sulfate.

    Science.gov (United States)

    Kang, Ik Joon; Qiu, Xuchun; Moroishi, Junya; Oshima, Yuji

    2017-08-01

    This study is the first to report sound production in Japanese medaka (Oryzias latipes). Sound production was affected by exposure to the carbamate insecticide (aldicarb) and heavy-metal compound (copper sulfate). Medaka were exposed at four concentrations (aldicarb: 0, 0.25, 0.5, and 1 mg L -1 ; copper sulfate: 0, 0.5, 1, and 2 mg L -1 ), and sound characteristics were monitored for 5 h after exposure. We observed constant average interpulse intervals (approx 0.2 s) in all test groups before exposure, and in the control groups throughout the experiment. The average interpulse interval became significantly longer during the recording periods after 50 min of exposure to aldicarb, and reached a length of more than 0.3 s during the recording periods after 120 min exposure. Most medaka fish stopped to produce sound after 50 min of exposure to copper sulfate at 1 and 2 mg L -1 , resulting in significantly declined number of sound pulses and pulse groups. Relative shortened interpulse intervals of sound were occasionally observed in medaka fish exposed to 0.5 mg L -1 copper sulfate. These alternations in sound characteristics due to toxicants exposure suggested that they might impair acoustic communication of medaka fish, which may be important for their reproduction and survival. Our results suggested that using acoustic changes of medaka has potential to monitor precipitate water pollutions, such as intentional poisoning or accidental leakage of industrial waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulfate

    Czech Academy of Sciences Publication Activity Database

    Matěj, J.; Langrová, Anna

    2012-01-01

    Roč. 56, č. 3 (2012), s. 280-285 ISSN 0862-5468 Institutional support: RVO:67985831 Keywords : antimony oxides * corrosion * glass melt * Molybdenum electrode * sulfate Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_03_280.pdf

  11. Highly Specific Estrone Sulfate Antibody Production Using Hapten-Bovine Serum Albumin Conjugate And Modified Tailoring

    International Nuclear Information System (INIS)

    ELBANNA, I.M.; GAMAL, M.H.; SALEM, A.

    2009-01-01

    Estrone-3-sulfate represents an important estrogenic metabolite indicative to uterine function during early pregnancy and post-partum in animals. Exploiting preparation of less expensive estrone-3-sulfate bovine serum albumin (BSA) conjugate was persuaded for raising antiserum in rabbits. The use of estrone rabbit gamma globulin conjugate as a tollerogenic agent was used to investigate the effect on specificity of the harvested antiserum. Five male New Zealand rabbits were used. After immunization procedure, blood samples were collected and individual bleedings were evaluated for titre and specificity using estrone-3-sulfate- 3 H as a tracer. The tollerogenic pre-immunization procedure gave more specific antiserum than the conventional immunization method. Nevertheless, the titre was lower in tollerogenic than conventional method (1/3500 and 1/4900 as working final dilution, respectively). It is concluded that preparation of E1 -3-sulfate oxime-BSA gave more suitable yield with less expense as compared with previous studies. Pre-immunization injection of tollerogen gave more specific antiserum while the lower titre could be improved after further booster immunization.

  12. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  13. Proteoglycans as potential biomarkers in odontogenic tumors

    Science.gov (United States)

    Gómez-Herrera, Zaira; Molina-Frechero, Nelly; Damián-Matsumura, Pablo; Bologna-Molina, Ronell

    2018-01-01

    Proteoglycans (PGs) are essential for normal cellular development; however, alterations of their concentrations can promote tumor growth. To date, a limited number of studies report the presence of PGs in odontogenic tumors (OTs); therefore, the main purpose of this work is to gather the information published on the study of PGs. The search reported 26 articles referring to the presence of different PGs in distinct OTs from 1999 to May 2017. PGs seem to play an important role during OTs’ development as they are involved in several tumor processes; however, the number of reports on the study of these molecules is low. Thus, more studies are necessary in order to gain a better understanding of the underlying pathophysiology of OTs. PMID:29731564

  14. Proteoglycans in Leiomyoma and Normal Myometrium

    Science.gov (United States)

    Barker, Nichole M.; Carrino, David A.; Caplan, Arnold I.; Hurd, William W.; Liu, James H.; Tan, Huiqing; Mesiano, Sam

    2015-01-01

    Uterine leiomyoma are a common benign pelvic tumors composed of modified smooth muscle cells and a large amount of extracellular matrix (ECM). The proteoglycan composition of the leiomyoma ECM is thought to affect pathophysiology of the disease. To test this hypothesis, we examined the abundance (by immunoblotting) and expression (by quantitative real-time polymerase chain reaction) of the proteoglycans biglycan, decorin, and versican in leiomyoma and normal myometrium and determined whether expression is affected by steroid hormones and menstrual phase. Leiomyoma and normal myometrium were collected from women (n = 17) undergoing hysterectomy or myomectomy. In vitro studies were performed on immortalized leiomyoma (UtLM) and normal myometrial (hTERT-HM) cells with and without exposure to estradiol and progesterone. In leiomyoma tissue, abundance of decorin messenger RNA (mRNA) and protein were 2.6-fold and 1.4-fold lower, respectively, compared with normal myometrium. Abundance of versican mRNA was not different between matched samples, whereas versican protein was increased 1.8-fold in leiomyoma compared with myometrium. Decorin mRNA was 2.4-fold lower in secretory phase leiomyoma compared with proliferative phase tissue. In UtLM cells, progesterone decreased the abundance of decorin mRNA by 1.3-fold. Lower decorin expression in leiomyoma compared with myometrium may contribute to disease growth and progression. As decorin inhibits the activity of specific growth factors, its reduced level in the leiomyoma cell microenvironment may promote cell proliferation and ECM deposition. Our data suggest that decorin expression in leiomyoma is inhibited by progesterone, which may be a mechanism by which the ovarian steroids affect leiomyoma growth and disease progression. PMID:26423601

  15. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    OpenAIRE

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić Trošić, Jasna; Gvozdenović, Milica M.

    2012-01-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipit...

  17. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  18. Symptom and structure modification in osteoarthritis with pharmaceutical-grade chondroitin sulfate: what's the evidence?

    Science.gov (United States)

    Hochberg, M; Chevalier, X; Henrotin, Y; Hunter, D J; Uebelhart, D

    2013-03-01

    Osteoarthritis is a chronic disease characterized by irreversible damage to joint structures, including loss of articular cartilage, osteophyte formation, alterations in the subchondral bone and synovial inflammation. It has been shown that chondroitin sulfate interferes with the progression of structural changes in joint tissues and is used in the management of patients with osteoarthritis. This review summarizes data from relevant reports describing the mechanisms of action of chondroitin sulfate that may explain the beneficial effects of the drug and examines the evidence for clinical efficacy of oral chondroitin sulfate in osteoarthritis. Data included in the review were derived from a literature search in PubMed. Literature searches were performed in PubMed using the search terms 'chondroitin sulfate', 'pharmaceutical-grade', 'osteoarthritis', 'randomized clinical trials', 'humans'. The MEDLINE database was searched from January 1996 through August 2012 for all randomized controlled trials, meta-analyses, systematic reviews, and review articles of chondroitin sulfate in osteoarthritis. Chondroitin sulfate exerts in vitro a beneficial effect on the metabolism of different cell lines: chondrocytes, synoviocytes and cells from subchondral bone, all involved in osteoarthritis. It increases type II collagen and proteoglycan synthesis in human articular chondrocytes and is able to reduce the production of some pro-inflammatory factors and proteases, to reduce the cellular death process, and improve the anabolic/catabolic balance of the extracellular cartilage matrix (ECM). Clinical trials have reported a beneficial effect of chondroitin sulfate on pain and function. The structure-modifying effects of chondroitin sulfate have been reported and analyzed in recent meta-analyses. The results in knee osteoarthritis demonstrate a small but significant reduction in the rate of decline in joint space width. Because chondroitin sulfate quality of several nutraceuticals has

  19. Allergic contact dermatitis from ophthalmic products: can pre-treatment with sodium lauryl sulfate increase patch test sensitivity?

    Science.gov (United States)

    Corazza, Monica; Virgili, Annarosa

    2005-05-01

    In patients suspected of allergic contact dermatitis because of topical ophthalmic medicaments, patch tests performed with patients' own products are often negative. The irritant anionic surfactant sodium lauryl sulfate (SLS) may alter the stratum corneum and increase antigen penetration. Pre-treatment of the skin with SLS 0.5% for 24 h was performed in the sites of patch tests with patients' own products in 15 selected patients. In patients previously negative to their own products tested with conventional patch tests, SLS pre-treatment showed 6 new relevant positive reactions and induced a stronger positive reaction in 1 patient. SLS pre-treatment could be proposed as an alternative promising method, which may increase sensitivity of patch tests with patients' own products.

  20. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  1. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Antonio [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)], E-mail: jvelasco@ine.gob.mx; Ramirez, Martha [Direccion General del Centro Nacional de Investigacion y Capacitacion Ambiental-Instituto Nacional de Ecologia, Av. San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Volke-Sepulveda, Tania [Departamento de Biotecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Gonzalez-Sanchez, Armando [Departamento de Ingenieria de Procesos, Universidad Autonoma Metropolitana-Iztapalapa, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico); Revah, Sergio [Departamento de Procesos y Tecnologia, UAM-Cuajimalpa, San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, Mexico 09340, D.F. (Mexico)

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO{sub 4}{sup 2-} ratio. This work relates the feed COD/SO{sub 4}{sup 2-} ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470 {+-} 7 mg S/L was obtained at a feed COD/SO{sub 4}{sup 2-} ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145 {+-} 10 mg S/L) was observed with a feed COD/SO{sub 4}{sup 2-} ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO{sub 4}{sup 2-} ratio of 1.5. It was found that the feed COD/SO{sub 4}{sup 2-} ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  2. Immunological methods for the detection and determination of connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Baker, J R; Christner, J E

    1982-01-01

    In this paper we report the use of immunological methods for specifically detecting and determining proteoglycan in cartilage and other connective tissues. Antibodies (polyclonal and monoclonal) have been raised against specific components of cartilage proteoglycan aggregates (i.e., proteoglycan...... surrounding invaginating hair follicles. These immunological procedures are currently being used to complement conventional biochemical analyses of proteoglycans found in different connective tissue matrices....

  3. Mycobacterial antigens stimulate rheumatoid mononuclear cells to cartilage proteoglycan depletion

    NARCIS (Netherlands)

    Wilbrink, B.; Bijlsma, J. W.; Huber-Bruning, O.; van Roy, J. L.; den Otter, W.; van Eden, W.

    1990-01-01

    In a coculture with porcine articular cartilage explants unstimulated blood mononuclear cells (BMC) from patients with rheumatoid arthritis (RA), but not from healthy controls, induced proteoglycan depletion of dead cartilage. Specific stimulation of the RA BMC with Mycobacterium tuberculosis (MT),

  4. A high molecular weight proteoglycan is differentially expressed during development of the mollusc Concholepas concholepas (Mollusca; Gastropoda; Muricidae).

    Science.gov (United States)

    Brandan, E; González, M; Inestrosa, N C; Tremblay, C; Urrea, R

    1992-12-15

    Incorporation of radioactive sulfate to hatched veliger larvae of the gastropod muricid Concholepas concholepas indicated that over 87% of the sulfated macromolecules were found in the detergent insoluble fraction, rich in extracellular matrix (ECM) components. The sulfated material was solubilized with guanidine salt followed by urea dialysis and fractionated by DEAE-Sephacel chromatography. Three sulfated compounds eluting at 0.7, 1.1, and 3.0 M NaCl, called peaks I, II, and III, respectively, were obtained. The sulfated compound present in peak I was degraded by pronase or sodium alkaline treatment to a small sulfated resistant material, suggesting the presence of a proteoglycan (PG). Filtration analysis on Sephacryl S-500 and SDS-PAGE of the intact PG indicates that it has a high molecular weight (360,000 to over 1 x 10(6)). Monoclonal antibodies (mAb) against this PG were produced. The specificity of one mAb, the 6H2, was demonstrated by size chromatography and ELISA analysis. The epitope recognized by this mAb seems to be present in the core protein of the PG. Both the extent of sulfation and the presence of different sulfated species of PGs were evaluated during the development of this mollusc. A twelvefold increase in the incorporation of sulfate to PGs per milligram of protein was found in veliger larvae compared to blastula-glastula stages. This change correlated well with the differential expression of the sulfated PG present in peak I. Biochemical and immunological analysis indicate that high levels of this PG are found in veliger and trocophore larvae in comparison with blastula-gastrula and early juveniles.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Biomimetic Proteoglycan Interactions with Type I Collagen Investigated via 2D and 3D TEM

    Science.gov (United States)

    Moorehead, Carli

    Collagen is one of the leading components in extracellular matrix (ECM), providing durability, structural integrity, and functionality for many tissues. Regulation of collagen fibrillogenesis and degradation is important in the treatment of a number of diseases from orthopedic injuries to genetic deficiencies. Recently, novel, biocompatible, semi-synthetic biomimetic proteoglycans (BPGs) were developed, which consist of an enzymatically resistant synthetic polymer core and natural chondroitin sulfate bristles. It was demonstrated that BPGs affect type I collagen fibrillogenesis in vitro, as reflected by their impact delaying the kinetic formation of gels similar to native PGs. This indicates that the morphology of collagen scaffolds as well as endogenous ECM could also be modulated by these proteoglycan mimics. However, the imaging modality used previously, reflectance confocal microscopy, did not yield the resolution necessary to spatially localize BPGs within the collagen network or investigate the effect of BPGs on the quality of collagen fibrils produced in an in vitro fibrillogenesis model which is important for understanding the method of interaction. Consequently, a histological technique, electron tomography, was adapted and utilized to 3D image the nano-scale structures within this simplified tissue model. BPGs were found to aid in lateral growth and enhance fibril banding periodicity resulting in structures more closely resembling those in tissue, in addition to attaching to the collagen surface despite the lack of a protein core.

  6. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  7. THYROID HORMONE TREATED ASTROCYTES INDUCE MATURATION OF CEREBRAL CORTICAL NEURONS THROUGH MODULATION OF PROTEOGLYCAN LEVELS

    Directory of Open Access Journals (Sweden)

    Romulo Sperduto Dezonne

    2013-08-01

    Full Text Available Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4 play crucial role in several steps of brain morphogenesis including proliferation of progenitor cells, neuronal differentiation, maturation, migration, and synapse formation. The lack of thyroid hormones during childhood is associated with several impair neuronal connections, cognitive deficits, and mental disorders. Many of the thyroid hormones effects are mediated by astrocytes, although the mechanisms underlying these events are still unknown. In this work, we investigated the effect of 3, 5, 3’-triiodothyronine-treated (T3-treated astrocytes on cerebral cortex neuronal differentiation. Culture of neural progenitors from embryonic cerebral cortex mice onto T3-treated astrocyte monolayers yielded an increment in neuronal population, followed by enhancement of neuronal maturation, arborization and neurite outgrowth. In addition, real time PCR assays revealed an increase in the levels of the heparan sulfate proteoglycans, Glypican 1 (GPC-1 and Syndecans 3 e 4 (SDC-3 e SDC-4, followed by a decrease in the levels of the chondroitin sulfate proteoglycan, Versican. Disruption of glycosaminoglycan chains by chondroitinase AC or heparanase III completely abolished the effects of T3-treated astrocytes on neuronal morphogenesis. Our work provides evidence that astrocytes are key mediators of T3 actions on cerebral cortex neuronal development and identified potential molecules and pathways involved in neurite extension; which might eventually contribute to a better understanding of axonal regeneration, synapse formation and neuronal circuitry recover.

  8. Multinuclear nuclear magnetic resonance spectroscopic study of cartilage proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, L.

    1985-01-01

    Hyaline cartilage is a composite material whose major function is to withstand compression while retaining flexibility. Its mechanical properties are affected by tissue hydration and ionic composition. Models of the mechanical behavior of cartilage have incorporated certain assumptions about the interactions of the major components of cartilage: collagen, proteoglycans, water, and cations. To determine the validity of these assumption, the authors have used nuclear magnetic resonance spectroscopy (NMR). Two approaches have been used: (a) natural abundance carbon-13 NMR; and (b) NMR of sodium-23, potassium-39, magnesium-25, and calcium-43. Evidence from studies in intact tissues are reinforced by extensive measurements on solutions of proteoglycans and other relevant macromolecules. Based on the measurements of NMR relaxation rates and lineshapes reported here, it is concluded that neither sodium nor potassium interact strongly with bovine nasal proteoglycan aggregates or their substituent glycosaminoglycan chains in solution. Proteoglycans do bind magnesium and calcium. Therefore there is a qualitative difference between monovalent and divalent cations, which is not taken into account by polyelectrolyte models or models for the ionic dependence of mechanical properties. Cation binding to heparin, which has a higher charge density than cartilage proteoglycans, was also studied. The results presented here establish that heparin binds sodium, magnesium, and calcium.

  9. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  10. Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products

    Science.gov (United States)

    Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul

    2018-05-01

    The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.

  11. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    Science.gov (United States)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  12. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  13. Metabolism of Cartilage Proteoglycans in Health and Disease

    Directory of Open Access Journals (Sweden)

    Demitrios H. Vynios

    2014-01-01

    Full Text Available Cartilage proteoglycans are extracellular macromolecules with complex structure, composed of a core protein onto which a variable number of glycosaminoglycan chains are attached. Their biosynthesis at the glycosaminoglycan level involves a great number of sugar transferases well-orchestrated in Golgi apparatus. Similarly, their degradation, either extracellular or intracellular in lysosomes, involves a large number of hydrolases. A deficiency or malfunction of any of the enzymes participating in cartilage proteoglycan metabolism may lead to severe disease state. This review summarizes the findings regarding this topic.

  14. Changes in glycosaminoglycans and proteoglycans of normal breast and fibroadenoma during the menstrual cycle.

    Science.gov (United States)

    de Lima, Cilene Rebouças; de Arimatéa dos Santos Junior, José; Nazário, Afonso Celso Pinto; Michelacci, Yara M

    2012-07-01

    Fibroadenoma is the most common breast tumor in young women, and its growth and metabolism may be under hormonal control. In the present paper we described the proteoglycan (PG) composition and synthesis rate of normal breast and fibroadenoma during the menstrual cycle. Samples of fibroadenoma and adjacent normal breast tissue were obtained at surgery. PGs were characterized by agarose gel electrophoresis and enzymatic degradation with glycosaminoglycan (GAG) lyases, and immunolocalized by confocal microscopy. To assess the synthesis rate, PGs were metabolic labeled by 35S-sulfate. The concentration of PGs in normal breast was higher during the secretory phase. Fibroadenoma contained and synthesized more PGs than their paired controls, but the PG concentrations varied less with the menstrual cycle and, in contrast to normal tissue, peaked in the proliferative phase. The main mammary GAGs are heparan sulfate (HS, 71%-74%) and dermatan sulfate (DS, 26%-29%). The concentrations of both increased in fibroadenoma, but DS increased more, becoming 35%-37% of total. The DS chains contained more β-d-glucuronic acid (IdoUA/GlcUA ratios were >10 in normal breast and 2-7 in fibroadenoma). The 35S-sulfate incorporation rate revealed that the in vitro synthesis rate of DS was higher than HS. Decorin was present in both tissues, while versican was found only in fibroadenoma. In normal breast, the PG concentration varied with the menstrual cycle. It was increased in fibroadenoma, especially DS. PGs are increased in fibroadenoma, but their concentrations may be less sensitive to hormonal control. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Intermittent hydrostatic compressive force stimulates exclusively the proteoglycan synthesis of osteoarthritic human cartilage

    NARCIS (Netherlands)

    Lafeber, F.; Veldhuijzen, J. P.; Vanroy, J. L.; Huber-Bruning, O.; Bijlsma, J. W.

    1992-01-01

    In paired observations the in vitro proteoglycan turnover was studied of human normal and osteoarthritic cartilage in the absence and presence of intermittent hydrostatic compressive force. Shortly after collection, osteoarthritic cartilage showed a higher proteoglycan synthesis rate than normal

  16. Conformational studies on five octasaccharides isolated from chondroitin sulfate using NMR spectroscopy and molecular modeling

    NARCIS (Netherlands)

    Blanchard, V.; Chevalier, F.; Imberty, A.; Leeflang, B.R.; Sugahara, K.; Kamerling, J.P.

    2007-01-01

    Chondroitin sulfate proteoglycans (CS-PG) are involved in the regulation of the central nervous system in vertebrates due to their presence on cell surfaces and in the extracellular matrix of tissues. The CS moieties are built up from repeating -4)GlcA(β 1-3)GalNAc(β 1- disaccharide units, partly

  17. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria.

    Science.gov (United States)

    Razon, Luis F

    2012-03-01

    In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Local changes in proteoglycan synthesis during culture are different for normal and osteoarthritic cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van der Kraan, P. M.; van Roy, H. L.; Vitters, E. L.; Huber-Bruning, O.; van den Berg, W. B.; Bijlsma, J. W.

    1992-01-01

    Proteoglycan synthesis of mild-to-moderate osteoarthritic human knee cartilage was compared with that of normal cartilage of the same donor. Immediately after cartilage was obtained, the synthesis rate of proteoglycans was higher for osteoarthritic cartilage than for normal cartilage. Proteoglycan

  19. Ultrastructure Organization of Collagen Fibrils and Proteoglycans of Stingray and Shark Corneal Stroma

    Directory of Open Access Journals (Sweden)

    Saud A. Alanazi

    2015-01-01

    Full Text Available We report here the ultrastructural organization of collagen fibrils (CF and proteoglycans (PGs of the corneal stroma of both the stingray and the shark. Three corneas from three stingrays and three corneas from three sharks were processed for electron microscopy. Tissues were embedded in TAAB 031 resin. The corneal stroma of both the stingray and shark consisted of parallel running lamellae of CFs which were decorated with PGs. In the stingray, the mean area of PGs in the posterior stroma was significantly larger than the PGs of the anterior and middle stroma, whereas, in the shark, the mean area of PGs was similar throughout the stroma. The mean area of PGs of the stingray was significantly larger compared to the PGs, mean area of the shark corneal stroma. The CF diameter of the stingray was significantly smaller compared to the CF diameter in the shark. The ultrastructural features of the corneal stroma of both the stingray and the shark were similar to each other except for the CFs and PGs. The PGs in the stingray and shark might be composed of chondroitin sulfate (CS/dermatan sulfate (DS PGs and these PGs with sutures might contribute to the nonswelling properties of the cornea of the stingray and shark.

  20. Human and Environmental Toxicity of Sodium Lauryl Sulfate (SLS): Evidence for Safe Use in Household Cleaning Products.

