WorldWideScience

Sample records for suggest allosteric coupling

  1. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.

    Science.gov (United States)

    Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu

    2015-03-01

    Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. © 2014 Wiley Periodicals, Inc.

  2. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins.

    Science.gov (United States)

    Yao, Xin-Qiu; Malik, Rabia U; Griggs, Nicholas W; Skjærven, Lars; Traynor, John R; Sivaramakrishnan, Sivaraj; Grant, Barry J

    2016-02-26

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    Science.gov (United States)

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  4. Allosteric modulation of G-protein coupled receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, Tracy A

    2004-01-01

    are believed to activate (agonists) or inhibit (competitive antagonists) receptor signalling by binding the receptor at the same site as the endogenous agonist, the orthosteric site. In contrast, allosteric ligands modulate receptor function by binding to different regions in the receptor, allosteric sites....... In recent years, combinatorial chemistry and high throughput screening have helped identify several allosteric GPCR modulators with novel structures, several of which already have become valuable pharmacological tools and may be candidates for clinical testing in the near future. This mini review outlines...... the current status and perspectives of allosteric modulation of GPCR function with emphasis on the pharmacology of endogenous and synthesised modulators, their receptor interactions and the therapeutic prospects of allosteric ligands compared to orthosteric ligands....

  5. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    Science.gov (United States)

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-20

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity.

  6. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act?

    DEFF Research Database (Denmark)

    Schwartz, Thue W; Holst, Birgitte

    2007-01-01

    Many small-molecule agonists also display allosteric properties. Such ago-allosteric modulators act as co-agonists, providing additive efficacy--instead of partial antagonism--and they can affect--and often improve--the potency of the endogenous agonist. Surprisingly, the apparent binding sites...... different binding modes. In another, dimeric, receptor scenario, the endogenous agonist binds to one protomer while the ago-allosteric modulator binds to the other, 'allosteric' protomer. It is suggested that testing for ago-allosteric properties should be an integral part of the agonist drug discovery...... process because a compound that acts with--rather than against--the endogenous agonist could be an optimal agonist drug....

  7. Exploring allosteric coupling in the α-subunit of Heterotrimeric G proteins using evolutionary and ensemble-based approaches

    Directory of Open Access Journals (Sweden)

    Hilser Vincent J

    2008-05-01

    Full Text Available Abstract Background Allosteric coupling, which can be defined as propagation of a perturbation at one region of the protein molecule (such as ligand binding to distant sites in the same molecule, constitutes the most general mechanism of regulation of protein function. However, unlike molecular details of ligand binding, structural elements involved in allosteric effects are difficult to diagnose. Here, we identified allosteric linkages in the α-subunits of heterotrimeric G proteins, which were evolved to transmit membrane receptor signals by allosteric mechanisms, by using two different approaches that utilize fundamentally different and independent information. Results We analyzed: 1 correlated mutations in the family of G protein α-subunits, and 2 cooperativity of the native state ensemble of the Gαi1 or transducin. The combination of these approaches not only recovered already-known details such as the switch regions that change conformation upon nucleotide exchange, and those regions that are involved in receptor, effector or Gβγ interactions (indicating that the predictions of the analyses can be viewed with a measure of confidence, but also predicted new sites that are potentially involved in allosteric communication in the Gα protein. A summary of the new sites found in the present analysis, which were not apparent in crystallographic data, is given along with known functional and structural information. Implications of the results are discussed. Conclusion A set of residues and/or structural elements that are potentially involved in allosteric communication in Gα is presented. This information can be used as a guide to structural, spectroscopic, mutational, and theoretical studies on the allosteric network in Gα proteins, which will provide a better understanding of G protein-mediated signal transduction.

  8. Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors

    Science.gov (United States)

    Cavanaugh, Alice; Huang, Ying; Breitwieser, Gerda E

    2012-01-01

    Calcium-sensing receptors (CaSR) are integral to regulation of systemic Ca2+ homeostasis. Altered expression levels or mutations in CaSR cause Ca2+ handling diseases. CaSR is regulated by both endogenous allosteric modulators and allosteric drugs, including the first Food and Drug Administration-approved allosteric agonist, Cinacalcet HCl (Sensipar®). Recent studies suggest that allosteric modulators not only alter function of plasma membrane-localized CaSR, but regulate CaSR stability at the endoplasmic reticulum. This brief review summarizes our current understanding of the role of membrane-permeant allosteric agonists in cotranslational stabilization of CaSR, and highlights additional, indirect, signalling-dependent role(s) for membrane-impermeant allosteric drugs. Overall, these studies suggest that allosteric drugs act at multiple cellular organelles to control receptor abundance and hence function, and that drug hydrophobicity can bias the relative contributions of plasma membrane and intracellular organelles to CaSR abundance and signalling. LINKED ARTICLES This article is part of a themed section on the Molecular Pharmacology of G Protein-Coupled Receptors (GPCRs). To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-6. To view the 2010 themed section on the same topic visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2010.159.issue-5/issuetoc PMID:21470201

  9. Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.

    Science.gov (United States)

    Cressman, William J; Beckett, Dorothy

    2016-01-19

    Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.

  10. Development of allosteric modulators of GPCRs for treatment of CNS disorders.

    Science.gov (United States)

    Nickols, Hilary Highfield; Conn, P Jeffrey

    2014-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.

  11. Selective Allosteric Antagonists for the G Protein-Coupled Receptor GPRC6A Based on the 2-Phenylindole Privileged Structure Scaffold

    DEFF Research Database (Denmark)

    Johansson, Henrik; Boesgaard, Michael Worch; Nørskov-Lauritsen, Lenea

    2015-01-01

    G protein-coupled receptors (GPCRs) represent a biological target class of fundamental importance in drug therapy. The GPRC6A receptor is a newly deorphanized class C GPCR that we recently reported for the first allosteric antagonists based on the 2-arylindole privileged structure scaffold (e.g., 1...

  12. An evolution-based strategy for engineering allosteric regulation

    Science.gov (United States)

    Pincus, David; Resnekov, Orna; Reynolds, Kimberly A.

    2017-04-01

    Allosteric regulation provides a way to control protein activity at the time scale of milliseconds to seconds inside the cell. An ability to engineer synthetic allosteric systems would be of practical utility for the development of novel biosensors, creation of synthetic cell signaling pathways, and design of small molecule pharmaceuticals with regulatory impact. To this end, we outline a general approach—termed rational engineering of allostery at conserved hotspots (REACH)—to introduce novel regulation into a protein of interest by exploiting latent allostery that has been hard-wired by evolution into its structure. REACH entails the use of statistical coupling analysis (SCA) to identify ‘allosteric hotspots’ on protein surfaces, the development and implementation of experimental assays to test hotspots for functionality, and a toolkit of allosteric modulators to impinge on endogenous cellular circuitry. REACH can be broadly applied to rewire cellular processes to respond to novel inputs.

  13. The allosteric site regulates the voltage sensitivity of muscarinic receptors.

    Science.gov (United States)

    Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas

    2018-01-01

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Extracellular loop 2 of the free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator

    DEFF Research Database (Denmark)

    Smith, Nicola J; Ward, Richard J; Stoddart, Leigh A

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molec...

  15. Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method.

    Science.gov (United States)

    Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua

    2014-08-01

    Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.

  16. Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

    Science.gov (United States)

    Gerek, Z. Nevin; Ozkan, S. Banu

    2011-01-01

    The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation. PMID:21998559

  17. In Vivo Investigation of Escitalopram’s Allosteric Site on the Serotonin Transporter

    Science.gov (United States)

    Murray, Karen E.; Ressler, Kerry J.; Owens, Michael J.

    2015-01-01

    Escitalopram is a commonly prescribed antidepressant of the selective serotonin reuptake inhibitor class. Clinical evidence and mapping of the serotonin transporter (SERT) identified that escitalopram, in addition to its binding to a primary uptake-blocking site, is capable of binding to the SERT via an allosteric site that is hypothesized to alter escitalopram’s kinetics at the SERT. The studies reported here examined the in vivo role of the SERT allosteric site in escitalopram action. A knockin mouse model that possesses an allosteric-null SERT was developed. Autoradiographic studies indicated that the knockin protein was expressed at a lower density than endogenous mouse SERT (approximately 10–30% of endogenous mouse SERT), but the knockin mice are a viable tool to study the allosteric site. Microdialysis studies in the ventral hippocampus found no measurable decrease in extracellular serotonin response after local escitalopram challenge in mice without the allosteric site compared to mice with the site (p = 0.297). In marble burying assays there was a modest effect of the absence of the allosteric site, with a larger systemic dose of escitalopram (10-fold) necessary for the same effect as in mice with intact SERT (p = 0.023). However, there was no effect of the allosteric site in the tail suspension test. Together these data suggest that there may be a regional specificity in the role of the allosteric site. The lack of a robust effect overall suggests that the role of the allosteric site for escitalopram on the SERT may not produce meaningful in vivo effects. PMID:26621784

  18. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.

    Science.gov (United States)

    Keedy, Daniel A; Hill, Zachary B; Biel, Justin T; Kang, Emily; Rettenmaier, T Justin; Brandao-Neto, Jose; Pearce, Nicholas M; von Delft, Frank; Wells, James A; Fraser, James S

    2018-06-07

    Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. © 2018, Keedy et al.

  19. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    2010-11-01

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  20. Molecular mechanism of allosteric communication in Hsp70 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD modulate substrate recognition at the Substrate Binding Domain (SBD. Herein, a comparative analysis of an allosteric (Hsp70-DnaK and a non-allosteric structural homolog (Hsp110-Sse1 of the Hsp70 family is carried out through molecular dynamics simulations, starting from different conformations and ligand-states. Analysis of ligand-dependent modulation of internal fluctuations and local deformation patterns highlights the structural and dynamical changes occurring at residue level upon ATP-ADP exchange, which are connected to the conformational transition between closed and open structures. By identifying the dynamically responsive protein regions and specific cross-domain hydrogen-bonding patterns that differentiate Hsp70 from Hsp110 as a function of the nucleotide, we propose a molecular mechanism for the allosteric signal propagation of the ATP-encoded conformational signal.

  1. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    Science.gov (United States)

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  2. Allosteric modulation of endogenous metabolites as an avenue for drug discovery.

    Science.gov (United States)

    Wootten, Denise; Savage, Emilia E; Valant, Celine; May, Lauren T; Sloop, Kyle W; Ficorilli, James; Showalter, Aaron D; Willard, Francis S; Christopoulos, Arthur; Sexton, Patrick M

    2012-08-01

    G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a key drug target class. Recently, allosteric drugs that can co-bind with and modulate the activity of the endogenous ligand(s) for the receptor have become a major focus of the pharmaceutical and biotechnology industry for the development of novel GPCR therapeutic agents. This class of drugs has distinct properties compared with drugs targeting the endogenous (orthosteric) ligand-binding site that include the ability to sculpt cellular signaling and to respond differently in the presence of discrete orthosteric ligands, a behavior termed "probe dependence." Here, using cell signaling assays combined with ex vivo and in vivo studies of insulin secretion, we demonstrate that allosteric ligands can cause marked potentiation of previously "inert" metabolic products of neurotransmitters and peptide hormones, a novel consequence of the phenomenon of probe dependence. Indeed, at the muscarinic M(2) receptor and glucagon-like peptide 1 (GLP-1) receptor, allosteric potentiation of the metabolites, choline and GLP-1(9-36)NH(2), respectively, was ~100-fold and up to 200-fold greater than that seen with the physiological signaling molecules acetylcholine and GLP-1(7-36)NH(2). Modulation of GLP-1(9-36)NH(2) was also demonstrated in ex vivo and in vivo assays of insulin secretion. This work opens up new avenues for allosteric drug discovery by directly targeting modulation of metabolites, but it also identifies a behavior that could contribute to unexpected clinical outcomes if interaction of allosteric drugs with metabolites is not part of their preclinical assessment.

  3. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  4. Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4

    DEFF Research Database (Denmark)

    Watterson, Kenneth R; Hansen, Steffen V F; Hudson, Brian D

    2017-01-01

    High-affinity and selective antagonists that are able to block the actions of both endogenous and synthetic agonists of G protein-coupled receptors are integral to analysis of receptor function and to support suggestions of therapeutic potential. Although there is great interest in the potential...... of endogenous and synthetic agonists, clear agonist probe dependence in the nature of allosteric modulation was apparent. Although AH-7614 did not antagonize the second long-chain free fatty acid receptor, free fatty acid receptor 1, the simple chemical structure of AH-7614 containing features found in many...

  5. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    Science.gov (United States)

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.

  6. The future of type 1 cannabinoid receptor allosteric ligands.

    Science.gov (United States)

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  7. The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers.

    Science.gov (United States)

    Kennedy, Dylan P; McRobb, Fiona M; Leonhardt, Susan A; Purdy, Michael; Figler, Heidi; Marshall, Melissa A; Chordia, Mahendra; Figler, Robert; Linden, Joel; Abagyan, Ruben; Yeager, Mark

    2014-02-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists.

  8. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    Science.gov (United States)

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  9. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB a–b-subunit interface and affects multiple steps in the enzyme’s overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  10. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α–β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  11. Allosteric cross-talk in chromatin can mediate drug-drug synergy

    Science.gov (United States)

    Adhireksan, Zenita; Palermo, Giulia; Riedel, Tina; Ma, Zhujun; Muhammad, Reyhan; Rothlisberger, Ursula; Dyson, Paul J.; Davey, Curt A.

    2017-03-01

    Exploitation of drug-drug synergism and allostery could yield superior therapies by capitalizing on the immensely diverse, but highly specific, potential associated with the biological macromolecular landscape. Here we describe a drug-drug synergy mediated by allosteric cross-talk in chromatin, whereby the binding of one drug alters the activity of the second. We found two unrelated drugs, RAPTA-T and auranofin, that yield a synergistic activity in killing cancer cells, which coincides with a substantially greater number of chromatin adducts formed by one of the compounds when adducts from the other agent are also present. We show that this occurs through an allosteric mechanism within the nucleosome, whereby defined histone adducts of one drug promote reaction of the other drug at a distant, specific histone site. This opens up possibilities for epigenetic targeting and suggests that allosteric modulation in nucleosomes may have biological relevance and potential for therapeutic interventions.

  12. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication.

    Directory of Open Access Journals (Sweden)

    Gabrielle Stetz

    2017-01-01

    Full Text Available Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of

  13. AIM for Allostery: Using the Ising Model to Understand Information Processing and Transmission in Allosteric Biomolecular Systems.

    Science.gov (United States)

    LeVine, Michael V; Weinstein, Harel

    2015-05-01

    In performing their biological functions, molecular machines must process and transmit information with high fidelity. Information transmission requires dynamic coupling between the conformations of discrete structural components within the protein positioned far from one another on the molecular scale. This type of biomolecular "action at a distance" is termed allostery . Although allostery is ubiquitous in biological regulation and signal transduction, its treatment in theoretical models has mostly eschewed quantitative descriptions involving the system's underlying structural components and their interactions. Here, we show how Ising models can be used to formulate an approach to allostery in a structural context of interactions between the constitutive components by building simple allosteric constructs we termed Allosteric Ising Models (AIMs). We introduce the use of AIMs in analytical and numerical calculations that relate thermodynamic descriptions of allostery to the structural context, and then show that many fundamental properties of allostery, such as the multiplicative property of parallel allosteric channels, are revealed from the analysis of such models. The power of exploring mechanistic structural models of allosteric function in more complex systems by using AIMs is demonstrated by building a model of allosteric signaling for an experimentally well-characterized asymmetric homodimer of the dopamine D2 receptor.

  14. Exploiting protein flexibility to predict the location of allosteric sites

    Directory of Open Access Journals (Sweden)

    Panjkovich Alejandro

    2012-10-01

    Full Text Available Abstract Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity, by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing

  15. Non-site-specific allosteric effect of oxygen on human hemoglobin under high oxygen partial pressure.

    Science.gov (United States)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2014-04-08

    Protein allostery is essential for vital activities. Allosteric regulation of human hemoglobin (HbA) with two quaternary states T and R has been a paradigm of allosteric structural regulation of proteins. It is widely accepted that oxygen molecules (O2) act as a "site-specific" homotropic effector, or the successive O2 binding to the heme brings about the quaternary regulation. However, here we show that the site-specific allosteric effect is not necessarily only a unique mechanism of O2 allostery. Our simulation results revealed that the solution environment of high O2 partial pressure enhances the quaternary change from T to R without binding to the heme, suggesting an additional "non-site-specific" allosteric effect of O2. The latter effect should play a complementary role in the quaternary change by affecting the intersubunit contacts. This analysis must become a milestone in comprehensive understanding of the allosteric regulation of HbA from the molecular point of view.

  16. Conopeptide ρ-TIA defines a new allosteric site on the extracellular surface of the α1B-adrenoceptor.

    Science.gov (United States)

    Ragnarsson, Lotten; Wang, Ching-I Anderson; Andersson, Åsa; Fajarningsih, Dewi; Monks, Thea; Brust, Andreas; Rosengren, K Johan; Lewis, Richard J

    2013-01-18

    The G protein-coupled receptor (GPCR) superfamily is an important drug target that includes over 1000 membrane receptors that functionally couple extracellular stimuli to intracellular effectors. Despite the potential of extracellular surface (ECS) residues in GPCRs to interact with subtype-specific allosteric modulators, few ECS pharmacophores for class A receptors have been identified. Using the turkey β(1)-adrenergic receptor crystal structure, we modeled the α(1B)-adrenoceptor (α(1B)-AR) to help identify the allosteric site for ρ-conopeptide TIA, an inverse agonist at this receptor. Combining mutational radioligand binding and inositol 1-phosphate signaling studies, together with molecular docking simulations using a refined NMR structure of ρ-TIA, we identified 14 residues on the ECS of the α(1B)-AR that influenced ρ-TIA binding. Double mutant cycle analysis and docking confirmed that ρ-TIA binding was dominated by a salt bridge and cation-π between Arg-4-ρ-TIA and Asp-327 and Phe-330, respectively, and a T-stacking-π interaction between Trp-3-ρ-TIA and Phe-330. Water-bridging hydrogen bonds between Asn-2-ρ-TIA and Val-197, Trp-3-ρ-TIA and Ser-318, and the positively charged N terminus and Glu-186, were also identified. These interactions reveal that peptide binding to the ECS on transmembrane helix 6 (TMH6) and TMH7 at the base of extracellular loop 3 (ECL3) is sufficient to allosterically inhibit agonist signaling at a GPCR. The ligand-accessible ECS residues identified provide the first view of an allosteric inhibitor pharmacophore for α(1)-adrenoceptors and mechanistic insight and a new set of structural constraints for the design of allosteric antagonists at related GPCRs.

  17. Allosteric transition: a comparison of two models

    DEFF Research Database (Denmark)

    Bindslev, Niels

    2013-01-01

    Introduction Two recent models are in use for analysis of allosteric drug action at receptor sites remote from orthosteric binding sites. One is an allosteric two-state mechanical model derived in 2000 by David Hall. The other is an extended operational model developed in 2007 by Arthur...... of model both for simulation and analysis of allosteric concentration-responses at equilibrium or steady-state. Conclusions As detailed knowledge of receptors systems becomes available, systems with several pathways and states and/ or more than two binding sites should be analysed by extended forms...

  18. Conopeptide ρ-TIA Defines a New Allosteric Site on the Extracellular Surface of the α1B-Adrenoceptor*♦

    Science.gov (United States)

    Ragnarsson, Lotten; Wang, Ching-I Anderson; Andersson, Åsa; Fajarningsih, Dewi; Monks, Thea; Brust, Andreas; Rosengren, K. Johan; Lewis, Richard J.

    2013-01-01

    The G protein-coupled receptor (GPCR) superfamily is an important drug target that includes over 1000 membrane receptors that functionally couple extracellular stimuli to intracellular effectors. Despite the potential of extracellular surface (ECS) residues in GPCRs to interact with subtype-specific allosteric modulators, few ECS pharmacophores for class A receptors have been identified. Using the turkey β1-adrenergic receptor crystal structure, we modeled the α1B-adrenoceptor (α1B-AR) to help identify the allosteric site for ρ-conopeptide TIA, an inverse agonist at this receptor. Combining mutational radioligand binding and inositol 1-phosphate signaling studies, together with molecular docking simulations using a refined NMR structure of ρ-TIA, we identified 14 residues on the ECS of the α1B-AR that influenced ρ-TIA binding. Double mutant cycle analysis and docking confirmed that ρ-TIA binding was dominated by a salt bridge and cation-π between Arg-4-ρ-TIA and Asp-327 and Phe-330, respectively, and a T-stacking-π interaction between Trp-3-ρ-TIA and Phe-330. Water-bridging hydrogen bonds between Asn-2-ρ-TIA and Val-197, Trp-3-ρ-TIA and Ser-318, and the positively charged N terminus and Glu-186, were also identified. These interactions reveal that peptide binding to the ECS on transmembrane helix 6 (TMH6) and TMH7 at the base of extracellular loop 3 (ECL3) is sufficient to allosterically inhibit agonist signaling at a GPCR. The ligand-accessible ECS residues identified provide the first view of an allosteric inhibitor pharmacophore for α1-adrenoceptors and mechanistic insight and a new set of structural constraints for the design of allosteric antagonists at related GPCRs. PMID:23184947

  19. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease.

    Science.gov (United States)

    Lin, Chien-Chu; Su, Shih-Chieh; Su, Ming-Yuan; Liang, Pi-Hui; Feng, Chia-Cheng; Wu, Shih-Hsiung; Chang, Chung-I

    2016-05-03

    The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.

    Science.gov (United States)

    Wagner, Jeffrey R; Lee, Christopher T; Durrant, Jacob D; Malmstrom, Robert D; Feher, Victoria A; Amaro, Rommie E

    2016-06-08

    Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.

  1. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    that are not likely to be inferred from mutagenesis studies. Furthermore, paths from Met306 to Ile153 (N-terminus) and Trp364, both representing hallmark residues of allostery, are 7% and 37% longer, respectively, in free FVIIa. Thus, there is significantly weaker coupling between the TF contact point and key......Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective......: To elucidate the activation of allosteric networks in the catalytic domain of the FVIIa protease it is when bound to TF.MethodsLong-timescale molecular dynamics simulations of FVIIa, free and in complex with TF, were executed and analyzed by dynamic network analysis. Results: Allosteric paths of correlated...

  2. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W. (U. Sao Paulo); (Kentucky)

    2012-05-25

    Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the A{beta} peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  3. Identification of the Allosteric Regulatory Site of Insulysin

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bhasin, Sonia K.; Song, Eun Suk; Scoggin, Kirsten E.; Juliano, Maria A.; Juliano, Luiz; Hersh, Louis B.; Rodgers, David W.; Gerrard, Juliet Ann

    2011-06-24

    Background Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP. Principal Findings The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric kinetics and activation by a small peptide, as well as greatly reducing activation by ATP, demonstrating that this site plays a key role in allostery. Comparison of the peptide bound IDE structure (using a low activity E111F IDE mutant) with unliganded wild type IDE shows a change in the interface between two halves of the clamshell-like molecule, which may enhance enzyme activity by altering the equilibrium between closed and open conformations. In addition, changes in the dimer interface suggest a basis for communication between subunits. Conclusions/Significance Our findings indicate that a region remote from the active site mediates allosteric activation of insulysin by peptides. Activation may involve a small conformational change that weakens the interface between two halves of the enzyme.

  4. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    2014-06-01

    Full Text Available A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple

  5. [Pharmacological characteristics of drugs targeted on calcium-sensing receptor.-properties of cinacalcet hydrochloride as allosteric modulator].

    Science.gov (United States)

    Nagano, Nobuo; Tsutsui, Takaaki

    2016-06-01

    Calcimimetics act as positive allosteric modulators of the calcium-sensing receptor (CaSR), thereby decreasing parathyroid hormone (PTH) secretion from the parathyroid glands. On the other hand, negative allosteric modulators of the CaSR with stimulatory effect on PTH secretion are termed calcilytics. The calcimimetic cinacalcet hydrochloride (cinacalcet) is the world's first allosteric modulator of G protein-coupled receptor to enter the clinical market. Cinacalcet just tunes the physiological effects of Ca(2+), an endogenous ligand, therefore, shows high selectivity and low side effects. Calcimimetics also increase cell surface CaSR expression by acting as pharmacological chaperones (pharmacoperones). It is considered that the cinacalcet-induced upper gastrointestinal problems are resulted from enhanced physiological responses to Ca(2+) and amino acids via increased sensitivity of digestive tract CaSR by cinacalcet. While clinical developments of calcilytics for osteoporosis were unfortunately halted or terminated due to paucity of efficacy, it is expected that calcilytics may be useful for the treatment of patients with activating CaSR mutations, asthma, and idiopathic pulmonary artery hypertension.

  6. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities

    Science.gov (United States)

    Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  7. The different ways through which specificity works in orthosteric and allosteric drugs.

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung

    2012-01-01

    Currently, there are two types of drugs on the market: orthosteric, which bind at the active site; and allosteric, which bind elsewhere on the protein surface, and allosterically change the conformation of the protein binding site. In this perspective we argue that the different mechanisms through which the two drug types affect protein activity and their potential pitfalls call for different considerations in drug design. The key problem facing orthosteric drugs is side effects which can occur by drug binding to homologous proteins sharing a similar binding site. Hence, orthosteric drugs should have very high affinity to the target; this would allow a low dosage to selectively achieve the goal of target-only binding. By contrast, allosteric drugs work by shifting the free energy landscape. Their binding to the protein surface perturbs the protein surface atoms, and the perturbation propagates like waves, finally reaching the binding site. Effective drugs should have atoms in good contact with the 'right' protein atoms; that is, the contacts should elicit propagation waves optimally reaching the protein binding site target. While affinity is important, the design should consider the protein conformational ensemble and the preferred propagation states. We provide examples from functional in vivo scenarios for both types of cases, and suggest how high potency can be achieved in allosteric drug development.

  8. The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Ulven, Trond; Milligan, Graeme

    2013-01-01

    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention...... safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge...

  9. Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor

    DEFF Research Database (Denmark)

    Gloriam, David E.; Wellendorph, Petrine; Johansen, Lars Dan

    2011-01-01

    and pharmacological character: (1) chemogenomic lead identification through the first, to our knowledge, ligand inference between two different GPCR families, Families A and C; and (2) the discovery of the most selective GPRC6A allosteric antagonists discovered to date. The unprecedented inference of...... pharmacological activity across GPCR families provides proof-of-concept for in silico approaches against Family C targets based on Family A templates, greatly expanding the prospects of successful drug design and discovery. The antagonists were tested against a panel of seven Family A and C G protein-coupled receptors...

  10. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer

    Science.gov (United States)

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D.

    2017-01-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson’s disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other’s effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. PMID:26051403

  11. Non equivalence of the chains in the allosteric interaction of the hemoglobin

    International Nuclear Information System (INIS)

    Jacchieri, S.G.

    1983-01-01

    The importance, for the temperature dependence of the cooperative behaviour of hemoglobin, of the functional non equivalence of the polypeptide chains from which the hemoglobin molecule is built is studied. With such purpose thermodynamic allosteric parameters are introduced called 'mean allosteric parameters' which relate the last two oxygen bindings to the firsttwo ones. It is shown that the mean allosteric free energy is strongly correlated to the Hill parameter which is a classic measure of cooperativity; hence, the mean allosteric free energy measures the hemoglobin cooperativity. Recent experimental data show that the mean allosteric free energy decreasses with temperature; this is due to the mean allosteric enthalphy and entropy being positive quantities. To analise such behaviour in terms of thermodynamic's arguments equations are derived for the thermodynamic parameters of oxygen binding to hemoglobin in terms of those of its chains. Since the obtained equations have a great number of terms the same treatment is applied to a hypothetic dimer from which simpler relations are derived. From both cases it is concluded that the positive character of the mean allosteric enthalpy and entropy is due to the presence of cooperative and anticooperative terms. Since the last terms are absent in the equations of allosteric homoproteins, the characteristic temperature-dependence of hemoglobin's cooperativity depends on the presence of non-equivalent chains. (Author) [pt

  12. First steps in the direction of synthetic, allosteric, direct inhibitors of thrombin and factor Xa.

    Science.gov (United States)

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R

    2009-08-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that (i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; (ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and (iii) the mechanism of inhibition is allosteric. The molecules represent the first allosteric small molecule inhibitors of the two enzymes.

  13. First Steps in the Direction of Synthetic, Allosteric, Direct Inhibitors of Thrombin and Factor Xa

    Science.gov (United States)

    Verghese, Jenson; Liang, Aiye; Sidhu, Preet Pal Singh; Hindle, Michael; Zhou, Qibing; Desai, Umesh R.

    2009-01-01

    Designing non-saccharide functional mimics of heparin is a major challenge. In this work, a library of small, aromatic molecules based on the sulfated DHP scaffold was synthesized and screened against thrombin and factor Xa. The results reveal that i) selected monomeric benzofuran derivatives inhibit the two enzymes, albeit weakly; ii) the two enzymes recognize different structural features in the benzofurans studied suggesting significant selectivity of recognition; and iii) the mechanism of inhibition is allosteric. The molecules represent the first allosteric small molecule inhibitors of the two enzymes. PMID:19540113

  14. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evolution of allosteric regulation in chorismate mutases from early plants

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Kourtney; Holland, Cynthia K.; Starks, Courtney M.; Jez, Joseph M.

    2017-09-28

    Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 Å X-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.

  16. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben; Nowlin, Dawn; Grantner, Rita; Karlicek-Bryant, Shannon; Feng, Jun Li; Jenkinson, Stephen; Freeman-Cook, Kevin; Dann, Stephen G.; Wang, Xiaoli; Wells, Peter A.; Fantin, Valeria R.; Stewart, Al E.; Grant, Stephan K. (Pfizer)

    2017-05-29

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzyme turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.

  17. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  18. Allosteric Regulation of Proteins

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 1. Allosteric Regulation of Proteins: A Historical Perspective on the Development of Concepts and Techniques. General Article Volume 22 Issue 1 January 2017 pp 37-50 ...

  19. Mutations that silence constitutive signaling activity in the allosteric ligand-binding site of the thyrotropin receptor.

    Science.gov (United States)

    Haas, Ann-Karin; Kleinau, Gunnar; Hoyer, Inna; Neumann, Susanne; Furkert, Jens; Rutz, Claudia; Schülein, Ralf; Gershengorn, Marvin C; Krause, Gerd

    2011-01-01

    The thyrotropin receptor (TSHR) exhibits elevated cAMP signaling in the basal state and becomes fully activated by thyrotropin. Previously we presented evidence that small-molecule ligands act allosterically within the transmembrane region in contrast to the orthosteric extracellular hormone-binding sites. Our goal in this study was to identify positions that surround the allosteric pocket and that are sensitive for inactivation of TSHR. Homology modeling combined with site-directed mutagenesis and functional characterization revealed seven mutants located in the allosteric binding site that led to a decrease of basal cAMP signaling activity. The majority of these silencing mutations, which constrain the TSHR in an inactive conformation, are found in two clusters when mapped onto the 3D structural model. We suggest that the amino acid positions identified herein are indicating locations where small-molecule antagonists, both neutral antagonists and inverse agonists, might interfere with active TSHR conformations.

  20. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A. (Novartis)

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  1. Allosteric behavior in the activation of transducin mediated by rhodopsin

    International Nuclear Information System (INIS)

    Wessling-Resnick, M.; Johnson, G.I.

    1986-01-01

    Transducin is a member of the family of regulatory GTP-binding proteins which provide a signal transduction mechanism for many cell surface receptors. These receptors act in a catalytic manner to displace GDP bound to the G protein in exchange for GTP during a process referred to as activation. The authors have studied the steady-state kinetics of the activation of transducin mediated by rhodopsin by employing the non-hydrolyzable GTP analog, [ 35 S]-GTPγS. The substrate-velocity curves display remarkable allosteric behavior with a Hill coefficient, n/sub H/ = 2. Lineweaver-Burke plots with respect to reciprocal [transducin] show curvilinearity indicative of positive cooperativity. However, a series of parallel lines are generated by plotting the linear transformation as [transducin] -2 . The double reciprocal plots with respect to [GTPγS] are a series of parallel lines. The initial rate analysis supports a double displacement catalytic mechanism for the molecular interactions between the photon receptor, G protein, and guanine nucleotides. It remains to be determined whether the positive cooperative behavior the authors observe can be assigned to the interaction of multiple transducins with rhodopsin, the presence of an allosteric effector, or hysteresis in the receptor's activity. These unique observations also provide insight into the molecular interactions of members of the family of G protein-coupled receptors

  2. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Isaure Chauvot de Beauchêne

    2014-07-01

    Full Text Available Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D localized in crucial regulatory segments, the juxtamembrane region (JMR and the activation (A- loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts.

  3. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Boesgaard, Michael W; Munk, Christian

    2017-01-01

    MOTIVATION: Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry....... Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. RESULTS: We uncover one common site for both positive and negative modulators with different amino acid layouts that can...

  4. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  5. The allosteric communication pathways in KIX domain of CBP

    Science.gov (United States)

    Palazzesi, Ferruccio; Barducci, Alessandro; Tollinger, Martin; Parrinello, Michele

    2013-01-01

    Allosteric regulation plays an important role in a myriad of biomacromolecular processes. Specifically, in a protein, the process of allostery refers to the transmission of a local perturbation, such as ligand binding, to a distant site. Decades after the discovery of this phenomenon, models built on static images of proteins are being reconsidered with the knowledge that protein dynamics plays an important role in its function. Molecular dynamics simulations are a valuable tool for studying complex biomolecular systems, providing an atomistic description of their structure and dynamics. Unfortunately, their predictive power has been limited by the complexity of the biomolecule free-energy surface and by the length of the allosteric timescale (in the order of milliseconds). In this work, we are able to probe the origins of the allosteric changes that transcription factor mixed lineage leukemia (MLL) causes to the interactions of KIX domain of CREB-binding protein (CBP) with phosphorylated kinase inducible domain (pKID), by combing all-atom molecular dynamics with enhanced sampling methods recently developed in our group. We discuss our results in relation to previous NMR studies. We also develop a general simulations protocol to study allosteric phenomena and many other biological processes that occur in the micro/milliseconds timescale. PMID:23940332

  6. Computational redesign reveals allosteric mutation hotspots of organophosphate hydrolase that enhance organophosphate hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Reed B. [Univ. of North Carolina, Chapel Hill, NC (United States); Ding, Feng [Clemson Univ., SC (United States); Ye, Dongmei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ackerman, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dokholyan, Nikolay V. [Univ. of North Carolina, Chapel Hill, NC (United States)

    2015-04-01

    Organophosphates are widely used for peaceful (agriculture) and military purposes (chemical warfare agents). The extraordinary toxicity of organophosphates and the risk of deployment, make it critical to develop means for their rapid and efficient deactivation. Organophosphate hydrolase (OPH) already plays an important role in organophosphate remediation, but is insufficient for therapeutic or prophylactic purposes primarily due to low substrate affinity. Current efforts focus on directly modifying the active site to differentiate substrate specificity and increase catalytic activity. Here, we present a novel strategy for enhancing the general catalytic efficiency of OPH through computational redesign of the residues that are allosterically coupled to the active site and validated our design by mutagenesis. Specifically, we identify five such hot-spot residues for allosteric regulation and assay these mutants for hydrolysis activity against paraoxon, a chemical-weapons simulant. A high percentage of the predicted mutants exhibit enhanced activity over wild-type (kcat =16.63 s-1), such as T199I/T54I (899.5 s-1) and C227V/T199I/T54I (848 s-1), while the Km remains relatively unchanged in our high-throughput cell-free expression system. Further computational studies of protein dynamics reveal four distinct distal regions coupled to the active site that display significant changes in conformation dynamics upon these identified mutations. These results validate a computational design method that is both efficient and easily adapted as a general procedure for enzymatic enhancement.

  7. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569.

    Science.gov (United States)

    Fay, Jonathan F; Farrens, David L

    2012-09-28

    Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.

  8. Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions.

    Science.gov (United States)

    Hacisuleyman, Aysima; Erman, Burak

    2017-06-01

    A fast and approximate method of generating allosteric communication landscapes in proteins is presented by using Schreiber's entropy transfer concept in combination with the Gaussian Network Model of proteins. Predictions of the model and the allosteric communication landscapes generated show that information transfer in proteins does not necessarily take place along a single path, but an ensemble of pathways is possible. The model emphasizes that knowledge of entropy only is not sufficient for determining allosteric communication and additional information based on time delayed correlations should be introduced, which leads to the presence of causality in proteins. The model provides a simple tool for mapping entropy sink-source relations into pairs of residues. By this approach, residues that should be manipulated to control protein activity may be determined. This should be of great importance for allosteric drug design and for understanding the effects of mutations on function. The model is applied to determine allosteric communication in three proteins, Ubiquitin, Pyruvate Kinase, and the PDZ domain. Predictions are in agreement with molecular dynamics simulations and experimental evidence. Proteins 2017; 85:1056-1064. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    DEFF Research Database (Denmark)

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona

    2016-01-01

    ) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates b2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located...... near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however...... cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions....

  10. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization.

    Directory of Open Access Journals (Sweden)

    Dipannita Basu

    Full Text Available The activity of G protein-coupled receptors (GPCRs is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R-[(2(S-pyrrolidinylcarbonylamino]-2-oxo-1-pyrrolidineacetamide (PAOPA, in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK 1/2. Additionally, an in vitro cellular model was also used to study PAOPA's effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA's development into a novel drug for the

  11. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. U.S. Government work not protected by U.S. copyright.

  12. Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D1-D3 Receptor Heterotetramer

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T.; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.

    2014-01-01

    The dopamine D1 receptor–D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa–induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R–D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. PMID:25097189

  13. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; El-Fakahany, E. E.

    2010-01-01

    Roč. 3, č. 9 (2010), s. 2838-2860 ISSN 1424-8247 R&D Projects: GA ČR GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic acetylcholine receptors * allosteric modulation * Alzheimer´s disease Subject RIV: CE - Biochemistry

  14. Use of allosteric targets in the discovery of safer drugs.

    Science.gov (United States)

    Grover, Ashok Kumar

    2013-01-01

    The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Consequently, such drugs may have adverse side effects. A new basis of drug discovery is emerging based on the binding of the drug molecules to sites away (allosteric) from the orthosteric sites. It is possible to find allosteric sites which are unique and hence more specific as targets for drug discovery. Of many available examples, two are highlighted here. The first is caloxins - a new class of highly specific inhibitors of plasma membrane Ca²⁺ pumps. The second concerns the modulation of receptors for the neurotransmitter acetylcholine, which binds to 12 types of receptors. Exploitation of allosteric sites has led to the discovery of drugs which can selectively modulate the activation of only 1 (M1 muscarinic) out of the 12 different types of acetylcholine receptors. These drugs are being tested for schizophrenia treatment. It is anticipated that the drug discovery exploiting allosteric sites will lead to more effective therapeutic agents with fewer side effects. Copyright © 2013 S. Karger AG, Basel.

  15. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  16. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    Science.gov (United States)

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  17. Identification of an allosteric binding site for RORγt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Scheepstra, Marcel; Leysen, Seppe; vanAlmen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc (Merck); (Eindhoven)

    2015-12-07

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors.

  18. Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state, while the truncated apo protein adopts an open conformation (active state. Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors.

  19. The allosteric switching mechanism in bacteriophage MS2

    Energy Technology Data Exchange (ETDEWEB)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu [Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474 (United States)

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  20. 2013 Philip S. Portoghese Medicinal Chemistry Lectureship: Drug Discovery Targeting Allosteric Sites†

    Science.gov (United States)

    2015-01-01

    The identification of sites on receptors topographically distinct from the orthosteric sites, so-called allosteric sites, has heralded novel approaches and modes of pharmacology for target modulation. Over the past 20 years, our understanding of allosteric modulation has grown significantly, and numerous advantages, as well as caveats (e.g., flat structure–activity relationships, species differences, “molecular switches”), have been identified. For multiple receptors and proteins, numerous examples have been described where unprecedented levels of selectivity are achieved along with improved physiochemical properties. While not a panacea, these novel approaches represent exciting opportunities for tool compound development to probe the pharmacology and therapeutic potential of discrete molecular targets, as well as new medicines. In this Perspective, in commemoration of the 2013 Philip S. Portoghese Medicinal Chemistry Lectureship (LindsleyC. W.Adventures in allosteric drug discovery. Presented at the 246th National Meeting of the American Chemical Society, Indianapolis, IN, September 10, 2013; The 2013 Portoghese Lectureship), several vignettes of drug discovery campaigns targeting novel allosteric mechanisms will be recounted, along with lessons learned and guidelines that have emerged for successful lead optimization. PMID:25180768

  1. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C

    2011-01-01

    -allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...... preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units....

  2. A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains.

    Directory of Open Access Journals (Sweden)

    Alexandr P Kornev

    2008-04-01

    Full Text Available Cyclic nucleotides (cAMP and cGMP regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1 the phosphate binding cassette (PBC, which binds the cAMP ribose-phosphate, 2 the "hinge," a flexible helix, which contacts the PBC, 3 the beta(2,3 loop, which provides precise positioning of an invariant arginine from the PBC, and 4 a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif. The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the beta(2,3 loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains.

  3. A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor

    DEFF Research Database (Denmark)

    Grundmann, Manuel; Tikhonova, Irina G; Hudson, Brian D

    2016-01-01

    Ligands targeting G protein-coupled receptors (GPCRs) are currently classified as either orthosteric, allosteric, or dualsteric/bitopic. Here, we introduce a new pharmacological concept for GPCR functional modulation: sequential receptor activation. A hallmark feature of this is a stepwise ligand...

