WorldWideScience

Sample records for successful binary combinations

  1. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Zeyghami, Mehdi

    2015-01-01

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  2. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  3. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-01-01

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  4. Overcomplete Blind Source Separation by Combining ICA and Binary Time-Frequency Masking

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan

    2005-01-01

    a novel method for over-complete blind source separation. Two powerful source separation techniques have been combined, independent component analysis and binary time-frequency masking. Hereby, it is possible to iteratively extract each speech signal from the mixture. By using merely two microphones we...

  5. Relationship between surface tension and refractive index in binary non-electrolyte mixtures

    International Nuclear Information System (INIS)

    Acevedo, I.L.; Pedrosa, G.C.; Katz, M.

    1990-01-01

    Lorentz-Lorenz equation for molecular refraction has been combined with Sugden's parachor equation for binary non-electrolyte mixtures at 298.15 K. The obtained equation has been shown successful in calculating values of surface tensions, by measuring refractive indices of the binary mixtures at the same mole fractions. The estimated error decreases when the mixtures present possible isorefractives. (Author) [es

  6. Toxicity and toxicokinetics of binary combinations of petroleum hydrocarbon distillates with the earthworm Eisenia andrei.

    Science.gov (United States)

    Cermak, Janet; Stephenson, Gladys; Birkholz, Detlef; Dixon, D George

    2013-04-01

    Petroleum hydrocarbons (PHCs) act via narcosis and are expected to have additive toxicity. However, previous work has demonstrated less-than-additive toxicity with PHC distillates and earthworms. A study was initiated to investigate this through toxicity and toxicokinetic studies with the earthworm Eisenia andrei. Three petroleum distillate fractions, F2 (>C10-C16), F3a (>C16-C23), and F3b (>C23-C34), were used in two binary combinations, F2F3a and F3aF3b. In the toxicity study, clean soil was spiked with equitoxic combinations of the two distillates ranging from 0.5 to 2.5 toxic units. In the toxicokinetic study, a binary combination consisting of one concentration of each distillate was used. On a soil concentration basis, the toxicity of the binary combinations of distillates was less than additive. Accumulation of the individual distillates, however, was generally reduced when a second distillate was present, resulting in lower body burden. This is thought to be due to the presence of a nonaqueous-phase liquid at the soil concentrations used. On a tissue concentration basis, toxicity was closer to additive. The results demonstrate that tissue concentrations are the preferred metric for toxicity for earthworms. They also demonstrate that the Canada-wide soil standards based on individual distillates are likely protective. Copyright © 2013 SETAC.

  7. Stability-indicating RP-HPLC method for simultaneous determination of gatifloxacin and flurbiprofen in binary combination

    Directory of Open Access Journals (Sweden)

    Islam Ullah Khan

    2014-04-01

    Full Text Available A stability-indicating RP-HPLC method is presented for determination of gatifloxacin and flurbiprofen in binary combination. Gatifloxacin, flurbiprofen and their degradation products were detected at 254 nm using a BDS Hypersil C8 (250 X 4.6 mm, 5 µm column and mixture of 20 mM phosphate buffer (pH 3.0 and methanol 30:70 v/v as mobile phase. Response was linear over the range of 15-105 mg mL-1 for gatifloxacin (r² > 0.998 and of 1.5-10.5 mg mL-1 for flurbiprofen (r² > 0.999. The developed method efficiently separated the analytical peaks from degradation products (peak purity index > 0.9999. The method developed can be applied successfully for determination of gatifloxacin and flurbiprofen in human serum, urine, pharmaceutical formulations, and their stability studies.

  8. Electrical resistivity of Al-Cu liquid binary alloy

    Science.gov (United States)

    Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.

    2013-06-01

    Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.

  9. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  10. Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.

    Science.gov (United States)

    Yao, Huiqin; Hu, Naifei

    2011-05-26

    In this work, triply responsive films with a specific binary architecture combining layer-by-layer assembly (LbL) and hydrogel polymerization were successfully prepared. First, concanavalin A (Con A) and dextran (Dex) were assembled into {Con A/Dex}(5) LbL layers on electrode surface by the lectin-sugar biospecific interaction between them. The poly(N,N-diethylacrylamide) (PDEA) hydrogels with entrapped horseradish peroxidase (HRP) were then synthesized by polymerization on the surface of LbL inner layers, forming {Con A/Dex}(5)-(PDEA-HRP) films. The films demonstrated reversible pH-, thermo-, and salt-responsive on-off behavior toward electroactive probe Fe(CN)(6)(3-) in its cyclic voltammetric responses. This multiple stimuli-responsive films could be further used to realize triply switchable electrochemical reduction of H(2)O(2) catalyzed by HRP immobilized in the films and mediated by Fe(CN)(6)(3-) in solution. The responsive mechanism of the films was explored and discussed. The pH-sensitive property of the system was attributed to the electrostatic interaction between the {Con A/Dex}(5) inner layers and the probe at different pH, and the thermo- and salt-responsive behaviors should be ascribed to the structure change of PDEA hydrogels for the PDEA-HRP outermost layers under different conditions. The concept of binary architecture was also used to fabricate {Con A/Dex}(5)-(PDEA-GOD) films on electrodes, where GOD = glucose oxidase, which was applied to realize the triply switchable bioelectrocatalysis of glucose by GOD in the films with ferrocenedicarboxylic acid as the mediator in solution. This film system with the unique binary architecture may establish a foundation for fabricating a novel type of multicontrollable biosensors based on bioelectrocatalysis with immobilized enzymes.

  11. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  12. The use of hyperspectral data for tree species discrimination: Combining binary classifiers

    CSIR Research Space (South Africa)

    Dastile, X

    2010-11-01

    Full Text Available classifier Classification system 7 class 1 class 2 new sample For 5-nearest neighbour classification: assign new sample to class 1. RU SASA 2010 ? Given learning task {(x1,t1),(x 2,t2),?,(x p,tp)} (xi ? Rn feature vectors, ti ? {?1,?, ?c...). A review on the combination of binary classifiers in multiclass problems. Springer science and Business Media B.V [7] Dietterich T.G and Bakiri G.(1995). Solving Multiclass Learning Problem via Error-Correcting Output Codes. AI Access Foundation...

  13. Quantitative Characterization of the Toxicities of Cd-Ni and Cd-Cr Binary Mixtures Using Combination Index Method

    Directory of Open Access Journals (Sweden)

    Lingyun Mo

    2016-01-01

    Full Text Available Direct equipartition ray design was used to construct Cd-Ni and Cd-Cr binary mixtures. Microplate toxicity analysis was used to evaluate the toxicity of individual substance and the Cd-Ni and Cd-Cr mixtures on Chlorella pyrenoidosa and Selenastrum capricornutum. The interacting toxicity of the mixture was analyzed with concentration addition (CA model. In addition, combination index method (CI was proposed and used to quantitatively characterize the toxicity of the binary mixtures of Cd-Ni and Cd-Cr observed in experiment and find the degree of deviation from the predicted outcome of the CA model, that is, the intensity of interacting toxicity. Results indicate that most of the 20 binary mixtures exhibit enhancing and synergistic effect, and only Cd-Cr-R4 and Cd-Cr-R5 mixtures have relatively high antagonistic effects against C. pyrenoidosa. Based on confidence interval, CI can compare the intensities of interaction of the mixtures under varying levels of effect. The characterization methods are applicable for analyzing binary mixture with complex interaction.

  14. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-01-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  15. A 8.9-ENOB 2.5-εW 150-KS/s non-binary redundant successive approximation ADC in 0.18-microm CMOS for bio-implanted devices.

    Science.gov (United States)

    Chan, Kok Lim; Lee, Andreas Astuti; Yuan, Xiaojun; Krishna, Kotlanka R; Je, Minkyu

    2010-01-01

    A successive approximation analog-to-digital converter (SAR ADC) with a split-capacitor switching scheme implementing the generalized non-binary redundant SAR algorithm and an energy efficient level shifter is proposed for bio-implanted applications. The generalized non-binary redundant SAR algorithm removes the radix constraint in conventional non-binary redundant SAR algorithm, and the energy efficient level shifter allows optimal power supplies to be chosen independently for the analog and digital blocks. A FOM of 34.7fJ/step has been achieved.

  16. Moment Lyapunov Exponent and Stochastic Stability of Binary Airfoil under Combined Harmonic and Non-Gaussian Colored Noise Excitations

    Science.gov (United States)

    Hu, D. L.; Liu, X. B.

    Both periodic loading and random forces commonly co-exist in real engineering applications. However, the dynamic behavior, especially dynamic stability of systems under parametric periodic and random excitations has been reported little in the literature. In this study, the moment Lyapunov exponent and stochastic stability of binary airfoil under combined harmonic and non-Gaussian colored noise excitations are investigated. The noise is simplified to an Ornstein-Uhlenbeck process by applying the path-integral method. Via the singular perturbation method, the second-order expansions of the moment Lyapunov exponent are obtained, which agree well with the results obtained by the Monte Carlo simulation. Finally, the effects of the noise and parametric resonance (such as subharmonic resonance and combination additive resonance) on the stochastic stability of the binary airfoil system are discussed.

  17. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  18. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  19. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  20. Effect of single and binary combinations of plant-derived molluscicides on different enzyme activities in the nervous tissue of Achatina fulica.

    Science.gov (United States)

    Rao, I G; Singh, Amrita; Singh, V K; Singh, D K

    2003-01-01

    Effect of single and binary treatments of plant-derived molluscicides on different enzymes--acetylcholinesterase (AChE), lactic dehydrogenase (LDH) and acid/alkaline phosphatase (ACP/ALP)--in the nervous tissue of the harmful terrestrial snail Achatina fulica were studied. Sublethal in vivo 24-h exposure to 40% and 80% LC(50) of Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, Nerium indicum bark powder and binary combinations of A. sativum (AS) + C. deodara (CD) and CD + A. indica (AI) oils significantly altered the activity of these enzymes in the nervous tissue of Achatina fulica. The binary treatment of AS + CD was more effective against AChE, LDH, and ALP than the single ones. However, binary treatment of AI + CD was more effective against ALP. Copyright 2003 John Wiley & Sons, Ltd.

  1. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  2. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  3. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  4. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  5. A Multiple-star Combined Solution Program - Application to the Population II Binary μ Cas

    Science.gov (United States)

    Gudehus, D. H.

    2001-05-01

    A multiple-star combined-solution computer program which can simultaneously fit astrometric, speckle, and spectroscopic data, and solve for the orbital parameters, parallax, proper motion, and masses has been written and is now publicly available. Some features of the program are the ability to scale the weights at run time, hold selected parameters constant, handle up to five spectroscopic subcomponents for the primary and the secondary each, account for the light travel time across the system, account for apsidal motion, plot the results, and write the residuals in position to a standard file for further analysis. The spectroscopic subcomponent data can be represented by reflex velocities and/or by independent measurements. A companion editing program which can manage the data files is included in the package. The program has been applied to the Population II binary μ Cas to derive improved masses and an estimate of the primordial helium abundance. The source code, executables, sample data files, and documentation for OpenVMS and Unix, including Linux, are available at http://www.chara.gsu.edu/\\rlap\\ \\ gudehus/binary.html.

  6. Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking

    Directory of Open Access Journals (Sweden)

    Hiekata Takashi

    2006-01-01

    Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.

  7. Binary Synergy Strengthening and Toughening of Bio-Inspired Nacre-like Graphene Oxide/Sodium Alginate Composite Paper.

    Science.gov (United States)

    Chen, Ke; Shi, Bin; Yue, Yonghai; Qi, Juanjuan; Guo, Lin

    2015-08-25

    A crucial requirement for most engineering materials is the excellent balance of strength and toughness. By mimicking the hybrid hierarchical structure in nacre, a kind of nacre-like paper based on binary hybrid graphene oxide (GO)/sodium alginate (SA) building blocks has been successfully fabricated. Systematic evaluation for the mechanical property in different (dry/wet) environment/after thermal annealing shows a perfect combination of high strength and toughness. Both of the parameters are nearly many-times higher than those of similar materials because of the synergistic strengthening/toughening enhancement from the binary GO/SA hybrids. The successful fabrication route offers an excellent approach to design advanced strong integrated nacre-like composite materials, which can be applied in tissue engineering, protection, aerospace, and permeable membranes for separation and delivery.

  8. Successive combination jet algorithm for hadron collisions

    International Nuclear Information System (INIS)

    Ellis, S.D.; Soper, D.E.

    1993-01-01

    Jet finding algorithms, as they are used in e + e- and hadron collisions, are reviewed and compared. It is suggested that a successive combination style algorithm, similar to that used in e + e- physics, might be useful also in hadron collisions, where cone style algorithms have been used previously

  9. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  10. Separation in 5 Msun Binaries

    Science.gov (United States)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  11. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  12. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  13. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  14. Population of Nuclei Via 7Li-Induced Binary Reactions

    International Nuclear Information System (INIS)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha, Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis

    2005-01-01

    The authors have investigated the population of nuclei formed in binary reactions involving 7 Li beams on targets of 160 Gd and 184 W. The 7 Li + 184 W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si ΔE-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies

  15. Binary spectral minutiae representation with multi-sample fusion for fingerprint recognition

    NARCIS (Netherlands)

    Xu, H.; Veldhuis, Raymond N.J.

    Biometric fusion is the approach to improve the biometric system performance by combining multiple sources of biometric information. The binary spectral minutiae representation is a method to represent a fingerprint minutiae set as a fixed-length binary string. This binary representation has the

  16. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  17. Electrostatic and capillary force directed tunable 3D binary micro- and nanoparticle assemblies on surfaces

    International Nuclear Information System (INIS)

    Singh, G; Pillai, S; Arpanaei, A; Kingshott, P

    2011-01-01

    We report a simple, rapid and cost-effective method based on evaporation induced assembly to grow 3D binary colloidal assemblies on a hydrophobic/hydrophilic substrate by simple drop casting. The evaporation of a mixed colloidal drop results in ring-like or uniform area deposition depending on the concentration of particles, and thus assembly occurs at the periphery of a ring or uniformly all over the drop area. Binary colloidal assemblies of different crystal structure are successfully prepared over a wide range of size ratios (γ = small/large) from 0.06 to 0.30 by tuning the γ of the micro- and nanoparticles used during assembly. The growth mechanism of 3D binary colloidal assemblies is investigated and it is found that electrostatic forces facilitate assembly formation until the end of the evaporation process, with capillary forces also playing a role. In addition, the effects of solvent type, humidity, and salt concentration on crystal formation and ordering behaviour are also examined. Furthermore, long range, highly ordered binary colloidal assemblies can be fabricated by the choice of a low conducting solvent combined with evaporation induced assembly.

  18. Physical Structure of Four Symbiotic Binaries

    Science.gov (United States)

    Kenyon, Scott J. (Principal Investigator)

    1997-01-01

    Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the

  19. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  20. High speed non-latching squid binary ripple counter

    International Nuclear Information System (INIS)

    Silver, A.H.; Phillips, R.R.; Sandell, R.D.

    1985-01-01

    High speed, single flux quantum (SFQ) binary scalers are important components in superconducting analog-to-digital converters (ADC). This paper reviews the concept for a SQUID ADC and the design of an SFQ binary ripple counter, and reports the simulation of key components, and fabrication and performance of non-latching SQUID scalers and SFQ binary ripple counters. The SQUIDs were fabricated with Nb/Nb 2 O 5 /PbIn junctions and interconnected by monolithic superconducting transmission lines and isolation resistors. Each SQUID functioned as a bistable flip-flop with the input connected to the center of the device and the output across one junction. All junctions were critically damped to optimize the pulse response. Operation was verified by observing the dc I-V curves of successive SQUIDs driven by a cw pulse train generated on the same chip. Each SQUID exhibited constant-voltage current steps at 1/2 the voltage of the preceding device as expected from the Josephson voltage-to-frequency relation. Steps were observed only for the same voltage polarity of successive devices and for proper phase bias of the SQUID. Binary frequency division was recorded up to 40GHz for devices designed to operate to 28GHz

  1. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  2. Influence of individual and combined healthy behaviours on successful aging.

    Science.gov (United States)

    Sabia, Séverine; Singh-Manoux, Archana; Hagger-Johnson, Gareth; Cambois, Emmanuelle; Brunner, Eric J; Kivimaki, Mika

    2012-12-11

    Increases in life expectancy make it important to remain healthy for as long as possible. Our objective was to examine the extent to which healthy behaviours in midlife, separately and in combination, predict successful aging. We used a prospective cohort design involving 5100 men and women aged 42-63 years. Participants were free of cancer, coronary artery disease and stroke when their health behaviours were assessed in 1991-1994 as part of the Whitehall II study. We defined healthy behaviours as never smoking, moderate alcohol consumption, physical activity (≥ 2.5 h/wk moderate physical activity or ≥ 1 h/wk vigorous physical activity), and eating fruits and vegetables daily. We defined successful aging, measured over a median 16.3-year follow-up, as good cognitive, physical, respiratory and cardiovascular functioning, in addition to the absence of disability, mental health problems and chronic disease (coronary artery disease, stroke, cancer and diabetes). At the end of follow-up, 549 participants had died and 953 qualified as aging successfully. Compared with participants who engaged in no healthy behaviours, participants engaging in all 4 healthy behaviours had 3.3 times greater odds of successful aging (95% confidence interval [CI] 2.1-5.1). The association with successful aging was linear, with the odds ratio (OR) per increment of healthy behaviour being 1.3 (95% CI 1.2-1.4; population-attributable risk for 1-4 v. 0 healthy behaviours 47%). When missing data were considered in the analysis, the results were similar to those of our main analysis. Although individual healthy behaviours are moderately associated with successful aging, their combined impact is substantial. We did not investigate the mechanisms underlying these associations, but we saw clear evidence of the importance of healthy behaviours for successful aging.

  3. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem

    Directory of Open Access Journals (Sweden)

    Ibidun Christiana Obagbuwa

    2016-09-01

    Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.

  4. A combined experimental and theoretical approach to the study of hydrogen bond interaction in the binary mixture of N-methylimidazole with water

    International Nuclear Information System (INIS)

    Huang, Rongyi; Du, Rongbin; Liu, Guangxiang; Zhao, Xiuqin; Ye, Shiyong; Wu, Genhua

    2012-01-01

    Highlights: ► Densities of N-methylimidazole with water binary mixture were measured. ► Excess molar volumes were fitted to Redlich–Kister polynomial equation. ► Excess molar volumes are negative in the whole mole fraction range. ► 1:1 Hydrogen complex formation between the unlike components was observed. ► Formation of hydrogen bonds in the binary mixture was confirmed by DFT//B3LYP. - Abstract: The intermolecular hydrogen bond interactions in the N-methylimidazole (MeIm) with water binary mixture have been studied by a combined experimental and theoretical approach. The densities of the binary mixture have been measured at T = (288.15 to 323.15) K and at atmospheric pressure. From the experimental data, excess molar volumes were determined as a function of composition at each temperature. The results reveal the formation of 1:1 hydrogen bond complex between MeIm with water at the maximal excess molar volume. Meanwhile, the formation of hydrogen bonds in the binary mixture was further confirmed by high level theoretical calculation. The structures, interactional energies and bond characteristics of the hydrogen bond complexes were calculated in the gas phase using density functional theory (DFT) at the B3LYP/6-311++G(d, p) theory levels. The changes of thermodynamic properties from the monomers to hydrogen bond complexes with the temperature ranging from (288.15 to 323.15) K were obtained using the statistical thermodynamic method. Thermodynamic analyses have been interpreted in terms of intermolecular interactions and excess molar volume changes in the binary mixture. It was also found that the formation reaction of the hydrogen bond complex of MeIm with water was an exothermic, entropy reduced and spontaneous thermodynamic process at all the temperature studied.

  5. Heterogeneous structure and solvation dynamics of DME/water binary mixtures: A combined spectroscopic and simulation investigation

    Science.gov (United States)

    Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar

    2018-05-01

    Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.

  6. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  7. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Hrivnak, Bruce J.; Lu, Wenxian [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Steene, Griet Van de [Royal Observatory of Belgium, Astronomy and Astrophysics, Ringlaan 3, Brussels (Belgium); Winckel, Hans Van [Instituut voor Sterrenkunde, K.U. Leuven University, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Sperauskas, Julius [Vilnius University Observatory, Ciurlionio 29 Vilnius 2009 (Lithuania); Bohlender, David, E-mail: bruce.hrivnak@valpo.edu, E-mail: wen.lu@valpo.edu, E-mail: g.vandesteene@oma.be, E-mail: Hans.VanWinckel@ster.kuleuven.be, E-mail: julius.sperauskas@ff.vu.lt, E-mail: David.Bohlender@nrc-cnrc.gc.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2017-09-10

    We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodic pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M {sub ⊙}, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.

  8. Absolute Dimensions of Contact Binary Stars in Baade Window

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1999-12-01

    Full Text Available The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of 52 deg - 69 deg which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc - 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  9. Binary pairs of supermassive black holes - Formation in merging galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Valtaoja, L.; Valtonen, M.J.; Byrd, G.G. (Turku Univ. (Finland); Alabama Univ., Tuscaloosa (USA))

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.

  10. COSMIC probes into compact binary formation and evolution

    Science.gov (United States)

    Breivik, Katelyn

    2018-01-01

    The population of compact binaries in the galaxy represents the final state of all binaries that have lived up to the present epoch. Compact binaries present a unique opportunity to probe binary evolution since many of the interactions binaries experience can be imprinted on the compact binary population. By combining binary evolution simulations with catalogs of observable compact binary systems, we can distill the dominant physical processes that govern binary star evolution, as well as predict the abundance and variety of their end products.The next decades herald a previously unseen opportunity to study compact binaries. Multi-messenger observations from telescopes across all wavelengths and gravitational-wave observatories spanning several decades of frequency will give an unprecedented view into the structure of these systems and the composition of their components. Observations will not always be coincident and in some cases may be separated by several years, providing an avenue for simulations to better constrain binary evolution models in preparation for future observations.I will present the results of three population synthesis studies of compact binary populations carried out with the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC). I will first show how binary-black-hole formation channels can be understood with LISA observations. I will then show how the population of double white dwarfs observed with LISA and Gaia could provide a detailed view of mass transfer and accretion. Finally, I will show that Gaia could discover thousands black holes in the Milky Way through astrometric observations, yielding view into black-hole astrophysics that is complementary to and independent from both X-ray and gravitational-wave astronomy.

  11. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  12. Binary and Millisecond Pulsars at the New Millennium

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2001-01-01

    Full Text Available We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.

  13. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    Science.gov (United States)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  14. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    International Nuclear Information System (INIS)

    Almog, Assaf; Garlaschelli, Diego

    2014-01-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information. (paper)

  15. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  16. Rotation invariant deep binary hashing for fast image retrieval

    Science.gov (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  17. Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium?

    International Nuclear Information System (INIS)

    Hannam, Mark D.; Evans, Charles R.; Cook, Gregory B.; Baumgarte, Thomas W.

    2003-01-01

    We consider combining two important methods for constructing quasiequilibrium initial data for binary black holes: the conformal thin-sandwich formalism and the puncture method. The former seeks to enforce stationarity in the conformal three-metric and the latter attempts to avoid internal boundaries, like minimal surfaces or apparent horizons. We show that these two methods make partially conflicting requirements on the boundary conditions that determine the time slices. In particular, it does not seem possible to construct slices that are quasistationary and that avoid physical singularities while simultaneously are connected by an everywhere positive lapse function, a condition which must be obtained if internal boundaries are to be avoided. Some relaxation of these conflicting requirements may yield a soluble system, but some of the advantages that were sought in combining these approaches will be lost

  18. WIYN Open Cluster Study: Tidal Interactions in Solar type Binaries

    OpenAIRE

    Meibom, S.; Mathieu, R. D.

    2003-01-01

    We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~1 Gyr. Binary populations older than ~1 G...

  19. Expanding the catalog of binary black-hole simulations: aligned-spin configurations

    Science.gov (United States)

    Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2015-04-01

    A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.

  20. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  1. Binary and ternary gas mixtures for use in glow discharge closing switches

    Science.gov (United States)

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  2. Receptive fields selection for binary feature description.

    Science.gov (United States)

    Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal

    2014-06-01

    Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.

  3. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  4. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    International Nuclear Information System (INIS)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.; Drake, A. J.; Koester, D.

    2011-01-01

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the Hα absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M 1 = 0.283 ± 0.064 M sun and M 2 = 0.274 ± 0.034 M sun , making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  5. Topology of black hole binary-single interactions

    Science.gov (United States)

    Samsing, Johan; Ilan, Teva

    2018-05-01

    We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.

  6. Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).

  7. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. II. UPDATED BINARY STAR ORBITS AND A LONG PERIOD ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Muterspaugh, Matthew W.; O'Connell, J.; Hartkopf, William I.; Lane, Benjamin F.; Williamson, M.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J.

    2010-01-01

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture measurements covering a much longer timespan (from eyepiece measurements, speckle interferometry, and adaptive optics) to determine improved visual orbits for 20 binary stars. In some cases, radial velocity observations exist to constrain the full three-dimensional orbit and determine component masses. The visual orbit of one of these binaries-α Com (HD 114378)-shows that the system is likely to have eclipses, despite its very long period of 26 years. The next eclipse is predicted to be within a week of 2015 January 24.

  8. A Catalog of 1022 Bright Contact Binary Stars

    Science.gov (United States)

    Gettel, S. J.; Geske, M. T.; McKay, T. A.

    2006-01-01

    In this work we describe a large new sample of contact binary stars extracted in a uniform manner from sky patrol data taken by the ROTSE-I telescope. Extensive ROTSE-I light-curve data are combined with J-, H-, and K-band near-infrared data taken from the Two Micron All Sky Survey to add color information. Contact binary candidates are selected using the observed period-color relation. Candidates are confirmed by visual examination of the light curves. To enhance the utility of this catalog, we derive a new J-H period-color-luminosity relation and use this to estimate distances for the entire catalog. From these distance estimates we derive an estimated contact binary space density of (1.7+/-0.6)×10-5 pc-3.

  9. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  10. Binary co-generative plants with height temperature SOFC fuel cells

    International Nuclear Information System (INIS)

    Tashevski, D; Dimitrov, K.; Armenski, S.

    2005-01-01

    In this paper, a field of binary co-generative plants with height temperature SOFC fuel cells is presented. Special attention of application of height temperature SOFC fuel cells and binary co-generative units has been given. These units made triple electricity and heat. Principle of combination of fuel cells with binary cycles has been presented. A model and computer programme for calculation of BKPFC, has been created. By using the program, all the important characteristic-results are calculated: power, efficiency, emission, dimension and economic analysis. On base of results, conclusions and recommendations has been given. (Author)

  11. Binary co-generative plants with height temperature SOFC fuel cells

    International Nuclear Information System (INIS)

    Tashevski, D; Dimitrov, K.; Armenski, S.

    2006-01-01

    In this paper, a field of binary co-generative plants with height temperature SOFC fuel cells is presented. Special attention of application of height temperature SOFC fuel cells and binary co-generative units has been given. These units made triple electricity and heat. Principle of combination of fuel cells with binary cycles has been presented. A model and computer programme for calculation of BKPFC, has been created. By using the program, all the important characteristic-results are calculated: power, efficiency, emission, dimension and economic analysis. On base of results, conclusions and recommendations has been given. (Author)

  12. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  13. Near-Infrared Polarimetry of the GG Tauri A Binary System

    Science.gov (United States)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  14. DISC ATMOSPHERES AND WINDS IN X-RAY BINARIES

    Directory of Open Access Journals (Sweden)

    Maria Díaz Trigo

    2013-12-01

    Full Text Available We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.

  15. The cool surfaces of binary near-Earth asteroids

    Science.gov (United States)

    Delbo, Marco; Walsh, Kevin; Mueller, Michael; Harris, Alan W.; Howell, Ellen S.

    2011-03-01

    Here we show results from thermal-infrared observations of km-sized binary near-Earth asteroids (NEAs). We combine previously published thermal properties for NEAs with newly derived values for three binary NEAs. The η value derived from the near-Earth asteroid thermal model (NEATM) for each object is then used to estimate an average thermal inertia for the population of binary NEAs and compared against similar estimates for the population of non-binaries. We find that these objects have, in general, surface temperatures cooler than the average values for non-binary NEAs as suggested by elevated η values. We discuss how this may be evidence of higher-than-average surface thermal inertia. This latter physical parameter is a sensitive indicator of the presence or absence of regolith: bodies covered with fine regolith, such as the Earth’s moon, have low thermal inertia, whereas a surface with little or no regolith displays high thermal inertia. Our results are suggestive of a binary formation mechanism capable of altering surface properties, possibly removing regolith: an obvious candidate is the YORP effect. We present also newly determined sizes and geometric visible albedos derived from thermal-infrared observations of three binary NEAs: (5381) Sekhmet, (153591) 2001 SN263, and (164121) 2003 YT1. The diameters of these asteroids are 1.41 ± 0.21 km, 1.56 ± 0.31 km, and 2.63 ± 0.40 km, respectively. Their albedos are 0.23 ± 0.13, 0.24 ± 0.16, and 0.048 ± 0.015, respectively.

  16. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  17. EXPECTED LARGE SYNOPTIC SURVEY TELESCOPE (LSST) YIELD OF ECLIPSING BINARY STARS

    International Nuclear Information System (INIS)

    Prsa, Andrej; Pepper, Joshua; Stassun, Keivan G.

    2011-01-01

    In this paper, we estimate the Large Synoptic Survey Telescope (LSST) yield of eclipsing binary stars, which will survey ∼20,000 deg 2 of the southern sky during a period of 10 years in six photometric passbands to r ∼ 24.5. We generate a set of 10,000 eclipsing binary light curves sampled to the LSST time cadence across the whole sky, with added noise as a function of apparent magnitude. This set is passed to the analysis-of-variance period finder to assess the recoverability rate for the periods, and the successfully phased light curves are passed to the artificial-intelligence-based pipeline ebai to assess the recoverability rate in terms of the eclipsing binaries' physical and geometric parameters. We find that, out of ∼24 million eclipsing binaries observed by LSST with a signal-to-noise ratio >10 in mission lifetime, ∼28% or 6.7 million can be fully characterized by the pipeline. Of those, ∼25% or 1.7 million will be double-lined binaries, a true treasure trove for stellar astrophysics.

  18. Constructing binary black hole initial data with high mass ratios and spins

    Science.gov (United States)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  19. A New Equilibrium State for Singly Synchronous Binary Asteroids

    Science.gov (United States)

    Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.

    2018-04-01

    The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.

  20. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    International Nuclear Information System (INIS)

    Bagchi, Manjari; Torres, Diego F.

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  1. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    Science.gov (United States)

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  2. A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood

    KAUST Repository

    Lee, Seokho

    2013-01-31

    We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a simple bicluster structure and the combination of multiple layers is able to reveal complicated, multiple biclusters. The method allows for non-pure biclusters, and can simultaneously identify the 1-prevalent blocks and 0-prevalent blocks. A computationally efficient algorithm is developed and guidelines are provided for specifying the tuning parameters, including initial values of model parameters, the number of layers, and the penalty parameters. Missing-data imputation can be handled in the EM framework. The method is tested using synthetic and real datasets and shows good performance. © 2013 Springer Science+Business Media New York.