    Science.gov (United States)

    Bondi, Cara Am; Marks, Julia L; Wroblewski, Lauren B; Raatikainen, Heidi S; Lenox, Shannon R; Gebhardt, Kay E

    2015-01-01

    Environmental chemical exposure is a major concern for consumers of packaged goods. The complexity of chemical nomenclature and wide availability of scientific research provide detailed information but lends itself to misinterpretation by the lay person. For the surfactant sodium lauryl sulfate (SLS), this has resulted in a misunderstanding of the environmental health impact of the chemical and statements in the media that are not scientifically supported. This review demonstrates how scientific works can be misinterpreted and used in a manner that was not intended by the authors, while simultaneously providing insight into the true environmental health impact of SLS. SLS is an anionic surfactant commonly used in consumer household cleaning products. For decades, this chemical has been developing a negative reputation with consumers because of inaccurate interpretations of the scientific literature and confusion between SLS and chemicals with similar names. Here, we review the human and environmental toxicity profiles of SLS and demonstrate that it is safe for use in consumer household cleaning products.

  1. Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer

    DEFF Research Database (Denmark)

    Couchman, John R; Multhaupt, Hinke; Sanderson, Ralph D

    2016-01-01

    behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole...

  2. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  3. Radiochemical applications of insoluble sulfate columns. Analytical possibilities in the field of the fission product solutions

    International Nuclear Information System (INIS)

    Barrachina, M.; Sauvagnac, R.

    1962-01-01

    In this paper we go on with our study of the heterogeneous ion-isotopic exchange in column. At present, we apply it to determine the radiochemical composition of the raw solutions used in the industrial recuperation of the long-lived fission products. The separation of the radioelements contained in these solutions is carried out mainly by making use of small columns, 1-3 cm height, of BaSO 4 or SrSO 4 , under selected experimental conditions. These columns behave like a special type of inorganic exchangers, working by absorption or by ion-isotopic exchange depending on the cases,a nd they provide the means for the selective separation of several important fission products employing very small volumes of fixing and eluting solutions. (Author) 11 refs

  4. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    Science.gov (United States)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Guo, Xiao; Xia, Yao; Zhang, Ting; Lu, Hui; Cheng, Yan

    2017-12-01

    Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E) and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E) when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4-5 ng µg-1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the production of nitrate and sulfate on dust

  5. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    Directory of Open Access Journals (Sweden)

    F. Wu

    2017-12-01

    Full Text Available Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4–5 ng µg−1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the

  6. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abir [ORNL; Brooks, Scott C [ORNL; Miller, Carrie L [ORNL; Mosher, Jennifer J [ORNL; Yin, Xiangping Lisa [ORNL; Drake, Meghan M [ORNL

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg:SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24h before sampling (late addition) resulted in {approx}2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to {approx}3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  7. Bacterial Growth Phase Influences Methylmercury Production by the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abir [ORNL; Brooks, Scott C [ORNL; Miller, Carrie L [ORNL; Mosher, Jennifer J [ORNL; Yin, Xiangping Lisa [ORNL; Drake, Meghan M [ORNL

    2011-01-01

    The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg NOM to growing cultures 24 h before sampling (late addition) resulted in ~2 greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid-and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to ~3 more MMHg, indicating the potential importance of growth phase in studies of MMHg production.

  8. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  9. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Carl P.J. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada)], E-mail: mitchellc@si.edu; Branfireun, Brian A. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada); Kolka, Randall K. [Northern Research Station, US Department of Agriculture Forest Service, 1831 Highway 169 East, Grand Rapids, MN 55744 (United States)

    2008-03-15

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO{sub 4} (as an electron acceptor) because SO{sub 4}-reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO{sub 4} and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO{sub 4} addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO{sub 4} input alone ({approx}200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO{sub 4} and some organic C sources resulted in considerably more MeHg production ({approx}500 pg/L/day) than did the addition of SO{sub 4} alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO{sub 4} and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO{sub 4} and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent

  10. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    International Nuclear Information System (INIS)

    Mitchell, Carl P.J.; Branfireun, Brian A.; Kolka, Randall K.

    2008-01-01

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO 4 (as an electron acceptor) because SO 4 -reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO 4 and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO 4 addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO 4 input alone (∼200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO 4 and some organic C sources resulted in considerably more MeHg production (∼500 pg/L/day) than did the addition of SO 4 alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO 4 and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO 4 and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent inputs of SO 4 and organic C in runoff from the adjacent upland hillslopes

  11. Modeling study of cloud droplet nucleation and in-cloud sulfate production during the Sanitation of the Atmosphere (SANA) 2 campaign

    Science.gov (United States)

    Liu, Xiaohong; Seidl, Winfried

    1998-01-01

    Based upon the measurements of vertical profiles of gaseous SO2, H2O2, O3, and meteorological parameters from aircraft and of the aerosol chemical composition and gaseous NH3, HNO3, and SO2 at the surface in southeastern Germany (Melpitz) during the Sanitation of the Atmosphere (SANA) 2 campaign, realistic modeling of cloud droplet nucleation and in-cloud sulfate production was performed with an explicit microphysical cloud model with size-resolved chemistry and cloud top entrainment. For the fair weather cumulus observed during the measurements, the calculated cloud droplet number concentrations could be as high as 2000 cm-3 (and precloud aerosol sulfate up to 9.1 μg m-3), indicating strong sulfur pollution at Melpitz during the campaign. The in-cloud sulfate production is within 1.5-5.0 μg m-3, depending on the initial gaseous NH3 concentration in the parcel. This result shows the necessity of gaseous NH3 vertical profile measurements. Entrainment can reduce the cloud droplet number concentration and cause the distribution of in-cloud produced sulfate to shift toward larger particle sizes. Under the cases we studied, we do not find a significant effect of cloud top gaseous H2O2 entrainment on the in-cloud sulfate production. For the adiabatic cases the departure of bulk water H2O2 from the Henry's law equilibrium is very small. When entrainment included, however, bulk water H2O2 concentrations could be clearly less than the equilibrium values, and the deficiencies are higher (>20%) for droplets larger than 10 μm radius. Our results suggest that entrainment could be one of the important factors to account for the measured H2O2 deficiency in cloud water.

  12. Comparison of product drying performance in molded and serum tubing vials using gentamicin sulfate as a model system.

    Science.gov (United States)

    Hibler, Susanne; Wagner, Christophe; Gieseler, Henning

    2012-01-01

    In a previous study, heat transfer coefficients of different 10 mL tubing and molded vials were determined gravimetrically via sublimation tests with pure water. Contrary to "conventional wisdom", only small differences in K(v) values between tubing and molded vials were found in the pressure range relevant for pharmaceutical freeze-drying. In order to investigate the impact of these relatively small differences on the primary drying time of an actual product, freeze-drying experiments with 5% gentamicin sulfate solution as a model system were performed at 68, 100 and 200 mTorr. The primary drying times of the API in recently developed molded (EasyLyo™), tubing (TopLyo™) and polymer vials (TopPac™) were compared. At 68 and 100 mTorr the primary drying time of the drug in the glass vials only differed by 3% to 4%, while the polymer vial took around 9% longer. At 200 mTorr, the API in the EasyLyo™ vials dried approximately 15% faster compared to the other vial types. The present study suggest that molded vials that have been modified in design to have better heat transfer properties can achieve drying times comparable to tubing vials.

  13. Proteoglycan from salmon nasal cartridge promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor

    International Nuclear Information System (INIS)

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie; Sokabe, Masahiro

    2015-01-01

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure

  14. Proteoglycan from salmon nasal cartridge promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie [Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550 (Japan); Sokabe, Masahiro, E-mail: msokabe@med.nagoya-u.ac.jp [Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550 (Japan); Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550 (Japan); Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411 (Singapore)

    2015-01-16

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.

  15. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  16. Analysis of the hybrid copper oxide-copper sulfate cycle for the thermochemical splitting of water for hydrogen production

    International Nuclear Information System (INIS)

    Gonzales, Ross B.; Law, Victor J.; Prindle, John C.

    2009-01-01

    The hybrid copper oxide-copper sulfate water-splitting thermochemical cycle involves two principal steps: (1) hydrogen production from the electrolysis of water, SO 2 (g) and CuO(s) at room temperature and (2) the thermal decomposition of the CuSO 4 product to form oxygen and SO 2 , which is recycled to the first step. A four-reaction version of the cycle (known in the literature as Cycle H-5) was used as the basis of the present work. For several of the four reactions, a rotating batch reactor sequence is proposed in order to overcome equilibrium limitations. Pinch technology was used to optimize heat integration. Sensitivity analyses revealed it to be economically more attractive to use a 10 C approach to minimize heat loss (rather than 20 C). Using standard Aspen Plus features and the Peng-Robinson equation of state for separations involving oxygen and sulfur oxides, a proposed flowsheet for the cycle was generated to yield ''Level 3'' results. A cost analysis of the designed plant (producing 100 million kmol/yr hydrogen) indicates a total major equipment cost of approximately $45 million. This translates to a turnkey plant price (excluding the cost of the high-temperature heat source or electrolyzer internals) of approximately $360 million. Based on a $2.50/kg selling price for hydrogen, gross annual revenue could be on the order of $500 million, resulting in a reasonable payback period when all capital and operating costs are considered. Previous efficiency estimates using Level 1 and Level 2 methods gave the process efficiency in the neighborhood of 47-48%. The Level 3 efficiency computation was 24-25% depending on the approach temperature used for recuperation. If the low quality heat rejected by the process can be recovered and used elsewhere, the Level 3 analysis could be as high as 51-53%. (author)

  17. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  18. Production of ferrous sulfate from residue from the iron mining; Producao de sulfato ferroso a partir de residuo proveniente da mineracao de ferro

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, K.A; Riella, H.G.; Abreu, E.F. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engrenharia Quimica; Carvalho, E.F. Urano de; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Combustivel Nuclear

    2012-11-15

    This paper was developed from a residue obtained by processing iron ore exploited by the mining company Samarco S/A. The residue was characterized and the analyses showed that it contains about 70% of the mineral hematite (Fe{sub 2}O{sub 3}) and also that some economically important products could be produced. One is the ferrous sulfate that can be used in pharmaceuticals and also that can be used in the treatment of iron deficiency anemia. The iron, in addition to is importance for the industrial production of steel and parts in general, also has great biological importance in all living beings. In order to produce ferrous sulfate from the byproduct in question, it was developed a obtaining route using metallic iron as hematite reductor and sulfuric acid to form the salt. (author)

  19. Barium Sulfate

    Science.gov (United States)

    ... uses a computer to put together x-ray images to create cross-sectional or three dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called radiopaque contrast media. It works by coating the esophagus, stomach, or ...

  20. Photosensitized production of hydrogen by Halobacterium halobium MMT sub 22 coupled to Escherichia coli in reversed micelles of sodium lauryl sulfate in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M.M.T.; Bhatt, J.P. (Central Salt and Marine Research Inst., Bhavnagar (India))

    1991-01-01

    Observation on the enhanced production of hydrogen by Halobacterium halobium MMT{sub 22} coupled to Escherichia coli entrapped inside the reversed micelles formed by sodium lauryl sulfate in various organic solvents, namely benzene, carbon tetrachloride, toluene, n-heptane, nitrobenzene, chlorobenzene, are reported. In the present system, a hundred fold increase in activity as compared to the activity in the usual aqueous medium was observed. (author).

  1. Pathogenesis of diabetic vascular disease: evidence for the role of reduced heparan sulfate proteoglycan

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran

    1997-01-01

    that albuminuria is a marker of widespread vascular dysfunction. Increased transport of macromolecules across the vascular wall, elevated plasma levels of von Willebrand factor, and impaired fibrinolytic capacity have been demonstrated in albuminuric patients. The cause of this vascular vulnerability...... problems. What are the mechanisms of action of glycosaminoglycans at the molecular biology level, and how can we select compounds without anticoagulant activity suitable for long-term use in the prevention and treatment of late diabetic complications?...

  2. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion.

    NARCIS (Netherlands)

    Dinglasan, R.R.; Alaganan, A.; Ghosh, A.K.; Saito, A.; Kuppevelt, A.H.M.S.M. van; Jacobs-Lorena, M.

    2007-01-01

    Malaria transmission entails development of the Plasmodium parasite in its insect vector, the Anopheles mosquito. Parasite invasion of the mosquito midgut is the critical first step and involves adhesion to host epithelial cell ligands. Partial evidence suggests that midgut oligosaccharides are

  3. 21 CFR 582.5230 - Calcium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  4. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  5. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  6. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  7. Comparison of the efficacy of a commercial footbath product with copper sulfate for the control of digital dermatitis.

    Science.gov (United States)

    Jacobs, C; Orsel, K; Mason, S; Gray, K; Barkema, H W

    2017-07-01

    Digital dermatitis (DD) is the most prevalent foot lesion affecting dairy herds worldwide. Its implications include production losses and decreased animal welfare. Footbathing is the most common herd-level prevention strategy for DD. Because many common footbath products have negative environmental and health consequences, replacement products expected to have improved safety but equal efficacy are being developed. Therefore, the aim of this study was to evaluate the efficacy of a new quaternary ammonium-based commercial footbath product (QAC) for reducing the prevalence of active DD lesions compared with an industry standard (copper sulfate; CuSO 4 ) and typical on-farm footbath practices. A controlled intervention trial was conducted on 19 Alberta dairy farms over 12 wk, with 9 farms allocated to the QAC group (1% QAC daily, 5 d/wk), 5 to the CuSO 4 group (5% CuSO 4 daily, 5 d/wk), and 5 to a noninterference group (maintained typical footbath practices). A total of 22,285 observations on 3,465 lactating cows were assessed for DD lesions and leg cleanliness in the milking parlor. Five farms discontinued use of the QAC product for various reasons. Noninferiority analysis was used to assess QAC ability to decrease the proportion of cows with 1 or more active DD lesions compared with CuSO 4 after 6 wk. Multilevel logistic regression models for repeated measures were used to evaluate efficacy of QAC compared with CuSO 4 and noninterference farms in reducing the prevalence of active DD lesions at the foot level over 12 wk. The noninferiority analysis determined that the proportion of cows with 1 or more active DD lesion decreased 2.19 (95% CI: 1.39-3.46) times less after 6 wk of study on the QAC farms compared with CuSO 4 farms, making QAC inferior to CuSO 4 . The multilevel logistic regression models determined that the proportion of active DD lesions increased in the QAC herds, whereas this proportion decreased in the CuSO 4 and noninterference herds over 12 wk

  8. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-06-01

    Full Text Available Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01. In addition, the sulfate-reducing microorganisms (SRMs were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.

  9. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Science.gov (United States)

    Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-01-01

    Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372

  10. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    Science.gov (United States)

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Inhibition of chondroitin sulfate glycosaminoglycans incorporation affected odontoblast differentiation in cultured embryonic mouse molars.

    Science.gov (United States)

    Liu, Lipei; Chen, Weiting; Li, Lefeng; Xu, Fangfang; Jiang, Beizhan

    2017-12-01

    Chondroitin sulfate proteoglycan (CSPG) is an important component of extracellular matrix (ECM), it is composed of a core protein and one or more chondroitin sulfate glycosaminoglycan side chains (CS-GAGs). To investigate the roles of its CS-GAGs in dentinogenesis, the mouse mandibular first molar tooth germs at early bell stage were cultivated with or without β-xyloside. As expected, the CS-GAGs were inhibited on their incorporation to CSPGs by β-xyloside, accompanied by the change of morphology of the cultured tooth germs. The histological results and the transmission electron microscopy (TEM) investigation indicated that β-xyloside exhibited obvious inhibiting effects on odontoblasts differentiation compared with the control group. Meanwhile the results of immunohistochemistry, in situ hybridization and quantitative RT-PCR for type I collagen, dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein, the products of differentiated odontoblasts, further proved that odontoblasts differentiation was inhibited. Collagen fibers detected in TEM decreased and arranged in disorder as well. Thus we conclude that the inhibition of CS-GAGs incorporation to CSPGs can affect odontoblast differentiation in cultured embryonic mouse molars.

  12. Molecular alterations of tropoelastin and proteoglycans induced by tobacco smoke extracts and ultraviolet A in cultured skin fibroblasts

    International Nuclear Information System (INIS)

    Yin, Lei; Morita, Akimichi; Tsuji, Takuo

    2002-01-01

    Functional integrity of normal skin is dependent on the balance between the biosynthesis and degradation of extracellular matrix, primarily composed of collagen, elastin and proteoglycans. In our previous studies, we found that tobacco smoke extracts decreased expressions of type I and III procollagen and induced matrix metalloproteinase-1 (MMP-1) and MMP-3 in the cultured skin fibroblasts. We here further investigated the effects of tobacco smoke extracts or ultraviolet A (UVA) treatments on the expression of tropoelastin (soluble elastin protein), and versican and decorin (proteoglycans) in cultured skin fibroblasts. The mRNA of tropoelastin increased by tobacco smoke extracts or UVA irradiation. Versican was markedly shown to decrease after these treatments by using western blotting and the mRNA of versican V0 also significantly decreased. UVA treatment did not show remarkable change in decorin protein, but resulted in marked decrease of decorin D1 mRNA. In contrast to UVA irradiation, the treatments of tobacco smoke extracts resulted in significant increase in decorin, while mRNA of decorin D1 decreased as compared to the control. MMP-7 increased after the treatment of tobacco smoke extracts or UVA. These results indicated that common molecular features might underlie the skin premature aging induced by tobacco smoke extracts and UVA, including abnormal regulation of extracellular matrix deposition through elevated MMPs, reduced collagen production, abnormal tropoelastin accumulation, and altered proteoglycans. (author)

  13. Molecular alterations of tropoelastin and proteoglycans induced by tobacco smoke extracts and ultraviolet A in cultured skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lei; Morita, Akimichi; Tsuji, Takuo [Nagoya City Univ. (Japan). Medical School

    2002-02-01

    Functional integrity of normal skin is dependent on the balance between the biosynthesis and degradation of extracellular matrix, primarily composed of collagen, elastin and proteoglycans. In our previous studies, we found that tobacco smoke extracts decreased expressions of type I and III procollagen and induced matrix metalloproteinase-1 (MMP-1) and MMP-3 in the cultured skin fibroblasts. We here further investigated the effects of tobacco smoke extracts or ultraviolet A (UVA) treatments on the expression of tropoelastin (soluble elastin protein), and versican and decorin (proteoglycans) in cultured skin fibroblasts. The mRNA of tropoelastin increased by tobacco smoke extracts or UVA irradiation. Versican was markedly shown to decrease after these treatments by using western blotting and the mRNA of versican V0 also significantly decreased. UVA treatment did not show remarkable change in decorin protein, but resulted in marked decrease of decorin D1 mRNA. In contrast to UVA irradiation, the treatments of tobacco smoke extracts resulted in significant increase in decorin, while mRNA of decorin D1 decreased as compared to the control. MMP-7 increased after the treatment of tobacco smoke extracts or UVA. These results indicated that common molecular features might underlie the skin premature aging induced by tobacco smoke extracts and UVA, including abnormal regulation of extracellular matrix deposition through elevated MMPs, reduced collagen production, abnormal tropoelastin accumulation, and altered proteoglycans. (author)

  14. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Science.gov (United States)

    Coulson-Thomas, Yvette M; Coulson-Thomas, Vivien J; Norton, Andrew L; Gesteira, Tarsis F; Cavalheiro, Renan P; Meneghetti, Maria Cecília Z; Martins, João R; Dixon, Ronald A; Nader, Helena B

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  15. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth.

    Directory of Open Access Journals (Sweden)

    Yvette M Coulson-Thomas

    Full Text Available Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs. Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS and hyaluronic acid (HA. In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.

  16. Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity.

    Directory of Open Access Journals (Sweden)

    Yunchao Chang

    Full Text Available Obesity is a major health problem worldwide. We are studying the causes and effects of obesity in C57Bl/6 mice following genetic ablation of NG2, a chondroitin sulfate proteoglycan widely expressed in progenitor cells and also in adipocytes. Although global NG2 ablation delays early postnatal adipogenesis in mouse skin, adult NG2 null mice are paradoxically heavier than wild-type mice, exhibiting larger white fat deposits. This adult onset obesity is not due to NG2-dependent effects on CNS function, since specific ablation of NG2 in oligodendrocyte progenitors yields the opposite phenotype; i.e. abnormally lean mice. Metabolic analysis reveals that, while activity and food intake are unchanged in global NG2 null mice, O(2 consumption and CO(2 production are decreased, suggesting a decrease in energy expenditure. Since brown fat plays important roles in regulating energy expenditure, we have investigated brown fat function via cold challenge and high fat diet feeding, both of which induce the adaptive thermogenesis that normally occurs in brown fat. In both tests, body temperatures in NG2 null mice are reduced compared to wild-type mice, indicating a deficit in brown fat function in the absence of NG2. In addition, adipogenesis in NG2 null brown pre-adipocytes is dramatically impaired compared to wild-type counterparts. Moreover, mRNA levels for PR domain containing 16 (PRDM16 and peroxisome proliferator-activated receptor γ coactivator (PGC1-α, proteins important for brown adipocyte differentiation, are decreased in NG2 null brown fat deposits in vivo and NG2 null brown pre-adipocytes in vitro. Altogether, these results indicate that brown fat dysfunction in NG2 null mice results from deficits in the recruitment and/or development of brown pre-adipocytes. As a consequence, obesity in NG2 null mice may occur due to disruptions in brown fat-dependent energy homeostasis, with resulting effects on lipid storage in white adipocytes.

  17. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine

    DEFF Research Database (Denmark)

    Theocharis, Achilleas D.; Skandalis, Spyros S.; Neill, Thomas

    2015-01-01

    of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor...... in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel...

  18. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.; Blancuzzi, V.; Wilson, D.; Gunson, D.; Douglas, F.L.; Wang Jinzhao; Mezrich, R.S.

    1991-01-01

    Cartilage degeneration in osteoarthritis is initiated by a loss of proteoglycan. Intra-articular injection of papain causes a reversible loss of proteoglycan in rabbit knees. Rabbits were scanned with magnetic resonance imaging (MRI), using a 1.5T Signa superconducting magnet with 3 inch surface coil. Spin echo sequences were performed in the coronal and sagittal planes at 0, 24, 48, and 72 h after intra-articular injection of papain to abtain T 1 , proton density, and T 2 -weighted images. Cartilage proteoglycan content was measured biochemically and histochemically. Reduced articular cartilage thickness in the MR images of papain-treated knees corresponded to changes in cartilage proteoglycan content. (orig.)

  19. Function of a deltaic silt deposit as a repository and long-term source of sulfate and related weathering products in a glaciofluvial aquifer derived from organic-rich shale (North Dakota, USA)

    Science.gov (United States)

    Schuh, W. M.; Bottrell, S. H.

    2014-05-01

    A shallow unconfined glaciofluvial aquifer in North Dakota (USA) has largest groundwater sulfate concentrations near the bottom boundary. A deltaic silt layer underlying the aquifer, at >16 m, is the modern proximate sulfate source for the aquifer. The original sulfate source was pyrite in the organic-rich shale component of the aquifer and silt grain matrix. An oxidizing event occurred during which grain-matrix pyrite sulfur was oxidized to sulfate. Thereafter the silt served as a "conserving" layer, slowly feeding sulfate into the lower part of the aquifer and the underlying till. A method was developed for estimating the approximate initial sulfate concentration in the source layer and the redistribution time since the oxidizing event, using a semi-generic convection-dispersion model. The convection-dispersion model and a model for the evolution of modern sulfate δ 34S in silt-layer pore water from the initial grain-matrix pyrite δ 34S, both estimated that the oxidizing event occurred several thousand years ago, and was likely related to the dry conditions of the Hypsithermal Interval. The silt layer also serves as an arsenic source. Results indicate that deltaic silts derived from organic-rich shale parent materials in a glacial environment can provide long-term sources for sulfate and arsenic and possibly other related oxidative weathering products.