  4. Tuning Transcriptional Regulation through Signaling: A Predictive Theory of Allosteric Induction.

    Science.gov (United States)

    Razo-Mejia, Manuel; Barnes, Stephanie L; Belliveau, Nathan M; Chure, Griffin; Einav, Tal; Lewis, Mitchell; Phillips, Rob

    2018-04-25

    Allosteric regulation is found across all domains of life, yet we still lack simple, predictive theories that directly link the experimentally tunable parameters of a system to its input-output response. To that end, we present a general theory of allosteric transcriptional regulation using the Monod-Wyman-Changeux model. We rigorously test this model using the ubiquitous simple repression motif in bacteria by first predicting the behavior of strains that span a large range of repressor copy numbers and DNA binding strengths and then constructing and measuring their response. Our model not only accurately captures the induction profiles of these strains, but also enables us to derive analytic expressions for key properties such as the dynamic range and [EC 50 ]. Finally, we derive an expression for the free energy of allosteric repressors that enables us to collapse our experimental data onto a single master curve that captures the diverse phenomenology of the induction profiles. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    Science.gov (United States)

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  7. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  8. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  9. A Non-Competitive Inhibitor of VCP/p97 and VPS4 Reveals Conserved Allosteric Circuits in Type I and II AAA ATPases.

    Science.gov (United States)

    Pöhler, Robert; Krahn, Jan H; van den Boom, Johannes; Dobrynin, Grzegorz; Kaschani, Farnusch; Eggenweiler, Hans-Michael; Zenke, Frank T; Kaiser, Markus; Meyer, Hemmo

    2018-02-05

    AAA ATPases have pivotal functions in diverse cellular processes essential for survival and proliferation. Revealing strategies for chemical inhibition of this class of enzymes is therefore of great interest for the development of novel chemotherapies or chemical tools. Here, we characterize the compound MSC1094308 as a reversible, allosteric inhibitor of the type II AAA ATPase human ubiquitin-directed unfoldase (VCP)/p97 and the type I AAA ATPase VPS4B. Subsequent proteomic, genetic and biochemical studies indicate that MSC1094308 binds to a previously characterized drugable hotspot of p97, thereby inhibiting the D2 ATPase activity. Our results furthermore indicate that a similar allosteric site exists in VPS4B, suggesting conserved allosteric circuits and drugable sites in both type I and II AAA ATPases. Our results may thus guide future chemical tool and drug discovery efforts for the biomedically relevant AAA ATPases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant.

    Science.gov (United States)

    Zhong, Huailing; Hansen, Kasper B; Boyle, Noel J; Han, Kiho; Muske, Galina; Huang, Xinyan; Egebjerg, Jan; Sánchez, Connie

    2009-10-25

    The human serotonin transporter (hSERT) has primary and allosteric binding sites for escitalopram and R-citalopram. Previous studies have established that the interaction of these two compounds at a low affinity allosteric binding site of hSERT can affect the dissociation of [(3)H]escitalopram from hSERT. The allosteric binding site involves a series of residues in the 10th, 11th, and 12th trans-membrane domains of hSERT. The low affinity allosteric activities of escitalopram and R-citalopram are essentially eliminated in a mutant hSERT with changes in some of these residues, namely A505V, L506F, I507L, S574T, I575T, as measured in dissociation binding studies. We confirm that in association binding experiments, R-citalopram at clinically relevant concentrations reduces the association rate of [(3)H]escitalopram as a ligand to wild type hSERT. We demonstrate that the ability of R-citalopram to reduce the association rate of escitalopram is also abolished in the mutant hSERT (A505V, L506F, I507L, S574T, I575T), along with the expected disruption the low affinity allosteric function on dissociation binding. This suggests that the allosteric binding site mediates both the low affinity and higher affinity interactions between R-citalopram, escitalopram, and hSERT. Our data add an additional structural basis for the different efficacies of escitalopram compared to racemic citalopram reported in animal studies and clinical trials, and substantiate the hypothesis that hSERT has complex allosteric mechanisms underlying the unexplained in vivo activities of its inhibitors.

  11. Sequence analysis and molecular characterization of Clonorchis sinensis hexokinase, an unusual trimeric 50-kDa glucose-6-phosphate-sensitive allosteric enzyme.

    Directory of Open Access Journals (Sweden)

    Tingjin Chen

    Full Text Available Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis, is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK, the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small

  12. Sequence Analysis and Molecular Characterization of Clonorchis sinensis Hexokinase, an Unusual Trimeric 50-kDa Glucose-6-Phosphate-Sensitive Allosteric Enzyme

    Science.gov (United States)

    Chen, Tingjin; Ning, Dan; Sun, Hengchang; Li, Ran; Shang, Mei; Li, Xuerong; Wang, Xiaoyun; Chen, Wenjun; Liang, Chi; Li, Wenfang; Mao, Qiang; Li, Ye; Deng, Chuanhuan; Wang, Lexun; Wu, Zhongdao; Huang, Yan; Xu, Jin; Yu, Xinbing

    2014-01-01

    Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis), is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK), the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr) of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK) was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ) and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi) displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P) displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small molecule inhibitors

  13. Defying c-Abl signaling circuits through small allosteric compounds

    Directory of Open Access Journals (Sweden)

    Stefania eGonfloni

    2014-11-01

    Full Text Available Many extracellular and intracellular signals promote the c-Abl tyrosine kinase activity. c-Abl in turn triggers a multitude of changes either in protein phosphorylation or in gene expression in the cell. Yet, c-Abl takes part in diverse signaling routes because of several domains linked to its catalytic core. Complex conformational changes turn on and off its kinase activity. These changes affect surface features of the c-Abl kinase and likely its capability to bind actin and/or DNA. Two specific inhibitors (ATP-competitive or allosteric compounds regulate the c-Abl kinase through different mechanisms. NMR studies show that a c-Abl fragment (SH3-SH2-linker-SH1 adopts different conformational states upon binding to each inhibitor. This supports an unconventional use for allosteric compounds to unraveling physiological c-Abl signaling circuits.

  14. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling

    Science.gov (United States)

    Bharatham, Kavitha; Bharatham, Nagakumar; Kwon, Yong Jung; Lee, Keun Woo

    2008-12-01

    Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1-282-allosteric inhibitor complex crystal structure lacks α7 (287-298) and moreover there is no available 3D structure of PTP1B1-298 in open form. As the interaction between α7 and α6-α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1-282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7-α6-α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors.

  15. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors - A Structural Perspective of Ligands and Mutants

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G

    2015-01-01

    modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different m......Glu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs....

  16. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter

    DEFF Research Database (Denmark)

    Plenge, Per; Shi, Lei; Beuming, Thijs

    2012-01-01

    be involved in the allosteric binding in the extracellular vestibule located above the central substrate binding (S1) site. Indeed, mutagenesis of selected residues in the vestibule reduces the allosteric potency of (S)-citalopram and clomipramine. The identified site is further supported by the inhibitory...

  17. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119

    DEFF Research Database (Denmark)

    Hassing, Helle A; Fares, Suzan; Larsen, Olav

    2016-01-01

    for 2h with the 2-MAG-lipase inhibitor JZL84 doubled the constitutive activity, indicating that endogenous lipids contribute to the apparent constitutive activity. Finally, besides being an agonist, AR231453 acted as a positive allosteric modulator of OEA and increased its potency by 54-fold at 100nM AR......231453. Our studies uncovering broad and biased signaling, masked constitutive activity by endogenous MAGs, and ago-allosteric properties of synthetic ligands may explain why many GPR119 drug-discovery programs have failed so far....

  18. In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency.

    Directory of Open Access Journals (Sweden)

    Lily Alvarez-Jaimes

    Full Text Available Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3 is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM, 3-[3,5-Bis(trifluoromethylphenyl]-1-(3,4-dichlorobenzyl-1-[2-(5-methoxy-1H-indol-3-ylethyl]urea (135PAM1. Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2 and R3/I5(NH2 with pEC50 values of 6.54 (6.46 to 6.64 and 6.07 (5.94 to 6.20, respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27 in the presence of a probe (10 nM concentration of relaxin-3(NH2. 135PAM1 does not compete for binding with the orthosteric radioligand, [(125I] R3I5 (amide, in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe

  19. GABAA receptor: Positive and negative allosteric modulators.

    Science.gov (United States)

    Olsen, Richard W

    2018-01-31

    gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABA A R) and Type B (GABA B R) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABA B R is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABA A R pharmacology, the topic of this article. GABA A R are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABA A R the targets of agonist depressants and antagonist convulsants, but most GABA A R drugs act at other (allosteric) binding sites on the GABA A R proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABA A R subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABA A R subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABA A R subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABA A R subtype-dependent extracellular domain sites. Thus GABA A R subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of

  20. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jun; Byrne, Noel; Wang, John; Bricogne, Gerard; Brown, Frank K.; Chobanian, Harry R.; Colletti, Steven L.; Di Salvo, Jerry; Thomas-Fowlkes, Brande; Guo, Yan; Hall, Dawn L.; Hadix, Jennifer; Hastings, Nicholas B.; Hermes, Jeffrey D.; Ho, Thu; Howard, Andrew D.; Josien, Hubert; Kornienko, Maria; Lumb, Kevin J.; Miller, Michael W.; Patel, Sangita B.; Pio, Barbara; Plummer, Christopher W.; Sherborne, Bradley S.; Sheth, Payal; Souza, Sarah; Tummala, Srivanya; Vonrhein, Clemens; Webb, Maria; Allen, Samantha J.; Johnston, Jennifer M.; Weinglass, Adam B.; Sharma, Sujata; Soisson, Stephen M. (Merck); (Globel Phasing)

    2017-06-05

    Clinical studies indicate that partial agonists of the G-protein-coupled, free fatty acid receptor 1 GPR40 enhance glucose-dependent insulin secretion and represent a potential mechanism for the treatment of type 2 diabetes mellitus. Full allosteric agonists (AgoPAMs) of GPR40 bind to a site distinct from partial agonists and can provide additional efficacy. We report the 3.2-Å crystal structure of human GPR40 (hGPR40) in complex with both the partial agonist MK-8666 and an AgoPAM, which exposes a novel lipid-facing AgoPAM-binding pocket outside the transmembrane helical bundle. Comparison with an additional 2.2-Å structure of the hGPR40–MK-8666 binary complex reveals an induced-fit conformational coupling between the partial agonist and AgoPAM binding sites, involving rearrangements of the transmembrane helices 4 and 5 (TM4 and TM5) and transition of the intracellular loop 2 (ICL2) into a short helix. These conformational changes likely prime GPR40 to a more active-like state and explain the binding cooperativity between these ligands.

  1. Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Haas, Ann-Karin; Neumann, Susanne; Worth, Catherine L; Hoyer, Inna; Furkert, Jens; Rutz, Claudia; Gershengorn, Marvin C; Schülein, Ralf; Krause, Gerd

    2010-07-01

    The thyrotropin receptor [thyroid-stimulating hormone receptor (TSHR)], a G-protein-coupled receptor (GPCR), is endogenously activated by thyrotropin, which binds to the extracellular region of the receptor. We previously identified a low-molecular-weight (LMW) agonist of the TSHR and predicted its allosteric binding pocket within the receptor's transmembrane domain. Because binding of the LMW agonist probably disrupts interactions or leads to formation of new interactions among amino acid residues surrounding the pocket, we tested whether mutation of residues at these positions would lead to constitutive signaling activity. Guided by molecular modeling, we performed site-directed mutagenesis of 24 amino acids in this spatial region, followed by functional characterization of the mutant receptors in terms of expression and signaling, measured as cAMP accumulation. We found that mutations V421I, Y466A, T501A, L587V, M637C, M637W, S641A, Y643F, L645V, and Y667A located in several helices exhibit constitutive activity. Of note is mutation M637W at position 6.48 in transmembrane helix 6, which has a significant effect on the interaction of the receptor with the LMW agonist. In summary, we found that a high proportion of residues in several helices surrounding the allosteric binding site of LMW ligands in the TSHR when mutated lead to constitutively active receptors. Our findings of signaling-sensitive residues in this region of the transmembrane bundle may be of general importance as this domain appears to be evolutionarily retained among GPCRs.

  2. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model.

    Science.gov (United States)

    Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M

    2015-01-01

    We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Allosteric substrate switching in a voltage-sensing lipid phosphatase.

    Science.gov (United States)

    Grimm, Sasha S; Isacoff, Ehud Y

    2016-04-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.

  4. Allosteric substrate switching in a voltage sensing lipid phosphatase

    Science.gov (United States)

    Grimm, Sasha S.; Isacoff, Ehud Y.

    2016-01-01

    Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552

  5. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  6. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile.

    Directory of Open Access Journals (Sweden)

    Rami A Al-Horani

    Full Text Available Factor XIIIa (FXIIIa is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa's active site by using sulfated glycosaminoglycans (GAGs or non-saccharide GAG mimetics (NSGMs would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%. Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71% and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.

  7. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  8. Allosteric regulation and communication between subunits in uracil phosphoribosyltransferase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Arent, Susan; Harris, Pernille; Jensen, Kaj Frank

    2005-01-01

    organisms. To understand the allosteric regulation, crystal structures were determined for S. solfataricus UPRTase in complex with UMP and with UMP and the allosteric inhibitor CTP. Also, a structure with UMP bound in half of the active sites was determined. All three complexes form tetramers but reveal...... to rearrangements in the quaternary structure imply that this residue plays a major role in regulation of the enzyme and in communication between subunits. The ribose ring of UMP adopts alternative conformations in the cis and trans subunits of the UPRTase-UMP tetramer with associated differences...

  9. Electro-chemical coupling in the voltage-dependent phosphatase Ci-VSP

    Science.gov (United States)

    Kohout, Susy C.; Bell, Sarah C.; Liu, Lijun; Xu, Qiang; Minor, Daniel L.; Isacoff, Ehud Y.

    2010-01-01

    In the voltage sensing phosphatase, Ci-VSP, a voltage sensing domain (VSD) controls a lipid phosphatase domain (PD). The mechanism by which the domains are allosterically coupled is not well understood. Using an in vivo assay, we find that the inter-domain linker that connects the VSD to the PD is essential for coupling the full-length protein. Biochemical assays show that the linker is also needed for activity in the isolated PD. We identify a late step of VSD motion in the full-length protein that depends on the linker. Strikingly, this VSD motion is found to require PI(4,5)P2, a substrate of Ci-VSP. These results suggest that the voltage-driven motion of the VSD turns the enzyme on by rearranging the linker into an activated conformation, and that this activated conformation is stabilized by PI(4,5)P2. We propose that Ci-VSP activity is self-limited because its decrease of PI(4,5)P2 levels decouples the VSD from the enzyme. PMID:20364128

  10. Sniffer patch laser uncaging response (SPLURgE): an assay of regional differences in allosteric receptor modulation and neurotransmitter clearance.

    Science.gov (United States)

    Christian, Catherine A; Huguenard, John R

    2013-10-01

    Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors.

  11. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation.

    Science.gov (United States)

    Gregorio-Teruel, Lucia; Valente, Pierluigi; González-Ros, José Manuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2014-03-01

    The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.

  12. Coarse-grained molecular simulations of allosteric cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Nandigrami, Prithviraj; Portman, John J. [Department of Physics, Kent State University, Kent, Ohio 44242 (United States)

    2016-03-14

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein’s functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two Ca{sup 2+} ions to each domain of Calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein’s conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding are treated implicitly within the grand canonical ensemble. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energies to the open and closed ensembles accurately describes the simulated binding thermodynamics. The simulations predict that the two domains of CaM have distinct binding affinity and cooperativity. In particular, the C-terminal domain binds Ca{sup 2+} with higher affinity and greater cooperativity than the N-terminal domain. From a structural point of view, the affinity of an individual binding loop depends sensitively on the loop’s structural compatibility with the ligand in the bound ensemble, as well as the conformational flexibility of the binding site in the unbound ensemble.

  13. The structure of brain glycogen phosphorylase-from allosteric regulation mechanisms to clinical perspectives.

    Science.gov (United States)

    Mathieu, Cécile; Dupret, Jean-Marie; Rodrigues Lima, Fernando

    2017-02-01

    Glycogen phosphorylase (GP) is the key enzyme that regulates glycogen mobilization in cells. GP is a complex allosteric enzyme that comprises a family of three isozymes: muscle GP (mGP), liver GP (lGP), and brain GP (bGP). Although the three isozymes display high similarity and catalyze the same reaction, they differ in their sensitivity to the allosteric activator adenosine monophosphate (AMP). Moreover, inactivating mutations in mGP and lGP have been known to be associated with glycogen storage diseases (McArdle and Hers disease, respectively). The determination, decades ago, of the structure of mGP and lGP have allowed to better understand the allosteric regulation of these two isoforms and the development of specific inhibitors. Despite its important role in brain glycogen metabolism, the structure of the brain GP had remained elusive. Here, we provide an overview of the human brain GP structure and its relationship with the two other members of this key family of the metabolic enzymes. We also summarize how this structure provides valuable information to understand the regulation of bGP and to design specific ligands of potential pharmacological interest. © 2016 Federation of European Biochemical Societies.

  14. Surface dynamics in allosteric regulation of protein-protein interactions: modulation of calmodulin functions by Ca2+.

    Directory of Open Access Journals (Sweden)

    Yosef Y Kuttner

    2013-04-01

    Full Text Available Knowledge of the structural basis of protein-protein interactions (PPI is of fundamental importance for understanding the organization and functioning of biological networks and advancing the design of therapeutics which target PPI. Allosteric modulators play an important role in regulating such interactions by binding at site(s orthogonal to the complex interface and altering the protein's propensity for complex formation. In this work, we apply an approach recently developed by us for analyzing protein surfaces based on steered molecular dynamics simulation (SMD to the study of the dynamic properties of functionally distinct conformations of a model protein, calmodulin (CaM, whose ability to interact with target proteins is regulated by the presence of the allosteric modulator Ca(2+. Calmodulin is a regulatory protein that acts as an intracellular Ca(2+ sensor to control a wide variety of cellular processes. We demonstrate that SMD analysis is capable of pinpointing CaM surfaces implicated in the recognition of both the allosteric modulator Ca(2+ and target proteins. Our analysis of changes in the dynamic properties of the CaM backbone elicited by Ca(2+ binding yielded new insights into the molecular mechanism of allosteric regulation of CaM-target interactions.

  15. Supramolecular Allosteric Cofacial Porphyrin Complexes

    International Nuclear Information System (INIS)

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-01-01

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh I or Cu I sites) and two cofacially aligned porphyrins (Zn II sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh I or Cu I transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  16. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands.

    Science.gov (United States)

    Sattin, Sara; Tao, Jiahui; Vettoretti, Gerolamo; Moroni, Elisabetta; Pennati, Marzia; Lopergolo, Alessia; Morelli, Laura; Bugatti, Antonella; Zuehlke, Abbey; Moses, Mike; Prince, Thomas; Kijima, Toshiki; Beebe, Kristin; Rusnati, Marco; Neckers, Len; Zaffaroni, Nadia; Agard, David A; Bernardi, Anna; Colombo, Giorgio

    2015-09-21

    Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP-regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP-competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2-phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Å from the active site. Specifically, analysis of protein responses to first-generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules' effects on Hsp90 enzymatic, conformational, co-chaperone and client-binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Directory of Open Access Journals (Sweden)

    Aysima Hacisuleyman

    2017-01-01

    Full Text Available It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  18. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Science.gov (United States)

    Hacisuleyman, Aysima; Erman, Burak

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  19. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors.

    Science.gov (United States)

    Rodgers, Thomas L; Townsend, Philip D; Burnell, David; Jones, Matthew L; Richards, Shane A; McLeish, Tom C B; Pohl, Ehmke; Wilson, Mark R; Cann, Martin J

    2013-09-01

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein "design space" that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have been selected to

  20. In search of allosteric modulators of a7-nAChR by solvent density guided virtual screening.

    Science.gov (United States)

    Dey, Raja; Chen, Lin

    2011-04-01

    Nicotinic acetylcholine receptors (nAChR) are pentameric ligand gated ion channels whose activity can be modulated by endogenous neurotransmitters as well as by synthetic ligands that bind the same or distinct sites from the natural ligand. The subtype of α7 nAChR has been considered as a potenial therapeutic target for Alzheimer's disease, schizophrenia and other neurological and psychiatric disorders. Here we have developed a homology model of α7 nAChR based on two high resolution crystal structures with Brookhaven Protein Data Bank (PDB) codes 2QC1 and 2WN9 for threading on one monomer and then for building a pentamer, respectively. A number of small molecule binding sites are identified using Pocket Finder (J. An, M. Tortov, and R. Abagyan, Molecular & Cellular Proteomics, 4.6, 752-761 (2005)) of Internal Coordinate Mechanics (ICM). Remarkably, these computer-identified sites match perfectly with ordered solvent densities found in the high-resolution crystal structure of α1 nAChR, suggesting that the surface cavities in the α7 nAChR model are likely binding sites of small molecules. A high throughput virtual screening by flexible ligand docking of 5008 small molecule compounds was performed at three potential allosteric modulator (AM) binding sites of α7 nAChR using Molsoft ICM software (R. Abagyan, M. Tortov and D. Kuznetsov, J Comput Chem 15, 488-506, (1994)). Some experimentally verified allosteric modulators of α7 like CCMI comp-6, LY 7082101, 5-HI, TQS, PNU-120596, genistein, and NS-1738 ranked among top 100 compounds, while the rest of the compounds in the list could guide further search for new allosteric modulators.

  1. Identification of an allosteric binding site for RORγt inhibition

    NARCIS (Netherlands)

    Scheepstra, M.; Leysen, S.; van Almen, G.; Miller, J.R.; Piesvaux, J.; Kutilek, V.; van Eenennaam, H.; Zhang, H.; Barr, K.; Nagpal, S.; Soisson, S.M.; Kornienko, M.; Wiley, K.; Elsen, N.; Sharma, S.; Correll, C.C.; Trotter, B.W.; Stelt, van der M.; Oubrie, A.; Ottmann, C.; Parthasarathy, G.; Brunsveld, L.

    2015-01-01

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of

  2. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus

    DEFF Research Database (Denmark)

    Christoffersen, Stig; Kadziola, Anders; Johansson, Eva

    2009-01-01

    and PPi, in the other sites. Combined with three existing structures of uracil phosphoribosyltransferase in complex with UMP and the allosteric inhibitor cytidine triphosphate (CTP), these structures provide valuable insight into the mechanism of allosteric transition from inhibited to active enzyme...

  3. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase.

    Science.gov (United States)

    Schein, Catherine H; Rowold, Diane; Choi, Kyung H

    2016-02-15

    Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20μM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. RET Functions as a Dual-Specificity Kinase that Requires Allosteric Inputs from Juxtamembrane Elements

    Directory of Open Access Journals (Sweden)

    Iván Plaza-Menacho

    2016-12-01

    Full Text Available Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM segment enhances RET catalytic domain activity through Y687. This phospho-site is also required by the JM region to rescue an otherwise catalytically deficient RET activation-loop mutant lacking tyrosines. Structure-function analyses identified interactions between the JM hinge, αC helix, and an unconventional activation-loop serine phosphorylation site that engages the HRD motif and promotes phospho-tyrosine conformational accessibility and regulatory spine assembly. We demonstrate that this phospho-S909 arises from an intrinsic RET dual-specificity kinase activity and show that an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with direct implications for drug discovery.

  5. Studies on allosteric phenomena in glycogen phosphorylase b.

    Science.gov (United States)

    Madsen, N B; Avramovic-Zikic, O; Lue, P F; Honikel, K O

    1976-03-26

    This article attempts to trace, from a personal point of view, the history of discoveries of allosteric phenomena in phosphorylase b and the later development of systematic attempts to fit the data into comprehensive theoretical models. Work from our own laboratory is emphasized, but we try to integrate this into the results from other investigators and show their contributions to our ideas and experiments. Finally, some recent unpublished data is presented together with some conclusions and predictions from a new hypothesis. The discoveries by Carl and Gerty Cori of the activation of phosphorylase by AMP, the inhibition of glucose and the enzymatic interconversion of two forms fo the enzyme with different control properties helped lay the foundations of our present understanding of allosteric mechanisms. The later discovery of the oligomeric nature of phosphorylase and its relationship to AMP binding served as a basis for many years of research into the structure-function relationships of phosphorylase and other enzymes. Data showing that AMP lowers the entropy of activation is discussed with respect to the role of the nucleotide and its binding close to the active site. The discovery of the control of phosphorylase b by common metabolites and the impetus this gave to the intensive kinetic studies of the last ten years, wherein fitting to theoretical models has been a common feature, is reviewed.

  6. Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors.

    Directory of Open Access Journals (Sweden)

    Thomas L Rodgers

    2013-09-01

    Full Text Available Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein "design space" that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore, through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional structures, CRP/FNR family transcription factors have

  7. Orthosteric and Allosteric Regulation in Trypsin-Like Peptidases

    DEFF Research Database (Denmark)

    Kromann-Tofting, Tobias

    Trypsin-like serine peptidases play an important role in many physiological and pathophysiological processes, the latter including cardiovascular diseases and cancer. Binding of natural ligands to functional sites on the peptidase surface balances the level of activity and substrate specificity......-ray crystallography to determine crystal structures of active and inactive conformations of muPA, combined with biochemical analysis, elucidated an allosteric regulatory mechanism, which is now believed to be highly conserved in the trypsin-like serine peptidases. Targeting zymogen activation represents an attractive...

  8. Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors.

    Science.gov (United States)

    Hedlund, P B; Carson, M J; Sutcliffe, J G; Thomas, E A

    1999-12-01

    Oleamide belongs to a family of amidated lipids with diverse biological activities, including sleep induction and signaling modulation of several 5-hydroxytryptamine (5-HT) receptor subtypes, including 5-HT1A, 5-HT2A/2C, and 5-HT7. The 5-HT7 receptor, predominantly localized in the hypothalamus, hippocampus, and frontal cortex, stimulates cyclic AMP formation and is thought to be involved in the regulation of sleep-wake cycles. Recently, it was proposed that oleamide acts at an allosteric site on the 5-HT7 receptor to regulate cyclic AMP formation. We have further investigated the interaction between oleamide and 5-HT7 receptors by performing radioligand binding assays with HeLa cells transfected with the 5-HT7 receptor. Methiothepin, clozapine, and 5-HT all displaced specific [3H]5-HT (100 nM) binding, with pK(D) values of 7.55, 7.85, and 8.39, respectively. Oleamide also displaced [3H]5-HT binding, but the maximum inhibition was only 40% of the binding. Taking allosteric (see below) cooperativity into account, a K(D) of 2.69 nM was calculated for oleamide. In saturation binding experiments, oleamide caused a 3-fold decrease in the affinity of [3H]5-HT for the 5-HT7 receptor, without affecting the number of binding sites. A Schild analysis showed that the induced shift in affinity of [3H]5-HT reached a plateau, unlike that of a competitive inhibitor, illustrating the allosteric nature of the interaction between oleamide and the 5-HT7 receptor. Oleic acid, the product of oleamide hydrolysis, had a similar effect on [3H]5-HT binding, whereas structural analogs of oleamide, trans-9,10-octadecenamide, cis-8,9-octadecenamide, and erucamide, did not alter [3H]5-HT binding significantly. The findings support the hypothesis that oleamide acts via an allosteric site on the 5-HT7 receptor regulating receptor affinity.

  9. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1.

    Directory of Open Access Journals (Sweden)

    Chiori Yabuki

    Full Text Available Selective free fatty acid receptor 1 (FFAR1/GPR40 agonist fasiglifam (TAK-875, an antidiabetic drug under phase 3 development, potentiates insulin secretion in a glucose-dependent manner by activating FFAR1 expressed in pancreatic β cells. Although fasiglifam significantly improved glycemic control in type 2 diabetes patients with a minimum risk of hypoglycemia in a phase 2 study, the precise mechanisms of its potent pharmacological effects are not fully understood. Here we demonstrate that fasiglifam acts as an ago-allosteric modulator with a partial agonistic activity for FFAR1. In both Ca(2+ influx and insulin secretion assays using cell lines and mouse islets, fasiglifam showed positive cooperativity with the FFAR1 ligand γ-linolenic acid (γ-LA. Augmentation of glucose-induced insulin secretion by fasiglifam, γ-LA, or their combination was completely abolished in pancreatic islets of FFAR1-knockout mice. In diabetic rats, the insulinotropic effect of fasiglifam was suppressed by pharmacological reduction of plasma free fatty acid (FFA levels using a lipolysis inhibitor, suggesting that fasiglifam potentiates insulin release in conjunction with plasma FFAs in vivo. Point mutations of FFAR1 differentially affected Ca(2+ influx activities of fasiglifam and γ-LA, further indicating that these agonists may bind to distinct binding sites. Our results strongly suggest that fasiglifam is an ago-allosteric modulator of FFAR1 that exerts its effects by acting cooperatively with endogenous plasma FFAs in human patients as well as diabetic animals. These findings contribute to our understanding of fasiglifam as an attractive antidiabetic drug with a novel mechanism of action.

  10. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  11. Allosteric Binding in the Serotonin Transporter - Pharmacology, Structure, Function and Potential Use as a Novel Drug Target

    DEFF Research Database (Denmark)

    Loland, Claus J.; Sanchez, Connie; Plenge, Per

    2017-01-01

    The serotonin transporter (SERT) is an important drug target and the majority of currently used antidepressants are potent inhibitors of SERT, binding primarily to the substrate binding site. However, even though the existence of an allosteric modulator site was realized more than 30 years ago......, the research into this mechanism is still in its early days. The current knowledge about the allosteric site with respect to pharmacology, structure and function, and pharmacological tool compounds, is reviewed and a perspective is given on its potential as a drug target....

  12. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip.

    Science.gov (United States)

    Gupta, Shaweta; Chakraborty, Srirupa; Vij, Ridhima; Auerbach, Anthony

    2017-01-01

    Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing ("gating") between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component ("flip") apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2-M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2-M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a "bubble" that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation. © 2017 Gupta et al.

  13. Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors.

    Science.gov (United States)

    Caldo, Kristian Mark P; Acedo, Jeella Z; Panigrahi, Rashmi; Vederas, John C; Weselake, Randall J; Lemieux, M Joanne

    2017-10-01

    Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT1 1-113 ) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Wang, Jingyi; Lindstrom, Jon

    2018-06-01

    Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2) 2 α5, (α4β2) 2 β3 and (α6β2) 2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  15. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer.

    Directory of Open Access Journals (Sweden)

    Sergio Zonszein

    Full Text Available The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P deaminase from Escherichia coli (EcGNPDA as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P. We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with Kt and Kr as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the

  16. Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors.

    Directory of Open Access Journals (Sweden)

    Alexis M Ziemba

    Full Text Available Pentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range.Using oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep "notch" approach, and used these results to correct steady-state direct activation for inhibition.Combining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA.Our novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.

  17. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  18. Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity.

    Science.gov (United States)

    Agliari, Elena; Altavilla, Matteo; Barra, Adriano; Dello Schiavo, Lorenzo; Katz, Evgeny

    2015-05-15

    Recent experimental breakthroughs have finally allowed to implement in-vitro reaction kinetics (the so called enzyme based logic) which code for two-inputs logic gates and mimic the stochastic AND (and NAND) as well as the stochastic OR (and NOR). This accomplishment, together with the already-known single-input gates (performing as YES and NOT), provides a logic base and paves the way to the development of powerful biotechnological devices. However, as biochemical systems are always affected by the presence of noise (e.g. thermal), standard logic is not the correct theoretical reference framework, rather we show that statistical mechanics can work for this scope: here we formulate a complete statistical mechanical description of the Monod-Wyman-Changeaux allosteric model for both single and double ligand systems, with the purpose of exploring their practical capabilities to express noisy logical operators and/or perform stochastic logical operations. Mixing statistical mechanics with logics, and testing quantitatively the resulting findings on the available biochemical data, we successfully revise the concept of cooperativity (and anti-cooperativity) for allosteric systems, with particular emphasis on its computational capabilities, the related ranges and scaling of the involved parameters and its differences with classical cooperativity (and anti-cooperativity).

  19. Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery

    Directory of Open Access Journals (Sweden)

    Daura Xavier

    2010-03-01

    Full Text Available Abstract Background With the classical, active-site oriented drug-development approach reaching its limits, protein ligand-binding sites in general and allosteric sites in particular are increasingly attracting the interest of medicinal chemists in the search for new types of targets and strategies to drug development. Given that allostery represents one of the most common and powerful means to regulate protein function, the traditional drug discovery approach of targeting active sites can be extended by targeting allosteric or regulatory protein pockets that may allow the discovery of not only novel drug-like inhibitors, but activators as well. The wealth of available protein structural data can be exploited to further increase our understanding of allosterism, which in turn may have therapeutic applications. A first step in this direction is to identify and characterize putative effector sites that may be present in already available structural data. Results We performed a large-scale study of protein cavities as potential allosteric and functional sites, by integrating publicly available information on protein sequences, structures and active sites for more than a thousand protein families. By identifying common pockets across different structures of the same protein family we developed a method to measure the pocket's structural conservation. The method was first parameterized using known active sites. We characterized the predicted pockets in terms of sequence and structural conservation, backbone flexibility and electrostatic potential. Although these different measures do not tend to correlate, their combination is useful in selecting functional and regulatory sites, as a detailed analysis of a handful of protein families shows. We finally estimated the numbers of potential allosteric or regulatory pockets that may be present in the data set, finding that pockets with putative functional and effector characteristics are widespread across

  20. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches.

    Science.gov (United States)

    Shinde, Ranajit Nivrutti; Kumar, G Siva; Eqbal, Shahbaz; Sobhia, M Elizabeth

    2018-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for Type 2 diabetes due to its specific role as a negative regulator of insulin signaling pathways. Discovery of active site directed PTP1B inhibitors is very challenging due to highly conserved nature of the active site and multiple charge requirements of the ligands, which makes them non-selective and non-permeable. Identification of the PTP1B allosteric site has opened up new avenues for discovering potent and selective ligands for therapeutic intervention. Interactions made by potent allosteric inhibitor in the presence of PTP1B were studied using Molecular Dynamics (MD). Computationally optimized models were used to build separate pharmacophore models of PTP1B and TCPTP, respectively. Based on the nature of interactions the target residues offered, a receptor based pharmacophore was developed. The pharmacophore considering conformational flexibility of the residues was used for the development of pharmacophore hypothesis to identify potentially active inhibitors by screening large compound databases. Two pharmacophore were successively used in the virtual screening protocol to identify potential selective and permeable inhibitors of PTP1B. Allosteric inhibition mechanism of these molecules was established using molecular docking and MD methods. The geometrical criteria values confirmed their ability to stabilize PTP1B in an open conformation. 23 molecules that were identified as potential inhibitors were screened for PTP1B inhibitory activity. After screening, 10 molecules which have good permeability values were identified as potential inhibitors of PTP1B. This study confirms that selective and permeable inhibitors can be identified by targeting allosteric site of PTP1B.

  1. Development of an experimental activity for teaching cooperativity and allosterism

    Directory of Open Access Journals (Sweden)

    B. Manta

    2006-07-01

    Full Text Available Although  enzyme  control  and  regulation  is  an  important  topic  in  most  Biochemistry  and  Enzymology  courses, laboratory  activities  that  allow  an  experimental  approach  to  cooperativity  and  allosterism  are  difficult  to  implement. The objective of this work was to develop a simple and inexpensive experimental activity to teach this topic in basic courses.  We  decided  to  use  the  enzyme  glucosamine-6-phosphate  deaminase  (GNPD,  E.C.  3.5.99.6  from Escherichia coli,  that  is  both  kinetically  and  structurally  well-known.  GNPD  is  an  allosteric  enzyme,  activated  by  N-acetylglucosamine 6-phosphate, that catalyzes the conversion of glucosamine 6-phosphate into fructose 6-phosphate and  ammonia.  The  enzyme  is  a  typical  allosteric  K-system  and  can  be  well  described  by  the  Monod-Wyman-Changeux  (MWC  model.  GNPD  was  partially  purified  through  anionic-exchange  chromatography  from  a  mutant E.coli strain  which  expresses  constitutively  high  levels  of the  enzyme.  In  order  to  measure  activity  we  used  an end point  method  which  consists  in  stopping  the  reaction  at  a  certain  time  point  with  HCl  10  N,  and  quantifying  the fructose-6-phosphate  formed  with  resorcinol  (Selliwanoff  reaction  through  the  formation  of  a  red  color  that  is measured  spectrophotometrically.  We  developed  a  protocol  that  consisted  in  a  4-hour  experiment  in  which  the students  measured  the  activity  of  the  GNPD  with  increasing  concentrations  of  the  substrate,  in  the  presence  or absence  of  allosteric  modulator.  The  students  obtained  a  good  quality  data  set  that  they  analyzed  based  on  the equations  of  Hill,  MWC  and  Acerenza-Mirzaji

  2. A large-scale allosteric transition in cytochrome P450 3A4 revealed by luminescence resonance energy transfer (LRET.

    Directory of Open Access Journals (Sweden)

    Elena V Sineva

    Full Text Available Effector-induced allosteric transitions in cytochrome P450 3A4 (CYP3A4 were investigated by luminescence resonance energy transfer (LRET between two SH-reactive probes attached to various pairs of distantly located cysteine residues, namely the double-cysteine mutants CYP3A4(C64/C468, CYP3A4(C377/C468 and CYP3A4(C64/C121. Successive equimolar labeling of these proteins with the phosphorescent probe erythrosine iodoacetamide (donor and the near-infrared fluorophore DY-731 maleimide (acceptor allowed us to establish donor/acceptor pairs sensitive to conformational motions. The interactions of all three double-labeled mutants with the allosteric activators α-naphthoflavone and testosterone resulted in an increase in the distance between the probes. A similar effect was elicited by cholesterol. These changes in distance vary from 1.3 to 8.5 Å, depending on the position of the donor/acceptor pair and the nature of the effector. In contrast, the changes in the interprobe distance caused by such substrates as bromocriptine or 1-pyrenebutanol were only marginal. Our results provide a decisive support to the paradigm of allosteric modulation of CYP3A4 and indicate that the conformational transition caused by allosteric effectors increases the spatial separation between the beta-domain of the enzyme (bearing residues Cys64 and Cys377 and the alpha-domain, where Cys121 and Cys468 are located.

  3. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  4. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Energy Technology Data Exchange (ETDEWEB)

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  5. Understanding large multiprotein complexes: applying a multiple allosteric networks model to explain the function of the Mediator transcription complex.

    Science.gov (United States)

    Lewis, Brian A

    2010-01-15

    The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.

  6. A novel strategy for selection of allosteric ribozymes yields RiboReporter™ sensors for caffeine and aspartame

    Science.gov (United States)

    Ferguson, Alicia; Boomer, Ryan M.; Kurz, Markus; Keene, Sara C.; Diener, John L.; Keefe, Anthony D.; Wilson, Charles; Cload, Sharon T.

    2004-01-01

    We have utilized in vitro selection technology to develop allosteric ribozyme sensors that are specific for the small molecule analytes caffeine or aspartame. Caffeine- or aspartame-responsive ribozymes were converted into fluorescence-based RiboReporter™ sensor systems that were able to detect caffeine or aspartame in solution over a concentration range from 0.5 to 5 mM. With read-times as short as 5 min, these caffeine- or aspartame-dependent ribozymes function as highly specific and facile molecular sensors. Interestingly, successful isolation of allosteric ribozymes for the analytes described here was enabled by a novel selection strategy that incorporated elements of both modular design and activity-based selection methods typically used for generation of catalytic nucleic acids. PMID:15026535

  7. Molecular Basis for Allosteric Inhibition of Acid-Sensing Ion Channel 1a by Ibuprofen

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Romero-Rojo, José Luis; Lund, Camilla

    2017-01-01

    -clamp fluorometry. Our results show that ibuprofen is an allosteric inhibitor of ASIC1a, which binds to a crucial site in the agonist transduction pathway and causes conformational changes that oppose channel activation. Ibuprofen inhibits several ASIC subtypes, but certain ibuprofen derivatives show some...

  8. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Bokoch, Michael P; Zou, Yaozhong; Rasmussen, Søren Gøgsig Faarup

    2010-01-01

    extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known...... conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive...... about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic...

  9. Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; Randáková, Alena; El-Fakahany, E. E.; Doležal, Vladimír

    2009-01-01

    Roč. 9, č. 15 (2009), s. 1-20 ISSN 1471-2210 R&D Projects: GA ČR GA305/09/0681; GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA500110703 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * allosteric modulation * rapacuronium Subject RIV: ED - Physiology

  10. Enzyme activity and allosteric characteristics of gamma-irradiated solid aspartate transcarbamylase

    International Nuclear Information System (INIS)

    Bigler, W.N.; Tolbert, B.M.