  3. The linear programming bound for binary linear codes

    NARCIS (Netherlands)

    Brouwer, A.E.

    1993-01-01

    Combining Delsarte's (1973) linear programming bound with the information that certain weights cannot occur, new upper bounds for dmin (n,k), the maximum possible minimum distance of a binary linear code with given word length n and dimension k, are derived.

  4. Long-term captures of low-mass intruders by binary stars

    International Nuclear Information System (INIS)

    Hills, J.G.

    1983-01-01

    Intensive computer simulations were made of three families of encounters between a binary star and a low-mass intruder which previous work indicated have a high probability of producing long-lived triple-star systems. For comparison, a fourth family which produces few long-lived trinaries was also studied. In the first two families, the binary components are equally massive and the closest approach of the intruder to the center of mass of the binary is about two times its semimajor axis, a 0 . In Family 1, the orbit of the original binary is circular, e = 0, while in Family 2, e 0 = 0.95. In Family 3 one binary component is 100 times as massive as the other, the orbit is circular, and the low-mass intruder enters the binary at nearly zero impact parameter. The probability that the intruder is trapped for at least one revolution around the binary is 0.24, 0.46, and 0.51, respectively, for these three families of encounters. The fraction of the intruders surviving successive revolutions drops rapidly. However, one encounter in Family 1 and two in Family 3 resulted in the intruder making more than 300 revolutions around the inner binary before escaping. Some intruders remained bound for more than 20 000 revolutions of the inner binary. The longest duration captures occur when the intruder is thrown into an orbit with a very large semimajor axis. About 20% of the encounters in the three families result in the intruder being thrown into an orbit with a semimajor axis a>100 a 0 , while about 2% result in the intruder going into an orbit with a>1000 a 0 . Intruders thrown into these large semimajor axis orbits have the best chance of having their orbits stabilized by passing stars

  5. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  6. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    International Nuclear Information System (INIS)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P.; Gelino, Christopher R.; Looper, Dagny L.; Schmidt, Sarah J.; Cruz, Kelle; West, Andrew A.; Gizis, John E.; Metchev, Stanimir

    2014-01-01

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  7. The 4U 0115+63: Another energetic gamma ray binary pulsar

    Science.gov (United States)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  8. Successful nonsibling bone marrow transplantation in severe combined immunodeficiency

    DEFF Research Database (Denmark)

    Ramsøe, K; Skinhøj, P; Andersen, V

    1978-01-01

    Severe combined immunodeficiency (SCID) was diagnosed in a girl immediately after birth; her older brother had SCID and was successfully reconstituted by bone marrow transplantation from his uncle. She was isolated in a laminar air flow bench and decontaminated. The father differed by one HLA......-A antigen but was HLA-Dw2 homozygous like the patient; his lymphocytes showed a slight response to the patient's cells in mixed lymphocyte culture (MLC). At the age of 2 1/2 months and again at 5 months, she was given a bone marrow transplant from the father. During the entire course the patient had...

  9. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  10. A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood

    KAUST Repository

    Lee, Seokho; Huang, Jianhua Z.

    2013-01-01

    We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a

  11. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  12. Searching for Signatures of Supermassive Black Hole Binaries

    Science.gov (United States)

    Ayers, Megan; Gezari, Suvi; Liu, Tingting

    2018-01-01

    Theoretical studies suggest that supermassive black hole binaries (SMBHBs) are an inevitable consequence of major galaxy mergers. Additionally, as SMBHBs coalesce they are expected to be sources of tremendous gravitational wave emission. Interest in these sources motivates the search for detection of the first definitive SMBHB and observational signatures to methodize the search. We present spectral energy distributions (SEDs) for a sample of candidate SMBHBs selected from quasars demonstrating optical periodic variability from the Pan-STARRS1 Medium Deep Survey. The SEDs were constructed using existing archival data spanning from radio to X-ray emission. For each candidate SMBHB, we also present models of the theoretical spectrum emitted from the circumbinary and minidisks of the SMBHB system using the predictions of Roedig et al. (2014) and inferred parameters of the candidates (combined mass, mass ratio, binary separation, accretion rate). We compare the observational SED for each source to its respective binary model as well as to the expected mean SED of a normal non-binary system quasar to look for supporting evidence of a SMBHB system. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  13. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    Science.gov (United States)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  14. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  15. Sparse logistic principal components analysis for binary data

    KAUST Repository

    Lee, Seokho

    2010-09-01

    We develop a new principal components analysis (PCA) type dimension reduction method for binary data. Different from the standard PCA which is defined on the observed data, the proposed PCA is defined on the logit transform of the success probabilities of the binary observations. Sparsity is introduced to the principal component (PC) loading vectors for enhanced interpretability and more stable extraction of the principal components. Our sparse PCA is formulated as solving an optimization problem with a criterion function motivated from a penalized Bernoulli likelihood. A Majorization-Minimization algorithm is developed to efficiently solve the optimization problem. The effectiveness of the proposed sparse logistic PCA method is illustrated by application to a single nucleotide polymorphism data set and a simulation study. © Institute ol Mathematical Statistics, 2010.

  16. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    Science.gov (United States)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  17. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    Science.gov (United States)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  18. Photometric Study of Fourteen Low-mass Binaries

    International Nuclear Information System (INIS)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J.; Hoňková, K.

    2017-01-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  19. Photometric Study of Fourteen Low-mass Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J. [Astronomical Institute, Charles University, Faculty of Mathematics and Physics, CZ-180 00, Praha 8, V Holešovičkách 2 (Czech Republic); Hoňková, K., E-mail: korda@sirrah.troja.mff.cuni.cz [Variable Star and Exoplanet Section of Czech Astronomical Society, Vsetínská 941/78, CZ-757 01, Valašské Meziříčí (Czech Republic)

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  20. Adaptive feature selection using v-shaped binary particle swarm optimization.

    Science.gov (United States)

    Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

  1. An odor interaction model of binary odorant mixtures by a partial differential equation method.

    Science.gov (United States)

    Yan, Luchun; Liu, Jiemin; Wang, Guihua; Wu, Chuandong

    2014-07-09

    A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE) method. Based on the measurement method (tangent-intercept method) of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture's odor intensity to the individual odorant's relative odor activity value (OAV). Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors) also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.

  2. An Odor Interaction Model of Binary Odorant Mixtures by a Partial Differential Equation Method

    Directory of Open Access Journals (Sweden)

    Luchun Yan

    2014-07-01

    Full Text Available A novel odor interaction model was proposed for binary mixtures of benzene and substituted benzenes by a partial differential equation (PDE method. Based on the measurement method (tangent-intercept method of partial molar volume, original parameters of corresponding formulas were reasonably displaced by perceptual measures. By these substitutions, it was possible to relate a mixture’s odor intensity to the individual odorant’s relative odor activity value (OAV. Several binary mixtures of benzene and substituted benzenes were respectively tested to establish the PDE models. The obtained results showed that the PDE model provided an easily interpretable method relating individual components to their joint odor intensity. Besides, both predictive performance and feasibility of the PDE model were proved well through a series of odor intensity matching tests. If combining the PDE model with portable gas detectors or on-line monitoring systems, olfactory evaluation of odor intensity will be achieved by instruments instead of odor assessors. Many disadvantages (e.g., expense on a fixed number of odor assessors also will be successfully avoided. Thus, the PDE model is predicted to be helpful to the monitoring and management of odor pollutions.

  3. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.

  4. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  5. Clustering Binary Data in the Presence of Masking Variables

    Science.gov (United States)

    Brusco, Michael J.

    2004-01-01

    A number of important applications require the clustering of binary data sets. Traditional nonhierarchical cluster analysis techniques, such as the popular K-means algorithm, can often be successfully applied to these data sets. However, the presence of masking variables in a data set can impede the ability of the K-means algorithm to recover the…

  6. A PRECISE PHYSICAL ORBIT FOR THE M-DWARF BINARY GLIESE 268

    Energy Technology Data Exchange (ETDEWEB)

    Barry, R. K.; Danchi, W. C. [NASA Goddard Space Flight Center, Laboratory for Exoplanets and Stellar Astrophysics, Code 667, Greenbelt, MD 20771 (United States); Demory, B.-O.; Segransan, D.; Di Folco, E.; Queloz, D.; Udry, S. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Forveille, T.; Delfosse, X.; Mayor, M.; Perrier, C. [Geneva Observatory, Geneva University, 51 Ch.des Maillettes, CH-1290 Versoix (Switzerland); Spooner, H. R. [University of Maryland, College Park, MD 20742 (United States); Torres, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02136 (United States); Traub, W. A., E-mail: Richard.K.Barry@nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-11-20

    We report high-precision interferometric and radial velocity (RV) observations of the M-dwarf binary Gl 268. Combining measurements conducted using the IOTA interferometer and the ELODIE and Harvard Center for Astrophysics RV instruments leads to a mass of 0.22596 {+-} 0.00084 M {sub Sun} for component A and 0.19230 {+-} 0.00071 M {sub Sun} for component B. The system parallax as determined by these observations is 0.1560 {+-} 0.0030 arcsec-a measurement with 1.9% uncertainty in excellent agreement with Hipparcos (0.1572 {+-} 0.0033). The absolute H-band magnitudes of the component stars are not well constrained by these measurements; however, we can place an approximate upper limit of 7.95 and 8.1 for Gl 268A and B, respectively. We test these physical parameters against the predictions of theoretical models that combine stellar evolution with high fidelity, non-gray atmospheric models. Measured and predicted values are compatible within 2{sigma}. These results are among the most precise masses measured for visual binaries and compete with the best adaptive optics and eclipsing binary results.

  7. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  8. Complete waveform model for compact binaries on eccentric orbits

    Science.gov (United States)

    Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P.; Haas, Roland; Ren, Wei; Chu, Tony; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are nonspinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third-order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to nonlinear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero-eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasicircular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a catalog of numerical relativity simulations. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model of Ref. [Y. Pan et al., Phys. Rev. D 89, 061501 (2014)., 10.1103/PhysRevD.89.061501] for quasicircular black hole binaries with mass ratios between 1 to 15 in the zero-eccentricity limit over a wide range of the parameter space under consideration. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our new eccentric model reproduces the true features of eccentric compact binary coalescence throughout merger. We use this model to show that the gravitational-wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational-wave frequency of 14 Hz satisfies e0GW 150914≤0.15 and e0GW 151226≤0.1 . We also find that varying the spin

  9. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    Science.gov (United States)

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  10. Models for the formation of binary and millisecond radio pulsars

    International Nuclear Information System (INIS)

    van den Heuvel, E.P.J.

    1984-01-01

    The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table

  11. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  12. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  13. ON THE MASS RADIATED BY COALESCING BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Barausse, E.; Morozova, V.; Rezzolla, L.

    2012-01-01

    We derive an analytic phenomenological expression that predicts the final mass of the black hole (BH) remnant resulting from the merger of a generic binary system of BHs on quasi-circular orbits. Besides recovering the correct test-particle limit for extreme mass-ratio binaries, our formula reproduces well the results of all the numerical-relativity simulations published so far, both when applied at separations of a few gravitational radii and when applied at separations of tens of thousands of gravitational radii. These validations make our formula a useful tool in a variety of contexts ranging from gravitational-wave (GW) physics to cosmology. As representative examples, we first illustrate how it can be used to decrease the phase error of the effective-one-body waveforms during the ringdown phase. Second, we show that, when combined with the recently computed self-force correction to the binding energy of nonspinning BH binaries, it provides an estimate of the energy emitted during the merger and ringdown. Finally, we use it to calculate the energy radiated in GWs by massive BH binaries as a function of redshift, using different models for the seeds of the BH population.

  14. Optical observations of close binaries with the Mark III Stellar Interferometer

    International Nuclear Information System (INIS)

    Pan, X.P.; Shao, M.; Colavita, M.M.; Armstrong, T.; Mozurkewich, D.

    1990-01-01

    For the first time, four spectroscopic binaries have been directly resolved with the Mark III Stellar Interferometer. Observations in 1988 and 1989 were analyzed, and visual orbits for four binaries have been determined. The semimajor axes for Beta Tri, Alpha Equ, Alpha And and Beta Ari are approximately 0.008 arcsec, 0.012 arcsec, 0.024 arcsec and 0.037 arcsec, respectively. The magnitude differences between two components are 0.5, 0.7, 1.8 and 2.6 mag, respectively. All of the orbital elements for Alpha And and Beta Ari were determined from interferometric data only, and agree well with spectroscopic observations. Predictions of relative position between the two components for these binaries are consistent with the measurements to less than 0.001 arcsec. Combined with data from spectroscopy, masses and distance for the double-lined spectroscopic binary Beta Ari are derived, and the results indicate that both components of Beta Ari agree well with the empirical mass-luminosity relation. 12 refs

  15. Evolution of highly compact binary stellar systems in globular clusters

    International Nuclear Information System (INIS)

    Krolik, J.H.; Meiksin, A.; Joss, P.C.

    1984-01-01

    We have calculated the secular evolution of a highly compact binary stellar system, composed of a collapsed object and a low-mass secondary star, in the core of a globular cluster. The binary evolves under the combined influences of (i) gravitational radiation losses from the system, (ii) the evolution of the secondary star, (iii) the resultant gradual mass transfer, if any, from the secondary to the collapsed object, and (iv) occasional encounters with passing field stars. We calculate all these effects in detail, utilizing some simplifying approximations appropriate to low-mass secondaries. The times of encounters with field stars, and the initial parameter specifying those encounters, were chosen by use of a Monte Carlo technique; the subsequent gravitational interactions were calculated utilzing a three-body integrator, and the changes in the binary orbital parmeters were thereby determined. We carried out a total of 20 such evolutionary calculations for each of two cluster core densities (1 and 3 x 10 3 stars pc -3 ). Each calculation was continued until the binary was disrupted or until 2 x 10 10 yr had elapsed

  16. Combined tool approach is 100% successful for emergency football face mask removal.

    Science.gov (United States)

    Copeland, Aaron J; Decoster, Laura C; Swartz, Erik E; Gattie, Eric R; Gale, Stephanie D

    2007-11-01

    To compare effectiveness of two techniques for removing football face masks: cutting loop straps [cutting tool: FMXtractor (FMX)] or removing screws with a cordless screwdriver and using the FMXtractor as needed for failed removals [combined tool (CT)]. Null hypotheses: no differences in face mask removal success, removal time or difficulty between techniques or helmet characteristics. Retrospective, cross-sectional. NOCSAE-certified helmet reconditioning plants. 600 used high school helmets. Face mask removal attempted with two techniques. Success, removal time, rating of perceived exertion (RPE). Both techniques were effective [CT 100% (300/300); FMX 99.4% (298/300)]. Use of the backup FMXtractor in CT trials was required in 19% of trials. There was significantly (Pfootball player's helmet.

  17. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Evgeni; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa, 3200003 (Israel)

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.

  18. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Use of combined binary power generation systems at new geothermal fields on Mindoro Island, the Philippines, and comparison with conventional power generation systems); 1999 nendo Philippines koku Mindoro to no shinki chinetsutai ni okeru combined binary hatsuden hoshiki no tekiyo seika hokokusho. Conventional hatsuden hoshiki tono hikaku kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Concerning the Manito Lowlands geothermal field and the Montelago geothermal field where the systems are to be newly installed, the geothermal reservoir characteristics are assessed, and cost effectiveness is compared between different power generating systems. According to the investigations conducted into the two geothermal fields in the past, they are supposed to have geothermal potentials of the medium grade. Chemical analyses are conducted anew on this occasion into the hot spring water and fumarole gas, and the MT (magnetotelluric) method is implemented for the survey of reservoir distribution. It is now expected that approximately 20MWe will be exploited from each of the two geothermal fields. The power generation systems studied are the single flash type and double flash type for the conventional power generation system, and the cascade type, bottoming type, and two-phase binary type for the combined binary power generation system. As the result, it is concluded that the double flash type or two-phase binary type will be advantageous to the Manito Lowlands geothermal field, and the double flash type or bottoming type or two-phase binary type will be advantageous to the Montelago geothermal field. (NEDO)

  19. Phase behaviour in binary mixed Langmuir-Blodgett monolayers of triglycerides

    NARCIS (Netherlands)

    Zdravkova, A.N.; van der Eerden, J.P.J.M.

    2007-01-01

    Binary mixed monolayers of the triglycerides (TAGs)-tripalmitin (PPP), tristearin (SSS) and triarachidin (AAA) at the air–water interface are investigated with the Langmuir method. Langmuir–Blodgett (LB) layers obtained by deposition on mica are investigated by Atomic Force Microscopy. Combining

  20. Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections

    Science.gov (United States)

    Kelley, Luke Zoltan

    2018-05-01

    This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in

  1. A Precise Physical Orbit For The M-Dwarf Binary Gliese 268

    Science.gov (United States)

    Barry, R. K.; Demory, B. -O.; Segransan, D.; Forveille, T.; Danchi, W. C.; Di Folco, E.; Queloz, D.; Spooner, H. R.; Torres, G.; Traub, W. A.; hide

    2012-01-01

    We report high-precision interferometric and radial velocity (RV) observations of the M-dwarf binary Gl 268. Combining measurements conducted using the IOTA interferometer and the ELODIE and Harvard Center for Astrophysics RV instruments leads to a mass of 0.22596 plus-minus 0.00084 Mass compared to the sun for component A and 0.19230 plus-minus 0.00071 Mass compared to the sun for component B. The system parallax as determined by these observations is 0.1560 plus-minus 0.0030 arcsec - a measurement with 1.9% uncertainty in excellent agreement with Hipparcos (0.1572 plus-minus 0.0033). The absolute H-band magnitudes of the component stars are not well constrained by these measurements; however, we can place an approximate upper limit of 7.95 and 8.1 for Gl 268A and B, respectively.We test these physical parameters against the predictions of theoretical models that combine stellar evolution with high fidelity, non-gray atmospheric models. Measured and predicted values are compatible within 2sigma. These results are among the most precise masses measured for visual binaries and compete with the best adaptive optics and eclipsing binary results.

  2. Topics in the Detection of Gravitational Waves from Compact Binary Inspirals

    Science.gov (United States)

    Kapadia, Shasvath Jagat

    Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The

  3. Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection

    Science.gov (United States)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-07-01

    In recent years, tremendous progress has been made in 3D measurement techniques, contributing to the realization of faster and more accurate 3D measurement. As a representative of these techniques, fringe projection profilometry (FPP) has become a commonly used method for real-time 3D measurement, such as real-time quality control and online inspection. To date, most related research has been concerned with macroscopic 3D measurement, but microscopic 3D measurement, especially real-time microscopic 3D measurement, is rarely reported. However, microscopic 3D measurement plays an important role in 3D metrology and is indispensable in some applications in measuring micro scale objects like the accurate metrology of MEMS components of the final devices to ensure their proper performance. In this paper, we proposed a method which effectively combines optimized binary structured patterns with a number-theoretical phase unwrapping algorithm to realize real-time microscopic 3D measurement. A slight defocusing of our optimized binary patterns can considerably alleviate the measurement error based on four-step phase-shifting FPP, providing the binary patterns with a comparable performance to ideal sinusoidal patterns. The static measurement accuracy can reach 8 μm, and the experimental results of a vibrating earphone diaphragm reveal that our system can successfully realize real-time 3D measurement of 120 frames per second (FPS) with a measurement range of 8~\\text{mm}× 6~\\text{mm} in lateral and 8 mm in depth.

  4. Probabilistic seismic history matching using binary images

    Science.gov (United States)

    Davolio, Alessandra; Schiozer, Denis Jose

    2018-02-01

    Currently, the goal of history-matching procedures is not only to provide a model matching any observed data but also to generate multiple matched models to properly handle uncertainties. One such approach is a probabilistic history-matching methodology based on the discrete Latin Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for matching well data (production rates and pressure). 4D seismic (4DS) data have been increasingly included into history-matching procedures. A key issue in seismic history matching (SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and saturation. In any case, seismic inversions and/or modeling are required, which can be time consuming. An alternative to avoid these procedures is using binary images in SHM as they allow the shape, rather than the physical values, of observed anomalies to be matched. This work presents the incorporation of binary images in SHM within the aforementioned probabilistic history matching. The application was performed with real data from a segment of the Norne benchmark case that presents strong 4D anomalies, including softening signals due to pressure build up. The binary images are used to match the pressurized zones observed in time-lapse data. Three history matchings were conducted using: only well data, well and 4DS data, and only 4DS. The methodology is very flexible and successfully utilized the addition of binary images for seismic objective functions. Results proved the good convergence of the method in few iterations for all three cases. The matched models of the first two cases provided the best results, with similar well matching quality. The second case provided models presenting pore pressure changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data. The use of binary images in SHM is relatively new with few examples in the literature. This work enriches this discussion by presenting a new

  5. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  6. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  7. Toxic effect of single and binary treatments of synthetic and plant-derived molluscicides against Achatina fulica.

    Science.gov (United States)

    Rao, I G; Singh, D K

    2002-01-01

    The toxic effect of single and binary treatments of synthetic and plant-derived molluscicides was studied against the harmful terrestrial snail Achatina fulica. In single treatments, among the synthetic molluscicides Snail Kill and cypermethrin were potent, whereas Cedrus deodara oil was more toxic among molluscicides of plant origin against A. fulica. In binary treatments, a combination of Cedrusdeodara + Alliumsativum was more toxic. The toxicities of these single and binary treatments of synthetic and plant-derived molluscicides were dose and time dependent. Copyright 2002 John Wiley & Sons, Ltd.

  8. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nie, J. D.; Wood, P. R.

    2014-01-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  9. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    Science.gov (United States)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  10. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  11. Flexible link functions in nonparametric binary regression with Gaussian process priors.

    Science.gov (United States)

    Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K

    2016-09-01

    In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.

  12. In vitro PHYTOTHERAPY OF VECTOR SNAILS BY BINARY COMBINATIONS OF LARVICIDAL ACTIVE COMPONENTS IN EFFECTIVE CONTROL OF FASCIOLIASIS

    Directory of Open Access Journals (Sweden)

    Kumari Sunita

    2013-09-01

    Full Text Available SUMMARY A food-borne trematode infection fascioliasis is one among common public health problems worldwide. It caused a great economic loss for the human race. Control of snail population below a certain threshold level is one of the important methods in the campaign to reduce the incidence of fascioliasis. The life cycle of the parasite can be interrupted by killing the snail or Fasciola larva redia and cercaria inside of the snail Lymnaea acuminata. In vitro toxicity of different binary combinations (1:1 ratio of plant-derived larvicidal active components such as citral, ferulic acid, umbelliferone, azadirachtin and allicin against Fasciola redia and cercaria were tested. The mortality of larvae was observed at 2h, 4h, 6h and 8h of treatment. In in vitro condition azadirachtin + allicin (1:1 ratio was highly toxic against redia and cercaria (8h LC50 0.006 and 0.005 mg/L. Toxicity of citral + ferulic acid was lowest against redia and cercaria larvae.

  13. P-TYPE PLANET–PLANET SCATTERING: KEPLER CLOSE BINARY CONFIGURATIONS

    International Nuclear Information System (INIS)

    Gong, Yan-Xiang

    2017-01-01

    A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90% of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.

  14. MONTE CARLO POPULATION SYNTHESIS OF POST-COMMON-ENVELOPE WHITE DWARF BINARIES AND TYPE Ia SUPERNOVA RATE

    Energy Technology Data Exchange (ETDEWEB)

    Ablimit, Iminhaji [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2016-07-20

    Binary population synthesis (BPS) studies provide a comprehensive way to understand the evolution of binaries and their end products. Close white dwarf (WD) binaries have crucial characteristics for examining the influence of unresolved physical parameters on binary evolution. In this paper, we perform Monte Carlo BPS simulations, investigating the population of WD/main-sequence (WD/MS) binaries and double WD binaries using a publicly available binary star evolution code under 37 different assumptions for key physical processes and binary initial conditions. We considered different combinations of the binding energy parameter ( λ {sub g}: considering gravitational energy only; λ {sub b}: considering both gravitational energy and internal energy; and λ {sub e}: considering gravitational energy, internal energy, and entropy of the envelope, with values derived from the MESA code), CE efficiency, critical mass ratio, initial primary mass function, and metallicity. We find that a larger number of post-CE WD/MS binaries in tight orbits are formed when the binding energy parameters are set by λ {sub e} than in those cases where other prescriptions are adopted. We also determine the effects of the other input parameters on the orbital periods and mass distributions of post-CE WD/MS binaries. As they contain at least one CO WD, double WD systems that evolved from WD/MS binaries may explode as type Ia supernovae (SNe Ia) via merging. In this work, we also investigate the frequency of two WD mergers and compare it to the SNe Ia rate. The calculated Galactic SNe Ia rate with λ = λ {sub e} is comparable to the observed SNe Ia rate, ∼8.2 × 10{sup 5} yr{sup 1} – ∼4 × 10{sup 3} yr{sup 1} depending on the other BPS parameters, if a DD system does not require a mass ratio higher than ∼0.8 to become an SNe Ia. On the other hand, a violent merger scenario, which requires the combined mass of two CO WDs ≥ 1.6 M {sub ⊙} and a mass ratio >0.8, results in a much lower

  15. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  16. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  17. Evaluation of self-interaction parameters from binary phase diagrams

    International Nuclear Information System (INIS)

    Ellison, T.L.

    1977-10-01

    The feasibility of calculating Wagner self-interaction parameters from binary phase diagrams was examined. The self-interaction parameters of 22 non-ferrous liquid solutions were calculated utilizing an equation based on the equality of the chemical potentials of a component in two equilibrium phases. Utilization of the equation requires the evaluation of the first and second derivatives of various liquidus and solidus data at infinite dilution of the solute component. Several numerical methods for evaluating the derivatives of tabular data were examined. A method involving power series curve fitting and subsequent differentiation of the power series was found to be the most suitable for the interaction parameter calculations. Comparison of the calculated self-interaction parameters with values obtained from thermodynamic measurements indicates that the Wagner self-interaction parameter can be successfully calculated from binary phase diagrams

  18. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  19. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  20. The binary fraction of stars in dwarf galaxies: the case of Leo II

    OpenAIRE

    Spencer, Meghin; Mateo, Mario; Walker, Matthew; Olszewski, Edward; McConnachie, Alan; Kirby, Evan; Koch, Andreas

    2017-01-01

    We combine precision radial velocity data from four different published works of the stars in the Leo II dwarf spheroidal galaxy. This yields a data set that spans 19 years, has 14 different epochs of observation, and contains 372 unique red giant branch stars, 196 of which have repeat observations. Using this multi-epoch data set, we constrain the binary fraction for Leo II. We generate a suite of Monte Carlo simulations that test different binary fractions using Bayesian analysis and determ...

  1. Successful treatment of a large oral verrucous hyperplasia with photodynamic therapy combined with cryotherapy

    Directory of Open Access Journals (Sweden)

    Yu-Chao Chang

    2013-03-01

    Full Text Available Studies have shown that topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT can be used successfully for the treatment of oral verrucous hyperplasia (OVH. Studies have also demonstrated that cryotherapy could be used as a treatment modality for OVH lesions. In this case report, we tested the efficacy of topical ALA-PDT, combined with cryogun cryotherapy, for an extensive OVH lesion on the right buccal mucosa of a 65-year-old male areca quid chewer. The tumor was cleared after six treatments of combined topical ALA-PDT and cryogun cryotherapy. No recurrence of the lesion was found after a follow-up period of 18 months. We suggest that our combined treatment protocol may be effective in treating OVH lesions. The treatment course may be slightly shortened with this combined protocol and was well tolerated by the patient.

  2. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Directory of Open Access Journals (Sweden)

    Blanchet Luc

    2006-06-01

    Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.

  3. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  4. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  5. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA

    International Nuclear Information System (INIS)

    Antonini, Fabio; Perets, Hagai B.

    2012-01-01

    The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that ∼0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e ∼> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.

  6. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  7. Successful treatment of ovarian cancer with apatinib combined with chemotherapy: A case report.

    Science.gov (United States)

    Zhang, Mingzi; Tian, Zhongkai; Sun, Yehong

    2017-11-01

    The standard treatment for ovarian cancer is chemotherapy with 2 drugs (taxanes and platinum drugs). However, the traditional combination of the 2 drugs has many adverse effects (AEs) and the cancer cells will quickly become resistant to the drugs. Apatinib is a small-molecule antiangiogenic agent which has shown promising therapeutic effects against diverse tumor types, but it still remains unknown whether apatinib has an antitumor effect in patients with ovarian cancer. Herein, we present a successfully treated case of ovarian cancer using chemotherapy and apatinib, in order to demonstrate the effectiveness of this new combined regimen in ovarian cancer. A 51-year-old Chinese woman presented with ovarian cancer >4.5 years. The disease and the cancer antigen 125 (CA-125) had been controlled well by surgical treatment and following chemotherapy. However, the drugs could not control the disease anymore as the CA-125 level was significantly increasing. Ovarian cancer. The patient was treated with apatinib combined with epirubicin. Apatinib was administered orally, at an initial daily dose of 500 mg, and was then reduced to 250 mg qd after the appearance of intolerable hand-foot syndrome (HFS) and oral ulcer. Then, the oral ulcer disappeared and the HFS was controlled by dose adjustment, oral vitamin B6, and hand cream application. The CA-125 reverted to the normal value after treatment with the new regimen. Magnetic resonance imaging showed that the original tumor lesions had disappeared. Apatinib monotherapy as maintenance therapy was then used to successfully control the cancer with a complete response. Our study is the first, to our knowledge, to report the therapeutic effects of apatinib and epirubicin on ovarian cancer. Apatinib combined with chemotherapy and apatinib monotherapy as maintenance therapy could be a new therapeutic strategy for ovarian cancer, especially adenocarcinomas.

  8. Mixing process of a binary gas in a density stratified layer

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-09-01

    This study is to investigate the effect of natural convection on the mixing process by molecular diffusion in a vertical stratified layer of a binary fluid. There are many experimental and analytical studies on natural convection in the vertical fluid layer. However, there are few studies on natural convection with molecular diffusion in the vertical stratified layer of a binary gas. Experimental study has been performed on the combined phenomena of molecular diffusion and natural convection in a binary gas system to investigate the mixing process of the binary gas in a vertical slot consisting of one side heated and the other side cooled. The range of Rayleigh number based on the slot width was about 0 < Ra{sub d} < 7.5 x 10{sup 4}. The density change of the gas mixture and the temperature distribution in the slot was obtained and the mixing process when the heavier gas ingress into the vertical slot filled with the lighter gas from the bottom side of the slot was discussed. The experimental results showed that the mixing process due to molecular diffusion was affected significantly by the natural convection induced by the slightly temperature difference between both vertical walls even if a density difference by the binary gas is larger than that by the temperature difference. (author). 81 refs.

  9. Gene selection using hybrid binary black hole algorithm and modified binary particle swarm optimization.

    Science.gov (United States)

    Pashaei, Elnaz; Pashaei, Elham; Aydin, Nizamettin

    2018-04-14

    In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A novel asynchronous access method with binary interfaces

    Directory of Open Access Journals (Sweden)

    Torres-Solis Jorge

    2008-10-01

    Full Text Available Abstract Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches. Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation.