  20. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    Science.gov (United States)

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells.

    Science.gov (United States)

    Mizumoto, Shuji; Takahashi, Jun; Sugahara, Kazuyuki

    2012-06-01

    Altered expression of chondroitin sulfate (CS) and heparan sulfate (HS) at the surfaces of tumor cells plays a key role in malignant transformation and tumor metastasis. Previously we demonstrated that a Lewis lung carcinoma (LLC)-derived tumor cell line with high metastatic potential had a higher proportion of E-disaccharide units, GlcUA-GalNAc(4,6-O-disulfate), in CS chains than low metastatic LLC cells and that such CS chains are involved in the metastatic process. The metastasis was markedly inhibited by the pre-administration of CS-E from squid cartilage rich in E units or by preincubation with a phage display antibody specific for CS-E. However, the molecular mechanism of the inhibition remains to be investigated. In this study the receptor molecule for CS chains containing E-disaccharides expressed on LLC cells was revealed to be receptor for advanced glycation end products (RAGE), which is a member of the immunoglobulin superfamily predominantly expressed in the lung. Interestingly, RAGE bound strongly to not only E-disaccharide, but also HS-expressing LLC cells. Furthermore, the colonization of the lungs by LLC cells was effectively inhibited by the blocking of CS or HS chains at the tumor cell surface with an anti-RAGE antibody through intravenous injections in a dose-dependent manner. These results provide the clear evidence that RAGE is at least one of the critical receptors for CS and HS chains expressed at the tumor cell surface and involved in experimental lung metastasis and that CS/HS and RAGE are potential molecular targets in the treatment of pulmonary metastasis.

  2. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library

    DEFF Research Database (Denmark)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsuasa

    2016-01-01

    with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental......-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain...... that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation...

  3. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    International Nuclear Information System (INIS)

    Dietrich, C.P.; Nader, H.B.; Buonassisi, V.; Colburn, P.

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, [ 3 H]glucosamine/[ 35 S]sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain

  4. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans

    DEFF Research Database (Denmark)

    Pataki, Csilla A; Couchman, John R; Brábek, Jan

    2015-01-01

    /planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development...... and in a multitude of diseases. Although the first evidence for interactions between syndecans and Wnts dates back to 1997, the number of studies connecting these pathways is low, and many open questions remained unanswered. In this review, syndecan's involvement in Wnt signaling pathways as well as some...

  5. Antiaging effects of a novel facial serum containing L-ascorbic acid, proteoglycans, and proteoglycan-stimulating tripeptide: ex vivo skin explant studies and in vivo clinical studies in women

    Directory of Open Access Journals (Sweden)

    Garre A

    2018-05-01

    Full Text Available Aurora Garre,1 Mridvika Narda,1 Palmira Valderas-Martinez,1 Jaime Piquero,2 Corinne Granger1 1Innovation and Development, ISDIN SA, Barcelona, Spain; 2Dermik Clinic, Barcelona, Spain Background: With age, decreasing dermal levels of proteoglycans, collagen, and elastin lead to the appearance of aged skin. Oxidation, largely driven by environmental factors, plays a central role.Aim: The aim of this study was to assess the antiaging efficacy of a topical serum containing l-ascorbic acid, soluble proteoglycans, low molecular weight hyaluronic acid, and a tripeptide in ex vivo and in vivo clinical studies.Methods: Photoaging and photo-oxidative damage were induced in human skin explants by artificial solar radiation. Markers of oxidative stress – reactive oxygen species (ROS, total glutathione (GSH, and cyclobutane pyrimidine dimers (CPDs – were measured in serum-treated explants and untreated controls. Chronological aging was simulated using hydrocortisone. In both ex vivo studies, collagen, elastin, and proteoglycans were determined as measures of dermal matrix degradation. In women aged 21–67 years, hydration was measured up to 24 hours after a single application of serum, using Corneometer and hygrometer. Subjects’ perceptions of efficacy and acceptability were assessed via questionnaire after once-daily serum application for 4 weeks. Studies were performed under the supervision of a dermatologist.Results: In the photoaging study, irradiation induced changes in ROS, CPD, GSH, collagen, and elastin levels; these changes were reversed by topical serum application. The serum also protected against hydrocortisone-induced reduction in collagen, elastin, and proteoglycan levels, which were significantly higher in the serum-treated group vs untreated hydrocortisone-control explants. In clinical studies, serum application significantly increased skin moisture for 6 hours. Healthy volunteers perceived the product as efficient in making the

  6. Applying Limestone or Basalt in Combination with Bio-Fertilizer to Sustain Rice Production on an Acid Sulfate Soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2016-07-01

    Full Text Available A study was conducted to determine the efficacy of applying ground magnesium limestone (GML or ground basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia. Soils from Kelantan Plains, Malaysia, were treated with GML, ground basalt, bio-fertilizer, GML + bio-fertilizer, and ground basalt + bio-fertilizer (4 t·ha−1 each. Results showed that soil fertility was improved by applying the soil amendments. GML and basalt contain some Zn and Cu; thus, application of these amendments would increase their contents in the soil needed for the healthy growth of rice. Basalt applied in combination with bio-fertilizer appeared to be the best agronomic option to improve the fertility of acid sulfate soils for sustainable rice production in the long run. In addition to increasing Ca, Mg, Zn, and Cu reserves in the soil, water pH increased and precipitated Al3+ and/or Fe2+. Ground basalt is cheaper than GML, but basalt dissolution in the acidic soil was slow. As such, its ameliorative effects could only be seen significantly from the second season onwards. The specially-formulated bio-fertilizer for alleviating the infertility of acid sulfate soil could also enhance rice growth. The use of the bio-fertilizer fortified with N2-fixing bacteria is a green technology that would help reduce NO3− and/or NO2− pollution and reduce the cost of rice production. The phosphate-solubilizing bacteria (PSB present in the bio-fertilizer not only increased the available P, but also helped release organic acids that would inactivate Al3+ and/or Fe2+ via the process of chelation.

  7. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  8. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    International Nuclear Information System (INIS)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo

    2017-01-01

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  9. EFISIENSI ENERGI DAN PRODUKSI PADA USAHATANI PADI DI LAHAN SULFAT MASAM POTENSIAL (Efficiency of Production and Energy on Rice Farming in Acid Sulphate Soil Potential

    Directory of Open Access Journals (Sweden)

    Sudirman Umar

    2016-02-01

    Full Text Available Tidal swamp land is a potential land to overcome in the future national food security as a result of land conversion.  Generally, in farming system, farmer labor in used from land preparation till postharvest.  Experiment was conducted at experimental station of Belandean, Barito Kuala regency, South Kalimantan in April until September 2009.  The object of experiment was to evaluate distribution and consumption of energy for managing farming system on acid sulphate soil potential with introduction technology at dry season.  Energy consumption was analyzed on all steps of production process.  Result of analysis showed that rice cultivation on potential acid sulphate soil utilized physical energy (man power without tractor and power thresher as 253,116.80-195,170.55 k.cal ha-1.  Total energy for managing one hectare of that area was 274.858,90 k.cal ha-1 with introduction technology or 1.41 times more than by farmer technology.  Comparing with total of cost production, cost of man power with introduction technology was 56,92 %.  In production process, by applying input of physical and chemical cost, produced  energy output as 20,799,900 k.cal ha-1 and Rp 14,325,000 of cost output or increased as 48.15 %.  Based those input and output of energy was obtained production efficiency as 9,02% and 9,73 % for introduction and farmer technology. On farming system in potensial tidal swamp the energy input and production increased 1.54 and 1.15 times by addition introduction technology.  Result of evaluation showed that utilization production capital becoming more increase utilization of purun tikus (eleocharis dulcis, ameliorant and one way flow, production technology input increased as 54.31%. Keywords: Energy, acid sulphate land, rice ABSTRAK Lahan rawa pasang surut merupakan lahan alternatif yang potensial untuk mengatasi kekurangan pangan akibat menciutnya lahan subur yang telah beralih fungsi ke penggunaan non pertanian sehingga petani pun

  10. Effect of nitrate addition on prokaryotic diversity and the activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Adding nitrate to injection water is a possible strategy to control the activity of sulfate-reducing prokaryotes (SRP) in oil production system. To assess the effects of nitrate addition, prokaryotic diversity (Bacteria, Archaea, SRP) and SRP activity were studied in the production waters......-treated site was additionally supported by demonstrating their potential activity at 58°C, indicating that the troublesome SRP were pipeline-derived. Consistent with the low frequency of SRP in the clone libraries, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were...... inhibited by nitrate addition. Visualization and quantification of the identified troublesome prokaryotes and potential competitors using the CARD-FISH technique will be performed on production water from both sites....

  11. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    Science.gov (United States)

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  12. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  13. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  14. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...

  16. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs......, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields...... were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed...

  17. Effect of nitrate addition on the diversity and activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Sulfate-reducing prokaryotes (SRP) producing hydrogen sulfide cause severe problems like microbial corrosion, souring and plugging in seawater-injected oil production systems. Adding nitrate to the injection water is a possible strategy to control the activity of SRP by favoring the growth of both...... heterotrophic, nitrate-reducing bacteria that outcompete SRP for substrates, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To assess the effects of nitrate addition, microbial diversity (Bacteria, Archaea) and SRP activity were studied in the production waters of a nitrate-treated and a non...... their potential activity under pipeline (60°C), but not under oil reservoir conditions (80°C), indicating that the troublesome SRP were pipeline-derived. Consistent with the low amount of SRP, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were inhibited by nitrate...

  18. Is human placenta proteoglycan remodeling involved in pre-eclampsia?

    OpenAIRE

    Warda, Mohamad; Zhang, Fuming; Radwan, Moustafa; Zhang, Zhenqing; Kim, Nari; Kim, Young Nam; Linhardt, Robert J.; Han, Jin

    2007-01-01

    Impaired placento-fetal communication is a coherent symptom of exaggerated pre-eclampsia. The impact of the cellular expression of different glycosaminoglycans (GAGs) in this event on the placenta in pre-eclampsia is still obscure. This is the first study aimed at discovering the relationship between structural alterations of different sulfated GAGs at the molecular level and the development of pre-eclampsia in inflicted placenta. Sulfated GAGs were isolated and purified from control and pre-...

  19. Effect of Zinc Methionine or Zinc Sulfate Supplementation on Milk Production and Composition of Milk in Lactating Dairy Cows

    DEFF Research Database (Denmark)

    Sobhanirad, Saeid; Carlson, Dorthe; Kashani, Reza Bahari

    2010-01-01

     Zn/kg of dry matter (DM) as zinc sulfate monohydrate (ZnS) and basal diet plus 500 mg Zn/kg of DM as zinc methionine (ZnM). Results showed that milk and fat-corrected milk yield in dairy cows were not significantly affected by Zn source although a numerical increase was observed. The percentages of protein......, lactose, fat, solid nonfat, total solid, and density of milk were not significantly different between treatments. However, dairy cows that received ZnM tended to produce more milk and fat-corrected milk with a lower somatic cell count as compared to controls. The zinc concentration in milk in the Zn...

  20. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  1. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    Science.gov (United States)

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  3. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  4. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Science.gov (United States)

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  5. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  6. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  7. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production

    Directory of Open Access Journals (Sweden)

    Chunyan Xu

    2015-11-01

    Full Text Available Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS, on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office’s (BETO projected cost of $5/gge (gallon gasoline equivalent. This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes.

  8. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  9. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism

    KAUST Repository

    Zhang, Tao

    2013-03-19

    A simple, nonhazardous, efficient and low energy-consuming process is desirable to generate powerful radicals from peroxymonosulfate (PMS) for recalcitrant pollutant removal. In this work, the production of radical species from PMS induced by a magnetic CuFe2O4 spinel was studied. Iopromide, a recalcitrant model pollutant, was used to investigate the efficiency of this process. CuFe2O4 showed higher activity and 30 times lower Cu2+ leaching (1.5 μg L-1 per 100 mg L-1) than a well-crystallized CuO at the same dosage. CuFe 2O4 maintained its activity and crystallinity during repeated batch experiments. In comparison, the activity of CuO declined significantly, which was ascribed to the deterioration in its degree of crystallinity. The efficiency of the PMS/CuFe2O4 was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe 2O4, the radical production yield from PMS was determined to be near 1 mol/mol. The PMS decomposition involved an inner-sphere complexation with the oxide\\'s surface Cu(II) sites. In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)-Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS. © 2013 American Chemical Society.

  10. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. Adding nitrate to the injection water is applied to control SRP activity by favoring the growth of heterotrophic, nitrate-reducing bacteria (h......NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water......) and Desulfotomaculum (system with nitrate). In samples from the untreated site, the presence of active SRP was supported by demonstrating their activity (incubations with 35S-sulfate) and growth in batch cultures at pipeline temperature. No SRP activity was detected at reservoir temperature and in samples from...

  11. Proteoglycans in health and disease: the multiple roles of syndecan shedding

    DEFF Research Database (Denmark)

    Manon-Jensen, Tina; Itoh, Yoshifumi; Couchman, John R

    2010-01-01

    Proteolytic processes in the extracellular matrix are a major influence on cell adhesion, migration, survival, differentiation and proliferation. The syndecan cell-surface proteoglycans are important mediators of cell spreading on extracellular matrix and respond to growth factors and other...

  12. Medical Gains of Chondroitin Sulfate Upon Fucosylation.

    Science.gov (United States)

    Pomin, Vitor H

    2015-01-01

    Chondroitin sulfate (CS) is a glycosaminoglycan (GAG) composed of alternating N-acetyl galactosamine and glucuronic acid units within disaccharide building blocks. CS is a key functional component in proteoglycans of cartilaginous tissues. Owing to its numerous biological roles, CS is widely explored in the pharmaceutical market as nutraceutical ingredient commonly utilized against arthritis, osteoarthrosis, and sometimes osteoporosis. Tissues like shark cartilage and bovine trachea are common sources of CS. Nonetheless, a new CS type has been introduced and investigated in the last few decades in what regards its medical potentials. It is named fucosylated chondroitin sulfate (FucCS). This less common CS type is isolated exclusively from the body wall of sea cucumbers. The presence of fucosyl branching units in the holothurian FucCS gives to this unique GAG, therapeutic properties in various pathophysiological systems which are inexistent in the common CS explored in the market. Examples of these systems are coagulation, thrombosis, hemodialysis, atherosclerosis, cellular growth, angiogenesis, fibrosis, tumor growth, inflammation, viral and protozoan infections, hyperglycemia, diabetes-related pathological events and tissue damage. This report aims at describing the medical benefits gained upon fucosylation of CS. Clinical prospects of these medical benefits are also discussed herein.

  13. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.

    Science.gov (United States)

    Takeda, Akihito; Okada, Soichiro; Funakoshi, Kengo

    2017-10-15

    Chondroitin sulfate proteoglycans produced in glial scar tissue are a major inhibitory factor for axonal regeneration after central nervous system injury in mammals. The inhibition is largely due to chondroitin sulfates, whose effects differ according to the sulfation pattern. In contrast to mammals, fish nerves spontaneously regenerate beyond the scar tissue after spinal cord injury, although the mechanisms that allow for axons to pass through the scar are unclear. Here, we used immunohistochemistry to examine the expression of two chondroitin sulfates with different sulfation variants at the lesion site in goldfish spinal cord. The intact spinal cord was immunoreactive for both chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), and CS-A immunoreactivity overlapped extensively with glial processes positive for glial fibrillary acidic protein. At 1week after inducing the spinal lesion, CS-A immunoreactivity was observed in the cell bodies and extracellular matrix, as well as in glial processes surrounding the lesion center. At 2weeks after the spinal lesion, regenerating axons entering the lesion center overtook the CS-A abundant area. In contrast, at 1week after lesion induction, CS-C immunoreactivity was significantly decreased, and at 2weeks after lesion induction, CS-C immunoreactivity was observed along the regenerating axons entering the lesion center. The present findings suggest that after spinal cord injury in goldfish, chondroitin sulfate proteoglycans are deposited in the extracellular matrix at the lesion site but do not form an impenetrable barrier to the growth of regenerating axons. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sulfate reduction in freshwater peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  15. Sulfate reduction in freshwater peatlands

    International Nuclear Information System (INIS)

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  16. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments

    Directory of Open Access Journals (Sweden)

    Michal Sela-Adler

    2017-05-01

    Full Text Available The competition between sulfate reducing bacteria and methanogens over common substrates has been proposed as a critical control for methane production. In this study, we examined the co-existence of methanogenesis and sulfate reduction with shared substrates over a large range of sulfate concentrations and rates of sulfate reduction in estuarine systems, where these processes are the key terminal sink for organic carbon. Incubation experiments were carried out with sediment samples from the sulfate-methane transition zone of the Yarqon (Israel estuary with different substrates and inhibitors along a sulfate concentrations gradient from 1 to 10 mM. The results show that methanogenesis and sulfate reduction can co-exist while the microbes share substrates over the tested range of sulfate concentrations and at sulfate reduction rates up to 680 μmol L-1 day-1. Rates of methanogenesis were two orders of magnitude lower than rates of sulfate reduction in incubations with acetate and lactate, suggesting a higher affinity of sulfate reducing bacteria for the available substrates. The co-existence of both processes was also confirmed by the isotopic signatures of δ34S in the residual sulfate and that of δ13C of methane and dissolved inorganic carbon. Copy numbers of dsrA and mcrA genes supported the dominance of sulfate reduction over methanogenesis, while showing also the ability of methanogens to grow under high sulfate concentration and in the presence of active sulfate reduction.

  17. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    Science.gov (United States)

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Basement membrane proteoglycans are of epithelial origin in rodent skin

    DEFF Research Database (Denmark)

    Yamane, Y; Yaoita, H; Couchman, J R

    1996-01-01

    . For in vivo experiments, pieces of newborn rat epidermis obtained by dispase treatment were grafted onto athymic nude mice. Three and six weeks after grafting, immunofluorescence analysis of the grafted skin was carried out, using monoclonal antibodies specific for rat basement membrane chondroitin sulfate...

  19. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste

    International Nuclear Information System (INIS)

    Sarma, Saurabh Jyoti; Das, Ratul Kumar; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo; 2 Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9 (Canada))" data-affiliation=" (CO2 Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9 (Canada))" >Verma, Mausam; Soccol, Carlos Ricardo

    2014-01-01

    CG (Crude glycerol) is one of the major wastes of biodiesel production process. It can be used as a substrate for lipid production by algae and the produced lipid can be recycled as a feedstock for biodiesel production. In order to avoid substrate inhibition, lipid production media are prepared by diluting the CG with distilled water. However, CG contains only a small amount of Mg (57.41 ± 18 ppm) and its concentration is further decreased to around 0.57 ppm during the dilution process. Apart from having a number of roles in algal physiology, Mg is the central atom of chlorophyll. Therefore, MgSO 4 was evaluated as a Mg source to supplement the CG based media used for lipid production by Chlorella vulgaris. By supplementing the process with 1 g/L of MgSO 4 , nearly 185.29 ± 4.53% improvement in lipid production has been achieved. Further, application of MgSO 4 nanoparticles was found to improve the lipid production by 118.23 ± 5.67%. Interestingly, unlike MgSO 4 , its nanoparticles were found to enhance the lipid production at the expense of only a small amount of glycerol. Thus, application of MgSO 4 nanoparticles could be a potential strategy for enhanced lipid yield. - Highlights: • MgSO 4 supplementation can improve the biomass production by 125.58 ± 7.2%. • 185.29 ± 4.53% increase in lipid production by Chlorella vulgaris. • Enhanced lipid production in spite of negligible glycerol consumption. • MgSO 4 nanoparticle induced enhanced photosynthesis by micro algae

  20. New SPECT tracers: Example of tracers of proteoglycans and melanin

    International Nuclear Information System (INIS)

    Cachin, F.; Mestas, D.; Kelly, A.; Merlin, C.; Veyre, A.; Maublant, J.; Cachin, F.; Chezal, J.M.; Miot-Noirault, E.; Moins, N.; Auzeloux, P.; Vidal, A.; Bonnet-Duquennoy, M.; Boisgard, S.; D'Incan, M.; Madelmont, J.C.; Maublant, J.; Boisgard, S.; D'Incan, M.; Redini, F.; Filaire, M.

    2009-01-01

    The majority of research program on new radiopharmaceuticals turn to tracers used for positron emission tomography (PET). Only a few teams work on new non fluorine labeled tracers. However, the coming of SPECT/CT gamma cameras, the arrival of semi-conductors gamma cameras should boost the development of non-PET tracers. We exhibit in this article the experience acquired by our laboratory in the conception and design of two new non fluorine labelled compounds. The 99m Tc-N.T.P. 15-5 (N.T.P. 15-5 for N-[tri-ethyl-ammonium]-3-propyl-[15]ane-N5) which binds to proteoglycans could be used for the diagnosis and staging of osteoarthritis and chondrosarcoma. The iodo benzamides, specific to the melanin, are nowadays compared to 18 F-fluorodeoxyglucose in a phase III clinical trial for the diagnosis and detection of melanoma metastasis. Our last development focus on N-[2-(diethyl-amino)ethyl]-4 and 2-iodo benzamides respectively B.Z.A. and B.Z.A.2 hetero-aromatic analogues usable for melanoma treatment. (authors)

  1. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    Science.gov (United States)

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  2. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process.

    Science.gov (United States)

    Yang, Yi; Jiang, Jin; Lu, Xinglin; Ma, Jun; Liu, Yongze

    2015-06-16

    In this work, simultaneous generation of hydroxyl radical (•OH) and sulfate radical (SO4•−) by the reaction of ozone (O3) with peroxymonosulfate (PMS; HSO5−) has been proposed and experimentally verified. We demonstrate that the reaction between the anion of PMS (i.e.,SO52−) and O3 is primarily responsible for driving O3 consumption with a measured second order rate constant of (2.12 ± 0.03) × 10(4) M(-1) s(-1). The formation of both •OH and SO4•− from the reaction between SO52− and O3 is confirmed by chemical probes (i.e., nitrobenzene for •OH and atrazine forb oth •OH and SO4•−). The yields of •OH and SO4•− are determined to be 0.43 ± 0.1 and 0.45 ± 0.1 per mol of O3 consumption, respectively. An adduct,−O3SOO− + O3 → −O3SO5−, is assumed as the first step, which further decomposes into SO5•− and O3•−. The subsequent reaction of SO5•− with O3is proposed to generate SO4•−, while O3•− converts to •OH. A definition of R(ct,•OH) and R(ct,SO4•−) (i.e., respective ratios of •OH and SO4•− exposures to O3 exposure) is adopted to quantify relative contributions of •OH and SO4•−. Increasing pH leads to increases in both values of R(ct,•OH) and R(ct,SO4•−) but does not significantly affect the ratio of R(ct,SO4•−) to R(ct,•OH) (i.e., R(ct,SO4•−)/R(ct,•OH)), which represents the relative formation of SO4•− to •OH. The presence of bicarbonate appreciably inhibits the degradation of probes and fairly decreases the relative contribution of •OH for their degradation, which may be attributed to the conversion of both •OH and SO4•− to the more selective carbonate radical (CO3•−).Humic acid promotes O3 consumption to generate •OH and thus leads to an increase in the R(ct,•OH) value in the O3/PMS process,w hile humic acid has negligible influence on the R(ct,SO4•−) value. This discrepancy is reasonably explained by the negligible effect of humic acid on SO

  3. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells

    OpenAIRE

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2015-01-01

    Recent studies identified PCB sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific...