    1977-01-01

    Aspartate transcarbamylase purified from E. coli was lyophilized, irradiated in vacuo with γ radiation from a cesium-137 source, redissolved in buffer under a nitrogen atmosphere, and assayed for enzyme activity. Lyophilized and redissolved enzyme had normal catalytic and allosteric kinetic characteristics. The average D 37 observed with saturating substrate, 25 mM aspartate, was 4.1 Mrad. With less than saturating substrate, 5 mM aspartate, the activity increases from zero to 1.6 Mrad and then decreases with a D 37 of 7.2 Mrad. Inclusion of 1 mM CTP, an allosteric inhibitor, in the 5 mM aspartate assays results in a more pronounced maximum in the activity curve occurring at slightly higher dose, 2.2 Mrad. Inhibitability by CTP has a D 37 of 2.3 Mrad with doses below the activity maximum. Enzyme lyophilized in the presence of 1 mM CTP has a D 37 of 2.9 Mrad. ATCase activity changes caused by irradiation of lyophylized bacteria were qualitatively like the changes observed in the detailed studies with the purified enzyme. Apparent radiation sensitivities of ATCase in lyophilized bacteria were observed to vary with the technique used to disrupt the resuspended bacteria

  11. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.

    Science.gov (United States)

    Oyen, David; Fenwick, R Bryn; Aoto, Phillip C; Stanfield, Robyn L; Wilson, Ian A; Dyson, H Jane; Wright, Peter E

    2017-08-16

    The rate-determining step in the catalytic cycle of E. coli dihydrofolate reductase is tetrahydrofolate (THF) product release, which can occur via an allosteric or an intrinsic pathway. The allosteric pathway, which becomes accessible when the reduced cofactor NADPH is bound, involves transient sampling of a higher energy conformational state, greatly increasing the product dissociation rate as compared to the intrinsic pathway that obtains when NADPH is absent. Although the kinetics of this process are known, the enzyme structure and the THF product conformation in the transiently formed excited state remain elusive. Here, we use side-chain proton NMR relaxation dispersion measurements, X-ray crystallography, and structure-based chemical shift predictions to explore the structural basis of allosteric product release. In the excited state of the E:THF:NADPH product release complex, the reduced nicotinamide ring of the cofactor transiently enters the active site where it displaces the pterin ring of the THF product. The p-aminobenzoyl-l-glutamate tail of THF remains weakly bound in a widened binding cleft. Thus, through transient entry of the nicotinamide ring into the active site, the NADPH cofactor remodels the enzyme structure and the conformation of the THF to form a weakly populated excited state that is poised for rapid product release.

  12. Allosteric inhibition enhances the efficacy of ABL kinase inhibitors to target unmutated BCR-ABL and BCR-ABL-T315I

    Directory of Open Access Journals (Sweden)

    Mian Afsar

    2012-09-01

    Full Text Available Abstract Background Chronic myelogenous leukemia (CML and Philadelphia chromosome-positive (Ph+ acute lymphatic leukemia (Ph + ALL are caused by the t(9;22, which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase “escapes” the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the ‘gatekeeper’ mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. Methods The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC from Ph + ALL-patients. Results Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. Conclusions Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors.

  13. Convergent transmission of RNAi guide-target mismatch information across Argonaute internal allosteric network.

    Science.gov (United States)

    Joseph, Thomas T; Osman, Roman

    2012-01-01

    In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of

  14. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5).

    Science.gov (United States)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav; Daugvilaite, Viktorija; Steen, Anne; Brvar, Matjaž; Pui, Aurel; Frimurer, Thomas Michael; Ulven, Trond; Rosenkilde, Mette Marie

    2016-12-23

    The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn 2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn 2+ is anchored to the chemokine receptor-conserved Glu-283 VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248 VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116 III:16/3.40 , a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125 I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37 I:07/1.39 , Trp-86 II:20/2.60 , and Phe-109 III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab.

    Science.gov (United States)

    Davies, Anna M; Allan, Elizabeth G; Keeble, Anthony H; Delgado, Jean; Cossins, Benjamin P; Mitropoulou, Alkistis N; Pang, Marie O Y; Ceska, Tom; Beavil, Andrew J; Craggs, Graham; Westwood, Marta; Henry, Alistair J; McDonnell, James M; Sutton, Brian J

    2017-06-16

    Immunoglobulin E and its interactions with receptors FcϵRI and CD23 play a central role in allergic disease. Omalizumab, a clinically approved therapeutic antibody, inhibits the interaction between IgE and FcϵRI, preventing mast cell and basophil activation, and blocks IgE binding to CD23 on B cells and antigen-presenting cells. We solved the crystal structure of the complex between an omalizumab-derived Fab and IgE-Fc, with one Fab bound to each Cϵ3 domain. Free IgE-Fc adopts an acutely bent structure, but in the complex it is only partially bent, with large-scale conformational changes in the Cϵ3 domains that inhibit the interaction with FcϵRI. CD23 binding is inhibited sterically due to overlapping binding sites on each Cϵ3 domain. Studies of omalizumab Fab binding in solution demonstrate the allosteric basis for FcϵRI inhibition and, together with the structure, reveal how omalizumab may accelerate dissociation of receptor-bound IgE from FcϵRI, exploiting the intrinsic flexibility and allosteric potential of IgE. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein*

    Science.gov (United States)

    Townsend, Philip D.; Rodgers, Thomas L.; Glover, Laura C.; Korhonen, Heidi J.; Richards, Shane A.; Colwell, Lucy J.; Pohl, Ehmke; Wilson, Mark R.; Hodgson, David R. W.; McLeish, Tom C. B.; Cann, Martin J.

    2015-01-01

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. PMID:26187469

  17. A Coincidence Detection Mechanism Controls PX-BAR Domain-Mediated Endocytic Membrane Remodeling via an Allosteric Structural Switch.

    Science.gov (United States)

    Lo, Wen-Ting; Vujičić Žagar, Andreja; Gerth, Fabian; Lehmann, Martin; Puchkov, Dymtro; Krylova, Oxana; Freund, Christian; Scapozza, Leonardo; Vadas, Oscar; Haucke, Volker

    2017-11-20

    Clathrin-mediated endocytosis occurs by bending and remodeling of the membrane underneath the coat. Bin-amphiphysin-rvs (BAR) domain proteins are crucial for endocytic membrane remodeling, but how their activity is spatiotemporally controlled is largely unknown. We demonstrate that the membrane remodeling activity of sorting nexin 9 (SNX9), a late-acting endocytic PX-BAR domain protein required for constriction of U-shaped endocytic intermediates, is controlled by an allosteric structural switch involving coincident detection of the clathrin adaptor AP2 and phosphatidylinositol-3,4-bisphosphate (PI(3,4)P 2 ) at endocytic sites. Structural, biochemical, and cell biological data show that SNX9 is autoinhibited in solution. Binding to PI(3,4)P 2 via its PX-BAR domain, and concomitant association with AP2 via sequences in the linker region, releases SNX9 autoinhibitory contacts to enable membrane constriction. Our results reveal a mechanism for restricting the latent membrane remodeling activity of BAR domain proteins to allow spatiotemporal coupling of membrane constriction to the progression of the endocytic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Positive allosteric modulation of TRPV1 as a novel analgesic mechanism

    Directory of Open Access Journals (Sweden)

    Lebovitz Evan E

    2012-09-01

    Full Text Available Abstract Background The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. Results Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing

  19. Aryloxyalkanoic Acids as Non-Covalent Modifiers of the Allosteric Properties of Hemoglobin

    Directory of Open Access Journals (Sweden)

    Abdelsattar M. Omar

    2016-08-01

    Full Text Available Hemoglobin (Hb modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD, specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen. The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases.

  20. Switch I-dependent allosteric signaling in a G-protein chaperone-B12 enzyme complex.

    Science.gov (United States)

    Campanello, Gregory C; Lofgren, Michael; Yokom, Adam L; Southworth, Daniel R; Banerjee, Ruma

    2017-10-27

    G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics.

    Science.gov (United States)

    Penchovsky, Robert

    2012-10-19

    Here we describe molecular implementations of integrated digital circuits, including a three-input AND logic gate, a two-input multiplexer, and 1-to-2 decoder using allosteric ribozymes. Furthermore, we demonstrate a multiplexer-decoder circuit. The ribozymes are designed to seek-and-destroy specific RNAs with a certain length by a fully computerized procedure. The algorithm can accurately predict one base substitution that alters the ribozyme's logic function. The ability to sense the length of RNA molecules enables single ribozymes to be used as platforms for multiple interactions. These ribozymes can work as integrated circuits with the functionality of up to five logic gates. The ribozyme design is universal since the allosteric and substrate domains can be altered to sense different RNAs. In addition, the ribozymes can specifically cleave RNA molecules with triplet-repeat expansions observed in genetic disorders such as oculopharyngeal muscular dystrophy. Therefore, the designer ribozymes can be employed for scaling up computing and diagnostic networks in the fields of molecular computing and diagnostics and RNA synthetic biology.

  2. Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors.

    Science.gov (United States)

    Martínez-Pinilla, Eva; Varani, Katia; Reyes-Resina, Irene; Angelats, Edgar; Vincenzi, Fabrizio; Ferreiro-Vera, Carlos; Oyarzabal, Julen; Canela, Enric I; Lanciego, José L; Nadal, Xavier; Navarro, Gemma; Borea, Pier Andrea; Franco, Rafael

    2017-01-01

    The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB 2 receptors (CB 2 Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB 2 R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB 2 R. Using membrane preparations from CB 2 R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB 2 R where the synthetic cannabinoid, [ 3 H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB 2 R-selective compound, CM-157. The effect on binding to CB 2 R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the K D . CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB 2 R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.

  3. Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors

    Directory of Open Access Journals (Sweden)

    Eva Martínez-Pinilla

    2017-10-01

    Full Text Available The mechanism of action of cannabidiol (CBD, the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB2 receptors (CB2Rs it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs; however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB2R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB2R. Using membrane preparations from CB2R-expressing HEK-293T (human embryonic kidney 293T cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB2R where the synthetic cannabinoid, [3H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB2R-selective compound, CM-157. The effect on binding to CB2R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the KD. CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB2R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.

  4. Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation

    DEFF Research Database (Denmark)

    Milanos, Sinem; Kuenzel, Katharina; Gilbert, Daniel F

    2017-01-01

    monoterpenes, e.g. myrtenol as positive allosteric modulator at α1β2 GABAA receptors. Here, along with pharmacophore-based virtual screening studies, we demonstrate that scaffold modifications of myrtenol resulted in loss of modulatory activity. Two independent approaches, fluorescence-based compound analysis...

  5. Modulation in selectivity and allosteric properties of small-molecule ligands for CC-chemokine receptors

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Malmgaard-Clausen, Mikkel; Engel-Andreasen, Jens

    2012-01-01

    Among 18 human chemokine receptors, CCR1, CCR4, CCR5, and CCR8 were activated by metal ion Zn(II) or Cu(II) in complex with 2,2'-bipyridine or 1,10-phenanthroline with similar potencies (EC(50) from 3.9 to 172 μM). Besides being agonists, they acted as selective allosteric enhancers of CCL3. Thes...

  6. Convergent transmission of RNAi guide-target mismatch information across Argonaute internal allosteric network.

    Directory of Open Access Journals (Sweden)

    Thomas T Joseph

    Full Text Available In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the

  7. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Science.gov (United States)

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J; Smithgall, Thomas E

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important

  8. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Directory of Open Access Journals (Sweden)

    Prerna Grover

    Full Text Available The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery

  9. Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Murdoch, Hannah

    2014-01-01

    this series resulted in compounds completely lacking activity, acting as FFA3 PAMs, or appearing to act as FFA3-negative allosteric modulators. However, the pharmacology of this series was further complicated in that certain analogs displaying overall antagonism of FFA3 function actually appeared to generate......, considerable care must be taken to define the pharmacological characteristics of specific compounds before useful predictions of their activity and their use in defining specific roles of FFA3 in either in vitro and in vivo settings can be made....

  10. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.

    Science.gov (United States)

    Townsend, Philip D; Rodgers, Thomas L; Glover, Laura C; Korhonen, Heidi J; Richards, Shane A; Colwell, Lucy J; Pohl, Ehmke; Wilson, Mark R; Hodgson, David R W; McLeish, Tom C B; Cann, Martin J

    2015-09-04

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the ligand-binding domain and stabilize the agonist-bound conformation slow...

  12. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

    Science.gov (United States)

    Gao, Jingjing; Yao, Licheng; Xia, Tingting; Liao, Xuebin; Zhu, Deyu; Xiang, Ye

    2018-04-01

    The human kynurenine 3-monooxygenase (hKMO) is a potential therapeutic target for neurodegenerative and neurologic disorders. Inhibition of KMO by Ro 61-8048, a potent, selective, and the most widely used inhibitor of KMO, was shown effective in various models of neurodegenerative or neurologic disorders. However, the molecular basis of hKMO inhibition by Ro 61-8048 is not clearly understood. Here, we report biochemistry studies on hKMO and crystal structures of an hKMO homolog, pfKMO from Pseudomonas fluorescens, in complex with the substrate l-kynurenine and Ro 61-8048. We found that the C-terminal ∼110 aa are essential for the enzymatic activity of hKMO and the homologous C-terminal region of pfKMO folds into a distinct, all-α-helical domain, which associates with the N-terminal catalytic domain to form a unique tunnel in proximity to the substrate-binding pocket. The tunnel binds the Ro 61-8048 molecule, which fills most of the tunnel, and Ro 61-8048 is hydrogen bonded with several completely conserved residues, including an essential catalytic residue. Modification of Ro 61-8048 and biochemical studies of the modified Ro 61-8048 derivatives suggested that Ro 61-8048 inhibits the enzyme in an allosteric manner by affecting the conformation of the essential catalytic residue and by blocking entry of the substrate or product release. The unique binding sites distinguish Ro 61-8048 as a noncompetitive and highly selective inhibitor from other competitive inhibitors, which should facilitate further optimization of Ro 61-8048 and the development of new inhibitory drugs to hKMO.-Gao, J., Yao, L., Xia, T., Liao, X., Zhu, D., Xiang, Y. Biochemistry and structural studies of kynurenine 3-monooxygenase reveal allosteric inhibition by Ro 61-8048.

  13. Conformational changes and allosteric communications in human serum albumin due to ligand binding.

    Science.gov (United States)

    Ahalawat, Navjeet; Murarka, Rajesh K

    2015-01-01

    It is well recognized that knowledge of structure alone is not sufficient to understand the fundamental mechanism of biomolecular recognition. Information of dynamics is necessary to describe motions involving relevant conformational states of functional importance. We carried out principal component analysis (PCA) of structural ensemble, derived from 84 crystal structures of human serum albumin (HSA) with different ligands and/or different conditions, to identify the functionally important collective motions, and compared with the motions along the low-frequency modes obtained from normal mode analysis of the elastic network model (ENM) of unliganded HSA. Significant overlap is observed in the collective motions derived from PCA and ENM. PCA and ENM analysis revealed that ligand selects the most favored conformation from accessible equilibrium structures of unliganded HSA. Further, we analyzed dynamic network obtained from molecular dynamics simulations of unliganded HSA and fatty acids- bound HSA. Our results show that fatty acids-bound HSA has more robust community network with several routes to communicate among different parts of the protein. Critical nodes (residues) identified from dynamic network analysis are in good agreement with allosteric residues obtained from sequence-based statistical coupling analysis method. This work underscores the importance of intrinsic structural dynamics of proteins in ligand recognition and can be utilized for the development of novel drugs with optimum activity.

  14. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin

    Science.gov (United States)

    Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.

    2013-01-01

    In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132

  15. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses.

    Directory of Open Access Journals (Sweden)

    Ayaka Tobo

    Full Text Available G protein-coupled receptor 4 (GPR4, previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.

  16. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses.

    Science.gov (United States)

    Tobo, Ayaka; Tobo, Masayuki; Nakakura, Takashi; Ebara, Masashi; Tomura, Hideaki; Mogi, Chihiro; Im, Dong-Soon; Murata, Naoya; Kuwabara, Atsushi; Ito, Saki; Fukuda, Hayato; Arisawa, Mitsuhiro; Shuto, Satoshi; Nakaya, Michio; Kurose, Hitoshi; Sato, Koichi; Okajima, Fumikazu

    2015-01-01

    G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.

  17. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis

    Science.gov (United States)

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H.; Hickson, Gilles R.

    2014-01-01

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks. PMID:25332165

  18. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

    Science.gov (United States)

    Xu, Youjun; Wang, Shiwei; Hu, Qiwan; Gao, Shuaishi; Ma, Xiaomin; Zhang, Weilin; Shen, Yihang; Chen, Fangjin; Lai, Luhua; Pei, Jianfeng

    2018-05-10

    CavityPlus is a web server that offers protein cavity detection and various functional analyses. Using protein three-dimensional structural information as the input, CavityPlus applies CAVITY to detect potential binding sites on the surface of a given protein structure and rank them based on ligandability and druggability scores. These potential binding sites can be further analysed using three submodules, CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based pharmacophore modelling program, Pocket, to automatically extract pharmacophore features within cavities. CorrSite identifies potential allosteric ligand-binding sites based on motion correlation analyses between cavities. CovCys automatically detects druggable cysteine residues, which is especially useful to identify novel binding sites for designing covalent allosteric ligands. Overall, CavityPlus provides an integrated platform for analysing comprehensive properties of protein binding cavities. Such analyses are useful for many aspects of drug design and discovery, including target selection and identification, virtual screening, de novo drug design, and allosteric and covalent-binding drug design. The CavityPlus web server is freely available at http://repharma.pku.edu.cn/cavityplus or http://www.pkumdl.cn/cavityplus.

  19. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fortanet, Jorge Garcia; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.; Chen, Zhouliang; Deng, Zhan; Firestone, Brant; Fekkes, Peter; Fodor, Michelle; Fortin, Pascal D.; Fridrich, Cary; Grunenfelder, Denise; Ho, Samuel; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Keen, Nick; LaBonte, Laura R.; Larrow, Jay; Lenoir, Francois; Liu, Gang; Liu, Shumei; Lombardo, Franco; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Ramsey, Timothy; Sellers, William R.; Shultz, Michael D.; Stams, Travis; Towler, Christopher; Wang, Ping; Williams, Sarah L.; Zhang, Ji-Hu; LaMarche, Matthew J. (Novartis)

    2016-09-08

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.

  20. Insect Ryanodine Receptor: Distinct But Coupled Insecticide Binding Sites for [N-C3H3]Chlorantraniliprole, Flubendiamide, and [3H]Ryanodine

    OpenAIRE

    Isaacs, André K.; Qi, Suzhen; Sarpong, Richmond; Casida, John E.

    2012-01-01

    Radiolabeled anthranilic diamide insecticide [N-C3H3]chlorantraniliprole was synthesized at high specific activity and compared with phthalic diamide insecticide flubendiamide and [3H]ryanodine in radioligand binding studies with house fly muscle membranes to provide the first direct evidence with a native insect ryanodine receptor that the major anthranilic and phthalic diamide insecticides bind at different allosterically coupled sites, i.e. there are three distinct Ca2+-release channel tar...

  1. Determinants of positive cooperativity between strychnine-like allosteric modulators and N-methylscopolamine at muscarinic receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; Doležal, Vladimír

    2006-01-01

    Roč. 30, č. 1-2 (2006), s. 111-112 ISSN 0895-8696 R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * strychnine -like allosteric modulators * cooperativity Subject RIV: ED - Physiology Impact factor: 2.965, year: 2006

  2. Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Erichsen, Helle K; Brown, David T

    2012-01-01

    GABA-A receptor positive allosteric modulators (PAMs) mediate robust analgesia in animal models of pathological pain, in part via enhancing injury-induced loss of GABA-A-α2 and -α3 receptor function within the spinal cord. As yet, a lack of clinically suitable tool compounds has prevented this co...

  3. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Matthew Brecher

    2017-05-01

    Full Text Available The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2 in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV, West Nile virus (WNV, and Yellow fever virus (YFV on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and

  4. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  5. The Low-Affinity Binding of Second Generation Radiotracers Targeting TSPO is Associated with a Unique Allosteric Binding Site

    Czech Academy of Sciences Publication Activity Database

    Rojas, C.; Stathis, M.; Coughlin, J. M.; Pomper, M.; Slusher, Barbara S.

    2018-01-01

    Roč. 13, č. 1 (2018), s. 1-5 ISSN 1557-1890 Institutional support: RVO:61388963 Keywords : translocator protein 18KDa (TSPO) * allosteric modulation * residence time Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.339, year: 2016

  6. Discovery of a novel allosteric modulator of 5-HT3 receptor

    DEFF Research Database (Denmark)

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B

    2012-01-01

    The ligand-gated ion channels in the Cysloop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA and glycine. Cysloop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel...... receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)subunit and TM1 and TM2 in the (minus)subunit. The Ser248, Leu288, Ile290, Thr294 and Gly306 residues are identified as important...

  7. Identification of halosalicylamide derivatives as a novel class of allosteric inhibitors of HCV NS5B polymerase.

    Science.gov (United States)

    Liu, Yaya; Donner, Pamela L; Pratt, John K; Jiang, Wen W; Ng, Teresa; Gracias, Vijaya; Baumeister, Steve; Wiedeman, Paul E; Traphagen, Linda; Warrior, Usha; Maring, Clarence; Kati, Warren M; Djuric, Stevan W; Molla, Akhteruzzaman

    2008-06-01

    Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.

  8. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  9. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2008-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  10. Levamisole: A Positive Allosteric Modulator for the α3β4 Nicotinic Acetylcholine Receptors Prevents Weight Gain in the CD-1 Mice on a High Fat Diet.

    Science.gov (United States)

    Lewis, Jeanne A; Yakel, Jerrel L; Pandya, Anshul A

    2017-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the function of multiple neurotransmitter pathways throughout the central nervous system. This includes nAChRs found on the proopiomelanocortin neurons in the hypothalamus. Activation of these nAChRs by nicotine causes a decrease in the consumption of food in rodents. This study tested the effect of subtype selective allosteric modulators for nAChRs on the body weight of CD-1 mice. Levamisole, an allosteric modulator for the α3β4 subtype of nAChRs, prevented weight gain in mice that were fed a high fat diet. PNU-120596 and desformylflustrabromine were observed to be selective PAMs for the α7 and α4β2 nAChR, respectively. Both of these compounds failed to prevent weight gain in the CD-1 mice. These results suggest that the modulation of hypothalamic α3β4 nAChRs is an important factor in regulating food intake, and the PAMs for these receptors need further investigation as potential therapeutic agents for controlling weight gain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  12. mGluR5 Positive Allosteric Modulation Enhances Extinction Learning Following Cocaine Self-Administration

    OpenAIRE

    Cleva, Richard M.; Hicks, Megan P.; Gass, Justin T.; Wischerath, Kelly C.; Plasters, Elizabeth T.; Widholm, John J.; Olive, M. Foster

    2011-01-01

    Extinction of classically and instrumentally conditioned behaviors, such as conditioned fear and drug-seeking behavior, is a process of active learning, and recent studies indicate that potentiation of glutamatergic transmission facilitates extinction learning. In this study we investigated the effects of the type 5 metabotropic glutamate receptors (mGluR5) positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) on the extinction of cocaine-seeking behavior in ...

  13. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase.

    Science.gov (United States)

    Farb, Joshua N; Morrical, Scott W

    2009-01-16

    Recombinases of the highly conserved RecA/Rad51 family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity--a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed.

  14. Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes

    Directory of Open Access Journals (Sweden)

    Dasiel O. Borroto-Escuela

    2016-01-01

    Full Text Available Our hypothesis is that allosteric receptor-receptor interactions in homo- and heteroreceptor complexes may form the molecular basis of learning and memory. This principle is illustrated by showing how cocaine abuse can alter the adenosine A2AR-dopamine D2R heterocomplexes and their receptor-receptor interactions and hereby induce neural plasticity in the basal ganglia. Studies with A2AR ligands using cocaine self-administration procedures indicate that antagonistic allosteric A2AR-D2R heterocomplexes of the ventral striatopallidal GABA antireward pathway play a significant role in reducing cocaine induced reward, motivation, and cocaine seeking. Anticocaine actions of A2AR agonists can also be produced at A2AR homocomplexes in these antireward neurons, actions in which are independent of D2R signaling. At the A2AR-D2R heterocomplex, they are dependent on the strength of the antagonistic allosteric A2AR-D2R interaction and the number of A2AR-D2R and A2AR-D2R-sigma1R heterocomplexes present in the ventral striatopallidal GABA neurons. It involves a differential cocaine-induced increase in sigma1Rs in the ventral versus the dorsal striatum. In contrast, the allosteric brake on the D2R protomer signaling in the A2AR-D2R heterocomplex of the dorsal striatopallidal GABA neurons is lost upon cocaine self-administration. This is potentially due to differences in composition and allosteric plasticity of these complexes versus those in the ventral striatopallidal neurons.

  15. Allosteric conformational barcodes direct signaling in the cell.

    Science.gov (United States)

    Nussinov, Ruth; Ma, Buyong; Tsai, Chung-Jung; Csermely, Peter

    2013-09-03

    The cellular network is highly interconnected. Pathways merge and diverge. They proceed through shared proteins and may change directions. How are cellular pathways controlled and their directions decided, coded, and read? These questions become particularly acute when we consider that a small number of pathways, such as signaling pathways that regulate cell fates, cell proliferation, and cell death in development, are extensively exploited. This review focuses on these signaling questions from the structural standpoint and discusses the literature in this light. All co-occurring allosteric events (including posttranslational modifications, pathogen binding, and gain-of-function mutations) collectively tag the protein functional site with a unique barcode. The barcode shape is read by an interacting molecule, which transmits the signal. A conformational barcode provides an intracellular address label, which selectively favors binding to one partner and quenches binding to others, and, in this way, determines the pathway direction, and, eventually, the cell's response and fate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Allosteric regulation of rhomboid intramembrane proteolysis.

    Science.gov (United States)

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-09-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.

  17. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    International Nuclear Information System (INIS)

    Lesne, Annick; Victor, Jean–Marc; Bécavin, Christophe

    2012-01-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity. (perspective)

  18. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  19. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    Directory of Open Access Journals (Sweden)

    M Cecchini

    Full Text Available The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described.

  20. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ.

    Directory of Open Access Journals (Sweden)

    Yassmine Chebaro

    Full Text Available Retinoic acid (RA plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs, which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD, and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E, which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340 are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity.

  1. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

    DEFF Research Database (Denmark)

    Hindie, Valerie; Stroba, Adriana; Zhang, Hua

    2009-01-01

    -dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal...... molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes....

  2. Positive allosteric modulation of mGluR5 accelerates extinction learning but not relearning following methamphetamine self-administration

    Directory of Open Access Journals (Sweden)

    Peter R Kufahl

    2012-11-01

    Full Text Available Recent studies have implicated glutamate neurotransmission as an important substrate for the extinction of conditioned behaviors, including responding for drug reinforcement. Positive allosteric modulation of the type-5 metabotropic glutamate receptor (mGluR5 in particular has emerged as a treatment strategy for the enhancement of extinction of drug-motivated behaviors. Here, we investigated the effects of the mGluR5 positive allosteric modulator CDPPB, a compound known for its cognitive enhancing effects in rodents, on extinction learning in rats with different histories of methamphetamine (METH training. Rats were trained to self-administer METH under two conditions: 16 daily sessions of short access (90 min/day, ShA, or 8 daily sessions of short access followed by 8 sessions of long access (6 hr/day, LgA. Control rats self-administered sucrose pellets in daily 30 min sessions. Next, rats were administered vehicle or 30 mg/kg CDPPB prior to 7 consecutive daily extinction sessions, subjected to additional extinction sessions to re-establish a post-treatment baseline, and then tested for reinstatement of behavior in the presence of METH- or sucrose-paired cues. Rats were then subjected to a second series of extinction sessions, preceded by vehicle or 30 mg/kg CDPPB, and an additional test for cue-triggered reinstatement. CDPPB treatment resulted in a more rapid extinction of responding on the active lever, especially in the early sessions of the first extinction sequence. However, treatment effects were minimal during subsequent cue reinstatement tests and nonexistent during the second series of extinction sessions. Rats with histories of ShA, LgA and sucrose training expressed similar behavioral sensitivities to CDPPB, with LgA rats demonstrating a modestly higher treatment effect. Positive allosteric modulation of mGluR5 may therefore have some beneficial effects on efforts to facilitate extinction learning and reduce methamphetamine seeking.

  3. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have...... been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime...... example of intraprotein control of the electron-transfer rates by allosteric interactions....

  4. Substrate-Induced Allosteric Change in the Quaternary Structure of the Spermidine N-Acetyltransferase SpeG

    OpenAIRE

    Filippova, Ekaterina V.; Weigand, Steven; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F.

    2015-01-01

    The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl-coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulates their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligan...

  5. Allosteric inactivation of a trypsin-like serine protease by an antibody binding to the 37- and 70-loops

    DEFF Research Database (Denmark)

    Kromann-Hansen, Tobias; Lund, Ida K; Liu, Zhuo

    2013-01-01

    for elucidating fundamental allosteric mechanisms. The monoclonal antibody mU1 has previously been shown to be able to inhibit the function of murine urokinase-type plasminogen activator in vivo. We have now mapped the epitope of mU1 to the catalytic domain's 37- and 70-loops, situated about 20 Å from the S1...

  6. A New Negative Allosteric Modulator AP14145 for the Study of Small Conductance Calcium-Activated Potassium Channels

    DEFF Research Database (Denmark)

    Simo Vicens, Rafel; Kirchhoff, Jeppe Egedal; Dolce, Bernardo

    2017-01-01

    ) prolongation in anaesthetised rats and a beam walk test was performed in mice to determine acute CNS related effects of the drug. Key results: AP14145 was found to be an equipotent negative allosteric modulator of KCa2.2 and KCa2.3 channels (IC50 = 1.1 ± 0.3 μM L-1). The presence of AP14145 (10 μM L-1......) increased the EC50 of Ca2+ on KCa2.3 from 0.36 ± 0.02 μM L-1 to 1.2 ± 0.1 μM L-1. The inhibitory effect strongly depended on two amino acids, S508 and A533. AP14145 concentration-dependently prolonged AERP in rats. Moreover, AP14145 (10 mg kg-1) did not trigger any apparent CNS effects in mice. Conclusion...... and implications: AP14145 is a negative allosteric modulator of KCa2.2 and KCa2.3 that shifts the calcium dependence of channel activation, an effect strongly dependent on two identified amino acids. AP14145 prolongs AERP in rats and does not trigger any acute CNS effects in mice. The understanding of how KCa2...

  7. Substrate-Induced Allosteric Change in the Quaternary Structure of the Spermidine N-Acetyltransferase SpeG.

    Science.gov (United States)

    Filippova, Ekaterina V; Weigand, Steven; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F

    2015-11-06

    The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Two hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. Our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites. Copyright © 2015. Published by Elsevier Ltd.

  8. A New Negative Allosteric Modulator AP14145 for the Study of Small Conductance Calcium-Activated Potassium Channels

    DEFF Research Database (Denmark)

    Simo Vicens, Rafel; Kirchhoff, Jeppe Egedal; Dolce, Bernardo

    2017-01-01

    ) prolongation in anaesthetised rats and a beam walk test was performed in mice to determine acute CNS related effects of the drug. Key results: AP14145 was found to be an equipotent negative allosteric modulator of KCa2.2 and KCa2.3 channels (IC50 = 1.1 ± 0.3 μM L-1). The presence of AP14145 (10 μM L-1...

  9. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods

    Directory of Open Access Journals (Sweden)

    Cabrera-Luque Juan

    2008-09-01

    Full Text Available Abstract Background The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG, an essential allosteric activator of carbamylphosphate synthetase I (CPSI in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS, which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. Results Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. Conclusion Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine

  10. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  11. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore.

    Directory of Open Access Journals (Sweden)

    Alex K Lyashchenko

    Full Text Available Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model but couple more loosely (as envisioned in a modular model of protein activation. Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile "slow" channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.

  12. Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter--a review of current understanding of its mechanism of action.

    Science.gov (United States)

    Zhong, Huailing; Haddjeri, Nasser; Sánchez, Connie

    2012-01-01

    Escitalopram is a widely used antidepressant for the treatment of patients with major depression. It is the pure S-enantiomer of racemic citalopram. Several clinical trials and meta-analyses indicate that escitalopram is quantitatively more efficacious than many other antidepressants with a faster onset of action. This paper reviews current knowledge about the mechanism of action of escitalopram. The primary target for escitalopram is the serotonin transporter (SERT), which is responsible for serotonin (or 5-hydroxytryptamine [5-HT]) reuptake at the terminals and cell bodies of serotonergic neurons. Escitalopram and selective serotonin reuptake inhibitors bind with high affinity to the 5-HT binding site (orthosteric site) on the transporter. This leads to antidepressant effects by increasing extracellular 5-HT levels which enhance 5-HT neurotransmission. SERT also has one or more allosteric sites, binding to which modulates activity at the orthosteric binding site but does not directly affect 5-HT reuptake by the transporter. In vitro studies have shown that through allosteric binding, escitalopram decreases its own dissociation rate from the orthosteric site on the SERT. R-citalopram, the nontherapeutic enantiomer in citalopram, is also an allosteric modulator of SERT but can inhibit the actions of escitalopram by interfering negatively with its binding. Both nonclinical studies and some clinical investigations have demonstrated the cellular, neurochemical, neuroadaptive, and neuroplastic changes induced by escitalopram with acute and chronic administration. The findings from binding, neurochemical, and neurophysiological studies may provide a mechanistic rationale for the clinical difference observed with escitalopram compared to other antidepressant therapies.

  13. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  14. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP

    DEFF Research Database (Denmark)

    Mathiesen, Jesper Mosolff; Svendsen, Nannette; Bräuner-Osborne, Hans

    2003-01-01

    We have identified 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) and 2-methyl-6-phenylethynyl pyridine hydrochloride (MPEP) as positive allosteric modulators for the hmGluR4. SIB-1893 and MPEP enhanced the potency and efficacy of L-2-amino-4-phophonobutyrate (L-AP4) in guanosine 5'-O-(3-[(35)S...

  15. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; El-Sayed, Mona; Mikkelsen, Jens D

    2011-01-01

    of repeated administration of α7 nAChR agonists. We further compare the effect of agonists to that of α7 nAChR positive allosteric modulators (PAMs), which do not induce upregulation of the α7 nAChR. Using the social discrimination test as a measure of short-term memory, we show that the α7 nAChR agonist A......-582941 improves short-term memory immediately after repeated (7× daily), but not a single administration. The α7 nAChR PAMs PNU-120596 and AVL-3288 do not affect short-term memory immediately after a single or repeated administration. This demonstrates a fundamental difference in the behavioral effects...... of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance...

  16. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  17. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats

    DEFF Research Database (Denmark)

    Bortz, D M; Upton, B A; Mikkelsen, J D

    2016-01-01

    Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (α7nAChRs) exhibit pro-cognitive effects in animal models of schizophrenia and are targets for the discovery of cognition-enhancing drugs. However, little is known about their in vivo mechanism of action because...

  18. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  19. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    Science.gov (United States)

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome

    NARCIS (Netherlands)

    van Bel, Nikki; van der Velden, Yme; Bonnard, Damien; Le Rouzic, Erwann; Das, Atze T.; Benarous, Richard; Berkhout, Ben

    2014-01-01

    The viral integrase (IN) is an essential protein for HIV-1 replication. IN inserts the viral dsDNA into the host chromosome, thereby aided by the cellular co-factor LEDGF/p75. Recently a new class of integrase inhibitors was described: allosteric IN inhibitors (ALLINIs). Although designed to

  1. Characterization of the allosteric binding pocket of human liver fructose-1,6-bisphosphatase by protein crystallography and inhibitor activity studies.

    Science.gov (United States)

    Iversen, L F; Brzozowski, M; Hastrup, S; Hubbard, R; Kastrup, J S; Larsen, I K; Naerum, L; Nørskov-Lauridsen, L; Rasmussen, P B; Thim, L; Wiberg, F C; Lundgren, K

    1997-05-01

    The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP). 5-Amino-4-carboxamido-1 beta-D-5-phosphate-ribofuranosyl-1H-imidazole (AICAR-P) shows an unexpected mode of binding to FB, different from that of the other two ligands. The imidazole ring of AICAR-P is rotated 180 degrees compared to the AMP and FMP bases. This rotation results in a slightly different hydrogen bonding pattern and minor changes in the water structure in the binding pocket. Common features of binding are seen for the ribose and phosphate moieties of all three compounds. Although binding in a different mode, AICAR-P is still capable of making all the important interactions with the residues building the allosteric binding pocket. The IC50 values of AMP, FMP, and AICAR-P were determined to be 1.7, 1.4, and 20.9 microM, respectively. Thus, the approximately 10 times lower potency of AICAR-P is difficult to explain solely from the variations observed in the binding pocket. Only one water molecule in the allosteric binding pocket was found to be conserved in all four subunits in all three structures. This water molecule coordinates to a phosphate oxygen atom and the N7 atom of the AMP molecule, and to similarly situated atoms in the FMP and AICAR-P complexes. This implies an important role of the conserved water molecule in binding of the ligand.

  2. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    Science.gov (United States)

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  3. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  4. Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation.

    Science.gov (United States)

    Wecksler, Aaron T; Kenyon, Victor; Deschamps, Joshua D; Holman, Theodore R

    2008-07-15

    Human reticulocyte 15-lipoxygenase (15-hLO-1) and epithelial 15-lipoxygenase (15-hLO-2) have been implicated in a number of human diseases, with differences in their substrate specificity potentially playing a central role. In this paper, we present a novel method for accurately measuring the substrate specificity of the two 15-hLO isozymes and demonstrate that both cholate and specific LO products affect substrate specificity. The linoleic acid (LA) product, 13-hydroperoxyoctadienoic acid (13-HPODE), changes the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio more than 5-fold for 15-hLO-1 and 3-fold for 15-hLO-2, while the arachidonic acid (AA) product, 12-( S)-hydroperoxyeicosatetraenoic acid (12-HPETE), affects only the ratio of 15-hLO-1 (more than 5-fold). In addition, the reduced products, 13-( S)-hydroxyoctadecadienoic acid (13-HODE) and 12-( S)-hydroxyeicosatetraenoic acid (12-HETE), also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio. These results, coupled with the dependence of the 15-hLO-1 k cat/ K m kinetic isotope effect ( (D) k cat/ K m) on the presence of 12-HPETE and 12-HETE, indicate that the allosteric site, previously identified in 15-hLO-1 [Mogul, R., Johansen, E., and Holman, T. R. (1999) Biochemistry 39, 4801-4807], is responsible for the change in substrate specificity. The ability of LO products to regulate substrate specificity may be relevant with respect to cancer progression and warrants further investigation into the role of this product-feedback loop in the cell.

  5. Allosteric mechanism controls traffic in the chaperone/usher pathway.

    Science.gov (United States)

    Di Yu, Xiao; Dubnovitsky, Anatoly; Pudney, Alex F; Macintyre, Sheila; Knight, Stefan D; Zavialov, Anton V

    2012-11-07

    Many virulence organelles of Gram-negative bacterial pathogens are assembled via the chaperone/usher pathway. The chaperone transports organelle subunits across the periplasm to the outer membrane usher, where they are released and incorporated into growing fibers. Here, we elucidate the mechanism of the usher-targeting step in assembly of the Yersinia pestis F1 capsule at the atomic level. The usher interacts almost exclusively with the chaperone in the chaperone:subunit complex. In free chaperone, a pair of conserved proline residues at the beginning of the subunit-binding loop form a "proline lock" that occludes the usher-binding surface and blocks usher binding. Binding of the subunit to the chaperone rotates the proline lock away from the usher-binding surface, allowing the chaperone-subunit complex to bind to the usher. We show that the proline lock exists in other chaperone/usher systems and represents a general allosteric mechanism for selective targeting of chaperone:subunit complexes to the usher and for release and recycling of the free chaperone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Theoretical Analysis of Allosteric and Operator Binding for Cyclic-AMP Receptor Protein Mutants

    Science.gov (United States)

    Einav, Tal; Duque, Julia; Phillips, Rob

    2018-02-01

    Allosteric transcription factors undergo binding events both at their inducer binding sites as well as at distinct DNA binding domains, and it is often difficult to disentangle the structural and functional consequences of these two classes of interactions. In this work, we compare the ability of two statistical mechanical models - the Monod-Wyman-Changeux (MWC) and the Koshland-N\\'emethy-Filmer (KNF) models of protein conformational change - to characterize the multi-step activation mechanism of the broadly acting cyclic-AMP receptor protein (CRP). We first consider the allosteric transition resulting from cyclic-AMP binding to CRP, then analyze how CRP binds to its operator, and finally investigate the ability of CRP to activate gene expression. In light of these models, we examine data from a beautiful recent experiment that created a single-chain version of the CRP homodimer, thereby enabling each subunit to be mutated separately. Using this construct, six mutants were created using all possible combinations of the wild type subunit, a D53H mutant subunit, and an S62F mutant subunit. We demonstrate that both the MWC and KNF models can explain the behavior of all six mutants using a small, self-consistent set of parameters. In comparing the results, we find that the MWC model slightly outperforms the KNF model in the quality of its fits, but more importantly the parameters inferred by the MWC model are more in line with structural knowledge of CRP. In addition, we discuss how the conceptual framework developed here for CRP enables us to not merely analyze data retrospectively, but has the predictive power to determine how combinations of mutations will interact, how double mutants will behave, and how each construct would regulate gene expression.