  11. Mathematical Simulation of High-Conversion Binary Copolymerization

    Institute of Scientific and Technical Information of China (English)

    JiangWei; QinJiguang

    2005-01-01

    A new model for mathematical simulation of high-conversion binary copolymerization was established by combination of the concept of the three stage polymerization model (TSPM) proposed by Qin et al. for bulk free radical homopolymerization with the North equation to describe high-conversion copolymerization reaction exhibiting a strong gel effect, and the mathematical expressions of this new model were derived. Like TSPM, the new model also assmnes that the whole course of binary copolymerization can be divided into three different stages: low conversion, gel effect and glass effect stages. In addition, the reaction rate constants and the initiator efficiency at each copolymerization stage do not vary with conversion. Based on the expressions derived, a plot method for determining the overall rate constants and critical conversions was proposed. The literature data on conversion history for styrene (St)-methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA)-MMA copolymerizations were treated to examine the model, which shows that the model is satisfactory.

  12. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  13. Statistical Analysis of Compression Methods for Storing Binary Image for Low-Memory Systems

    Directory of Open Access Journals (Sweden)

    Roman Slaby

    2013-01-01

    Full Text Available The paper is focused on the statistical comparison of the selected compression methods which are used for compression of the binary images. The aim is to asses, which of presented compression method for low-memory system requires less number of bytes of memory. For assessment of the success rates of the input image to binary image the correlation functions are used. Correlation function is one of the methods of OCR algorithm used for the digitization of printed symbols. Using of compression methods is necessary for systems based on low-power micro-controllers. The data stream saving is very important for such systems with limited memory as well as the time required for decoding the compressed data. The success rate of the selected compression algorithms is evaluated using the basic characteristics of the exploratory analysis. The searched samples represent the amount of bytes needed to compress the test images, representing alphanumeric characters.

  14. Emission-line diagnostics of nearby H II regions including interacting binary populations

    Science.gov (United States)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  15. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  16. Localization of binary neutron star mergers with second and third generation gravitational-wave detectors

    Science.gov (United States)

    Mills, Cameron; Tiwari, Vaibhav; Fairhurst, Stephen

    2018-05-01

    The observation of gravitational wave signals from binary black hole and binary neutron star mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing various aspects of astronomy. An important consideration for successive improvement of current detectors or establishment on new sites is knowledge of the minimum number of detectors required to perform precision astronomy. We attempt to answer this question by assessing the ability of future detector networks to detect and localize binary neutron stars mergers on the sky. Good localization ability is crucial for many of the scientific goals of gravitational wave astronomy, such as electromagnetic follow-up, measuring the properties of compact binaries throughout cosmic history, and cosmology. We find that although two detectors at improved sensitivity are sufficient to get a substantial increase in the number of observed signals, at least three detectors of comparable sensitivity are required to localize majority of the signals, typically to within around 10 deg2 —adequate for follow-up with most wide field of view optical telescopes.

  17. RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, J. M.; Huang, Y., E-mail: jweisber@carleton.edu [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States)

    2016-09-20

    We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last 35 years. The determination of the “Keplerian” orbital elements plus two relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of sight, leading to a determination of the masses of the pulsar and its companion: 1.438 ± 0.001 M {sub ☉} and 1.390 ± 0.001 M {sub ☉}, respectively. In addition, the complete system characterization allows for the creation of relativistic gravitation test by comparing measured and predicted sizes of various relativistic phenomena. We find that the ratio of the observed orbital period decrease caused by gravitational wave damping (corrected by a kinematic term) to the general relativistic prediction is 0.9983 ± 0.0016, thereby confirms the existence and strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also successfully measured the two parameters characterizing the Shapiro gravitational propagation delay, and found that their values are consistent with general relativistic predictions. For the first time in any system, we have also measured the relativistic shape correction to the elliptical orbit, δ {sub θ} , although its intrinsic value is obscured by currently unquantified pulsar emission beam aberration. We have also marginally measured the time derivative of the projected semimajor axis, which, when improved in combination with beam aberration modeling from geodetic precession observations, should ultimately constrain the pulsar’s moment of inertia.

  18. PLANET FORMATION IN STELLAR BINARIES. I. PLANETESIMAL DYNAMICS IN MASSIVE PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Silsbee, Kedron

    2015-01-01

    About 20% of exoplanets discovered by radial velocity surveys reside in stellar binaries. To clarify their origin one has to understand the dynamics of planetesimals in protoplanetary disks within binaries. The standard description, accounting for only gas drag and gravity of the companion star, has been challenged recently, as the gravity of the protoplanetary disk was shown to play a crucial role in planetesimal dynamics. An added complication is the tendency of protoplanetary disks in binaries to become eccentric, giving rise to additional excitation of planetesimal eccentricity. Here, for the first time, we analytically explore the secular dynamics of planetesimals in binaries such as α Cen and γ Cep under the combined action of (1) gravity of the eccentric protoplanetary disk, (2) perturbations due to the (coplanar) eccentric companion, and (3) gas drag. We derive explicit solutions for the behavior of planetesimal eccentricity e p in non-precessing disks (and in precessing disks in certain limits). We obtain the analytical form of the distribution of the relative velocities of planetesimals, which is a key input for understanding their collisional evolution. Disk gravity strongly influences relative velocities and tends to push the sizes of planetesimals colliding with comparable objects at the highest speed to small values, ∼1 km. We also find that planetesimals in eccentric protoplanetary disks apsidally aligned with the binary orbit collide at lower relative velocities than in misaligned disks. Our results highlight the decisive role that disk gravity plays in planetesimal dynamics in binaries

  19. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  20. Electronic band structures of binary skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Banaras [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Aliabad, H.A. Rahnamaye [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Saifullah [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Jalali-Asadabadi, S. [Department of Physics, Faculty of Science, University of Isfahan (UI), 81744 Isfahan (Iran, Islamic Republic of); Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan); Ahmad, Iftikhar, E-mail: ahma5532@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Department of Physics, University of Malakand, Chakdara (Pakistan)

    2015-10-25

    The electronic properties of complex binary skutterudites, MX{sub 3} (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures.

  1. Electronic band structures of binary skutterudites

    International Nuclear Information System (INIS)

    Khan, Banaras; Aliabad, H.A. Rahnamaye; Saifullah; Jalali-Asadabadi, S.; Khan, Imad; Ahmad, Iftikhar

    2015-01-01

    The electronic properties of complex binary skutterudites, MX 3 (M = Co, Rh, Ir; X = P, As, Sb) are explored, using various density functional theory (DFT) based theoretical approaches including Green's Function (GW) as well as regular and non-regular Tran Blaha modified Becke Jhonson (TB-mBJ) methods. The wide range of calculated bandgap values for each compound of this skutterudites family confirm that they are theoretically as challenging as their experimental studies. The computationally expensive GW method, which is generally assume to be efficient in the reproduction of the experimental bandgaps, is also not very successful in the calculation of bandgaps. In this article, the issue of the theoretical bandgaps of these compounds is resolved by reproducing the accurate experimental bandgaps, using the recently developed non-regular TB-mBJ approach, based on DFT. The effectiveness of this technique is due to the fact that a large volume of the binary skutterudite crystal is empty and hence quite large proportion of electrons lie outside of the atomic spheres, where unlike LDA and GGA which are poor in the treatment of these electrons, this technique properly treats these electrons and hence reproduces the clear electronic picture of these compounds. - Highlights: • Theoretical and experimental electronic band structures of binary skutterudites are reviewed. • The literature reveals that none of the existing theoretical results are consistent with the experiments. • GW, regular and non-regular TB-mBJ methods are used to reproduce the correct results. • The GW and regular TB-mBJ results are better than the available results in literature. • However, non-regular TB-mBJ reproduces the correct experimental band structures

  2. Masses of the components of SB2 binaries observed with Gaia - IV. Accurate SB2 orbits for 14 binaries and masses of three binaries*

    Science.gov (United States)

    Kiefer, F.; Halbwachs, J.-L.; Lebreton, Y.; Soubiran, C.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Ibata, R.; Mazeh, T.

    2018-02-01

    The orbital motion of non-contact double-lined spectroscopic binaries (SB2s), with periods of a few tens of days to several years, holds unique, accurate information on individual stellar masses, which only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 component masses down to the percent precision. Since 2010, we have observed a large sample of SB2s with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1 per cent when the astrometric measurements of the Gaia satellite are taken into account. In this paper, we present the results from 6 yr of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm, we computed radial velocities from the spectra and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with an average sample accuracy of 1.0 ± 0.2 per cent. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of, respectively, (2.0, 1.7) per cent, (3.7, 3.7) per cent and (0.2, 0.1) per cent. Using the CESAM2K stellar evolution code, we constrained the initial He abundance, age and metallicity for HIP 61100 and HIP 95995.

  3. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  4. Test of post-newtonian conservation laws in the binary system PSR 1913+16

    International Nuclear Information System (INIS)

    Will, C.M.

    1976-01-01

    Observations that set upper limits on secular changes in the pulsar period and orbital period in the binary system PSR 1913+16 may provide a test of post-Newtonian conservation laws. According to some metric theories of gravitation, the center of mass of a binary system may be accelerated in the direction of the periastron of the orbit because of a violation of post-Newtonian momentum conservation. In the binary system PSR 1913+16, this effect could produce secular changes in both pulsar and orbital periods (changing overall Doppler shift) as large as two parts in 10 6 per year. The size of the effect is proportional to the sine of the angle of periastron, to the difference in the masses of the components of the binary system, and to the combination of parametrized post-Newtonian parameters α 3 +zeta 2 -zeta/subw/. This combination is zero in any theory that predicts conserved total momentum for isolated systems (including general relativity and Brans-Dicke theory). Although solar-system experiments constrain α 3 and zeta/subw/ to be small, no decent direct limit has been placed on zeta 2 . Other possible sources of secular period changes in PSR 1913+16 are discussed and compared with this effect. It is also shown that a breakdown in the equality of active and passive gravitational masses (violation of ''Newton's third law'') leads only to periodic, unobservable orbital effects in a system like PSR 1913+16

  5. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.

    2017-01-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that...

  6. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  7. Effect of single and binary combinations of plant-derived molluscicides on reproduction and survival of the snail Achatina fulica.

    Science.gov (United States)

    Rao, I G; Singh, D K

    2000-11-01

    The effects of sublethal treatments (20% and 60% of LC(50)/24 h) with plant-derived molluscicides on the reproduction of the giant African snail Achatina fulica were studied. Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, and Nerium indicum bark powder singly and binary combinations on reproduction and survival of A. fulica were investigated. Repeated treatment occurred on day 0, day 15, and day 30. These plant-derived molluscicides significantly reduced fecundity, egg viability, and survival of A. fulica within 15 days. Discontinuation of the treatments after day 30 did not lead to a recovery trend in the next 30 days. Day 0 sublethal treatment of all the molluscicides caused a maximum reduction in protein, amino acid, DNA, RNA, and phospholipid levels and simultaneous increase in lipid peroxidation in the ovotestis of treated A. fulica. It is believed that sublethal exposure of these molluscicides on snail reproduction is a complex process, involving more than one factor in reducing the reproductive capacity of A. fulica.

  8. Statistical constraints on binary black hole inspiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, Center for Scientific Computation and Mathematical Modeling, Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de IngenierIa, Instituto de Matematica y EstadIstica, ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)

    2010-12-21

    We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex{sub 1{center_dot}}S-circumflex{sub 2} + (S-circumflex{sub 1{center_dot}}L-circumflex) (S-circumflex{sub 2{center_dot}}L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

  9. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    Full Text Available Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  10. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    Science.gov (United States)

    Zhang, Bin; Ye, Jiaxi; Bi, Xing; Feng, Chao; Tang, Chaojing

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  11. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba......Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010...

  12. Parameter Estimation for Improving Association Indicators in Binary Logistic Regression

    Directory of Open Access Journals (Sweden)

    Mahdi Bashiri

    2012-02-01

    Full Text Available The aim of this paper is estimation of Binary logistic regression parameters for maximizing the log-likelihood function with improved association indicators. In this paper the parameter estimation steps have been explained and then measures of association have been introduced and their calculations have been analyzed. Moreover a new related indicators based on membership degree level have been expressed. Indeed association measures demonstrate the number of success responses occurred in front of failure in certain number of Bernoulli independent experiments. In parameter estimation, existing indicators values is not sensitive to the parameter values, whereas the proposed indicators are sensitive to the estimated parameters during the iterative procedure. Therefore, proposing a new association indicator of binary logistic regression with more sensitivity to the estimated parameters in maximizing the log- likelihood in iterative procedure is innovation of this study.

  13. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  14. Contact Binaries on Their Way Towards Merging

    Science.gov (United States)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  15. Characterization of the benchmark binary NLTT 33370 {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Schlieder, Joshua E.; Bonnefoy, Mickaël; Herbst, T. M.; Henning, Thomas; Biller, Beth; Bergfors, Carolina; Brandner, Wolfgang [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Lépine, Sébastien; Rice, Emily [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Skemer, Andrew; Hinz, Philip; Defrère, Denis; Leisenring, Jarron [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Chauvin, Gaël; Lagrange, Anne-Marie [UJF-Grenoble 1/CNRS-INSU, Institut de Planètologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041 (France); Girard, Julien H. V. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Lacour, Sylvestre [LESIA, Observatoire de Paris, CNRS, University Pierre et Marie Curie Paris 6 and University Denis Diderot Paris 7, 5 place Jules Janssen, F-92195 Meudon (France); Skrutskie, Michael, E-mail: schlieder@mpia-hd.mpg.de [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2014-03-01

    We confirm the binary nature of the nearby, very low mass (VLM) system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity-sensitive alkali lines and strong lithium 6708 Å absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity-sensitive features and spectral morphology that is consistent with other young VLM dwarfs. We combine the constraints from all age diagnostics to estimate a system age of ∼30-200 Myr. The 1.2-4.7 μm spectral energy distribution of the components point toward T {sub eff} = 3200 ± 500 K and T {sub eff} = 3100 ± 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 97{sub −48}{sup +41} M{sub Jup} and 91{sub −44}{sup +41} M{sub Jup} from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and VLMs.

  16. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  17. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  18. Statistical inference approach to structural reconstruction of complex networks from binary time series

    Science.gov (United States)

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  19. Accuracy of binary black hole waveform models for aligned-spin binaries

    Science.gov (United States)

    Kumar, Prayush; Chu, Tony; Fong, Heather; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2016-05-01

    Coalescing binary black holes are among the primary science targets for second generation ground-based gravitational wave detectors. Reliable gravitational waveform models are central to detection of such systems and subsequent parameter estimation. This paper performs a comprehensive analysis of the accuracy of recent waveform models for binary black holes with aligned spins, utilizing a new set of 84 high-accuracy numerical relativity simulations. Our analysis covers comparable mass binaries (mass-ratio 1 ≤q ≤3 ), and samples independently both black hole spins up to a dimensionless spin magnitude of 0.9 for equal-mass binaries and 0.85 for unequal mass binaries. Furthermore, we focus on the high-mass regime (total mass ≳50 M⊙ ). The two most recent waveform models considered (PhenomD and SEOBNRv2) both perform very well for signal detection, losing less than 0.5% of the recoverable signal-to-noise ratio ρ , except that SEOBNRv2's efficiency drops slightly for both black hole spins aligned at large magnitude. For parameter estimation, modeling inaccuracies of the SEOBNRv2 model are found to be smaller than systematic uncertainties for moderately strong GW events up to roughly ρ ≲15 . PhenomD's modeling errors are found to be smaller than SEOBNRv2's, and are generally irrelevant for ρ ≲20 . Both models' accuracy deteriorates with increased mass ratio, and when at least one black hole spin is large and aligned. The SEOBNRv2 model shows a pronounced disagreement with the numerical relativity simulation in the merger phase, for unequal masses and simultaneously both black hole spins very large and aligned. Two older waveform models (PhenomC and SEOBNRv1) are found to be distinctly less accurate than the more recent PhenomD and SEOBNRv2 models. Finally, we quantify the bias expected from all four waveform models during parameter estimation for several recovered binary parameters: chirp mass, mass ratio, and effective spin.

  20. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  1. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  2. Constraining the equation of state of neutron stars from binary mergers.

    Science.gov (United States)

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  3. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  4. Gender classification from face images by using local binary pattern and gray-level co-occurrence matrix

    Science.gov (United States)

    Uzbaş, Betül; Arslan, Ahmet

    2018-04-01

    Gender is an important step for human computer interactive processes and identification. Human face image is one of the important sources to determine gender. In the present study, gender classification is performed automatically from facial images. In order to classify gender, we propose a combination of features that have been extracted face, eye and lip regions by using a hybrid method of Local Binary Pattern and Gray-Level Co-Occurrence Matrix. The features have been extracted from automatically obtained face, eye and lip regions. All of the extracted features have been combined and given as input parameters to classification methods (Support Vector Machine, Artificial Neural Networks, Naive Bayes and k-Nearest Neighbor methods) for gender classification. The Nottingham Scan face database that consists of the frontal face images of 100 people (50 male and 50 female) is used for this purpose. As the result of the experimental studies, the highest success rate has been achieved as 98% by using Support Vector Machine. The experimental results illustrate the efficacy of our proposed method.

  5. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  6. Simultaneous spectrophotometric determination of binary mixtures of surfactants using continuous wavelet transformation

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Nematollahi, Davood; Madrakian, Tayyebeh; Abbasi-Tarighat, Maryam; Hajihadi, Mitra

    2009-01-01

    This work presents a simple, rapid, and novel method for simultaneous determination of binary mixtures of some surfactants using continuous wavelet transformation. The method is based on the difference in the effect of surfactants Cetyltrimethylammoniumbromide (CTAB), dodecyl trimethylammonium bromide (DTAB), cetylpyridinium bromide (CPB) and TritonX-100 (TX-100) on the absorption spectra of complex of Beryllium with Chrome Azurol S (CAS) at pH 5.4. Binary mixtures of CTAB-DTAB, DTAB-CPB and CTAB-TX-100 were analyzed without prior separation steps. Different mother wavelets from the family of continuous wavelet transforms were selected and applied under the optimal conditions for simultaneous determinations. The proposed methods, under the working conditions, were successfully applied to simultaneous determination of surfactants in hair conditioner and mouthwash samples.

  7. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  8. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  9. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  10. Unification of binary star ephemeris solutions

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2014-01-01

    Time-related binary system characteristics such as orbital period, its rate of change, apsidal motion, and variable light-time delay due to a third body, are measured in two ways that can be mutually complementary. The older way is via eclipse timings, while ephemerides by simultaneous whole light and velocity curve analysis have appeared recently. Each has its advantages, for example, eclipse timings typically cover relatively long time spans while whole curves often have densely packed data within specific intervals and allow access to systemic properties that carry additional timing information. Synthesis of the two information sources can be realized in a one step process that combines several data types, with automated weighting based on their standard deviations. Simultaneous light-velocity-timing solutions treat parameters of apsidal motion and the light-time effect coherently with those of period and period change, allow the phenomena to interact iteratively, and produce parameter standard errors based on the quantity and precision of the curves and timings. The logic and mathematics of the unification algorithm are given, including computation of theoretical conjunction times as needed for generation of eclipse timing residuals. Automated determination of eclipse type, recovery from inaccurate starting ephemerides, and automated data weighting are also covered. Computational examples are given for three timing-related cases—steady period change (XY Bootis), apsidal motion (V526 Sagittarii), and the light-time effect due to a binary's reflex motion in a triple system (AR Aurigae). Solutions for all combinations of radial velocity, light curve, and eclipse timing input show consistent results, with a few minor exceptions.

  11. On the likelihood of detecting gravitational waves from Population III compact object binaries

    Science.gov (United States)

    Belczynski, Krzysztof; Ryu, Taeho; Perna, Rosalba; Berti, Emanuele; Tanaka, Takamitsu L.; Bulik, Tomasz

    2017-11-01

    We study the contribution of binary black hole (BH-BH) mergers from the first, metal-free stars in the Universe (Pop III) to gravitational wave detection rates. Our study combines initial conditions for the formation of Pop III stars based on N-body simulations of binary formation (including rates, binary fraction, initial mass function, orbital separation and eccentricity distributions) with an updated model of stellar evolution specific for Pop III stars. We find that the merger rate of these Pop III BH-BH systems is relatively small (≲ 0.1 Gpc-3 yr-1) at low redshifts (z 1 per cent) contribution of these stars to low-redshift BH-BH mergers. However, it remains to be tested whether (and at what level) rapidly spinning Pop III stars in the homogeneous evolution scenario can contribute to BH-BH mergers in the local Universe.

  12. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  13. Accuracy requirements for the calculation of gravitational waveforms from coalescing compact binaries in numerical relativity

    International Nuclear Information System (INIS)

    Miller, Mark

    2005-01-01

    I discuss the accuracy requirements on numerical relativity calculations of inspiraling compact object binaries whose extracted gravitational waveforms are to be used as templates for matched filtering signal extraction and physical parameter estimation in modern interferometric gravitational wave detectors. Using a post-Newtonian point particle model for the premerger phase of the binary inspiral, I calculate the maximum allowable errors for the mass and relative velocity and positions of the binary during numerical simulations of the binary inspiral. These maximum allowable errors are compared to the errors of state-of-the-art numerical simulations of multiple-orbit binary neutron star calculations in full general relativity, and are found to be smaller by several orders of magnitude. A post-Newtonian model for the error of these numerical simulations suggests that adaptive mesh refinement coupled with second-order accurate finite difference codes will not be able to robustly obtain the accuracy required for reliable gravitational wave extraction on Terabyte-scale computers. I conclude that higher-order methods (higher-order finite difference methods and/or spectral methods) combined with adaptive mesh refinement and/or multipatch technology will be needed for robustly accurate gravitational wave extraction from numerical relativity calculations of binary coalescence scenarios

  14. Illumination normalization based on simplified local binary patterns for a face verification system

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    2007-01-01

    Illumination normalization is a very important step in face recognition. In this paper we propose a simple implementation of Local Binary Patterns, which effectively reduces the variability caused by illumination changes. In combination with a likelihood ratio classifier, this illumination

  15. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  16. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  17. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  18. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  19. Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means

    Science.gov (United States)

    Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.

    2018-04-01

    This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.

  20. Dye-sensitized solar cells: a successful combination of materials

    Directory of Open Access Journals (Sweden)

    Longo Claudia

    2003-01-01

    Full Text Available Dye-sensitized TiO2 solar cells, DSSC, are a promising alternative for the development of a new generation of photovoltaic devices. DSSC are a successful combination of materials, consisting of a transparent electrode coated with a dye-sensitized mesoporous film of nanocrystalline particles of TiO2, an electrolyte containing a suitable redox-couple and a Pt coated counter-electrode. In general, Ru bipyridyl complexes are used as the dye sensitizers. The light-to-energy conversion performance of the cell depends on the relative energy levels of the semiconductor and dye and on the kinetics of the electron-transfer processes at the sensitized semiconductor | electrolyte interface. The rate of these processes depends on the properties of its components. This contribution presents a discussion on the influence of each of the materials which constitute the DSSC of the overall process for energy conversion. An overview of the results obtained for solid-state dye-sensitized TiO2 solar cells assembled with polymer electrolytes is also presented.

  1. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  2. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  3. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  4. Formation and Evolution of Binary Asteroids

    Science.gov (United States)

    Walsh, K. J.; Jacobson, S. A.

    Satellites of asteroids have been discovered in nearly every known small-body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of solar system history and their dynamical environment over the next 4.5 G.y. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids, and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by (1) the growing catalog of known systems, increasing from 33 to ~250 between the Merline et al. (2002) chapter in Asteroids III and now; (2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, (3) the discovery of new binary system morphologies and triple systems, (4) and the discovery of unbound systems that appear to be end-states of binary dynamical evolutionary paths. Specifically for small bodies (diameter smaller than 10 km), these observations and discoveries have motivated theoretical work finding that thermal forces can efficiently drive the rotational disruption of small asteroids. Long-term monitoring has allowed studies to constrain the system's dynamical evolution by the combination of tides, thermal forces, and rigid-body physics. The outliers and split pairs have pushed the theoretical work to explore a wide range of evolutionary end-states.

  5. Perceptual biases for rhythm: The Mismatch Negativity latency indexes the privileged status of binary vs non-binary interval ratios.

    Science.gov (United States)

    Pablos Martin, X; Deltenre, P; Hoonhorst, I; Markessis, E; Rossion, B; Colin, C

    2007-12-01

    Rhythm perception appears to be non-linear as human subjects are better at discriminating, categorizing and reproducing rhythms containing binary vs non-binary (e.a. 1:2 vs 1:3) as well as metrical vs non-metrical (e.a. 1:2 vs 1:2.5) interval ratios. This study examined the representation of binary and non-binary interval ratios within the sensory memory, thus yielding a truly sensory, pre-motor, attention-independent neural representation of rhythmical intervals. Five interval ratios, one binary, flanked by four non-binary ones, were compared on the basis of the MMN they evoked when contrasted against a common standard interval. For all five intervals, the larger the contrast was, the larger the MMN amplitude was. The binary interval evoked a significantly much shorter (by at least 23 ms) MMN latency than the other intervals, whereas no latency difference was observed between the four non-binary intervals. These results show that the privileged perceptual status of binary rhythmical intervals is already present in the sensory representations found in echoic memory at an early, automatic, pre-perceptual and pre-motor level. MMN latency can be used to study rhythm perception at a truly sensory level, without any contribution from the motor system.

  6. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    International Nuclear Information System (INIS)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B.

    2015-01-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center

  7. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States)

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  8. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    International Nuclear Information System (INIS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M 1  = 1.84 ± 0.18  M ⊙ , M 2  = 1.73 ± 0.17  M ⊙ and radii of R 1  = 2.01 ± 0.09  R ⊙ , R 2  = 1.68 ± 0.08 R ⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  9. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  10. The origin of the RS CVn binaries

    International Nuclear Information System (INIS)

    Biermann, P.

    1976-01-01

    Six possible origins for the RS CVn binaries are considered based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries. To decide which of the six origins is possible, the following observed data for the RS CVn binaries are considered: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition lifetimes and space densities of single stars and other types of binaries are considered. The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars. (Auth.)

  11. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains

    Directory of Open Access Journals (Sweden)

    Lara-Antonia Beer

    2018-06-01

    Full Text Available Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum, the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile. All these binary toxins have ADP-ribosyltransferases (ADPRT as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN. Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N-terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.

  12. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  13. Binary Format for Scene (BIFS): combining MPEG-4 media to build rich multimedia services

    Science.gov (United States)

    Signes, Julien

    1998-12-01

    In this paper, we analyze the design concepts and some technical details behind the MPEG-4 standard, particularly the scene description layer, commonly known as the Binary Format for Scene (BIFS). We show how MPEG-4 may ease multimedia proliferation by offering a unique, optimized multimedia platform. Lastly, we analyze the potential of the technology for creating rich multimedia applications on various networks and platforms. An e-commerce application example is detailed, highlighting the benefits of the technology. Compression results show how rich applications may be built even on very low bit rate connections.

  14. Massive binaries in the vicinity of Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Pfuhl, O.; Gillessen, S.; Genzel, R.; Eisenhauer, F.; Fritz, T. K.; Ott, T. [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching (Germany); Alexander, T. [Faculty of Physics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel); Martins, F., E-mail: pfuhl@mpe.mpg.de [LUPM, Université Montpelier 2, CNRS, Place Eugéne Bataillon, F-34095, Montpellier (France)

    2014-02-20

    A long-term spectroscopic and photometric survey of the most luminous and massive stars in the vicinity of the supermassive black hole Sgr A* revealed two new binaries: a long-period Ofpe/WN9 binary, IRS 16NE, with a modest eccentricity of 0.3 and a period of 224 days, and an eclipsing Wolf-Rayet binary with a period of 2.3 days. Together with the already identified binary IRS 16SW, there are now three confirmed OB/WR binaries in the inner 0.2 pc of the Galactic center. Using radial velocity change upper limits, we were able to constrain the spectroscopic binary fraction in the Galactic center to F{sub SB}=0.30{sub −0.21}{sup +0.34} at a confidence level of 95%, a massive binary fraction close to that observed in dense clusters. The fraction of eclipsing binaries with photometric amplitudes Δm > 0.4 is F{sub EB}{sup GC}=3%±2%, which is consistent with local OB star clusters (F {sub EB} = 1%). Overall, the Galactic center binary fraction seems to be similar to the binary fraction in comparable young clusters.

  15. EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS

    International Nuclear Information System (INIS)

    Fregeau, John M.; Ivanova, Natalia; Rasio, Frederic A.

    2009-01-01

    Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in the core tends to increase with time over a range of initial cluster central densities for initial binary fractions ∼<90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure) is nonlinear and rather complicated. We also consider the importance of soft binaries, which not only modify the evolution of the binary fraction, but can also drastically change the evolution of the cluster as a whole. Finally, we briefly describe the recent addition of single and binary stellar evolution to our cluster evolution code.

  16. Performance of equal gain combining with quantized phases in rayleigh fading channels

    KAUST Repository

    Rizvi, Umar H.

    2011-01-01

    In this paper, we analyze the error probability of equal gain combining with quantized channel phase compensation for binary phase shift keying signalling over Rayleigh fading channels. The probability density and characteristic functions of the combined signal amplitude are derived and used to compute the analytic expressions for the bit error probability in dependance of the number of quantization levels L, the number of diversity branches N-R and the average received signal-to-noise ratio. The analysis is utilized to outline the trade-off between N-R and L and to compare the performance with non-coherent binary frequency shift keying and differential binary phase shift keying schemes under diversity reception. © 2011 IEEE.

  17. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  18. All-optical conversion scheme: Binary to quaternary and quaternary to binary number

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2009-04-01

    To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.

  19. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  20. Unravelling the Nature of HD 81032 – A New RS CVn Binary

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... ... component solar-abundance coronal plasma model, but implies either the presence of two or more plasma components, non-solar abundances, or a combination of both of these properties. All of the above properties of HD 81032 suggest that it is a newly identified, evolved RS CVn binary.

  1. Vapor-liquid equilibrium prediction with pseudo-cubic equation of state for binary mixtures containing hydrogen, helium, or neon

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Tanaka, H. (Nihon Univ.,Fukushima, (Japan). Faculty of Enineering)

    1990-03-01

    As an equation of state of vapor-liquid equilibrium, an original pseudo-cubic equation of state was previously proposed by the authors of this report and its study is continued. In the present study, new effective critical values of hydrogen, helium and neon were determined empirically from vapor-liquid equilibrium data of literature values against their critical temperatures, critical pressures and critical volumes. The vapor-liquid equilibrium relations of binary system quantum gas mixtures were predicted combining the conventinal pseudo-cubic equation of state and the new effective critical values, and without using binary heteromolecular interaction parameter. The predicted values of hydrogen-ethylene, helium-propane and neon-oxygen systems were compared with literature values. As a result, it was indicated that the vapor-liquid relations of binary system mixtures containing hydrogen, helium and neon can be predicted with favorable accuracy combining the effective critical values and the three parameter pseudo-cubic equation of state. 37 refs., 3 figs., 4 tabs.