  4. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    Energy Technology Data Exchange (ETDEWEB)

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  5. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  6. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  7. The effect of divalent salt in chondroitin sulfate solutions

    International Nuclear Information System (INIS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-01-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca"2"+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca"2"+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl_2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  8. Assessment of thermochemical hydrogen production. Project 8994 mid-contract progress report, July 1--November 1, 1977. [Iron chloride and copper sulfate cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dafler, J.R.; Foh, S.E.; Schreiber, J.D.

    1977-12-01

    We have completed the base-case (first-cut) flowsheet analysis for two thermochemical water-splitting cycles that have been under study at the Institute of Gas Technology: a four-step iron chloride cycle (denoted B-1) and a four-step copper sulfate cycle (denoted H-5). In the case of Cycle B-1, an energy balance has located the worst problem areas in the cycle, and flowsheet modifications have begun. Calculations of equilibrium effects due to the hydrolysis of ferrous chloride at pressures high enough to interface with projected hydrogen transmission systems will, apparently, necessitate higher temperature process heat input for this step. Higher pressure operation of some critical separation processes yields more favorable heat balances. For Cycle H-5, the unmodified (base-case) flowsheet indicates that reaction product separations will be relatively simple with respect to Cycle B-1. Work of Schuetz and others dealing with the electrolysis and thermodynamics of HBr/H/sub 2/O/SO/sub 2/ systems is being extensively reviewed. Work plans for this part of the contract are currently being reviewed.

  9. 21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.

    Science.gov (United States)

    2010-04-01

    ... ophthalmic solution. 524.1484e Section 524.1484e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a...

  10. PRODUKSI BIOETANOL DARI KULIT PISANG MELALUI HIDROLISIS ASAM SULFAT [The Production of Bioetanol from Banana Peel Trough Sulphuric Acid Hidrolisis

    Directory of Open Access Journals (Sweden)

    Asih Sukowati

    2014-10-01

    Full Text Available Banana fruit is one of main product of Lampung Province. Banana is commonly utilized as raw material of banana chip production and its peel can be converted into bioethanol. The Objectives of this study were to find out the optimum treatments of  hydrolysis and fermentation for producing bioetanol.  Two steps, namely  hydrolysis and fermentations, were carried out in this study. In the hydrolysis step, two treatments - H2SO4 consentration and hydrolysis duration – were implemented.  The H2SO4 concentration treatment consisted of five level (0, 0.025, 0.050, 0.075, and 0,100 M; and the hydrolysis period treatment consisted of two level (15 dan 30 minutes. Bioethanol fermentation was carried out at room temperature for 72 hours with Saccharomyces cerevisiae as starter at concentration of 0%, 5%, 10%, and 15% (w/v.  The treatments were arranged in Randomized Complete Block Design (RCBD with three replications.  Before and after hydrolysis, the cellulose, hemicellulose, and lignin contents of  banana peel were determined. The reducing sugar concentrations were measured after hydrolysis, and bioethanol concentrations were measured after fermentation. The  data of the cellulose, hemicellulose, lignin, reduced sugar, and bioethanol were tabulated and analyzed descriptively.  The results of this study showed that the optimum treatment for hydrolysis was H2SO4 solution at a concentration of 0.050 M at 1210C for 15 minutes.  The treatment yielded reduced sugar at a concentration of 11,26mg/100 mL.  The optimum treatment for fermentation was a starter concentration of 10% (w/v which produced bioethanol at a concentration of 0.03% (v/v. Keywords : banana peel, bioethanol, hydrolysis, H2SO4, reducing sugar.

  11. Oncofetal chondroitin sulfate glycosaminoglycans are key players in integrin signaling and tumor cell motility

    DEFF Research Database (Denmark)

    Clausen, Thomas Mandel; Bento Ayres Pereira, Marina Maria; Al Nakouzi, Nader

    2016-01-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2...... revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1......,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor...

  12. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  13. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors

    Directory of Open Access Journals (Sweden)

    Tünde eSzatmári

    2013-12-01

    Full Text Available Proteoglycans and in particular the syndecans are involved in the differentiation process across the epithelial-mesenchymal axis, principally through their ability to bind growth factors and modulate their downstream signalling. Malignant tumors have individual proteoglycan profiles, which are closely associated with their differentiation and biological behavior, mesenchymal tumors showing a different profile from that of epithelial tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas its expression level is generally low, in accordance with their mesenchymal phenotype and highly malignant behaviour. This proteoglycan is often overexpressed in adenocarcinoma cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4 more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes the tumor cell morphology to an epithelioid direction whereas downregulation results in a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays major roles on the cell surface, there are also intracellular functions, which are not very well studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation, adhesion, migration and motility, and the effect varies with the different domains of the core protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concentration of various mitogens, enzymes and signalling molecules, the ratio between the shed and membrane-associated syndecan-1 and histological grade of the tumour. Growth factor signaling seems to be delicately controlled by regulatory loops involving the syndecan expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other proteoglycans. On transcriptomic level, syndecan-1 modulation results in profound effects on genes involved in

  14. Rat mesangial cells in vitro synthesize a spectrum of proteoglycan species including those of the basement membrane and interstitium

    DEFF Research Database (Denmark)

    Thomas, G J; Shewring, L; McCarthy, K J

    1995-01-01

    is localized in the mesangium but is not found in the pericapillary glomerular basement membrane (GBM). Further characterization of the proteoglycans synthesized by RMC in vitro revealed: (i) a second large CSPG, identified as versican; (ii) two small dermatan sulphate proteoglycans identified as biglycan...

  15. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  16. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry

    International Nuclear Information System (INIS)

    O'Donnell, Christopher D.; Kovacs, Maria; Akhtar, Jihan; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-01-01

    Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed, isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.

  17. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.

    Science.gov (United States)

    Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y

    2017-01-01

    The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.

  18. The ceric sulfate dosimeter

    DEFF Research Database (Denmark)

    Bjergbakke, Erling

    1970-01-01

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation...

  19. Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats

    DEFF Research Database (Denmark)

    McCarthy, K J; Abrahamson, D R; Bynum, K R

    1994-01-01

    exception being the normal glomerular capillary basement membrane (GBM), where it is absent. In the present study of mature kidneys we examined the distribution of BM-CSPG in streptozocin-induced diabetes mellitus in rats. We found BM-CSPG atypically associated with the GBM of diabetic animals as early as 1...... month after induction of diabetes mellitus. Immunoelectron microscopy (IEM) of affected capillary loops showed BM-CSPG present in the subendothelial matrix in areas of GBM thickening and absent in areas where the GBM appears to be of normal thickness. Moreover, the association of BM-CSPG with regions...... of the pericapillary GBM affects the morphology of the capillary endothelial cells within these areas, directly displacing the cell body from the GBM proper and causing loss of fenestrae. These new data on BM-CSPG distribution reflect abnormal glomerular extracellular matrix protein biosynthesis/turnover in diabetes...

  20. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity

    NARCIS (Netherlands)

    Christianson, H.C.; Svensson, K.J.; Kuppevelt, T.H. van; Li, J.P.; Belting, M.

    2013-01-01

    Extracellular vesicle (EV)-mediated intercellular transfer of signaling proteins and nucleic acids has recently been implicated in the development of cancer and other pathological conditions; however, the mechanism of EV uptake and how this may be targeted remain as important questions. Here, we

  1. Interaction of poly-L-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells

    Czech Academy of Sciences Publication Activity Database

    Siow, W. X.; Chang, Y.-T.; Babič, Michal; Lu, Y.-C.; Horák, Daniel; Ma, Y.-H.

    2018-01-01

    Roč. 13, 20 March (2018), s. 1693-1706 E-ISSN 1178-2013 R&D Projects: GA ČR(CZ) GC16-01128J Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * poly-L-lysine * tea catechin Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.300, year: 2016

  2. Heparan sulfate biosynthesis

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... that the synthesis of heparan sulfate is tightly controlled. Although genomics has identified the enzymes involved in glycosaminoglycan synthesis in a number of vertebrates and invertebrates, the regulation of the process is not understood. Moreover, the localization of the various enzymes in the Golgi apparatus has......-quality resolution of the distribution of enzymes. The EXT2 protein, which when combined as heterodimers with EXT1 comprises the major polymerase in heparan sulfate synthesis, has been studied in depth. All the data are consistent with a cis-Golgi distribution and provide a starting point to establish whether all...

  3. Placental sequestration of Plasmodium falciparum malaria parasites is mediated by the interaction between VAR2CSA and chondroitin sulfate A on syndecan-1

    DEFF Research Database (Denmark)

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans......-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor...... for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial...

  4. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3+ regulatory T cells

    International Nuclear Information System (INIS)

    Mitsui, Toshihito; Sashinami, Hiroshi; Sato, Fuyuki; Kijima, Hiroshi; Ishiguro, Yoh; Fukuda, Shinsaku; Yoshihara, Shuichi; Hakamada, Ken-Ichi; Nakane, Akio

    2010-01-01

    Research highlights: → Salmon proteoglycan suppresses IL-10 -/- cell transfer-induced colitis progression. → Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. → Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiency mice by cell transfer from interleukin-10 (IL-10) -/- mice. IL-10 -/- cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-γ, IL-12, TNF-α, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor γt (RORγt) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4 + CD25 + regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.

  5. Occurrence and structural characterization of versican-like proteoglycan in human vitreous.

    Science.gov (United States)

    Theocharis, Achilleas D; Papageorgakopoulou, Nickoletta; Feretis, Elias; Theocharis, Dimitrios A

    2002-12-01

    Human vitreous gel is a special type of extracellular matrix, in which interpenetrating networks of collagen fibrils and hyaluronan are found. In this study, we report that apart from significant amounts of collagen, hyaluronan and sialylated glycoproteins, it was found that the human vitreous gel also contained low amounts of versican-like proteoglycan. The concentration of versican-like proteoglycan in the whole vitreous is 0.06 mg protein/ml of vitreous gel and represents a small percentage (about 5%) of the total protein content. The versican-like proteoglycan has a molecular mass of 380 kDa, as estimated by gel chromatography. Its core protein is substituted by chondroitin sulphate side chains (average molecular weight 37 kDa), in which 6-sulphated disaccharides predominated. According to the physicochemical data, the number of chondroitin sulphate chains is likely to be 5-7 per molecule. These proteoglycan monomers form large aggregates with endogenous hyaluronan. Versican, which is able to bind lectins via its C-terminal region, may bridge or interconnect various constituents of the extracellular matrix via its terminal domains in order to stabilize large supramolecular complexes at the vitreous, contributing towards the integrity and specific properties of the tissue.

  6. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate.

    Science.gov (United States)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo; Corsaro, Maria Michela; Trifuoggi, Marco; De Rosa, Mario; Schiraldi, Chiara

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. ISOLASI DAN IDENTIFIKASI BAKTERI PEREDUKSI SULFAT PADA AREA PERTAMBANGAN BATU BARA MUARA ENIM, SUMATERA SELATAN

    OpenAIRE

    Muchamad Yusron; Bibiana W Lay; Anas M Fauzi; Dwi Andreas Santosa

    2010-01-01

    Sulfate reducing bacteria utilize sulfate as their terminal electron acceptor and reduce it to sulphide. Acid mine drainage, by-products of mining activities, is an acidic sulfate-rich wastewater suitable habitat for sulfate reducing bacteria. Isolation and identification of sulfate reducing bacteria collected from Muara Enim coal mining, South Sumatra was carried out at Laboratory of Environmental Biotechnology, Indonesian Center for Biodiversity and Biotechnology (ICBB), Bogor, and Laborato...

  8. Iduronic acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bartolini

    Full Text Available Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA, catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK and phospho-FAK (pFAK was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.

  9. Production of Extra-Cellular Proteases from Marine Bacillus Sp. Cultured in Media Containing Ammonium Sulfate as the Sole Nitrogen Source

    Directory of Open Access Journals (Sweden)

    Seri Intan, M.

    2005-01-01

    Full Text Available Useful bacterial strains can be used to increase mineralize activity of an aquatic system. These bacteria can specifically degrade targeted compound by producing extra-cellular enzymes. Three species of Bacillus i.e. B. subtilis, B. pumilus and B. licheniformis acquired from shrimp ponds were tested for their ability to utilize ammonia and produce extracellular enzymes. These bacteria were grown in artificial seawater (30 ppt salinity and pH 7.6 supplemented with decreasing yeast extract concentration but increasing ammonium sulfate concentration. All three bacteria grew in artificial seawater containing only 0.01% yeast extract and 1% ammonium sulfate. However, only B. pumilus and B. licheniformis were able to grow in the medium containing only 1% ammonium sulfate as a sole energy source. Bacterialgrowth reduced when alkaline proteases activities was maximum from culture filtrates of all three bacterial cultures during 24 hour culturing in artificial seawater containing 0.01% yeast extract and 1% ammonium sulfate at 30 C when assayed at pH 9. Bacterial growth increased when acid proteases activities was maximum from culture filtrates of all three bacterial cultures during 48 hour culturing in artificial seawater containing 0.01% yeast extract and 1% ammoniumsulfate at 30 C when assayed at pH 5.

  10. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism

    KAUST Repository

    Zhang, Tao; Zhu, Haibo; Croue, Jean-Philippe

    2013-01-01

    of the PMS/CuFe2O4 was highest at neutral pH and decreased at acidic and alkaline pHs. Sulfate radical was the primary radical species responsible for the iopromide degradation. On the basis of the stoichiometry of oxalate degradation in the PMS/CuFe 2O4

  11. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Åmand, Helene L.

    2012-11-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved internalization, we used flow cytometry to examine uptake in relation to cell surface binding for penetratin and two arginine/lysine substituted variants (PenArg and PenLys) in wildtype CHO-K1 and PG-deficient A745 cells. All peptides were more efficiently internalized into CHO-K1 than into A745, but their cell surface binding was independent of cell type. Thus, PGs promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Uptake of each peptide was linearly dependent on its cell surface binding, and affinity is thus important for efficiency. However, the gradients of these linear dependencies varied significantly. Thus each peptide\\'s ability to stimulate uptake once bound to the cell surface is reliant on formation of specific uptake-promoting interactions. Heparin affinity chromatography and clustering experiments showed that penetratin and PenArg binding to sulfated sugars is stabilized by hydrophobic interactions and result in clustering, whereas PenLys only interacts through electrostatic attraction. This may have implications for the molecular mechanisms behind arginine-specific uptake stimulation as penetratin and PenArg are more efficiently internalized than PenLys upon interaction with PGs. However, PenArg is also least affected by removal of PGs. This indicates that an increased arginine content not only improve PG-dependent uptake but also that PenArg is more adaptable as it can use several portals of entry into the cell. © 2012 Elsevier B.V.

  12. Large proteoglycan complexes and disturbed collagen architecture in the corneal extracellular matrix of mucopolysaccharidosis type VII (Sly syndrome).

    Science.gov (United States)

    Young, Robert D; Liskova, Petra; Pinali, Christian; Palka, Barbara P; Palos, Michalis; Jirsova, Katerina; Hrdlickova, Enkela; Tesarova, Marketa; Elleder, Milan; Zeman, Jiri; Meek, Keith M; Knupp, Carlo; Quantock, Andrew J

    2011-08-24

    Deficiencies in enzymes involved in proteoglycan (PG) turnover underlie a number of rare mucopolysaccharidoses (MPS), investigations of which can considerably aid understanding of the roles of PGs in corneal matrix biology. Here, the authors analyze novel pathologic changes in MPS VII (Sly syndrome) to determine the nature of PG-collagen associations in stromal ultrastructure. Transmission electron microscopy and electron tomography were used to investigate PG-collagen architectures and interactions in a cornea obtained at keratoplasty from a 22-year-old man with MPS VII, which was caused by a compound heterozygous mutation in the GUSB gene. Transmission electron microscopy showed atypical morphology of the epithelial basement membrane and Bowman's layer in MPS VII. Keratocytes were packed with cytoplasmic vacuoles containing abnormal glycosaminoglycan (GAG) material, and collagen fibrils were thinner than in normal cornea and varied considerably throughout anterior (14-32 nm), mid (13-42 nm), and posterior (17-39 nm) regions of the MPS VII stroma. PGs viewed in three dimensions were striking in appearance in that they were significantly larger than PGs in normal cornea and formed highly extended linkages with multiple collagen fibrils. Cellular changes in the MPS VII cornea resemble those in other MPS. However, the wide range of collagen fibril diameters throughout the stroma and the extensive matrix presence of supranormal-sized PG structures appear to be unique features of this disorder. The findings suggest that the accumulation of stromal chondroitin-, dermatan-, and heparan-sulfate glycosaminoglycans in the absence of β-glucuronidase-mediated degradation can modulate collagen fibrillogenesis.

  13. Ferrous Sulfate (Iron)

    Science.gov (United States)

    ... are allergic to ferrous sulfate, any other medications tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature and away from ...

  14. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  15. DHEA-sulfate test

    Science.gov (United States)

    ... DHEA sulfate may be due to: Adrenal gland disorders that produce lower than normal amounts of adrenal hormones, including adrenal insufficiency and Addison disease The pituitary gland not producing normal amounts of its hormones ( hypopituitarism ) ...

  16. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  17. Effects of 12-O-tetradecanoyl-phorbol-13-acetate [corrected] and sodium lauryl sulfate on the production and expression of cytokines and proto-oncogenes in photoaged and intrinsically aged human keratinocytes.

    Science.gov (United States)

    Suh, D H; Youn, J I; Eun, H C

    2001-11-01

    Skin aging may be divided into photoaging and intrinsic aging. The purpose of this study was to investigate the effects of 12-O-tetradecanoyl-phorbol-13-acetate and sodium lauryl sulfate on the production and expression of cytokines and proto-oncogenes in photoaged and intrinsically aged skin, compared with young skin. Keratinocytes were taken from newborns, young adults in their twenties, and from the forearm and thigh of volunteers in their fifties and seventies. Interleukin-1alpha and -6, and interleukin-1 receptor antagonist, c-fos and c-myc were measured after cultured keratinocytes had been treated with 12-O-tetradecanoyl-phorbol-13-acetate and sodium lauryl sulfate. There has been no report concerning the dependence of cytokine production by sodium lauryl sulfate upon photoaging and intrinsic aging. This study also involves the first investigation of the effects of aging on c-myc expression by 12-O-tetradecanoyl-phorbol-13-acetate treatment. Cytokine production decreased markedly with age. These results suggest the progressive decline of cellular function with age. The ratio of cytokine production in the irritant-treated group compared with that in the control group showed a different pattern in photoaging and intrinsic aging. With the significant difference between photoaging and intrinsic aging, T/C ratio decreased in interleukin-1alpha and interleukin-1 receptor antagonist upon aging, whereas it increased in interleukin-6. S/C ratio was uniquely elevated on photoaged skin in the 50 y age group. It is suggested that photoaged skin shows an exaggerated reaction to surfactant. Compared with the control, c-fos expression in 12-O-tetradecanoyl-phorbol-13-acetate-treated keratinocytes decreased with age in the thigh, but increased in the photoaged skin of forearm. The increased c-fos expression in 12-O-tetradecanoyl-phorbol-13-acetate-treated keratinocytes could be relevant for the predisposition of photoaged keratinocytes to malignant transformation.

  18. 75 FR 56101 - Lauryl Sulfate Salts Registration Review Final Decision; Notice of Availability

    Science.gov (United States)

    2010-09-15

    ... decision for the pesticide, lauryl sulfate salts (also known as sodium lauryl salts), case 4061... announces the availability of EPA's final registration review decision for the lauryl sulfate salts. Sodium... product that contains sodium lauryl sulfate as an active ingredient. The product, Kleenex[reg] Brand...

  19. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu

    2014-05-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.

  20. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library.

    Science.gov (United States)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsumasa; Gustavsson, Tobias; Watanabe, Hideto; Salanti, Ali

    2016-12-01

    Placental malaria, a serious infection caused by the parasite Plasmodium falciparum, is characterized by the selective accumulation of infected erythrocytes (IEs) in the placentas of the pregnant women. Placental adherence is mediated by the malarial VAR2CSA protein, which interacts with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of D-glucuronic acid and N-acetyl-D-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation of the N-acetyl-D-galactosamine residue is critical for supporting rVAR2 binding, whereas no other sulfate modifications showed effects. Interaction of rVAR2 with CS is highly correlated with the degree of C-4 sulfation and CS chain length. We confirmed that the minimum structure binding to rVAR2 is a tri-sulfated CSA dodecasaccharide, and found that a highly sulfated CSA eicosasaccharide is a more potent inhibitor of rVAR2 binding than the dodecasaccharides. These results suggest that CSA derivatives may potentially serve as targets in therapeutic strategies against placental malaria.

  1. Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans

    KAUST Repository

    Å mand, Helene L.; Rydberg, Hanna A.; Fornander, Louise H.; Lincoln, Per; Nordé n, Bengt; Esbjö rner, Elin K.

    2012-01-01

    Cell surface proteoglycans (PGs) appear to promote uptake of arginine-rich cell-penetrating peptides (CPPs), but their exact functions are unclear. To address if there is specificity in the interactions of arginines and PGs leading to improved

  2. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    Science.gov (United States)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  3. Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery

    Science.gov (United States)

    Misra, Suniti; Hascall, Vincent C.; Atanelishvili, Ilia; Moreno Rodriguez, Ricardo; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer. PMID:26448753

  4. "Coding" and "Decoding": hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis.