  7. Positive versus negative modulation of different endogenous chemokines for CC-chemokine receptor 1 by small molecule agonists through allosteric versus orthosteric binding

    DEFF Research Database (Denmark)

    Jensen, Pia C; Thiele, Stefanie; Ulven, Trond

    2008-01-01

    7 transmembrane-spanning (7TM) chemokine receptors having multiple endogenous ligands offer special opportunities to understand the molecular basis for allosteric mechanisms. Thus, CC-chemokine receptor 1 (CCR1) binds CC-chemokine 3 and 5 (CCL3 and CCL5) with K(d) values of 7.3 and 0.16 nm......5 and not CCL3 activation is affected by substitutions in the main ligand binding pocket including the conserved GluVII:06 anchor point. A series of metal ion chelator complexes were found to act as full agonists on CCR1 and to be critically affected by the same substitutions in the main ligand...... binding pocket as CCL5 but not by mutations in the extracellular domain. In agreement with the overlapping binding sites, the small non-peptide agonists displaced radiolabeled CCL5 with high affinity. Interestingly, the same compounds acted as allosteric enhancers of the binding of CCL3, with which...

  8. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    Directory of Open Access Journals (Sweden)

    Lucas R. Watterson

    2013-12-01

    Full Text Available Positive allosteric modulators (PAMs of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

  9. Effects of intraperitoneal administration of the GABAB receptor positive allosteric modulator 2,6-di tert-butyl-4-(2-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) on food intake in non-deprived rats.

    Science.gov (United States)

    Ebenezer, Ivor S

    2012-09-05

    γ-Aminobutyric acid-(B) (GABA(B)) receptor positive allosteric modulators (PAMs) act on an allosteric site on the GABA(B) receptor to potentiate the effects of GABA and GABA(B) receptor agonists. It has previously been demonstrated that the GABA(B) receptor agonist baclofen increases food intake in non-deprived rats. The aim of this study was to investigate whether the GABA(B) receptor PAM 2,6-di tert-butyl-4-(2-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) would (i) increase food intake, and (ii) potentiate the hyperphagic effects of baclofen in rats. In Experiment 1, the effects of intraperitoneal (i.p.) administration of CGP7930 (1, 6 and 12 mg/kg) was investigated on food intake in non-deprived male Wistar rats. The 12 mg/kg dose of CGP7930 significantly increased cumulative food intake 30, 60 and 120 min (PGABA and GABA(B) receptor agonists by allosteric modulation of the GABA(B) receptor. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  11. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  12. Interaction of ATP with acid-denatured cytochrome c via coupled folding-binding mechanism

    International Nuclear Information System (INIS)

    Ahluwalia, Unnati; Deep, Shashank

    2012-01-01

    Highlights: ► Interaction between ATP and cyt c takes place via coupled binding–folding mechanism. ► Binding of ATP to cyt c is endothermic. ► GTP and CTP induce similar level of helicity in acid-denatured cyt c as with ATP. ► Compactness induced by ATP is far greater than ADP or AMP. - Abstract: The non-native conformations of the cytochrome c (cyt c) are believed to play key roles in a number of physiological processes. Nucleotides are supposed to act as allosteric effectors in these processes by regulating structural transitions among different conformations of cyt c. To understand the interaction between acid denatured cytochrome c and nucleotides, spectroscopic and calorimetric techniques were utilized to observe the structural features of the induced conformation and the energetics of interaction of acid denatured cyt c with different nucleotides. Structure induction in the acid denatured cyt c was observed on the addition of the ∼1 mM nucleotide tri-phosphates (ATP/GTP/CTP) at 25 °C, however, not in the presence of 1 mM nucleotide mono and diphosphates. ATP-bound cyt c at pH 2.0 is likely to have a conformation that has intact α-helical domain. However, Met80-Fe(III) axial bond is still ruptured. Observed thermodynamics reflect interaction between nucleotide and cyt c via coupled binding–folding mechanism. DSC data suggest the preferential binding of the ATP to the folded conformation with respect to the acid denatured cyt c. ITC data indicate that the exothermic folding of cyt c was accompanied by endothermic binding of ATP to cyt c.

  13. Gs protein peptidomimetics as allosteric modulators of the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Boyhus, Lotte Emilie; Danielsen, Mia; Bengtson, Nina Smidt

    2018-01-01

    A series of Gs protein peptidomimetics were designed and synthesised based on the published X-ray crystal structure of the active state β2-Adrenergic receptor (β2AR) in complex with the Gs protein (PDB 3SN6). We hypothesised that such peptidomimetics may function as allosteric modulators...... that target the intracellular Gs protein binding site of the β2AR. Peptidomimetics were designed to mimic the 15 residue C-Terminal α-helix of the Gs protein and were pre-organised in a helical conformation by (i, i + 4)-stapling using copper catalysed azide alkyne cycloaddition. Linear and stapled...... be able to compete with the native Gs protein for the intracellular binding site to block ISO-induced cAMP formation, but are unable to stabilise an active-like receptor conformation....

  14. Design and optimization of selective azaindole amide M1 positive allosteric modulators.

    Science.gov (United States)

    Davoren, Jennifer E; O'Neil, Steven V; Anderson, Dennis P; Brodney, Michael A; Chenard, Lois; Dlugolenski, Keith; Edgerton, Jeremy R; Green, Michael; Garnsey, Michelle; Grimwood, Sarah; Harris, Anthony R; Kauffman, Gregory W; LaChapelle, Erik; Lazzaro, John T; Lee, Che-Wah; Lotarski, Susan M; Nason, Deane M; Obach, R Scott; Reinhart, Veronica; Salomon-Ferrer, Romelia; Steyn, Stefanus J; Webb, Damien; Yan, Jiangli; Zhang, Lei

    2016-01-15

    Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. On Allosteric Modulation of P-Type Cu+-ATPases

    DEFF Research Database (Denmark)

    Mattle, Daniel; Sitsel, Oleg; Autzen, Henriette Elisabeth

    2013-01-01

    P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass...... of intramembranous Cu+ binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably...

  16. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    Science.gov (United States)

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M(3) receptors

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Alena; Tuček, Stanislav

    2001-01-01

    Roč. 60, č. 4 (2001), s. 761-767 ISSN 0026-895X R&D Projects: GA ČR GA309/99/0214 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * allosteric modulators Subject RIV: FH - Neurology Impact factor: 5.297, year: 2001

  18. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  19. A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Anurag Sethi

    Full Text Available The HIV-1 envelope (Env spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.

  20. Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators

    Science.gov (United States)

    Hubbard, Basil P.; Gomes, Ana P.; Dai, Han; Li, Jun; Case, April W.; Considine, Thomas; Riera, Thomas V.; Lee, Jessica E.; Sook Yen, E; Lamming, Dudley W.; Pentelute, Bradley L.; Schuman, Eli R.; Stevens, Linda A.; Ling, Alvin J. Y.; Armour, Sean M.; Michan, Shaday; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M.; Blum, Charles A.; Disch, Jeremy S.; Ng, Pui Yee; Howitz, Konrad T.; Rolo, Anabela P.; Hamuro, Yoshitomo; Moss, Joel; Perni, Robert B.; Ellis, James L.; Vlasuk, George P.; Sinclair, David A.

    2013-01-01

    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu230, located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs. PMID:23471411

  1. Evidence for a common mechanism of SIRT1 regulation by allosteric activators.

    Science.gov (United States)

    Hubbard, Basil P; Gomes, Ana P; Dai, Han; Li, Jun; Case, April W; Considine, Thomas; Riera, Thomas V; Lee, Jessica E; E, Sook Yen; Lamming, Dudley W; Pentelute, Bradley L; Schuman, Eli R; Stevens, Linda A; Ling, Alvin J Y; Armour, Sean M; Michan, Shaday; Zhao, Huizhen; Jiang, Yong; Sweitzer, Sharon M; Blum, Charles A; Disch, Jeremy S; Ng, Pui Yee; Howitz, Konrad T; Rolo, Anabela P; Hamuro, Yoshitomo; Moss, Joel; Perni, Robert B; Ellis, James L; Vlasuk, George P; Sinclair, David A

    2013-03-08

    A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.

  2. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation.

    Science.gov (United States)

    Yao, Xin-Qiu; Cato, M Claire; Labudde, Emily; Beyett, Tyler S; Tesmer, John J G; Grant, Barry J

    2017-09-29

    G protein-coupled receptors (GPCRs) are essential for transferring extracellular signals into carefully choreographed intracellular responses controlling diverse aspects of cell physiology. The duration of GPCR-mediated signaling is primarily regulated via GPCR kinase (GRK)-mediated phosphorylation of activated receptors. Although many GRK structures have been reported, the mechanisms underlying GRK activation are not well-understood, in part because it is unknown how these structures map to the conformational landscape available to this enzyme family. Unlike most other AGC kinases, GRKs rely on their interaction with GPCRs for activation and not phosphorylation. Here, we used principal component analysis of available GRK and protein kinase A crystal structures to identify their dominant domain motions and to provide a framework that helps evaluate how close each GRK structure is to being a catalytically competent state. Our results indicated that disruption of an interface formed between the large lobe of the kinase domain and the regulator of G protein signaling homology domain (RHD) is highly correlated with establishment of the active conformation. By introducing point mutations in the GRK5 RHD-kinase domain interface, we show with both in silico and in vitro experiments that perturbation of this interface leads to higher phosphorylation activity. Navigation of the conformational landscape defined by this bioinformatics-based study is likely common to all GPCR-activated GRKs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.

    Science.gov (United States)

    Boulton, Stephen; Selvaratnam, Rajeevan; Ahmed, Rashik; Melacini, Giuseppe

    2018-01-01

    Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

  4. Design, synthesis, and activity of 2,3-diphosphoglycerate analogs as allosteric modulators of hemoglobin O2 affinity.

    Science.gov (United States)

    Kassa, Tigist W; Zhang, Ning; Palmer, Andre F; Matthews, Jason Shastri

    2013-04-01

    Four phosphonate derivates of 2,3-diphosphoglycerate (2,3-DPG), in which the phosphate group is replaced by a methylene or difluoromethylene, were successfully synthesized for use as allosteric modulators of hemoglobin (Hb) O2 affinity. The syntheses were accomplished in four steps and the reagents were converted to their potassium salts to allow for effective binding with Hb in aqueous media. O2 equilibrium measurements of the chemically modified Hbs exhibited P50 values in the range 8.9-12.8 with Hill coefficients in the range of 1.5-2.4.

  5. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.

    Science.gov (United States)

    Westerhold, Lauren E; Bridges, Lance C; Shaikh, Saame Raza; Zeczycki, Tonya N

    2017-07-11

    Allosteric regulation of pyruvate carboxylase (PC) activity is pivotal to maintaining metabolic homeostasis. In contrast, dysregulated PC activity contributes to the pathogenesis of numerous diseases, rendering PC a possible target for allosteric therapeutic development. Recent research efforts have focused on demarcating the role of acetyl-CoA, one of the most potent activators of PC, in coordinating catalytic events within the multifunctional enzyme. Herein, we report a kinetic and thermodynamic analysis of acetyl-CoA activation of the Staphylococcus aureus PC (SaPC)-catalyzed carboxylation of pyruvate to identify novel means by which acetyl-CoA synchronizes catalytic events within the PC tetramer. Kinetic and linked-function analysis, or thermodynamic linkage analysis, indicates that the substrates of the biotin carboxylase and carboxyl transferase domain are energetically coupled in the presence of acetyl-CoA. In contrast, both kinetic and energetic coupling between the two domains is lost in the absence of acetyl-CoA, suggesting a functional role for acetyl-CoA in facilitating the long-range transmission of substrate-induced conformational changes within the PC tetramer. Interestingly, thermodynamic activation parameters for the SaPC-catalyzed carboxylation of pyruvate are largely independent of acetyl-CoA. Our results also reveal the possibility that global conformational changes give rise to observed species-specific thermodynamic activation parameters. Taken together, our kinetic and thermodynamic results provide a possible allosteric mechanism by which acetyl-CoA coordinates catalysis within the PC tetramer.

  6. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-04

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.

  7. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction?

    Directory of Open Access Journals (Sweden)

    Kari A Johnson

    2016-11-01

    Full Text Available Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses, and G protein-coupled receptors (GPCRs that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, dopamine (D1- and D2-like receptors, endocannabinoids (CB1 receptors and glutamate (group II metabotropic glutamate (mGlu receptors. The focus is on recent evidence from laboratory animal models (and some evidence in humans implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on

  8. Mathematical model of the binding of allosteric effectors to the Escherichia coli PII signal transduction protein GlnB.

    Science.gov (United States)

    da Rocha, Ricardo Alves; Weschenfelder, Thiago André; de Castilhos, Fernanda; de Souza, Emanuel Maltempi; Huergo, Luciano Fernandes; Mitchell, David Alexander

    2013-04-16

    PII proteins are important regulators of nitrogen metabolism in a wide variety of organisms: the binding of the allosteric effectors ATP, ADP, and 2-oxoglutarate (2-OG) to PII proteins affects their ability to interact with target proteins. We modeled the simultaneous binding of ATP, ADP, and 2-OG to one PII protein, namely GlnB of Escherichia coli, using a modeling approach that allows the prediction of the proportions of individual binding states. Four models with different binding rules were compared. We selected one of these models (that assumes that the binding of the first nucleotide to GlnB makes it harder for subsequent nucleotides to bind) and used it to explore how physiological concentrations of ATP, ADP, and 2-OG would affect the proportions of those states of GlnB that interact with the target proteins ATase and NtrB. Our simulations indicate that GlnB can, as suggested by previous researchers, act as a sensor of both 2-OG and the ATP:ADP ratio. We conclude that our modeling approach will be an important tool in future studies concerning the PII binding states and their interactions with target proteins.

  9. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  10. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-09-01

    Full Text Available Hepatitis B virus (HBV core protein assembles viral pre-genomic (pg RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs and sulfamoylbenzamides (SBAs, have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  11. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  12. Structure-based network analysis of activation mechanisms in the ErbB family of receptor tyrosine kinases: the regulatory spine residues are global mediators of structural stability and allosteric interactions.

    Directory of Open Access Journals (Sweden)

    Kevin A James

    Full Text Available The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced "superacceptor" activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD motif in the catalytic loop and the Asp-Phe-Gly (DFG motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not

  13. Conformational entropic maps of functional coupling domains in GPCR activation: A case study with beta2 adrenergic receptor

    Science.gov (United States)

    Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis

    2014-03-01

    Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.

  14. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    Science.gov (United States)

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  15. Synthesis and biological activity of allosteric modulators of GABAB receptors part 3. 3-(2,6-bis-iso-propyl-4-hydroxyphenyl)propanols

    International Nuclear Information System (INIS)

    Kerr, David I.B.; Ong, Jennifer; Khalafy, Jabbar; Rimaz, Mehdi; Prager, Rolf H.

    2007-01-01

    A series of six 2,2-disubstituted 3-[3,5-di-iso-propyl-4-hydroxyphenyl]propan-1-ol derivatives have been prepared for evaluation as allosteric modulators of GABA B receptors. The activity (EC 50 30 μM) was greatest for the dimethyl analogue, but the isopropylphenyl compounds were generally weaker than the corresponding t-butyl compounds. Methylation of the phenolic group led to loss of activity. (author)

  16. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery.

    Science.gov (United States)

    Wang, Jingheng; Custer, Gregory; Beckett, Dorothy; Matysiak, Silvina

    2017-08-29

    Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.

  17. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav

    2016-01-01

    The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn(2+) (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site......Terp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248(VI:13/6.48) microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism...

  18. Substituted 3-Benzylcoumarins as Allosteric MEK1 Inhibitors: Design, Synthesis and Biological Evaluation as Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2013-05-01

    Full Text Available In order to find novel antiviral agents, a series of allosteric MEK1 inhibitors were designed and synthesized. Based on docking results, multiple optimizations were made on the coumarin scaffold. Some of the derivatives showed excellent MEK1 binding affinity in the appropriate enzymatic assays and displayed obvious inhibitory effects on the ERK pathway in a cellular assay. These compounds also significantly inhibited virus (EV71 replication in HEK293 and RD cells. Several compounds showed potential as agents for the treatment of viral infective diseases, with the most potent compound 18 showing an IC50 value of 54.57 nM in the MEK1 binding assay.

  19. The HIV-1 integrase-LEDGF allosteric inhibitor MUT-A: resistance profile, impairment of virus maturation and infectivity but without influence on RNA packaging or virus immunoreactivity

    NARCIS (Netherlands)

    Amadori, Céline; Ubeles van der Velden, Yme; Bonnard, Damien; Orlov, Igor; van Bel, Nikki; Le Rouzic, Erwann; Miralles, Laia; Brias, Julie; Chevreuil, Francis; Spehner, Daniele; Chasset, Sophie; Ledoussal, Benoit; Mayr, Luzia; Moreau, François; García, Felipe; Gatell, José; Zamborlini, Alessia; Emiliani, Stéphane; Ruff, Marc; Klaholz, Bruno P.; Moog, Christiane; Berkhout, Ben; Plana, Montserrat; Benarous, Richard

    2017-01-01

    HIV-1 Integrase (IN) interacts with the cellular co-factor LEDGF/p75 and tethers the HIV preintegration complex to the host genome enabling integration. Recently a new class of IN inhibitors was described, the IN-LEDGF allosteric inhibitors (INLAIs). Designed to interfere with the IN-LEDGF

  20. A unified view of "how allostery works".

    Science.gov (United States)

    Tsai, Chung-Jung; Nussinov, Ruth

    2014-02-01

    The question of how allostery works was posed almost 50 years ago. Since then it has been the focus of much effort. This is for two reasons: first, the intellectual curiosity of basic science and the desire to understand fundamental phenomena, and second, its vast practical importance. Allostery is at play in all processes in the living cell, and increasingly in drug discovery. Many models have been successfully formulated, and are able to describe allostery even in the absence of a detailed structural mechanism. However, conceptual schemes designed to qualitatively explain allosteric mechanisms usually lack a quantitative mathematical model, and are unable to link its thermodynamic and structural foundations. This hampers insight into oncogenic mutations in cancer progression and biased agonists' actions. Here, we describe how allostery works from three different standpoints: thermodynamics, free energy landscape of population shift, and structure; all with exactly the same allosteric descriptors. This results in a unified view which not only clarifies the elusive allosteric mechanism but also provides structural grasp of agonist-mediated signaling pathways, and guides allosteric drug discovery. Of note, the unified view reasons that allosteric coupling (or communication) does not determine the allosteric efficacy; however, a communication channel is what makes potential binding sites allosteric.

  1. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    Energy Technology Data Exchange (ETDEWEB)

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas; Irving, Thomas C.; Bilsel, Osman; Lambright, David G.

    2018-01-01

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization and conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.

  2. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions.

    Directory of Open Access Journals (Sweden)

    Massimo Lai

    2015-01-01

    Full Text Available Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be

  3. Characterisation of endogenous A2A and A2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor™ biosensor: Evidence for an allosteric mechanism of action for the A2B-selective antagonist PSB 603.

    Science.gov (United States)

    Goulding, Joelle; May, Lauren T; Hill, Stephen J

    2018-01-01

    Endogenous adenosine A 2B receptors (A 2B AR) mediate cAMP accumulation in HEK 293 cells. Here we have used a biosensor to investigate the mechanism of action of the A 2B AR antagonist PSB 603 in HEK 293 cells. The A 2A agonist CGS 21680 elicited a small response in these cells (circa 20% of that obtained with NECA), suggesting that they also contain a small population of A 2A receptors. The responses to NECA and adenosine were antagonised by PSB 603, but not by the selective A 2A AR antagonist SCH 58261. In contrast, CGS 21680 responses were not antagonised by high concentrations of PSB 603, but were sensitive to inhibition by SCH 58261. Analysis of the effect of increasing concentrations of PSB 603 on the response to NECA indicated a non-competitive mode of action yielding a marked reduction in the NECA E MAX with no significant effect on EC 50 values. Kinetics analysis of the effect of PSB 603 on the A 2B AR-mediated NECA responses confirmed a saturable effect that was consistent with an allosteric mode of antagonism. The possibility that PSB 603 acts as a negative allosteric modulator of A 2B AR suggests new approaches to the development of therapeutic agents to treat conditions where adenosine levels are high. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Optimization of Allosteric With-No-Lysine (WNK) Kinase Inhibitors and Efficacy in Rodent Hypertension Models

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Ken; Levell, Julian; Yoon, Taeyong; Kohls, Darcy; Yowe, David; Rigel, Dean F.; Imase, Hidetomo; Yuan, Jun; Yasoshima, Kayo; DiPetrillo, Keith; Monovich, Lauren; Xu, Lingfei; Zhu, Meicheng; Kato, Mitsunori; Jain, Monish; Idamakanti, Neeraja; Taslimi, Paul; Kawanami, Toshio; Argikar, Upendra A.; Kunjathoor, Vidya; Xie, Xiaoling; Yagi, Yukiko I.; Iwaki, Yuki; Robinson, Zachary; Park, Hyi-Man (Novartis)

    2017-08-03

    The observed structure–activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for in vivo proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirming that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis.

  5. Shift in the Equilibrium between On and Off States of the Allosteric Switch in Ras-GppNHp Affected by Small Molecules and Bulk Solvent Composition

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Genevieve; Buhrman, Greg; Mattos, Carla (NCSU)

    2012-08-31

    Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) can selectively shift the equilibrium to the 'on' state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the 'ordered off' state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-{beta}. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.

  6. A novel polyamine allosteric site of SpeG from Vibrio cholerae is revealed by its dodecameric structure.

    Science.gov (United States)

    Filippova, Ekaterina V; Kuhn, Misty L; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Ballicora, Miguel A; Anderson, Wayne F

    2015-03-27

    Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis. Copyright © 2015. Published by Elsevier Ltd.

  7. Partial mGlu₅ Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects.

    Science.gov (United States)

    Gould, Robert W; Amato, Russell J; Bubser, Michael; Joffe, Max E; Nedelcovych, Michael T; Thompson, Analisa D; Nickols, Hilary H; Yuh, Johannes P; Zhan, Xiaoyan; Felts, Andrew S; Rodriguez, Alice L; Morrison, Ryan D; Byers, Frank W; Rook, Jerri M; Daniels, John S; Niswender, Colleen M; Conn, P Jeffrey; Emmitte, Kyle A; Lindsley, Craig W; Jones, Carrie K

    2016-03-01

    Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.

  8. Evidence for allosterism in ribulose-1,5-bisphosphate carboxylase/oxygenase from comfrey

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.D.; Bolden, T.D.

    1986-05-01

    Evidence has been obtained suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an allosteric enzyme in the sense that it shows cooperative active site binding, cooperative interactions between the activation and active sites and significant binding of some metabolites at a second site. Investigation of the binding of a potent competitive inhibitor. 2-carboxymannitol-1,6-bisphosphate (CMBP) by /sup 31/P-NMR indicated essentially 1:1 binding with the active sites of comfrey RuBisCo. Among the interactions of competitive inhibitors, as measured by difference UV spectroscopy, the binding curves for ortho-phosphate and ribose-5-phosphate were better fitted by a Monod-Wyman-Changeux model than by an independent site model, whereas the binding of CMBP and 2-phosphoglycolate were not. Difference UV methods also were used to study activation by CO/sub 2/ which at pH 7.9 in 10 mM MgCl/sub 2/ showed positive cooperativity with k = 100 +/- 3 ..mu..M (based on pK/sub a/ = 6.4 for the CO/sub 2/-HCO/sub 3//sup -/ equilibrium) and L = 3.5 +/- 0.7. Addition of saturating amounts of CMBP and lowering the MgCl/sub 2/ to 2 mM still gave a sigmoidal curve but it was shifted to higher CO/sub 2/ concentrations (k = 124 +/- 2 ..mu..M and L = 31 +/- 3). In the absence of CMBP the same conditions gave k = 26 +/- 2 ..mu..M for L = 3.5. Conversely, k was 0.96 +/- 0.08 ..mu..M for CMBP in 0.5 mM MgCl/sub 2/ without added NaHCO/sub 3/ but was 21 +/- 0.06 ..mu..M in 10 MgCl/sub 2/ and 2 mM NaHCO/sub 3/, pH 7.3.

  9. Evidence for allosterism in ribulose-1,5-bisphosphate carboxylase/oxygenase from comfrey

    International Nuclear Information System (INIS)

    Mueller, D.D.; Bolden, T.D.

    1986-01-01

    Evidence has been obtained suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an allosteric enzyme in the sense that it shows cooperative active site binding, cooperative interactions between the activation and active sites and significant binding of some metabolites at a second site. Investigation of the binding of a potent competitive inhibitor. 2-carboxymannitol-1,6-bisphosphate (CMBP) by 31 P-NMR indicated essentially 1:1 binding with the active sites of comfrey RuBisCo. Among the interactions of competitive inhibitors, as measured by difference UV spectroscopy, the binding curves for ortho-phosphate and ribose-5-phosphate were better fitted by a Monod-Wyman-Changeux model than by an independent site model, whereas the binding of CMBP and 2-phosphoglycolate were not. Difference UV methods also were used to study activation by CO 2 which at pH 7.9 in 10 mM MgCl 2 showed positive cooperativity with k = 100 +/- 3 μM (based on pK/sub a/ = 6.4 for the CO 2 -HCO 3 - equilibrium) and L = 3.5 +/- 0.7. Addition of saturating amounts of CMBP and lowering the MgCl 2 to 2 mM still gave a sigmoidal curve but it was shifted to higher CO 2 concentrations (k = 124 +/- 2 μM and L = 31 +/- 3). In the absence of CMBP the same conditions gave k = 26 +/- 2 μM for L = 3.5. Conversely, k was 0.96 +/- 0.08 μM for CMBP in 0.5 mM MgCl 2 without added NaHCO 3 but was 21 +/- 0.06 μM in 10 MgCl 2 and 2 mM NaHCO 3 , pH 7.3

  10. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists.

    Science.gov (United States)

    Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W

    2006-05-12

    The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.

  11. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour.

    Science.gov (United States)

    Motamedi-Shad, Neda; Jagger, Alistair M; Liedtke, Maximilian; Faull, Sarah V; Nanda, Arjun Scott; Salvadori, Enrico; Wort, Joshua L; Kay, Christopher W M; Heyer-Chauhan, Narinder; Miranda, Elena; Perez, Juan; Ordóñez, Adriana; Haq, Imran; Irving, James A; Lomas, David A

    2016-10-01

    Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation. © 2016 The Author(s).

  12. Discovery of a Hepatitis C Virus NS5B Replicase Palm Site Allosteric Inhibitor (BMS-929075) Advanced to Phase 1 Clinical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Kap-Sun; Beno, Brett R.; Parcella, Kyle; Bender, John A.; Grant-Young, Katherine A.; Nickel, Andrew; Gunaga, Prashantha; Anjanappa, Prakash; Bora, Rajesh Onkardas; Selvakumar, Kumaravel; Rigat, Karen; Wang, Ying-Kai; Liu, Mengping; Lemm, Julie; Mosure, Kathy; Sheriff, Steven; Wan, Changhong; Witmer, Mark; Kish, Kevin; Hanumegowda, Umesh; Zhuo, Xiaoliang; Shu, Yue-Zhong; Parker, Dawn; Haskell, Roy; Ng, Alicia; Gao, Qi; Colston, Elizabeth; Raybon, Joseph; Grasela, Dennis M.; Santone, Kenneth; Gao, Min; Meanwell, Nicholas A.; Sinz, Michael; Soars, Matthew G.; Knipe, Jay O.; Roberts, Susan B.; Kadow, John F.

    2017-05-04

    The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.

  13. Characterization of an allosteric citalopram-binding site at the serotonin transporter

    DEFF Research Database (Denmark)

    Chen, Fenghua; Breum Larsen, Mads; Neubauer, Henrik Amtoft

    2005-01-01

    The serotonin transporter (SERT), which belongs to a family of       sodium/chloride-dependent transporters, is the major pharmacological       target in the treatment of several clinical disorders, including       depression and anxiety. In the present study we show that the dissociation......       rate, of [3H]S-citalopram from human SERT, is retarded by the presence of       serotonin, as well as by several antidepressants, when present in the       dissociation buffer. Dissociation of [3H]S-citalopram from SERT is most       potently inhibited by S-citalopram followed by R......-citalopram, sertraline,       serotonin and paroxetine. EC50 values for S- and R-citalopram are 3.6 +/-       0.4 microm and 19.4 +/- 2.3 microm, respectively. Fluoxetine, venlafaxine       and duloxetine have no significant effect on the dissociation of       [3H]S-citalopram. Allosteric modulation of dissociation...

  14. Clustering of antibiotic resistance of E. coli in couples: suggestion for a major role of conjugal transmission

    Directory of Open Access Journals (Sweden)

    von Baum Heike

    2006-07-01

    Full Text Available Abstract Background Spread of antibiotic resistance in hospitals is a well-known problem, but studies investigating the importance of factors potentially related to the spread of resistant bacteria in outpatients are sparse. Methods Stool samples were obtained from 206 healthy couples in a community setting in Southern Germany in 2002–2003. E. coli was cultured and minimal inhibition concentrations were tested. Prevalences of E. coli resistance to commonly prescribed antibiotics according to potential risk factors were ascertained. Results Prevalences of ampicillin resistance were 15.7% and 19.4% for women and men, respectively. About ten percent and 15% of all isolates were resistant to cotrimoxazole and doxycycline, respectively. A partner carrying resistance was the main risk factor for being colonized with resistant E. coli. Odds ratios (95% CI for ampicillin and cotrimoxazole resistance given carriage of resistant isolates by the partner were 6.9 (3.1–15.5 and 3.3 (1.5–18.0, respectively. Conclusion Our data suggest that conjugal transmission may be more important for the spread of antibiotic resistance in the community setting than commonly suspected risk factors such as previous antibiotic intake or hospital contacts.

  15. Gay and lesbian couples in Italy: comparisons with heterosexual couples.

    Science.gov (United States)

    Antonelli, Paolo; Dèttore, Davide; Lasagni, Irene; Snyder, Douglas K; Balderrama-Durbin, Christina

    2014-12-01

    Assessing couple relationships across diverse languages and cultures has important implications for both clinical intervention and prevention. This is especially true for nontraditional relationships potentially subject to various expressions of negative societal evaluation or bias. Few empirically validated measures of relationship functioning have been developed for cross-cultural applications, and none have been examined for their psychometric sufficiency for evaluating same-sex couples across different languages and cultures. The current study examined the psychometric properties of an Italian translation of the Marital Satisfaction Inventory - Revised (MSI-R), a 150-item 13-scale measure of couple relationship functioning, for its use in assessing the intimate relationships of gay and lesbian couples in Italy. Results for these couples were compared to data from heterosexual married and unmarried cohabiting couples from the same geographical region, as well as to previously published data for gay, lesbian, and unmarried heterosexual couples from the United States. Findings suggest that, despite unique societal pressures confronting Italian same-sex couples, these relationships appear resilient and fare well both overall and in specific domains of functioning compared to heterosexual couples both in Italy and the United States. © 2014 Family Process Institute.

  16. Administration of the metabotropic glutamate receptor subtype 5 allosteric modulator GET 73 with alcohol: A translational study in rats and humans.

    Science.gov (United States)

    Haass-Koffler, Carolina L; Goodyear, Kimberly; Loche, Antonella; Long, Victoria M; Lobina, Carla; Tran, Harrison H; Cacciaglia, Roberto; Swift, Robert M; Colombo, Giancarlo; Leggio, Lorenzo

    2018-02-01

    Preclinical work suggests that GET 73 (N-[4-(trifluoromethyl)benzyl]-4-methoxybutyramide), a novel metabotropic glutamate receptor subtype 5 negative allosteric modulator, may represent a novel pharmacological treatment for alcohol use disorder. Two independent experiments evaluated the effect of acutely administered GET 73 (0, 30, and 100 mg/kg, intragastrically) on alcohol-induced hypolocomotion ( n=72) and sedation/hypnosis ( n=36) in rats. In healthy male volunteers ( n=14), an open-label, randomised, crossover study was conducted to compare adverse events and pharmacokinetic parameters, in two experiments in which 300 mg GET 73 was administered, with and without alcohol, once and thrice. In rats, when administered with alcohol-vehicle, 100 mg/kg, but not 30 mg/kg, GET 73 reduced spontaneous locomotor activity. When administered with alcohol, no dose of GET 73 altered either alcohol-induced hypolocomotion or sedation/hypnosis. In humans, both single and thrice 300 mg GET 73 administration were well tolerated, in the presence and absence of alcohol, with no differences in adverse events. There were no significant differences in relative bioavailability between administering 300 mg GET 73 in the presence or absence of alcohol.

  17. PheVI:09 (Phe6.44) as a sliding microswitch in seven-transmembrane (7TM) G protein-coupled receptor activation

    DEFF Research Database (Denmark)

    Valentin-Hansen, Louise; Holst, Birgitte; Frimurer, Thomas M

    2012-01-01

    In seven-transmembrane (7TM), G protein-coupled receptors, highly conserved residues function as microswitches, which alternate between different conformations and interaction partners in an extended allosteric interface between the transmembrane segments performing the large scale conformational......-V into a tight pocket generated by five hydrophobic residues protruding from TM-III and TM-V. Of these, the residue in position III:16 (3.40) (often an Ile or Val) appears to function as a barrier or gate for the transition between inactive and active conformation. Mutational analysis showed that PheVI:09...... an aromatic microswitch that stabilizes the active, outward tilted conformation of TM-VI relative to TM-III by sliding into a tight hydrophobic pocket between TM-III and TM-V and that the hydrophobic residue in position III:16 constitutes a gate for this transition....

  18. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples

    Directory of Open Access Journals (Sweden)

    M Mohammadi

    2017-02-01

    Full Text Available Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of group cognitive behavioral couple therapy on couple burnout and divorce tendency in couples.   Methods: The present research was of applied research type. The research method was semi-empirical with a pretest-posttest with control group design. The research population included all the couples with marital conflict and problems who, after a recall announcement of the researcher, visited the counseling and psychological services center located in Gorgan city in 2014. By using the available sampling method, 20 couples were selected among the volunteer and qualified couples for the research, and they were assigned into experiment and control groups (10 couples per group by random assignment. In the present research, the Pines burnout questionnaire (1996 and divorce tendency scale of Rouswelt, Johnson, and Mouro (1986 were used for gathering the data. After taking the pretest, the group cognitive behavioral couple therapy based on the couple therapy model of Baucom  and colleagues (2008 was held in 10 2-hour weekly sessions for the experiment group couples, while the control group couples received no intervention. The data were analyzed through descriptive statistics method and multivariate covariance analysis (MANCOVA in SPSS v.20. Results: The multivariate covariance analysis results for couple burnout (F= 28.80 and divorce tendency (F= 51.25 suggested that there was a significant difference between the couples of experiment and control groups (P< 0

  19. Transmembrane α-Helix 2 and 7 Are Important for Small Molecule-Mediated Activation of the GLP-1 Receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Møller Knudsen, Sanne; Schjellerup Wulff, Birgitte

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) activates the GLP-1 receptor (GLP-1R), which belongs to family B of the G-protein-coupled receptors. We previously identified a selective small molecule ligand, compound 2, that acted as a full agonist and allosteric modulator of GLP-1R. In this study, the structur......Glucagon-like peptide-1 (GLP-1) activates the GLP-1 receptor (GLP-1R), which belongs to family B of the G-protein-coupled receptors. We previously identified a selective small molecule ligand, compound 2, that acted as a full agonist and allosteric modulator of GLP-1R. In this study......, the structurally related small molecule, compound 3, stimulated cAMP production from GLP-1R, but not from the homologous glucagon receptor (GluR). The receptor selectivity encouraged a chimeric receptor approach to identify domains important for compound 3-mediated activation of GLP-1R. A subsegment of the GLP-1R...... transmembrane domain containing TM2 to TM5 was sufficient to transfer compound 3 responsiveness to GluR. Therefore, divergent residues in this subsegment of GLP-1R and GluR are responsible for the receptor selectivity of compound 3. Functional analyses of other chimeric receptors suggested that the existence...

  20. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ⁹-THC in humans discriminating Δ⁹-THC.

    Science.gov (United States)

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2014-10-01

    Our previous research suggested the involvement of γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ(9)-THC using pharmacologically selective drug-discrimination procedures. Ten cannabis users learned to discriminate 30 mg oral Δ(9)-THC from placebo and then received diazepam (5 and 10mg), Δ(9)-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Δ(9)-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ(9)-THC discriminative stimulus or alter the Δ(9)-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ(9)-THC. These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ(9)-THC, and by extension cannabis, in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Pharmacological characterization and modeling of the binding sites of novel 1,3-bis(pyridinylethynyl)benzenes as metabotropic glutamate receptor 5-selective negative allosteric modulators

    DEFF Research Database (Denmark)

    Mølck, Christina; Harpsøe, Kasper; Gloriam, David E

    2012-01-01

    )pyridine (MPEP)-derived negative allosteric modulators, 2-, 3-, and 4-BisPEB, have been characterized. 2-, 3-, and 4-BisPEB are 1,3-bis(pyridinylethynyl)-benzenes and differ only by the position of the nitrogen atoms in the pyridine rings. Despite their high structural similarity, 2-BisPEB [1,3-bis(pyridin-2......-ylethynyl)-benzene, nitrogen atoms in ortho positions], with an IC(50) value in the nanomolar range, is significantly more potent than the 3- and 4-pyridyl analogs. Mutational analysis, directed by a previously published mGluR5 homology model, was used to determine key residues for the ligand...... that the higher potency of 2-BisPEB is due to hydrogen bonding to Ser809 because the S809A mutation made 2-BisPEB equipotent to 3- and 4-BisPEB (IC(50), 1-2.5 µM). The potency of MPEP was also greatly affected by S809A (52-fold), suggesting that a Ser809-mediated hydrogen bond is also a key interaction between...

  2. Inhibition of Follicle-Stimulating Hormone-Induced Preovulatory Follicles in Rats Treated with a Nonsteroidal Negative Allosteric Modulator of Follicle-Stimulating Hormone Receptor1

    OpenAIRE

    Dias, James A.; Campo, Brice; Weaver, Barbara A.; Watts, Julie; Kluetzman, Kerri; Thomas, Richard M.; Bonnet, Béatrice; Mutel, Vincent; Poli, Sonia M.

    2013-01-01

    We previously described a negative allosteric modulator (NAM) of FSHR (ADX61623) that blocked FSH-induced cAMP and progesterone production but did not block estradiol production. That FSHR NAM did not affect FSH-induced preovulatory follicle development as evidenced by the lack of an effect on the number of FSH-dependent oocytes found in the ampullae following ovulation with hCG. A goal is the development of a nonsteroidal contraceptive. Toward this end, a high-throughput screen using human F...

  3. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR.

    Science.gov (United States)

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R Max; Tu, Benjamin P; MacMillan, John B; De Brabander, Jef K; Veech, Richard L; Uyeda, Kosaku

    2016-05-13

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    AChR binding sites in several brain regions, particularly in the prefrontal cortex. The alpha7 nAChR agonists SSR180711 and PNU-282987 also increase [(125)I]-BTX binding, suggesting that this is a general consequence of alpha7 nAChR agonism. Interestingly, the alpha7 nAChR positive allosteric modulators PNU......The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target....... Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 n...

  5. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  6. VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy.

    Science.gov (United States)

    Nickols, Hilary Highfield; Yuh, Joannes P; Gregory, Karen J; Morrison, Ryan D; Bates, Brittney S; Stauffer, Shaun R; Emmitte, Kyle A; Bubser, Michael; Peng, Weimin; Nedelcovych, Michael T; Thompson, Analisa; Lv, Xiaohui; Xiang, Zixiu; Daniels, J Scott; Niswender, Colleen M; Lindsley, Craig W; Jones, Carrie K; Conn, P Jeffrey

    2016-01-01

    Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models. Copyright © 2015 by The American Society for Pharmacology and

  7. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window

    Science.gov (United States)

    2016-01-01

    Background: Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. Methods: Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. Results: MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. Conclusion: Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders. PMID:26802568

  8. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.

    Science.gov (United States)

    Blackburn, Elizabeth A; Wear, Martin A; Landré, Vivian; Narayan, Vikram; Ning, Jia; Erman, Burak; Ball, Kathryn L; Walkinshaw, Malcolm D

    2015-09-01

    Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress. © 2015 Authors.

  9. Hemoglobin function and allosteric regulation in semi-fossorial rodents (family Sciuridae) with different altitudinal ranges

    Science.gov (United States)

    Revsbech, Inge G.; Tufts, Danielle M.; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.; Fago, Angela

    2013-01-01

    SUMMARY Semi-fossorial ground squirrels face challenges to respiratory gas transport associated with the chronic hypoxia and hypercapnia of underground burrows, and such challenges are compounded in species that are native to high altitude. During hibernation, such species must also contend with vicissitudes of blood gas concentrations and plasma pH caused by episodic breathing. Here, we report an analysis of hemoglobin (Hb) function in six species of marmotine ground squirrels with different altitudinal distributions. Regardless of their native altitude, all species have high Hb–O2 affinities, mainly due to suppressed sensitivities to allosteric effectors [2,3-diphosphoglycerate (DPG) and chloride ions]. This suppressed anion sensitivity is surprising given that all canonical anion-binding sites are conserved. Two sciurid species, the golden-mantled and thirteen-lined ground squirrel, have Hb–O2 affinities that are characterized by high pH sensitivity and low thermal sensitivity relative to the Hbs of humans and other mammals. The pronounced Bohr effect is surprising in light of highly unusual amino acid substitutions at the C-termini that are known to abolish the Bohr effect in human HbA. Taken together, the high O2 affinity of sciurid Hbs suggests an enhanced capacity for pulmonary O2 loading under hypoxic and hypercapnic conditions, while the large Bohr effect should help to ensure efficient O2 unloading in tissue capillaries. In spite of the relatively low thermal sensitivities of the sciurid Hbs, our results indicate that the effect of hypothermia on Hb oxygenation is the main factor contributing to the increased blood–O2 affinity in hibernating ground squirrels. PMID:24172889

  10. Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84.