  2. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides.

    Science.gov (United States)

    Bolla, Geetha; Nangia, Ashwini

    2016-03-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

  3. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  4. Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics

    International Nuclear Information System (INIS)

    Das, Devlina; Charumathi, D.; Das, Nilanjana

    2011-01-01

    Single and binary effects of dye Basic Violet 3 and heavy metals, 'namely', Pb(II) and Cd(II), were investigated for their role in dye and heavy metal bioaccumulation by Candida tropicalis that was grown in a sugarcane bagasse extract medium containing 8 g/L, 16 g/L or 24 g/L of sugar. The optimum pH was found to be 4.0 in the single system and 5.0 in the binary system. A central composite design was successfully used to analyse the experimental results. Four numerical correlations that were fitted to a second order quadratic equation were used to estimate optimum combinations predicted by response surface methodology. In the dye-Pb(II) binary system, C. tropicalis was capable of bioaccumulating 49.5% of the dye and 49.6% of the Pb(II), in comparison to 15.9% of the dye and 55.5% of the Cd(II) in the dye-Cd(II) binary system. In these two systems, the pollutants were dispersed at minimum working concentration levels. Competitive inhibition was observed in both the single and binary systems, which was suggested by an increase in the saturation constant, K s , and a simultaneous decrease in the specific growth rate that was calculated from Lineweaver-Burk plots. Atomic force microscopy images demonstrated changes in yeast cell morphology by exposure to these contaminants in the dye-Pb(II) binary system grown in a bioaccumulation medium.

  5. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2017-08-01

    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  6. Measurement and correlation of solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Jinxiu; Xie, Chuang; Yin, Qiuxiang; Tao, Linggang; Lv, Jun; Wang, Yongli; He, Fang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of cefmenoxime hydrochloride in pure and binary solvents was determined. • The experimental solubility data were correlated by thermodynamic models. • A model was employed to calculate the melting temperature of cefmenoxime hydrochloride. • Mixing thermodynamic properties of cefmenoxime hydrochloride were calculated. - Abstract: The solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures was measured at temperatures from (283.15 to 313.15) K by using the UV spectroscopic method. The results reveal that the solubility of cefmenoxime hydrochloride increases with increasing temperature in all solvent selected. The solubility of cefmenoxime hydrochloride reaches its maximum value when the mole fraction of isopropanol is 0.2 in the binary solvent mixtures of (isopropanol + water). The modified Apelblat equation and the NRTL model were successfully used to correlate the experimental solubility in pure solvents while the modified Apelblat equation, the CNIBS/R–K model and the Jouyban–Acree model were applied to correlate the solubility in binary solvent mixtures. In addition, the mixing thermodynamic properties of cefmenoxime hydrochloride in different solvents were also calculated based on the NRTL model and experimental solubility data.

  7. Topological and categorical properties of binary trees

    Directory of Open Access Journals (Sweden)

    H. Pajoohesh

    2008-04-01

    Full Text Available Binary trees are very useful tools in computer science for estimating the running time of so-called comparison based algorithms, algorithms in which every action is ultimately based on a prior comparison between two elements. For two given algorithms A and B where the decision tree of A is more balanced than that of B, it is known that the average and worst case times of A will be better than those of B, i.e., ₸A(n ≤₸B(n and TWA (n≤TWB (n. Thus the most balanced and the most imbalanced binary trees play a main role. Here we consider them as semilattices and characterize the most balanced and the most imbalanced binary trees by topological and categorical properties. Also we define the composition of binary trees as a commutative binary operation, *, such that for binary trees A and B, A * B is the binary tree obtained by attaching a copy of B to any leaf of A. We show that (T,* is a commutative po-monoid and investigate its properties.

  8. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  9. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  10. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  11. How to combine binary collision approximation and multi-body potential for molecular dynamics

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi M.; Kenmotsu, Takahiro

    2010-01-01

    Our group has been developing a hybrid simulation of the molecular dynamics (MD) and the binary collision approximation (BCA) simulation. One of the main problems of this hybridization model is that the multi-body potential suddenly appears at the moment when the simulation method switches from the BCA to the MD. This instantaneously emerged multi-body potential causes the acceleration or deceleration of atoms of the system. To solve this problem, the kinetic energy of atoms should be corrected to conserve the total energy in the system. This paper gives the solution. The hybrid simulation for hydrogen atom injection into a graphite material is executed in order to demonstrate the solution. (author)

  12. SpeX Spectroscopy of Unresolved Very Low-Mass Binaries. I. Identification of Seventeen Candidate Binaries Straddling the L Dwarf/T Dwarf Transition

    OpenAIRE

    Burgasser, Adam J.; Cruz, Kelle L.; Cushing, Michael C.; Gelino, Christopher R.; Looper, Dagny L.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Reid, I. Neill

    2009-01-01

    We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13581 pairs of absolute flux-ca...

  13. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  14. Phase equilibrium properties of binary and ternary systems containing di-isopropyl ether + 1-butanol + benzene at 313.15 K

    International Nuclear Information System (INIS)

    Villamanan, Rosa M.; Martin, M. Carmen; Chamorro, Cesar R.; Villamanan, Miguel A.; Segovia, Jose J.

    2006-01-01

    (Vapour + liquid) equilibria data of (di-isopropyl ether + 1-butanol + benzene) (di-isopropyl ether + 1-butanol) and (1-butanol + benzene) have been measured at T = 313.15 K using an isothermal total pressure cell. Data reduction by Barker's method provides correlations for the excess molar Gibbs energy using the Margules equation for the binary systems and the Wohl expansion for the ternary. The Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems reported here

  15. Practical low-cost visual communication using binary images for deaf sign language.

    Science.gov (United States)

    Manoranjan, M D; Robinson, J A

    2000-03-01

    Deaf sign language transmitted by video requires a temporal resolution of 8 to 10 frames/s for effective communication. Conventional videoconferencing applications, when operated over low bandwidth telephone lines, provide very low temporal resolution of pictures, of the order of less than a frame per second, resulting in jerky movement of objects. This paper presents a practical solution for sign language communication, offering adequate temporal resolution of images using moving binary sketches or cartoons, implemented on standard personal computer hardware with low-cost cameras and communicating over telephone lines. To extract cartoon points an efficient feature extraction algorithm adaptive to the global statistics of the image is proposed. To improve the subjective quality of the binary images, irreversible preprocessing techniques, such as isolated point removal and predictive filtering, are used. A simple, efficient and fast recursive temporal prefiltering scheme, using histograms of successive frames, reduces the additive and multiplicative noise from low-cost cameras. An efficient three-dimensional (3-D) compression scheme codes the binary sketches. Subjective tests performed on the system confirm that it can be used for sign language communication over telephone lines.

  16. (Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa

    International Nuclear Information System (INIS)

    Qian, Guo-fei; Liu, Wen; Wang, Li-tao; Wang, Dao-cai; Song, Hang

    2013-01-01

    Highlights: • We adopted a new extractive solvent “ethylene glycol” to separate the mixture. • We measured the VLE data of binary system n-propanol + ethylene glycol. • We reinforce the VLE data of binary system acetonitrile + ethylene glycol. • We predicted the VLE data for the ternary system successfully. -- Abstract: Experimental isobaric (Vapour + liquid) equilibrium (VLE) data at 101.3 kPa were determined for three binary systems, viz. {acetonitrile (1) + n-propanol (2)}, {acetonitrile (1) + ethylene glycol (3)} and {n-propanol (2) + ethylene glycol (3)} and for one ternary system {acetonitrile (1) + n-propanol (2) + ethylene glycol (3)}. The measurements were performed using an improved Rose equilibrium still. The VLE data of the binary systems passed thermodynamic consistency tests and were correlated by Wilson and NRTL models. Good results were achieved. The phase behaviour of the ternary system was predicted directly by the parameters of two models obtained from the experimental binary results. The results showed an excellent agreement with experimental values

  17. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  18. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Calvano, C.D., E-mail: cosimadamiana.calvano@uniba.it [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Monopoli, A.; Ditaranto, N. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Palmisano, F. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy)

    2013-10-10

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity.

  19. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    International Nuclear Information System (INIS)

    Calvano, C.D.; Monopoli, A.; Ditaranto, N.; Palmisano, F.

    2013-01-01

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity

  20. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  1. Causal binary mask estimation for speech enhancement using sparsity constraints

    DEFF Research Database (Denmark)

    Kressner, Abigail Anne; Anderson, David V.; Rozell, Christopher J.

    2013-01-01

    and interferer signals to preserve only the time-frequency regions that are target-dominated. Single-channel noise suppression algorithms trying to approximate the IBM using locally estimated signal-to-noise ratios without oracle knowledge have had limited success. Thought of in another way, the IBM exploits...... algorithm from the signal processing literature. However, the algorithm employs a non-causal estimator. The present work introduces an improved de-noising algorithm that uses more realistic frame-based (causal) computations to estimate a binary mask....

  2. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  3. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  4. Successful outcomes with oral fluoroquinolones combined with rifampicin in the treatment of Mycobacterium ulcerans: an observational cohort study.

    Directory of Open Access Journals (Sweden)

    Daniel P O'Brien

    2012-01-01

    Full Text Available BACKGROUND: The World Health Organization currently recommends combined streptomycin and rifampicin antibiotic treatment as first-line therapy for Mycobacterium ulcerans infections. Alternatives are needed when these are not tolerated or accepted by patients, contraindicated, or neither accessible nor affordable. Despite in vitro effectiveness, clinical evidence for fluoroquinolone antibiotic use against Mycobacterium ulcerans is lacking. We describe outcomes and tolerability of fluoroquinolone-containing antibiotic regimens for Mycobacterium ulcerans in south-eastern Australia. METHODOLOGY/PRINCIPAL FINDINGS: Analysis was performed of prospectively collected data including all primary Mycobacterium ulcerans infections treated at Barwon Health between 1998 and 2010. Medical treatment involved antibiotic use for more than 7 days; surgical treatment involved surgical excision of a lesion. Treatment success was defined as complete lesion healing without recurrence at 12 months follow-up. A complication was defined as an adverse event attributed to an antibiotic that required its cessation. A total of 133 patients with 137 lesions were studied. Median age was 62 years (range 3-94 years. 47 (34% had surgical treatment alone, and 90 (66% had combined surgical and medical treatment. Rifampicin and ciprofloxacin comprised 61% and rifampicin and clarithromycin 23% of first-line antibiotic regimens. 13/47 (30% treated with surgery alone failed treatment compared to 0/90 (0% of those treated with combination medical and surgical treatment (p<0.0001. There was no difference in treatment success rate for antibiotic combinations containing a fluoroquinolone (61/61 cases; 100% compared with those not containing a fluoroquinolone (29/29 cases; 100%. Complication rates were similar between ciprofloxacin and rifampicin (31% and rifampicin and clarithromycin (33% regimens (OR 0.89, 95% CI 0.27-2.99. Paradoxical reactions during treatment were observed in 8 (9% of

  5. Evaluation of Solid-Solution Hardening in Several Binary Alloy Systems Using Diffusion Couples Combined with Nanoindentation

    Science.gov (United States)

    Kadambi, Sourabh B.; Divya, V. D.; Ramamurty, U.

    2017-10-01

    Analysis of solid-solution hardening (SSH) in alloys requires the synthesis of large composition libraries and the measurement of strength or hardness from these compositions. Conventional methods of synthesis and testing, however, are not efficient and high-throughput approaches have been developed in the past. In the present study, we use a high-throughput combinatorial approach to examine SSH at large concentrations in binary alloys of Fe-Ni, Fe-Co, Pt-Ni, Pt-Co, Ni-Co, Ni-Mo, and Co-Mo. The diffusion couple (DC) method is used to generate concentration ( c) gradients and the nanoindentation (NI) technique to measure the hardness ( H) along these gradients. The obtained H -c profiles are analyzed within the framework of the Labusch model of SSH, and the c^{2/3} dependence of H predicted by the model is found to be generally applicable. The SSH behavior obtained using the combinatorial method is found to be largely consistent with that observed in the literature using conventional and DC-NI methods. This study evaluates SSH in Fe-, Ni-, Co-, and Pt-based binary alloys and confirms the applicability of the DC-NI approach for rapidly screening various solute elements for their SSH ability.

  6. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  7. Non-binary Entanglement-assisted Stabilizer Quantum Codes

    OpenAIRE

    Riguang, Leng; Zhi, Ma

    2011-01-01

    In this paper, we show how to construct non-binary entanglement-assisted stabilizer quantum codes by using pre-shared entanglement between the sender and receiver. We also give an algorithm to determine the circuit for non-binary entanglement-assisted stabilizer quantum codes and some illustrated examples. The codes we constructed do not require the dual-containing constraint, and many non-binary classical codes, like non-binary LDPC codes, which do not satisfy the condition, can be used to c...

  8. A comparison of nuclear power systems for Brazil using plutonium and binary cycles

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Fernandes, J.E.

    1985-01-01

    Nuclear power systems based on plutonium cycle and binary cycle are compared taking into account natural uranium demand and reactor combination. The systems start with PWR type reactors (U5/U8) and change to systems composed exclusively of FBR type reactors or PWR-FBR symbiotic systems. Four loading modes are considered for the PWR and two for the FBR. The FBR is either a LMFBR loaded with PU/U or a LMFBR loaded the binary way. A linear and a non-linear capacity growth and two different criteria for the FBR introduction are considered. The results show that a 100 GWe permanent system can be established in 50 years in all cases, based on 300000 t of natural uranium and in case of delay in the FBR introduction and if a thermal-fast symbiotic system is chosen, a binary cycle could be more advantageous than a plutonium cycle. (F.E.) [pt

  9. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  10. Constraining parameters of white-dwarf binaries using gravitational-wave and electromagnetic observations

    International Nuclear Information System (INIS)

    Shah, Sweta; Nelemans, Gijs

    2014-01-01

    The space-based gravitational wave (GW) detector, evolved Laser Interferometer Space Antenna (eLISA) is expected to observe millions of compact Galactic binaries that populate our Milky Way. GW measurements obtained from the eLISA detector are in many cases complimentary to possible electromagnetic (EM) data. In our previous papers, we have shown that the EM data can significantly enhance our knowledge of the astrophysically relevant GW parameters of Galactic binaries, such as the amplitude and inclination. This is possible due to the presence of some strong correlations between GW parameters that are measurable by both EM and GW observations, for example, the inclination and sky position. In this paper, we quantify the constraints in the physical parameters of the white-dwarf binaries, i.e., the individual masses, chirp mass, and the distance to the source that can be obtained by combining the full set of EM measurements such as the inclination, radial velocities, distances, and/or individual masses with the GW measurements. We find the following 2σ fractional uncertainties in the parameters of interest. The EM observations of distance constrain the chirp mass to ∼15%-25%, whereas EM data of a single-lined spectroscopic binary constrain the secondary mass and the distance with factors of two to ∼40%. The single-line spectroscopic data complemented with distance constrains the secondary mass to ∼25%-30%. Finally, EM data on double-lined spectroscopic binary constrain the distance to ∼30%. All of these constraints depend on the inclination and the signal strength of the binary systems. We also find that the EM information on distance and/or the radial velocity are the most useful in improving the estimate of the secondary mass, inclination, and/or distance.

  11. Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.

    Science.gov (United States)

    Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai

    2017-04-01

    This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive

  12. Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Fabio [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Toonen, Silvia [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE, Amsterdam (Netherlands); Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-06-01

    We consider the formation of binary black hole (BH) mergers through the evolution of field massive triple stars. In this scenario, favorable conditions for the inspiral of a BH binary are initiated by its gravitational interaction with a distant companion, rather than by a common-envelope phase invoked in standard binary evolution models. We use a code that follows self-consistently the evolution of massive triple stars, combining the secular triple dynamics (Lidov–Kozai cycles) with stellar evolution. After a BH triple is formed, its dynamical evolution is computed using either the orbit-averaged equations of motion, or a high-precision direct integrator for triples with weaker hierarchies for which the secular perturbation theory breaks down. Most BH mergers in our models are produced in the latter non-secular dynamical regime. We derive the properties of the merging binaries and compute a BH merger rate in the range (0.3–1.3) Gpc{sup −3} yr{sup −1}, or up to ≈2.5 Gpc{sup −3} yr{sup −1} if the BH orbital planes have initially random orientation. Finally, we show that BH mergers from the triple channel have significantly higher eccentricities than those formed through the evolution of massive binaries or in dense star clusters. Measured eccentricities could therefore be used to uniquely identify binary mergers formed through the evolution of triple stars. While our results suggest up to ≈10 detections per year with Advanced-LIGO, the high eccentricities could render the merging binaries harder to detect with planned space based interferometers such as LISA.

  13. LONG-TERM STABLE EQUILIBRIA FOR SYNCHRONOUS BINARY ASTEROIDS

    International Nuclear Information System (INIS)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-01-01

    Synchronous binary asteroids may exist in a long-term stable equilibrium, where the opposing torques from mutual body tides and the binary YORP (BYORP) effect cancel. Interior of this equilibrium, mutual body tides are stronger than the BYORP effect and the mutual orbit semimajor axis expands to the equilibrium; outside of the equilibrium, the BYORP effect dominates the evolution and the system semimajor axis will contract to the equilibrium. If the observed population of small (0.1-10 km diameter) synchronous binaries are in static configurations that are no longer evolving, then this would be confirmed by a null result in the observational tests for the BYORP effect. The confirmed existence of this equilibrium combined with a shape model of the secondary of the system enables the direct study of asteroid geophysics through the tidal theory. The observed synchronous asteroid population cannot exist in this equilibrium if described by the canonical 'monolithic' geophysical model. The 'rubble pile' geophysical model proposed by Goldreich and Sari is sufficient, however it predicts a tidal Love number directly proportional to the radius of the asteroid, while the best fit to the data predicts a tidal Love number inversely proportional to the radius. This deviation from the canonical and Goldreich and Sari models motivates future study of asteroid geophysics. Ongoing BYORP detection campaigns will determine whether these systems are in an equilibrium, and future determination of secondary shapes will allow direct determination of asteroid geophysical parameters.

  14. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    International Nuclear Information System (INIS)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Fabrycky, Daniel C.

    2014-01-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levels in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.

  15. HDE 245059: A WEAK-LINED T TAURI BINARY REVEALED BY CHANDRA AND KECK

    International Nuclear Information System (INIS)

    Baldovin-Saavedra, C.; Audard, M.; Duchene, G.; Guedel, M.; Skinner, S.L.; Paerels, F. B. S.; Ghez, A.; McCabe, C.

    2009-01-01

    We present the Chandra High Energy Transmission Grating Spectrometer and Keck observations of HDE 245059, a young weak-lined T Tauri star (WTTS), member of the pre-main-sequence group in the λ Orionis Cluster. Our high spatial resolution, near-infrared observations with Keck reveal that HDE 245059 is in fact a binary separated by 0.''87, probably composed of two WTTS based on their color indices. Based on this new information we have obtained an estimate of the masses of the binary components; ∼3 M sun and ∼2.5 M sun for the north and south components, respectively. We have also estimated the age of the system to be ∼2-3 Myr. We detect both components of the binary in the zeroth-order Chandra image and in the grating spectra. The light curves show X-ray variability of both sources and in particular a flaring event in the weaker southern component. The spectra of both stars show similar features: a combination of cool and hot plasma as demonstrated by several iron lines from Fe XVII to Fe XXV and a strong bremsstrahlung continuum at short wavelengths. We have fitted the combined grating and zeroth-order spectrum (considering the contribution of both stars) in XSPEC. The coronal abundances and emission measure distribution for the binary have been obtained using different methods, including a continuous emission measure distribution and a multi-temperature approximation. In all cases we have found that the emission is dominated by plasma between ∼8 and ∼15 MK a soft component at ∼4 MK and a hard component at ∼50 MK are also detected. The value of the hydrogen column density was low, N H ∼ 8 x 10 19 cm -2 , likely due to the clearing of the inner region of the λ Orionis cloud, where HDE 245059 is located. The abundance pattern shows an inverse first ionization potential effect for all elements from O to Fe, the only exception being Ca. To obtain the properties of the binary components, a 3-T model was fitted to the individual zeroth-order spectra

  16. Study of flame combustion of off-design binary coal blends in steam boilers

    Science.gov (United States)

    Kapustyanskii, A. A.

    2017-07-01

    Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which

  17. CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Scott C.; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela; Zlochower, Yosef [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Krolik, Julian H. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Yunes, Nicolas, E-mail: scn@astro.rit.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-08-10

    We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.

  18. Observations of new Wolf-Rayet binaries

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1982-01-01

    The author reports here preliminary results of spectrographic observations for three southern WR stars, whose binary nature had not been previously verified: HDE 320102, CD -45 0 4482, HD 62910. The observations were carried out at the Cerro Tololo Inter-American Observatory, Chile, mostly with the Cassegrain spectrograph with IT attached to the 1-m reflector. These spectrograms were secured on Kodak IIIaJ emulsion, and have a dispersion of 45 A/mm. The results suggest that HDE 320102 must be a double-lined 05-7 + WN3 spectroscopic binary, that CD -45 0 4482 appears to be a single-lined spectroscopic binary and that HD 62910 may be a binary. (Auth.)

  19. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  20. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

    Directory of Open Access Journals (Sweden)

    Geetha Bolla

    2016-03-01

    Full Text Available A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ with lactams (valerolactam and caprolactam, VLM, CPR, cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP and pyridine amides (nicotinamide and picolinamide, NAM, PAM were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1.

  1. Combining multiple decisions: applications to bioinformatics

    International Nuclear Information System (INIS)

    Yukinawa, N; Ishii, S; Takenouchi, T; Oba, S

    2008-01-01

    Multi-class classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. This article reviews two recent approaches to multi-class classification by combining multiple binary classifiers, which are formulated based on a unified framework of error-correcting output coding (ECOC). The first approach is to construct a multi-class classifier in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. In the second approach, misclassification of each binary classifier is formulated as a bit inversion error with a probabilistic model by making an analogy to the context of information transmission theory. Experimental studies using various real-world datasets including cancer classification problems reveal that both of the new methods are superior or comparable to other multi-class classification methods

  2. Converting optical scanning holograms of real objects to binary Fourier holograms using an iterative direct binary search algorithm.

    Science.gov (United States)

    Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun

    2015-02-09

    In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.

  3. Logical and Decisive Combining Criterion for Binary Group Decision Making

    Directory of Open Access Journals (Sweden)

    Ivan Vrana

    2010-04-01

    Full Text Available A new combining criterion, the Multiplicative Proportional Deviative Influence (MPDI is presented for combining or aggregating multi-expert numerical judgments in Yes-or-No type ill-structured group decision making situations. This newly proposed criterion performs well in comparison with the widely used aggregation means: the Arithmetic Mean (AM, and Geometric Mean (GM, especially in better reflecting the degree of agreement between criteria levels or numerical experts’ judgments. The MPDI can be considered as another class of combining criteria that make effect of the degree of agreement among multiple numerical judgments. The MPDI is applicable in integrating several collaborative or synergistic decision making systems through combining final numerical decision outputs. A discussion and generalization of the proposed MPDI is discussed withnumerical example.

  4. Neutron-Star Radius from a Population of Binary Neutron Star Mergers.

    Science.gov (United States)

    Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro

    2018-01-19

    We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.

  5. TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Sesana, Alberto; Madau, Piero

    2011-01-01

    Tidal stellar disruptions have traditionally been discussed as a probe of the single, massive black holes (MBHs) that are dormant in the nuclei of galaxies. We have previously used numerical scattering experiments to show that three-body interactions between bound stars in a stellar cusp and a non-evolving 'hard' MBH binary will also produce a burst of tidal disruptions, caused by a combination of the secular 'Kozai effect' and by close resonant encounters with the secondary hole. Here, we derive basic analytical scalings of the stellar disruption rates with the system parameters, assess the relative importance of the Kozai and resonant encounter mechanisms as a function of time, discuss the impact of general relativistic (GR) and extended stellar cusp effects, and develop a hybrid model to self-consistently follow the shrinking of an MBH binary in a stellar background, including slingshot ejections and tidal disruptions. In the case of a fiducial binary with primary hole mass M 1 = 10 7 M sun and mass ratio q = M 2 /M 1 = 1/81, embedded in an isothermal cusp, we derive a stellar disruption rate N-dot * ∼ 0.2 yr -1 lasting ∼3 x 10 5 yr. This rate is three orders of magnitude larger than the corresponding value for a single MBH fed by two-body relaxation, confirming our previous findings. For q 10% of the tidal-disruption events may originate in MBH binaries.

  6. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-01-01

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data

  7. Interaction of Massive Black Hole Binaries with Their Stellar Environment. II. Loss Cone Depletion and Binary Orbital Decay

    Science.gov (United States)

    Sesana, Alberto; Haardt, Francesco; Madau, Piero

    2007-05-01

    We study the long-term evolution of massive black hole binaries (MBHBs) at the centers of galaxies using detailed scattering experiments to solve the full three-body problem. Ambient stars drawn from an isotropic Maxwellian distribution unbound to the binary are ejected by the gravitational slingshot. We construct a minimal, hybrid model for the depletion of the loss cone and the orbital decay of the binary and show that secondary slingshots-stars returning on small-impact parameter orbits to have a second superelastic scattering with the MBHB-may considerably help the shrinking of the pair in the case of large binary mass ratios. In the absence of loss cone refilling by two-body relaxation or other processes, the mass ejected before the stalling of a MBHB is half the binary reduced mass. About 50% of the ejected stars are expelled in a ``burst'' lasting ~104 yr M1/46, where M6 is the binary mass in units of 106 Msolar. The loss cone is completely emptied in a few bulge crossing timescales, ~107 yr M1/46. Even in the absence of two-body relaxation or gas dynamical processes, unequal mass and/or eccentric binaries with M6>~0.1 can shrink to the gravitational wave emission regime in less than a Hubble time and are therefore ``safe'' targets for the planned Laser Interferometer Space Antenna.

  8. TESTING THE ASTEROSEISMIC SCALING RELATIONS FOR RED GIANTS WITH ECLIPSING BINARIES OBSERVED BY KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Gaulme, P.; McKeever, J.; Jackiewicz, J.; Rawls, M. L. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Corsaro, E. [Laboratoire AIM, CEA/DRF-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mosser, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, F-92195 Meudon (France); Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Mahadevan, S.; Bender, C.; Deshpande, R., E-mail: gaulme@nmsu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-12-01

    Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine the masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.

  9. Orbits for 18 Visual Binaries and Two Double-line Spectroscopic Binaries Observed with HRCAM on the CTIO SOAR 4 m Telescope, Using a New Bayesian Orbit Code Based on Markov Chain Monte Carlo

    Science.gov (United States)

    Mendez, Rene A.; Claveria, Ruben M.; Orchard, Marcos E.; Silva, Jorge F.

    2017-11-01

    We present orbital elements and mass sums for 18 visual binary stars of spectral types B to K (five of which are new orbits) with periods ranging from 20 to more than 500 yr. For two double-line spectroscopic binaries with no previous orbits, the individual component masses, using combined astrometric and radial velocity data, have a formal uncertainty of ˜ 0.1 {M}⊙ . Adopting published photometry and trigonometric parallaxes, plus our own measurements, we place these objects on an H-R diagram and discuss their evolutionary status. These objects are part of a survey to characterize the binary population of stars in the Southern Hemisphere using the SOAR 4 m telescope+HRCAM at CTIO. Orbital elements are computed using a newly developed Markov chain Monte Carlo (MCMC) algorithm that delivers maximum-likelihood estimates of the parameters, as well as posterior probability density functions that allow us to evaluate the uncertainty of our derived parameters in a robust way. For spectroscopic binaries, using our approach, it is possible to derive a self-consistent parallax for the system from the combined astrometric and radial velocity data (“orbital parallax”), which compares well with the trigonometric parallaxes. We also present a mathematical formalism that allows a dimensionality reduction of the feature space from seven to three search parameters (or from 10 to seven dimensions—including parallax—in the case of spectroscopic binaries with astrometric data), which makes it possible to explore a smaller number of parameters in each case, improving the computational efficiency of our MCMC code. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  10. Merger rate of primordial black-hole binaries

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Kovetz, Ely D.; Kamionkowski, Marc

    2017-12-01

    Primordial black holes (PBHs) have long been a candidate for the elusive dark matter (DM), and remain poorly constrained in the ˜20 - 100 M⊙ mass range. PBH binaries were recently suggested as the possible source of LIGO's first detections. In this paper, we thoroughly revisit existing estimates of the merger rate of PBH binaries. We compute the probability distribution of orbital parameters for PBH binaries formed in the early Universe, accounting for tidal torquing by all other PBHs, as well as standard large-scale adiabatic perturbations. We then check whether the orbital parameters of PBH binaries formed in the early Universe can be significantly affected between formation and merger. Our analytic estimates indicate that the tidal field of halos and interactions with other PBHs, as well as dynamical friction by unbound standard DM particles, do not do significant work on nor torque PBH binaries. We estimate the torque due to baryon accretion to be much weaker than previous calculations, albeit possibly large enough to significantly affect the eccentricity of typical PBH binaries. We also revisit the PBH-binary merger rate resulting from gravitational capture in present-day halos, accounting for Poisson fluctuations. If binaries formed in the early Universe survive to the present time, as suggested by our analytic estimates, they dominate the total PBH merger rate. Moreover, this merger rate would be orders of magnitude larger than LIGO's current upper limits if PBHs make a significant fraction of the dark matter. As a consequence, LIGO would constrain ˜10 - 300 M⊙ PBHs to constitute no more than ˜1 % of the dark matter. To make this conclusion fully robust, though, numerical study of several complex astrophysical processes—such as the formation of the first PBH halos and how they may affect PBH binaries, as well as the accretion of gas onto an extremely eccentric binary—is needed.

  11. Minimum success criteria at SGTR combined with loss of secondary heat sink

    International Nuclear Information System (INIS)

    Parzer, I.; Petelin, S.

    1993-01-01

    A parametric analysis has been performed investigating minimum success criteria for the hypothetical Steam Generator Tube Rupture (SGTR) accident in a Pressurized Water Reactor (PWR) Nuclear Power Plant, combined with the total loss of secondary heat sink. The analyses have been performed by RELAP5/MOD2 and MOD3 computer codes using Krsko NPP input deck. The Krsko NPP is a 2-loop Westinghouse PWR, 640 MWe, located in Slovenia and operating from 1981. Two break sizes have been chosen for the SGTR event: 2 and 5 double-ended broken tubes have been assumed. Total loss of secondary heat sink has been assumed from the beginning of the calculation. The ways of cooling down the plant after the postulated accident have been investigated, including Bleed ampersand Feed through the primary system. The NPP Krsko Emergency Operating Procedures (EOP) have been verified for this case. Some suggestions have been made, how to improve FR-H.1 procedure (Loss of Secondary Heat Sink), to include some steps, which take into account also SGTR when it is combined with loss of secondary heat sink. Possible misinterpretations of E-0 procedure (Reactor Trip or Safety Injection) have been studied

  12. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, the Weizmann Institute (Israel); Hung, L.-W. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Janczak, J. [Department of Physics, Ohio State University, 191 W. Woodruff, Columbus, OH 43210 (United States); Kaspi, S. [School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978 (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-02-20

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.