    Science.gov (United States)

    Zhang, Xu; Wang, Fengshan; Sheng, Juzheng

    2016-06-16

    Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Salmon cartilage proteoglycan suppresses mouse experimental colitis through induction of Foxp3{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Toshihito [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan); Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Sashinami, Hiroshi [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan); Sato, Fuyuki; Kijima, Hiroshi [Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Ishiguro, Yoh; Fukuda, Shinsaku [Department of Digestive Internal Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Yoshihara, Shuichi [Department of Glycomedicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Hakamada, Ken-Ichi [Department of Digestive Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562 (Japan); Nakane, Akio, E-mail: a27k03n0@cc.hirosaki-u.ac.jp [Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Zaifu-cho 5, Hirosaki, Aomori 036-8562 (Japan)

    2010-11-12

    Research highlights: {yields} Salmon proteoglycan suppresses IL-10{sup -/-} cell transfer-induced colitis progression. {yields} Salmon proteoglycan suppresses Th1- and Th17-related factors in colitis mice. {yields} Salmon proteoglycan enhances Foxp3 expression. -- Abstract: Proteoglycans (PGs) are complex glycohydrates which are widely distributed in extracellular matrix (ECM). PGs are involved in the construction of ECM, cell proliferation and differentiation. ECM components are involved in transduction of proinflammatory responses, but it is still unknown whether PGs are involved in inflammatory response. In this study, we investigated the effect of PG extracted from salmon cartilage on the progression of experimental colitis-induced in severe combined immunodeficiency mice by cell transfer from interleukin-10 (IL-10){sup -/-} mice. IL-10{sup -/-} cell-transferred mice showed weight loss, colon shortening and histological appearance of mild colitis. Daily oral administration of PG attenuated the clinical progression of colitis in a dose-dependent manner. Colitis-induced mice showed the elevated expression of IFN-{gamma}, IL-12, TNF-{alpha}, IL-21, IL-23p19, IL-6, IL-17A and retinoic acid-related orphan receptor {gamma}t (ROR{gamma}t) in lamina propria mononuclear cells (LPMCs) and oral administration of PG suppressed the expression of these factors. Conversely, expression of Foxp3 that induces CD4{sup +}CD25{sup +} regulatory T cells in LPMCs was enhanced by PG administration. These findings suggested that salmon PG attenuated the progression of colitis due to suppression of inflammatory response by enhancement of regulatory T cell induction.

  6. Molecular characterization and transcriptional analysis of the female-enriched chondroitin proteoglycan 2 of Toxocara canis.

    Science.gov (United States)

    Ma, G X; Zhou, R Q; Hu, L; Luo, Y L; Luo, Y F; Zhu, H H

    2018-03-01

    Toxocara canis is an important but neglected zoonotic parasite, and is the causative agent of human toxocariasis. Chondroitin proteoglycans are biological macromolecules, widely distributed in extracellular matrices, with a great diversity of functions in mammals. However, there is limited information regarding chondroitin proteoglycans in nematode parasites. In the present study, a female-enriched chondroitin proteoglycan 2 gene of T. canis (Tc-cpg-2) was cloned and characterized. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the transcription levels of Tc-cpg-2 among tissues of male and female adult worms. A 485-amino-acid (aa) polypeptide was predicted from a continuous 1458-nuleotide open reading frame and designated as TcCPG2, which contains a 21-aa signal peptide. Conserved domain searching indicated three chitin-binding peritrophin-A (CBM_14) domains in the amino acid sequence of TcCPG2. Multiple alignment with the inferred amino acid sequences of Caenorhabditis elegans and Ascaris suum showed that CBM_14 domains were well conserved among these species. Phylogenetic analysis suggested that TcCPG2 was closely related to the sequence of chondroitin proteoglycan 2 of A. suum. Interestingly, a high level of Tc-cpg-2 was detected in female germline tissues, particularly in the oviduct, suggesting potential roles of this gene in reproduction (e.g. oogenesis and embryogenesis) of adult T. canis. The functional roles of Tc-cpg-2 in reproduction and development in this parasite and related parasitic nematodes warrant further functional studies.

  7. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    Science.gov (United States)

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  8. Low levels of H2S may replace sulfate as sulfur source in sulfate-deprived onion

    NARCIS (Netherlands)

    Durenkamp, Mark; De Kok, LJ

    2005-01-01

    Onion (Allium cepa L.) was exposed to low levels of H2S in order to investigate to what extent H2S could be used as a sulfur source for growth under sulfate-deprived conditions. Sulfate deprivation for a two-week period resulted in a decreased biomass production of the shoot, a subsequently

  9. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    International Nuclear Information System (INIS)

    Dallam, R.D.

    1987-01-01

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H 2 35 SO 4 ) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  10. Oriented nucleation and growth of anhydrite during direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2008-01-01

    The direct sulfation of limestone (Iceland Spar) was studied at 973 K in a fixed-bed reactor. Scanning electron microscopy examinations of the sulfated limestone particles show that the sulfation process involves oriented nucleation and growth of the solid product, anhydrite. The reason...

  11. 21 CFR 864.9320 - Copper sulfate solution for specific gravity determinations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Copper sulfate solution for specific gravity... Establishments That Manufacture Blood and Blood Products § 864.9320 Copper sulfate solution for specific gravity determinations. (a) Identification. A copper sulfate solution for specific gravity determinations is a device...

  12. A technology for production of a ''Cureless'' paste containing a high concentration of tetrabasic lead sulfate and a low concentration of free lead

    Energy Technology Data Exchange (ETDEWEB)

    Boden, David P.; Loosemore, Daniel [Hammond Lead Products, Division of Hammond Group Inc., 6544 Osborn Avenue, Hammond, IN 46320 (United States)

    2007-05-25

    The conventional paste used to produce plates for lead-acid batteries comprises a mixture of leady oxide, water and sulfuric acid. Fibre and other additives, such as expander in negative plates, are added to improve paste properties and battery performance. Following pasting of the plates, they have to be cured to provide the correct chemical composition and crystal morphology, and to oxidize any residual free lead metal to lead monoxide. The desired result of the curing process is a positive plate with a high concentration of uniformly sized tetrabasic lead sulfate (4BS) crystals and with both positive and negative plates having a low concentration of free lead. Curing is a time-consuming and expensive process, which requires large numbers of chambers capable of being heated to 85 C and containing an atmosphere with a relative humidity greater than 95%. This process adds significant cost to the battery. (author)

  13. The effect of insulin-like growth factor I on proteoglycan metabolism in immature and adult bovine articular cartilage

    International Nuclear Information System (INIS)

    Barone-Varelas, J.

    1989-01-01

    Explants of articular cartilage from calf (15 weeks old) and steer (18-24 months old) were cultured for up to 19 days in medium containing either insulin-like growth factor (IGF-I) or 20% fetal bovine serum (FBS). Explants cultured in medium alone were controls. 35 S-proteoglycans (PGs) synthesized on day 7 of culture during a 5-hour pulse with 35 S-sulfate were isolated, quantified and characterized. Lower concentrations of IGF-I were required for maximal stimulation of PG synthesis in calf than in steer (10 vs 20 ng/ml). In calf, IGF-I was as effective as 20% FABS in stimulating PG synthesis. In steer, PG synthesis in the presence of IGF-I reached its maximum at a rate that was half that obtained with 20% FBS. The stimulation by IGF-I or FBS was not accompanied at either age by alterations in the size and composition of the aggregating PGs nor by changes in the relative proportions of the CS-rich and CS-poor PG subpopulations. Importantly, the newly synthesized calf and steer PGs retained marked age-related differences in composition regardless of the culture conditions. The effects of exogenously added IGF-I and FBS on the rate of turnover of cartilage PGs was also studied. In calf, IGF-I and FBS did not significantly alter the rate of turnover of either the 35 S-PGs synthesized in vitro or of the unlabeled PGs representing mostly molecules synthesize and organized into the matrix in vivo. In steer, explants cultured in the absence of IGF-I or FBS exhibited very fast rates of turnover which resulted in severe depletion of matrix PG with time. Importantly, IGF-I and FBS were equally effective in reducing the turnover rate of 35 S-PGs and unlabeled PGs and in preventing PG depletion. These results demonstrate age-related differences in the effect of IGF-I on PG synthesis by articular chondrocytes

  14. Dissolution of sulfate scales

    Energy Technology Data Exchange (ETDEWEB)

    Hen, J.

    1991-11-26

    This patent describes a composition for the removal of sulfate scale from surfaces. It comprises: an aqueous solution of about 0.1 to 1.0 molar concentration of an aminopolycarboxylic acid (APCA) containing 1 to 4 amino groups or a salt thereof, and about 0.1 to 1.0 molar concentration of a second component which is diethylenetriaminepenta (methylenephosphonic acid) (DTPMP) or a salt thereof, or aminotri (methylenephosphonic acid) (ATMP) or a salt thereof as an internal phase enveloped by a hydrocarbon membrane phase which is itself emulsified in an external aqueous phase, the hydrocarbon membrane phase continuing a complexing agent weaker for the cations of the sulfate scale than the APCA and DTPMP or ATMP, any complexing agent for the cations in the external aqueous phase being weaker than that in the hydrocarbon membrane phase.

  15. Expression of small leucine-rich proteoglycans in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-01-01

    Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that SLRPs regulate biological functions in many tissues such as skin, tendon, kidney, liver, and heart. However, little is known of the expression of SLRPs, or the characteristics of the cells that produce them, in the anterior pituitary gland. Therefore, we have determined whether SLRPs are present in rat anterior pituitary gland. We have used real-time reverse transcription with the polymerase chain reaction to analyze the expression of SLRP genes and have identified the cells that produce SLRPs by using in situ hybridization with a digoxigenin-labeled cRNA probe. We have clearly detected the mRNA expression of SLRP genes, and cells expressing decorin, biglycan, fibromodulin, lumican, proline/arginine-rich end leucine-rich repeat protein (PRELP), and osteoglycin are located in the anterior pituitary gland. We have also investigated the possible double-staining of SLRP mRNA and pituitary hormones, S100 protein (a marker of folliculostellate cells), desmin (a marker of capillary pericytes), and isolectin B4 (a marker of endothelial cells). Decorin, biglycan, fibromodulin, lumican, PRELP, and osteoglycin mRNA have been identified in S100-protein-positive and desmin-positive cells. Thus, we conclude that folliculostellate cells and pericytes produce SLRPs in rat anterior pituitary gland.

  16. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding.

    Science.gov (United States)

    Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina

    2018-04-13

    Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Radioimmunoassay of dehydroepiandrosterone sulfate

    International Nuclear Information System (INIS)

    Vieira, J.G.H.; Furlanetto, R.P.; Russo, E.M.K.; Noguti, K.O.; Chacra, A.R.

    1980-01-01

    The development of a radioimmunological method for the measurement of dehydroepiandrosterone sulfate in serum is described. For the immunization of rabbits, a DHA-3-hemissuccinate-bovine serum albumin conjugate was synthetized and a highly specific anti-serum was produced. The method developed requires only simple dilution prior to assay and the normal values for the different age groups were determined in 146 normal individuals. (Author) [pt

  18. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  19. Oncofetal Chondroitin Sulfate Glycosaminoglycans are Key Players in Integrin Signaling and Tumor Cell Motility

    Science.gov (United States)

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Christensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M.; Grem, Jean L.; Hollingsworth, Michael A.; Holst, Peter J.; Theander, Thor; Sorensen, Poul H.; Daugaard, Mads; Salanti, Ali

    2016-01-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum. We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion and anchorage-independent growth of tumor cells in vitro. Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns, revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin β1 (ITGB1) and integrin α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core CS synthesis enzymes Beta-1,3-Glucuronyltransferase 1 (B3GAT1) and Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and pre-incubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. Implications The cancer specific expression of oncofetal chondroitin sulfate aids in metastatic phenotypes and is a candidate target for therapy. PMID:27655130

  20. Proteoglycan protocols

    National Research Council Canada - National Science Library

    Iozzo, Renato V

    2001-01-01

    ... Press Inc. The content and opinions expressed in this book are the sole work of the authors and editors, who have warranted due diligence in the creation and issuance of their work. The publisher, editors, and authors are not responsible for errors or omissions or for any consequences arising from the information or opinions presented in this bo...

  1. Proteoglycan Aggrecan Conducting T Cell Activation and Apoptosis in a Murine Model of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    A. Hanyecz

    2014-01-01

    Full Text Available Rheumatoid arthritis (RA is a systemic autoimmune disease and its targeting of the joints indicates the presence of a candidate autoantigen(s in synovial joints. Patients with RA show immune responses in their peripheral blood to proteoglycan (PG aggrecan. One of the most relevant animal models of RA appears to be proteoglycan-induced arthritis (PGIA, and CD4+ T cells seem to play a crucial role in the initiation of the disease. In this review, the role of various T cell epitopes of aggrecan in the induction of autoreactive T cell activation and arthritis is discussed. We pay special attention to two critically important arthritogenic epitopes, 5/4E8 and P135H, found in the G1 and G3 domains of PG aggrecan, respectively, in the induction of autoimmune arthritis. Finally, results obtained with the recently developed PG-specific TCR transgenic mice system showed that altered T cell apoptosis, the balance of activation, and apoptosis of autoreactive T cells are critical factors in the development of autoimmunity.

  2. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue.

    Science.gov (United States)

    Vanpouille, Christophe; Deligny, Audrey; Delehedde, Maryse; Denys, Agnès; Melchior, Aurélie; Liénard, Xavier; Lyon, Malcolm; Mazurier, Joël; Fernig, David G; Allain, Fabrice

    2007-08-17

    Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.

  3. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule

    Science.gov (United States)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous

  4. Smoke/Sulfates, Clouds and Radiation Experiment in Brazil (SCAR-B) Data Set Version 5.5

    Data.gov (United States)

    National Aeronautics and Space Administration — SCAR_B_G8_FIRE data are Smoke/Sulfates, Clouds and Radiation Experiment in Brazil, GOES-8 ABBA Diurnal Fire Product (1995 Fire Season) data.Smoke/Sulfates, Clouds...

  5. The Effect of Foliar Application of Ferrous sulfate on Production of Multi-capsule per Leaf node in Sesame Plant (Sesamum indicum L. under Field Condition

    Directory of Open Access Journals (Sweden)

    S. F Fazeli Kakhki

    2017-06-01

    node (Cap1. The maximum seed weight per plant also obtained from Cap2. The application of ferrous sulphate concentration with 50 ppm increased the number of three capsule nodes in plant but 100 ppm ferrous sulphate had the lowest three capsule nodes per plant. The results of interaction treatments showed that using of 50 ppm ferrous sulphate in Cap2 treatment had the maximum plant height with 89.9 cm. In two treatments Cap1 and Cap2 applying ferrous sulphate concentration with 50 ppm had the maximum number capsule per plant with 84.7 and 88.3 capsule per plant, respectively. This study showed that biosynthesis of plant metabolite was controlled not only by genetic but also by environmental conditions. Iron is an important component in many plant metabolisms such as chlorophyll and tylakoid synthesis and in development of chloroplast. Goos and Johanson, (2000 showed that two foliar applications of iron compounds (Fe-EDDHA increased yield in three soybean genotypes. Jana and Jahangir (1987 suggested that using of iron micronutrient with 0.1 ppm produced maximum height in bean. It seems that particular properties of Iron such as Redox properties, capable to establish complex with different ligands, a component of electron transport system and take part in many enzymes structure had important roles in plant metabolism and application of suitable amount can increase growth and yield of plant. Conclusions The results showed that foliar application of ferrous sulphate can increase the number of capsules per leaf node as using of 50 ppm ferrous sulfate in plants that grow up from seeds with three capsules in leaf node (Cap2 produced the most multiple capsule percent in leaf node. Maximum seed weight per plant with amount 13.2 g.plant-1 was obtained from applying 50 ppm ferrous sulfate in Cap2 plants. Positive and significant correlation was found between seed weight and multiple capsule percent in leaf node (r=0.82** and with shoot dry weight (r=0.80**. In addition, the

  6. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  7. New SPECT tracers: Example of tracers of proteoglycans and melanin; Nouveaux traceurs TEMP: exemple des traceurs des proteoglycanes et de la melanine

    Energy Technology Data Exchange (ETDEWEB)

    Cachin, F.; Mestas, D.; Kelly, A.; Merlin, C.; Veyre, A.; Maublant, J. [CRLCC Jean-Perrin, Service de Medecine Nucleaire, 63 - Clermont-Ferrand (France); Cachin, F.; Chezal, J.M.; Miot-Noirault, E.; Moins, N.; Auzeloux, P.; Vidal, A.; Bonnet-Duquennoy, M.; Boisgard, S.; D' Incan, M.; Madelmont, J.C.; Maublant, J. [Universite d' Auvergne, EA 4231, 63 - Clermont-Ferrand (France); Boisgard, S. [CHRU Gabriel-Montpied, Service d' Orthopedie, 63 - Clermont-Ferrand (France); D' Incan, M. [CHRU Gabriel-Montpied, Service de Dermatologie, 63 - Clermont-Ferrand (France); Redini, F. [Inserm, U957-EA3822, Faculte de Medecine, 44 - Nantes (France); Filaire, M. [Universite d' Auvergne, Lab. d' Anatomie, 63 - Clermont-Ferrand (France)

    2009-02-15

    The majority of research program on new radiopharmaceuticals turn to tracers used for positron emission tomography (PET). Only a few teams work on new non fluorine labeled tracers. However, the coming of SPECT/CT gamma cameras, the arrival of semi-conductors gamma cameras should boost the development of non-PET tracers. We exhibit in this article the experience acquired by our laboratory in the conception and design of two new non fluorine labelled compounds. The {sup 99m}Tc-N.T.P. 15-5 (N.T.P. 15-5 for N-[tri-ethyl-ammonium]-3-propyl-[15]ane-N5) which binds to proteoglycans could be used for the diagnosis and staging of osteoarthritis and chondrosarcoma. The iodo benzamides, specific to the melanin, are nowadays compared to {sup 18}F-fluorodeoxyglucose in a phase III clinical trial for the diagnosis and detection of melanoma metastasis. Our last development focus on N-[2-(diethyl-amino)ethyl]-4 and 2-iodo benzamides respectively B.Z.A. and B.Z.A.2 hetero-aromatic analogues usable for melanoma treatment. (authors)

  8. Partial deletion of the sulfate transporter SLC13A1 is associated with an osteochondrodysplasia in the Miniature Poodle breed.

    Directory of Open Access Journals (Sweden)

    Mark W Neff

    Full Text Available A crippling dwarfism was first described in the Miniature Poodle in Great Britain in 1956. Here, we resolve the genetic basis of this recessively inherited disorder. A case-control analysis (8:8 of genotype data from 173 k SNPs revealed a single associated locus on CFA14 (P(raw <10(-8. All affected dogs were homozygous for an ancestral haplotype consistent with a founder effect and an identical-by-descent mutation. Systematic failure of nine, nearly contiguous SNPs, was observed solely in affected dogs, suggesting a deletion was the causal mutation. A 130-kb deletion was confirmed both by fluorescence in situ hybridization (FISH analysis and by cloning the physical breakpoints. The mutation was perfectly associated in all cases and obligate heterozygotes. The deletion ablated all but the first exon of SLC13A1, a sodium/sulfate symporter responsible for regulating serum levels of inorganic sulfate. Our results corroborate earlier findings from an Slc13a1 mouse knockout, which resulted in hyposulfatemia and syndromic defects. Interestingly, the metabolic disorder in Miniature Poodles appears to share more clinical signs with a spectrum of human disorders caused by SLC26A2 than with the mouse Slc13a1 model. SLC26A2 is the primary sodium-independent sulfate transporter in cartilage and bone and is important for the sulfation of proteoglycans such as aggregan. We propose that disruption of SLC13A1 in the dog similarly causes undersulfation of proteoglycans in the extracellular matrix (ECM, which impacts the conversion of cartilage to bone. A co-dominant DNA test of the deletion was developed to enable breeders to avoid producing affected dogs and to selectively eliminate the mutation from the gene pool.

  9. Morpholine-4-carboxamidinium sulfate

    Directory of Open Access Journals (Sweden)

    Ioannis Tiritiris

    2016-01-01

    Full Text Available The asymmetric unit of the title salt, 2C5H12N3O+·SO42−, comprises two cations and one sulfate ion. In both cations, the C, N and O atoms of the morpholine rings are disordered over two sets of sites, with refined occupancies of 0.849 (3:0.151 (3 for cation I and 0.684 (4:0.316 (4 for cation II. The C—N bond lengths in both central C3N units of the carboxamidinium ions range between 1.253 (12 and 1.362 (5 Å, indicating a degree of double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in both CN3 planes. The crystal structure is stabilized by a three-dimensional network of N—H...O hydrogen bonds between the cations and the sulfate ion. Scheme tiny font, charges and delocalized bonds almost invisible

  10. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    Science.gov (United States)

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  11. The involvement of proteoglycans in the human plasma prekallikrein interaction with the cell surface.

    Directory of Open Access Journals (Sweden)

    Camila Lopes Veronez

    Full Text Available INTRODUCTION: The aim of this work was to evaluate the role of human plasma prekallikrein assembly and processing in cells and to determine whether proteoglycans, along with high molecular weight kininogen (H-kininogen, influence this interaction. METHODS: We used the endothelial cell line ECV304 and the epithelial cell lines CHO-K1 (wild type and CHO-745 (deficient in proteoglycans. Prekallikrein endocytosis was studied using confocal microscopy, and prekallikrein cleavage/activation was determined by immunoblotting using an antibody directed to the prekallikrein sequence C364TTKTSTR371 and an antibody directed to the entire H-kininogen molecule. RESULTS: At 37°C, prekallikrein endocytosis was assessed in the absence and presence of exogenously applied H-kininogen and found to be 1,418.4±0.010 and 1,070.3±0.001 pixels/cell, respectively, for ECV304 and 1,319.1±0.003 and 631.3±0.001 pixels/cell, respectively, for CHO-K1. No prekallikrein internalization was observed in CHO-745 in either condition. Prekallikrein colocalized with LysoTracker in the absence and presence of exogenous H-kininogen at levels of 76.0% and 88.5%, respectively, for ECV304 and at levels of 40.7% and 57.0%, respectively, for CHO-K1. After assembly on the cell surface, a plasma kallikrein fragment of 53 kDa was predominant in the incubation buffer of all the cell lines studied, indicating specific proteolysis; plasma kallikrein fragments of 48-44 kDa and 34-32 kDa were also detected in the incubation buffer, indicating non-specific cleavage. Bradykinin free H-kininogen internalization was not detected in CHO-K1 or CHO-745 cells at 37°C. CONCLUSION: The prekallikrein interaction with the cell surface is temperature-dependent and independent of exogenously applied H-kininogen, which results in prekallikrein endocytosis promoted by proteoglycans. Prekallikrein proteolysis/activation is influenced by H-kininogen/glycosaminoglycans assembly and controls plasma kallikrein

  12. The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Damir Hudetz

    2017-10-01

    Full Text Available Osteoarthritis (OA is one of the leading musculoskeletal disorders in the adult population. It is associated with cartilage damage triggered by the deterioration of the extracellular matrix tissue. The present study explores the effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2017. A total of 17 patients were enrolled in the study, and 32 knees with osteoarthritis were assessed. Surgical intervention (lipoaspiration followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s was performed in all patients. Patients were assessed for visual analogue scale (VAS, delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC and immunoglobulin G (IgG glycans at the baseline, three, six and 12 months after the treatment. Magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively charged contrast gadopentetate dimeglumine (Gd-DTPA2− into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. In addition, dGEMRIC consequently reflected subsequent changes in the mechanical axis of the lower extremities. The results of our study indicate that the use of autologous and microfragmented adipose tissue in patients with knee OA (measured by dGEMRIC MRI increased glycosaminoglycan (GAG content in hyaline cartilage, which is in line with observed VAS and clinical results.