    Science.gov (United States)

    Mahmud, Zobaer Al; Jenkins, Laura; Ulven, Trond; Labéguère, Frédéric; Gosmini, Romain; De Vos, Steve; Hudson, Brian D; Tikhonova, Irina G; Milligan, Graeme

    2017-12-20

    Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3'-diindolylmethane. 3,3'-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3'-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predicted and confirmed an integral role of arginine 172 , located in the 2nd extracellular loop, in the action of decanoic acid but not of 3,3'-diindolylmethane. Exemplars from a patented series of GPR84 antagonists were able to block agonist actions of both decanoic acid and 3,3'-diindolylmethane at GPR84. However, although a radiolabelled form of a related antagonist, [ 3 H]G9543, was able to bind with high affinity to GPR84, this was not competed for by increasing concentrations of either decanoic acid or 3,3'-diindolylmethane and was not affected adversely by mutation of arginine 172 . These studies identify three separable ligand binding sites within GPR84 and suggest that if medium chain fatty acids are true endogenous regulators then co-binding with a positive allosteric modulator would greatly enhance their function in physiological settings.

  11. Interactions between allosteric modulators and 4-DAMP and other antagonists at muscarinic receptors: potential significance of the distance between the N and Carboxyl C atoms in the molecules of antagonists

    Czech Academy of Sciences Publication Activity Database

    Lysíková, Michaela; Havlas, Zdeněk; Tuček, Stanislav

    2001-01-01

    Roč. 26, č. 4 (2001), s. 383-394 ISSN 0364-3190 R&D Projects: GA ČR GA309/99/0214; GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * allosteric modulation * 4-DAMP Subject RIV: ED - Physiology Impact factor: 1.638, year: 2001

  12. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  13. Models, theory structure and mechanisms in biochemistry: The case of allosterism.

    Science.gov (United States)

    Alleva, Karina; Díez, José; Federico, Lucia

    2017-06-01

    From the perspective of the new mechanistic philosophy, it has been argued that explanatory causal mechanisms in some special sciences such as biochemistry and neurobiology cannot be captured by any useful notion of theory, or at least by any standard notion. The goal of this paper is to show that a model-theoretic notion of theory, and in particular the structuralist notion of a theory-net already applied to other unified explanatory theories, adequately suits the MWC allosteric mechanism explanatory set-up. We also argue, contra some mechanistic claims questioning the use of laws in biological explanations, that the theory reconstructed in this way essentially contains non-accidental regularities that qualify as laws, and that taking into account these lawful components, it is possible to explicate the unified character of the theory. Finally, we argue that, contrary to what some mechanists also claim, functional explanations that do not fully specify the mechanistic structure are not defective or incomplete in any relevant sense, and that functional components are perfectly explanatory. The conclusion is that, as some authors have emphasized in other fields (Walmsley 2008), particular elements of traditional approaches do not contradict but rather complement the new mechanist philosophy, and taken together they may offer a more complete understanding of special sciences and the variety of explanations they provide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Engineering allostery.

    Science.gov (United States)

    Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; Fields, Stanley; Church, George M

    2014-12-01

    Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or as orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most crucial for allostery to be identified. This approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G protein-coupled receptors, and protein kinases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes.

    Science.gov (United States)

    Papa, Sergio; Capitanio, Giuseppe; Papa, Francesco

    2018-02-01

    The respiratory chain of mitochondria and bacteria is made up of a set of membrane-associated enzyme complexes which catalyse sequential, stepwise transfer of reducing equivalents from substrates to oxygen and convert redox energy into a transmembrane protonmotive force (PMF) by proton translocation from a negative (N) to a positive (P) aqueous phase separated by the coupling membrane. There are three basic mechanisms by which a membrane-associated redox enzyme can generate a PMF. These are membrane anisotropic arrangement of the primary redox catalysis with: (i) vectorial electron transfer by redox metal centres from the P to the N side of the membrane; (ii) hydrogen transfer by movement of quinones across the membrane, from a reduction site at the N side to an oxidation site at the P side; (iii) a different type of mechanism based on co-operative allosteric linkage between electron transfer at the metal redox centres and transmembrane electrogenic proton translocation by apoproteins. The results of advanced experimental and theoretical analyses and in particular X-ray crystallography show that these three mechanisms contribute differently to the protonmotive activity of cytochrome c oxidase, ubiquinone-cytochrome c oxidoreductase and NADH-ubiquinone oxidoreductase of the respiratory chain. This review considers the main features, recent experimental advances and still unresolved problems in the molecular/atomic mechanism of coupling between the transfer of reducing equivalents and proton translocation in these three protonmotive redox complexes. © 2017 Cambridge Philosophical Society.

  16. Endogenous vs Exogenous Allosteric Modulators in GPCRs: A dispute for shuttling CB1 among different membrane microenvironments

    Science.gov (United States)

    Stornaiuolo, Mariano; Bruno, Agostino; Botta, Lorenzo; Regina, Giuseppe La; Cosconati, Sandro; Silvestri, Romano; Marinelli, Luciana; Novellino, Ettore

    2015-10-01

    A Cannabinoid Receptor 1 (CB1) binding site for the selective allosteric modulator ORG27569 is here identified through an integrate approach of consensus pocket prediction, mutagenesis studies and Mass Spectrometry. This unprecedented ORG27569 pocket presents the structural features of a Cholesterol Consensus Motif, a cholesterol interacting region already found in other GPCRs. ORG27569 and cholesterol affects oppositely CB1 affinity for orthosteric ligands. Moreover, the rise in cholesterol intracellular level results in CB1 trafficking to the axonal region of neuronal cells, while, on the contrary, ORG27568 binding induces CB1 enrichment at the soma. This control of receptor migration among functionally different membrane regions of the cell further contributes to downstream signalling and adds a previously unknown mechanism underpinning CB1 modulation by ORG27569 , that goes beyond a mere control of receptor affinity for orthosteric ligands.

  17. Can a Positive Allosteric Modulation of GABAergic Receptors Improve Motor Symptoms in Patients with Parkinson's Disease? The Potential Role of Zolpidem in the Treatment of Parkinson's Disease

    Science.gov (United States)

    Daniele, Antonio; Panza, Francesco; Greco, Antonio; Logroscino, Giancarlo; Seripa, Davide

    2016-01-01

    At present, patients with advanced Parkinson's disease (PD) are unsatisfactorily controlled by currently used anti-Parkinsonian dopaminergic drugs. Various studies suggest that therapeutic strategies based on nondopaminergic drugs might be helpful in PD. Zolpidem, an imidazopyridine widely used as sleep inducer, shows high affinity only for GABAA receptors containing the α-1 subunit and facilitates GABAergic neurotransmission through a positive allosteric modulation of GABAA receptors. Various observations, although preliminary, consistently suggest that in PD patients zolpidem may induce beneficial (and sometimes remarkable) effects on motor symptoms even after single doses and may also improve dyskinesias. Since a high density of zolpidem binding sites is in the two main output structures of the basal ganglia which are abnormally overactive in PD (internal globus pallidus, GPi, and substantia nigra pars reticulata, SNr), it was hypothesized that in PD patients zolpidem may induce through GABAA receptors an inhibition of GPi and SNr (and, possibly, of the subthalamic nucleus also), resulting in an increased activity of motor cortical areas (such as supplementary motor area), which may give rise to improvement of motor symptoms of PD. Randomized clinical trials are needed in order to assess the efficacy, safety, and tolerability of zolpidem in treating motor symptoms of PD. PMID:27293955

  18. Outcomes of couples with infidelity in a community-based sample of couple therapy.

    Science.gov (United States)

    Atkins, David C; Marín, Rebeca A; Lo, Tracy T Y; Klann, Notker; Hahlweg, Kurt

    2010-04-01

    Infidelity is an often cited problem for couples seeking therapy, but the research literature to date is very limited on couple therapy outcomes when infidelity is a problem. The current study is a secondary analysis of a community-based sample of couple therapy in Germany and Austria. Outcomes for 145 couples who reported infidelity as a problem in their relationship were compared with 385 couples who sought therapy for other reasons. Analyses based on hierarchical linear modeling revealed that infidelity couples were significantly more distressed and reported more depressive symptoms at the start of therapy but continued improving through the end of therapy and to 6 months posttherapy. At the follow-up assessment, infidelity couples were not statistically distinguishable from non-infidelity couples, replicating previous research. Sexual dissatisfaction did not depend on infidelity status. Although there was substantial missing data, sensitivity analyses suggested that the primary findings were not due to missing data. The current findings based on a large community sample replicated previous work from an efficacy trial and show generally optimistic results for couples in which there has been an affair. 2010 APA, all rights reserved

  19. Dynamically Coupled Residues within the SH2 Domain of FYN Are Key to Unlocking Its Activity.

    Science.gov (United States)

    Huculeci, Radu; Cilia, Elisa; Lyczek, Agatha; Buts, Lieven; Houben, Klaartje; Seeliger, Markus A; van Nuland, Nico; Lenaerts, Tom

    2016-11-01

    Src kinase activity is controlled by various mechanisms involving a coordinated movement of kinase and regulatory domains. Notwithstanding the extensive knowledge related to the backbone dynamics, little is known about the more subtle side-chain dynamics within the regulatory domains and their role in the activation process. Here, we show through experimental methyl dynamic results and predicted changes in side-chain conformational couplings that the SH2 structure of Fyn contains a dynamic network capable of propagating binding information. We reveal that binding the phosphorylated tail of Fyn perturbs a residue cluster near the linker connecting the SH2 and SH3 domains of Fyn, which is known to be relevant in the regulation of the activity of Fyn. Biochemical perturbation experiments validate that those residues are essential for inhibition of Fyn, leading to a gain of function upon mutation. These findings reveal how side-chain dynamics may facilitate the allosteric regulation of the different members of the Src kinase family. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Enhanced prenatal HIV couple oriented counselling session and couple communication about HIV (ANRS 12127 Prenahtest Trial)].

    Science.gov (United States)

    Plazy, M; Orne-Gliemann, J; Balestre, E; Miric, M; Darak, S; Butsashvili, M; Tchendjou, P; Dabis, F; Desgrées du Loû, A

    2013-08-01

    The Prenahtest study investigated the efficacy of a couple-oriented HIV counselling session (COC) in encouraging couple HIV counselling and testing, and improving intra-couple communication about sexual and reproductive health. We report here on the effect of COC on intra-couple communication about HIV. Within this 4-country trial (India, Georgia, Dominican Republic and Cameroon), 484 to 491 pregnant women per site were recruited and individually randomized to receive either the COC intervention, enhanced counselling with role playing, or standard post-test HIV counselling. Women were interviewed at recruitment, before HIV testing (T0), and 2 to 8 weeks after post-test HIV counselling (T1). Four dichotomous variables documented intra-couple communication about HIV at T1: 1) discussion about HIV, 2) discussion about condom use, 3) suggesting HIV testing and 4) suggesting couple HIV counselling to the partner. An intra-couple HIV communication index was created: low degree of communication ("yes" response to zero or one of the four variables), intermediate degree of communication ("yes" to two or three variables) or high degree of communication ("yes" to the four variables). To estimate the impact of COC on the intra-couple HIV communication index, multivariable logistic regressions were conducted. One thousand six hundred and seven women were included in the analysis of whom 54 (3.4%) were HIV-infected (49 in Cameroon). In the four countries, the counselling group was associated with intra-couple HIV communication (P≤0.03): women allocated to the COC group were significantly more likely to report high or intermediate degrees of intra-couple communication about HIV (versus low degree of communication) than women allocated to standard counselling. COC improved short-term communication about HIV within couples in different sociocultural contexts, a positive finding for a couple approach to HIV prevention. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Affinity selection-mass spectrometry and its emerging application to the high throughput screening of G protein-coupled receptors.

    Science.gov (United States)

    Whitehurst, Charles E; Annis, D Allen

    2008-07-01

    Advances in combinatorial chemistry and genomics have inspired the development of novel affinity selection-based screening techniques that rely on mass spectrometry to identify compounds that preferentially bind to a protein target. Of the many affinity selection-mass spectrometry techniques so far documented, only a few solution-based implementations that separate target-ligand complexes away from unbound ligands persist today as routine high throughput screening platforms. Because affinity selection-mass spectrometry techniques do not rely on radioactive or fluorescent reporters or enzyme activities, they can complement traditional biochemical and cell-based screening assays and enable scientists to screen targets that may not be easily amenable to other methods. In addition, by employing mass spectrometry for ligand detection, these techniques enable high throughput screening of massive library collections of pooled compound mixtures, vastly increasing the chemical space that a target can encounter during screening. Of all drug targets, G protein coupled receptors yield the highest percentage of therapeutically effective drugs. In this manuscript, we present the emerging application of affinity selection-mass spectrometry to the high throughput screening of G protein coupled receptors. We also review how affinity selection-mass spectrometry can be used as an analytical tool to guide receptor purification, and further used after screening to characterize target-ligand binding interactions, enabling the classification of orthosteric and allosteric binders.

  2. Diindolylmethane Derivatives: Potent Agonists of the Immunostimulatory Orphan G Protein-Coupled Receptor GPR84.

    Science.gov (United States)

    Pillaiyar, Thanigaimalai; Köse, Meryem; Sylvester, Katharina; Weighardt, Heike; Thimm, Dominik; Borges, Gleice; Förster, Irmgard; von Kügelgen, Ivar; Müller, Christa E

    2017-05-11

    The G i protein-coupled receptor GPR84, which is activated by (hydroxy)fatty acids, is highly expressed on immune cells. Recently, 3,3'-diindolylmethane was identified as a heterocyclic, nonlipid-like GPR84 agonist. We synthesized a broad range of diindolylmethane derivatives by condensation of indoles with formaldehyde in water under microwave irradiation. The products were evaluated at the human GPR84 in cAMP and β-arrestin assays. Structure-activity relationships (SARs) were steep. 3,3'-Diindolylmethanes bearing small lipophilic residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assays, the most potent agonists being di(5-fluoro-1H-indole-3-yl)methane (38, PSB-15160, EC 50 80.0 nM) and di(5,7-difluoro-1H-indole-3-yl)methane (57, PSB-16671, EC 50 41.3 nM). In β-arrestin assays, SARs were different, indicating biased agonism. The new compounds were selective versus related fatty acid receptors and the arylhydrocarbon receptor. Selected compounds were further investigated and found to display an ago-allosteric mechanism of action and increased stability in comparison to the lead structure.

  3. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.

    Science.gov (United States)

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D

    2013-09-03

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.

  4. Typology of Couples Entering Alcohol Behavioral Couple Therapy: An Empirical Approach and Test of Predictive Validity on Treatment Response.

    Science.gov (United States)

    Ladd, Benjamin O; McCrady, Barbara S

    2016-01-01

    This study aimed to examine whether classification of couples in which one partner has an alcohol problem is similar to that reported in the general couples literature. Typologies of couples seeking alcohol behavioral couple therapy (ABCT) were developed via hierarchical cluster analysis using behavioral codes of couple interactions during their first ABCT session. Four couples types based on in-session behavior were established reliably, labeled avoider, validator, hostile, and ambivalent-detached. These couple types resembled couples types found in previous research. Couple type was associated with baseline relationship satisfaction, but not alcohol use. Results suggest heterogeneity in couples with alcohol problems presenting to treatment; further study is needed to investigate the function of alcohol within these different types. © 2015 American Association for Marriage and Family Therapy.

  5. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.

    Science.gov (United States)

    Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W

    2014-08-29

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Heat shock protein 70 inhibitors. 2. 2,5'-thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70.

    Science.gov (United States)

    Taldone, Tony; Kang, Yanlong; Patel, Hardik J; Patel, Maulik R; Patel, Pallav D; Rodina, Anna; Patel, Yogita; Gozman, Alexander; Maharaj, Ronnie; Clement, Cristina C; Lu, Alvin; Young, Jason C; Chiosis, Gabriela

    2014-02-27

    The discovery and development of heat shock protein 70 (Hsp70) inhibitors is currently a hot topic in cancer. In the preceding paper in this issue ( 10.1021/jm401551n ), we have described structure-activity relationship studies in the first Hsp70 inhibitor class rationally designed to bind to a novel allosteric pocket located in the N-terminal domain of the protein. These ligands contained an acrylamide to take advantage of an active cysteine embedded in the allosteric pocket and acted as covalent protein modifiers upon binding. Here, we perform chemical modifications around the irreversible inhibitor scaffold to demonstrate that covalent modification is not a requirement for activity within this class of compounds. The study identifies derivative 27c, which mimics the biological effects of the irreversible inhibitors at comparable concentrations. Collectively, the back-to-back manuscripts describe the first pharmacophores that favorably and selectively interact with a never explored pocket in Hsp70 and provide a novel blueprint for a cancer-oriented development of Hsp70-directed ligands.

  7. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application.

    Science.gov (United States)

    Kratochwil, Nicole A; Malherbe, Pari; Lindemann, Lothar; Ebeling, Martin; Hoener, Marius C; Mühlemann, Andreas; Porter, Richard H P; Stahl, Martin; Gerber, Paul R

    2005-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Here, a comprehensive and automated method allowing fast analysis and comparison of these putative binding pockets across the entire GPCR family is presented. The method relies on a robust alignment algorithm based on conservation indices, focusing on pharmacophore-like relationships between amino acids. Analysis of conservation patterns across the GPCR family and alignment to the rhodopsin X-ray structure allows the extraction of the amino acids lining the TM binding pocket in a so-called ligand binding pocket vector (LPV). In a second step, LPVs are translated to simple 3D receptor pharmacophore models, where each amino acid is represented by a single spherical pharmacophore feature and all atomic detail is omitted. Applications of the method include the assessment of selectivity issues, support of mutagenesis studies, and the derivation of rules for focused screening to identify chemical starting points in early drug discovery projects. Because of the coarseness of this 3D receptor pharmacophore model, however, meaningful scoring and ranking procedures of large sets of molecules are not justified. The LPV analysis of the trace amine-associated receptor family and its experimental validation is discussed as an example. The value of the 3D receptor model is demonstrated for a class C GPCR family, the metabotropic glutamate receptors.

  8. Zinc-mediated Allosteric Inhibition of Caspase-6*

    Science.gov (United States)

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  9. Can a Positive Allosteric Modulation of GABAergic Receptors Improve Motor Symptoms in Patients with Parkinson’s Disease? The Potential Role of Zolpidem in the Treatment of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Antonio Daniele

    2016-01-01

    Full Text Available At present, patients with advanced Parkinson’s disease (PD are unsatisfactorily controlled by currently used anti-Parkinsonian dopaminergic drugs. Various studies suggest that therapeutic strategies based on nondopaminergic drugs might be helpful in PD. Zolpidem, an imidazopyridine widely used as sleep inducer, shows high affinity only for GABAA receptors containing the α-1 subunit and facilitates GABAergic neurotransmission through a positive allosteric modulation of GABAA receptors. Various observations, although preliminary, consistently suggest that in PD patients zolpidem may induce beneficial (and sometimes remarkable effects on motor symptoms even after single doses and may also improve dyskinesias. Since a high density of zolpidem binding sites is in the two main output structures of the basal ganglia which are abnormally overactive in PD (internal globus pallidus, GPi, and substantia nigra pars reticulata, SNr, it was hypothesized that in PD patients zolpidem may induce through GABAA receptors an inhibition of GPi and SNr (and, possibly, of the subthalamic nucleus also, resulting in an increased activity of motor cortical areas (such as supplementary motor area, which may give rise to improvement of motor symptoms of PD. Randomized clinical trials are needed in order to assess the efficacy, safety, and tolerability of zolpidem in treating motor symptoms of PD.

  10. Measuring Relative Coupling Strength in Circadian Systems.

    Science.gov (United States)

    Schmal, Christoph; Herzog, Erik D; Herzel, Hanspeter

    2018-02-01

    Modern imaging techniques allow the monitoring of circadian rhythms of single cells. Coupling between these single cellular circadian oscillators can generate coherent periodic signals on the tissue level that subsequently orchestrate physiological outputs. The strength of coupling in such systems of oscillators is often unclear. In particular, effects on coupling strength by varying cell densities, by knockouts, and by inhibitor applications are debated. In this study, we suggest to quantify the relative coupling strength via analyzing period, phase, and amplitude distributions in ensembles of individual circadian oscillators. Simulations of different oscillator networks show that period and phase distributions become narrower with increasing coupling strength. Moreover, amplitudes can increase due to resonance effects. Variances of periods and phases decay monotonically with coupling strength, and can serve therefore as measures of relative coupling strength. Our theoretical predictions are confirmed by studying recently published experimental data from PERIOD2 expression in slices of the suprachiasmatic nucleus during and after the application of tetrodotoxin (TTX). On analyzing the corresponding period, phase, and amplitude distributions, we can show that treatment with TTX can be associated with a reduced coupling strength in the system of coupled oscillators. Analysis of an oscillator network derived directly from the data confirms our conclusions. We suggest that our approach is also applicable to quantify coupling in fibroblast cultures and hepatocyte networks, and for social synchronization of circadian rhythmicity in rodents, flies, and bees.

  11. Sex-dependent anti-stress effect of an α5 subunit containing GABAA receptor positive allosteric modulator

    Directory of Open Access Journals (Sweden)

    Sean C. Piantadosi

    2016-11-01

    Full Text Available Rationale: Current first-line treatments for stress-related disorders such as Major Depressive Disorder (MDD act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2'F-R-CH3 (denoted α5-PAM, a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS and treated with α5-PAM acutely (30 minutes prior to assessing behavior or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as behavioral emotionality across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusions: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.

  12. Developmental Issues in Counseling With Couples.

    Science.gov (United States)

    Seligman, Linda; Deutsch, Marjorie B.

    Marriages, just like the individuals in them, go through stages of development. Understanding these relatively predictable stages can be helpful to couples, by allaying apprehension, promoting preparation for change, and putting fluctuations into perspective. Research on marital stages and experiences in counseling couples suggest that marriages…

  13. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation

    Directory of Open Access Journals (Sweden)

    Tasnim S. Mohamed

    2015-11-01

    Full Text Available Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.

  14. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri.

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K

    2008-02-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.

  15. Two-state dynamics of the SH3–SH2 tandem of Abl kinase and the allosteric role of the N-cap

    Science.gov (United States)

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D.

    2013-01-01

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3–SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3–SH2 connector, which involve a phosphorylation site. We also show that the SH3–SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3–SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization. PMID:23959873

  16. Coupled oscillators with parity-time symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tsoy, Eduard N., E-mail: etsoy@uzsci.net

    2017-02-05

    Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.

  17. Dynamic fluctuations provide the basis of a conformational switch mechanism in apo cyclic AMP receptor protein.

    Directory of Open Access Journals (Sweden)

    Burcu Aykaç Fas

    Full Text Available Escherichia coli cyclic AMP Receptor Protein (CRP undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD simulations and Gaussian Network Model (GNM. The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP's allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.

  18. The effect of the mGlu5 negative allosteric modulator MTEP and NMDA receptor partial agonist D-cycloserine on Pavlovian conditioned fear.

    Science.gov (United States)

    Handford, Charlotte E; Tan, Shawn; Lawrence, Andrew J; Kim, Jee Hyun

    2014-09-01

    The metabotropic glutamate receptor 5 (mGlu5) and N-methyl-D-aspartate (NMDA) receptor are critical for processes underlying synaptic plasticity, such as long-term potentiation. mGlu5 signaling increases neuronal excitability and potentiates NMDA receptor currents in the amygdala and the hippocampus. The present study examined the involvement of mGlu5 in the acquisition and consolidation of conditioned fear to a tone and context in mice, and explored the functional relationship between mGlu5 and NMDA receptors in this regard. Experiment 1 showed that systemic administration of the mGlu5 negative allosteric modulator 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) prior to conditioning significantly attenuated cue-elicited freezing during fear conditioning, which suggests that mGlu5 is necessary for the formation of a tone-shock association. This effect was dose-related (Experiment 2) and not due to any effects of MTEP on shock sensitivity or state-dependency (Experiment 3). Post-conditioning injection of MTEP had no effects (Experiment 4). Although post-conditioning injection of the NMDA receptor partial agonist D-cycloserine (DCS) alone facilitated consolidation of conditioned fear (Experiment 6), it was not able to rescue the acquisition deficit caused by MTEP (Experiment 5). Taken together, these findings indicate a crucial role for mGlu5 signaling in acquisition and NMDA receptor signaling in consolidation of conditioned fear.

  19. Running couplings and operator mixing in the gravitational corrections to coupling constants

    International Nuclear Information System (INIS)

    Anber, Mohamed M.; Donoghue, John F.; El-Houssieny, Mohamed

    2011-01-01

    The use of a running coupling constant in renormalizable theories is well known, but the implementation of this idea for effective field theories with a dimensional coupling constant is, in general, less useful. Nevertheless, there are multiple attempts to define running couplings, including the effects of gravity, with varying conclusions. We sort through many of the issues involved, most particularly the idea of operator mixing and also the kinematics of crossing, using calculations in Yukawa and λφ 4 theories as illustrative examples. We remain in the perturbative regime. In some theories with a high permutation symmetry, such as λφ 4 , a reasonable running coupling can be defined. However, in most cases, such as Yukawa and gauge theories, a running coupling fails to correctly account for the energy dependence of the interaction strength. As a by-product we also contrast on-shell and off-shell renormalization schemes and show that operators which are normally discarded, such as those that vanish by the equations of motion, are required for off-shell renormalization of effective field theories. Our results suggest that the inclusion of gravity in the running of couplings is not useful or universal in the description of physical processes.

  20. G Protein-Coupled Receptors (GPCRs in Alzheimer’s Disease: A Focus on BACE1 Related GPCRs

    Directory of Open Access Journals (Sweden)

    Juan eZhao

    2016-03-01

    Full Text Available The G protein coupled receptors (GPCRs have been considered as one of the largest families of validated drug targets, which involve in almost overall physiological functions and pathological processes. Meanwhile, Alzheimer’s disease (AD, the most common type of dementia, affects thinking, learning, memory and behavior of elderly people, that has become the hotspot nowadays for its increasing risks and incurability. The above fields have been intensively studied, and the link between the two has been demonstrated, whereas the way how GPCRs perturb AD progress are yet to be further explored given their complexities. In this review, we summarized recent progress regarding the GPCRs interacted with β-site APP cleaving enzyme 1 (BACE1, a key secretase in AD pathogenesis. Then we discussed the current findings on the regulatory roles of GPCRs on BACE1, and the possibility for pharmaceutical treatment of AD patients by the allosteric modulators and biased ligands of GPCRs. We hope this review can provide new insights into the understanding of mechanistic link between GPCRs and BACE1, and highlight the potential of GPCRs as therapeutic target for AD.

  1. Comparison of crystal and solution hemoglobin binding of selected antigelling agents and allosteric modifiers

    International Nuclear Information System (INIS)

    Mehanna, A.S.; Abraham, D.J.

    1990-01-01

    This paper details comprehensive binding studies (solution and X-ray) of human hemoglobin A with a group of halogenated carboxylic acids that were investigated as potential antisickling agents. It is, to our knowledge, the first study to compare solution and crystal binding for a series of compounds under similar high-salt conditions used for cocrystallization. The compounds include [(3,4-dichlorobenzyl)oxy]acetic acid, [(p-bromobenzyl)oxy]acetic acid, clofibric acid, and bezafibrate. The location and stereochemistry of binding sites have been established by X-ray crystallography, while the number of binding sites and affinity constants were measured by using equilibrium dialysis. The observed crystal structures are consistent with the binding observed in solution and that the number of binding sites is independent of salt concentration, while the binding constant increases with increasing salt concentration. The studies also reveal that relatively small changes in the chemical structure of a drug molecule can result in entirely different binding sites on the protein. Moreover, the X-ray studies provide a possible explanation for the multiplicity in function exhibited by these compounds as allosteric modulators and/or antisickling agents. Finally, the studies indicate that these compounds bind differently to the R and T states of hemoglobin, and observation of special significance to the original design of these agents

  2. Nonequilibrium dissipation-free transport in F₁-ATPase and the thermodynamic role of asymmetric allosterism.

    Science.gov (United States)

    Kawaguchi, Kyogo; Sasa, Shin-Ichi; Sagawa, Takahiro

    2014-06-03

    F1-ATPase (or F1), the highly efficient and reversible biochemical engine, has motivated physicists as well as biologists to imagine the design principles governing machines in the fluctuating world. Recent experiments have clarified yet another interesting property of F1; the dissipative heat inside the motor is very small, irrespective of the velocity of rotation and energy transport. Conceptual interest is devoted to the fact that the amount of internal dissipation is not simply determined by the sequence of equilibrium pictures, but also relies on the rotational-angular dependence of nucleotide affinity, which is a truly nonequilibrium aspect. We propose that the totally asymmetric allosteric model (TASAM), where adenosine triphosphate (ATP) binding to F1 is assumed to have low dependence on the angle of the rotating shaft, produces results that are most consistent with the experiments. Theoretical analysis proves the crucial role of two time scales in the model, which explains the universal mechanism to produce the internal dissipation-free feature. The model reproduces the characteristic torque dependence of the rotational velocity of F1 and predicts that the internal dissipation upon the ATP synthesis direction rotation becomes large at the low nucleotide condition. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Pharmacology of basimglurant (RO4917523, RG7090), a unique metabotropic glutamate receptor 5 negative allosteric modulator in clinical development for depression.

    Science.gov (United States)

    Lindemann, Lothar; Porter, Richard H; Scharf, Sebastian H; Kuennecke, Basil; Bruns, Andreas; von Kienlin, Markus; Harrison, Anthony C; Paehler, Axel; Funk, Christoph; Gloge, Andreas; Schneider, Manfred; Parrott, Neil J; Polonchuk, Liudmila; Niederhauser, Urs; Morairty, Stephen R; Kilduff, Thomas S; Vieira, Eric; Kolczewski, Sabine; Wichmann, Juergen; Hartung, Thomas; Honer, Michael; Borroni, Edilio; Moreau, Jean-Luc; Prinssen, Eric; Spooren, Will; Wettstein, Joseph G; Jaeschke, Georg

    2015-04-01

    Major depressive disorder (MDD) is a serious public health burden and a leading cause of disability. Its pharmacotherapy is currently limited to modulators of monoamine neurotransmitters and second-generation antipsychotics. Recently, glutamatergic approaches for the treatment of MDD have increasingly received attention, and preclinical research suggests that metabotropic glutamate receptor 5 (mGlu5) inhibitors have antidepressant-like properties. Basimglurant (2-chloro-4-[1-(4-fluoro-phenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]-pyridine) is a novel mGlu5 negative allosteric modulator currently in phase 2 clinical development for MDD and fragile X syndrome. Here, the comprehensive preclinical pharmacological profile of basimglurant is presented with a focus on its therapeutic potential for MDD and drug-like properties. Basimglurant is a potent, selective, and safe mGlu5 inhibitor with good oral bioavailability and long half-life supportive of once-daily administration, good brain penetration, and high in vivo potency. It has antidepressant properties that are corroborated by its functional magnetic imaging profile as well as anxiolytic-like and antinociceptive features. In electroencephalography recordings, basimglurant shows wake-promoting effects followed by increased delta power during subsequent non-rapid eye movement sleep. In microdialysis studies, basimglurant had no effect on monoamine transmitter levels in the frontal cortex or nucleus accumbens except for a moderate increase of accumbal dopamine, which is in line with its lack of pharmacological activity on monoamine reuptake transporters. These data taken together, basimglurant has favorable drug-like properties, a differentiated molecular mechanism of action, and antidepressant-like features that suggest the possibility of also addressing important comorbidities of MDD including anxiety and pain as well as daytime sleepiness and apathy or lethargy. Copyright © 2015 by The American Society for

  4. Oxygen-coupled Redox Regulation of the Skeletal Muscle Ryanodine Receptor/Ca2+ Release Channel (RyR1)

    Science.gov (United States)

    Sun, Qi-An; Wang, Benlian; Miyagi, Masaru; Hess, Douglas T.; Stamler, Jonathan S.

    2013-01-01

    In mammalian skeletal muscle, Ca2+ release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca2+-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca2+ channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in “hot spot” regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues. PMID:23798702

  5. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    Science.gov (United States)

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  6. H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferredoxin-dependent bifurcating transhydrogenase catalytic cycle.

    Science.gov (United States)

    Berry, Luke; Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R; Nguyen, Diep M N; Schut, Gerrit J; Adams, Michael W W; Peters, John W; Boyd, Eric S; Bothner, Brian

    2018-01-01

    Recent investigations into ferredoxin-dependent transhydrogenases, a class of enzymes responsible for electron transport, have highlighted the biological importance of flavin-based electron bifurcation (FBEB). FBEB generates biomolecules with very low reduction potential by coupling the oxidation of an electron donor with intermediate potential to the reduction of high and low potential molecules. Bifurcating systems can generate biomolecules with very low reduction potentials, such as reduced ferredoxin (Fd), from species such as NADPH. Metabolic systems that use bifurcation are more efficient and confer a competitive advantage for the organisms that harbor them. Structural models are now available for two NADH-dependent ferredoxin-NADP + oxidoreductase (Nfn) complexes. These models, together with spectroscopic studies, have provided considerable insight into the catalytic process of FBEB. However, much about the mechanism and regulation of these multi-subunit proteins remains unclear. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and statistical coupling analysis (SCA), we identified specific pathways of communication within the model FBEB system, Nfn from Pyrococus furiosus, under conditions at each step of the catalytic cycle. HDX-MS revealed evidence for allosteric coupling across protein subunits upon nucleotide and ferredoxin binding. SCA uncovered a network of co-evolving residues that can provide connectivity across the complex. Together, the HDX-MS and SCA data show that protein allostery occurs across the ensemble of iron‑sulfur cofactors and ligand binding sites using specific pathways that connect domains allowing them to function as dynamically coordinated units. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  8. Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: an in silico study elucidating a novel mechanism of action of the drug.

    Science.gov (United States)

    Mazumder, Muhammed Khairujjaman; Borah, Anupom

    2014-12-01

    Hyperactivation of GluN2B subunit containing N-methyl-d-aspartate receptors (NMDARs) significantly contributes to the development of several neurodegenerative diseases through a process called excitotoxicity. NMDARs are voltage-gated Ca2+ channels which when activated lead to excessive influx of Ca2+ into neurons thereby exacerbating several calcium-dependent pathways that cause oxidative stress and apoptosis. Several drugs are presently in use to counter the NMDAR-mediated excitotoxic events among which Ifenprodil and its derivatives are GluN2B selective allosteric antagonists. Certain non-steroidal anti-inflammatory drugs (NSAIDs) have also been reported to inhibit NMDARs and the resultant pathologies. Meanwhile, Piroxicam, which is a NSAID, has been reported to be protective in cerebral ischemia-induced neurodegeneration through various pathways. Since Piroxicam has more number of interacting groups as compared to other NSAIDs and also has structural similarities with Ifenprodil, we thought it prudent that Piroxicam may inhibit NMDARs similar to Ifenprodil. By using molecular docking as a tool, we validated the hypothesis and hereby report for the first time that Piroxicam can inhibit GluN2B containing NMDARs through allosteric mode similar to the well known selective antagonist--Ifenprodil; and thus can be a therapeutic drug for the prevention of excitotoxic neurodegeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Effects of a Couples-Based Health Behavior Intervention During Pregnancy on Latino Couples' Dyadic Satisfaction Postpartum.

    Science.gov (United States)

    Coop Gordon, Kristina; Roberson, Patricia N E; Hughes, Jessica A; Khaddouma, Alexander M; Swamy, Geeta K; Noonan, Devon; Gonzalez, Alicia M; Fish, Laura; Pollak, Kathryn I

    2018-03-30

    Many couples tend to report steadily decreasing relationship quality following the birth of a child. However, little is known about the postpartum period for Latino couples, a rapidly growing ethnic group who are notably underserved by mental and physical health caregivers in the United States. Thus, this study investigated whether a brief couples' intervention focused on helping couples support each other while increasing healthy behaviors might improve dyadic functioning postpartum. This study presents secondary analyses of data regarding couple functioning from a larger randomized controlled trial with 348 Latino couples to promote smoking cessation. Portions of the intervention taught the couple communication and problem-solving skills to increase healthy behavior. Couples participated in four face-to-face assessments across 1 year starting at the end of the first trimester. Latent growth curve analyses revealed that the treatment group reported an increase in relationship satisfaction and constructive communication after the intervention, which diminished by 1-year follow-up, returning couples to their baseline levels of satisfaction. Results suggest that incorporating a brief couple intervention as part of a larger health intervention for Latinos may prevent postpartum decreases in relationship satisfaction. © 2018 Family Process Institute.

  10. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  11. Relational Expectancy Fulfillment as an Explanatory Variable for Distinguishing Couple Types.

    Science.gov (United States)

    Kelley, Douglas L.

    1999-01-01

    Examines the differences in marital satisfaction across couple type. Indicates that traditional couple types generally reported more expectancy fulfillment and relational satisfaction than did other couple types. Suggests that "separates" experienced more negative violations than did other couple types. (CR)

  12. Identification of a negative allosteric site on human α4β2 and α3β4 neuronal nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Ryan E Pavlovicz

    Full Text Available Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs. These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological

  13. Detection of Side Chain Rearrangements Mediating the Motions of Transmembrane Helices in Molecular Dynamics Simulations of G Protein-Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Zied Gaieb

    Full Text Available Structure and dynamics are essential elements of protein function. Protein structure is constantly fluctuating and undergoing conformational changes, which are captured by molecular dynamics (MD simulations. We introduce a computational framework that provides a compact representation of the dynamic conformational space of biomolecular simulations. This method presents a systematic approach designed to reduce the large MD simulation spatiotemporal datasets into a manageable set in order to guide our understanding of how protein mechanics emerge from side chain organization and dynamic reorganization. We focus on the detection of side chain interactions that undergo rearrangements mediating global domain motions and vice versa. Side chain rearrangements are extracted from side chain interactions that undergo well-defined abrupt and persistent changes in distance time series using Gaussian mixture models, whereas global domain motions are detected using dynamic cross-correlation. Both side chain rearrangements and global domain motions represent the dynamic components of the protein MD simulation, and are both mapped into a network where they are connected based on their degree of coupling. This method allows for the study of allosteric communication in proteins by mapping out the protein dynamics into an intramolecular network to reduce the large simulation data into a manageable set of communities composed of coupled side chain rearrangements and global domain motions. This computational framework is suitable for the study of tightly packed proteins, such as G protein-coupled receptors, and we present an application on a seven microseconds MD trajectory of CC chemokine receptor 7 (CCR7 bound to its ligand CCL21. Keywords: Molecular dynamics, Change-point detection, Side chain reorganization, Helical domain motion, Intramolecular network, Membrane proteins, GPCR, GPCR computational modeling, GPCR allostery

  14. Adaptive response and genomic instability: allosteric response of genome to negative impact

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    2010-01-01

    Currently, there is an upsurge concern on the unique response of living cells to low dose ionizing radiation for its inconformity to the existing paradigm of the biological action of radiation and its impact on the current understanding of risk evaluation of health effect of radiation in our workplace and environment. For the allosteric response to have significance, the cells must have an excellent sensing mechanism to discriminate tolerable and intolerable signals. In a series of experiments with mammalian, including human, cells, we demonstrated a novel sensing and signaling mechanism in the low-dose irradiated cells that was mediated by a PKCα-p3BMAPK-PLCδ1 feedback regulatory loop. Upon irradiation, PKCα is immediately activated, which in turn activate p38MAPK. The activation of p38MAPK is feedbacked to the activation of PKCα via PLCδ1, which catalyzes the hydrolysis of PtdInsP2 to generate PKCα-directed second messengers DAG and lnsP3. At low doses, the PKCα and p38MAPK continue to be activated for long time through this feedback loop, but when the cells encounter the high dose (>10 cGy or equivalent), the feedback loop is immediately comes to shutdown by deprivation of PKCα protein, known as down-regulation of PKC signaling. Thus, PKCα plays a key role in the long lasting nature of adaptive response to low doses and a binary switch to the genomic instability by too much signals. Tumor suppressor protein, p53, is a downstream effecter

  15. Conformational control of the binding of the transactivation domain of the MLL protein and c-Myb to the KIX domain of CREB.

    Directory of Open Access Journals (Sweden)

    Elif Nihal Korkmaz

    Full Text Available The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events.

  16. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  17. Reduction by the positive allosteric modulator of the GABAB receptor, GS39783, of alcohol self-administration in Sardinian alcohol-preferring rats exposed to the “sipper” procedure

    Directory of Open Access Journals (Sweden)

    Paola Maccioni

    2010-07-01

    Full Text Available The present study was designed to evaluate (a alcohol self-administration behavior of selectively bred, Sardinian alcohol-preferring (sP rats exposed to the so-called “sipper” procedure (characterized by the temporal separation between alcohol-seeking and -taking phases, and (b the effect of the positive allosteric modulator of the GABAB receptor, GS39783, on alcohol self-administration in sP rats exposed to this procedure. To this end, sP rats were initially trained to lever-respond under a reinforcement requirement (RR 55 (RR55 for alcohol. Achievement of RR55 resulted in the 20-min presentation of the alcohol (15%, v/v-containing sipper bottle. Once stable levels of lever-responding and alcohol consumption were reached, rats were treated with 0, 25, 50, and 100 mg/kg GS39783 (i.g. 60 min before the self-administration session. Rats displayed robust alcohol-seeking (as suggested by relatively short latencies to the first lever-response and high frequencies of lever-responding and -taking (as suggested by alcohol intakes averaging approximately 1.5 g/kg behaviors. Pretreatment with GS39783 inhibited both alcohol-seeking (the number of rats achieving RR55 and the mean RR value were virtually halved and -taking (the amount of self-administered alcohol was reduced by approximately 60%. The results of the present study suggest the power of the “sipper” procedure in triggering high levels of alcohol-seeking and -taking behavior in sP rats. Further, these results extend to this additional procedure of alcohol self-administration the capacity of GS39783 to reduce the motivational properties of alcohol and alcohol consumption in sP rats.