  13. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    Energy Technology Data Exchange (ETDEWEB)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN 37235 (United States)

    2017-06-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  14. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    International Nuclear Information System (INIS)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav

    2017-01-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10 3 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10 3 and 10 5.5 au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  15. Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe

    Science.gov (United States)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-10-01

    Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.

  16. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    Directory of Open Access Journals (Sweden)

    Ping Zeng

    Full Text Available In this paper, based on our previous multi-pattern uniform resource locator (URL binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications.

  17. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  18. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  19. Non-negative Matrix Factorization for Binary Data

    DEFF Research Database (Denmark)

    Larsen, Jacob Søgaard; Clemmensen, Line Katrine Harder

    We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though...... this is in theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare...... the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term-document matrix...

  20. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  1. Physical Properties and Evolutionary States of EA-type Eclipsing Binaries Observed by LAMOST

    Science.gov (United States)

    Qian, S.-B.; Zhang, J.; He, J.-J.; Zhu, L.-Y.; Zhao, E.-G.; Shi, X.-D.; Zhou, X.; Han, Z.-T.

    2018-03-01

    About 3196 EA-type binaries (EAs) were observed by LAMOST by 2017 June 16 and their spectral types were derived. Meanwhile, the stellar atmospheric parameters of 2020 EAs were determined. In this paper, those EAs are cataloged and their physical properties and evolutionary states are investigated. The period distribution of EAs suggests that the period limit of tidal locking for the close binaries is about 6 days. It is found that the metallicity of EAs is higher than that of EW-type binaries (EWs), indicating that EAs are generally younger than EWs and they are the progenitors of EWs. The metallicities of long-period EWs (0.4values of Log (g) are usually smaller than those of EAs. These support the evolutionary process that EAs evolve into long-period EWs through the combination of angular momentum loss (AML) via magnetic braking and case A mass transfer. For short-period EWs, their metallicities are lower than those of EAs, while their gravitational accelerations are higher. These reveal that they may be formed from cool short-period EAs through AML via magnetic braking with little mass transfer. For some EWs with high metallicities, they may be contaminated by material from the evolution of unseen neutron stars and black holes or they have third bodies that may help them to form rapidly through a short timescale of pre-contact evolution. The present investigation suggests that the modern EW populations may have formed through a combination of these mechanisms.

  2. Successful Pregnancy in a Patient with Combined Deficiency of Factor V and Factor VIII.

    Science.gov (United States)

    El Adib, Ahmed Ghassan; Majdi, Farah; Dilai, Mohamed Othmane; Asmouki, Hamid; Bassir, Ahlam; Harou, Karam; Soumani, Abderraouf; Younous, Said; Mahmal, Lahoucine

    2014-01-01

    Inherited combined factor V and factor VIII deficiency (F5F8D) is autosomal recessive transmission disorder. Epistaxis, postsurgical bleeding, and menorrhagia are the most common symptoms. The risk of miscarriage and placental abruption is consequent. We report a case of successful pregnancy in a patient with F5F8D. 20-year-old woman, born of consanguineous parents, third gestate, first parity, two miscarriages, admitted for child birth of a spontaneous pregnancy estimated at 38 weeks and was diagnosed with F5F8D. At admission, patient was hemodynamically stable, with good obstetric conditions. The biologic results showed low levels of PT (52%), factor V (7%), and factor VIII (5%), and the activated partial thromboplastin time was prolonged (68,6%). Parturient was admitted in intensive care unit, maternal and fetal monitoring was performed. Fresh frozen plasma (FFP) and factor VIII concentrates were perfused at the induction of labor. Analgesia used fentanyl titration. The delivery gave birth to a newborn male, with Apgar 10/10 and 3000 g. The puerperium was simple without any important bleeding. Laboratory tests for the newborn were acceptable. Little literature is available on this subject and there are no guidelines available concerning pregnancy; we chose to prescribe a combination of factor VIII concentrate and FFP in pre-, per- and postpartum. The same protocol was successfully used in a patient before dental extraction and prostatectomy. Vaginal delivery is possible, as our case. Management by multidisciplinary team is recommended.

  3. Binary Star Fractions from the LAMOST DR4

    Science.gov (United States)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  4. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  5. WHITE-LIGHT FLARES ON CLOSE BINARIES OBSERVED WITH KEPLER

    International Nuclear Information System (INIS)

    Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang

    2016-01-01

    Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period ( P orb ) and rotation period ( P rot , calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot , up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.

  6. Evolution and merging of binaries with compact objects

    International Nuclear Information System (INIS)

    Bethe, Hans A.; Brown, Gerald E.; Lee, Chang-Hwan

    2007-01-01

    In the light of recent observations in which short γ-ray bursts are interpreted as arising from black-hole(BH), neutron-star(NS) or NS-NS mergings we would like to review our research on the evolution of compact binaries, especially those containing NS's. These were carried out with predictions for LIGO in mind, but are directly applicable to short γ-ray bursts in the interpretation above. Most important in our review is that we show that the standard scenario for evolving NS-NS binaries always ends up with a low-mass BH (LMBH), NS binary. Bethe and Brown [1998, Astrophys. J. 506, 780] showed that this fate could be avoided if the two giants in the progenitor binary burned He at the same time, and that in this way the binary could avoid the common envelope evolution of the NS with red giant companion which sends the first born NS into a BH in the standard scenario. The burning of He at the same time requires, for the more massive giants such as the progenitors of the Hulse-Taylor binary NS that the two giants be within 4% of each other in zero age main sequence (ZAMS) mass. Applying this criterion to all binaries results in a factor ∼5 of LMBH-NS binaries as compared with NS-NS binaries. Although this factor is substantially less than the originally claimed factor of 20 which Bethe and Brown (1998) estimated, largely because a careful evolution has been carried through here, our factor 5 is augmented by a factor of ∼8 arising from the higher rate of star formation in the earlier Galaxy from which the BH-NS binaries came from. Furthermore, here we calculate the mergers for short-hard gamma-ray bursts, whereas Bethe and Brown's factor 20 included a factor of 2 for the higher chirp masses in a BH-NS binary as compared with NS-NS one. In short, we end up with an estimate of factor ∼40 over that calculated with NS-NS binary mergers in our Galaxy alone. Our total rate is estimated to be about one merging of compact objects per year. Our scenario of NS-NS binaries

  7. Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt

    Science.gov (United States)

    Thirouin, Audrey; Noll, Keith S.; Ortiz Moreno, Jose Luis; Morales , Nicolas

    2014-11-01

    An exhaustive study about short-term variability as well as derived properties from lightcurves allowed us to draw some conclusions for the Trans-Neptunian belt binary population. Based on Maxwellian fit distributions of the spin rate, we suggested that the binary population rotates slower than the non-binary one. This slowing-down can be attributed to tidal effects between the satellite and the primary, as expected. We showed that no system in this work is tidally locked, but the primary despinning process may have already affected the primary rate (as well as the satellite rotational rate). We used the Gladman et al. (1996) formula to compute the time required to tidally lock the systems, but this formula is based on several assumptions and approximations that do not always hold. The computed times are reasonable in most cases and confirm that none of the systems is tidally locked, assuming that the satellite densities are low and have a high rigidity or have a higher dissipation than usually assumed. The rotational properties of small bodies provide information about important physical properties, such as shape, density, and cohesion (Pravec & Harris 2000; Holsapple 2001, 2004; Thirouin et al. 2010, 2012). For binaries it is also possible to derive several physical parameters of the system components, such as diameters of the primary/secondary and albedo under some assumptions. We compare our results as well as our technique for deriving this information from the lightcurve with other methods, such as: i) thermal or thermophysical modeling, ii) from the mutual orbit of the binary component, iii) from direct imaging or iv) from stellar occultation by Trans-Neptunian Objects (TNOs). Finally, by studying the specific angular momentum of the sample, we proposed possible formation models for several binary TNOs. In several cases, we obtained hints of the formation mechanism from the angular momentum, but for other cases we do not have enough information about the

  8. Study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    International Nuclear Information System (INIS)

    Wright, K.H. Jr.

    1988-02-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory

  9. Constraining f(R) gravity in solar system, cosmology and binary pulsar systems

    Science.gov (United States)

    Liu, Tan; Zhang, Xing; Zhao, Wen

    2018-02-01

    The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  10. Successful Treatment of Fluconazole-Resistant Oropharyngeal Candidiasis by a Combination of Fluconazole and Terbinafine

    Science.gov (United States)

    Ghannoum, Mahmoud A.; Elewski, Boni

    1999-01-01

    Increasing incidence of resistance to conventional antifungal therapy has demanded that novel therapies be introduced. Recent in vitro studies have shown that combinations involving azoles and allylamines may be effective in inhibiting fluconazole-resistant fungi. In this report, we describe the case of a 39-year-old woman who presented with white patches on her buccal mucosa, tongue, and palate with a bright erythematous erosive base. A fungal culture revealed Candida albicans. The patient failed to respond to the initially prescribed fluconazole therapy. Failure of therapy can be attributed to a developed resistance to fluconazole from the patient’s intermittent use of this antifungal agent at varying dosages for the preceding 2 years due to a diagnosis of onychomycosis. In vitro testing of the culture from the patient showed elevated MICs of fluconazole, itraconzole, and terbinafine (MICs were 32, 0.5, and 64 μg/ml, respectively). Our goal was to combine therapies of fluconazole and terbinafine in an attempt to clear the fungal infection. Impressively, this combination resulted in the clearing of the clinical symptoms and the patient has successfully been asymptomatic for more than 12 months posttreatment. PMID:10548586

  11. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  12. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  13. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  14. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  15. Tidal and magnetic interactions in close binary stars

    International Nuclear Information System (INIS)

    Campbell, C.G.

    1983-03-01

    The thesis investigates the nature of non-synchronous motions in members of close binary stars under the influence of gravitational and magnetic fields existing in these systems, and the evolution of such motions in different classes of binaries. Largely convective stars are considered and a solution is found for the fluid flow associated with the non-synchronous rotation of such a secondary in a close binary system, taking tidal and rotational forces into account. The tidal velocity field is calculated for a low mass white dwarf secondary star in a twin - degenerate binary. It is found that the synchronisation times can be comparable to the lifetime of the binary so that some asynchronism may remain present. (U.K.)

  16. Hybrid approach for the assessment of PSA models by means of binary decision diagrams

    International Nuclear Information System (INIS)

    Ibanez-Llano, Cristina; Rauzy, Antoine; Melendez, Enrique; Nieto, Francisco

    2010-01-01

    Binary decision diagrams are a well-known alternative to the minimal cutsets approach to assess the reliability Boolean models. They have been applied successfully to improve the fault trees models assessment. However, its application to solve large models, and in particular the event trees coming from the PSA studies of the nuclear industry, remains to date out of reach of an exact evaluation. For many real PSA models it may be not possible to compute the BDD within reasonable amount of time and memory without considering the truncation or simplification of the model. This paper presents a new approach to estimate the exact probabilistic quantification results (probability/frequency) based on combining the calculation of the MCS and the truncation limits, with the BDD approach, in order to have a better control on the reduction of the model and to properly account for the success branches. The added value of this methodology is that it is possible to ensure a real confidence interval of the exact value and therefore an explicit knowledge of the error bound. Moreover, it can be used to measure the acceptability of the results obtained with traditional techniques. The new method was applied to a real life PSA study and the results obtained confirm the applicability of the methodology and open a new viewpoint for further developments.

  17. Hybrid approach for the assessment of PSA models by means of binary decision diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Llano, Cristina, E-mail: cristina.ibanez@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain); Rauzy, Antoine, E-mail: Antoine.RAUZY@3ds.co [Dassault Systemes, 10 rue Marcel Dassault CS 40501, 78946 Velizy Villacoublay Cedex (France); Melendez, Enrique, E-mail: ema@csn.e [Consejo de Seguridad Nuclear (CSN), C/Justo Dorado 11, 28040 Madrid (Spain); Nieto, Francisco, E-mail: nieto@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain)

    2010-10-15

    Binary decision diagrams are a well-known alternative to the minimal cutsets approach to assess the reliability Boolean models. They have been applied successfully to improve the fault trees models assessment. However, its application to solve large models, and in particular the event trees coming from the PSA studies of the nuclear industry, remains to date out of reach of an exact evaluation. For many real PSA models it may be not possible to compute the BDD within reasonable amount of time and memory without considering the truncation or simplification of the model. This paper presents a new approach to estimate the exact probabilistic quantification results (probability/frequency) based on combining the calculation of the MCS and the truncation limits, with the BDD approach, in order to have a better control on the reduction of the model and to properly account for the success branches. The added value of this methodology is that it is possible to ensure a real confidence interval of the exact value and therefore an explicit knowledge of the error bound. Moreover, it can be used to measure the acceptability of the results obtained with traditional techniques. The new method was applied to a real life PSA study and the results obtained confirm the applicability of the methodology and open a new viewpoint for further developments.

  18. Dynamical Formation and Merger of Binary Black Holes

    Science.gov (United States)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  19. Black Hole/Pulsar Binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-04-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disk. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 Myr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution duo to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3 - 80 BH/pulsar binaries in the Galactic disk and around 10% of them could be detected by the Five-hundred-meter Aperture Spherical radio Telescope.

  20. Investigating Dark Energy with Black Hole Binaries

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura; Kelleher, Adam

    2009-01-01

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accrete dark energy. The accretion induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state w[z] of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. This talk describes how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy.

  1. Black hole/pulsar binaries in the Galaxy

    Science.gov (United States)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  2. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  3. The Orbit of the Gamma-Ray Binary 1FGL J1018.6−5856

    Energy Technology Data Exchange (ETDEWEB)

    Monageng, I. M.; McBride, V. A.; Kniazev, A. Y.; Mohamed, S. [South African Astronomical Observatory, P.O Box 9, Observatory, 7935, Cape Town (South Africa); Townsend, L. J. [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Böttcher, M. [Centre for Space Research, North-West University, Potchefstroom, 2531 (South Africa)

    2017-09-20

    Gamma-ray binaries are a small subclass of the high mass X-ray binary population that exhibit emission across the whole electromagnetic spectrum. We present the radial velocities of 1FGL J1018.6−5856 based on the observations obtained with the Southern African Large Telescope. We combine our measurements with those published in the literature to get a broad phase coverage. The mass function obtained supports a neutron star compact object, although a black hole mass is possible for the very low inclination angles. The improved phase coverage allows constraints to be placed on the orbital eccentricity ( e = 0.31 ± 0.16), which agrees with the estimates from the high-energy data.

  4. Quantitative structure activity relationships (QSAR) for binary mixtures at non-equitoxic ratios based on toxic ratios-effects curves.

    Science.gov (United States)

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang

    2013-01-01

    The present study proposed a QSAR model to predict joint effects at non-equitoxic ratios for binary mixtures containing reactive toxicants, cyanogenic compounds and aldehydes. Toxicity of single and binary mixtures was measured by quantifying the decrease in light emission from the Photobacterium phosphoreum for 15 min. The joint effects of binary mixtures (TU sum) can thus be obtained. The results showed that the relationships between toxic ratios of the individual chemicals and their joint effects can be described by normal distribution function. Based on normal distribution equations, the joint effects of binary mixtures at non-equitoxic ratios ( [Formula: see text]) can be predicted quantitatively using the joint effects at equitoxic ratios ( [Formula: see text]). Combined with a QSAR model of [Formula: see text]in our previous work, a novel QSAR model can be proposed to predict the joint effects of mixtures at non-equitoxic ratios ( [Formula: see text]). The proposed model has been validated using additional mixtures other than the one used for the development of the model. Predicted and observed results were similar (p>0.05). This study provides an approach to the prediction of joint effects for binary mixtures at non-equitoxic ratios.

  5. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos

    2013-01-01

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P ≤ 1 day) binaries. Our sample includes four objects with remarkable log g ≅ 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times 0.9 M ☉ companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  6. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  7. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  8. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  9. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  10. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  11. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  12. PopCORN: Hunting down the differences between binary population synthesis codes

    Science.gov (United States)

    Toonen, S.; Claeys, J. S. W.; Mennekens, N.; Ruiter, A. J.

    2014-02-01

    Context. Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of various types of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying (sometimes poorly understood) physical processes involved. Several BPS codes exist that have been developed with different philosophies and aims. Although BPS has been very successful for studies of many populations of binary stars, in the particular case of the study of the progenitors of supernovae Type Ia, the predicted rates and ZAMS progenitors vary substantially between different BPS codes. Aims: To understand the predictive power of BPS codes, we study the similarities and differences in the predictions of four different BPS codes for low- and intermediate-mass binaries. We investigate the differences in the characteristics of the predicted populations, and whether they are caused by different assumptions made in the BPS codes or by numerical effects, e.g. a lack of accuracy in BPS codes. Methods: We compare a large number of evolutionary sequences for binary stars, starting with the same initial conditions following the evolution until the first (and when applicable, the second) white dwarf (WD) is formed. To simplify the complex problem of comparing BPS codes that are based on many (often different) assumptions, we equalise the assumptions as much as possible to examine the inherent differences of the four BPS codes. Results: We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough

  13. Dynamical effects of successive mergers on the evolution of spherical stellar systems

    International Nuclear Information System (INIS)

    Lee, H.M.

    1987-01-01

    Numerical investigations are carried out to study the dynamical effects of high-mass stars formed out of successive mergers among tidally captured binaries on the evolution of spherical stellar systems. It is assumed that all tidally captured systems become mergers in order to maximize these effects. Stellar systems with N greater than about 10 to the 7th are susceptible to merger instability which may lead to the formation of a central black hole. It is shown that globular clusters are likely to achieve postcollapse expansion due to three-body binary heating and stellar evolution, while galactic nuclei can easily be overcome by the merger instability in the core. 25 references

  14. "Binary" and "non-binary" detection tasks: are current performance measures optimal?

    Science.gov (United States)

    Gur, David; Rockette, Howard E; Bandos, Andriy I

    2007-07-01

    We have observed that a very large fraction of responses for several detection tasks during the performance of observer studies are in the extreme ranges of lower than 11% or higher than 89% regardless of the actual presence or absence of the abnormality in question or its subjectively rated "subtleness." This observation raises questions regarding the validity and appropriateness of using multicategory rating scales for such detection tasks. Monte Carlo simulation of binary and multicategory ratings for these tasks demonstrate that the use of the former (binary) often results in a less biased and more precise summary index and hence may lead to a higher statistical power for determining differences between modalities.

  15. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.

    2005-01-01

    We study the electrohydrodynamics of the Debye screening layer that arises in an aqueous binary solution near a planar insulating wall when applying a spatially modulated ac voltage. Combining this with first order perturbation theory we establish the governing equations for the full nonequilibrium...... problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...

  16. Joint analysis of binary and quantitative traits with data sharing and outcome-dependent sampling.

    Science.gov (United States)

    Zheng, Gang; Wu, Colin O; Kwak, Minjung; Jiang, Wenhua; Joo, Jungnam; Lima, Joao A C

    2012-04-01

    We study the analysis of a joint association between a genetic marker with both binary (case-control) and quantitative (continuous) traits, where the quantitative trait values are only available for the cases due to data sharing and outcome-dependent sampling. Data sharing becomes common in genetic association studies, and the outcome-dependent sampling is the consequence of data sharing, under which a phenotype of interest is not measured for some subgroup. The trend test (or Pearson's test) and F-test are often, respectively, used to analyze the binary and quantitative traits. Because of the outcome-dependent sampling, the usual F-test can be applied using the subgroup with the observed quantitative traits. We propose a modified F-test by also incorporating the genotype frequencies of the subgroup whose traits are not observed. Further, a combination of this modified F-test and Pearson's test is proposed by Fisher's combination of their P-values as a joint analysis. Because of the correlation of the two analyses, we propose to use a Gamma (scaled chi-squared) distribution to fit the asymptotic null distribution for the joint analysis. The proposed modified F-test and the joint analysis can also be applied to test single trait association (either binary or quantitative trait). Through simulations, we identify the situations under which the proposed tests are more powerful than the existing ones. Application to a real dataset of rheumatoid arthritis is presented. © 2012 Wiley Periodicals, Inc.

  17. Hierarchical multiple binary image encryption based on a chaos and phase retrieval algorithm in the Fresnel domain

    International Nuclear Information System (INIS)

    Wang, Zhipeng; Hou, Chenxia; Lv, Xiaodong; Wang, Hongjuan; Gong, Qiong; Qin, Yi

    2016-01-01

    Based on the chaos and phase retrieval algorithm, a hierarchical multiple binary image encryption is proposed. In the encryption process, each plaintext is encrypted into a diffraction intensity pattern by two chaos-generated random phase masks (RPMs). Thereafter, the captured diffraction intensity patterns are partially selected by different binary masks and then combined together to form a single intensity pattern. The combined intensity pattern is saved as ciphertext. For decryption, an iterative phase retrieval algorithm is performed, in which a support constraint in the output plane and a median filtering operation are utilized to achieve a rapid convergence rate without a stagnation problem. The proposed scheme has a simple optical setup and large encryption capacity. In particular, it is well suited for constructing a hierarchical security system. The security and robustness of the proposal are also investigated. (letter)

  18. Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble

    Science.gov (United States)

    Dunne, Lawrence J.; Manos, George

    2018-03-01

    Although crucial for designing separation processes little is known experimentally about multi-component adsorption isotherms in comparison with pure single components. Very few binary mixture adsorption isotherms are to be found in the literature and information about isotherms over a wide range of gas-phase composition and mechanical pressures and temperature is lacking. Here, we present a quasi-one-dimensional statistical mechanical model of binary mixture adsorption in metal-organic frameworks (MOFs) treated exactly by a transfer matrix method in the osmotic ensemble. The experimental parameter space may be very complex and investigations into multi-component mixture adsorption may be guided by theoretical insights. The approach successfully models breathing structural transitions induced by adsorption giving a good account of the shape of adsorption isotherms of CO2 and CH4 adsorption in MIL-53(Al). Binary mixture isotherms and co-adsorption-phase diagrams are also calculated and found to give a good description of the experimental trends in these properties and because of the wide model parameter range which reproduces this behaviour suggests that this is generic to MOFs. Finally, a study is made of the influence of mechanical pressure on the shape of CO2 and CH4 adsorption isotherms in MIL-53(Al). Quite modest mechanical pressures can induce significant changes to isotherm shapes in MOFs with implications for binary mixture separation processes. This article is part of the theme issue `Modern theoretical chemistry'.

  19. Clinical Success With Imiquimod Alone and In Combination With Intralesional Interferon In Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Hayriye Sarıcaoğlu

    2013-12-01

    Full Text Available Background: Basal cell carcinoma (BCC is the most common type of skin cancer in humans. Surgery is still the gold standart for treatment of BCCs. However, there are also less-invasive, nonsurgical therapies such as imiquimod cream and intralesional interferon (IFN alpha-2b for the patients who are poor candidates for surgery and who care cosmetic outcomes. Objective: We report 11 BCC cases with various subtypes successfully treated with either imiquimod alone or in combination with interferon alfa-2b. Methods: Patients with various subtypes of histopathologically proven BCCs who were treated with imiquimod or combination of imiquimod and IFN alpha-2b between 2005-2010 years at our outpatient clinic are included in this report. Results: Of 11 patients we reported, only 4 patients (3 infiltrative, 1 solid types recieved intralesional interferon alpha-2b 3 million IU, 3 times a week combined with topical imiquimod. The rest 7 patients recieved only imiquimod 5% cream. All patients were cured with these regimens. Conclusion: Imiquimod is found to be effective not only in superficial, but also infiltrative, solid, and nodular types. Intralesional interferon alpha-2b is also known to be effective in BCCs and it has a synergistic effect when combined with imiquimod.

  20. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  1. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad

    2015-01-01

    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  2. Constraining f(R gravity in solar system, cosmology and binary pulsar systems

    Directory of Open Access Journals (Sweden)

    Tan Liu

    2018-02-01

    Full Text Available The f(R gravity can be cast into the form of a scalar–tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f(R gravity, using a scalar–tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f(R gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f(R models (Hu–Sawicki model, Tsujikawa model and Starobinsky model and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  3. Successful Recanalization of a Complete Lobar Bronchial Stenosis in a Lung Transplant Patient Using a Combined Percutaneous and Bronchoscopic Approach

    International Nuclear Information System (INIS)

    Miraglia, Roberto; Vitulo, Patrizio; Maruzzelli, Luigi; Burgio, Gaetano; Caruso, Settimo; Bertani, Alessandro; Callari, Adriana; Luca, Angelo

    2016-01-01

    Airway stenosis is a major complication after lung transplantation that is usually managed with a combination of interventional endoscopic techniques, including endobronchial debridement, balloon dilation, and stent placement. Herein, we report a successful case of recanalization of a complete stenosis of the right middle lobe bronchus in a lung transplant patient, by using a combined percutaneous–bronchoscopic approach after the failure of endobronchial debridement

  4. Successful Recanalization of a Complete Lobar Bronchial Stenosis in a Lung Transplant Patient Using a Combined Percutaneous and Bronchoscopic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Miraglia, Roberto, E-mail: rmiraglia@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Radiology Service, Department of Diagnostic and Therapeutic Services (Italy); Vitulo, Patrizio, E-mail: pvitulo@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Pulmonology Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation (Italy); Maruzzelli, Luigi, E-mail: lmaruzzelli@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Radiology Service, Department of Diagnostic and Therapeutic Services (Italy); Burgio, Gaetano, E-mail: gburgio@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Operating Room Service, Department of Anesthesia and Intensive Care (Italy); Caruso, Settimo, E-mail: secaruso@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Radiology Service, Department of Diagnostic and Therapeutic Services (Italy); Bertani, Alessandro, E-mail: abertani@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Thoracic Surgery and Lung Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation (Italy); Callari, Adriana, E-mail: acallari@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Pulmonology Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation (Italy); Luca, Angelo, E-mail: aluca@ismett.edu [Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Radiology Service, Department of Diagnostic and Therapeutic Services (Italy)

    2016-03-15

    Airway stenosis is a major complication after lung transplantation that is usually managed with a combination of interventional endoscopic techniques, including endobronchial debridement, balloon dilation, and stent placement. Herein, we report a successful case of recanalization of a complete stenosis of the right middle lobe bronchus in a lung transplant patient, by using a combined percutaneous–bronchoscopic approach after the failure of endobronchial debridement.

  5. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  6. WHITE-DWARF-MAIN-SEQUENCE BINARIES IDENTIFIED FROM THE LAMOST PILOT SURVEY

    International Nuclear Information System (INIS)

    Ren Juanjuan; Luo Ali; Li Yinbi; Wei Peng; Zhao Jingkun; Zhao Yongheng; Song Yihan; Zhao Gang

    2013-01-01

    We present a set of white-dwarf-main-sequence (WDMS) binaries identified spectroscopically from the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) pilot survey. We develop a color selection criteria based on what is so far the largest and most complete Sloan Digital Sky Survey (SDSS) DR7 WDMS binary catalog and identify 28 WDMS binaries within the LAMOST pilot survey. The primaries in our binary sample are mostly DA white dwarfs except for one DB white dwarf. We derive the stellar atmospheric parameters, masses, and radii for the two components of 10 of our binaries. We also provide cooling ages for the white dwarf primaries as well as the spectral types for the companion stars of these 10 WDMS binaries. These binaries tend to contain hot white dwarfs and early-type companions. Through cross-identification, we note that nine binaries in our sample have been published in the SDSS DR7 WDMS binary catalog. Nineteen spectroscopic WDMS binaries identified by the LAMOST pilot survey are new. Using the 3σ radial velocity variation as a criterion, we find two post-common-envelope binary candidates from our WDMS binary sample

  7. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  8. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Mikkola, Seppo

    2015-01-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  9. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  10. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    Science.gov (United States)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  11. Non-binary or genderqueer genders.

    Science.gov (United States)

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are 'genderqueer' or 'non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging presence and advocacy of these groups of people. Population-based studies show a small percentage--but a sizable proportion in terms of raw numbers--of people who identify as non-binary. While such genders have been extant historically and globally, they remain marginalized, and as such--while not being disorders or pathological in themselves--people with such genders remain at risk of victimization and of minority or marginalization stress as a result of discrimination. This paper therefore reviews the limited literature on this field and considers ways in which (mental) health professionals may assist the people with genderqueer and non-binary gender identities and/or expressions they may see in their practice. Treatment options and associated risks are discussed.

  12. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  13. A Survey of Binary Similarity and Distance Measures

    Directory of Open Access Journals (Sweden)

    Seung-Seok Choi

    2010-02-01

    Full Text Available The binary feature vector is one of the most common representations of patterns and measuring similarity and distance measures play a critical role in many problems such as clustering, classification, etc. Ever since Jaccard proposed a similarity measure to classify ecological species in 1901, numerous binary similarity and distance measures have been proposed in various fields. Applying appropriate measures results in more accurate data analysis. Notwithstanding, few comprehensive surveys on binary measures have been conducted. Hence we collected 76 binary similarity and distance measures used over the last century and reveal their correlations through the hierarchical clustering technique.

  14. Eclipsing binary stars with a δ Scuti component

    Science.gov (United States)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  15. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    Science.gov (United States)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  16. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  17. Non-Binary Protograph-Based LDPC Codes: Analysis,Enumerators and Designs

    OpenAIRE

    Sun, Yizeng

    2013-01-01

    Non-binary LDPC codes can outperform binary LDPC codes using sum-product algorithm with higher computation complexity. Non-binary LDPC codes based on protographs have the advantage of simple hardware architecture. In the first part of this thesis, we will use EXIT chart analysis to compute the thresholds of different protographs over GF(q). Based on threshold computation, some non-binary protograph-based LDPC codes are designed and their frame error rates are compared with binary LDPC codes. ...

  18. Determination of mango fruit from binary image using randomized Hough transform

    Science.gov (United States)

    Rizon, Mohamed; Najihah Yusri, Nurul Ain; Abdul Kadir, Mohd Fadzil; bin Mamat, Abd. Rasid; Abd Aziz, Azim Zaliha; Nanaa, Kutiba

    2015-12-01

    A method of detecting mango fruit from RGB input image is proposed in this research. From the input image, the image is processed to obtain the binary image using the texture analysis and morphological operations (dilation and erosion). Later, the Randomized Hough Transform (RHT) method is used to find the best ellipse fits to each binary region. By using the texture analysis, the system can detect the mango fruit that is partially overlapped with each other and mango fruit that is partially occluded by the leaves. The combination of texture analysis and morphological operator can isolate the partially overlapped fruit and fruit that are partially occluded by leaves. The parameters derived from RHT method was used to calculate the center of the ellipse. The center of the ellipse acts as the gripping point for the fruit picking robot. As the results, the rate of detection was up to 95% for fruit that is partially overlapped and partially covered by leaves.

  19. DISTANCES TO FOUR SOLAR NEIGHBORHOOD ECLIPSING BINARIES FROM ABSOLUTE FLUXES

    International Nuclear Information System (INIS)

    Wilson, R. E.; Van Hamme, W.