  13. Heparan Sulfate and Heparanase as Modulators of Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Angélica M. Gomes

    2013-01-01

    Full Text Available Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients’ survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression.

  14. Novel heparan sulfate-binding peptides for blocking herpesvirus entry.

    Directory of Open Access Journals (Sweden)

    Pranay Dogra

    Full Text Available Human cytomegalovirus (HCMV infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs, serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.

  15. Isolation and characterization of heparan sulfate from various murine tissues.

    Science.gov (United States)

    Warda, Mohamad; Toida, Toshihiko; Zhang, Fuming; Sun, Peilong; Munoz, Eva; Xie, Jin; Linhardt, Robert J

    2006-11-01

    Heparan sulfate (HS), is a proteoglycan (PG) found both in the extracellular matrix and on cell surface. It may represent one of the most biologically important glycoconjugates, playing an essential role in a variety of different events at molecular level. The publication of the mouse genome, and the intensive investigations aimed at understanding the proteome it encodes, has motivated us to initiate studies in mouse glycomics focused on HS. The current study is aimed at determining the quantitative and qualitative organ distribution of HS in mice. HS from brain, eyes, heart, lung, liver, kidney, spleen, intestine and skin was purified from 6-8 week old male and female mice. The recovered yield of HS from these organs is compared with the recovered whole body yield of HS. Structural characterization of the resulting HS relied on disaccharide analysis and (1)H-NMR spectroscopy. Different organs revealed a characteristic HS structure. These data begin to provide a structural understanding of the role of HS in cell-cell interactions, cell signaling and sub-cellular protein trafficking as well as a fundamental understanding of certain aspects of protein-carbohydrate interactions.

  16. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    Science.gov (United States)

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    Science.gov (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2017-02-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  18. INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE

    Science.gov (United States)

    Dziewiatkowski, Dominic D.

    1962-01-01

    In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910

  19. Analysis by high-performance liquid chromatography of radioactively labeled carbohydrate components of proteoglycans

    International Nuclear Information System (INIS)

    Lohmander, L.S.

    1986-01-01

    Methods were developed for the separation of radioactively labeled carbohydrate components of proteoglycans by isocratic ion-moderated partition HPLC. Neutral sugars were separated after hydrolysis in trifluoroacetic acid with baseline separation between glucose, xylose, galactose, fucose, and mannose. N-Acetylneuraminic acid, N-acetylated hexosamines, glucose, galactose, and xylitol were likewise well separated from each other under isocratic elution conditions. Glucuronic acid, iduronic acid, and their lactones were separated after hydrolysis in formic acid and sulfuric acid. Glucosamine, galactosamine, galactosaminitol, and glucosaminitol were separated by HPLC on a cation exchanger with neutral buffer after hydrolysis in hydrochloric acid. THe separation techniques also proved useful in fractionation of exoglycosidase digests of O- and N-linked oligosaccharides. Separations of aldoses, hexosamines, and uronic acids were adapted to sensitive photometric detection

  20. Serglycin proteoglycan is not implicated in localizing exocrine pancreas enzymes to zymogen granules

    DEFF Research Database (Denmark)

    Niemann, Carsten U; Cowland, Jack B; Ralfkiaer, Elisabeth

    2009-01-01

    Storage and release of proteins from granules forms the basis of cellular functions as diverse as cell mediated cytotoxicity, neuronal communication, activation of muscle fibres, and release of hormones or digestive enzymes from endocrine and exocrine glands, such as the pancreas. Serglycin...... is the major intracellular proteoglycan of haematopoietic cells. Serglycin is important for localization of proteins in granules of different haematopoietic cell types. Previous reports have indicated a role for serglycin in granule formation and localization of zymogens in granules of the exocrine pancreas...... in rat. We here present data showing that serglycin is not present at the protein level in human or murine pancreas. Furthermore, the amount and localization of three exocrine pancreas zymogens (amylase, trypsinogen, and carboxypeptidase A) is not affected by the absence of serglycin in a serglycin knock...

  1. MR imaging reflects cartilage proteoglycan degradation in the rabbit knee joint

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.M.; Blancuzzi, V.; Wilson, D.; Douglas, F.L.; Mezrich, R.S.

    1989-01-01

    Depletion of proteoglycan (PG) from articular cartilage is an early feature of osteoarthritis (OA). Noninvasive assessment of joint morphology corresponding to changes in cartilage PG is crucial for early diagnosis of OA and for demonstration of efficacy of drugs for OA. Intraarticular injection of papain causes a reversible loss of cartilage PG in intact joints. Both knees of NZW rabbits were scanned with a 1.5-T Signa MR imager with a 3-inch surface coil. A spin-echo technique was used, and coronal and sagittal MR images were obtained at 0, 24, 48, and 72 hours after injection of 5 U papain. An 8-cm field of view, a 3-mm section thickness, and a 128 x 256 matrix was used to obtain T1-, proton density-, and T2-weighted images. Cartilage was dissected from the femur for measurement of PG with 1,9-dimethylmethylene blue. Results are presented

  2. Purification and characterization of a small dermatan sulphate proteoglycan implicated in the dilatation of the rat uterine cervix.

    Science.gov (United States)

    Kokenyesi, R; Woessner, J F

    1989-06-01

    A small dermatan sulphate proteoglycan (DSPG) was extracted from rat cervices and was purified by using DEAE-Sephacel ion-exchange chromatography, gel filtration on Sepharose CL-2B and CsCl-density-gradient centrifugation. Sedimentation-equilibrium centrifugation gave a weight-average Mr of 95,000. Amino acid analysis showed a high content of aspartic acid, glutamic acid, glycine and leucine. The glycosaminoglycan chains had Mr 50,000 as determined by gel filtration. Chondroitin AC lyase and chondroitin ABC lyase digestions of these chains showed that they were composed of 75% dermatan sulphate and 25% chondroitin sulphate. Chondroitin ABC lyase digestion produced a core protein of Mr 45,000. The core protein, after treatment with HF, had Mr 37,000. Amino acid sequences of the N-terminus and a CNBr-cleavage peptide showed similarity to the sequences of core proteins of small proteoglycans of bovine and human origin, but the N-terminal glycosaminoglycan-attachment site (Ser-Gly-Ile-Ile) differed from the consensus sequence (Ser-Gly-Xaa-Gly) [Bourdon, Krusius, Campbell, Schwartz & Ruoslahti (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3194-3198]. A polyclonal antibody against the rat cervical DSPG reacted with small proteoglycans from cervices of human, mouse, dog, cow and sheep. DSPG is the major proteoglycan species present in the cervix. The amount of DSPG per cervix increases 4-fold during pregnancy, then falls precipitously within 1 day post partum. A role in cervical dilatation is postulated for this proteoglycan.

  3. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  4. Proteoglycans in Leiomyoma and Normal Myometrium: Abundance, Steroid Hormone Control, and Implications for Pathophysiology.

    Science.gov (United States)

    Barker, Nichole M; Carrino, David A; Caplan, Arnold I; Hurd, William W; Liu, James H; Tan, Huiqing; Mesiano, Sam

    2016-03-01

    Uterine leiomyoma are a common benign pelvic tumors composed of modified smooth muscle cells and a large amount of extracellular matrix (ECM). The proteoglycan composition of the leiomyoma ECM is thought to affect pathophysiology of the disease. To test this hypothesis, we examined the abundance (by immunoblotting) and expression (by quantitative real-time polymerase chain reaction) of the proteoglycans biglycan, decorin, and versican in leiomyoma and normal myometrium and determined whether expression is affected by steroid hormones and menstrual phase. Leiomyoma and normal myometrium were collected from women (n = 17) undergoing hysterectomy or myomectomy. In vitro studies were performed on immortalized leiomyoma (UtLM) and normal myometrial (hTERT-HM) cells with and without exposure to estradiol and progesterone. In leiomyoma tissue, abundance of decorin messenger RNA (mRNA) and protein were 2.6-fold and 1.4-fold lower, respectively, compared with normal myometrium. Abundance of versican mRNA was not different between matched samples, whereas versican protein was increased 1.8-fold in leiomyoma compared with myometrium. Decorin mRNA was 2.4-fold lower in secretory phase leiomyoma compared with proliferative phase tissue. In UtLM cells, progesterone decreased the abundance of decorin mRNA by 1.3-fold. Lower decorin expression in leiomyoma compared with myometrium may contribute to disease growth and progression. As decorin inhibits the activity of specific growth factors, its reduced level in the leiomyoma cell microenvironment may promote cell proliferation and ECM deposition. Our data suggest that decorin expression in leiomyoma is inhibited by progesterone, which may be a mechanism by which the ovarian steroids affect leiomyoma growth and disease progression. © The Author(s) 2015.

  5. Quaternary ammonium as vector of radioisotopes toward cartilage proteoglycans: in vivo imaging and monitoring of chondrosarcoma

    International Nuclear Information System (INIS)

    Peyrode, C.; Weber, V.; Vidal, A.; Auzeloux, P.; Besse, S.; Chezal, J.M.; Miot-Noirault, E.; Dauplat, M.M.; Gouin, F.; Redini, F.

    2013-01-01

    The full text of the publication follows. AIM: Our strategy consists in using the quaternary ammonium function, that exhibits a high affinity for proteoglycans, as a selective carrier to cartilage of (i) drugs for improving the selectivity or (ii) radioisotopes for imaging and evaluating response to treatment. For diagnosis, a radiotracer radiolabeled with 99m Tc ( 99m Tc-NTP 15-5) was selected and for therapeutic application, a quaternary ammonium derivative of melphalan (Mel-AQ) was synthesized. This study demonstrates the interest of this strategy for the diagnosis and treatment of chondrosarcoma. Methods: 99m Tc-NTP 15-5 imaging was performed at regular intervals in rats bearing ortho-topic swarm chondrosarcoma, controls or treated (Mel-AQ: three intravenous doses of 10 mg/kg). 99m Tc-HMDP imaging (the only radiotracer available for nuclear medicine diagnosis of chondrosarcoma) was also performed. Results: All rats exhibited a significant tumoral uptake of 99m Tc-NTP 15-5 at very early stage of pathology while no palpable nor measurable tumour could be assessed. Furthermore, tumoral uptake increased as pathology progressed over time. When animals were treated with Mel-AQ, a significant tumor growth inhibition was observed with 99m Tc-NTP 15-5 tumoral uptake being significantly decreased as compared to controls. 99m Tc-HMDP bone scans were negative during the whole study. Conclusion: These experimental results underline (i) the potential of the proteoglycan targeting strategy for the early and specific diagnosis imaging of chondrosarcoma and its response to therapy and (ii) the efficiency of the targeted anti-tumoral therapy. In future, we could plan to substitute technetium atom for copper atom for radionuclide therapy application. Grants: INCa, CPER, Ligue contre le cancer, FRI/OSEO. (authors)

  6. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  7. Suppression of amyloid beta A11 antibody immunoreactivity by vitamin C: possible role of heparan sulfate oligosaccharides derived from glypican-1 by ascorbate-induced, nitric oxide (NO)-catalyzed degradation.

    Science.gov (United States)

    Cheng, Fang; Cappai, Roberto; Ciccotosto, Giuseppe D; Svensson, Gabriel; Multhaup, Gerd; Fransson, Lars-Åke; Mani, Katrin

    2011-08-05

    Amyloid β (Aβ) is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate, there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-nitrosothiol. We investigated whether these oligosaccharides interact with Aβ during APP processing and plaque formation. anMan immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C terminus of APP, but not Aβ oligomers detected by the anti-Aβ A11 antibody, colocalized with anMan immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, sodium dodecyl sulfate-stable, anMan- and Aβ-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C terminus). anMan-containing HS oligo- and disaccharide preparations modulated or suppressed A11 immunoreactivity and oligomerization of Aβ42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by 3-β[2(diethylamino)ethoxy]androst-5-en-17-one (U18666A) and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the Aβ domain and small, anMan-containing oligosaccharides may preclude formation of toxic Aβ oligomers. A portion of the oligosaccharides are co-secreted with the Aβ peptides and deposited in plaques. These results support the notion that an inadequate supply of vitamin C could contribute to late onset AD

  8. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  9. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  10. Initial kinetics of the direct sulfation of limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Shang, Lei; Dam-Johansen, Kim

    2008-01-01

    The initial kinetics of direct sulfation of Faxe Bryozo, a porous bryozoan limestone was studied in the temperature interval from 873 to 973 K in a pilot entrained flow reactor with very short reaction times (between 0.1 and 0.6 s). The initial conversion rate of the limestone - for conversions...... less than 0.3% - was observed to be significantly promoted by higher SO2 concentrations and lower CO2 concentrations, whereas 02 showed negligible influence. A mathematical model for the sulfation of limestone involving chemical reaction at calcite grain surfaces and solid-state diffusion of carbonate...... ions in calcite grains is established. The validity of the model is limited to the initial sulfation period, in which nucleation of the solid product calcium sulphate is not started. This theoretical reaction-diffusion model gives a good simulation of the initial kinetics of the direct sulfation...

  11. Inhibitory effect of chondroitin sulfate oligosaccharides on bovine testicular hyaluronidase.

    Science.gov (United States)

    Kakizaki, Ikuko; Koizumi, Hideyo; Chen, Fengchao; Endo, Masahiko

    2015-05-05

    Hyaluronan and chondroitin sulfates are prominent components of the extracellular matrices of animal tissues; however, their functions in relation to their oligosaccharide structures have not yet been fully elucidated. The oligosaccharides of hyaluronan and chondroitin sulfate were prepared and used to investigate their effects on the hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase when hyaluronan was used as a substrate. Hydrolysis and transglycosylation activities were assessed in independent reaction systems by analyzing the products by HPLC. The hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase were dose-dependently inhibited by chondroitin sulfate oligosaccharides, but not by hyaluronan or chondroitin oligosaccharides. A kinetic analysis of the hydrolysis reaction using hyaluronan octasaccharide revealed that the inhibition mode by chondroitin sulfate oligosaccharides was competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  13. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    Science.gov (United States)

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  14. Structure-Activity Relationships of Bioengineered Heparin/Heparan Sulfates Produced in Different Bioreactors

    Directory of Open Access Journals (Sweden)

    Ha Na Kim

    2017-05-01

    Full Text Available Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.

  15. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  16. Purification and characterization of a small dermatan sulphate proteoglycan implicated in the dilatation of the rat uterine cervix.

    OpenAIRE

    Kokenyesi, R; Woessner, J F

    1989-01-01

    A small dermatan sulphate proteoglycan (DSPG) was extracted from rat cervices and was purified by using DEAE-Sephacel ion-exchange chromatography, gel filtration on Sepharose CL-2B and CsCl-density-gradient centrifugation. Sedimentation-equilibrium centrifugation gave a weight-average Mr of 95,000. Amino acid analysis showed a high content of aspartic acid, glutamic acid, glycine and leucine. The glycosaminoglycan chains had Mr 50,000 as determined by gel filtration. Chondroitin AC lyase and ...

  17. Proteoglycans from Boswellia serrata Roxb. and B. carteri Birdw. and identification of a proteolytic plant basic secretory protein

    DEFF Research Database (Denmark)

    Herrmann, Andreas; König, Simone; Lechtenberg, Matthias

    2012-01-01

    Water-soluble high molecular weight compounds were isolated in yields of 21-22% from the oleogum of Boswellia serrata and B. carteri. Using anion exchange chromatography and gel permeation chromatography, different proteoglycans were purified and characterized, leading to four principally different...... for analytical quality control. The data also offer an insight into the plant response towards wound-closing by the formation of extensin and AGP-containing gum....

  18. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes

    International Nuclear Information System (INIS)

    Newman, P.; Watt, F.M.

    1988-01-01

    There is growing evidence that cell shape regulates both proliferation and differentiated gene expression in a variety of cell types. The authors have explored the relationship between the morphology of articular chondrocytes in culture and the amount and type of proteoglycan they synthesize, using cytochalasin D to induce reversible cell rounding. When chondrocytes were prevented from spreading or when spread cells were induced to round up, 35 SO 4 incorporation into proteoglycan was stimulated. Incorporation into the cell layer was stimulated more than into the medium. When the cells were allowed to respread by removing cytochalasin D, proteoglycan synthesis returned to control levels. Cytochalasin D-induced stimulation of 35 SO 4 incorporation reflected an increase in core protein synthesis rather than lengthening of glycosaminoglycan chains, because [ 3 H]serine incorporation into core protein was also stimulated. Cytochalasm D-treatment of cells in suspension caused no further stimulation of 35 SO 4 incorporation, suggesting that the observed effects were due to cell rounding rather than exposure to cytochalasin D per se

  19. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin.

    Science.gov (United States)

    Nastase, Madalina V; Janicova, Andrea; Roedig, Heiko; Hsieh, Louise Tzung-Harn; Wygrecka, Malgorzata; Schaefer, Liliana

    2018-04-01

    It is now well-established that members of the small leucine-rich proteoglycan (SLRP) family act in their soluble form, released proteolytically from the extracellular matrix (ECM), as danger-associated molecular patterns (DAMPs). By interacting with Toll-like receptors (TLRs) and the inflammasome, the two SLRPs, biglycan and decorin, autonomously trigger sterile inflammation. Recent data indicate that these SLRPs, besides their conventional role as pro-inflammatory DAMPs, additionally trigger anti-inflammatory signaling pathways to tightly control inflammation. This is brought about by selective employment of TLRs, their co-receptors, various adaptor molecules, and through crosstalk between SLRP-, reactive oxygen species (ROS)-, and sphingolipid-signaling. In this review, the complexity of SLRP signaling in immune and kidney resident cells and its relevance for renal inflammation is discussed. We propose that the dichotomy in SLRP signaling (pro- and anti-inflammatory) allows for fine-tuning the inflammatory response, which is decisive for the outcome of inflammatory kidney diseases.

  20. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  1. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Hannesson, Kirsten O; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; Bæverfjord, Grete; Pedersen, Mona E

    2015-08-01

    In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.

  2. Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones

    Directory of Open Access Journals (Sweden)

    Sian F. Irvine

    2018-04-01

    Full Text Available Perineuronal nets (PNNs are extracellular matrix structures surrounding neuronal sub-populations throughout the central nervous system, regulating plasticity. Enzymatically removing PNNs successfully enhances plasticity and thus functional recovery, particularly in spinal cord injury models. While PNNs within various brain regions are well studied, much of the composition and associated populations in the spinal cord is yet unknown. We aim to investigate the populations of PNN neurones involved in this functional motor recovery. Immunohistochemistry for choline acetyltransferase (labelling motoneurones, PNNs using Wisteria floribunda agglutinin (WFA and chondroitin sulphate proteoglycans (CSPGs, including aggrecan, was performed to characterise the molecular heterogeneity of PNNs in rat spinal motoneurones (Mns. CSPG-positive PNNs surrounded ~70–80% of Mns. Using WFA, only ~60% of the CSPG-positive PNNs co-localised with WFA in the spinal Mns, while ~15–30% of Mns showed CSPG-positive but WFA-negative PNNs. Selective labelling revealed that aggrecan encircled ~90% of alpha Mns. The results indicate that (1 aggrecan labels spinal PNNs better than WFA, and (2 there are differences in PNN composition and their associated neuronal populations between the spinal cord and cortex. Insights into the role of PNNs and their molecular heterogeneity in the spinal motor pools could aid in designing targeted strategies to enhance functional recovery post-injury.

  3. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Lassi Rieppo

    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.

  4. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia.

    Science.gov (United States)

    Sandeep, M S; Nandini, C D

    2017-08-01

    In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.

  5. Alteration of intestinal microbiota in mice orally administered with salmon cartilage proteoglycan, a prophylactic agent.

    Directory of Open Access Journals (Sweden)

    Krisana Asano

    Full Text Available Proteoglycan (PG extracted from salmon nasal cartilage has potential to be a prophylactic agent. Daily oral administration of the PG attenuates systemic inflammatory response in the experimental mouse models. In this study, we applied the culture-independent approach to investigate an alteration of intestinal microbiota composition in PG-administered mice. The results indicated that the population level of bacilli increased in the small and large intestine upon PG administration. On the other hand, the population level of clostridia decreased in the large intestine. The proportion of bacteria that are able to ferment saccharides and produce short-chain fatty acids increased in the small intestine and decreased in the large intestine. Importantly, population level of probiotic lactobacilli and bacteria exhibiting the immunomodulatory effect increased in the PG-administered mice. In addition, several disease-associated bacteria decreased upon PG administration. These results provided an understanding of the specific role of PG involved in host immune modulation and supported our hypothesis that daily oral administration of PG improves the overall balance in composition of the intestinal microbial community.

  6. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance.

    Science.gov (United States)

    Dellett, Margaret; Hu, Wanzhou; Papadaki, Vasiliki; Ohnuma, Shin-ichi

    2012-04-01

    The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  7. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    Science.gov (United States)

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  8. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    OpenAIRE

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2012-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAco...

  9. Synthesis of [2,4-3H] 17β-dihydroequilin sulfate

    International Nuclear Information System (INIS)

    Bhavnani, B.R.

    1994-01-01

    [2,4- 3 H] 17β-dihydroequilin-3-sulfate ammonium salt suitable for in vivo pharmacokinetic studies was synthesized from [2,4- 3 H] equilin. Sulfation of [2,4- 3 H] equilin with pyridine-chlorosulfonic acid mixture gave in high yields [2,4- 3 H] equilin sulfate, which was then reduced with sodium borohydride to yield [2,4- 3 H] 17β-dihydroequilin sulfate. The reduction was sterospecific and no 17α-reduced products were formed. (author)

  10. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    Science.gov (United States)

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  11. Direct sulfation of limestone based on oxy-fuel combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.M.; Zhao, C.S.; Liu, S.T.; Wang, C.B. [North China Electric Power University, Baoding (China)

    2009-10-15

    With limestone as the sorbent, the sulfation reaction can proceed via two different routes depending on whether calcination of the limestone takes place under the given reaction conditions. The direct sulfation reaction is defined as the sulfation reaction between sulfur dioxide (SO{sub 2}) and limestone in an uncalcined state. This reaction, based on oxyfuel combustion technology, was studied by thermogravimetric analysis. Surface morphologies of the limestone particles after sulfation were examined by a scanning electron microscope. Results show that there are more pores or gaps in the product layer formed by direct sulfation of limestone than by indirect sulfation, which can be attributed to the generation of carbon dioxide (CO{sub 2}) at a reaction interface. Compared with indirect sulfation, direct sulfation of limestone can yield much higher conversion and has a much higher reaction rate. For direct sulfation, the greater porosity in the product layer greatly reduces the solid-state ion diffusion distance, resulting in a higher reaction rate and higher conversion.

  12. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  13. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    Science.gov (United States)

    J.K. Coleman Wasik; D.R. Engstrom; C.P.J. Mitchell; E.B. Swain; B.A. Monson; S.J. Balogh; J.D. Jeremiason; B.A. Branfireun; R.K. Kolka; J.E. Almendinger

    2015-01-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized...