  18. Reduction by the Positive Allosteric Modulator of the GABAB Receptor, GS39783, of Alcohol Self-Administration in Sardinian Alcohol-Preferring Rats Exposed to the “Sipper” Procedure

    Science.gov (United States)

    Maccioni, Paola; Flore, Paolo; Carai, Mauro A. M.; Mugnaini, Claudia; Pasquini, Serena; Corelli, Federico; Gessa, Gian Luigi; Colombo, Giancarlo

    2010-01-01

    The present study was designed to evaluate (a) alcohol self-administration behavior of selectively bred, Sardinian alcohol-preferring (sP) rats exposed to the so-called “sipper” procedure (characterized by the temporal separation between alcohol-seeking and -taking phases), and (b) the effect of the positive allosteric modulator of the GABAB receptor, GS39783, on alcohol self-administration in sP rats exposed to this procedure. To this end, sP rats were initially trained to lever-respond under a reinforcement requirement (RR) 55 (RR55) for alcohol. Achievement of RR55 resulted in the 20-min presentation of the alcohol (15%, v/v)-containing sipper bottle. Once stable levels of lever-responding and alcohol consumption were reached, rats were treated with 0, 25, 50, and 100 mg/kg GS39783 (i.g.) 60 min before the self-administration session. Rats displayed robust alcohol-seeking (as suggested by relatively short latencies to the first lever-response and high frequencies of lever-responding) and -taking (as suggested by alcohol intakes averaging approximately 1.5 g/kg) behaviors. Pretreatment with GS39783 inhibited both alcohol-seeking (the number of rats achieving RR55 and the mean RR value were virtually halved) and -taking (the amount of self-administered alcohol was reduced by approximately 60%). The results of the present study suggest the power of the “sipper” procedure in triggering high levels of alcohol-seeking and -taking behavior in sP rats. Further, these results extend to this additional procedure of alcohol self-administration the capacity of GS39783 to reduce the motivational properties of alcohol and alcohol consumption in sP rats. PMID:21423431

  19. GABAA receptor positive allosteric modulators modify the abuse-related behavioral and neurochemical effects of methamphetamine in rhesus monkeys.

    Science.gov (United States)

    Berro, Laís F; Andersen, Monica L; Tufik, Sergio; Howell, Leonard L

    2017-09-01

    GABA A receptor positive allosteric modulators (GABA A receptor modulators) are commonly used for the treatment of insomnia. Nevertheless, the effects of these compounds on psychostimulant-induced sleep impairment are poorly understood. Because GABA A receptor modulators have been shown to decrease the abuse-related effects of psychostimulants, the aim of the present study was to evaluate the effects of temazepam (0.3, 1.0 or 3.0 mg/kg) and eszopiclone (0.3, 1.0 or 3.0 mg/kg), two GABA A receptor modulators, on the behavioral neuropharmacology of methamphetamine in adult rhesus macaques (n = 5). Sleep-like measures and general daytime activity were evaluated with Actiwatch monitors. Methamphetamine self-administration (0.03 mg/kg/inf) was evaluated during morning sessions. Methamphetamine-induced dopamine overflow was assessed through in vivo microdialysis targeting the nucleus accumbens. Nighttime treatment with either temazepam or eszopiclone was ineffective in improving sleep-like measures disrupted by methamphetamine self-administration. Acute pretreatment with a low dose of temazepam before self-administration sessions increased methamphetamine self-administration without affecting normal daytime home-cage activity. At a high dose, acute temazepam pretreatment decreased methamphetamine self-administration and attenuated methamphetamine-induced increases in dopamine in the nucleus accumbens, without decreasing general daytime activity. Acute eszopiclone treatment exerted no effects on methamphetamine intake or drug-induced increases in dopamine. Our study suggests that treatments based on GABA A receptor modulators are not effective for the treatment of sleep disruption in the context of psychostimulant use. In addition, distinct GABA A receptor modulators differentially modulated the abuse-related effects of methamphetamine, with acute treatment with the high efficacy GABA A receptor modulator temazepam decreasing the behavioral and neurochemical effects

  20. Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder.

    Science.gov (United States)

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Pomierny, Bartosz; Wydra, Karolina; Zaniewska, Magdalena; Filip, Malgorzata; Fuxe, Kjell

    2016-05-01

    In the current study behavioral and biochemical experiments were performed to study changes in the allosteric A2AR-D2R interactions in the ventral and dorsal striatum after cocaine self-administration versus corresponding yoked saline control. By using ex vivo [(3)H]-raclopride/quinpirole competition experiments, the effects of the A2AR agonist CGS 21680 (100 nM) on the KiH and KiL values of the D2-like receptor (D2-likeR) were determined. One major result was a significant reduction in the D2-likeR agonist high affinity state observed with CGS 21680 after cocaine self-administration in the ventral striatum compared with the yoked saline group. The results therefore support the hypothesis that A2AR agonists can at least in part counteract the motivational actions of cocaine. This action is mediated via the D2-likeR by targeting the A2AR protomer of A2AR-D2-like R heteroreceptor complexes in the ventral striatum, which leads to the reduction of D2-likeR protomer recognition through the allosteric receptor-receptor interaction. In contrast, in the dorsal striatum the CGS 21680-induced antagonistic modulation in the D2-likeR agonist high affinity state was abolished after cocaine self-administration versus the yoked saline group probably due to a local dysfunction/disruption of the A2AR-D2-like R heteroreceptor complexes. Such a change in the dorsal striatum in cocaine self-administration can contribute to the development of either locomotor sensitization, habit-forming learning and/or the compulsive drug seeking by enhanced D2-likeR protomer signaling. Potential differences in the composition and stoichiometry of the A2AR-D2R heteroreceptor complexes, including differential recruitment of sigma 1 receptor, in the ventral and dorsal striatum may explain the differential regional changes observed in the A2A-D2-likeR interactions after cocaine self-administration. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Crystal structure of Lymnaea stagnalis AChBP complexed with the potent nAChR antagonist DHβE suggests a unique mode of antagonism.

    Directory of Open Access Journals (Sweden)

    Azadeh Shahsavar

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed, activated (open, and desensitized (closed states. The acetylcholine binding protein (AChBP is a structural homologue of the extracellular ligand-binding domain of nAChRs. In previous studies, the degree of the C-loop radial extension of AChBP has been assigned to different conformational states of nAChRs. It has been suggested that a closed C-loop is preferred for the active conformation of nAChRs in complex with agonists whereas an open C-loop reflects an antagonist-bound (closed state. In this work, we have determined the crystal structure of AChBP from the water snail Lymnaea stagnalis (Ls in complex with dihydro-β-erythroidine (DHβE, which is a potent competitive antagonist of nAChRs. The structure reveals that binding of DHβE to AChBP imposes closure of the C-loop as agonists, but also a shift perpendicular to previously observed C-loop movements. These observations suggest that DHβE may antagonize the receptor via a different mechanism compared to prototypical antagonists and toxins.

  2. Phosphorylation of human aquaporin 2 (AQP2) allosterically controls its interaction with the lysosomal trafficking protein LIP5.

    Science.gov (United States)

    Roche, Jennifer Virginia; Survery, Sabeen; Kreida, Stefan; Nesverova, Veronika; Ampah-Korsah, Henry; Gourdon, Maria; Deen, Peter M T; Törnroth-Horsefield, Susanna

    2017-09-01

    The interaction between the renal water channel aquaporin-2 (AQP2) and the lysosomal trafficking regulator-interacting protein LIP5 targets AQP2 to multivesicular bodies and facilitates lysosomal degradation. This interaction is part of a process that controls AQP2 apical membrane abundance in a vasopressin-dependent manner, allowing for urine volume adjustment. Vasopressin regulates phosphorylation at four sites within the AQP2 C terminus (Ser 256 , Ser 261 , Ser 264 , and Thr 269 ), of which Ser 256 is crucial and sufficient for AQP2 translocation from storage vesicles to the apical membrane. However, whether AQP2 phosphorylation modulates AQP2-LIP5 complex affinity is unknown. Here we used far-Western blot analysis and microscale thermophoresis to show that the AQP2 binds LIP5 in a phosphorylation-dependent manner. We constructed five phospho-mimicking mutants (S256E, S261E, S264E, T269E, and S256E/T269E) and a C-terminal truncation mutant (ΔP242) that lacked all phosphorylation sites but retained a previously suggested LIP5-binding site. CD spectroscopy indicated that wild-type AQP2 and the phospho-mimicking mutants had similar overall structure but displayed differences in melting temperatures possibly arising from C-terminal conformational changes. Non-phosphorylated AQP2 bound LIP5 with the highest affinity, whereas AQP2-ΔP242 had 20-fold lower affinity as determined by microscale thermophoresis. AQP2-S256E, S261E, T269E, and S256E/T269E all had reduced affinity. This effect was most prominent for AQP2-S256E, which fits well with its role in apical membrane targeting. AQP2-S264E had affinity similar to non-phosphorylated AQP2, possibly indicating a role in exosome excretion. Our data suggest that AQP2 phosphorylation allosterically controls its interaction with LIP5, illustrating how altered affinities to interacting proteins form the basis for regulation of AQP2 trafficking by post-translational modifications. © 2017 by The American Society for

  3. Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation†

    Science.gov (United States)

    Selvam, Shanmugam P.; De Palma, Ryan M.; Oaks, Joshua J.; Oleinik, Natalia; Peterson, Yuri K.; Stahelin, Robert V.; Skordalakes, Emmanuel; Ponnusamy, Suriyan; Garrett-Mayer, Elizabeth; Smith, Charles D.; Ogretmen, Besim

    2015-01-01

    During DNA replication, the enzyme telomerase maintains the ends of chromosomes, called telomeres. Shortened telomeres trigger cell senescence, and cancer cells often have increased telomerase activity to promote their ability to proliferate indefinitely. The catalytic subunit, human telomerase reverse transcriptase (hTERT), is stabilized by phosphorylation. Here, we found that the lysophospholipid sphingosine 1-phosphate (S1P), generated by sphingosine kinase 2 (SK2), bound hTERT at the nuclear periphery in human and mouse fibroblasts. Docking predictions and mutational analyses revealed that binding occurred between a hydroxyl group (C′3-OH) in S1P and Asp684 in hTERT. Inhibiting or depleting SK2 or mutating the S1P binding site decreased the stability of hTERT in cultured cells and promoted senescence and loss of telomere integrity. S1P binding inhibited the interaction of hTERT with MKRN1, an E3 ubiquitin ligase that tags hTERT for degradation. Murine Lewis lung carcinoma (LLC) cells formed smaller tumors in mice lacking SK2 than in wild-type mice, and knocking down SK2 in LLC cells before implantation into mice suppressed their growth. Pharmacologically inhibiting SK2 decreased the growth of subcutaneous A549 lung cancer cell-derived xenografts in mice, and expression of wild-type hTERT, but not an S1P-binding mutant, restored tumor growth. Thus, our data suggest that S1P binding to hTERT allosterically mimicks phosphorylation, promoting telomerase stability and hence telomere maintenance, cell proliferation, and tumor growth PMID:26082434

  4. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri▿ †

    Science.gov (United States)

    Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.

    2008-01-01

    Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531

  5. Basic Concepts in G-Protein-Coupled Receptor Homo- and Heterodimerization

    Directory of Open Access Journals (Sweden)

    Rafael Franco

    2007-01-01

    Full Text Available Until recently, heptahelical G-protein-coupled receptors (GPCRs were considered to be expressed as monomers on the cell surface of neuronal and non-neuronal cells. It is now becoming evident that this view must be overtly changed since these receptors can form homodimers, heterodimers, and higher-order oligomers on the plasma membrane. Here we discuss some of the basics and some new concepts of receptor homo- and heteromerization. Dimers-oligomers modify pharmacology, trafficking, and signaling of receptors. First of all, GPCR dimers must be considered as the main molecules that are targeted by neurotransmitters or by drugs. Thus, binding data must be fitted to dimer-based models. In these models, it is considered that the conformational changes transmitted within the dimer molecule lead to cooperativity. Cooperativity must be taken into account in the binding of agonists-antagonists-drugs and also in the binding of the so-called allosteric modulators. Cooperativity results from the intramolecular cross-talk in the homodimer. As an intramolecular cross-talk in the heterodimer, the binding of one neurotransmitter to one receptor often affects the binding of the second neurotransmitter to the partner receptor. Coactivation of the two receptors in a heterodimer can change completely the signaling pathway triggered by the neurotransmitter as well as the trafficking of the receptors. Heterodimer-specific drugs or dual drugs able to activate the two receptors in the heterodimer simultaneously emerge as novel and promising drugs for a variety of central nervous system (CNS therapeutic applications.

  6. Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84

    DEFF Research Database (Denmark)

    Mahmud, Zobaer Al; Jenkins, Laura; Ulven, Trond

    2017-01-01

    Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3'-diindolylmethane. 3,3'-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3'-diind...

  7. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G.; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G.; Dobson, Jason R.; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R.; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D.; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J.; Sellers, William R.; Stams, Travis; Fortin , Pascal D. (Novartis)

    2016-06-29

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.

  8. Couple communication, emotional and sexual intimacy, and relationship satisfaction.

    Science.gov (United States)

    Yoo, Hana; Bartle-Haring, Suzanne; Day, Randal D; Gangamma, Rashmi

    2014-01-01

    Emotional and sexual aspects of intimacy in romantic relationships are important correlates of couples' relationship satisfaction. However, few studies have examined the effect of emotional and sexual aspects of intimacy on relationship satisfaction within the context of the interpersonal relationship processes. In addition, the association between emotional and sexual aspects of intimacy remains unclear. With a sample of 335 married couples from the Flourishing Families Project, the authors examined the associations between couple communication, emotional intimacy, sexual satisfaction, and relationship satisfaction, using the couple as the unit of analysis. The results of path analysis suggested that sexual satisfaction significantly predicted emotional intimacy for husbands and wives, while emotional intimacy did not appear to have a significant influence on sexual satisfaction. Further, mediation associations were suggested within as well as between spouses. Within spouses (for each spouse), emotional intimacy and sexual satisfaction mediated the association between spouses' appraisal of their partners' communication and their own relationship satisfaction. Gender differences were revealed in terms of how a spouse's perception of sexual satisfaction is associated with his or her partner's relationship satisfaction. In this study, although wives' relationship satisfaction was not associated with their husbands' sexual satisfaction, husbands tended to report high levels of relationship satisfaction when their wives reported greater sexual satisfaction. Findings suggest that both components of intimacy--emotional and sexual--should be comprehensively addressed in research and clinical work with couples.

  9. Therapeutic effects of the allosteric protein tyrosine phosphatase 1B inhibitor KY-226 on experimental diabetes and obesity via enhancements in insulin and leptin signaling in mice

    Directory of Open Access Journals (Sweden)

    Yuma Ito

    2018-05-01

    Full Text Available The anti-diabetic and anti-obesity effects of the allosteric protein tyrosine phosphatase 1B (PTP1B inhibitor 4-(biphenyl-4-ylmethylsulfanylmethyl-N-(hexane-1-sulfonylbenzoylamide (KY-226 were pharmacologically evaluated. KY-226 inhibited human PTP1B activity (IC50 = 0.28 μM, but did not exhibit peroxisome proliferator-activated receptor γ (PPARγ agonist activity. In rodent preadipocytes (3T3-L1, KY-226 up to 10 μM had no effects on adipocyte differentiation, whereas pioglitazone, a PPARγ agonist, markedly promoted it. In human hepatoma-derived cells (HepG2, KY-226 (0.3–10 μM increased the phosphorylated insulin receptor (pIR produced by insulin. In db/db mice, the oral administration of KY-226 (10 and 30 mg/kg/day, 4 weeks significantly reduced plasma glucose and triglyceride levels as well as hemoglobin A1c values without increasing body weight gain, while pioglitazone exerted similar effects with increases in body weight gain. KY-226 attenuated plasma glucose elevations in the oral glucose tolerance test. KY-226 also increased pIR and phosphorylated Akt in the liver and femoral muscle. In high-fat diet-induced obese mice, the oral administration of KY-226 (30 and 60 mg/kg/day, 4 weeks decreased body weight gain, food consumption, and fat volume gain with increases in phosphorylated STAT3 in the hypothalamus. In conclusion, KY-226 exerted anti-diabetic and anti-obesity effects by enhancing insulin and leptin signaling, respectively. Keywords: PTP1B inhibitor, Diabetes, Obesity, Allosteric inhibitor, db/db mouse

  10. Intimacy and sexual risk behaviour in serodiscordant male couples.

    Science.gov (United States)

    Remien, R H; Carballo-Diéguez, A; Wagner, G

    1995-01-01

    Several studies have demonstrated individual-level determinants of HIV sexual risk behaviour. Very little research has been conducted to identify couple-level factors associated with unsafe sexual behaviour. As part of a three-year study of more than 100 serodiscordant male couples, we conducted an in-depth qualitative study of 15 Latino and non-Latino male couples via focus groups and a follow-up telephone survey. We identified the sexual risk behaviour that occurs in these male couples, their perceptions of susceptibility for HIV transmission, and numerous couple-level and intrapsychic factors associated with their risk behaviour. We also describe the challenges confronted by these couples and barriers to emotional intimacy and couple satisfaction. Finally, we provide suggestions for ways of intervening to facilitate improved couple functioning, pleasure, satisfaction, and communication, and ways of reducing sexual risk behaviour without loss of emotional intimacy.

  11. The minor binding pocket: a major player in 7TM receptor activation

    DEFF Research Database (Denmark)

    Rosenkilde, Mette Marie; Benned-Jensen, Tau; Frimurer, Thomas M.

    2010-01-01

    residue located in one of two adjacent positions. Here we argue that this minor binding pocket is important for receptor activation. Functional coupling of the receptors seems to be mediated through the hydrogen bond network located between the intracellular segments of these TMs, with the allosteric...... targeted in the development of functionally biased drugs....

  12. G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey.

    Science.gov (United States)

    Kratochwil, Nicole A; Gatti-McArthur, Silvia; Hoener, Marius C; Lindemann, Lothar; Christ, Andreas D; Green, Luke G; Guba, Wolfgang; Martin, Rainer E; Malherbe, Pari; Porter, Richard H P; Slack, Jay P; Winnig, Marcel; Dehmlow, Henrietta; Grether, Uwe; Hertel, Cornelia; Narquizian, Robert; Panousis, Constantinos G; Kolczewski, Sabine; Steward, Lucinda

    2011-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor. © 2011 Bentham Science Publishers

  13. The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system

    National Research Council Canada - National Science Library

    Gray, Jeffrey Alan; McNaughton, Neil

    2000-01-01

    ... that the diverse behavioural and physiological effects of the benzodiazepine class of anxiolytic drugs are mediated in general by action at receptors allosterically coupled to the GABA A receptor. It is now clear that different classes of these effects are mediated by benzodiazepine binding sites that are coupled to GABA A receptors of different subunit compositions. In particular, studies of mice with point mutations in specific subunits of the GABA A receptor appear to rale out as receptors for the...

  14. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    International Nuclear Information System (INIS)

    Ascenzi, Paolo; Imperi, Francesco; Coletta, Massimo; Fasano, Mauro

    2008-01-01

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k off ) is reported. In the absence of drugs, the value of k off is (1.3 ± 0.2) x 10 -4 s -1 . Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k off value increases to (8.6 ± 0.9) x 10 -4 s -1 . From the dependence of k off on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 ± 0.2) x 10 -3 M and (6.2 ± 0.7) x 10 -5 M, respectively) were determined. The increase of k off values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors

  15. Action Potential Modulation of Neural Spin Networks Suggests Possible Role of Spin

    CERN Document Server

    Hu, H P

    2004-01-01

    In this paper we show that nuclear spin networks in neural membranes are modulated by action potentials through J-coupling, dipolar coupling and chemical shielding tensors and perturbed by microscopically strong and fluctuating internal magnetic fields produced largely by paramagnetic oxygen. We suggest that these spin networks could be involved in brain functions since said modulation inputs information carried by the neural spike trains into them, said perturbation activates various dynamics within them and the combination of the two likely produce stochastic resonance thus synchronizing said dynamics to the neural firings. Although quantum coherence is desirable and may indeed exist, it is not required for these spin networks to serve as the subatomic components for the conventional neural networks.

  16. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives.

    Science.gov (United States)

    Goins, Christopher M; Dajnowicz, Steven; Thanna, Sandeep; Sucheck, Steven J; Parks, Jerry M; Ronning, Donald R

    2017-05-12

    rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Furthermore, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.

  17. Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.

    Science.gov (United States)

    Yeheskel, Adva; Haliloglu, Turkan; Ben-Tal, Nir

    2010-05-19

    Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA

    Science.gov (United States)

    Mitchell, Michael R.; Leibler, Stanislas

    2018-05-01

    The abundance of available static protein structural data makes the more effective analysis and interpretation of this data a valuable tool to supplement the experimental study of protein mechanics. Structural displacements can be difficult to analyze and interpret. Previously, we showed that strains provide a more natural and interpretable representation of protein deformations, revealing mechanical coupling between spatially distinct sites of allosteric proteins. Here, we demonstrate that other transformations of displacements yield additional insights. We calculate the divergence and curl of deformations of the transmembrane channel KcsA. Additionally, we introduce quantities analogous to bend, splay, and twist deformation energies of nematic liquid crystals. These transformations enable the decomposition of displacements into different modes of deformation, helping to characterize the type of deformation a protein undergoes. We apply these calculations to study the filter and gating regions of KcsA. We observe a continuous path of rotational deformations physically coupling these two regions, and, we propose, underlying the allosteric interaction between these regions. Bend, splay, and twist distinguish KcsA gate opening, filter opening, and filter-gate coupling, respectively. In general, physically meaningful representations of deformations (like strain, curl, bend, splay, and twist) can make testable predictions and yield insights into protein mechanics, augmenting experimental methods and more fully exploiting available structural data.

  19. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E.

    1991-01-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation

  20. Differences in Pornography Use Among Couples: Associations with Satisfaction, Stability, and Relationship Processes.

    Science.gov (United States)

    Willoughby, Brian J; Carroll, Jason S; Busby, Dean M; Brown, Cameron C

    2016-01-01

    The present study utilized a sample of 1755 adult couples in heterosexual romantic relationships to examine how different patterns of pornography use between romantic partners may be associated with relationship outcomes. While pornography use has been generally associated with some negative and some positive couple outcomes, no study has yet explored how differences between partners may uniquely be associated with relationship well-being. Results suggested that greater discrepancies between partners in pornography use were related to less relationship satisfaction, less stability, less positive communication, and more relational aggression. Mediation analyses suggested that greater pornography use discrepancies were primarily associated with elevated levels of male relational aggression, lower female sexual desire, and less positive communication for both partners which then predicted lower relational satisfaction and stability for both partners. Results generally suggest that discrepancies in pornography use at the couple level are related to negative couple outcomes. Specifically, pornography differences may alter specific couple interaction processes which, in turn, may influence relationship satisfaction and stability. Implications for scholars and clinicians interested in how pornography use is associated with couple process are discussed.

  1. Lithium - therapeutic tool endowed with multiple beneficiary effects caused by multiple mechanisms

    Czech Academy of Sciences Publication Activity Database

    Vošahlíková, Miroslava; Svoboda, Petr

    2016-01-01

    Roč. 76, č. 1 (2016), s. 1-19 ISSN 0065-1400 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GA15-16605S Institutional support: RVO:67985823 Keywords : bipolar disorder * lithium * sodium * magnesium * G protein coupled receptors * Na+-allosteric site Subject RIV: CE - Biochemistry Impact factor: 1.207, year: 2016

  2. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  3. Couple interdependence impacts HIV-related health behaviours among pregnant couples in southwestern Kenya: a qualitative analysis.

    Science.gov (United States)

    Rogers, Anna Joy; Achiro, Lillian; Bukusi, Elizabeth A; Hatcher, Abigail M; Kwena, Zachary; Musoke, Pamela L; Turan, Janet M; Weke, Elly; Darbes, Lynae A

    2016-01-01

    HIV infection is frequently transmitted within stable couple partnerships. In order to prevent HIV acquisition in HIV-negative couples, as well as improve coping in couples with an HIV-positive diagnosis, it has been suggested that interventions be aimed at strengthening couple relationships, in addition to addressing individual behaviours. However, little is known about factors that influence relationships to impact joint decision-making related to HIV. We conducted qualitative in-depth interviews with 40 pregnant women and 40 male partners in southwestern Kenya, an area of high HIV prevalence. Drawing from the interdependence model of communal coping and health behaviour change, we employed thematic analysis methods to analyze interview transcripts in Dedoose software with the aim of identifying key relationship factors that could contribute to the development of a couples-based intervention to improve health outcomes for pregnant women and their male partners. In accordance with the interdependence model, we found that couples with greater relationship-centred motivations described jointly engaging in more health-enhancing behaviours, such as couples HIV testing, disclosure of HIV status, and cooperation to improve medication and clinic appointment adherence. These couples often had predisposing factors such as stronger communication skills and shared children, and were less likely to face potential challenges such as polygamous marriages, wife inheritance, living separately, or financial difficulties. For HIV-negative couples, joint decision-making helped them face the health threat of acquiring HIV together. For couples with an HIV-positive diagnosis, communal coping helped reduce risk of interspousal transmission and improve long-term health prospects. Conversely, participants felt that self-centred motivations led to more concurrent sexual partnerships, reduced relationship satisfaction, and mistrust. Couples who lacked interdependence were more likely to

  4. Selective and interactive effects of D2 receptor antagonism and positive allosteric mGluR4 modulation on waiting impulsivity.

    Science.gov (United States)

    Isherwood, Sarah N; Robbins, Trevor W; Nicholson, Janet R; Dalley, Jeffrey W; Pekcec, Anton

    2017-09-01

    Metabotropic glutamate receptor 4 (mGluR4) and dopamine D 2 receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D 2 receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D 2 receptor antagonist eticlopride, on two distinct forms of impulsivity. Rats were trained on the five-choice serial reaction time task (5-CSRTT) of sustained visual attention and segregated according to low, mid, and high levels of motor impulsivity (LI, MI and HI, respectively), with unscreened rats used as an additional control group. A separate group of rats was trained on a delay discounting task (DDT) to assess choice impulsivity. Systemic administration of Cpd11 dose-dependently increased motor impulsivity and impaired attentional accuracy on the 5-CSRTT in all groups tested. Eticlopride selectively attenuated the increase in impulsivity induced by Cpd11, but not the accompanying attentional impairment, at doses that had no significant effect on behavioural performance when administered alone. Cpd11 also decreased choice impulsivity on the DDT (i.e. increased preference for the large, delayed reward) and decreased locomotor activity. These findings demonstrate that mGluR4s, in conjunction with D 2 receptors, affect motor- and choice-based measures of impulsivity, and therefore may be novel targets to modulate impulsive behaviour associated with a number of neuropsychiatric syndromes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Fragment Based Optimization of Metabotropic Glutamate Receptor 2 (mGluR2) Positive Allosteric Modulators in the Absence of Structural Information.

    Science.gov (United States)

    Szabó, György; Túrós, György I; Kolok, Sándor; Vastag, Mónika; Sánta, Zsuzsanna; Dékány, Miklós; Lévay, György I; Greiner, István; Natsumi, Minami; Tatsuya, Watanabe; Keserű, György M

    2018-03-14

    Metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulators (PAMs) have been implicated as potential pharmacotherapy for psychiatric conditions. Screening our corporate compound deck, we identified a benzotriazole fragment (4) that was rapidly optimized to a potent and metabolically stable early lead (16). The highly lipophilic character of 16, together with its limited solubility, permeability, and high protein binding, however, did not allow reaching of the proof of concept in vivo. Since further attempts on the optimization of druglike properties were unsuccessful, the original hit 4 has been revisited and was optimized following the principles of fragment based drug discovery (FBDD). Lacking structural information on the receptor-ligand complex, we implemented a group efficiency (GE) based strategy and identified a new fragment like lead (60) with more balanced profile. Significant improvement achieved on the druglike properties nominated the compound for in vivo proof of concept studies that revealed the chemotype being a promising PAM lead targeting mGluR2 receptors.

  6. Suggestibility and suggestive modulation of the Stroop effect.

    Science.gov (United States)

    Kirsch, Irving

    2011-06-01

    Although the induction of a hypnotic state does not seem necessary for suggestive modulation of the Stroop effect, this important phenomenon has seemed to be dependent on the subject's level of hypnotic suggestibility. Raz and Campbell's (2011) study indicates that suggestion can modulate the Stroop effect substantially in very low suggestible subjects, as well as in those who are highly suggestible. This finding casts doubt on the presumed mechanism by which suggestive modulation is brought about. Research aimed at uncovering the means by which low suggestible individuals are able to modulate the Stroop effect would be welcome, as would assessment of this effect in moderately suggestible people. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Derivation of the Crick-Wyman equation for allosteric proteins defining the difference between the number of binding sites and the Hill coefficient.

    Science.gov (United States)

    Poitevin, Frédéric; Edelstein, Stuart J

    2013-05-13

    In response to a 100-word footnote in the 1965 article by Monod, Wyman, and Changeux, a detailed manuscript signed by Francis Crick and Jeffries Wyman with 6000 words and 30 equations entitled "A Footnote on Allostery" circulated in 1965 among a limited group of scientists interested in allosteric interactions. This interesting and provocative document is published in this special issue for the first time. An intriguing equation in their text relates the difference between n (the number of ligand binding sites) and n' (the Hill coefficient) to the ratio of the saturation functions Y¯, for oligomers with n-1 and n binding sites. A compact derivation of this equation was not provided by Crick and Wyman, but one is presented here based on a definition of Y¯ involving the binding polynomial and its first derivative. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The no conclusion intervention for couples in conflict.

    Science.gov (United States)

    Migerode, Lieven

    2014-07-01

    Dealing with difference is central to all couple therapy. This article presents an intervention designed to assist couples in handling conflict. Central to this approach is the acceptance that most conflicts cannot be solved. Couples are in need of a different understanding of couples conflict. This understanding is found in the analysis of love in context and in relational dialectics. Couples are guided through different steps: deciding on the valence of the issue as individuals, helping them decide which differences can be resolved and which issues demand new ways of living with the inevitable, and the introduction in the suggested no conclusion dialogue. This article briefly describes the five day intensive couple therapy program, in which the no intervention is embedded. The theoretical foundation of the intervention, followed by the step by step description of the intervention forms the major part of the article. A case vignette illustrates this approach. © 2012 American Association for Marriage and Family Therapy.

  9. Committee Opinion No. 574: Marriage equality for same-sex couples.

    Science.gov (United States)

    2013-09-01

    Same-sex couples encounter barriers to health care that include concerns about confidentiality and disclosure, stigma and discriminatory attitudes and treatment, limited access to health care and health insurance, and often a limited understanding of their health risks. Same-sex couples and their families are adversely affected by the lack of legal recognition of their relationships, a problem with major implications for the health of same-sex couples and their families. Tangible harm has come from the lack of financial and health care protections granted to legal spouses, and children are harmed by the lack of protections afforded to families in which partners are married. However, the recent Supreme Court ruling, The United States v Windsor, which afforded equal treatment for legally married same-sex couples will provide many important health and financial benefits. Evidence suggests that marriage confers health benefits to individuals and families, yet a sizable proportion of individuals do not experience these health benefits because of their sexual orientation. Additional data suggest that same-sex couples who live in states with bans on same-sex unions experience adverse health outcomes. Civil marriage is currently available to same-sex couples in only thirteen states and the District of Columbia and honored by one state. The American College of Obstetricians and Gynecologists endorses marriage equality for same-sex couples and equal treatment for these couples and their families and applauds the Supreme Court's decision as an important step in improving access to benefits received by legally married same-sex couples. However, additional efforts are necessary to ensure that same-sex couples in every state can receive these same benefits.

  10. Reactions to framing of cessation messages: insights from dual-smoker couples.

    Science.gov (United States)

    Lipkus, Isaac M; Ranby, Krista W; Lewis, Megan A; Toll, Benjamin

    2013-12-01

    Couples in which both members smoke (dual-smoker couples) have not been the explicit target of cessation interventions. Quit rates are lower and relapse rates are higher among individuals in dual-smoker couples. A potentially effective strategy to motivate dual-smoker couples to quit is to convey messages that highlight how the positive outcomes of quitting (gain frame) or the negative outcomes of continued smoking (loss frame) affect the couple rather than the individual smoker. We explored whether dual-smoker couples' smoking behaviors (e.g., amount smoked) and desire to quit would differ as a function of message frame (gain vs. loss) or outcome focus (individual vs. couple). Dual-smoker couples (N = 40) completed a baseline survey and were then randomized to review gain- or loss-framed messages that varied whether the outcomes influenced the individual or the couple. Main outcomes were desire to quit after reading messages and smoking behaviors at a 1-month follow-up. Couple-focused messages produced the strongest desire to quit and decreased amount of cigarettes smoked at follow-up. The latter effect was mediated by desire to quit. Loss-framed messages produced inconsistent effects on desire to quit. There were no significant interactions between outcome focus and message framing. Findings suggest that messages emphasizing how smoking affects both partners can motivate cessation among dual-smoker couples. Contrary to findings showing that gain-framed messages motivate cessation targeting individual smokers, results suggest that loss-framed messages may be more persuasive than gain-framed messages when the target of the outcome involves significant others.

  11. Gate-dependent spin-orbit coupling in multielectron carbon nanotubes

    DEFF Research Database (Denmark)

    Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Paaske, Jens

    2011-01-01

    Understanding how the orbital motion of electrons is coupled to the spin degree of freedom in nanoscale systems is central for applications in spin-based electronics and quantum computation. Here we demonstrate such spin–orbit coupling in a carbon-nanotube quantum dot in the general multielectron...... graphene lattice. Our findings suggest that the spin–orbit coupling is a general property of carbon-nanotube quantum dots, which should provide a unique platform for the study of spin–orbit effects and their applications....

  12. An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells.

    Science.gov (United States)

    Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Veronica; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Magistretti, Jacopo; Masetto, Sergio

    2017-11-01

    Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low-voltage-activated outward rectifying K + current, I K,L , whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K + concentrations, altering the biophysical properties of I K,L . We found that in the absence of the calyx, I K,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of I K,L . Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low-voltage-activated outward rectifying K + current, I K,L . The biophysical properties and molecular profile of I K,L are still largely unknown. By using the patch-clamp whole-cell technique, we examined the voltage- and time-dependent properties of I K,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of I K,L were affected by an unstable K + equilibrium potential (V eq K + ). Both the outward and inward K + currents shifted V eq K + consistent with K + accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated I K,L showed a half-activation at -79.6 mV and a steep voltage dependence (2.8 mV). I K,L also

  13. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats.

    Directory of Open Access Journals (Sweden)

    Morten S Thomsen

    Full Text Available The α7 nicotinic acetylcholine receptor (nAChR is a potential target for the treatment of cognitive deficits in patients with schizophrenia, ADHD and Alzheimer's disease. Here we test the hypothesis that upregulation of α7 nAChR levels underlies the enhanced and sustained procognitive effect of repeated administration of α7 nAChR agonists. We further compare the effect of agonists to that of α7 nAChR positive allosteric modulators (PAMs, which do not induce upregulation of the α7 nAChR. Using the social discrimination test as a measure of short-term memory, we show that the α7 nAChR agonist A-582941 improves short-term memory immediately after repeated (7× daily, but not a single administration. The α7 nAChR PAMs PNU-120596 and AVL-3288 do not affect short-term memory immediately after a single or repeated administration. This demonstrates a fundamental difference in the behavioral effects of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance. Subsequent [(125I]-bungarotoxin autoradiography revealed no direct correlation between α7 nAChR levels in frontal cortical or hippocampal brain regions and short-term memory with either compound. Additionally, repeated treatment with A-582941 did not affect mRNA expression of RIC-3 or the lynx-like gene products lynx1, lynx2, PSCA, or Ly6H, which are known to affect nAChR function. In conclusion, both α7 nAChR agonists and PAMs exhibit sustained pro-cognitive effects after repeated administration, and altered levels of the α7 nAChR per se, or that of endogenous regulators of nAChR function, are likely not the major cause of this effect.

  14. Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19.

    Science.gov (United States)

    Park, Min Ju; Shen, Hailian; Spaeth, Jason M; Tolvanen, Jaana H; Failor, Courtney; Knudtson, Jennifer F; McLaughlin, Jessica; Halder, Sunil K; Yang, Qiwei; Bulun, Serdar E; Al-Hendy, Ayman; Schenken, Robert S; Aaltonen, Lauri A; Boyer, Thomas G

    2018-03-30

    Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs. © 2018 Park et al.

  15. Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction.

    Science.gov (United States)

    Endoh, Tamaki; Sugimoto, Naoki

    2015-08-04

    Conformational transitions of biomolecules in response to specific stimuli control many biological processes. In natural functional RNA switches, often called riboswitches, a particular RNA structure that has a suppressive or facilitative effect on gene expression transitions to an alternative structure with the opposite effect upon binding of a specific metabolite to the aptamer region. Stability of RNA secondary structure (-ΔG°) can be predicted based on thermodynamic parameters and is easily tuned by changes in nucleobases. We envisioned that tuning of a functional RNA switch that causes an allosteric interaction between an RNA and a peptide would be possible based on a predicted switching energy (ΔΔG°) that corresponds to the energy difference between the RNA secondary structure before (-ΔG°before) and after (-ΔG°after) the RNA conformational transition. We first selected functional RNA switches responsive to neomycin with predicted ΔΔG° values ranging from 5.6 to 12.2 kcal mol(-1). We then demonstrated a simple strategy to rationally convert the functional RNA switch to switches responsive to natural metabolites thiamine pyrophosphate, S-adenosyl methionine, and adenine based on the predicted ΔΔG° values. The ΔΔG° values of the designed RNA switches proportionally correlated with interaction energy (ΔG°interaction) between the RNA and peptide, and we were able to tune the sensitivity of the RNA switches for the trigger molecule. The strategy demonstrated here will be generally applicable for construction of functional RNA switches and biosensors in which mechanisms are based on conformational transition of nucleic acids.

  16. Natural climate variability in a coupled model

    International Nuclear Information System (INIS)

    Zebiak, S.E.; Cane, M.A.

    1990-01-01

    Multi-century simulations with a simplified coupled ocean-atmosphere model are described. These simulations reveal an impressive range of variability on decadal and longer time scales, in addition to the dominant interannual el Nino/Southern Oscillation signal that the model originally was designed to simulate. Based on a very large sample of century-long simulations, it is nonetheless possible to identify distinct model parameter sensitivities that are described here in terms of selected indices. Preliminary experiments motivated by general circulation model results for increasing greenhouse gases suggest a definite sensitivity to model global warming. While these results are not definitive, they strongly suggest that coupled air-sea dynamics figure prominently in global change and must be included in models for reliable predictions

  17. Energy transfer by way of an exciplex intermediate in flexible boron dipyrromethene-based allosteric architectures.

    Science.gov (United States)

    Mula, Soumyaditya; Elliott, Kristopher; Harriman, Anthony; Ziessel, Raymond

    2010-10-07

    We have designed and synthesized a series of modular, dual-color dyes comprising a conventional boron dipyrromethene (Bodipy) dye, as a yellow emitter, and a Bodipy dye possessing extended conjugation that functions as a red emitter. A flexible tether of variable length, built from ethylene glycol residues, connects the terminal dyes. A critical design element of this type of dyad relates to a secondary amine linkage interposed between the conventional Bodipy and the tether. Cyclic voltammetry shows both Bodipy dyes to be electroactive and indicates that the secondary amine is quite easily oxidized. The ensuing fluorescence quenching is best explained in terms of the rapid formation of an intermediate charge-transfer state. In fact, exciplex-type emission is observed in weakly polar solvents and over a critical temperature range. In the dual-color dyes, direct excitation of the yellow emitter results in the appearance of red fluorescence, indicating that the exciplex is likely involved in the energy-transfer event, and provides for a virtual Stokes shift of 5000 cm(-1). Replacing the red emitter with a higher energy absorber (namely, pyrene) facilitates the collection of near-UV light and extends the virtual Stokes shift to 8000 cm(-1). Modulation of the efficacy of intramolecular energy transfer is achieved by preorganization of the connector in the presence of certain cations. This latter behavior, which is fully reversible, corresponds to an artificial allosteric effect.

  18. Application of coupled nanoscale resonators for spectral sensing

    International Nuclear Information System (INIS)

    Nefedov, N

    2009-01-01

    In this paper we propose a method to perform tunable spectral sensing using globally inhibitory coupled oscillators. The suggested system may operate in the analog radio frequency (RF) domain without high speed ADC and heavy digital signal processing. Oscillator arrays may be made of imprecise elements such as nanoresonators. Provided there is a proper coupling, the system dynamics can be made stable despite the imprecision of the components. Global coupling could be implemented using a common load and controlled by digital means to tune the bandwidth. This method may be used for spectral sensing in cognitive radio terminals.