    2009-01-01

    Eclipsing binary (EB)-based distances are estimated for four solar neighborhood EBs by means of the Direct Distance Estimation (DDE) algorithm. Results are part of a project to map the solar neighborhood EBs in three dimensions, independently of parallaxes, and provide statistical comparisons between EB and parallax distances. Apart from judgments on adopted temperature and interstellar extinction, DDE's simultaneous light-velocity solutions are essentially objective and work as well for semidetached (SD) and overcontact binaries as for detached systems. Here, we analyze two detached and two SD binaries, all double lined. RS Chamaeleontis is a pre-main-sequence (MS), detached EB with weak δ Scuti variations. WW Aurigae is detached and uncomplicated, except for having high metallicity. RZ Cassiopeiae is SD and has very clear δ Scuti variations and several peculiarities. R Canis Majoris (R CMa) is an apparently simple but historically problematic SD system, also with weak δ Scuti variations. Discussions include solution rules and strategies, weighting, convergence, and third light problems. So far there is no indication of systematic band dependence among the derived distances, so the adopted band-calibration ratios seem consistent. Agreement of EB-based and parallax distances is typically within the overlapped uncertainties, with minor exceptions. We also suggest an explanation for the long-standing undermassiveness problem of R CMa's hotter component, in terms of a fortuitous combination of low metallicity and evolution slightly beyond the MS.

  20. Reconciliation with non-binary species trees.

    Science.gov (United States)

    Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton; Durand, Dannie

    2008-10-01

    Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|V(G) | x (k(S) + h(S))) time, where |V(G)| is the number of nodes in the gene tree, h(S) is the height of the species tree and k(S) is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in NOTUNG, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets.

  1. Influence of non-binary effects on intranuclear cascade method

    International Nuclear Information System (INIS)

    Gomes, E.H.C.

    1985-01-01

    The importance of non binary process effects in the intranuclear cascade method is analysed. It is shown that, in the higher density steps, the non binary collisions lead to baryon density distribution and rapidity differents from the one obtained using the usual intranuclear cascade method (limited to purely binary collisions). The validity of the applications of binary intranuclear cascade method to the simulation of the thermal equilibrium, nuclear transparency and particle production, is discussed. (M.C.K.) [pt

  2. THE CLOSE BINARY FRACTION OF DWARF M STARS

    International Nuclear Information System (INIS)

    Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.

    2012-01-01

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ∼17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  3. THE CLOSE BINARY FRACTION OF DWARF M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Benjamin M. [Penn Manor High School, 100 East Cottage Avenue, Millersville, PA 17551 (United States); Blake, Cullen H.; Knapp, Gillian R. [Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)

    2012-01-10

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  4. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  5. Wide- and contact-binary formation in substructured young stellar clusters

    Science.gov (United States)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  6. An Efficient Binary Differential Evolution with Parameter Adaptation

    Directory of Open Access Journals (Sweden)

    Dongli Jia

    2013-04-01

    Full Text Available Differential Evolution (DE has been applied to many scientific and engineering problems for its simplicity and efficiency. However, the standard DE cannot be used in a binary search space directly. This paper proposes an adaptive binary Differential Evolution algorithm, or ABDE, that has a similar framework as the standard DE but with an improved binary mutation strategy in which the best individual participates. To further enhance the search ability, the parameters of the ABDE are slightly disturbed in an adaptive manner. Experiments have been carried out by comparing ABDE with two binary DE variants, normDE and BDE, and the most used binary search technique, GA, on a set of 13 selected benchmark functions and the classical 0-1 knapsack problem. Results show that the ABDE performs better than, or at least comparable to, the other algorithms in terms of search ability, convergence speed, and solution accuracy.

  7. Beyond binaries : a way forward for comparativeeducation

    Directory of Open Access Journals (Sweden)

    Marianne Larsen

    2012-09-01

    Full Text Available Binary discourses shape and produce the stories we construct about the field of comparative education. In the first part of this article, I review a set of binary discourses that have characterized social science research since the Enlightenment, including: quantitative-qualitative, nomotheticidiographic, inductive-deductive, and practice-theory. We can think of each of these binaries at opposite ends of a set of spectrums. In the second section of the paper, I show some of the ways in which these binaries have influenced the ways that we write and talk about research within the field of comparative education. I refer to the notion of binary discourses and the productive capacity of these discourses to shape our field. I then outline some critiques of these binaries to demonstrate the inherent limitations of binary discourses, and why we need to move beyond binaries in our research, and in the histories about our field. Finally, I present some tentative conclusions on ways to get ourselves out of the trap of binary thinking.Los discursos binarios moldean y producen los argumentos que construimos sobre la disciplina de la Educación Comparada. En la primera parte de este artículo, analizo un conjunto de discursos binarios que han caracterizado la investigación en Ciencias Sociales desde la Ilustración, incluyendo la cuantitativa-cualitativa, nomotética-idiográfica, inductivadeductiva, y la práctica-teoría. Podemos pensar sobre cada uno de estos discursos binarios como argumentos en los polos de un conjunto de posibilidades. En la segunda sección del artículo, revelo algunos modos en los que estos discursos binarios han influenciado las formas a través de las cuales escribimos y analizamos la investigación en el ámbito de la Educación Comparada. Analizo la noción de discursos binarios y la capacidad productiva de estos discursos de impactar nuestra ciencia. Seguidamente expongo algunas críticas de estos discursos binarios con el

  8. Grammar-Based Specification and Parsing of Binary File Formats

    Directory of Open Access Journals (Sweden)

    William Underwood

    2012-03-01

    Full Text Available The capability to validate and view or play binary file formats, as well as to convert binary file formats to standard or current file formats, is critically important to the preservation of digital data and records. This paper describes the extension of context-free grammars from strings to binary files. Binary files are arrays of data types, such as long and short integers, floating-point numbers and pointers, as well as characters. The concept of an attribute grammar is extended to these context-free array grammars. This attribute grammar has been used to define a number of chunk-based and directory-based binary file formats. A parser generator has been used with some of these grammars to generate syntax checkers (recognizers for validating binary file formats. Among the potential benefits of an attribute grammar-based approach to specification and parsing of binary file formats is that attribute grammars not only support format validation, but support generation of error messages during validation of format, validation of semantic constraints, attribute value extraction (characterization, generation of viewers or players for file formats, and conversion to current or standard file formats. The significance of these results is that with these extensions to core computer science concepts, traditional parser/compiler technologies can potentially be used as a part of a general, cost effective curation strategy for binary file formats.

  9. Comments on the evolution and origin of cataclysmic binaries

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1980-01-01

    Aspects of the observational data on cataclysmic binaries are discussed and possible correlations between type of behaviour and binary period are noted. A gap between 2 and 3 hr in binary periods is judged to be real. A simple numerical procedure for evolving Roche-lobe-filling stars is described, and applied to white dwarf-red dwarf binaries for various mass loss and angular momentum loss mechanisms, and initial conditions. The results, in which the short-time-scale behaviour of the systems is ignored, are classified into four modes of evolution: normal, nuclear evolution dominated, angular momentum loss dominated and hydrodynamical. The clustering below 2 hr is interpreted in terms of evolution following the hydrodynamical mode, and it is suggested that both stars in such systems are of low mass. This may be the commonest type of cataclysmic binary. A possible explanation for the apparent clustering of classical novae to periods of 3 to 5 hr is given, and evolutionary schemes for cataclysmic binaries outlined. It is suggested that the short-period systems (approximately < 2 hr) arise mainly from late case B mass transfer in the original binary and the longer period systems mainly from case C. (author)

  10. Measurement and correlation of critical properties for binary mixtures and ternary mixtures containing gasoline additives

    International Nuclear Information System (INIS)

    Wang, Lipu; Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou

    2014-01-01

    Highlights: • A high-pressure view cell was used to measure the critical properties of mixtures. • Three binary mixtures’ and three ternary mixtures’ critical properties were reported. • The experimental data of each system covered the whole mole fraction range. • The critical properties of the ternary mixtures were predicted with the PR–WS model. • Empirical equations were used to correlate the experimental results. - Abstract: The critical properties of three binary mixtures and three ternary mixtures containing gasoline additives (including methanol + 1-propanol, heptane + ethanol, heptane + 1-propanol, methanol + 1-propanol + heptane, methanol + 1-propanol + methyl tert-butyl ether (MTBE), and ethanol + heptane + MTBE) were determined by a high-pressure cell. All the critical lines of binary mixtures belong to the type I described by Scott and van Konynenburg. The system of methanol + 1-propanol showed little non-ideal behavior due to their similar molecular structures. The heptane + ethanol and heptane + 1-propanol systems showed visible non-ideal behavior for their great differences in molecular structure. The Peng–Robinson equation of state combined with the Wong–Sandler mixing rule (PR–WS) was applied to correlate the critical properties of binary mixtures. The critical points of the three ternary mixtures were predicted by the PR–WS model with the binary interaction parameters using the procedure proposed by Heidemann and Khalil. The predicted critical temperatures were in good agreement with the experimental values, while the predicted critical pressures differed from the measured values. The experimental values of binary mixtures were fitted well with the Redlich–Kister equation. The critical properties of ternary mixtures were correlated with the Cibulka’s equation, and the critical surfaces were plotted using the Cibulka’s equations

  11. Density and atomic volume in liquid Al-Fe and Al-Ni binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Plevachuk, Yu. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Metal Physics; Egry, I.; Brillo, J.; Holland-Moritz, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. fuer Raumsimulation; Kaban, I. [Chemnitz Univ. of Technolgy (Germany). Inst. of Physics

    2007-02-15

    The density of liquid Al-Fe and Al-Ni binary alloys have been determined over a wide temperature range by a noncontact technique combining electromagnetic levitation and optical dilatometry. The temperature and composition dependences of the density are analysed. A negative excess volume correlates with the negative enthalpy of mixing, compound forming ability and chemical short-range ordering in liquid Al-Fe and Al-Ni alloys. (orig.)

  12. Testing Modified Gravity Theories via Wide Binaries and GAIA

    Science.gov (United States)

    Pittordis, Charalambos; Sutherland, Will

    2018-06-01

    The standard ΛCDM model based on General Relativity (GR) including cold dark matter (CDM) is very successful at fitting cosmological observations, but recent non-detections of candidate dark matter (DM) particles mean that various modified-gravity theories remain of significant interest. The latter generally involve modifications to GR below a critical acceleration scale ˜10-10 m s-2. Wide-binary (WB) star systems with separations ≳ 5 kAU provide an interesting test for modified gravity, due to being in or near the low-acceleration regime and presumably containing negligible DM. Here, we explore the prospects for new observations pending from the GAIA spacecraft to provide tests of GR against MOND or TeVes-like theories in a regime only partially explored to date. In particular, we find that a histogram of (3D) binary relative velocities, relative to equilibrium circular velocity predicted from the (2D) projected separation predicts a rather sharp feature in this distribution for standard gravity, with an 80th (90th) percentile value close to 1.025 (1.14) with rather weak dependence on the eccentricity distribution. However, MOND/TeVeS theories produce a shifted distribution, with a significant increase in these upper percentiles. In MOND-like theories without an external field effect, there are large shifts of order unity. With the external field effect included, the shifts are considerably reduced to ˜0.04 - 0.08, but are still potentially detectable statistically given reasonably large samples and good control of contaminants. In principle, followup of GAIA-selected wide binaries with ground-based radial velocities accurate to ≲ 0.03 { km s^{-1}} should be able to produce an interesting new constraint on modified-gravity theories.

  13. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell.

    Science.gov (United States)

    Ma, Yanhong; Chu, Xiaodong; Tang, Guoyi; Yao, Youwei

    2013-02-15

    A series of polyurea/polyurethane microcapsules with butyl stearate and paraffin as binary core materials are successfully synthesized via interfacial polymerization method. The phase change temperature of these microencapsulated phase change materials (micro-PCMs) can be adjusted by regulating the composition of the binary core. SEM photographs show that these micro-PCMs have relatively spherical profiles and compact surfaces with diameter ranging from 5 to 15 μm. DSC results indicate that the binary core content in micro-PCMs is in a range of 45-60 wt%. Moreover, after being treated under 50°C for 7 days or subjected to thermal-cycling test for 500 times, the micro-PCMs keep good thermal performances and stabilities. Besides, these micro-PCMs show good thermal stability, and the degradation temperature differs from the different compositions of the binary core and molecular weight of the water-soluble monomers. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Environment-aware ideal binary mask estimation using monaural cues

    DEFF Research Database (Denmark)

    May, Tobias; Dau, Torsten

    2013-01-01

    We present a monaural approach to speech segregation that estimates the ideal binary mask (IBM) by combining amplitude modulation spectrogram (AMS) features, pitch-based features and speech presence probability (SPP) features derived from noise statistics. To maintain a high mask estimation...... accuracy in the presence of various background noises, the system employs environment-specific segregation models and automatically selects the appropriate model for a given input signal. Furthermore, instead of classifying each timefrequency (T-F) unit independently, the a posteriori probabilities...... of speech and noise presence are evaluated by considering adjacent TF units. The proposed system achieves high classification accuracy....

  15. Graphic display of spatially distributed binary-state experimental data

    International Nuclear Information System (INIS)

    Watson, B.L.

    1981-01-01

    Experimental data collected from a large number of transducers spatially distributed throughout a three-dimensional volume has typically posed a difficult interpretation task for the analyst. This paper describes one approach to alleviating this problem by presenting color graphic displays of experimental data; specifically, data representing the dynamic three-dimensional distribution of cooling fluid collected during the reflood and refill of simulated nuclear reactor vessels. Color-coded binary data (wet/dry) are integrated with a graphic representation of the reactor vessel and displayed on a high-resolution color CRT. The display is updated with successive data sets and made into 16-mm movies for distribution and analysis. Specific display formats are presented and extension to other applications discussed

  16. Non-binary or genderqueer genders

    OpenAIRE

    Richards, Christina; Bouman, Walter Pierre; Seal, Leighton; Barker, Meg John; Nieder, Timo O; T'Sjoen, Guy

    2016-01-01

    Some people have a gender which is neither male nor female and may identify as both male and female at one time, as different genders at different times, as no gender at all, or dispute the very idea of only two genders. The umbrella terms for such genders are genderqueer' or non-binary' genders. Such gender identities outside of the binary of female and male are increasingly being recognized in legal, medical and psychological systems and diagnostic classifications in line with the emerging ...

  17. Phase equilibria of binary mixtures by molecular simulation and cubic equations of state

    Directory of Open Access Journals (Sweden)

    Cabral V.F.

    2001-01-01

    Full Text Available Molecular simulation data were used to study the performance of equations of state (EoS and combining rules usually employed in thermodynamic property calculations. The Monte Carlo method and the Gibbs ensemble technique were used for determining composition and densities of vapor and liquid phases in equilibrium for binary mixtures of Lennard-Jones fluids. Simulation results are compared to data in the literature and to those calculated by the t-PR-LJ EoS. The use of adequate combining rules has been shown to be very important for the satisfactory representation of molecular simulation data.

  18. Statistical Analysis of a Comprehensive List of Visual Binaries

    Directory of Open Access Journals (Sweden)

    Kovaleva D.

    2015-12-01

    Full Text Available Visual binary stars are the most abundant class of observed binaries. The most comprehensive list of data on visual binaries compiled recently by cross-matching the largest catalogues of visual binaries allowed a statistical investigation of observational parameters of these systems. The dataset was cleaned by correcting uncertainties and misclassifications, and supplemented with available parallax data. The refined dataset is free from technical biases and contains 3676 presumably physical visual pairs of luminosity class V with known angular separations, magnitudes of the components, spectral types, and parallaxes. We also compiled a restricted sample of 998 pairs free from observational biases due to the probability of binary discovery. Certain distributions of observational and physical parameters of stars of our dataset are discussed.

  19. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    International Nuclear Information System (INIS)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-01-01

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a δ-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the

  20. Main Memory Implementations for Binary Grouping

    OpenAIRE

    May, Norman; Moerkotte, Guido

    2005-01-01

    An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance.

  1. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  2. A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks

    Directory of Open Access Journals (Sweden)

    Tao Geng

    2008-01-01

    Full Text Available A novel 4-class single-trial brain computer interface (BCI based on two (rather than four or more binary linear discriminant analysis (LDA classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms.

  3. Investigation of Boiling Heat Transfer of Binary Mixture from Vertical Tube Embedded in porous Media

    Institute of Scientific and Technical Information of China (English)

    HailongMo; TongzeMa; 等

    1996-01-01

    Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment.The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whise diameters range from 0.5 to 4.3mm.Due to the effect of composition,the trend of combination of vapor bubbles was reduced.resulting in the increase of peak heat flux of binary mixture,With the increase of ethanol mole fraction,0.5mm diameter bead of peak heat flux of binary mixture.with the increase of ethanol mole fraction.0.5mm diameter bead had lower value of peak heat flux,while for pure liquid the critical state is difficult to appear,with given diameter of glass bead,there existed an optimum value of mole fraction of ethanol,which was decreased with the increase of bead diameter,A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix which agreed with the experimental results satisfactorily.

  4. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  5. Optical three-step binary-logic-gate-based MSD arithmetic

    Science.gov (United States)

    Fyath, R. S.; Alsaffar, A. A. W.; Alam, M. S.

    2003-11-01

    A three-step modified signed-digit (MSD) adder is proposed which can be optically implmented using binary logic gates. The proposed scheme depends on encoding each MSD digits into a pair of binary digits using a two-state and multi-position based encoding scheme. The design algorithm depends on constructing the addition truth table of binary-coded MSD numbers and then using Karnaugh map to achieve output minimization. The functions associated with the optical binary logic gates are achieved by simply programming the decoding masks of an optical shadow-casting logic system.

  6. Combined ultrasound and fluoroscopy guided port catheter implantation-High success and low complication rate

    International Nuclear Information System (INIS)

    Gebauer, Bernhard; El-Sheik, Michael; Vogt, Michael; Wagner, Hans-Joachim

    2009-01-01

    Purpose: To evaluate peri-procedural, early and late complications as well as patients' acceptance of combined ultrasound and fluoroscopy guided radiological port catheter implantation. Materials and methods: In a retrospective analysis, all consecutive radiological port catheter implantations (n = 299) between August 2002 and December 2004 were analyzed. All implantations were performed in an angio suite under analgosedation and antibiotic prophylaxis. Port insertion was guided by ultrasonographic puncture of the jugular (n = 298) or subclavian (n = 1) vein and fluoroscopic guidance of catheter placement. All data of the port implantation had been prospectively entered into a database for interventional radiological procedures. To assess long-term results, patients, relatives or primary physicians were interviewed by telephone; additional data were generated from the hospital information system. Patients and/or the relatives were asked about their satisfaction with the port implantion procedure and long-term results. Results: The technical success rate was 99% (298/299). There were no major complications according to the grading system of SIR. A total of 23 (0.33 per 1000 catheter days) complications (early (n = 4), late (n = 19)) were recorded in the follow-period of a total of 72,727 indwelling catheter days. Infectious complications accounted for 0.15, thrombotic for 0.07 and migration for 0.04 complications per 1000 catheter days. Most complications were successfully treated by interventional measures. Twelve port catheters had to be explanted due to complications, mainly because of infection (n = 9). Patients' and relatives' satisfaction with the port catheter system was very high, even if complications occurred. Conclusion: Combined ultrasound and fluoroscopy guided port catheter implantation is a very safe and reliable procedure with low peri-procedural, early and late complication rate. The intervention achieves very high acceptance by the patients and

  7. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    Science.gov (United States)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  8. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    Science.gov (United States)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  9. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search

    Directory of Open Access Journals (Sweden)

    Xingwang Huang

    2017-01-01

    Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.

  10. A Long-Period Totally Eclipsing Binary Star at the Turnoff of the Open Cluster NGC 6819 Discovered with Kepler

    DEFF Research Database (Denmark)

    Sandquist, Eric L.; Mathieu, Robert D.; Brogaard, Karsten

    2012-01-01

    We present the discovery of the totally eclipsing long-period (P = 771.8 d) binary system WOCS 23009 in the old open cluster NGC 6819 that contains both an evolved star near central hydrogen exhaustion and a low-mass (0.45 Msun) star. This system was previously known to be a single-lined spectros......We present the discovery of the totally eclipsing long-period (P = 771.8 d) binary system WOCS 23009 in the old open cluster NGC 6819 that contains both an evolved star near central hydrogen exhaustion and a low-mass (0.45 Msun) star. This system was previously known to be a single......-lined spectroscopic binary, but the discovery of an eclipse near apastron using data from the Kepler space telescope makes it clear that the system has an inclination that is very close to 90 degrees. Although the secondary star has not been identified in spectra, the mass of the primary star can be constrained using...... other eclipsing binaries in the cluster. The combination of total eclipses and a mass constraint for the primary star allows us to determine a reliable mass for the secondary star and radii for both stars, and to constrain the cluster age. Unlike well-measured stars of similar mass in field binaries...

  11. Asymmetric supernova explosions and the origin of binary pulsars

    International Nuclear Information System (INIS)

    Sutantyo, W.

    1978-01-01

    The author investigates the effect of asymmetric supernova explosions on the orbital parameters of binary systems with a compact component. Such explosions are related to the origin of binary pulsars. The degree of asymmetry of the explosion is represented by the kick velocity gained by the exploding star due to the asymmetric mass ejection. The required kick velocity to produce the observed parameters of the binary pulsar PSR 1913 + 16 should be larger than approximately 80 km s -1 if the mass of the exploding star is larger than approximately 4 solar masses. The mean survival probability of the binary system ( ) is examined for various degrees of asymmetry in the explosion. The rare occurrence of a binary pulsar does not neccessarily imply that such a probability is low since not all pulsars have originated in a binary system. Assuming the birth rate of pulsars by Taylor and Manchester (1977), it is derived that would be as high as 0.25. Such values of can be obtained if the mass of the exploding stars is, in general, not large (< approximately 10 solar masses). (Auth.)

  12. General simulation algorithm for autocorrelated binary processes.

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  13. Mass loss from interacting close binary systems

    Science.gov (United States)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  14. General simulation algorithm for autocorrelated binary processes

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  15. The Discovery of the Most Accelerated Binary Pulsar

    OpenAIRE

    Cameron, A. D.; Champion, D. J.; Kramer, M.; Bailes, M.; Barr, E. D.; Bassa, C. G.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C. M. L.; Freire, P. C. C.; Jameson, A.; Johnston, S.

    2018-01-01

    Pulsars in relativistic binary systems have emerged as fantastic natural laboratories for testing theories of gravity, the most prominent example being the double pulsar, PSR J0737$-$3039. The HTRU-South Low Latitude pulsar survey represents one of the most sensitive blind pulsar surveys taken of the southern Galactic plane to date, and its primary aim has been the discovery of new relativistic binary pulsars. Here we present our binary pulsar searching strategy and report on the survey's fla...

  16. Shrinking of Binaries in a WIMPY Background at the Galactic Center

    Science.gov (United States)

    Hills, J. G.

    2001-12-01

    The nature of the dark matter in the Galactic Halo is still not clear. Constraints can be placed on it; e.g., it cannot be in baryons less massive than about 1022 grams (Hills, 1986, Astron. J. 92, 595). It may be in elementary weakly interacting massive particles, WIMPS. Apart from providing most of the mass of the Galaxy, the only known significant dynamical effect of WIMPS is to cause a gradual shrinking of tightly bound binaries (Hills 1983, Astron. J. 88, 1269) as they interact with the background soup of WIMPS. This effect may be observable in binaries close to the Galactic Center if a significant fraction of the mass density near the central black hole is from WIMPS. The requisite binaries would have to have orbital velocities greater than the local velocity dispersion of the WIMPS relative to the binary. The velocity dispersion increases near the black hole. The binary cannot be too close to the black hole or its tidal field will breakup the binary. If the local WIMP density is 107 g/cm3, the fractional rate of reduction in the binary orbital period is about 5 x 10-10/yr for a binary having a semimajor axis equal to 3 solar radii in a soup of WIMPS having a velocity dispersion of 200 km/s relative to the binary. This gradual erosion of the binary period may be detectable, particularly, if one of the binary components is a pulsar.

  17. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes...... their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis...

  18. A Bayesian method for comparing and combining binary classifiers in the absence of a gold standard

    Directory of Open Access Journals (Sweden)

    Keith Jonathan M

    2012-07-01

    Full Text Available Abstract Background Many problems in bioinformatics involve classification based on features such as sequence, structure or morphology. Given multiple classifiers, two crucial questions arise: how does their performance compare, and how can they best be combined to produce a better classifier? A classifier can be evaluated in terms of sensitivity and specificity using benchmark, or gold standard, data, that is, data for which the true classification is known. However, a gold standard is not always available. Here we demonstrate that a Bayesian model for comparing medical diagnostics without a gold standard can be successfully applied in the bioinformatics domain, to genomic scale data sets. We present a new implementation, which unlike previous implementations is applicable to any number of classifiers. We apply this model, for the first time, to the problem of finding the globally optimal logical combination of classifiers. Results We compared three classifiers of protein subcellular localisation, and evaluated our estimates of sensitivity and specificity against estimates obtained using a gold standard. The method overestimated sensitivity and specificity with only a small discrepancy, and correctly ranked the classifiers. Diagnostic tests for swine flu were then compared on a small data set. Lastly, classifiers for a genome-wide association study of macular degeneration with 541094 SNPs were analysed. In all cases, run times were feasible, and results precise. The optimal logical combination of classifiers was also determined for all three data sets. Code and data are available from http://bioinformatics.monash.edu.au/downloads/. Conclusions The examples demonstrate the methods are suitable for both small and large data sets, applicable to the wide range of bioinformatics classification problems, and robust to dependence between classifiers. In all three test cases, the globally optimal logical combination of the classifiers was found to be

  19. PROSPECTS FOR DETECTING ASTEROSEISMIC BINARIES IN KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Miglio, A.; Chaplin, W. J.; Elsworth, Y.; Handberg, R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Farmer, R.; Kolb, U. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Girardi, L. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR8617, Université Paris XI, Bâtiment 121, F-91405 Orsay Cedex (France)

    2014-03-20

    Asteroseismology may in principle be used to detect unresolved stellar binary systems comprised of solar-type stars and/or red giants. This novel method relies on the detection of the presence of two solar-like oscillation spectra in the frequency spectrum of a single light curve. Here, we make predictions of the numbers of systems that may be detectable in data already collected by the NASA Kepler Mission. Our predictions, which are based upon TRILEGAL and BiSEPS simulations of the Kepler field of view, indicate that as many as 200 or more ''asteroseismic binaries'' may be detectable in this manner. Most of these binaries should be comprised of two He-core-burning red giants. Owing largely to the limited numbers of targets with the requisite short-cadence Kepler data, we expect only a small number of detected binaries containing solar-type stars. The predicted yield of detections is sensitive to the assumed initial mass ratio distribution (IMRD) of the binary components and therefore represents a sensitive calibration of the much debated IMRD near mass ratio unity.

  20. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-01-01

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  1. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  2. Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets

    International Nuclear Information System (INIS)

    Yang, Minhao; Zhao, Hang; He, Delong; Bai, Jinbo

    2016-01-01

    The ternary nanocomposites of boron nitride nanosheets (BNNSs)/carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) are fabricated via a combination of solution casting and extrusion-injection processes. The effects of BNNSs on the electrical conductivity, dielectric behavior, and microstructure changes of CNTs/PVDF binary nanocomposites are systematically investigated. A low percolation value (f_c) for the CNTs/PVDF binary system is obtained due to the integration of solution and melting blending procedures. Two kinds of CNTs/PVDF binary systems with various CNTs contents (f_C_N_T_s) as the matrix are discussed. The results reveal that compared with CNTs/PVDF binary systems at the same f_C_N_T_s, the ternary BNNSs/CNTs/PVDF nanocomposites exhibit largely enhanced dielectric properties due to the improvement of the CNTs dispersion state and the conductive network. The dielectric constant of CNTs/PVDF binary nanocomposite with 6 vol. % CNTs (f_C_N_T_s   f_c), it displays a 43.32% improvement from 1325 to 1899 after the addition of 3 vol. % BNNSs. The presence of BNNSs facilitates the formation of the denser conductive network. Meanwhile, the ternary BNNSs/CNTs/PVDF systems exhibit a low dielectric loss. The adjustable dielectric properties could be obtained by employing the ternary systems due to the microstructure changes of nanocomposites.

  3. The gravitational-wave memory from eccentric binaries

    International Nuclear Information System (INIS)

    Favata, Marc

    2011-01-01

    The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.

  4. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities.

    Directory of Open Access Journals (Sweden)

    Ermelinda Porpiglia

    2012-08-01

    binary and graded modalities combine to generate high-fidelity Stat5 signaling over the entire basal and stress Epo range. They suggest that dynamic behavior may encode information during STAT signal transduction.

  5. Proposed experiment to test fundamentally binary theories

    Science.gov (United States)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  6. Coalescence of Black Hole-Neutron Star Binaries

    Directory of Open Access Journals (Sweden)

    Masaru Shibata

    2011-08-01

    Full Text Available We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.

  7. Dielectric properties of binary solutions a data handbook

    CERN Document Server

    Akhadov, Y Y

    1980-01-01

    Dielectric Properties of Binary Solutions focuses on the investigation of the dielectric properties of solutions, as well as the molecular interactions and mechanisms of molecular processes that occur in liquids. The book first discusses the fundamental formulas describing the dielectric properties of liquids and dielectric data for binary systems of non-aqueous solutions. Topics include permittivity and dielectric dispersion parameters of non-aqueous solutions of organic and inorganic compounds. The text also tackles dielectric data for binary systems of aqueous solutions, including permittiv

  8. RELATIONSHIP BETWEEN FLASH POINTS OF SOME BINARY ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Miscellaneous binary blends containing solvent neutral-150 (SN-150), ... viscosity, the flash point test has always been a standard part of a lubricant's specification. ... between structure and flash points of organic compounds [5-12] and fuels [13, 14]. ... in binary mixtures, the gaps between flash points would be high enough.

  9. Short-term variability of binary and non-binary Trans-Neptunian Objects

    Science.gov (United States)

    Thirouin, Audrey; Noll, K. S.; Campo Bagatin, A.; Ortiz Moreno, J. L.; Morales, N.

    2013-10-01

    Since 1992, more than 1400 Trans-Neptunian Objects (TNOs) have been discovered. Our approach to understand such objects is to study their rotations by monitoring their brightness variations. By studying the rotational properties of the TNOs a wealth of information can be obtained on their physics. So, the study of the spins and shapes of TNOs is a powerful method of gaining information on the formation and evolution of our Solar System. We have observed most of the brightest TNOs and centaurs, and compiled one of the largest lightcurves samples. The main purpose was to increase the number of objects whose short-term variability has been studied and present a homogeneous dataset trying to avoid observational biases. A dataset composed of 54 TNOs/Centaurs is reported and analyzed. Amplitudes and rotational periods have been derived for 45 of them with different degrees of reliability. For 9 objects, only an estimation of the amplitude is reported. Because most of the TNOs/Centaurs have low amplitude lightcurves, it is difficult to distinguish between single- and double-peaked lightcurves. Based on our results and the literature, following Binzel et al. (1989) study about asteroids rotational frequency distribution, we studied the TNOs spin rate distributions. We performed several Maxwellian fits to various histograms obtained considering that the lightcurves are single- or double-peaked. We tested lightcurve amplitude limits to distinguish if the lightcurve is albedo- or shape-dominated. Such a consideration introduces important changes in the distribution. We derived that an amplitude limit of 0.15mag gave a good fit to Maxwellian distribution. So, it seems that 0.15mag is a good measure of the typical variability caused by albedo. We studied the short-term variability of binary TNOs thanks to unresolved lightcurves. Based on our results and those from the literature, we come up with a sample of 32 systems with a rotational period and/or lightcurve amplitude value

  10. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  11. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    Science.gov (United States)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  12. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    International Nuclear Information System (INIS)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle; Batalha, Natalie; Rucker, Michael; Mjaseth, Kimberly; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-01-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg 2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD 0 , P 0 ), morphology type, physical parameters (T eff , log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2 /T 1 , q, fillout factor, and sin i for overcontacts, and T 2 /T 1 , (R 1 + R 2 )/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ∼1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  13. Did ASAS-SN Kill the Supermassive Black Hole Binary Candidate PG1302-102?