  14. 76 FR 69734 - Streptomycin Sulfate; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Science.gov (United States)

    2011-11-09

    ... (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide... pesticide containing streptomycin sulfate, which is also used in human and animal treatment as an antibiotic... which contains the active ingredient, streptomycin sulfate, also used in humans and animals as an...

  15. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility.

    Science.gov (United States)

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Kristensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M; Grem, Jean L; Hollingsworth, Michael A; Holst, Peter J; Theander, Thor; Sorensen, Poul H; Daugaard, Mads; Salanti, Ali

    2016-12-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Short communication: Efficacy of copper sulfate hoof baths against digital dermatitis--Where is the evidence?

    Science.gov (United States)

    Thomsen, Peter T

    2015-04-01

    Digital dermatitis is a major problem in modern dairy production because of decreased animal welfare and financial losses. Individual cow treatments are often seen as too time consuming by farmers, and walk-through hoof baths have therefore been used extensively to control digital dermatitis. For decades, copper sulfate hoof baths have been used to treat and prevent digital dermatitis. Copper sulfate has been referred to as the industry gold standard when it comes to hoof-bath chemicals. In several scientific studies testing the efficacy of other hoof-care products, copper sulfate has been used as a positive control, thereby indicating that copper sulfate has a known positive effect. However, this may not be the case. A dilemma may exist between (1) copper sulfate generally being perceived as being effective against digital dermatitis and (2) a possible lack of well-documented scientific evidence of this effect. The objective of this study was to evaluate the existing scientific literature to determine whether the efficacy of copper sulfate used in hoof baths against digital dermatitis has in fact been demonstrated scientifically. A systematic literature search identified 7 peer-reviewed journal articles describing the efficacy of copper sulfate in hoof baths as treatment or prevention of bovine digital dermatitis. Only 2 of the 7 studies compared copper sulfate to a negative control; most studies were relatively small, and often no clear positive effect of copper sulfate was demonstrated. In conclusion, the frequent claim that copper sulfate is widely reported to be effective is supported by little scientific evidence. Well-designed clinical trials evaluating the effect of copper sulfate against digital dermatitis compared with a negative control are needed. Until such studies have been made, the efficacy of copper sulfate in hoof baths against digital dermatitis remains largely unproven. Copyright © 2015 American Dairy Science Association. Published by Elsevier

  17. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis.

    Directory of Open Access Journals (Sweden)

    He Zhou

    Full Text Available Heparan sulfate proteoglycans (HSPGs play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1α, P-selectin, and heparanase. A single s.c. dose of M402 effectively inhibited seeding of B16F10 murine melanoma cells to the lung in an experimental metastasis model. Fluorescent-labeled M402 demonstrated selective accumulation in the primary tumor. Immunohistological analyses of the primary tumor revealed a decrease in microvessel density in M402 treated animals, suggesting anti-angiogenesis to be one of the mechanisms involved in-vivo. M402 treatment also normalized circulating levels of myeloid derived suppressor cells in tumor bearing mice. Chronic administration of M402, alone or in combination with cisplatin or docetaxel, inhibited spontaneous metastasis and prolonged survival in an orthotopic 4T1 murine mammary carcinoma model. These data demonstrate that modulating HSPG biology represents a novel approach to target multiple factors involved in tumor progression and metastasis.

  18. Chondroitin sulfate-derivatized agarose beads: a new system for studying cation binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Hunter, G.K.

    1987-01-01

    Chondroitin sulfate (CS) has been covalently attached to aminoethyl-agarose beads in a carbodiimide-catalyzed reaction. In this process, an amide bond is formed between carboxylate groups on the glycosaminoglycan (GAG) and the primary amine groups of the beads. Under optimal conditions, up to 160 micrograms of CS is attached per milligram of beads. CS-agarose beads have been used to study Ca binding to GAGs. The beads are mixed with a solution containing CaCl 2 and 45 Ca and allowed to sediment under unit gravity. An aliquot of supernatant is then removed and 45 Ca activity is determined to quantitate remaining (free) Ca. Using this system, it was shown that CS binds approximately 0.7 Ca/disaccharide unit at saturation. Under the conditions used, the apparent association constant (KA) is approximately 14 mM. In principle, this derivatization protocol may be used to attach any proteoglycan or GAG (except keratan sulfate) to an insoluble support. CS-agarose beads provide a rapid, simple, and relatively artifact-free system for studying cation-GAG interactions

  19. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  20. Metodologia analítica para a determinação de sulfato em vinhoto When sulfate is present in high concentrations, it acts as an inhibitor in the production of methane (biogas formation in anaerobic biodigestion processes

    Directory of Open Access Journals (Sweden)

    Sílvio Miranda Prada

    1998-06-01

    Full Text Available In this way it is very important to know the sulfate concentration in vinasse samples before to make the biodigestor design. A previous developed and indirect method (Anal. Chim. Acta. 1996, 329, 197, was used to determine sulfate in samples of vinasse, after previous treatments, done in order to eliminate organic matter with hydrogen peroxide 30% and concentrated nitric acid mixture (3:1, under heating. Interferent cationic ions were isolated by using ion exchange columns. The results obtained for some samples from Araraquara and Penápolis are here presented. The phosphate concentration was also determined.

  1. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)

    International Nuclear Information System (INIS)

    Iversen, N.; Jorgensen, B.B.

    1985-01-01

    Concomitant radiotracer measurements were made of in situ rates of sulfate reduction and anaerobic methane oxidation in 2-3-m-long sediment cores. Methane accumulated to high concentrations (> 1 mM CH 4 ) only below the sulfate zone, at 1 m or deeper in the sediment. Sulfate reduction showed a broad maximum below the sediment surface and a smaller, narrow maximum at the sulfate-methane transition. Methane oxidation was low (0.002-0.1 nmol CH 4 cm -3 d -1 ) throughout the sulfate zone and showed a sharp maximum at the sulfate-methane transition, coinciding with the sulfate reduction maximum. Total anaerobic methane oxidation at two stations was 0.83 and 1.16 mmol CH 4 m -2 d -1 , of which 96% was confined to the sulfate-methane transition. All the methane that was calculated to diffuse up into the sulfate-methane transition was oxidized in this zone. The methane oxidation was equivalent to 10% of the electron donor requirement for the total measured sulfate reduction. A third station showed high sulfate concentrations at all depths sampled and the total methane oxidation was only 0.013 mmol m -2 d -1 . From direct measurements of rates, concentration gradients, and diffusion coefficients, simple calculations were made of sulfate and methane fluxes and of methane production rates

  2. Microbial Diversity in Sulfate-Reducing Marine Sediment Enrichment Cultures Associated with Anaerobic Biotransformation of Coastal Stockpiled Phosphogypsum (Sfax, Tunisia

    Directory of Open Access Journals (Sweden)

    Hana Zouch

    2017-08-01

    Full Text Available Anaerobic biotechnology using sulfate-reducing bacteria (SRB is a promising alternative for reducing long-term stockpiling of phosphogypsum (PG, an acidic (pH ~3 by-product of the phosphate fertilizer industries containing high amounts of sulfate. The main objective of this study was to evaluate, for the first time, the diversity and ability of anaerobic marine microorganisms to convert sulfate from PG into sulfide, in order to look for marine SRB of biotechnological interest. A series of sulfate-reducing enrichment cultures were performed using different electron donors (i.e., acetate, formate, or lactate and sulfate sources (i.e., sodium sulfate or PG as electron acceptors. Significant sulfide production was observed from enrichment cultures inoculated with marine sediments, collected near the effluent discharge point of a Tunisian fertilizer industry (Sfax, Tunisia. Sulfate sources impacted sulfide production rates from marine sediments as well as the diversity of SRB species belonging to Deltaproteobacteria. When PG was used as sulfate source, Desulfovibrio species dominated microbial communities of marine sediments, while Desulfobacter species were mainly detected using sodium sulfate. Sulfide production was also affected depending on the electron donor used, with the highest production obtained using formate. In contrast, low sulfide production (acetate-containing cultures was associated with an increase in the population of Firmicutes. These results suggested that marine Desulfovibrio species, to be further isolated, are potential candidates for bioremediation of PG by immobilizing metals and metalloids thanks to sulfide production by these SRB.

  3. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis

    Directory of Open Access Journals (Sweden)

    Angeliki Marietou

    2018-03-01

    Full Text Available The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.

  4. Proteoglycan depletion and size reduction in lesions of early grade chondromalacia of the patella.

    Science.gov (United States)

    Väätäinen, U; Häkkinen, T; Kiviranta, I; Jaroma, H; Inkinen, R; Tammi, M

    1995-10-01

    To determine the content and molecular size of proteoglycans (PGs) in patellar chondromalacia (CM) and control cartilages as a first step in investigating the role of matrix alterations in the pathogenesis of this disease. Chondromalacia tissue from 10 patients was removed with a surgical knife. Using identical techniques, apparently healthy cartilage of the same site was obtained from 10 age matched cadavers (mean age 31 years in both groups). Additional pathological cartilage was collected from 67 patients with grades II-IV CM (classified according to Outerbridge) using a motorised shaver under arthroscopic control. The shaved cartilage chips were collected with a dense net from the irrigation fluid of the shaver. The content of tissue PGs was determined by Safranin O precipitation or uronic acid content, and the molecular size by mobility on agarose gel electrophoresis. The mean PG content of the CM tissue samples with a knife was dramatically reduced, being only 15% of that in controls. The cartilage chips collected from shaving operations of grades II, III, and IV CM showed a decreasing PG content: 9%, 5%, and 1% of controls, respectively. Electrophoretic analysis of PGs extracted with guanidium chloride from the shaved tissue samples suggested a significantly reduced size of aggrecans in the mild (grade II) lesions. These data show that there is already a dramatic and progressive depletion of PGs in CM grade II lesions. This explains the softening of cartilage, a typical finding in the arthroscopic examination of CM. The PG size reduction observed in grade II implicates proteolytic attack as a factor in the pathogenesis of CM.

  5. Proteoglycans as Target for an Innovative Therapeutic Approach in Chondrosarcoma: Preclinical Proof of Concept.

    Science.gov (United States)

    Peyrode, Caroline; Weber, Valérie; Voissière, Aurélien; Maisonial-Besset, Aurélie; Vidal, Aurélien; Auzeloux, Philippe; Gaumet, Vincent; Borel, Michèle; Dauplat, Marie-Mélanie; Quintana, Mercedes; Degoul, Françoise; Rédini, Françoise; Chezal, Jean-Michel; Miot-Noirault, Elisabeth

    2016-11-01

    To date, surgery remains the only option for the treatment of chondrosarcoma, which is radio- and chemoresistant due in part to its large extracellular matrix (ECM) and poor vascularity. In case of unresectable locally advanced or metastatic diseases with a poor prognosis, improving the management of chondrosarcoma still remains a challenge. Our team developed an attractive approach of improvement of the therapeutic index of chemotherapy by targeting proteoglycan (PG)-rich tissues using a quaternary ammonium (QA) function conjugated to melphalan (Mel). First of all, we demonstrated the crucial role of the QA carrier for binding to aggrecan by surface plasmon resonance. In the orthotopic model of Swarm rat chondrosarcoma, an in vivo biodistribution study of Mel and its QA derivative (Mel-QA), radiolabeled with tritium, showed rapid radioactivity accumulation in healthy cartilaginous tissues and tumor after [ 3 H]-Mel-QA injection. The higher T/M ratio of the QA derivative suggests some advantage of QA-active targeting of chondrosarcoma. The antitumoral effects were characterized by tumor volume assessment, in vivo 99m Tc-NTP 15-5 scintigraphic imaging of PGs, 1 H-HRMAS NMR spectroscopy, and histology. The conjugation of a QA function to Mel did not hamper its in vivo efficiency and strongly improved the tolerability of Mel leading to a significant decrease of side effects (hematologic analyses and body weight monitoring). Thus, QA conjugation leads to a significant improvement of the therapeutic index, which is essential in oncology and enable repeated cycles of chemotherapy in patients with chondrosarcoma. Mol Cancer Ther; 15(11); 2575-85. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. TOTAL NUMBER, DISTRIBUTION, AND PHENOTYPE OF CELLS EXPRESSING CHONDROITIN SULPHATE PROTEOGLYCANS IN THE NORMAL HUMAN AMYGDALA

    Science.gov (United States)

    Pantazopoulos, Harry; Murray, Elisabeth A.; Berretta, Sabina

    2009-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin-histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin-histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA-labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei. PMID:18374308

  7. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany); Goetting, Christian, E-mail: cgoetting@hdz-nrw.de [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany)

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  8. Mediolateral Differences of Proteoglycans Distribution at the ACL Tibial Footprint: Experimental Study of 16 Cadaveric Knees

    Directory of Open Access Journals (Sweden)

    Joon Ho Wang

    2018-01-01

    Full Text Available This study aimed to identify the staining pattern of ACL attachment blended with cartilage of the medial tibial plateau at the tibial insertion and histologically characterize the tibial footprint. Sixteen fresh frozen cadaveric knees (mean age: 52.0±6.2 years were used for this study. The specimens were bisected in the coronal plane, in accordance with the fiber orientation of the ACL tibial attachment. Adjacent sections were then stained with hematoxylin and eosin (H&E to observe the morphology of the ACL insertion and with fast green and Safranin-O protocols to evaluate for collagen and proteoglycans (PG. The insertion area on the tibial footprint was divided into five zones in the medial to lateral direction, which was determined by division of the section from most prominent medial tibial spine to most lateral margin of ACL attachment. Then rectangular area with a vertical length that is twice the width of respective five zones was set. Stained areas of all images were quantified positively by using ImageJ software, and the value for staining area measured was defined in percentage by multiplying whole image area by 100. The mean proportion of Safranin-O staining is significantly greater nearer to the medial tibial spine (59% in zone 1, 32% in zone 2, 13% in zone 3, 13% in zone 4, and 4% in zone 5, P<0.001. The medial section of the tibial insertion area grew in size and increased in PG staining with more densely organized collagen arrangement with more fibrocartilage cells. The ACL tibial insertion showed a medially eccentric staining pattern by histological evaluation of the ACL attachment to cartilage. Our histological results of the eccentric biomaterial property in the medial tibial spine of ACL insertion area can be considered in making a more functional anatomic tibial tunnel placement.

  9. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  10. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage.

    Science.gov (United States)

    Han, EunHee; Chen, Silvia S; Klisch, Stephen M; Sah, Robert L

    2011-08-17

    The negatively charged proteoglycans (PG) provide compressive resistance to articular cartilage by means of their fixed charge density (FCD) and high osmotic pressure (π(PG)), and the collagen network (CN) provides the restraining forces to counterbalance π(PG). Our objectives in this work were to: 1), account for collagen intrafibrillar water when transforming biochemical measurements into a FCD-π(PG) relationship; 2), compute π(PG) and CN contributions to the compressive behavior of full-thickness cartilage during bovine growth (fetal, calf, and adult) and human adult aging (young and old); and 3), predict the effect of depth from the articular surface on π(PG) in human aging. Extrafibrillar FCD (FCD(EF)) and π(PG) increased with bovine growth due to an increase in CN concentration, whereas PG concentration was steady. This maturation-related increase was amplified by compression. With normal human aging, FCD(EF) and π(PG) decreased. The π(PG)-values were close to equilibrium stress (σ(EQ)) in all bovine and young human cartilage, but were only approximately half of σ(EQ) in old human cartilage. Depth-related variations in the strain, FCD(EF), π(PG), and CN stress profiles in human cartilage suggested a functional deterioration of the superficial layer with aging. These results suggest the utility of the FCD-π(PG) relationship for elucidating the contribution of matrix macromolecules to the biomechanical properties of cartilage. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Glucosamine exposure reduces proteoglycan synthesis in primary human endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Trine M. Reine

    2016-09-01

    Full Text Available Purpose: Glucosamine (GlcN supplements are promoted for medical reasons, for example, for patients with arthritis and other joint-related diseases. Oral intake of GlcN is followed by uptake in the intestine, transport in the circulation and thereafter delivery to chondrocytes. Here, it is postulated to have an effect on synthesis and turnover of extracellular matrix constituents expressed by these cells. Following uptake in the intestine, serum levels are transiently increased, and the endothelium is exposed to increased levels of GlcN. We investigated the possible effects of GlcN on synthesis of proteoglycans (PGs, an important matrix component, in primary human endothelial cells. Methods: Primary human endothelial cells were cultured in vitro in medium with 5 mM glucose and 0–10 mM GlcN. PGs were recovered and analysed by western blotting, or by SDS-PAGE, gel chromatography or ion-exchange chromatography of 35S-PGs after 35S-sulphate labelling of the cells. Results: The synthesis and secretion of 35S-PGs from cultured endothelial cells were reduced in a dose- and time-dependent manner after exposure to GlcN. PGs are substituted with sulphated glycosaminoglycan (GAG chains, vital for PG function. The reduction in 35S-PGs was not related to an effect on GAG chain length, number or sulphation, but rather to the total expression of PGs. Conclusion: Exposure of endothelial cells to GlcN leads to a general decrease in 35S-PG synthesis. These results suggest that exposure to high levels of GlcN can lead to decreased matrix synthesis, contrary to what has been claimed by supporters of such supplements.

  12. Formation of proteoglycan and collagen-rich scaffold-free stiff cartilaginous tissue using two-step culture methods with combinations of growth factors.

    Science.gov (United States)

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Matsuzaka, Satoshi; Yamagishi, Chie; Kobayashi, Kohei

    2010-05-01

    Tissue-engineered cartilage may be expected to serve as an alternative to autologous chondrocyte transplantation treatment. Several methods for producing cartilaginous tissue have been reported. In this study, we describe the production of scaffold-free stiff cartilaginous tissue of pig and human, using allogeneic serum and growth factors. The tissue was formed in a mold using chondrocytes recovered from alginate bead culture and maintained in a medium with transforming growth factor-beta and several other additives. In the case of porcine tissue, the tear strength of the tissue and the contents of proteoglycan (PG) and collagen per unit of DNA increased dose-dependently with transforming growth factor-beta. The length of culture was significantly and positively correlated with thickness, tear strength, and PG and collagen contents. Tear strength showed positive high correlations with both PG and collagen contents. A positive correlation was also seen between PG content and collagen content. Similar results were obtained with human cartilaginous tissue formed from chondrocytes expanded in monolayer culture. Further, an in vivo pilot study using pig articular cartilage defect model demonstrated that the cartilaginous tissue was well integrated with surrounding tissue at 13 weeks after the implantation. In conclusion, we successfully produced implantable scaffold-free stiff cartilaginous tissue, which characterized high PG and collagen contents.

  13. Transformation of carbon tetrachloride under sulfate reducing conditions

    NARCIS (Netherlands)

    Best, Jappe H. de; Salminen, E.; Doddema, Hans J.; Janssen, Dick B.; Harder, Wim

    1998-01-01

    The removal of carbon tetrachloride under sulfate reducing conditions was studied in an anaerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 µM, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon

  14. Transformation of carbon tetrachloride under sulfate reducing conditions

    NARCIS (Netherlands)

    de Best, JH; Salminen, E; Doddema, HJ; Janssen, DB; Harder, W

    1997-01-01

    The removal of carbon tetrachloride under sulfate reducing conditions was studied in an anaerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 mu M, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon

  15. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  16. Heparan Sulfate Induces Necroptosis in Murine Cardiomyocytes: A Medical-In silico Approach Combining In vitro Experiments and Machine Learning.

    Science.gov (United States)

    Zechendorf, Elisabeth; Vaßen, Phillip; Zhang, Jieyi; Hallawa, Ahmed; Martincuks, Antons; Krenkel, Oliver; Müller-Newen, Gerhard; Schuerholz, Tobias; Simon, Tim-Philipp; Marx, Gernot; Ascheid, Gerd; Schmeink, Anke; Dartmann, Guido; Thiemermann, Christoph; Martin, Lukas

    2018-01-01

    Life-threatening cardiomyopathy is a severe, but common, complication associated with severe trauma or sepsis. Several signaling pathways involved in apoptosis and necroptosis are linked to trauma- or sepsis-associated cardiomyopathy. However, the underling causative factors are still debatable. Heparan sulfate (HS) fragments belong to the class of danger/damage-associated molecular patterns liberated from endothelial-bound proteoglycans by heparanase during tissue injury associated with trauma or sepsis. We hypothesized that HS induces apoptosis or necroptosis in murine cardiomyocytes. By using a novel Medical- In silico approach that combines conventional cell culture experiments with machine learning algorithms, we aimed to reduce a significant part of the expensive and time-consuming cell culture experiments and data generation by using computational intelligence (refinement and replacement). Cardiomyocytes exposed to HS showed an activation of the intrinsic apoptosis signal pathway via cytochrome C and the activation of caspase 3 (both p  machine learning algorithms.

  17. Sulfate transport in toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Simonsen, K

    1988-01-01

    1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting...... apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage...... conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short...

  18. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Directory of Open Access Journals (Sweden)

    K. C. Kwong

    2018-02-01

    Full Text Available Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4− has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O and a sulfate radical anion (SO4 ⋅ − upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19  ×  10−13 cm3 molecule−1 s−1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27  ×  1012 molecule cm−3 s, only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we

  19. Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate

    Science.gov (United States)

    Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man

    2018-02-01

    Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an

  20. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  1. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  2. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin αVβ3 and Inhibits Osteoclast Differentiation.

    Science.gov (United States)

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu

    2015-10-01

    Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. © 2015 Wiley Periodicals, Inc.

  3. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  4. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  5. Using Sulfate-Amended Sediment Slurry Batch Reactors to Evaluate Mercury Methylation

    International Nuclear Information System (INIS)

    Harmon, S.M.

    2003-01-01

    In the methylated form, mercury represents a concern to public health primarily through the consumption of contaminated fish tissue. Research conducted on the methylation of mercury strongly suggests the process is microbial in nature and facilitated principally by sulfate-reducing bacteria. This study addressed the potential for mercury methylation by varying sulfate treatments and wetland-based soil in microbial slurry reactors with available inorganic mercury. Under anoxic laboratory conditions conducive to growth of naturally occurring sulfate-reducing bacteria in the soil, it was possible to evaluate how various sulfate additions influenced the methylation of inorganic mercury added to overlying water. Treatments included sulfate amendments ranging FR-om 25 to 500 mg/L (0.26 to 5.2 mM) above the soil's natural sulfate level. This study also provided an assessment of mercury methylation relative to sulfate-reducing bacterial population growth and subsequent sulfide production. Mercury methylation in sulfate treatments did not exceed that of the non-amended control during a 35-day incubation. However, increases in methylmercury concentration were linked to bacterial growth and sulfate reduction. A time lag in methylation in the highest treatment correlated with an equivalent lag in bacterial growth

  6. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    Science.gov (United States)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 ± 1.8‰ to -22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  7. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  8. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  9. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  10. Modeling and minimization of barium sulfate scale

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  11. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice.

    Science.gov (United States)

    Deplancke, Bart; Finster, Kai; Graham, W Vallen; Collier, Chad T; Thurmond, Joel E; Gaskins, H Rex

    2003-04-01

    There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.