  19. Application of coupled nanoscale resonators for spectral sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, N [Nokia Research Center, Hardturmstrasse 253, CH-8005 Zurich (Switzerland); Swiss Federal Institute of Technology Zurich (ETHZ), ISI Laboratory, Sternwartstrasse 7, CH-8092 Zuerich (Switzerland)], E-mail: nikolai.nefedov@nokia.com

    2009-04-08

    In this paper we propose a method to perform tunable spectral sensing using globally inhibitory coupled oscillators. The suggested system may operate in the analog radio frequency (RF) domain without high speed ADC and heavy digital signal processing. Oscillator arrays may be made of imprecise elements such as nanoresonators. Provided there is a proper coupling, the system dynamics can be made stable despite the imprecision of the components. Global coupling could be implemented using a common load and controlled by digital means to tune the bandwidth. This method may be used for spectral sensing in cognitive radio terminals.

  20. Semiconductor ring lasers coupled by a single waveguide

    Science.gov (United States)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  1. Transitions to Synchrony in Coupled Bursting Neurons

    Science.gov (United States)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  2. Transitions to synchrony in coupled bursting neurons

    International Nuclear Information System (INIS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony

  3. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  4. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

    Science.gov (United States)

    Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S

    2017-06-05

    Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  6. Mechanism and activation for allosteric adenosine 5'-monophosphate nucleosidase. Kinetic alpha-deuterium isotope effects for the enzyme-catalyzed hydrolysis of adenosine 5'-monophosphate and nicotinamide mononucleotide

    International Nuclear Information System (INIS)

    Skoog, M.T.

    1986-01-01

    The kinetic alpha-deuterium isotope effect on Vmax/Km for hydrolysis of NMN catalyzed by AMP nucleosidase at saturating concentrations of the allosteric activator MgATP2- is kH/kD = 1.155 +/- 0.012. This value is close to that reported previously for the nonenzymatic hydrolysis of nucleosides of related structure, suggesting that the full intrinsic isotope effect for enzymatic NMN hydrolysis is expressed under these conditions; that is, bond-changing reactions are largely or completely rate-determining and the transition state has marked oxocarbonium ion character. The kinetic alpha-deuterium isotope effect for this reaction is unchanged when deuterium oxide replaces water as solvent, corroborating this conclusion. Furthermore, this isotope effect is independent of pH over the range 6.95-9.25, for which values of Vmax/Km change by a factor of 90, suggesting that the isotope-sensitive and pH-sensitive steps for AMP-nucleosidase-catalyzed NMN hydrolysis are the same. Values of kH/kD for AMP nucleosidase-catalyzed hydrolysis of NMN decrease with decreasing saturation of enzyme with MgATP2- and reach unity when the enzyme is less than half-saturated with this activator. This requires that the rate-determining step changes from cleavage of the covalent C-N bond to one which is isotope-independent. In contrast to the case for NMN hydrolysis, AMP nucleosidase-catalyzed hydrolysis of AMP at saturating concentrations of MgATP2- shows a kinetic alpha-deuterium isotope effect of unity. Thus, covalent bond-changing reactions are largely or completely rate-determining for hydrolysis of a poor substrate, NMN, but make little or no contribution to rate-determining step for hydrolysis of a good substrate, AMP, by maximally activated enzyme. This behavior has several precedents

  7. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge

    Science.gov (United States)

    Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Santos-Martins, Diogo; Olson, Arthur J.

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  8. Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein-ligand binding challenge.

    Science.gov (United States)

    Perryman, Alexander L; Santiago, Daniel N; Forli, Stefano; Martins, Diogo Santos; Olson, Arthur J

    2014-04-01

    To rigorously assess the tools and protocols that can be used to understand and predict macromolecular recognition, and to gain more structural insight into three newly discovered allosteric binding sites on a critical drug target involved in the treatment of HIV infections, the Olson and Levy labs collaborated on the SAMPL4 challenge. This computational blind challenge involved predicting protein-ligand binding against the three allosteric sites of HIV integrase (IN), a viral enzyme for which two drugs (that target the active site) have been approved by the FDA. Positive control cross-docking experiments were utilized to select 13 receptor models out of an initial ensemble of 41 different crystal structures of HIV IN. These 13 models of the targets were selected using our new "Rank Difference Ratio" metric. The first stage of SAMPL4 involved using virtual screens to identify 62 active, allosteric IN inhibitors out of a set of 321 compounds. The second stage involved predicting the binding site(s) and crystallographic binding mode(s) for 57 of these inhibitors. Our team submitted four entries for the first stage that utilized: (1) AutoDock Vina (AD Vina) plus visual inspection; (2) a new common pharmacophore engine; (3) BEDAM replica exchange free energy simulations, and a Consensus approach that combined the predictions of all three strategies. Even with the SAMPL4's very challenging compound library that displayed a significantly lower amount of structural diversity than most libraries that are conventionally employed in prospective virtual screens, these approaches produced hit rates of 24, 25, 34, and 27 %, respectively, on a set with 19 % declared binders. Our only entry for the second stage challenge was based on the results of AD Vina plus visual inspection, and it ranked third place overall according to several different metrics provided by the SAMPL4 organizers. The successful results displayed by these approaches highlight the utility of the computational

  9. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  10. If We Build It, They Will Come: Exploring Policy and Practice Implications of Public Support for Couple and Relationship Education for Lower Income and Relationally Distressed Couples.

    Science.gov (United States)

    Bradford, Angela B; Hawkins, Alan J; Acker, Jennifer

    2015-12-01

    Over the past decade, public funding for Couple and Relationship Education programs has expanded. As program administrators have been able to extend their reach to low-income individuals and couples using this support, it has become apparent that greater numbers of relationally distressed couples are attending classes than previously anticipated. Because psychoeducational programs for couples have traditionally served less distressed couples, this dynamic highlights the need to examine the policy and practice implications of more distressed couples accessing these services. This paper reviews some of the most immediate issues, including screening for domestic violence and couple needs, pedagogical considerations, and the potential integration of therapy and education services. We also make suggestions for future research that can inform policy and practice efforts. © 2015 Family Process Institute.

  11. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Simone ePelliciari

    2015-08-01

    Full Text Available The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress.Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur towards apo-operators, while the binding towards holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur towards the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to

  12. Multiple-state Feshbach resonances mediated by high-order couplings

    International Nuclear Information System (INIS)

    Hemming, Christopher J.; Krems, Roman V.

    2008-01-01

    We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings between the closed channels. We derive a general recursive expression that can be used to fit the experimental data on multistate Feshbach resonances involving one continuum state and several bound states and present numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold atoms and molecules with external fields

  13. Initialization and Predictability of a Coupled ENSO Forecast Model

    Science.gov (United States)

    Chen, Dake; Zebiak, Stephen E.; Cane, Mark A.; Busalacchi, Antonio J.

    1997-01-01

    The skill of a coupled ocean-atmosphere model in predicting ENSO has recently been improved using a new initialization procedure in which initial conditions are obtained from the coupled model, nudged toward observations of wind stress. The previous procedure involved direct insertion of wind stress observations, ignoring model feedback from ocean to atmosphere. The success of the new scheme is attributed to its explicit consideration of ocean-atmosphere coupling and the associated reduction of "initialization shock" and random noise. The so-called spring predictability barrier is eliminated, suggesting that such a barrier is not intrinsic to the real climate system. Initial attempts to generalize the nudging procedure to include SST were not successful; possible explanations are offered. In all experiments forecast skill is found to be much higher for the 1980s than for the 1970s and 1990s, suggesting decadal variations in predictability.

  14. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    Science.gov (United States)

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  15. Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists.

    Science.gov (United States)

    Hoyer, Inna; Haas, Ann-Karin; Kreuchwig, Annika; Schülein, Ralf; Krause, Gerd

    2013-02-01

    The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.

  16. Anatomical influences on internally coupled ears in reptiles.

    Science.gov (United States)

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  17. Metabolic control of vesicular glutamate transport and release.

    Science.gov (United States)

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. p97 Composition Changes Caused by Allosteric Inhibition Are Suppressed by an On-Target Mechanism that Increases the Enzyme's ATPase Activity.

    Science.gov (United States)

    Her, Nam-Gu; Toth, Julia I; Ma, Chen-Ting; Wei, Yang; Motamedchaboki, Khatereh; Sergienko, Eduard; Petroski, Matthew D

    2016-04-21

    The AAA ATPase p97/VCP regulates protein homeostasis using a diverse repertoire of cofactors to fulfill its biological functions. Here we use the allosteric p97 inhibitor NMS-873 to analyze its effects on enzyme composition and the ability of cells to adapt to its cytotoxicity. We found that p97 inhibition changes steady state cofactor-p97 composition, leading to the enrichment of a subset of its cofactors and polyubiquitin bound to p97. We isolated cells specifically insensitive to NMS-873 and identified a new mutation (A530T) in p97. A530T is sufficient to overcome the cytotoxicity of NMS-873 and alleviates p97 composition changes caused by the molecule but not other p97 inhibitors. This mutation does not affect NMS-873 binding but increases p97 catalytic efficiency through altered ATP and ADP binding. Collectively, these findings identify cofactor-p97 interactions sensitive to p97 inhibition and reveal a new on-target mechanism to suppress the cytotoxicity of NMS-873. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Engineering a pH responsive pore forming protein.

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-08

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  20. Engineering a pH responsive pore forming protein

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-01

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  1. Synthesis of novel and functionally selective non‐competitive muscarinic antagonists as chemical probes

    Czech Academy of Sciences Publication Activity Database

    Boulos, J. F.; Jakubík, Jan; Boulos, J. M.; Randáková, Alena; Momirov, J.

    2018-01-01

    Roč. 91, č. 1 (2018), s. 93-104 ISSN 1747-0277 R&D Projects: GA ČR(CZ) GA14-05696S; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : G- protein -coupled receptor * muscarinic acetylcholine receptor * N-methylscopolamine * Parkinson's disease * positive allosteric modulator Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 2.396, year: 2016

  2. Simple coupling with cosmological implications. The initial singularity and the inflationary universe

    International Nuclear Information System (INIS)

    Saez, D.

    1987-01-01

    In this work the metric is coupled with a scalar field phi in a simple way. Although this coupling becomes problematic because the energy density of phi appears to be unbounded from below, it is displayed as a very simple coupling leading to a nonsingular cosmological model with an early antigravity regime. A basic study of the inflationary period and various suggestions are presented

  3. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  4. Aging transition in systems of oscillators with global distributed-delay coupling.

    Science.gov (United States)

    Rahman, B; Blyuss, K B; Kyrychko, Y N

    2017-09-01

    We consider a globally coupled network of active (oscillatory) and inactive (nonoscillatory) oscillators with distributed-delay coupling. Conditions for aging transition, associated with suppression of oscillations, are derived for uniform and gamma delay distributions in terms of coupling parameters and the proportion of inactive oscillators. The results suggest that for the uniform distribution increasing the width of distribution for the same mean delay allows aging transition to happen for a smaller coupling strength and a smaller proportion of inactive elements. For gamma distribution with sufficiently large mean time delay, it may be possible to achieve aging transition for an arbitrary proportion of inactive oscillators, as long as the coupling strength lies in a certain range.

  5. Finer Distinctions: Variability in Satisfied Older Couples' Problem-Solving Behaviors.

    Science.gov (United States)

    Rauer, Amy; Williams, Leah; Jensen, Jakob

    2017-06-01

    This study utilized observational and self-report data from 64 maritally satisfied and stable older couples to explore if there were meaningful differences in how couples approached marital disagreements. Using a typology approach to classify couples based on their behaviors in a 15-minute problem-solving interaction, findings revealed four types of couples: (1) problem solvers (characterized by both spouses' higher problem-solving skills and warmth), (2) supporters (characterized by both spouses' notable warmth), (3) even couples (characterized by both spouses' moderate problem-solving skills and warmth), and (4) cool couples (characterized by both spouses' greater negativity and lower problem-solving skills and warmth). Despite the differences in these behaviors, all couples had relatively high marital satisfaction and functioning. However, across nearly all indices, spouses in the cool couple cluster reported poorer marital functioning, particularly when compared to the problem solvers and supporters. These findings suggest that even modest doses of negativity (e.g., eye roll) may be problematic for some satisfied couples later in life. The implications of these typologies are discussed as they pertain to practitioners' efforts to tailor their approaches to a wider swath of the population. © 2015 Family Process Institute.

  6. Tunable heat conduction through coupled Fermi-Pasta-Ulam chains

    Science.gov (United States)

    Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang

    2015-01-01

    We conduct a study on heat conduction through coupled Fermi-Pasta-Ulam (FPU) chains by using classical molecular dynamics simulations. Our attention is dedicated to showing how the phonon transport is affected by the interchain coupling. It has been well accepted that the heat conduction could be impeded by the interchain interaction due to the interface phonon scattering. However, recent theoretical and experimental studies suggest that the thermal conductivity of nanoscale materials can be counterintuitively enhanced by the interaction with the substrate. In the present paper, by consecutively varying the interchain coupling intensity, we observed both enhancement and suppression of thermal transport through the coupled FPU chains. For weak interchain couplings, it is found that the heat flux increases with the coupling intensity, whereas in the case of strong interchain couplings, the energy transport is found to be suppressed by the interchain interaction. Based on the phonon spectral energy density method, we attribute the enhancement of the energy transport to the excited phonon modes (in addition to the intrinsic phonon modes), while the upward shift of the high-frequency phonon branch and the interface phonon-phonon scattering account for the suppressed heat conduction.

  7. Dyadic Coping in Couple Therapy Process: An Exploratory Study.

    Science.gov (United States)

    Margola, Davide; Donato, Silvia; Accordini, Monica; Emery, Robert E; Snyder, Douglas K

    2017-07-10

    This study aimed at moving beyond previous research on couple therapy efficacy by examining moment-by-moment proximal couple and therapist interactions as well as final treatment outcomes and their reciprocal association. Seven hundred four episodes of dyadic coping within 56 early therapy sessions, taken from 28 married couples in treatment, were intensively analyzed and processed using a mixed-methods software (T-LAB). Results showed that negative dyadic coping was self-perpetuating, and therapists tended to passively observe the negative couple interaction; on the contrary, positive dyadic coping appeared to require a therapist's intervention to be maintained, and successful interventions mainly included information gathering as well as interpreting. Couples who dropped out of treatment were not actively engaged from the outset of therapy, and they used more negative dyadic coping, whereas couples who successfully completed treatment showed more positive dyadic coping very early in therapy. Results highlight the role of therapist action and control as critical to establishing rapport and credibility in couple therapy and suggest that dyadic coping patterns early in therapy may contribute to variable treatment response. © 2017 Family Process Institute.

  8. Detection of coupling delay: A problem not yet solved

    Science.gov (United States)

    Coufal, David; Jakubík, Jozef; Jajcay, Nikola; Hlinka, Jaroslav; Krakovská, Anna; Paluš, Milan

    2017-08-01

    Nonparametric detection of coupling delay in unidirectionally and bidirectionally coupled nonlinear dynamical systems is examined. Both continuous and discrete-time systems are considered. Two methods of detection are assessed—the method based on conditional mutual information—the CMI method (also known as the transfer entropy method) and the method of convergent cross mapping—the CCM method. Computer simulations show that neither method is generally reliable in the detection of coupling delays. For continuous-time chaotic systems, the CMI method appears to be more sensitive and applicable in a broader range of coupling parameters than the CCM method. In the case of tested discrete-time dynamical systems, the CCM method has been found to be more sensitive, while the CMI method required much stronger coupling strength in order to bring correct results. However, when studied systems contain a strong oscillatory component in their dynamics, results of both methods become ambiguous. The presented study suggests that results of the tested algorithms should be interpreted with utmost care and the nonparametric detection of coupling delay, in general, is a problem not yet solved.

  9. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  10. Measuring couple relationship quality in a rural African population: Validation of a Couple Functionality Assessment Tool in Malawi.

    Directory of Open Access Journals (Sweden)

    Allison Ruark

    Full Text Available Available data suggest that individual and family well-being are linked to the quality of women's and men's couple relationships, but few tools exist to assess couple relationship functioning in low- and middle-income countries. In response to this gap, Catholic Relief Services has developed a Couple Functionality Assessment Tool (CFAT to capture valid and reliable data on various domains of relationship quality. This tool is designed to be used by interventions which aim to improve couple and family well-being as a means of measuring the effectiveness of these interventions, particularly related to couple relationship quality. We carried out a validation study of the CFAT among 401 married and cohabiting adults (203 women and 198 men in rural Chikhwawa District, Malawi. Using psychometric scales, the CFAT addressed six domains of couple relationship quality (intimacy, partner support, sexual satisfaction, gender roles, decision-making, and communication and conflict management, and included questions on intimate partner violence. We used exploratory factor analysis to assess scale performance of each domain and produce a shortened Relationship Quality Index (RQI composed of items from five relationship quality domains. This article reports the performance of the RQI. Internal reliability and validity of the RQI were found to be good. Regression analyses examined the relationship of the RQI to outcomes important to health and development: intra-household cooperation, positive health behaviors, intimate partner violence, and gender-equitable norms. We found many significant correlations between RQI scores and these couple- and family-level development issues. There is a need to further validate the tool with use in other populations as well as to continue to explore whether the observed linkages between couple functionality and development outcomes are causal relationships.

  11. Efficacy and safety of an adjunctive mGlu2 receptor positive allosteric modulator to a SSRI/SNRI in anxious depression.

    Science.gov (United States)

    Kent, Justine M; Daly, Ella; Kezic, Iva; Lane, Rosanne; Lim, Pilar; De Smedt, Heidi; De Boer, Peter; Van Nueten, Luc; Drevets, Wayne C; Ceusters, Marc

    2016-06-03

    This phase 2a, randomized, multicenter, double-blind, proof-of-concept study was designed to evaluate, efficacy, safety and tolerability of JNJ-40411813/ADX71149, a novel metabotropic glutamate 2 receptor positive allosteric modulator as an adjunctive treatment for major depressive disorder (MDD) with significant anxiety symptoms. Eligible patients (18-64 years) had a DSM-IV diagnosis of MDD, Hamilton Depression Rating Scale-17 (HDRS17) score of ≥ 18, HDRS17 anxiety/somatization factor score of ≥ 7, and an insufficient response to current treatment with a selective serotonin reuptake inhibitor or serotonin-norepinephrine reuptake inhibitor. The doubly-randomized, 8-week double-blind treatment phase was comprised of two 4-week periods, from which a combined test statistic was generated, with pre-determined weights assigned to each of the 2 treatment periods. Period 1: patients (n=121) were randomly assigned (1:1) to JNJ-40411813 (n=62; 50mg to 150 mg b.i.d, flexibly dosed) or placebo (n=59); Period 2: placebo-treated patients (n=22) who continued to meet entry severity criteria were re-randomized (1:1) to JNJ-40411813 or placebo, while other patients underwent sham re-randomization and continued on their same treatment. Of 121 randomized patients, 100 patients (82.6%) were completers. No efficacy signal was detected on the primary endpoint, the 6-item Hamilton Anxiety Subscale (HAM-A6, p=0.51). Efficacy signals (based on prespecified 1-sided pdepression (HDRS17 total score, 6-item subscale of HDRS17 assessing core depressive symptoms [HAM-D6], and Inventory of Depressive Symptomatology [IDS-C30]) and anxiety (HDRS17 anxiety/somatization factor, IDS-C30 anxiety subscale). Although well-tolerated, the results do not suggest efficacy for JNJ-40411813 as an adjunctive treatment for patients with MDD with significant anxious symptoms in the dose range studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling.

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2016-08-01

    Full Text Available Flaviviruses comprise major emerging pathogens such as dengue virus (DENV or Zika virus (ZIKV. The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp domain of non-structural protein 5 (NS5. This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket". Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.

  13. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.

    Science.gov (United States)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-05

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    Science.gov (United States)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  15. Intermediate coupling collision strengths from LS coupled R-matrix elements

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    1978-01-01

    Fine structure collision strength for transitions between two groups of states in intermediate coupling and with inclusion of configuration mixing are obtained from LS coupled reactance matrix elements (R-matrix elements) and a set of mixing coefficients. The LS coupled R-matrix elements are transformed to pair coupling using Wigner 6-j coefficients. From these pair coupled R-matrix elements together with a set of mixing coefficients, R-matrix elements are obtained which include the intermediate coupling and configuration mixing effects. Finally, from the latter R-matrix elements, collision strengths for fine structure transitions are computed (with inclusion of both intermediate coupling and configuration mixing). (Auth.)

  16. The Structural Basis for Endotoxin-induced Allosteric Regulation of the Toll-like Receptor 4 (TLR4) Innate Immune Receptor*

    Science.gov (United States)

    Paramo, Teresa; Piggot, Thomas J.; Bryant, Clare E.; Bond, Peter J.

    2013-01-01

    As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The “clamshell-like” motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the “molecular switch” in endotoxic signaling. PMID:24178299

  17. The structural basis for endotoxin-induced allosteric regulation of the Toll-like receptor 4 (TLR4) innate immune receptor.

    Science.gov (United States)

    Paramo, Teresa; Piggot, Thomas J; Bryant, Clare E; Bond, Peter J

    2013-12-20

    As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The "clamshell-like" motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the "molecular switch" in endotoxic signaling.

  18. Identification of coupling direction: Application to cardiorespiratory interaction

    Science.gov (United States)

    Rosenblum, Michael G.; Cimponeriu, Laura; Bezerianos, Anastasios; Patzak, Andreas; Mrowka, Ralf

    2002-04-01

    We consider the problem of experimental detection of directionality of weak coupling between two self-sustained oscillators from bivariate data. We further develop the method introduced by Rosenblum and Pikovsky [Phys. Rev. E 64, 045202 (2001)], suggesting an alternative approach. Next, we consider another framework for identification of directionality, based on the idea of mutual predictability. Our algorithms provide directionality index that shows whether the coupling between the oscillators is unidirectional or bidirectional, and quantifies the asymmetry of bidirectional coupling. We demonstrate the efficiency of three different algorithms in determination of directionality index from short and noisy data. These techniques are then applied to analysis of cardiorespiratory interaction in healthy infants. The results reveal that the direction of coupling between cardiovascular and respiratory systems varies with the age within the first 6 months of life. We find a tendency to change from nearly symmetric bidirectional interaction to nearly unidirectional one (from respiration to the cardiovascular system).

  19. Characteristics and allowed behaviors of gay male couples' sexual agreements.

    Science.gov (United States)

    Mitchell, Jason W

    2014-01-01

    Research has shown that gay male couples' sexual agreements may affect their risk for HIV. Few U.S. studies have collected dyadic data nationally from gay male couples to assess what sexual behaviors they allow to occur by agreement type and the sequence of when certain behaviors occur within their relationships. In our cross-sectional study, dyadic data from a convenience sample of 361 male couples were collected electronically throughout the United States by using paid Facebook ads. Findings revealed that couples discussed their HIV status before having unprotected anal intercourse (UAI) but established their agreement some time after having UAI. About half of the couples (N = 207) concurred about having an agreement. Among these couples, 58% concurred about explicitly discussing their agreement, 84% concurred about having the same type of agreement, and 54% had both men adhering to it. A variety of sexual behaviors were endorsed and varied by agreement type. Concordance about aspects of couples' agreements varied, suggesting the need to engage couples to be more explicit and detailed when establishing and communicating about their agreements. The allowed behaviors and primary reasons for establishing and breaking sexual agreements further highlight the need to bolster HIV prevention for gay male couples.

  20. Methods work better when couples talk.

    Science.gov (United States)

    Keller, S

    1996-01-01

    Sexual partners who communicate about reproductive health issues reduce their risk of acquiring a sexually transmitted disease (STD) or of unintended pregnancy, but few couples feel comfortable talking openly about sex. AIDS prevention programs have focused on improving couple communication, but family planning programs have emphasized women-controlled contraception as more reliable than barrier methods. The effectiveness of barrier methods would likely improve, however, if clients are counseled in couple communication. Effective communication about sexual issues requires self-confidence, and strengthening a woman's self-confidence may also improve her ability to negotiate condom use. Small discussion groups held among female factory workers in Thailand in 1993-94 led to an increase from 60% to 90% in the number of women who felt confident in discussing STD risk with a partner and to an increase from 36% to 82% in those who said they would not be embarrassed to give a partner a condom. A Nigerian study also suggested that more education may also improve prospects for couple communication and contraceptive usage. A US study showed that adolescent women who communicated openly with their partners reduced their risks of unintended pregnancy and STDs, and a Kenyan study indicated that communication increases contraceptive usage among married couples. Various projects around the world are attempting to counsel women on communication and condom negotiation, and counselors are beginning the difficult task of teaching women how to convince men to use condoms.

  1. Coupled sandbar patterns and obliquely incident waves

    NARCIS (Netherlands)

    Price, T.D.; Castelle, B.; Ranasinghe, R.; Ruessink, B.G.

    2013-01-01

    In double sandbar systems, the alongshore variability in the inner bar oftenresembles that of the outer bar, suggesting that the outer bar acts as a morphologicaltemplate for the inner bar. Earlier observations have indicated that this resemblance, alsotermed “coupling,” may take several forms. Here

  2. DUAL CAREER COUPLES IN KOLKATA AND THEIR STRESSFUL WORK LIFE BALANCE

    OpenAIRE

    Jhilam Rudra De

    2017-01-01

    Dual-career couples were exceptions to the norm in the 1960s, but on date it is difficult to assess the number of married career women in the work force. Previous researches suggest that, the problems of the working women, who are a significant part of a dual career couple, may include lack of flexibility in the workplace, male-trailing spouses, career versus relationship child bearing conflicts etc. The key for dual career couples is to establish a system to help them balance their career an...

  3. Selection, Alignment, and Their Interplay: Origins of Lifestyle Homogamy in Couple Relationships

    Science.gov (United States)

    Becker, Oliver Arranz; Lois, Daniel

    2010-01-01

    The present study examines different processes leading to lifestyle homogamy in married and cohabiting couples using data from the German Socioeconomic Panel (n = 3,490 couples). The analyses first suggest that alignment over time promotes homogamy of leisure-related lifestyles, especially with respect to action-oriented activities. However,…

  4. The nonlinear dynamics of a coupled fission system

    International Nuclear Information System (INIS)

    Bilanovic, Z.; Harms, A.A.

    1993-01-01

    The dynamic properties of a nonlinear and in situ vibrationally perturbed nuclear-to-thermal coupled neutron multiplying medium are examined. Some unique self-organizational temporal patterns appear in such fission systems and suggest a complex underlying dynamic. (Author)

  5. Gender and the construction of intimacy among committed couples with children.

    Science.gov (United States)

    Reynolds, Conroy; Knudson-Martin, Carmen

    2015-06-01

    This study began with curiosity regarding how long-term couples with children manage their relationships in view of changing societal demands and ideals. Couples interviewed for this study described the intersection of time and intimacy as a core issue. Thus, this analysis focused on how couples construct intimacy in shared time. The diverse sample included 17 heterosexual working and professional class couples in the United States who had been committed for at least 10 years and whose oldest child was aged 6-16. Analysis identified four types of shared time experiences: gender divided, elusive, growing, and emotionally connected. Four factors influenced these types: (a) negotiated gendered differences, (b) intentionality, (c) mutual attending, and (d) dyadic friendship. The most emotionally connected couples reported that time together reinforced satisfaction and pleasure from their relationships. Results help explain different ways couples successfully negotiate changing expectations for heterosexual relationships and why some couples struggle. Findings suggest that therapists help couples intentionally develop habits of friendship and mutual attending. © 2014 Family Process Institute.

  6. Types of suggestibility: Relationships among compliance, indirect, and direct suggestibility.

    Science.gov (United States)

    Polczyk, Romuald; Pasek, Tomasz

    2006-10-01

    It is commonly believed that direct suggestibility, referring to overt influence, and indirect suggestibility, in which the intention to influence is hidden, correlate poorly. This study demonstrates that they are substantially related, provided that they tap similar areas of influence. Test results from 103 students, 55 women and 48 men, were entered into regression analyses. Indirect suggestibility, as measured by the Sensory Suggestibility Scale for Groups, and compliance, measured by the Gudjonsson Compliance Scale, were predictors of direct suggestibility, assessed with the Barber Suggestibility Scale. Spectral analyses showed that indirect suggestibility is more related to difficult tasks on the BSS, but compliance is more related to easy tasks on this scale.

  7. Negotiating mixedness/ Danishness- visibly intermarried couples in Denmark

    DEFF Research Database (Denmark)

    Singla, Rashmi

    and co-habitation, challenge notions of ‘us’ and ‘others’ as they challenge the dominant norms social norms of endo-/ homogamy. This paper is based on an empirical project to gain insights about the dynamics related to mental health among the intermarried couples, attempting to improve the accessibility...... service for couples who experience problems. These suggestions include professionals’ examination of myths, perceptions about the ‘others’ within a framework an ethical framework, acknowledging own social location and ethnic/ racial and gender power in the therapeutic encounter. The project is affiliated...

  8. Outness and relationship satisfaction in same-gender couples.

    Science.gov (United States)

    Knoble, Naomi B; Linville, Deanna

    2012-04-01

    Self-disclosure of sexual orientation, or outness, is a fundamental feature of gay, lesbian, and bisexual (GLB) experience, yet little is known about how outness impacts same-gender relationship satisfaction. Through a qualitative analysis of interviews with 15 same-gender couples, the complexities of navigating a stigmatized identity in a homonegative society emerged, including (a) characteristics of outness, (b) the influence of coupling on an individual's outness, and (c) the impact of outness on same-gender relationship satisfaction. Findings suggest that for GLB persons, outness is a developmental skill, an expression of identity and values, as well as a resilience strategy for managing discrimination and gay-related stress that influences, though does not singularly determine, relationship satisfaction. Implications for clinical practice and future research suggestions are presented. © 2010 American Association for Marriage and Family Therapy.

  9. A randomized pilot trial of a videoconference couples communication intervention for advanced GI cancer.

    Science.gov (United States)

    Porter, Laura S; Keefe, Francis J; Baucom, Donald H; Olsen, Maren; Zafar, S Yousuf; Uronis, Hope

    2017-07-01

    This study aims to test the feasibility and preliminary efficacy of a couple-based communication intervention for advanced GI cancer delivered via videoconference. Thirty-two couples were randomly assigned to either couples communication skills training (CCST) or an education comparison intervention, both delivered via videoconference. Participation was limited to couples who reported communication difficulties at screening. Patients and partners completed measures of relationship functioning and individual functioning at baseline and post-intervention. Eighty-eight percent of randomized dyads completed all six sessions and reported high levels of satisfaction with the intervention. Between-group effect sizes suggested that the CCST intervention led to improvements in relationship satisfaction for patients and partners and to improvements in intimacy and communication for patients. A couples-based communication intervention delivered via videoconference is feasible and acceptable in the context of advanced cancer. Preliminary findings suggest that the intervention shows promise in contributing to enhanced relationship functioning. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Using the Model Coupling Toolkit to couple earth system models

    Science.gov (United States)

    Warner, J.C.; Perlin, N.; Skyllingstad, E.D.

    2008-01-01

    Continued advances in computational resources are providing the opportunity to operate more sophisticated numerical models. Additionally, there is an increasing demand for multidisciplinary studies that include interactions between different physical processes. Therefore there is a strong desire to develop coupled modeling systems that utilize existing models and allow efficient data exchange and model control. The basic system would entail model "1" running on "M" processors and model "2" running on "N" processors, with efficient exchange of model fields at predetermined synchronization intervals. Here we demonstrate two coupled systems: the coupling of the ocean circulation model Regional Ocean Modeling System (ROMS) to the surface wave model Simulating WAves Nearshore (SWAN), and the coupling of ROMS to the atmospheric model Coupled Ocean Atmosphere Prediction System (COAMPS). Both coupled systems use the Model Coupling Toolkit (MCT) as a mechanism for operation control and inter-model distributed memory transfer of model variables. In this paper we describe requirements and other options for model coupling, explain the MCT library, ROMS, SWAN and COAMPS models, methods for grid decomposition and sparse matrix interpolation, and provide an example from each coupled system. Methods presented in this paper are clearly applicable for coupling of other types of models. ?? 2008 Elsevier Ltd. All rights reserved.

  11. Coupled assimilation for an intermediated coupled ENSO prediction model

    Science.gov (United States)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  12. Predicting the Coupling Properties of Axially-Textured Materials

    Science.gov (United States)

    Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.

    2013-01-01

    A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370

  13. Predicting the Coupling Properties of Axially-Textured Materials

    Directory of Open Access Journals (Sweden)

    María E. Fuentes-Montero

    2013-10-01

    Full Text Available A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  14. Relativistic nuclear matter with alternative derivative coupling models

    International Nuclear Information System (INIS)

    Delfino, A.; Coelho, C.T.; Malheiro, M.

    1994-01-01

    Effective Lagrangians involving nucleons coupled to scalar and vector fields are investigated within the framework of relativistic mean-field theory. The study presents the traditional Walecka model and different kinds of scalar derivative coupling suggested by Zimanyi and Moszkowski. The incompressibility (presented in an analytical form), scalar potential, and vector potential at the saturation point of nuclear matter are compared for these models. The real optical potential for the models are calculated and one of the models fits well the experimental curve from-50 to 400 MeV while also gives a soft equation of state. By varying the coupling constants and keeping the saturation point of nuclear matter approximately fixed, only the Walecka model presents a first order phase transition of finite temperature at zero density. (author)

  15. Measuring Electromechanical Coupling in Patients with Coronary Artery Disease and Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Lizhen Ji

    2016-04-01

    Full Text Available Coronary artery disease (CAD is the most common cause of death globally. To detect CAD noninvasively at an early stage before clinical symptoms occur is still nowadays challenging. Analysis of the variation of heartbeat interval (RRI opens a new avenue for evaluating the functional change of cardiovascular system which is accepted to occur at the subclinical stage of CAD. In addition, systolic time interval (STI and diastolic time interval (DTI also show potential. There may be coupling in these electromechanical time series due to their physiological connection. However, to the best of our knowledge no publication has systematically investigated how can the coupling be measured and how it changes in CAD patients. In this study, we enrolled 39 CAD patients and 36 healthy subjects and for each subject the electrocardiogram (ECG and photoplethysmography (PPG signals were recorded simultaneously for 5 min. The RRI series, STI series, and DTI series were constructed, respectively. We used linear cross correlation (CC, coherence function (CF, as well as nonlinear mutual information (MI, cross conditional entropy (XCE, cross sample entropy (XSampEn, and cross fuzzy entropy (XFuzzyEn to analyse the bivariate RRI-DTI coupling, RRI-STI coupling, and STI-DTI coupling, respectively. Our results suggest that the linear CC and CF generally have no significant difference between the two groups for all three types of bivariate coupling. The MI only shows weak change in RRI-DTI coupling. By comparison, the three entropy-based coupling measurements show significantly decreased coupling in CAD patients except XSampEn for RRI-DTI coupling (less significant and XCE for STI-DTI and RRI-STI coupling (not significant. Additionally, the XFuzzyEn performs best as it was still significant if we further applied the Bonferroni correction in our statistical analysis. Our study indicates that the intrinsic electromechanical coupling is most probably nonlinear and can better

  16. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface*

    Science.gov (United States)

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-01-01

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. PMID:26912659

  17. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface.

    Science.gov (United States)

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-04-15

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The relationship of interpersonal conflict handling styles and marital conflicts among Iranian divorcing couples.

    Science.gov (United States)

    Navidian, Ali; Bahari, Farshad; Kermansaravi, Fatihe

    2014-08-15

    Various research studies have suggested that among other variables that couples remain married if they successfully manage their interactions (marital communication based on acceptance of individual differences, problem solving skills, forgiveness, collaborative decision making, empathy and active listening) and constructively manage conflict. The study was aimed at examining the relation of conflict handling styles and marital conflicts among divorcing couples. As a descriptive -comparative study 60 couples out of 440 couples referred to the Crisis Intervention Center of the Isfahan Well-being Organization have selected. The tools implemented were Marital Conflicts (Barati & Sanaei, 1996) and Interpersonal Conflict Handling Styles Questionnaires (Thomas-Kilman, 1975). Their total reliabilities were, respectively, 0.74 and 0.87. Findings showed that there are no significant differences among their conflict handling styles and marital conflicts. Also, there was positive correlation between avoidance and competition styles and negative one between compromise, accommodation, and cooperation styles with marital conflicts. That is, these styles reduced couples' conflicts. Finally, wives had tendency to apply accommodation style and husbands tended to use accommodation and cooperation styles to handle their conflicts. It is suggested to be studied couples' views toward their own styles to handle marital conflicts and holding training courses to orient couples with advantages and disadvantages of marital conflict handling styles.

  19. Health behaviour change interventions for couples: A systematic review.

    Science.gov (United States)

    Arden-Close, Emily; McGrath, Nuala

    2017-05-01

    Partners are a significant influence on individuals' health, and concordance in health behaviours increases over time in couples. Several theories suggest that couple-focused interventions for health behaviour change may therefore be more effective than individual interventions. A systematic review of health behaviour change interventions for couples was conducted. Systematic search methods identified randomized controlled trials (RCTs) and non-randomized interventions of health behaviour change for couples with at least one member at risk of a chronic physical illness, published from 1990-2014. We identified 14 studies, targeting the following health behaviours: cancer prevention (6), obesity (1), diet (2), smoking in pregnancy (2), physical activity (1) and multiple health behaviours (2). In four out of seven trials couple-focused interventions were more effective than usual care. Of four RCTs comparing a couple-focused intervention to an individual intervention, two found that the couple-focused intervention was more effective. The studies were heterogeneous, and included participants at risk of a variety of illnesses. In many cases the intervention was compared to usual care for an individual or an individual-focused intervention, which meant the impact of the couplebased content could not be isolated. Three arm studies could determine whether any added benefits of couple-focused interventions are due to adding the partner or specific content of couple-focused interventions. Statement of contribution What is already known on this subject? Health behaviours and health behaviour change are more often concordant across couples than between individuals in the general population. Couple-focused interventions for chronic conditions are more effective than individual interventions or usual care (Martire, Schulz, Helgeson, Small, & Saghafi, ). What does this study add? Identified studies targeted a variety of health behaviours, with few studies in any one area. Further

  20. Enhancement of thermoelectric figure-of-merit in laterally-coupled nanowire arrays

    International Nuclear Information System (INIS)

    Zhang, Yiqun; Shi, Yi; Pu, Lin; Wang, Junzhuan; Pan, Lijia; Zheng, Youdou

    2011-01-01

    A high ZT value is predicted in laterally-coupled nanowire arrays. The quantum confinement and coupling of electrons are considered in the framework of effective-mass envelope-function theory. The boundary scattering on phonons is also taken into account. The thermoelectric properties benefit from the large Seebeck coefficient and dramatically reduced lattice thermal conductivity, as well as the preserved electronic conductivity in the minibands of the coupling nanowires. The enhancement of ZT to more than 10-fold is achieved in the n-type Si nanowires/Ge host material. Results suggest that the laterally-coupled nanowire arrays can be designed for high-performance thermoelectric devices. -- Highlights: → A high ZT value is predicted in the lateral-coupling nanowire arrays. → The lattice thermal conductivity is dramatically reduced in the lateral direction of nanowire arrays. → The electron transport is preserved in the lateral direction due to the coupling effect. → The ZT value is largely enhanced as the nanowire volume fraction exceeds some critical point.

  1. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R.; Assadi, S.; Sidikman, K.L.

    1992-11-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in ''k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m 1 + m 2 = m 3 and n 1 + n 2 = n 3 is measured by the bicoherency. In the RFP, m=l, n∼2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the ''crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade

  2. A chimeric prokaryotic-eukaryotic pentameric ligand gated ion channel reveals interactions between the extracellular and transmembrane domains shape neurosteroid modulation.

    Science.gov (United States)

    Ghosh, Borna; Tsao, Tzu-Wei; Czajkowski, Cynthia

    2017-10-01

    Pentameric ligand-gated ion channels (pLGICs) are the targets of several clinical and endogenous allosteric modulators including anesthetics and neurosteroids. Molecular mechanisms underlying allosteric drug modulation are poorly understood. Here, we constructed a chimeric pLGIC by fusing the extracellular domain (ECD) of the proton-activated, cation-selective bacterial channel GLIC to the transmembrane domain (TMD) of the human ρ1 chloride-selective GABA A R, and tested the hypothesis that drug actions are regulated locally in the domain that houses its binding site. The chimeric channels were proton-gated and chloride-selective demonstrating the GLIC ECD was functionally coupled to the GABAρ TMD. Channels were blocked by picrotoxin and inhibited by pentobarbital, etomidate and propofol. The point mutation, ρ TMD W328M, conferred positive modulation and direct gating by pentobarbital. The data suggest that the structural machinery mediating general anesthetic modulation resides in the TMD. Proton-activation and neurosteroid modulation of the GLIC-ρ chimeric channels, however, did not simply mimic their respective actions on GLIC and GABAρ revealing that across domain interactions between the ECD and TMD play important roles in determining their actions. Proton-induced current responses were biphasic suggesting that the chimeric channels contain an additional proton sensor. Neurosteroid modulation of the GLIC-ρ chimeric channels by the stereoisomers, 5α-THDOC and 5β-THDOC, were swapped compared to their actions on GABAρ indicating that positive versus negative neurosteroid modulation is not encoded solely in the TMD nor by neurosteroid isomer structure but is dependent on specific interdomain connections between the ECD and TMD. Our data reveal a new mechanism for shaping neurosteroid modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch.