    Science.gov (United States)

    Liu, Tingting; Gezari, Suvi; Miller, M. Coleman

    2018-05-01

    Graham et al. reported a periodically varying quasar and supermassive black hole binary candidate, PG1302-102 (hereafter PG1302), which was discovered in the Catalina Real-time Transient Survey (CRTS). Its combined Lincoln Near-Earth Asteroid Research (LINEAR) and CRTS optical light curve is well fitted to a sinusoid of an observed period of ≈1884 days and well modeled by the relativistic Doppler boosting of the secondary mini-disk. However, the LINEAR+CRTS light curve from MJD ≈52,700 to MJD ≈56,400 covers only ∼2 cycles of periodic variation, which is a short baseline that can be highly susceptible to normal, stochastic quasar variability. In this Letter, we present a reanalysis of PG1302 using the latest light curve from the All-sky Automated Survey for Supernovae (ASAS-SN), which extends the observational baseline to the present day (MJD ≈58,200), and adopting a maximum likelihood method that searches for a periodic component in addition to stochastic quasar variability. When the ASAS-SN data are combined with the previous LINEAR+CRTS data, the evidence for periodicity decreases. For genuine periodicity one would expect that additional data would strengthen the evidence, so the decrease in significance may be an indication that the binary model is disfavored.

  14. Secure Route Structures for Parallel Mobile Agents Based Systems Using Fast Binary Dispatch

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2005-01-01

    Full Text Available In a distributed environment, where a large number of computers are connected together to enable the large-scale sharing of data and computing resources, agents, especially mobile agents, are the tools for autonomously completing tasks on behalf of their owners. For applications of large-scale mobile agents, security and efficiency are of great concern. In this paper, we present a fast binary dispatch model and corresponding secure route structures for mobile agents dispatched in parallel to protect the dispatch routes of agents while ensuring the dispatch efficiency. The fast binary dispatch model is simple but efficient with a dispatch complexity of O(log2n. The secure route structures adopt the combination of public-key encryption and digital signature schemes and expose minimal route information to hosts. The nested structure can help detect attacks as early as possible. We evaluated the various models both analytically and empirically.

  15. Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers

    Science.gov (United States)

    Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.

    2018-01-01

    We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.

  16. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  17. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  18. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  19. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    Science.gov (United States)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  20. Eclipsing binaries observed with the WIRE satellite I. Discovery and photometric analysis of the new bright A0 IV eclipsing binary psi centauri

    DEFF Research Database (Denmark)

    Bruntt, Hans; Southworth, J.; Penny, A. J.

    2006-01-01

    Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep.......Stars: fundamental parameters, binaries: close, eclipsing, techniques: photometric Udgivelsesdato: Sep....

  1. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  2. Determination and correlation of solubility and solution thermodynamics of oxiracetam in three (alcohol + water) binary solvents

    International Nuclear Information System (INIS)

    Li, Kangli; Du, Shichao; Wu, Songgu; Cai, Dongchen; Wang, Jinxu; Zhang, Dejiang; Zhao, Kaifei; Yang, Peng; Yu, Bo; Guo, Baisong; Li, Daixi; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of racemic oxiracetam in three binary solvents were determined. • The experimental solubility of racemic oxiracetam were correlated by four models. • The dissolution thermodynamic properties of racemic oxiracetam were calculated. - Abstract: In this paper, we proposed a static analysis method to experimentally determine the (solid + liquid) equilibrium of racemic oxiracetam in (methanol + water), (ethanol + water) and (isopropanol + water) binary solvents with alcohol mole fraction ranging from 0.30 to 0.90 at atmosphere pressure (p = 0.1 MPa). For the experiments, the temperatures range from (283.15 to 308.15) K. The results showed that the solubility of oxiracetam increased with the increasing temperature, while decreased with the increasing organic solvent fraction in all three tested binary solvent systems. The modified Apelblat model, the CNIBS/Redlich–Kister model, the combined version of Jouyban–Acree model and the NRTL model were employed to correlate the measured solubility values, respectively. Additionally, some of the thermodynamic properties which can help to evaluate its dissolution behavior were obtained based on the NRTL model.

  3. Isometries and binary images of linear block codes over ℤ4 + uℤ4 and ℤ8 + uℤ8

    Science.gov (United States)

    Sison, Virgilio; Remillion, Monica

    2017-10-01

    Let {{{F}}}2 be the binary field and ℤ2 r the residue class ring of integers modulo 2 r , where r is a positive integer. For the finite 16-element commutative local Frobenius non-chain ring ℤ4 + uℤ4, where u is nilpotent of index 2, two weight functions are considered, namely the Lee weight and the homogeneous weight. With the appropriate application of these weights, isometric maps from ℤ4 + uℤ4 to the binary spaces {{{F}}}24 and {{{F}}}28, respectively, are established via the composition of other weight-based isometries. The classical Hamming weight is used on the binary space. The resulting isometries are then applied to linear block codes over ℤ4+ uℤ4 whose images are binary codes of predicted length, which may or may not be linear. Certain lower and upper bounds on the minimum distances of the binary images are also derived in terms of the parameters of the ℤ4 + uℤ4 codes. Several new codes and their images are constructed as illustrative examples. An analogous procedure is performed successfully on the ring ℤ8 + uℤ8, where u 2 = 0, which is a commutative local Frobenius non-chain ring of order 64. It turns out that the method is possible in general for the class of rings ℤ2 r + uℤ2 r , where u 2 = 0, for any positive integer r, using the generalized Gray map from ℤ2 r to {{{F}}}2{2r-1}.

  4. ADDITIONAL MASSIVE BINARIES IN THE CYGNUS OB2 ASSOCIATION

    International Nuclear Information System (INIS)

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Ewing, Ian; Lundquist, Michael; Alexander, Michael; Vargas-Alvarez, Carlos; Choi, Heather; Bagley Kiminki, Megan M.; Henderson, C. B.

    2012-01-01

    We report the discovery and orbital solutions for two new OB binaries in the Cygnus OB2 Association, MT311 (B2V + B3V) and MT605 (B0.5V + B2.5:V). We also identify the system MT429 as a probable triple system consisting of a tight eclipsing 2.97 day B3V+B6V pair and a B0V at a projected separation of 138 AU. We further provide the first spectroscopic orbital solutions to the eclipsing, double-lined, O-star binary MT696 (O9.5V + B1:V), the double-lined, early B binary MT720 (B0-1V + B1-2V), and the double-lined, O-star binary MT771 (O7V + O9V). These systems exhibit orbital periods between 1.5 days and 12.3 days, with the majority having P <6 days. The two new binary discoveries and six spectroscopic solutions bring the total number of known massive binaries in the central region of the Cygnus OB2 Association to 20, with all but two having full orbital solutions.

  5. ADDITIONAL MASSIVE BINARIES IN THE CYGNUS OB2 ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Ewing, Ian; Lundquist, Michael; Alexander, Michael; Vargas-Alvarez, Carlos; Choi, Heather [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82070 (United States); Bagley Kiminki, Megan M. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Henderson, C. B. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2012-03-01

    We report the discovery and orbital solutions for two new OB binaries in the Cygnus OB2 Association, MT311 (B2V + B3V) and MT605 (B0.5V + B2.5:V). We also identify the system MT429 as a probable triple system consisting of a tight eclipsing 2.97 day B3V+B6V pair and a B0V at a projected separation of 138 AU. We further provide the first spectroscopic orbital solutions to the eclipsing, double-lined, O-star binary MT696 (O9.5V + B1:V), the double-lined, early B binary MT720 (B0-1V + B1-2V), and the double-lined, O-star binary MT771 (O7V + O9V). These systems exhibit orbital periods between 1.5 days and 12.3 days, with the majority having P <6 days. The two new binary discoveries and six spectroscopic solutions bring the total number of known massive binaries in the central region of the Cygnus OB2 Association to 20, with all but two having full orbital solutions.

  6. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence

    CERN Document Server

    Colpi, Monica; Gorini, Vittorio; Moschella, Ugo; Possenti, Andrea

    2009-01-01

    This book provides a comprehensive, authoritative and timely review of the astrophysical approach to the investigation of gravity theories. Particular attention is paid to strong-field tests of general relativity and alternative theories of gravity, performed using collapsed objects (neutron stars, black holes and white dwarfs) in relativistic binaries as laboratories. The book starts with an introduction which gives the background linking experimental gravity in cosmic laboratories to astrophysics and fundamental physics. Subsequent chapters cover observational and theoretical aspects of the following topics: from binaries as test-beds of gravity theories to binary pulsars as cosmic laboratories; from binary star evolution to the formation of relativistic binaries; from short gamma-ray bursts to low mass X-ray binaries; from stellar-mass black hole binaries to coalescing super-massive black holes in galaxy mergers. The book will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology, ...

  7. Maximizing Undergraduate Success By Combining Research Experiences with Outreach, Peer Mentoring and Professional Development

    Science.gov (United States)

    Bruno, B. C.

    2014-12-01

    The C-MORE Scholars Program provides hands-on, closely mentored research experiences to University of Hawaii (UH) undergraduates during the academic year. Students majoring in the geosciences, especially underrepresented students, from all campuses are encouraged to apply. The academic-year research is complemented by outreach, professional development and summer internships. Combined, these experiences help students develop the skills, confidence and passion that are essential to success in a geoscience career. Research. All students enter the program as trainees, where they learn lab and field research methods, computer skills and science principles. After one year, they are encouraged to reapply as interns, where they work on their own research project. Students who have successfully completed their intern year can reapply as fellows, where they conduct an independent research project such as an honors thesis. Students present their research at a Symposium through posters (trainees) or talks (interns and fellows). Interns and fellows help organize program activities and serve as peer mentors to trainees.Multi-tiered programs that build a pathway toward graduation have been shown to increase student retention and graduation success. Outreach. Undergraduate researchers rarely feel like experts when working with graduate students and faculty. For students to develop their identity as scientists, it is essential that they be given the opportunity to assume the role as expert. Engaging students in outreach is a win-win situation. Students gain valuable skills and confidence in sharing their research with their local community, and the public gets to learn about exciting research happening at UH. Professional Development. Each month, the Scholars meet to develop their professional skills on a particular topic, such as outreach, scientific presentations, interviewing, networking, and preparing application materials for jobs, scholarships and summer REUs. Students are

  8. Optical studies of massive X-ray binaries

    International Nuclear Information System (INIS)

    Zuiderwijk, E.J.

    1979-01-01

    Photometric and spectroscopic studies of several optical counterparts of massive X-ray binaries are presented. Subjects of study were the binary systems:HD77581/4U0900-40 (Vela X-1), HD153919/4U1700-37, Wray 977/4U1223-62 and Sk160/4U0115-74 (=SMC X-1). (Auth.)

  9. BINARIES DISCOVERED BY THE MUCHFUSS PROJECT: SDSS J08205+0008-AN ECLIPSING SUBDWARF B BINARY WITH A BROWN DWARF COMPANION

    International Nuclear Information System (INIS)

    Geier, S.; Schaffenroth, V.; Drechsel, H.; Heber, U.; Kupfer, T.; Tillich, A.; Oestensen, R. H.; Smolders, K.; Degroote, P.; Maxted, P. F. L.; Barlow, B. N.; Gaensicke, B. T.; Marsh, T. R.; Napiwotzki, R.

    2011-01-01

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here, we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object (≅0.068 M sun ) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.

  10. Vision-Based Bicycle Detection Using Multiscale Block Local Binary Pattern

    Directory of Open Access Journals (Sweden)

    Hongyu Hu

    2014-01-01

    Full Text Available Bicycle traffic has heavy proportion among all travel modes in some developing countries, which is crucial for urban traffic control and management as well as facility design. This paper proposes a real-time multiple bicycle detection algorithm based on video. At first, an effective feature called multiscale block local binary pattern (MBLBP is extracted for representing the moving object, which is a well-classified feature to distinguish between bicycles and nonbicycles; then, a cascaded bicycle classifier trained by AdaBoost algorithm is proposed, which has a good computation efficiency. Finally, the method is tested with video sequence captured from the real-world traffic scenario. The bicycles in the test scenario are successfully detected.

  11. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  12. Binaries traveling through a gaseous medium: dynamical drag forces and internal torques

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Salcedo, F. J. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apt. Postal 70 264, C.P. 04510, Mexico City (Mexico); Chametla, Raul O., E-mail: jsanchez@astro.unam.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, UP Adolfo López Mateos, Mexico City (Mexico)

    2014-10-20

    Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.

  13. Close Binaries in the 21st Century: New Opportunities and Challenges

    CERN Document Server

    Giménez, Àlvaro; Niarchos, Panagiotis; Rucinski, Slavek

    2006-01-01

    An International Conference entitled "Close Binaries in the 21st Century: New Opportunities and Challenges", was held in Syros island, Greece, from 27 to 30 June, 2005. There are many binary star systems whose components are so close together, that they interact in various ways. Stars in such systems do not pass through all stages of their evolution independently of each other; in fact their evolutionary path is significantly affected by their companions. Processes of interaction include gravitational effects, mutual irradiation, mass exchange, mass loss from the system, phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable thickness disks and gas streams. The zoo of Close Binary Systems includes: Close Eclipsing Binaries (Detached, Semi-detached, Contact), High and Low-Mass X-ray Binaries, Cataclysmic Variables, RS CVn systems, Pulsar Binaries and Symbiotic Stars. The study of these binaries triggered the development of new branches of astrophysics dealing with the structure and ev...

  14. Parameter estimation of compact binaries using the inspiral and ringdown waveforms

    International Nuclear Information System (INIS)

    Luna, Manuel; Sintes, Alicia M

    2006-01-01

    We analyse the problem of parameter estimation for compact binary systems that could be detected by ground-based gravitational wave detectors. So far, this problem has only been dealt with for the inspiral and the ringdown phases separately. In this paper, we combine the information from both signals, and we study the improvement in parameter estimation, at a fixed signal-to-noise ratio, by including the ringdown signal without making any assumption on the merger phase. The study is performed for both initial and advanced LIGO and VIRGO detectors

  15. Binary Biometric Representation through Pairwise Adaptive Phase Quantization

    NARCIS (Netherlands)

    Chen, C.; Veldhuis, Raymond N.J.

    Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations

  16. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  17. An Introduction to Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif

    1996-01-01

    This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996.......This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996....

  18. Shift, rotation and scale invariant optical information authentication with binary digital holography

    Science.gov (United States)

    Jiao, Shuming; Zhou, Changyuan; Zou, Wenbin; Li, Xia

    2017-12-01

    An optical information authentication system using binary holography is proposed recently, with high security, flexibility and reduced cipher-text size. Despite the success, we point out one limitation of this system that it cannot well verify scaled and rotated versions of correct images and simply regard them as wrong images. In fact, this limitation generally exists in many other optical authentication systems. In this paper, a preprocessing method based Fourier transform and log polar transform is employed to allow the optical authentication systems shift, rotation and scale invariant. Numerical simulation results demonstrate that our proposed scheme significantly outperforms the existing method.

  19. Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries

    International Nuclear Information System (INIS)

    Favata, Marc

    2009-01-01

    The Christodoulou memory is a nonlinear contribution to the gravitational-wave field that is sourced by the gravitational-wave stress-energy tensor. For quasicircular, inspiralling binaries, the Christodoulou memory produces a growing, nonoscillatory change in the gravitational-wave 'plus' polarization, resulting in the permanent displacement of a pair of freely-falling test masses after the wave has passed. In addition to its nonoscillatory behavior, the Christodoulou memory is interesting because even though it originates from 2.5 post-Newtonian (PN) order multipole interactions, it affects the waveform at leading (Newtonian/quadrupole) order. The memory is also potentially detectable in binary black-hole mergers. While the oscillatory pieces of the gravitational-wave polarizations for quasicircular, inspiralling compact binaries have been computed to 3PN order, the memory contribution to the polarizations has only been calculated to leading order (the next-to-leading order 0.5PN term has previously been shown to vanish). Here the calculation of the memory for quasicircular, inspiralling binaries is extended to 3PN order. While the angular dependence of the memory remains qualitatively unchanged, the PN correction terms tend to reduce the memory's magnitude. Explicit expressions are given for the memory contributions to the plus polarization and the spin-weighted spherical-harmonic modes of the metric and curvature perturbations. Combined with the recent results of Blanchet et al.[Classical Quantum Gravity 25, 165003 (2008)], this completes the waveform polarizations to 3PN order. This paper also discusses: (i) the difficulties in extracting the memory from numerical relativity simulations, (ii) other nonoscillatory effects that enter the waveform polarizations at high PN orders, and (iii) issues concerning the observability of the memory in gravitational-wave detectors.

  20. Gravitational waves from spinning eccentric binaries

    Science.gov (United States)

    Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás

    2012-12-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.

  1. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Patricelli, B.; Razzano, M.; Fidecaro, F. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Cella, G. [INFN—Sezione di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Pian, E.; Stamerra, A. [Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa (Italy); Branchesi, M., E-mail: barbara.patricelli@pi.infn.it, E-mail: massimiliano.razzano@unipi.it, E-mail: giancarlo.cella@pi.infn.it, E-mail: francesco.fidecaro@unipi.it, E-mail: elena.pian@sns.it, E-mail: marica.branchesi@uniurb.it, E-mail: stamerra@oato.inaf.it [Universit\\a di Urbino, Via Aurelio Saffi, 2, 61029 Urbino (Italy)

    2016-11-01

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.

  2. The Frequency of Binary Stars in the Globular Cluster M71

    Science.gov (United States)

    Barden, S. C.; Armandroff, T. E.; Pryor, C. P.

    1994-12-01

    The frequency of binary stars is a fundamental property of a stellar population. A comparison of the frequency of binaries in globular clusters with those in the field halo and disk populations tests the similarity of star formation in those environments. Binary stars in globular clusters also act as an energy source which ``heats" the cluster through super-elastic encounters with other stars and binaries. Such encounters can not only profoundly affect the dynamical evolution of the cluster, they can disrupt the widely separated binaries and catalyze the formation of exotic objects such as blue stragglers, x-ray binaries, and milli-second pulsars. We have used the KPNO 4-m and the multi-fiber instruments Nessie and Hydra to measure radial velocities at 4 epochs over two years for a sample of 126 stars in the globular cluster M71. Velocity errors are under 1 km s(-1) for the brighter stars and under 2 km s(-1) for the majority of our data set. These velocities will be valuable for studying the kinematics of M71, but here we focus on searching for binaries. The faintest stars are at V=17, or just above the main sequence turnoff. Our sample is thus deeper than any published globular cluster binary search utilizing spectroscopic techniques. By observing smaller stars, we double the number of decades of binary periods sampled compared to previous studies and come within a factor of 4 of the shortest possible periods for turnoff stars. This wider period window has produced the largest known sample of binaries in a globular cluster. Four stars show velocity ranges larger than 20 km s(-1) , nine have ranges larger than 10 km s(-1) , and others are clearly variable. We will compare the radial distribution of these stars to that predicted by theory and derive the main-sequence binary fraction.

  3. Binary black holes on a budget: simulations using workstations

    International Nuclear Information System (INIS)

    Marronetti, Pedro; Tichy, Wolfgang; Bruegmann, Bernd; Gonzalez, Jose; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich

    2007-01-01

    Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the centre of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m 2 = 0.75. Our results compare favourably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods

  4. Radiation binary targeted therapy for HER-2 positive breast cancers: assumptions, theoretical assessment and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, Daniel W [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47909 (United States); Harb, Wael [Horizon Oncology, The Care Group, Unity Medical Center, Lafayette, IN 47901 (United States); Jevremovic, Tatjana [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47909 (United States)

    2006-03-21

    A novel radiation targeted therapy is investigated for HER-2 positive breast cancers. The proposed concept combines two known approaches, but never used together for the treatment of advanced, relapsed or metastasized HER-2 positive breast cancers. The proposed radiation binary targeted concept is based on the anti HER-2 monoclonal antibodies (MABs) that would be used as vehicles to transport the nontoxic agent to cancer cells. The anti HER-2 MABs have been successful in targeting HER-2 positive breast cancers with high affinity. The proposed concept would utilize a neutral nontoxic boron-10 predicting that anti HER-2 MABs would assure its selective delivery to cancer cells. MABs against HER-2 have been a widely researched strategy in the clinical setting. The most promising antibody is Trastuzumab (Herceptin (registered) ). Targeting HER-2 with the MAB Trastuzumab has been proven to be a successful strategy in inducing tumour regression and improving patient survival. Unfortunately, these tumours become resistant and afflicted women succumb to breast cancer. In the proposed concept, when the tumour region is loaded with boron-10 it is irradiated with neutrons (treatment used for head and neck cancers, melanoma and glioblastoma for over 40 years in Japan and Europe). The irradiation process takes less than an hour producing minimal side effects. This paper summarizes our recent theoretical assessments of radiation binary targeted therapy for HER-2 positive breast cancers on: the effective drug delivery mechanism, the numerical model to evaluate the targeted radiation delivery and the survey study to find the neutron facility in the world that might be capable of producing the radiation effect as needed. A novel method of drug delivery utilizing Trastuzumab is described, followed by the description of a computational Monte Carlo based breast model used to determine radiation dose distributions. The total flux and neutron energy spectra of five currently available

  5. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    Science.gov (United States)

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  6. Compact Binary Progenitors of Short Gamma-Ray Bursts

    Science.gov (United States)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  7. High-Resolution Infrared Spectroscopic Observations of the Upper Scorpius Eclipsing Binary EPIC 203868608

    Science.gov (United States)

    Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.

    2017-06-01

    EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.

  8. Visualizing, Approximating, and Understanding Black-Hole Binaries

    Science.gov (United States)

    Nichols, David A.

    --7, we discuss using analytical approximations, such as post-Newtonian and black-hole-perturbation theories, to gain further understanding into how gravitational waves are generated by black-hole binaries. Chapter 5 presents a way of combining post-Newtonian and black-hole-perturbation theories---which we call the hybrid method---for head-on mergers of black holes. It was able to produce gravitational waveforms and gravitational recoils that agreed well with comparable results from numerical-relativity simulations. Chapter 6 discusses a development of the hybrid model to include a radiation-reaction force, which is better suited for studying inspiralling black-hole binaries. The gravitational waveform from the hybrid method for inspiralling mergers agreed qualitatively with that from numerical-relativity simulations; when applied to the superkick configuration, it gave a simplified picture of the formation of the large black-hole kick. Chapter 7 describes an approximate method of calculating the frequencies of the ringdown gravitational waveforms of rotating black holes (quasinormal modes). The method generalizes a geometric interpretation of black-hole quasinormal modes and explains a degeneracy in the spectrum of these modes. In Chapters 8--11, we describe a new way of visualizing spacetime curvature using tools called tidal tendexes and frame-drag vortexes. This relies upon a time-space split of spacetime, which allows one to break the vacuum Riemann curvature tensor into electric and magnetic parts (symmetric, trace-free tensors that have simple physical interpretations). The regions where the eigenvalues of these tensors are large form the tendexes and vortexes of a spacetime, and the integral curves of their eigenvectors are its tendex and vortex lines, for the electric and magnetic parts, respectively. Chapter 8 provides an overview of these visualization tools and presents initial results from numerical-relativity simulations. Chapter 9 uses topological

  9. THE BINARY FRACTION OF LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Justin M.; Kilic, Mukremin; Brown, Warren R.; Kenyon, Scott J.

    2011-01-01

    We describe spectroscopic observations of 21 low-mass (≤0.45 M sun ) white dwarfs (WDs) from the Palomar-Green survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is ≤30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus, additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.

  10. Formation of the wide asynchronous binary asteroid population

    International Nuclear Information System (INIS)

    Jacobson, Seth A.; Scheeres, Daniel J.; McMahon, Jay

    2014-01-01

    We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.

  11. The effects of binary UV filter mixtures on the midge Chironomus riparius

    International Nuclear Information System (INIS)

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-01-01

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1 mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10 mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. - Highlights: • Chironomus riparius is sensitive to UV filter binary mixtures. • UV filters binary mixtures show antagonism on survival of 4th instar larvae. • BP-3 and OMC antagonize the stimulatory effect of 4MBC on EcR gene. • 4MBC, OMC, and BP-3 induce hsp70

  12. The effects of binary UV filter mixtures on the midge Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis, E-mail: jlmartinez@ccia.uned.es

    2016-06-15

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1 mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10 mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. - Highlights: • Chironomus riparius is sensitive to UV filter binary mixtures. • UV filters binary mixtures show antagonism on survival of 4th instar larvae. • BP-3 and OMC antagonize the stimulatory effect of 4MBC on EcR gene. • 4MBC, OMC, and BP-3 induce hsp70

  13. Application of Ann for Prediction of Co2+, Cd2+ and Zn2+ Ions Uptake by R. Squarrosus Biomass in Single and Binary Mixtures

    Directory of Open Access Journals (Sweden)

    Nemeček Peter

    2014-06-01

    Full Text Available Discharge of heavy metals into aquatic ecosystems has become a matter of concern over the last few decades. The search for new technologies involving the removal of toxic metals from wastewaters has directed the attention to biosorption, based on metal binding capacities of various biological materials. Degree of sorbent affinity for the sorbate determines its distribution between the solid and liquid phases and this behavior can be described by adsorption isotherm models (Freundlich and Langmuir isotherm models representing the classical approach. In this study, an artificial neural network (ANN was proposed to predict the sorption efficiency in single and binary component solutions of Cd2+, Zn2+ and Co2+ ions by biosorbent prepared from biomass of moss Rhytidiadelphus squarrosus. Calculated non-linear ANN models presented in this paper are advantageous for its capability of successful prediction, which can be problematic in the case of classical isotherm approach. Quality of prediction was proved by strong agreement between calculated and measured data, expressed by the coefficient of determination in both, single and binary metal systems (R2= 0.996 and R2= 0.987, respectively. Another important benefit of these models is necessity of significantly smaller amount of data (about 50% for the model calculation. Also, it is possible to calculate Qeq for all studied metals by one combined ANN model, which totally overcomes a classical isotherm approach

  14. INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2016-12-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.

  15. Construction of binary status information system using PC network

    International Nuclear Information System (INIS)

    Kurnianto, K.; Azriani, A.; Teddy, S.

    1998-01-01

    Binary status information system is a part of establishing reactor parameter with Pc that function as MPR-30 Process Computer. Binary Alarm system, consist of interface hardware and input binary module terminal, prepare the information that be displayed in text message and graphical form. Monitor software give facilities that binary status of RSG-GAS components can be monitored using computer network (LAN). This program consist of two part : reside in server computer and reside in user computer. Program in server acquire data from interface and than store it in data base (Access file). Than, user computer read this file and display it in Dynamic Process and Instrumentation Diagram. The number of user computer can be more then one because data base was designed for multi-user operation

  16. Formation and Evolution of Contact Binaries

    Directory of Open Access Journals (Sweden)

    Peter P. Eggleton

    2012-06-01

    Full Text Available describe a series of processes, including hierarchical fragmentation, gravitational scattering, Kozai cycles within triple systems, tidal friction and magnetic braking, that I believe are responsible for producing the modest but significant fraction of stars that are observed as contact binaries. I also discuss further processes, namely heat transport, mass transport, nuclear evolution, thermal relaxation oscillations, and further magnetic braking with tidal friction, that influence the evolution during contact. The endpoint, for contact, is that the two components merge into a single star, as recently was observed in the remarkable system V1309 Sco. The single star probably throws off some mass and rotates rapidly at first, and then slows by magnetic braking to become a rather inconspicuous but normal dwarf or subgiant. If however the contact binary was part of a triple system originally–as I suggested above was rather likely–then the result could be a widish binary with apparently non-coeval components. There are several such known.

  17. Compact binary hashing for music retrieval

    Science.gov (United States)

    Seo, Jin S.

    2014-03-01

    With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.

  18. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  19. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

  20. The Cool Surfaces of Binaries Near-Earth Asteroids

    NARCIS (Netherlands)

    Delbo, Marco; Walsh, K.; Mueller, M.

    2008-01-01

    We present results from thermal-infrared observations of binary near-Earth asteroids (NEAs). These objects, in general, have surface temperatures cooler than the average values for non-binary NEAs. We discuss how this may be evidence of higher-than-average surface thermal inertia. The comparison of

  1. The Mass-Ratio Distribution of Visual Binary Stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1990-01-01

    The selection effects that govern the observations of Visual Binary Stars are in- vestigated, in order to obtain a realistic statistical distribution of the mass-ratio q = Msec=Mprim. To this end a numerical simulation programme has been developed, which `generates' binary stars and `looks' at

  2. Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system

    International Nuclear Information System (INIS)

    Menhas, Muhammad Ilyas; Fei Minrui; Wang Ling; Qian Lin

    2012-01-01

    Highlights: ► We extend the concept of co-operation and co-evolution in some PSO variants. ► We use developed co-operative PSOs in multivariable PID controller design/tuning. ► We find that co-operative PSOs converge faster and give high quality solutions. ► Dividing the search space among swarms improves search efficiency. ► The proposed methods allow the practitioner for heterogeneous problem formulation. - Abstract: In this paper, multivariable PID controller design based on cooperative and coevolving multiple swarms is demonstrated. A simplified multi-variable MIMO process model of a ball mill pulverizing system with steady state decoupler is considered. In order to formulate computational models of cooperative and coevolving multiple swarms three different algorithms like real coded PSO, discrete binary PSO (DBPSO) and probability based discrete binary PSO (PBPSO) are employed. Simulations are carried out on three composite functions simultaneously considering multiple objectives. The cooperative and coevolving multiple swarms based results are compared with the results obtained through single swarm based methods like real coded particle swarm optimization (PSO), discrete binary PSO (DBPSO), and probability based discrete binary PSO (PBPSO) algorithms. The cooperative and coevolving swarms based techniques outperform the real coded PSO, PBPSO, and the standard discrete binary PSO (DBPSO) algorithm in escaping from local optima. Furthermore, statistical analysis of the simulation results is performed to calculate the comparative reliability of various techniques. All of the techniques employed are suitable for controller tuning, however, the multiple cooperative and coevolving swarms based results are considerably better in terms of mean fitness, variance of fitness, and success rate in finding a feasible solution in comparison to those obtained using single swarm based methods.