  12. Structural elucidation of fucosylated chondroitin sulfates from sea cucumber using FTICR-MS/MS.

    Science.gov (United States)

    Agyekum, Isaac; Pepi, Lauren; Yu, Yanlei; Li, Junhui; Yan, Lufeng; Linhardt, Robert J; Chen, Shiguo; Amster, I Jonathan

    2018-02-01

    Fucosylated chondroitin sulfates are complex polysaccharides extracted from sea cucumber. They have been extensively studied for their anticoagulant properties and have been implicated in other biological activities. While nuclear magnetic resonance spectroscopy has been used to extensively characterize fucosylated chondroitin sulfate oligomers, we herein report the first detailed mass characterization of fucosylated chondroitin sulfate using high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The two species of fucosylated chondroitin sulfates considered for this work include Pearsonothuria graeffei (FCS-Pg) and Isostichopus badionotus (FCS-Ib). Fucosylated chondroitin sulfate oligosaccharides were prepared by N-deacetylation-deaminative cleavage of the two fucosylated chondroitin sulfates and purified by repeated gel filtration. Accurate mass measurements obtained from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry measurements confirmed the oligomeric nature of these two fucosylated chondroitin sulfate oligosaccharides with each trisaccharide repeating unit averaging four sulfates per trisaccharide. Collision-induced dissociation of efficiently deprotonated molecular ions through Na/H + exchange proved useful in providing structurally relevant glycosidic and cross-ring product ions, capable of assigning the sulfate modifications on the fucosylated chondroitin sulfate oligomers. Careful examination of the tandem mass spectrometry of both species deferring in the positions of sulfate groups on the fucose residue (FCS-Pg-3,4- OS) and (FCS-Ib-2,4- OS) revealed cross-ring products 0,2 A αf and 2,4 X 2αf which were diagnostic for (FCS-Pg-3,4- OS) and 0,2 X 2αf diagnostic for (FCS-Ib-2,4- OS). Mass spectrometry and tandem mass spectrometry data acquired for both species varying in oligomer length (dp3-dp15) are presented.

  13. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  14. Optimizing substrate for sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Chang, L.K.; Updegraff, D.M.; Wildeman, T.R.

    1991-01-01

    Microbial sulfate reduction followed by sulfide precipitation effectively removes heavy metals from wastewaters. The substrate in the anaerobic zone in a constructed wetland can be designed to emphasize this removal process. This group of bacteria requires CH 2 O, P, N, and SO 4 =, reducing conditions, and pH range of 5-9 (pH=7 is optimum). The objective of this study was to find an inexpensive source of nutrients that would give the best initial production of sulfide and make a good wetland substrate. All tested materials contain sufficient P and N; mine drainage provides sulfate. Thus, tests focused on finding organic material that provides the proper nutrients and does not cause the culture to fall below pH of 5. Among chemical nutrients, sodium lactate combined with (NH 4 ) 2 HPO 4 were the only compounds that produced sulfide after 11 days. Among complex nutrients, only cow manure produced sulfide after 26 days. Among complex carbohydrates, cracked corn and raw rice produced sulfide after 10 days. Most substrates failed to produce sulfide because anaerobic fermentation reduced the pH below 5. Presently, cracked corn is the best candidate for a substrate. Five grams of cow manure produced 0.14 millimole of sulfide whereas 0.1 g of cracked corn produced 0.22 millimole

  15. Regeneration of sulfated metal oxides and carbonates

    Science.gov (United States)

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  16. Obtaining of barium sulfate from solution formed after desulfation of the active mass of scrap lead-acid batteries

    Directory of Open Access Journals (Sweden)

    O. A. Kalko

    2014-03-01

    Full Text Available Analyses of literature data about processes for solution utilization formed after desulfation of the active mass of scrap lead-acid batteries is performed. Optimal conditions for obtaining of barium sulfate sediment from ammonium sulfate solute and chemically pure Ba(OH2×8H2O и BaCl2×2H2O were found experimentally. In laboratory the commercial barium sulfate from sulfate solutions, that are waste of recycling process of battery scrap, with application of chloride and barium hydroxide was production. The possibility of using this product were discussed.

  17. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    Science.gov (United States)

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  18. A Role for Serglycin Proteoglycan in Mast Cell Apoptosis Induced by a Secretory Granule-mediated Pathway*

    Science.gov (United States)

    Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar

    2011-01-01

    Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167

  19. Small leucine-rich repeat proteoglycans associated with mature insoluble elastin serve as binding sites for galectins.

    Science.gov (United States)

    Itoh, Aiko; Nonaka, Yasuhiro; Ogawa, Takashi; Nakamura, Takanori; Nishi, Nozomu

    2017-11-01

    We previously reported that galectin-9 (Gal-9), an immunomodulatory animal lectin, could bind to insoluble collagen preparations and exerted direct cytocidal effects on immune cells. In the present study, we found that mature insoluble elastin is capable of binding Gal-9 and other members of the human galectin family. Lectin blot analysis of a series of commercial water-soluble elastin preparations, PES-(A) ~ PES-(E), revealed that only PES-(E) contained substances recognized by Gal-9. Gal-9-interacting substances in PES-(E) were affinity-purified, digested with trypsin and then analyzed by reversed-phase HPLC. Peptide fragments derived from five members of the small leucine-rich repeat proteoglycan family, versican, lumican, osteoglycin/mimecan, prolargin, and fibromodulin, were identified by N-terminal amino acid sequence analysis. The results indicate that Gal-9 and possibly other galectins recognize glycans attached to small leucine-rich repeat proteoglycans associated with insoluble elastin and also indicate the possibility that mature insoluble elastin serves as an extracellular reservoir for galectins.

  20. Modeling of ferric sulfate decomposition and sulfation of potassium chloride during grate‐firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Jappe Frandsen, Flemming

    2013-01-01

    Ferric sulfate is used as an additive in biomass combustion to convert the released potassium chloride to the less harmful potassium sulfate. The decomposition of ferric sulfate is studied in a fast heating rate thermogravimetric analyzer and a volumetric reaction model is proposed to describe...... the process. The yields of sulfur oxides from ferric sulfate decomposition under boiler conditions are investigated experimentally, revealing a distribution of approximately 40% SO3 and 60% SO2. The ferric sulfate decomposition model is combined with a detailed kinetic model of gas‐phase KCl sulfation...... and a model of K2SO4 condensation to simulate the sulfation of KCl by ferric sulfate addition. The simulation results show good agreements with experiments conducted in a biomass grate‐firing reactor. The results indicate that the SO3 released from ferric sulfate decomposition is the main contributor to KCl...

  1. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line

    Directory of Open Access Journals (Sweden)

    Y Kobayashi

    2009-06-01

    Full Text Available Low-intensity pulsed ultrasound (LIPUS stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1 exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x105 cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm2 compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF. These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration.

  2. Discrepancies in composition and biological effects of different formulations of chondroitin sulfate.

    Science.gov (United States)

    Martel-Pelletier, Johanne; Farran, Aina; Montell, Eulàlia; Vergés, Josep; Pelletier, Jean-Pierre

    2015-03-06

    Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate-a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an excellent safety profile, and although various meta-analyses have concluded that it has a beneficial effect on symptoms and structure, others have concluded little or no benefit. This may be due, at least partly, to variations in the quality of the chondroitin sulfate used for a particular study. Chondroitin sulfate is available as pharmaceutical- and nutraceutical-grade products, and the latter have great variations in preparation, composition, purity and effects. Moreover, some products contain a negligible amount of chondroitin sulfate and among samples with reasonable amounts, in vitro testing showed widely varying effects. Of importance, although some showed anti-inflammatory effects, others demonstrated weak effects, and some instances were even pro-inflammatory. This could be related to contaminants, which depend on the origin, production and purification process. It is therefore vitally important that only pharmaceutical-grade chondroitin sulfate be used for treating osteoarthritis patients.

  3. Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high-sulfate hot spring

    International Nuclear Information System (INIS)

    Ward, D.M.; Olson, G.J.

    1980-01-01

    The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2- 14 C]acetate to 14 CO 2 and not to 14 CH 4 , and the lack of rapid reduction of NaH 14 CO 3 to 14 CH 4 . Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increase in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation

  4. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair.

    Directory of Open Access Journals (Sweden)

    Inna Maltseva

    Full Text Available Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS. SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1⁻/⁻, but not Sulf2⁻/⁻, mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1⁻/⁻ mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE. Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.

  5. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    International Nuclear Information System (INIS)

    Gallo, V.; Bertolotto, A.

    1990-01-01

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with [3H]glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various [3H]glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space

  6. Co-culture with infrapatellar fat pad differentially stimulates proteoglycan synthesis and accumulation in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Bendernagel, Monica F; Levenston, Marc E

    2017-09-01

    Although osteoarthritis is widely viewed as a disease of the whole joint, relatively few studies have focused on interactions among joint tissues in joint homeostasis and degeneration. In particular, few studies have examined the effects of the infrapatellar fat pad (IFP) on cartilaginous tissues. The aim of this study was to test the hypothesis that co-culture with healthy IFP would induce degradation of cartilage and meniscus tissues. Bovine articular cartilage, meniscus, and IFP were cultured isolated or as cartilage-fat or meniscus-fat co-cultures for up to 14 days. Conditioned media were assayed for sulfated glycosaminoglycan (sGAG) content, nitrite content, and matrix metalloproteinase (MMP) activity, and explants were assayed for sGAG and DNA contents. Co-cultures exhibited increased cumulative sGAG release and sGAG release rates for both cartilage and meniscus, and the cartilage (but not meniscus) exhibited a substantial synergistic effect of co-culture (sGAG release in co-culture was significantly greater than the summed release from isolated cartilage and fat). Fat co-culture did not significantly alter the sGAG content of either cartilage or meniscus explants, indicating that IFP co-culture stimulated net sGAG production by cartilage. Nitrite release was increased relative to isolated tissue controls in co-cultured meniscus, but not the cartilage, with no synergistic effect of co-culture. Interestingly, MMP-2 production was decreased by co-culture for both cartilage and meniscus. This study demonstrates that healthy IFP may modulate joint homeostasis by stimulating sGAG production in cartilage. Counter to our hypothesis, healthy IFP did not promote degradation of either cartilage or meniscus tissues.

  7. Analysis of tyrosine-O-sulfation

    DEFF Research Database (Denmark)

    Bundgaard, J.R.; Sen, J.W.; Johnsen, A.H.

    2008-01-01

    Tyrosine O-sulfation was first described about 50 years ago as a post-translational modification of fibrinogen. In the following 30 years it was considered to be a rare modification affecting only a few proteins and peptides. However, in the beginning of the 1980s tyrosine (Tyr) sulfation was shown...... to be a common modification and since then an increasing number of proteins have been identified as sulfated. The target proteins belong to the classes of secretory, plasma membrane, and lysosomal proteins, which reflects the intracellular localization of the enzymes catalyzing Tyr sulfation, the tyrosylprotein...... sulfotransferases (TPSTs).Traditionally, Tyr sulfation has been analyzed by incorporation of radiolabeled sulfate into target cells followed by purification of the target protein. Subsequently, the protein is degraded enzymatically or by alkaline hydrolysis followed by thin-layer electrophoresis to demonstrate...

  8. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  9. Microbial fuel cell based on electroactive sulfate-reducing biofilm

    International Nuclear Information System (INIS)

    Angelov, Anatoliy; Bratkova, Svetlana; Loukanov, Alexandre

    2013-01-01

    Highlights: ► Regulation and management of electricity generation by variation of residence time. ► Design of microbial fuel cell based on electroactive biofilm on zeolite. ► Engineering solution for removing of the obtained elemental sulfur. - abstract: A two chambered laboratory scale microbial fuel cell (MFC) has been developed, based on natural sulfate-reducing bacterium consortium in electroactive biofilm on zeolite. The MFC utilizes potassium ferricyanide in the cathode chamber as an electron acceptor that derives electrons from the obtained in anode chamber H 2 S. The molecular oxygen is finally used as a terminal electron acceptor at cathode compartment. The generated power density was 0.68 W m −2 with current density of 3.2 A m −2 at 150 Ω electrode resistivity. The hydrogen sulfide itself is produced by microbial dissimilative sulfate reduction process by utilizing various organic substrates. Finally, elemental sulfur was identified as the predominant final oxidation product in the anode chamber. It was removed from MFC through medium circulation and gathering in an external tank. This report reveals dependence relationship between the progress of general electrochemical parameters and bacterial sulfate-reduction rate. The presented MFC design can be used for simultaneous sulfate purification of mining drainage wastewater and generation of renewable electricity

  10. Case study of elevated layers of high sulfate concentration

    International Nuclear Information System (INIS)

    McNaughton, D.J.; Orgill, M.M.

    1979-01-01

    During studies in August 1976 that were part of the Multi-State Atmospheric Power Production Pollutant Study (MAP3S), Alkezweeny et al., (1977) noted that in the Milwaukee urban plume, layers of relatively high sulfate concentrations occurred at high altitudes with respect to the boundary layer. This paper represents a progress report on studies undertaken to investigate possible causes for a bimodel vertical profile of sulfate concentrations. Data presented by Alkezweeny et al., (1977) serve as a basis for this study. Data from August 23, 1976, and August 24, 1978, indicate concentrations relatively high in sulfate, at 1000 and 6000 ft, respectively, with lower concentrations at lower altitudes. Concentrations of trace metals also indicate no peaks in the vertical concentration profiles above the surface. Initial studies of the high, elevated sulfate concentrations have centered on the August 23 measurements taken over southeast Wisconsin using synoptic data from the national weather service, emissions data from the national emissions data bank system (EPA), air quality data from the national air surveillance network (EPA), and satellite photographs from the EROS Data Center

  11. Activation of professional antigen presenting cells by acharan sulfate isolated from giant African snail, Achatina fulica.

    Science.gov (United States)

    Kim, Hyun-Sun; Lee, Young-Hee; Lee, Young-Ran; Im, Sun-A; Lee, Jae-Kwon; Kim, Yeong Shik; Sim, Joon-Soo; Choi, Hyung Seok; Lee, Chong-Kil

    2007-07-01

    Acharan sulfate isolated from the giant African snail, Achatina fulica, has been reported to have antitumor activity in vivo. In an effort to determine the mechanisms of its antitumor activity, we examined the effects of acharan sulfate on professional antigen presenting cells (APCs). Acharan sulfate increased the phagocytic activity, the production of cytokines such as TNF-alpha and IL-1beta, and the release of nitric oxide on a macrophage cell line, Raw 264.7 cells. In addition, acharan sulfate induced phenotypic and functional maturation of immature dendritic cells (DCs). Immature DCs cultured with acharan sulfate expressed higher levels of class II MHC molecules and major co-stimulatory molecules such as B7-1, B7-2, and CD40. Functional maturation of immature DCs cultured in the presence of acharan sulfate was confirmed by the increased allostimulatory capacity and IL-12 production. These results suggest that the antitumor activity of acharan sulfate is partly due to the activation of professional antigen presenting cells.

  12. Effect of sulfate absence and nitrate addition on bacterial community in a sulfidogenic bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yangguo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang Aijie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ren Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2009-12-30

    The characteristics and behavior of sulfate-reducing bacteria (SRB), methane-producing bacteria (MPB) and denitrifying bacteria (DB) were investigated by polymerase chain reaction (PCR) based methods under the transitory sulfate absence or nitrate addition conditions in a sulfidogenic continuously stirred tank reactor. The bioreactor started-up feeding with 4000 mg l{sup -1} COD (lactate) and 2000 mg l{sup -1} sulfate (SO{sub 4}{sup 2-}). The sulfate removal efficiency reached 3.84 g l{sup -1} d{sup -1} when the activated sludge formed a stable bacterial community comprising of some members of genera Desulfobulbus, Desulfovibrio, Clostridium and Pseudomonas after 20 days' operation. And about 79% of reduced sulfate captured electrons from the oxidization of propionate. Sulfate absence influenced little on quantity and population structure of SRB and DB, while much on MPB and metabolic typing. And the acetate (up to 86% (w/w) of total end-products) in end-product profiles was replaced by the propionate (75% (w/w)). The addition of nitrate to sulfidogenic system suppressed the sulfidogenesis mainly by capturing the electron flow. These results suggested that sulfate absence or nitrate addition would not inhibit SRB permanently in a stable sulfidogenic community.

  13. Surface Corrosion and Microstructure Degradation of Calcium Sulfoaluminate Cement Subjected to Wet-Dry Cycles in Sulfate Solution

    Directory of Open Access Journals (Sweden)

    Wuman Zhang

    2017-01-01

    Full Text Available The hydration products of calcium sulfoaluminate (CSA cement are different from those of Portland cement. The degradation of CSA cement subjected to wet-dry cycles in sulfate solution was studied in this paper. The surface corrosion was recorded and the microstructures were examined by scanning electron microscopy (SEM. The results show that SO42-, Na+, Mg2+, and Cl− have an effect on the stability of ettringite. In the initial period of sulfate attack, salt crystallization is the main factor leading to the degradation of CSA cement specimens. The decomposition and the carbonation of ettringite will cause long-term degradation of CSA cement specimens under wet-dry cycles in sulfate solution. The surface spalling and microstructure degradation increase significantly with the increase of wet-dry cycles, sulfate concentration, and water to cement ratio. Magnesium sulfate and sodium chloride reduce the degradation when the concentration of sulfate ions is a constant value.

  14. Discovery of a Heparan sulfate 3- o -sulfation specific peeling reaction

    NARCIS (Netherlands)

    Huang, Yu; Mao, Yang; Zong, Chengli; Lin, Cheng; Boons, Geert Jan|info:eu-repo/dai/nl/088245489; Zaia, Joseph

    2015-01-01

    Heparan sulfate (HS) 3-O-sulfation determines the binding specificity of HS/heparin for antithrombin III and plays a key role in herpes simplex virus (HSV) infection. However, the low natural abundance of HS 3-O-sulfation poses a serious challenge for functional studies other than the two cases

  15. THE IMPACT OF BIOSTIMULATION ON THE FATE OF SULFATE AND ASSOCIATED SULFUR DYNAMICS IN GROUNDWATER

    Science.gov (United States)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-01-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides associated with the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction. PMID:25016586

  16. The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater

    Science.gov (United States)

    Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.

    2014-08-01

    The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.

  17. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    Science.gov (United States)

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  18. Human skin basement membrane-associated heparan sulphate proteoglycan: distinctive differences in ultrastructural localization as a function of developmental age

    DEFF Research Database (Denmark)

    Horiguchi, Y; Fine, J D; Couchman, J R

    1991-01-01

    was identical to that observed in neonatal and adult human skin. These findings demonstrate that active remodelling of the dermo-epidermal junction occurs during at least the first two trimesters, and affects not only basement membrane-associated structures but also specific antigens.......Recent studies have demonstrated that skin basement membrane components are expressed within the dermo-epidermal junction in an orderly sequence during human foetal development. We have investigated the ultrastructural localization of basement membrane-related antigens in human foetal skin...... at different developmental ages using two monoclonal antibodies to a well-characterized basement membrane-associated heparan sulphate proteoglycan. A series of foetal skin specimens (range, 54-142 gestational days) were examined using an immunoperoxidase immunoelectron microscopic technique. In specimens...

  19. Basement membrane and interstitial proteoglycans produced by MDCK cells correspond to those expressed in the kidney cortex

    DEFF Research Database (Denmark)

    Erickson, A C; Couchman, J R

    2001-01-01

    Multiple proteoglycans (PGs) are present in all basement membranes (BM) and may contribute to their structure and function, but their effects on cell behavior are not well understood. Their postulated functions include: a structural role in maintaining tissue histoarchitecture, or aid in selective...... filtration processes; sequestration of growth factors; and regulation of cellular differentiation. Furthermore, expression PGs has been found to vary in several disease states. In order to elucidate the role of PGs in the BM, a well-characterized model of polarized epithelium, Madin-Darby canine kidney (MDCK...... core proteins or CS stubs generated by cABC treatment, revealed that both basement membrane and interstitial PGs are secreted by MDCK cells. HSPGs expressed by MDCK cells are perlecan, agrin, and collagen XVIII. Various CSPG core proteins are made by MDCK cells and have been identified as biglycan...

  20. 21 CFR 172.822 - Sodium lauryl sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lauryl sulfate. 172.822 Section 172.822 Food... Multipurpose Additives § 172.822 Sodium lauryl sulfate. The food additive sodium lauryl sulfate may be safely... specifications: (1) It is a mixture of sodium alkyl sulfates consisting chiefly of sodium lauryl sulfate [CH2(CH2...

  1. Structural analysis of isomeric chondroitin sulfate oligosaccharides using regioselective 6-O-desulfation method and tandem mass spectrometry.

    Science.gov (United States)

    Chen, Shu-Ting; Her, Guor-Rong

    2014-09-16

    A strategy based on a regioselective 6-O-desulfation reaction and negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)) was developed for the structural delineation of isomeric chondroitin sulfate oligosaccharides. Product ions resulting from the glycosidic cleavage provided information about the number of sulfate groups in each sugar residue. After the regioselective 6-O-desulfation reaction, the number of sulfate groups on each residue was obtained using a tandem mass spectrometry analysis of the reaction product. The sulfation pattern could be obtained based on the product ions of analytes before and after the desulfation reaction. The strategy was demonstrated using a series of tetrasaccharides prepared from shark cartilage chondroitin sulfate D. Among the 12 identified tetrasaccharides, six structures had not been reported before. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry.

    Science.gov (United States)

    Flangea, Corina; Sisu, Eugen; Seidler, Daniela G; Zamfir, Alina D

    2012-01-15

    Biglycan (BGN) is a small proteoglycan that consists of a protein core containing leucine-rich repeat regions and two glycosaminoglycan (GAG) chains of either chondroitin sulfate (CS) or dermatan sulfate (DS) type. The development of novel, highly efficient analytical methods for structural identification of BGN-derived CS/DS motifs, possibly implicated in biological events, is currently the focus of research. In this work, an improved analytical method based on fully automated chip-nanoelectrospray ionization (nanoESI) in conjunction with high-capacity ion trap (HCT) multistage mass spectrometry (MS) by collision-induced dissociation (CID) was for the first time applied to BGN CS/DS oligosaccharide analysis. The CS/DS chains were released from transfected 293 BGN by β-elimination. The chain was digested with AC I lyase, and the resulting mixture was purified and subsequently separated by size exclusion chromatography (SEC). Di- and tetrasaccharide fractions were pooled and characterized in detail using the developed chip-nanoESI protocol. The chip-nanoESI MS profile in the negative ion mode revealed the presence of under-, regularly, and oversulfated species in both di- and tetrasaccharide fractions. CID MS(2)-MS(3) yielded sequence patterns consistent with unusual oversulfated 4,5-Δ-GlcA(2S)-GalNAc(4S) and 4,5-Δ-GlcA(2S)-GalNAc(6S)-IdoA(2S)-GalNAc(6S) motifs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  4. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  5. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  6. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    Science.gov (United States)

    Bassuoni, Moha