    Science.gov (United States)

    Doan; Rudi; Olsen

    1999-11-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed.

  4. Reciprocally coupled residues crucial for protein kinase Pak2 activity calculated by statistical coupling analysis.

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Hsu

    2010-03-01

    Full Text Available Regulation of Pak2 activity involves at least two mechanisms: (i phosphorylation of the conserved Thr(402 in the activation loop and (ii interaction of the autoinhibitory domain (AID with the catalytic domain. We collected 482 human protein kinase sequences from the kinome database and globally mapped the evolutionary interactions of the residues in the catalytic domain with Thr(402 by sequence-based statistical coupling analysis (SCA. Perturbation of Thr(402 (34.6% suggests a communication pathway between Thr(402 in the activation loop, and Phe(387 (DeltaDeltaE(387F,402T = 2.80 in the magnesium positioning loop, Trp(427 (DeltaDeltaE(427W,402T = 3.12 in the F-helix, and Val(404 (DeltaDeltaE(404V,402T = 4.43 and Gly(405 (DeltaDeltaE(405G,402T = 2.95 in the peptide positioning loop. When compared to the cAMP-dependent protein kinase (PKA and Src, the perturbation pattern of threonine phosphorylation in the activation loop of Pak2 is similar to that of PKA, and different from the tyrosine phosphorylation pattern of Src. Reciprocal coupling analysis by SCA showed the residues perturbed by Thr(402 and the reciprocal coupling pairs formed a network centered at Trp(427 in the F-helix. Nine pairs of reciprocal coupling residues crucial for enzymatic activity and structural stabilization were identified. Pak2, PKA and Src share four pairs. Reciprocal coupling residues exposed to the solvent line up as an activation groove. This is the inhibitor (PKI binding region in PKA and the activation groove for Pak2. This indicates these evolutionary conserved residues are crucial for the catalytic activity of PKA and Pak2.

  5. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Directory of Open Access Journals (Sweden)

    Tzilhav Shem-Ad

    Full Text Available The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  6. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Science.gov (United States)

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  7. Loss of object recognition memory produced by extended access to methamphetamine self-administration is reversed by positive allosteric modulation of metabotropic glutamate receptor 5.

    Science.gov (United States)

    Reichel, Carmela M; Schwendt, Marek; McGinty, Jacqueline F; Olive, M Foster; See, Ronald E

    2011-03-01

    Chronic methamphetamine (meth) abuse can lead to persisting cognitive deficits. Here, we utilized a long-access meth self-administration (SA) protocol to assess recognition memory and metabotropic glutamate receptor (mGluR) expression, and the possible reversal of cognitive impairments with the mGluR5 allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB). Male, Long-Evans rats self-administered i.v. meth (0.02 mg/infusion) on an FR1 schedule of reinforcement or received yoked-saline infusions. After seven daily 1-h sessions, rats were switched to 6-h daily sessions for 14 days, and then underwent drug abstinence. Rats were tested for object recognition memory at 1 week after meth SA at 90 min and 24 h retention intervals. In a separate experiment, rats underwent the same protocol, but received either vehicle or CDPPB (30 mg/kg) after familiarization. Rats were killed on day 8 or 14 post-SA and brain tissue was obtained. Meth intake escalated over the extended access period. Additionally, meth-experienced rats showed deficits in both short- and long-term recognition memory, demonstrated by a lack of novel object exploration. The deficit at 90 min was reversed by CDPPB treatment. On day 8, meth intake during SA negatively correlated with mGluR expression in the perirhinal and prefrontal cortex, and mGluR5 receptor expression was decreased 14 days after discontinuation of meth. This effect was specific to mGluR5 levels in the perirhinal cortex, as no differences were identified in the hippocampus or in mGluR2/3 receptors. These results from a clinically-relevant animal model of addiction suggest that mGluR5 receptor modulation may be a potential treatment of cognitive dysfunction in meth addiction.

  8. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  9. Odorant Receptor Modulation: Ternary Paradigm for Mode of Action of Insect Repellents

    Science.gov (United States)

    2012-01-01

    Ostrinia nubilalis. PLoS ONE 5, e8685. Wanner, K.W., Nichols, A.S.,Walden, K.K., Brockmann, A., Luetje, C.W., Robertson, H.M., 2007. A honey bee odorant...allosteric”. Protein Sci. 20, 1119e1124. Christopoulos, A., Kenakin, T., 2002. G protein -coupled receptor allosterism and complexing. Pharmacol. Rev. 54...Newcomb, R.D., Warr, C.G., 2008. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of

  10. Discovery of VU0467485/AZ13713945: An M4 PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia.

    Science.gov (United States)

    Wood, Michael R; Noetzel, Meredith J; Melancon, Bruce J; Poslusney, Michael S; Nance, Kellie D; Hurtado, Miguel A; Luscombe, Vincent B; Weiner, Rebecca L; Rodriguez, Alice L; Lamsal, Atin; Chang, Sichen; Bubser, Michael; Blobaum, Anna L; Engers, Darren W; Niswender, Colleen M; Jones, Carrie K; Brandon, Nicholas J; Wood, Michael W; Duggan, Mark E; Conn, P Jeffrey; Bridges, Thomas M; Lindsley, Craig W

    2017-02-09

    Herein, we report the structure-activity relationships within a series of potent, selective, and orally bioavailable muscarinic acetylcholine receptor 4 (M 4 ) positive allosteric modulators (PAMs). Compound 6c (VU0467485) possesses robust in vitro M 4 PAM potency across species and in vivo efficacy in preclinical models of schizophrenia. Coupled with an attractive DMPK profile and suitable predicted human PK, 6c (VU0467485) was evaluated as a preclinical development candidate.

  11. Integrated proteomics and metabolomics suggests symbiotic metabolism and multimodal regulation in a fungal-endobacterial system.

    Science.gov (United States)

    Li, Zhou; Yao, Qiuming; Dearth, Stephen P; Entler, Matthew R; Castro Gonzalez, Hector F; Uehling, Jessie K; Vilgalys, Rytas J; Hurst, Gregory B; Campagna, Shawn R; Labbé, Jessy L; Pan, Chongle

    2017-03-01

    Many plant-associated fungi host endosymbiotic endobacteria with reduced genomes. While endobacteria play important roles in these tri-partite plant-fungal-endobacterial systems, the active physiology of fungal endobacteria has not been characterized extensively by systems biology approaches. Here, we use integrated proteomics and metabolomics to characterize the relationship between the endobacterium Mycoavidus sp. and the root-associated fungus Mortierella elongata. In nitrogen-poor media, M. elongata had decreased growth but hosted a large and growing endobacterial population. The active endobacterium likely extracted malate from the fungal host as the primary carbon substrate for energy production and biosynthesis of phospho-sugars, nucleobases, peptidoglycan and some amino acids. The endobacterium obtained nitrogen by importing a variety of nitrogen-containing compounds. Further, nitrogen limitation significantly perturbed the carbon and nitrogen flows in the fungal metabolic network. M. elongata regulated many pathways by concordant changes on enzyme abundances, post-translational modifications, reactant concentrations and allosteric effectors. Such multimodal regulations may be a general mechanism for metabolic modulation. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Impaired theta-gamma coupling during working memory performance in schizophrenia.

    Science.gov (United States)

    Barr, Mera S; Rajji, Tarek K; Zomorrodi, Reza; Radhu, Natasha; George, Tony P; Blumberger, Daniel M; Daskalakis, Zafiris J

    2017-11-01

    Working memory deficits represent a core feature of schizophrenia. These deficits have been associated with dysfunctional dorsolateral prefrontal cortex (DLPFC) cortical oscillations. Theta-gamma coupling describes the modulation of gamma oscillations by theta phasic activity that has been directly associated with the ordering of information during working memory performance. Evaluating theta-gamma coupling may provide greater insight into the neural mechanisms mediating working memory deficits in this disorder. Thirty-eight patients diagnosed with schizophrenia or schizoaffective disorder and 38 healthy controls performed the verbal N-Back task administered at 4 levels, while EEG was recorded. Theta (4-7Hz)-gamma (30-50Hz) coupling was calculated for target and non-target correct trials for each working memory load. The relationship between theta-gamma coupling and accuracy was determined. Theta-gamma coupling was significantly and selectively impaired during correct responses to target letters among schizophrenia patients compared to healthy controls. A significant and positive relationship was found between theta-gamma coupling and 3-Back accuracy in controls, while this relationship was not observed in patients. These findings suggest that impaired theta-gamma coupling contribute to working memory dysfunction in schizophrenia. Future work is needed to evaluate the predictive utility of theta-gamma coupling as a neurophysiological marker for functional outcomes in this disorder. Copyright © 2017. Published by Elsevier B.V.

  13. Analysis of some coplanar transmission lines: coplanar coupled lines, coplanar coupled striplines, and coplanar coupled lines with rectangular microshield

    Science.gov (United States)

    Yuan, Naichang; He, Jianguo; Yao, Demiao; Dai, Qin; Lin, Weigan

    1995-06-01

    Two types of coplanar transmission lines, rectangular microshield coplanar coupled lines (RMCCL) and coplanar coupled rectangular microshield lines (CCRML), are proposed for MMIC applications. These are developed from coplanar coupled lines (CCL) and coplanar coupled strip lines (CCS). Analytic formulas are presented for calculating the quasistatic TEM parameters of these coupled lines by means of exact conformal mapping techniques. Numerical results are also presented to illustrate the properties of these coplanar transmission lines.

  14. Dual Drug Targeting of Mutant Bcr-Abl Induces Inactive Conformation: New Strategy for the Treatment of Chronic Myeloid Leukemia and Overcoming Monotherapy Resistance.

    Science.gov (United States)

    El Rashedy, Ahmed A; Olotu, Fisayo A; Soliman, Mahmoud E S

    2018-03-01

    Bcr-Abl is an oncogenic fusion protein which expression enhances tumorigenesis, and has been highly associated with chronic myeloid leukemia (CML). Acquired drug resistance in mutant Bcr-Abl has enhanced pathogenesis with the use of single therapy agents such as nilotinib. Moreover, allosteric targeting has been identified to consequentially inhibit Bcr-Abl activity, which led to the recent development of ABL-001 (asciminib) that selectively binds the myristoyl pocket. Experimental studies have revealed that the combination of nilotinib and ABL-001 induced a 'bent' conformation in the C-terminal helix of Bcr-Abl; a benchmark of inhibition, thereby exhibiting a greater potency in the treatment of CML, surmounting the setbacks of drug resistance, disease regression and relapse. Therefore, we report the first account of the dynamics and conformational analysis of oncogenic T334I Bcr-Abl by dual targeting. Our findings revealed that unlike in the Bcr-Abl-Nilotinib complex, dual targeting by both inhibitors induced the bent conformation in the C-terminal helix that varied with time. This was coupled with significant alteration in Bcr-Abl stability, flexibility, and compactness and an overall structural re-orientation inwards towards the hydrophobic core, which reduced the solvent-exposed residues indicative of protein folding. This study will facilitate allosteric targeting and the design of more potent allosteric inhibitors for resistive target proteins in cancer. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  15. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T; Das, Rahul; Fotheringham, Steven A; SilDas, Soumita; Chowdhury, Somenath; Melacini, Giuseppe

    2007-11-21

    significantly more extended allosteric network that, unlike PKA, involves a tight coupling between the alpha- and beta-subdomains of the EPAC CBD. The proposed mechanism of allosteric activation will serve as a basis to understand agonism and antagonism in the EPAC system and provides also a general paradigm for how small ligands control protein-protein interfaces.

  16. Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies

    Science.gov (United States)

    Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S

    2012-01-01

    G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor

  17. Synchronous behavior of two coupled electronic neurons

    International Nuclear Information System (INIS)

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-01-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society

  18. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1987

    1987-01-01

    Offers (1) suggestions for improving college students' study skills; (2) a system for keeping track of parent, teacher, and community contacts; (3) suggestions for motivating students using tic tac toe; (4) suggestions for using etymology to improve word retention; (5) a word search grid; and (6) suggestions for using postcards in remedial reading…

  19. Couple Support Schemata in Couples with and without Spinal Cord Injury

    Science.gov (United States)

    Gilad, Dvorit; Lavee, Yoav

    2010-01-01

    This article describes the cognitive schemata of couples' support relationships among 65 couples in which the husband had a long-term spinal cord injury and 65 couples without disability. The structure of the support relations schemata were examined by means of smallest-space analysis. Similarities between men and women in couples with and without…

  20. From strong to weak coupling in holographic models of thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2016-07-29

    We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.

  1. The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch1

    Science.gov (United States)

    Doan, Danny N.P.; Rudi, Heidi; Olsen, Odd-Arne

    1999-01-01

    We present the results of studies of an unmodified version of the recombinant major barley (Hordeum vulgare) endosperm ADP-glucose pyrophoshorylase (AGPase) expressed in insect cells, which corroborate previous data that this isoform of the enzyme acts independently of the allosteric regulators 3-phosphoglycerate and inorganic phosphate. We also present a characterization of the individual subunits expressed separately in insect cells, showing that the SS AGPase is active in the presence of 3-phosphoglycerate and is inhibited by inorganic phosphate. As a step toward the elucidation of the role of the two AGPase isoforms in barley, the temporal and spatial expression profile of the four barley AGPase transcripts encoding these isoforms were studied. The results show that the steady-state level of beps and bepl, the transcripts encoding the major endosperm isoform, correlated positively with the rate of endosperm starch accumulation. In contrast, blps and blpl, the transcripts encoding the major leaf isoform, were constitutively expressed at a very low steady-state level throughout the barley plant. The implications of these findings for the evolution of plant AGPases are discussed. PMID:10557246

  2. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    NARCIS (Netherlands)

    C. Feillet (Céline); C.A. Krusche; F. Tamanini (Filippo); R. Janssens (Roel); R.A. Downey (Roger); P. Martin (Patrick); J.L. Teboul (Jean Louis); S. Saito (Seiji); F.A. Lévi (Francis); T. Bretschneider (Till); G.T.J. van der Horst (Gijsbertus); F. Delaunay (Franck); D.A. Rand (David)

    2014-01-01

    textabstractDaily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle

  3. A translational approach to evaluate the efficacy and safety of the novel AMPA receptor positive allosteric modulator org 26576 in adult attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Adler, Lenard A; Kroon, René A; Stein, Mark; Shahid, Mohammed; Tarazi, Frank I; Szegedi, Armin; Schipper, Jacques; Cazorla, Pilar

    2012-12-01

    It has been posited that glutamate dysregulation contributes to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Modulation of glutamate neurotransmission may provide alternative therapeutic options. The novel 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor positive allosteric modulator Org 26576 was investigated with a translational approach including preclinical and clinical testing. Neonatal rat 6-hydroxydopamine lesion-induced hyperactivity was used as preclinical model. Seventy-eight ADHD adults entered a multicenter, double-blind, placebo-controlled, two-period crossover trial. After 1 week placebo lead-in, 67 subjects were randomized into one of four treatment sequences: sequence A (n = 15) Org 26576 (100 mg b.i.d.) for 3 weeks, followed by a 2-week placebo crossover and 3 weeks placebo; sequence B (n = 16) 5 weeks placebo followed by 3 weeks Org 26576 (100 mg b.i.d.); sequence C (n = 18) Org 26576 flexible dose (100-300 mg b.i.d.) for 3 weeks, then 5 weeks placebo; sequence D (n = 18) 5 weeks placebo followed by 3 weeks Org 26576 (100-300 mg b.i.d.). The Adult ADHD Investigator Symptom Rating Scale was used to assess changes in ADHD symptomatology. Org 26576 (1, 3, 10 mg/kg intraperitoneal) produced dose-dependent inhibition of locomotor hyperactivity in 6-hydroxydopamine-lesioned rats. Org 26576 (100 mg b.i.d.) was superior to placebo in treating symptoms of adult ADHD subjects. The primary Adult ADHD Investigator Symptom Rating Scale results were supported by some secondary analyses. However, Org 26576 (100-300 mg b.i.d.) did not confirm these results. Most frequently reported adverse events were nausea, dizziness, and headache. These preclinical and clinical findings suggest that Org 25676 may have utility in the treatment of ADHD. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Coupling detrended fluctuation analysis for analyzing coupled nonstationary signals

    Science.gov (United States)

    Hedayatifar, L.; Vahabi, M.; Jafari, G. R.

    2011-08-01

    When many variables are coupled to each other, a single case study could not give us thorough and precise information. When these time series are stationary, different methods of random matrix analysis and complex networks can be used. But, in nonstationary cases, the multifractal-detrended-cross-correlation-analysis (MF-DXA) method was introduced for just two coupled time series. In this article, we have extended the MF-DXA to the method of coupling detrended fluctuation analysis (CDFA) for the case when more than two series are correlated to each other. Here, we have calculated the multifractal properties of the coupled time series, and by comparing CDFA results of the original series with those of the shuffled and surrogate series, we can estimate the source of multifractality and the extent to which our series are coupled to each other. We illustrate the method by selected examples from air pollution and foreign exchange rates.

  5. Factor structure of suggestibility revisited: new evidence for direct and indirect suggestibility

    Directory of Open Access Journals (Sweden)

    Romuald Polczyk

    2016-05-01

    Full Text Available Background Yielding to suggestions can be viewed as a relatively stable individual trait, called suggestibility. It has been long proposed that there are two kinds of suggestible influence, and two kinds of suggestibility corresponding to them: direct and indirect. Direct suggestion involves overt unhidden influence, while indirect suggestion concerns influence that is hidden, and the participant does not know that the suggestibility is being measured. So far however, empirical evidence for the existence of the two factors has been scarce. In the present study, more sophisticated and reliable tools for measuring suggestibility were applied than in the previous research, in the hope that better measurement would reveal the factor structure of suggestibility. Two tests of direct suggestibility were used: the Harvard Group Scale of Hypnotic Susceptibility, Form A, measuring hypnotic susceptibility, and the Barber Suggestibility Scale, measuring non-hypnotic direct imaginative suggestibility. Three tests served to measure indirect suggestibility: the Sensory Suggestibility Scale, measuring indirect suggestibility relating to perception; the Gudjonsson Suggestibility Scale, measuring the tendency to yield to suggestive questions and changing answers after negative feedback; and the Emotional Dialogs Tests, measuring the tendency to perceive nonexistent aggression. Participants and procedure In sum, 115 participants were tested, 69 women, 49 men, mean age 22.20 years, SD = 2.20. Participants were tested in two sessions, lasting for a total of four hours. Results Confirmatory factor analyses confirmed the existence of two uncorrelated factors of suggestibility: direct and indirect. Conclusions Suggestibility may indeed involve two factors, direct and indirect, and failure to discover them in previous research may be due to methodological problems.

  6. Evaluation of nonuniform field exposures with coupling factors

    International Nuclear Information System (INIS)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo

    2015-01-01

    In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S 11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance. (paper)

  7. Evaluation of nonuniform field exposures with coupling factors.

    Science.gov (United States)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; De Santis, Valerio; Onishi, Teruo

    2015-10-21

    In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance.

  8. The impact of parenting on gay male couples' relationships, sexuality, and HIV risk

    Science.gov (United States)

    Huebner, David M.; Mandic, Carmen Gómez; Mackaronis, Julia E.; Beougher, Sean C.; Hoff, Colleen C.

    2014-01-01

    Parenthood changes couples' relationships across multiple domains, generally decreasing relationship quality, sexual satisfaction, and sexual frequency. Emerging research suggests that gay couples who are parenting might experience similar challenges. However, such changes might have even more profound implications for gay couples' health, and in particular their HIV risk, given the somewhat different ways in which they negotiate and tolerate sexual behaviors with outside partners. We aimed to examine these issues in a qualitative analysis of interviews from 48 gay male couples who were actively parenting children. Findings suggest that parenthood increases men's commitment to their primary relationship while simultaneously decreasing time and energy for relationship maintenance, and generally decreasing sexual satisfaction. These challenges alone did not generally result in greater infidelity or HIV risk, as most men reported successfully coping with such changes through a combination of acceptance and revaluing what is important in their relationships. Additionally, couples reported negotiating agreements regarding sex with outside partners that closely resemble those documented in studies of gay couples who are not parents. Men reported that parenthood typically decreased their opportunities to engage in sex with outside partners, but also posed barriers to talking about these behaviors with their partners and healthcare providers. HIV-related sexual risk behavior was relatively rare, but nevertheless present in some men. Providers should assess sexual function as a regular part of their work with gay couples who parent, and facilitate opportunities for men to discuss their sexual agreements both with their primary partners and with relevant healthcare providers. PMID:25674355

  9. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    Science.gov (United States)

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  10. Conflict and collaboration in middle-aged and older couples: I. Age differences in agency and communion during marital interaction.

    Science.gov (United States)

    Smith, Timothy W; Berg, Cynthia A; Florsheim, Paul; Uchino, Bert N; Pearce, Gale; Hawkins, Melissa; Henry, Nancy J M; Beveridge, Ryan M; Skinner, Michelle A; Olsen-Cerny, Chrisanna

    2009-06-01

    Prior theory and research regarding age differences in marital interaction suggest that older couples display and experience more positivity and less negativity than middle-aged couples. However, studies of overt behavior in older couples are relatively rare and have emphasized disagreement, neglecting other important contexts for older couples such as collaboration during everyday problem solving. Further, the affiliation or communion dimension of social interaction (i.e., warmth vs. hostility) is commonly assessed but not the control or agency dimension (e.g., dominance vs. submissiveness). The present study examined affect, cognitive appraisals, and overt behavior during disagreement (i.e., discussing a current conflict) and collaboration (i.e., planning errands) in 300 middle-aged and older married couples. Older couples reported less negative affect during disagreement and rated spouses as warmer than did middle-aged couples. However, these effects were eliminated when older couples' greater marital satisfaction was controlled. For observed behavior, older couples displayed little evidence of greater positivity and reduced negativity-especially women. During collaboration, older couples displayed a unique blend of warmth and control, suggesting a greater focus on emotional and social concerns during problem solving. (c) 2009 APA, all rights reserved.

  11. Factor structure of suggestibility revisited: new evidence for direct and indirect suggestibility

    OpenAIRE

    Romuald Polczyk

    2016-01-01

    Background Yielding to suggestions can be viewed as a relatively stable individual trait, called suggestibility. It has been long proposed that there are two kinds of suggestible influence, and two kinds of suggestibility corresponding to them: direct and indirect. Direct suggestion involves overt unhidden influence, while indirect suggestion concerns influence that is hidden, and the participant does not know that the suggestibility is being measured. So far however, empirical evidence ...

  12. Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments

    Science.gov (United States)

    Iwasaki, Yoshiki; Morinari, Takao

    2018-03-01

    We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.

  13. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...

  14. Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84

    OpenAIRE

    Mahmud, Zobaer Al; Jenkins, Laura; Ulven, Trond; Labéguère, Frédéric; Gosmini, Romain; De Vos, Steve; Hudson, Brian D.; Tikhonova, Irina G.; Milligan, Graeme

    2017-01-01

    Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3'-diindolylmethane. 3,3'-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3'-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predic...

  15. The (φ4)3+1 theory with infinitesimal bare coupling constants

    International Nuclear Information System (INIS)

    Yotsuyanagi, I.

    1987-01-01

    We study the (φ 4 ) 3+1 theory by means of a variational method improved with a BCS-type vacuum state. We examine the theory with both negative and positive infinitesimal bare coupling constants, where the theory has been suggested to exist nontrivially and stably in the infinite ultraviolet cutoff limit. When the cutoff is sent to infinity, we find the instability of the vacuum energy at the end point value of the variational parameter in the case of the negative bare coupling constant. For the positive bare coupling constant, we can renormalize the vacuum energy without using the extremal condition with respect to the variational mass parameter. We do not find an instability for the whole range of parameters including the end point. We still have a possibility that the theory with this bare coupling constant is nontrivial and stable. (orig.)

  16. Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings

    International Nuclear Information System (INIS)

    Pittner, Jiri; Lischka, Hans; Barbatti, Mario

    2009-01-01

    The usage of time-derivative non-adiabatic coupling terms and partially coupled time-dependent equations are investigated to accelerate non-adiabatic dynamics simulations at multireference configuration interaction (MRCI) level. The quality of the results and computational costs are compared against non-adiabatic benchmark dynamics calculations using non-adiabatic coupling vectors. In the comparison between the time-derivative couplings and coupling vectors, deviations in the adiabatic population of individual trajectories were observed in regions of rapid variation of the coupling terms. They, however, affected the average adiabatic population to only about 5%. For small multiconfiguration spaces, dynamics with time-derivative couplings are significantly faster than those with coupling vectors. This relation inverts for larger configuration spaces. The use of the partially coupled equations approach speeds up the simulations significantly while keeping the deviations in the population below few percent. Imidazole and the methaniminium cation are used as test examples

  17. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  18. Dual interaction of agmatine with the rat α2D-adrenoceptor: competitive antagonism and allosteric activation

    Science.gov (United States)

    Molderings, G J; Menzel, S; Kathmann, M; Schlicker, E; Göthert, M

    2000-01-01

    In segments of rat vena cava preincubated with [3H]-noradrenaline and superfused with physiological salt solution, the influence of agmatine on the electrically evoked [3H]-noradrenaline release, the EP3 prostaglandin receptor-mediated and the α2D-adrenoceptor-mediated inhibition of evoked [3H]-noradrenaline release was investigated. Agmatine (0.1–10 μM) by itself was without effect on evoked [3H]-noradrenaline release. In the presence of 10 μM agmatine, the prostaglandin E2(PGE2)-induced EP3-receptor-mediated inhibition of [3H]-noradrenaline release was not modified, whereas the α2D-adrenoceptor-mediated inhibition of [3H]-noradrenaline release induced by noradrenaline, moxonidine or clonidine was more pronounced than in the absence of agmatine. However, 1 mM agmatine antagonized the moxonidine-induced inhibition of [3H]-noradrenaline release. Agmatine concentration-dependently inhibited the binding of [3H]-clonidine and [3H]-rauwolscine to rat brain cortex membranes (Ki values 6 μM and 12 μM, respectively). In addition, 30 and 100 μM agmatine increased the rate of association and decreased the rate of dissociation of [3H]-clonidine resulting in an increased affinity of the radioligand for the α2D-adrenoceptors. [14C]-agmatine labelled specific binding sites on rat brain cortex membranes. In competition experiments. [14C]-agmatine was inhibited from binding to its specific recognition sites by unlabelled agmatine, but not by rauwolscine and moxonidine. In conclusion, the present data indicate that agmatine both acts as an antagonist at the ligand recognition site of the α2D-adrenoceptor and enhances the effects of α2-adrenoceptor agonists probably by binding to an allosteric binding site of the α2D-adrenoceptor which seems to be labelled by [14C]-agmatine. PMID:10928978

  19. The effect of couple-stress on the pure bending of a prismatic bar

    International Nuclear Information System (INIS)

    Tzung, F.K.; Kao, B.; Ho, F.; Tang, P.

    1981-01-01

    An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. (orig.)

  20. Conflict and Collaboration in Middle-Aged and Older Couples: I: Age Differences in Agency and Communion during Marital Interaction

    Science.gov (United States)

    Smith, Timothy W.; Berg, Cynthia A.; Florsheim, Paul; Uchino, Bert N.; Pearce, Gale; Hawkins, Melissa; Henry, Nancy J.M.; Beveridge, Ryan M.; Skinner, Michelle A.; Olsen-Cerny, Chrisanna

    2011-01-01

    Prior theory and research regarding age differences in marital interaction suggest that older couples display and experience more positivity and less negativity than middle-aged couples. However, studies of overt behavior in older couples are relatively rare and have emphasized disagreement, neglecting other important contexts for older couples such as collaboration during everyday problem solving. Further, the affiliation or communion dimension of social interaction (i.e., warmth vs. hostility) is commonly assessed, but not the control or agency dimension (e.g., dominance vs. submissiveness). The present study examined affect, cognitive appraisals, and overt behavior during disagreement (i.e., discussing a current conflict) and collaboration (i.e., planning errands) in 300 middle-aged and older married couples. Older couples reported less negative affect during disagreement and rated spouses as warmer than did middle-aged couples. However, these effects were eliminated when older couples’ greater marital satisfaction was controlled. For observed behavior, older couples displayed little evidence of greater positivity and reduced negativity – especially women. During collaboration, older couples displayed a unique blend of warmth and control, suggesting a greater focus on emotional and social concerns during problem solving. PMID:19485646

  1. Job-Sharing Couples in Academia: Administrative Policies and Practices.

    Science.gov (United States)

    Mikitka, Kathleen Faith

    1984-01-01

    Examined existing administrative policies and procedures for academic job sharing for married couples in a survey of 12 institutions and 16 administrators. Results suggested growing consideration of job sharing by academic employers and pointed out advantages such as attracting high-quality faculty and extending faculty resources. (JAC)

  2. In Vitro Functional Characterization of GET73 as Possible Negative Allosteric Modulator of Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea C; Tomasini, Maria C; Castelli, M Paola; Pintori, Nicholas; Cacciaglia, Roberto; Loche, Antonella; Ferraro, Luca

    2018-01-01

    The present study was aimed to further characterize the pharmacological profile of N-[4-(trifluoromethyl) benzyl]-4-methoxybutyramide (GET73), a putative negative allosteric modulator (NAM) of metabotropic glutamate subtype 5 receptor (mGluR5) under development as a novel medication for the treatment of alcohol dependence. This aim has been accomplished by means of a series of in vitro functional assays. These assays include the measure of several down-stream signaling [intracellular Ca ++ levels, inositol phosphate (IP) formation and CREB phosphorylation (pCREB)] which are generally affected by mGluR5 ligands. In particular, GET73 (0.1 nM-10 μM) was explored for its ability to displace the concentration-response curve of some mGluR5 agonists/probes (glutamate, L-quisqualate, CHPG) in different native preparations. GET73 produced a rightward shift of concentration-response curves of glutamate- and CHPG-induced intracellular Ca ++ levels in primary cultures of rat cortical astrocytes. The compound also induced a rightward shift of concentration response curve of glutamate- and L-quisqualate-induced increase in IP turnover in rat hippocampus slices, along with a reduction of CHPG (10 mM)-induced increase in IP formation. Moreover, GET73 produced a rightward shift of concentration-response curve of glutamate-, CHPG- and L-quisqualate-induced pCREB levels in rat cerebral cortex neurons. Although the engagement of other targets cannot be definitively ruled out, these data support the view that GET73 acts as an mGluR5 NAM and support the significance of further investigating the possible mechanism of action of the compound.

  3. Modified quark-meson coupling model for nuclear matter

    International Nuclear Information System (INIS)

    Jin, X.; Jennings, B.K.

    1996-01-01

    The quark-meson coupling model for nuclear matter, which describes nuclear matter as nonoverlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: One invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics. copyright 1996 The American Physical Society

  4. Conflicting Coupling of Unpaired Nucleons and the Structure of Collective Bands in Odd-Odd Nuclei

    International Nuclear Information System (INIS)

    Levon, A.I.; Pasternak, A.A.

    2011-01-01

    The conflicting coupling of unpaired nucleons in odd-odd nuclei is discussed. A very simple explanation is suggested for the damping of the energy spacing of the lowest levels in the rotational bands in odd-odd nuclei with the 'conflicting' coupling of an odd proton and an odd neutron comparative to those of the bands based on the state of a strongly coupled particle in the neighboring odd nucleus entering the 'conflicting' configuration.

  5. Disagreements among cohabiting and married couples in 22 European countries

    NARCIS (Netherlands)

    van der Lippe, Tanja; Voorpostel, Marieke; Hewitt, Belinda

    2014-01-01

    BACKGROUND Cross-national research suggests that married people have higher levels of well-being than cohabiting people. However, relationship quality has both positive and negative dimensions. Researchers have paid little attention to disagreements within cohabiting and married couples. OBJECTIVE

  6. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  7. Dressed skeleton expansion and the coupling scale ambiguity problem

    International Nuclear Information System (INIS)

    Lu, Hung Jung.

    1992-09-01

    Perturbative expansions in quantum field theories are usually expressed in powers of a coupling constant. In principle, the infinite sum of the expansion series is independent of the renormalization scale of the coupling constant. In practice, there is a remnant dependence of the truncated series on the renormalization scale. This scale ambiguity can severely restrict the predictive power of theoretical calculations. The dressed skeleton expansion is developed as a calculational method which avoids the coupling scale ambiguity problem. In this method, physical quantities are expressed as functional expansions in terms of a coupling vertex function. The arguments of the vertex function are given by the physical momenta of each process. These physical momenta effectively replace the unspecified renormalization scale and eliminate the ambiguity problem. This method is applied to various field theoretical models and its main features and limitations are explored. For quantum chromodynamics, an expression for the running coupling constant of the three-gluon vertex is obtained. The effective coupling scale of this vertex is shown to be essentially given by μ 2 ∼ Q min 2 Q med 2 /Q max 2 where Q min 2 Q med 2 /Q max 2 are respectively the smallest, the next-to-smallest and the largest scale among the three gluon virtualities. This functional form suggests that the three-gluon vertex becomes non-perturbative at asymmetric momentum configurations. Implications for four-jet physics is discussed

  8. A Dyadic Perspective on PTSD Symptoms' Associations with Couple Functioning and Parenting Stress in First-Time Parents.

    Science.gov (United States)

    Fredman, Steffany J; Le, Yunying; Marshall, Amy D; Brick, Timothy R; Feinberg, Mark E

    2017-06-01

    Posttraumatic stress disorder (PTSD) symptoms are associated with disruptions in both couple functioning and parenting, and limited research suggests that, among military couples, perceptions of couple functioning and parenting stress are a function of both one's own and one's partner's mental health symptoms. However, this work has not been generalized to civilian couples, and little is known about the associations between PTSD symptoms and family adjustment in specific family developmental contexts. We examined PTSD symptoms' associations with perceived couple functioning and parenting stress within a dyadic context in civilian couples who had participated in a randomized controlled trial of a universal, couple-based transition to parenthood program and at least one member of the couple reported having experienced a Criterion A1 traumatic event. Results of actor-partner interdependence models revealed that parents' own and partners' PTSD symptoms were negatively associated with perceived couple functioning; contrary to expectation, the association of partners' PTSD symptoms with perceived couple functioning was strongest among men who received the intervention. A parent's own PTSD symptoms were positively associated with parenting stress for both men and women and were unexpectedly strongest for men who received the intervention. Partner PTSD symptoms were also positively associated with increased parenting stress for both men and women. Findings support a dyadic conceptualization of the associations between spouses' PTSD symptoms and family outcomes during the transition to parenthood and suggest that participating in a couple-based, psychoeducational program during this phase in the family life cycle may be particularly salient for men.

  9. ElectroWeak Bosons Couplings

    CERN Document Server

    Ouraou, Ahmimed; The ATLAS collaboration

    2016-01-01

    Latest results on the measurement of gauge boson couplings, from ATLAS and CMS at the LHC, are presented. This review starts with an introduction to boson couplings, then the measurements of Triple and Quartic Couplings are described. And finally, limits on anomalous couplings are summarized.

  10. Chiral primordial blue tensor spectra from the axion-gauge couplings

    Energy Technology Data Exchange (ETDEWEB)

    Obata, Ippei, E-mail: obata@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto, 606-8502 (Japan)

    2017-06-01

    We suggest the new feature of primordial gravitational waves sourced by the axion-gauge couplings, whose forms are motivated by the dimensional reduction of the form field in the string theory. In our inflationary model, as an inflaton we adopt two types of axion, dubbed the model-independent axion and the model-dependent axion, which couple with two gauge groups with different sign combination each other. Due to these forms both polarization modes of gauge fields are amplified and enhance both helicies of tensor modes during inflation. We point out the possibility that a primordial blue-tilted tensor power spectra with small chirality are provided by the combination of these axion-gauge couplings, intriguingly both amplitudes and chirality are potentially testable by future space-based gravitational wave interferometers such as DECIGO and BBO project.

  11. Novel method for solution of coupled radial Schrödinger equations

    International Nuclear Information System (INIS)

    Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.

    2011-01-01

    One of the major problems in numerical solution of coupled differential equations is the maintenance of linear independence for different sets of solution vectors. A novel method for solution of radial Schrödinger equations is suggested. It consists of rearrangement of coupled equations in a way that is appropriate to avoid usual numerical instabilities associated with components of the wave function in their classically forbidden regions. Applications of the new method for nuclear structure calculations within the hyperspherical harmonics approach are given.

  12. Incorporating Internet-based Interventions into Couple Therapy: Available Resources and Recommended Uses.

    Science.gov (United States)

    Cicila, Larisa N; Georgia, Emily J; Doss, Brian D

    2014-12-01

    Although there are a number of highly efficacious in-person treatments designed to ameliorate relationship distress, only a small proportion of distressed couples seek out in-person treatment. Recently developed internet-based interventions based on these in-person treatments are a promising way to circumvent common barriers to in-person treatment and give more distressed couples access to these efficacious interventions. The overarching aims of this review are to provide couple and family therapists with a broad overview of the available internet-based interventions and provide suggestions about how these interventions might be utilized before, during, or after in-person treatment. First, we review internet-based interventions targeting individual psychopathology (e.g. anxiety and depression). These interventions would be particularly useful as an adjunctive resource for in-person couple or family therapy when referrals for a concurrent in-person individual therapist are not feasible (because of time, financial, or geographic constraints). The majority of the review centers on internet-based interventions for distressed couples and covers four distinct types of resources: relationship advice websites, assessment/feedback interventions, enrichment interventions for satisfied couples, and interventions targeting at-risk or distressed couples. We close with a case study of one couple's journey through a newly developed intervention targeting at-risk couples, OurRelationship.com, and provide two appendices with information on currently available internet-based interventions.

  13. 'To give is better than to receive?' Couples massage significantly benefits both partners' wellbeing.

    Science.gov (United States)

    Naruse, Sayuri M; Cornelissen, Piers L; Moss, Mark

    2018-03-01

    This experimental study evaluated the differential effects of 'giving' and 'receiving' massage on wellbeing in healthy but stressed couples. Forty-two volunteers started the study and of these, 38 (i.e. 19 couples) completed a 3-week massage course. Emotional stress and mental clarity were assessed before and after mutual massage between each pair of adults belonging to a couple at home. While massage benefitted both parties' wellbeing within a session, critically we found no differences in wellbeing between those 'giving' and 'receiving' massage. These novel findings suggest that home-based massage may be advocated to couples as a 'selves-care', health-promoting behaviour.

  14. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  15. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  16. Higgs couplings: disentangling new physics with off-shell measurements.

    Science.gov (United States)

    Cacciapaglia, Giacomo; Deandrea, Aldo; La Rochelle, Guillaume Drieu; Flament, Jean-Baptiste

    2014-11-14

    After the discovery of a scalar resonance, resembling the Higgs boson, its couplings have been extensively studied via the measurement of various production and decay channels on the invariant mass peak. Recently, the possibility of using off-shell measurements has been suggested: in particular, the CMS Collaboration has published results based on the high-invariant mass cross section of the process gg→ZZ, which contains a contribution from the Higgs boson. While this measurement has been interpreted as a constraint on the Higgs width after very specific assumptions are taken on the Higgs couplings, in this Letter, we show that a much more model-independent interpretation is possible.

  17. Mediterranea Forecasting System: a focus on wave-current coupling

    Science.gov (United States)

    Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina

    2016-04-01

    The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully

  18. Indirect Inverse Substructuring Method for Multibody Product Transport System with Rigid and Flexible Coupling

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available The aim of this paper is to develop a new frequency response function- (FRF- based indirect inverse substructuring method without measuring system-level FRFs in the coupling DOFs for the analysis of the dynamic characteristics of a three-substructure coupled product transport system with rigid and flexible coupling. By enforcing the dynamic equilibrium conditions at the coupling coordinates and the displacement compatibility conditions, a closed-form analytical solution to inverse substructuring analysis of multisubstructure coupled product transport system is derived based on the relationship of easy-to-monitor component-level FRFs and the system-level FRFs at the coupling coordinates. The proposed method is validated by a lumped mass-spring-damper model, and the predicted coupling dynamic stiffness is compared with the direct computation, showing exact agreement. The method developed offers an approach to predict the unknown coupling dynamic stiffness from measured FRFs purely. The suggested method may help to obtain the main controlling factors and contributions from the various structure-borne paths for product transport system.

  19. Exposure and materiality of the secondary room and its impact on the impulse response of coupled-volume concert halls

    Science.gov (United States)

    Ermann, Michael; Johnson, Marty

    2005-06-01

    How does sound decay when one room is partially exposed to another (acoustically coupled)? More specifically, this research aims to quantify how operational and design decisions impact sound fields in the design of concert halls with acoustical coupling. By adding a second room to a concert hall, and designing doors to control the sonic transparency between the two rooms, designers can create a new, coupled acoustic. Concert halls use coupling to achieve a variable, longer, and distinct reverberant quality for their musicians and listeners. For this study a coupled-volume shoebox concert hall is conceived with a fixed geometric volume, form, and primary-room sound absorption. Aperture size and secondary-room sound absorption levels are established as variables. Statistical analysis of sound decay in this simulated hall suggests a highly sensitive relationship between the double-sloped condition and (1) architectural composition, as defined by the aperture size exposing the chamber and (2) materiality, as defined by the sound absorptance in the coupled volume. The theoretical, mathematical predictions are compared with coupled-volume concert hall field measurements and guidelines are suggested for future designs of coupled-volume concert halls.

  20. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...