  3. Evolution of close binaries and the formation of pulsars

    International Nuclear Information System (INIS)

    Van Den Heuvel, E.P.J.

    1981-01-01

    The various ways in which compact objects (neutron stars and black holes) may be formed in interacting binary systems are examined. Attention is given to the final evolution of the primary star in a close binary system as a function of the time of Roche-lobe overflow relative to the onset of helium burning, and conditions on primary mass and orbital period leading to the appearance of a compact remnant are noted. Consideration of the fate of the stellar envelope in stars that directly evolve to core collapse indicates that binaries that evolve with conservation of total mass and orbital angular momentum will eventually become systems of two runaway pulsars. In cases of nonconservative evolution, the final state is expected to be a young runaway pulsar with a low- or moderate mass runaway star companion, or a low-mass population I X-ray binary with high space velocity. Compact objects may also be formed when a white dwarf of suitable chemical composition is driven over the Chandrasehkar limit by accretion, resulting in a low-mass X-ray binary

  4. Binary classification of items of interest in a repeatable process

    Science.gov (United States)

    Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2014-06-24

    A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

  5. Minimum period and the gap in periods of Cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.; Sienkiewicz, R.

    1983-01-01

    The 81 minute cutoff to the orbital periods of hydrogen-rich cataclysmic binaries is consistent with evolution of those systems being dominated by angular momentum losses due to gravitational radiation. Unfortunately, many uncertainties, mainly poorly known atmospheric opacities below 2000 K, make is physically impossible to verify the quadrupole formula for gravitational radiation by using the observed cutoff at 81 minutes. The upper boundary of the gap in orbital periods observed at about 3 hours is almost certainly due to enhanced angular momentum losses from cataclysmic binaries which have longer periods. The physical mechanism of those losses is not identified, but a possible importance of stellar winds is pointed out. The lower boundary of the gap may be explained with the oldest cataclysmic binaries, whose periods evolved past the minimum at 81 minutes and reached the value of 2 hours within about 12 x 10 9 years after the binary had formed. Those binaries should have secondary components of only 0.02 solar masses, and their periods could be used to estimate ages of the oldest cataclysmic stars, and presumably the age of Galaxy. An alternative explanation for the gap requires that binaries should be detached while crossing the gap. A possible mechanism for this phenomenon is discussed. It requires the secondary components to be about 0.2 solar masses in the binaries just below the gap

  6. The Search for Binaries in Post-Asymptotic Giant Branch Stars: Do Binary Companions Shape the Nebulae?

    Directory of Open Access Journals (Sweden)

    Bruce J. Hrivnak

    2012-03-01

    Full Text Available Binary companions are often invoked to explain the axial and point symmetry seen in the majority of planetary nebulae and proto-planetary nebulae (PPNs. To explore this hypothesis, we have undertaken a long-term (20 year study of light and velocity variations in PPNs. From the photometric study of 24 PPNs, we find that all vary in brightness, and from a subset of 12 carbon-rich PPNs of F-G spectral type we find periods of 35-155 days, with the cooler having the longer periods. The variations are seen to be due to pulsation; no photometric evidence for binarity is seen. A radial velocity study of a sub-sample of seven of the brightest of these shows that they all vary with the pulsation periods. Only one shows evidence of a longer-term variation that we tentatively identify as being due to a binary companion. We conclude that the present evidence for the binary nature of these PPNs is meager and that any undetected companions of these PPNs must be of low mass ( 30 years.

  7. Binary analysis: 1. part: definitions and treatment of binary functions; 2. part: applications and functions of trans-coding

    International Nuclear Information System (INIS)

    Vallee, R.L.

    1968-01-01

    The study of binary groups under their mathematical aspects constitutes the matter of binary analysis, the purpose of which consists in developing altogether simple, rigorous and practical methods needed by the technicians, the engineers and all those who may be mainly concerned by digital processing. This subject, fast extending if not determining, however tends actually to play a main part in nuclear electronics as well as in several other research areas. (authors) [fr

  8. Excess molar volumes and isentropic compressibilities of binary

    Indian Academy of Sciences (India)

    Excess molar volumes (E) and deviation in isentropic compressibilities (s) have been investigated from the density and speed of sound measurements of six binary liquid mixtures containing -alkanes over the entire range of composition at 298.15 K. Excess molar volume exhibits inversion in sign in one binary ...

  9. Misaligned disks in the binary protostar IRS 43

    DEFF Research Database (Denmark)

    Brinch, Christian; Jørgensen, Jes Kristian; Hogerheijde, Michiel R.

    2016-01-01

    and position angle and also with respect to the binary orbital plane. Each stellar component has an associated circumstellar disk while the binary is surrounded by a circumbinary disk. Together with archival VLA measurements of the stellar positions over 25 years, and assuming a circular orbit, we use our...

  10. IUE observations of the eclipsing binary Epsilon Aurigae

    International Nuclear Information System (INIS)

    Hack, M.; Selvelli, P.L.

    1978-01-01

    It is stated that the eclipsing binary Epsilon Aur is a most peculiar binary system and it has not been explained satisfactorily. Observations of this system using the International Ultraviolet Explorer (IUE) collected at the Villafranca Satellite Tracking Station of the European Space Agency are here reported. (author)

  11. Refractory Scedosporium apiospermum Keratitis Successfully Treated with Combination of Amphotericin B and Voriconazole

    Directory of Open Access Journals (Sweden)

    Mohd-Tahir Fadzillah

    2013-01-01

    Full Text Available Aim. To report a case of refractory fungal keratitis caused by Scedosporium apiospermum. Methods. Interventional case report. Results. A 47-year-old Malay housewife presented with left eye cornea ulcer as her first presentation of diabetes mellitus. There was no history of ocular trauma, contact lens used, or cornea foreign body. Scedosporium apiospermum was isolated from the cornea scrapping. Her cornea ulcer initially responded well to topical Amphotericin B within 3 days but subsequently worsened. Repeat cornea scrapping also yields Scedosporium apiospermum. This refractory keratitis was successfully treated with a combination of topical Amphotericin B and Voriconazole over 6 weeks. Conclusion. Scedosporium apiospermum keratitis is an opportunistic infection, which is difficult to treat despite tight control of diabetes mellitus and intensive antifungal treatment. The infection appeared to have very quick onset but needed long duration of treatment to completely heal. Surgical debridement always plays an important role as a therapeutic procedure as well as establishes the diagnosis through repeat scrapping.

  12. New Acid Combination for a Successful Sandstone Acidizing

    Science.gov (United States)

    Shafiq, M. U.; Mahmud, H. K. B.; Rezaee, R.

    2017-05-01

    With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm3/min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs.

  13. A Search for Exoplanets in Short-Period Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Ronald Kaitchuck

    2012-03-01

    Full Text Available This paper reports the progress of a search for exoplanets with S-type orbits in short-period binary star systems. The selected targets have stellar orbital periods of just a few days. These systems are eclipsing binaries so that exoplanet transits, if planets exist, will be highly likely. We report the results for seven binary star systems.

  14. THE REFLECTION EFFECT IN INTERACTING BINARIES OR IN PLANET-STAR SYSTEMS

    International Nuclear Information System (INIS)

    Budaj, J.

    2011-01-01

    There are many similarities between interacting binary stars and stars with a close-in giant extrasolar planet. The reflection effect is a well-known example. Although the generally accepted treatment of this effect in interacting binaries is successful in fitting light curves of eclipsing binaries, it is not very suitable for studying cold objects irradiated by hot objects or extrasolar planets. The aim of this paper is to develop a model of the reflection effect which could be easily incorporated into the present codes for modeling of interacting binaries so that these can be used to study the aforementioned objects. Our model of the reflection effect takes into account the reflection (scattering), heating, and heat redistribution over the surface of the irradiated object. The shape of the object is described by the non-spherical Roche potential expected for close objects. Limb and gravity darkening are included in the calculations of the light output from the system. The model also accounts for the orbital revolution and rotation of the exoplanet with appropriate Doppler shifts for the scattered and thermal radiation. Subsequently, light curves and/or spectra of several exoplanets have been modeled and the effects of the heat redistribution, limb darkening/brightening, (non-)gray albedo, and non-spherical shape have been studied. Recent observations of planet-to-star flux ratio of HD189733b, WASP12b, and WASP-19b at various phases were reproduced with very good accuracy. It was found that HD189733b has a low Bond albedo and intense heat redistribution, while WASP-19b has a low Bond albedo and low heat redistribution. The exact Roche geometries and temperature distributions over the surface of all 78 transiting extrasolar planets have been determined. Departures from the spherical shape may vary considerably but departures of about 1% in the radius are common within the sample. In some cases, these departures can reach 8%, 12%, or 14%, for WASP-33b, WASP-19b, and

  15. KIC 7177553: A QUADRUPLE SYSTEM OF TWO CLOSE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, H. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Borkovits, T. [Baja Astronomical Observatory of Szeged University, H-6500 Baja, Szegedi út, Kt. 766 (Hungary); Rappaport, S. A. [Massachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); Ngo, H. [California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Boulevard, MC 150-21, Pasadena, CA 91125 (United States); Mawet, D. [California Institute of Technology, Astronomy Dept. MC 249-17, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Csizmadia, Sz. [German Aerospace Center (DLR), Institut für Planeten-forschung, Rutherfordstraße 2, D-12489 Berlin (Germany); Forgács-Dajka, E., E-mail: lehm@tls-tautenburg.de, E-mail: borko@electra.bajaobs.hu, E-mail: sar@mit.edu, E-mail: hngo@caltech.edu, E-mail: dmawet@astro.caltech.edu, E-mail: szilard.csizmadia@dlr.de, E-mail: e.forgacs-dajka@astro.elte.hu [Astronomical Department, Eötvös University, H-1118 Budapest, Pázmány Péter stny. 1/A (Hungary)

    2016-03-01

    KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations (ETVs) in this object with an amplitude of ∼100 s and an outer period of 529 days. The implied mass of the third body is that of a super-Jupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity (RV) study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the RV measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.″4 (∼167 AU) and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries and very similar γ velocities strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, nonevolved, solar-like stars of comparable masses. From the orbital separation and the small difference in γ velocity, we infer that the period of the outer orbit most likely lies in the range of 1000–3000 yr. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed ETVs in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer timescale will be required to prove the existence of the massive planet.

  16. Binaries discovered by the SPY project V. GD 687 - a massive double degenerate binary progenitor that will merge within a Hubble time

    OpenAIRE

    Geier, S.; Heber, U.; Kupfer, T.; Napiwotzki, R.

    2010-01-01

    Aims. The ESO SN Ia Progenitor Survey (SPY) aims at finding merging double degenerate binaries as candidates for supernova type Ia (SN Ia) explosions. A white dwarf merger has also been suggested to explain the formation of rare types of stars like R CrB, extreme helium or He sdO stars. Here we present the hot subdwarf B binary GD 687, which will merge in less than a Hubble time. Methods. The orbital parameters of the close binary have been determined from time resolved spectroscopy. Since GD...

  17. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride

    International Nuclear Information System (INIS)

    Wu Kun; Wang Hongjie; Liu Ruiping; Zhao Xu; Liu Huijuan; Qu Jiuhui

    2011-01-01

    In this study, in situ formed Fe-Mn binary oxide (FMBO) was applied to treat a practical high-arsenic wastewater (5.81 mg/L). FMBO exhibited a remarkable removal capacity towards both As(III) and As(V), achieving a removal efficiency over 99.5%. However, the FMBO-As particles could not be sufficiently separated by gravitational sedimentation due to their low sizes and negative charges, as being indicated from laser particle size and zeta-potential analysis. Thus, poly-aluminum chloride (PACl) was introduced as a coagulant to facilitate the solid-liquid separation, and it remarkably improved As removal efficiencies. Results of scanning electron microscope (SEM) revealed that PACl contributed to the formation of precipitates with larger sizes and compact surfaces, which was favorable to sedimentation. Moreover, residual soluble As was removed by PACl hydroxides. The optimum dosages of FMBO and PACl were determined to be 60 mg/L and 80 mg/L, respectively. Additionally, the secondary pollution was minimized in FMBO-PACl process. Based on these bench-scale results, a full-scale treatment process was proposed to successfully treat 40,000 m 3 of high-arsenic wastewater in a municipal wastewater treatment plant (MWWTP). The average As concentration in the effluent was about 0.015 mg/L. FMBO-PACl process showed the advantages of high effectiveness, low cost, safety, and ease for operation.

  18. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    Science.gov (United States)

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  19. Binary black hole in a double magnetic monopole field

    Science.gov (United States)

    Rodriguez, Maria J.

    2018-01-01

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.

  20. Binary black hole in a double magnetic monopole field

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Maria J. [Utah State University, Department of Physics, Logan, UT (United States); Max Planck Institute for Gravitational Physics, Potsdam (Germany)

    2018-01-15

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows. (orig.)

  1. PHYSICAL PROPERTIES OF THE LOW-MASS ECLIPSING BINARY NSVS 02502726

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Youn, Jae-Hyuck; Kim, Seung-Lee; Lee, Chung-Uk, E-mail: jwlee@kasi.re.kr, E-mail: jhyoon@kasi.re.kr, E-mail: slkim@kasi.re.kr, E-mail: leecu@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejon 305-348 (Korea, Republic of)

    2013-01-01

    NSVS 02502726 has been known as a double-lined, detached eclipsing binary that consists of two low-mass stars. We obtained BVRI photometric follow-up observations in 2009 and 2011 to measure improved physical properties of the binary star. Each set of light curves, including the 2008 data given by Cakirli et al., was simultaneously analyzed with the previously published radial velocity curves using the Wilson-Devinney binary code. The conspicuous seasonal light variations of the system are satisfactorily modeled by a two-spot model with one starspot on each component and by changes of the spot parameters with time. Based on 23 eclipse timings calculated from the synthetic model and one ephemeris epoch, an orbital period study of NSVS 02502726 reveals that the period has experienced a continuous decrease of -5.9 Multiplication-Sign 10{sup -7} day yr{sup -1} or a sinusoidal variation with a period and semi-amplitude of 2.51 yr and 0.0011 days, respectively. The timing variations could be interpreted as either the light-travel-time effect due to the presence of an unseen third body, or as the combination of this effect and angular momentum loss via magnetic stellar wind braking. Individual masses and radii of both components are determined to be M{sub 1} = 0.689 {+-} 0.016 M{sub Sun }, M{sub 2} = 0.341 {+-} 0.009 M{sub Sun }, R{sub 1} = 0.707 {+-} 0.007 R{sub Sun }, and R{sub 2} = 0.657 {+-} 0.008 R{sub Sun }. The results are very different from those of Cakirli et al. with the primary's radius (0.674 {+-} 0.006 R{sub Sun }) smaller the secondary's (0.763 {+-} 0.007 R{sub Sun }). We compared the physical parameters presented in this paper with current low-mass stellar models and found that the measured values of the primary star are best fitted to a 79 Myr isochrone. The primary is in good agreement with the empirical mass-radius relation from low-mass binaries, but the secondary is oversized by about 85%.

  2. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  3. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  4. Dynamical evolution of a fictitious population of binary Neptune Trojans

    Science.gov (United States)

    Brunini, Adrián

    2018-03-01

    We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.

  5. Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Aabo, Thomas; Palima, Darwin

    2013-01-01

    as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase generation of dynamic spot arrays and line patterns are presented. © 201 Optical Society of America...

  6. EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Just, Andreas; Merritt, David

    2011-01-01

    In spherical galaxies, binary supermassive black holes (SMBHs) have difficulty reaching sub-parsec separations due to depletion of stars on orbits that intersect the massive binary-the 'final parsec problem'. Galaxies that form via major mergers are substantially non-spherical, and it has been argued that the centrophilic orbits in triaxial galaxies might provide stars to the massive binary at a high enough rate to avoid stalling. Here we test that idea by carrying out fully self-consistent merger simulations of galaxies containing central SMBHs. We find hardening rates of the massive binaries that are indeed much higher than in spherical models and essentially independent of the number of particles used in the simulations. Binary eccentricities remain high throughout the simulations. Our results constitute a fully stellar-dynamical solution to the final parsec problem and imply a potentially high rate of events for low-frequency gravitational wave detectors like LISA.

  7. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  8. UNUSUALLY WIDE BINARIES: ARE THEY WIDE OR UNUSUAL?

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2009-01-01

    We describe an astrometric and spectroscopic campaign to confirm the youth and association of a complete sample of candidate wide companions in Taurus and Upper Sco. Our survey found 15 new binary systems (three in Taurus and 12 in Upper Sco) with separations of 3''-30'' (500-5000 AU) among all of the known members with masses of 2.5-0.012 M sun . The total sample of 49 wide systems in these two regions conforms to only some expectations from field multiplicity surveys. Higher mass stars have a higher frequency of wide binary companions, and there is a marked paucity of wide binary systems near the substellar regime. However, the separation distribution appears to be log-flat, rather than declining as in the field, and the mass ratio distribution is more biased toward similar-mass companions than the initial mass function or the field G-dwarf distribution. The maximum separation also shows no evidence of a limit at ∼ sun . We attribute this result to the post-natal dynamical sculpting that occurs for most field systems; our binary systems will escape to the field intact, but most field stars are formed in denser clusters and undergo significant dynamical evolution. In summary, only wide binary systems with total masses ∼ sun appear to be 'unusually wide'.

  9. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  10. Analysis of 45-years of Eclipse Timings of the Hyades (K2 V+ DA) Eclipsing Binary V471 Tauri

    Science.gov (United States)

    Marchioni, Lucas; Guinan, Edward; Engle, Scott

    2018-01-01

    V471 Tau is an important detached 0.521-day eclipsing binary composed of a K2 V and a hot DA white dwarf star. This system resides in the Hyades star cluster located approximately 153 Ly from us. V471 Tau is considered to be the end-product of common-envelope binary star evolution and is currently a pre-CV system. V471 Tau serves as a valuable astrophysical laboratory for studying stellar evolution, white dwarfs, stellar magnetic dynamos, and possible detection of low mass companions using the Light Travel Time (LTT) Effects. Since its discovery as an eclipsing binary in 1970, photometry has been carried out and many eclipse timings have been determined. We have performed an analysis of the available photometric data available on V471 Tauri. The binary system has been the subject of analyses regarding the orbital period. From this analysis several have postulated the existence of a third body in the form of a brown dwarf that is causing periodic variations in the system’s apparent period. In this study we combine ground based data with photometry secured recently from the Kepler K2 mission. After detrending and phasing the available data, we are able to compare the changing period of the eclipsing binary system against predictions on the existence of this third body. The results of the analysis will be presented. This research is sponsored by grants from NASA and NSF for which we are very grateful.

  11. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  12. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ruiz, F. J.; Blas, F. J., E-mail: felipe@uhu.es [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Física Aplicada, Universidad de Huelva, 21007 Huelva (Spain); Moreno-Ventas Bravo, A. I. [Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Geología, Universidad de Huelva, 21007 Huelva (Spain)

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  13. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    International Nuclear Information System (INIS)

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-01-01

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ 11 = σ 22 , with the same dispersive energy between like species, ϵ 11 = ϵ 22 , but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r c and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r c is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the

  14. Gravitational waveforms for neutron star binaries from binary black hole simulations

    Science.gov (United States)

    Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew

    2016-03-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.

  15. Creation of an anti-imaging system using binary optics

    Science.gov (United States)

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  16. Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization

    OpenAIRE

    Sassatelli, Lucile; Declercq, David

    2007-01-01

    In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-bin...

  17. Improvement of Binary Analysis Components in Automated Malware Analysis Framework

    Science.gov (United States)

    2017-02-21

    AFRL-AFOSR-JP-TR-2017-0018 Improvement of Binary Analysis Components in Automated Malware Analysis Framework Keiji Takeda KEIO UNIVERSITY Final...TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 Nov 2016 4. TITLE AND SUBTITLE Improvement of Binary Analysis Components in Automated Malware ...analyze malicious software ( malware ) with minimum human interaction. The system autonomously analyze malware samples by analyzing malware binary program

  18. ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carl L. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Zevin, Michael; Pankow, Chris; Kalogera, Vasilliki; Rasio, Frederic A. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2016-11-20

    The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 could be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.

  19. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  20. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  1. On the orbit calculation of visual binaries with a very short arc: application to the PMS binary system, FW Tau AB

    Science.gov (United States)

    Docobo, J. A.; Tamazian, V. S.; Campo, P. P.

    2018-05-01

    In the vast majority of cases when available astrometric measurements of a visual binary cover a very short orbital arc, it is practically impossible to calculate a good quality orbit. It is especially important for systems with pre-main-sequence components where standard mass-spectrum calibrations cannot be applied nor can a dynamical parallax be calculated. We have shown that the analytical method of Docobo allows us to put certain constraints on the most likely orbital solutions, using an available realistic estimate of the global mass of the system. As an example, we studied the interesting PMS binary, FW Tau AB, located in the Taurus-Auriga as well as investigated a range of its possible orbital solutions combined with an assumed distance between 120 and 160 pc. To maintain the total mass of FW Tau AB in a realistic range between 0.2 and 0.6M_{⊙}, minimal orbital periods should begin at 105, 150, 335, and 2300 yr for distances of 120, 130, 140, and 150 pc, respectively (no plausible orbits were found assuming a distance of 160 pc). An original criterion to establish the upper limit of the orbital period is applied. When the position angle in some astrometric measurements was flipped by 180°, orbits with periods close to 45 yr are also plausible. Three example orbits with periods of 44.6, 180, and 310 yr are presented.

  2. Artificial Intelligence and the Brave New World of Eclipsing Binaries

    Science.gov (United States)

    Devinney, E.; Guinan, E.; Bradstreet, D.; DeGeorge, M.; Giammarco, J.; Alcock, C.; Engle, S.

    2005-12-01

    The explosive growth of observational capabilities and information technology over the past decade has brought astronomy to a tipping point - we are going to be deluged by a virtual fire hose (more like Niagara Falls!) of data. An important component of this deluge will be newly discovered eclipsing binary stars (EBs) and other valuable variable stars. As exploration of the Local Group Galaxies grows via current and new ground-based and satellite programs, the number of EBs is expected to grow explosively from some 10,000 today to 8 million as GAIA comes online. These observational advances will present a unique opportunity to study the properties of EBs formed in galaxies with vastly different dynamical, star formation, and chemical histories than our home Galaxy. Thus the study of these binaries (e.g., from light curve analyses) is expected to provide clues about the star formation rates and dynamics of their host galaxies as well as the possible effects of varying chemical abundance on stellar evolution and structure. Additionally, minimal-assumption-based distances to Local Group objects (and possibly 3-D mapping within these objects) shall be returned. These huge datasets of binary stars will provide tests of current theories (or suggest new theories) regarding binary star formation and evolution. However, these enormous data will far exceed the capabilities of analysis via human examination. To meet the daunting challenge of successfully mining this vast potential of EBs and variable stars for astrophysical results with minimum human intervention, we are developing new data processing techniques and methodologies. Faced with an overwhelming volume of data, our goal is to integrate technologies of Machine Learning and Pattern Processing (Artificial Intelligence [AI]) into the data processing pipelines of the major current and future ground- and space-based observational programs. Data pipelines of the future will have to carry us from observations to

  3. Compact binary coalescences in the band of ground-based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Mandel, Ilya; O'Shaughnessy, Richard

    2010-01-01

    As the ground-based gravitational-wave telescopes LIGO, Virgo and GEO 600 approach the era of first detections, we review the current knowledge of the coalescence rates and the mass and spin distributions of merging neutron-star and black-hole binaries. We emphasize the bi-directional connection between gravitational-wave astronomy and conventional astrophysics. Astrophysical input will make possible informed decisions about optimal detector configurations and search techniques. Meanwhile, rate upper limits, detected merger rates and the distribution of masses and spins measured by gravitational-wave searches will constrain astrophysical parameters through comparisons with astrophysical models. Future developments necessary to the success of gravitational-wave astronomy are discussed.

  4. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    Science.gov (United States)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  5. STRUCTURE AND EVOLUTION OF CIRCUMBINARY DISKS AROUND SUPERMASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2013-01-01

    We explore properties of circumbinary disks around supermassive black hole (SMBH) binaries in centers of galaxies by reformulating standard viscous disk evolution in terms of the viscous angular momentum flux F J . If the binary stops gas inflow and opens a cavity in the disk, then the inner disk evolves toward a constant-F J (rather than a constant M-dot ) state. We compute disk properties in different physical regimes relevant for SMBH binaries, focusing on the gas-assisted evolution of systems starting at separations 10 –4 – 10 –2 pc, and find the following. (1) Mass pileup at the inner disk edge caused by the tidal barrier accelerates binary inspiral. (2) Binaries can be forced to merge even by a disk with a mass below that of the secondary. (3) Torque on the binary is set non-locally, at radii far larger than the binary semi-major axis; its magnitude does not reflect disk properties in the vicinity of the binary. (4) Binary inspiral exhibits hysteresis—it depends on the past evolution of the disk. (5) The Eddington limit can be important for circumbinary disks even if they accrete at sub-Eddington rates, but only at late stages of the inspiral. (6) Gas overflow across the orbit of the secondary can be important for low secondary mass, high- M-dot systems, but mainly during the inspiral phase dominated by the gravitational wave emission. (7) Circumbinary disks emit more power and have harder spectra than constant M-dot disks; their spectra are very sensitive to the amount of overflow across the secondary orbit

  6. DOUBLE-LINED SPECTROSCOPIC BINARY STARS IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Munari, U.; Siviero, A.; Bienayme, O.; Siebert, A.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Steinmetz, M.; Campbell, R.; Freeman, K. C.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Parker, Q. A.; Seabroke, G. M.; Watson, F. G.

    2010-01-01

    We devise a new method for the detection of double-lined binary stars in a sample of the Radial Velocity Experiment (RAVE) survey spectra. The method is both tested against extensive simulations based on synthetic spectra and compared to direct visual inspection of all RAVE spectra. It is based on the properties and shape of the cross-correlation function, and is able to recover ∼80% of all binaries with an orbital period of order 1 day. Systems with periods up to 1 yr are still within the detection reach. We have applied the method to 25,850 spectra of the RAVE second data release and found 123 double-lined binary candidates, only eight of which are already marked as binaries in the SIMBAD database. Among the candidates, there are seven that show spectral features consistent with the RS CVn type (solar type with active chromosphere) and seven that might be of W UMa type (over-contact binaries). One star, HD 101167, seems to be a triple system composed of three nearly identical G-type dwarfs. The tested classification method could also be applicable to the data of the upcoming Gaia mission.

  7. EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-08-10

    We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Damping and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.

  8. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    Science.gov (United States)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  9. Wide Binaries in TGAS: Search Method and First Results

    Science.gov (United States)

    Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.

    2018-04-01

    Half of all stars reside in binary systems, many of which have orbital separations in excess of 1000 AU. Such binaries are typically identified in astrometric catalogs by matching the proper motions vectors of close stellar pairs. We present a fully Bayesian method that properly takes into account positions, proper motions, parallaxes, and their correlated uncertainties to identify widely separated stellar binaries. After applying our method to the >2 × 106 stars in the Tycho-Gaia astrometric solution from Gaia DR1, we identify over 6000 candidate wide binaries. For those pairs with separations less than 40,000 AU, we determine the contamination rate to be ~5%. This sample has an orbital separation (a) distribution that is roughly flat in log space for separations less than ~5000 AU and follows a power law of a -1.6 at larger separations.

  10. Detecting unresolved binary stars in Euclid VIS images

    Science.gov (United States)

    Kuntzer, T.; Courbin, F.

    2017-10-01

    Measuring a weak gravitational lensing signal to the level required by the next generation of space-based surveys demands exquisite reconstruction of the point-spread function (PSF). However, unresolved binary stars can significantly distort the PSF shape. In an effort to mitigate this bias, we aim at detecting unresolved binaries in realistic Euclid stellar populations. We tested methods in numerical experiments where (I) the PSF shape is known to Euclid requirements across the field of view; and (II) the PSF shape is unknown. We drew simulated catalogues of PSF shapes for this proof-of-concept paper. Following the Euclid survey plan, the objects were observed four times. We propose three methods to detect unresolved binary stars. The detection is based on the systematic and correlated biases between exposures of the same object. One method is a simple correlation analysis, while the two others use supervised machine-learning algorithms (random forest and artificial neural network). In both experiments, we demonstrate the ability of our methods to detect unresolved binary stars in simulated catalogues. The performance depends on the level of prior knowledge of the PSF shape and the shape measurement errors. Good detection performances are observed in both experiments. Full complexity, in terms of the images and the survey design, is not included, but key aspects of a more mature pipeline are discussed. Finding unresolved binaries in objects used for PSF reconstruction increases the quality of the PSF determination at arbitrary positions. We show, using different approaches, that we are able to detect at least binary stars that are most damaging for the PSF reconstruction process. The code corresponding to the algorithms used in this work and all scripts to reproduce the results are publicly available from a GitHub repository accessible via http://lastro.epfl.ch/software

  11. What fraction of white dwarfs are members of binary systems?

    International Nuclear Information System (INIS)

    Holberg, J B

    2009-01-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  12. Presence of mixed modes in red giants in binary systems

    Directory of Open Access Journals (Sweden)

    Themeßl Nathalie

    2017-01-01

    Full Text Available The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p and gravity (g as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  13. Experimental investigations of multiple scattering of 662 keV gamma photons in elements and binary alloys

    International Nuclear Information System (INIS)

    Singh, Gurvinderjit; Singh, Manpreet; Sandhu, B.S.; Singh, Bhajan

    2008-01-01

    The energy, intensity and angular distributions of multiple scattering of 662 keV gamma photons, emerging from targets of pure elements and binary alloys, are observed as a function of target thickness in reflection and transmission geometries. The observed spectra recorded by a properly shielded NaI (Tl) scintillation detector, in addition to singly scattered events, consist of photons scattered more than once for thick targets. To extract the contribution of multiply scattered photons from the measured spectra, a singly scattered distribution is reconstructed analytically. We observe that the numbers of multiply scattered events increase with increase in target thickness, and saturate for a particular thickness called saturation thickness. The saturation thickness decreases with increasing atomic number. The multiple scattering, an interfering background noise in Compton profiles and Compton cross-section measurements, has been successfully used as a new technique to assign the 'effective atomic number' to binary alloys. Monte Carlo calculations support the present experimental results

  14. A Selective Mutism Arising from First Language Attrition, Successfully Treated with Paroxetine-CBT Combination Treatment.

    Science.gov (United States)

    Serra, Agostino; Di Mauro, Paola; Andaloro, Claudio; Maiolino, Luigi; Pavone, Piero; Cocuzza, Salvatore

    2015-10-01

    After immersion in a foreign language, speakers often have difficulty retrieving native-language words and may experience a decrease in its proficiency, this phenomenon, in the non-pathological form, is known as first language attrition. Self-perception of this low native-language proficiency and apprehension occurring when speaking is expected and, may sometimes lead these people to a state of social anxiety and, in extreme forms, can involve the withholding of speech as a primitive tool for self-protection, linking them to selective mutism. We report an unusual case of selective mutism arising from first language attrition in an Italian girl after attending a two-year "German language school", who successfully responded to a paroxetine-cognitive behavioral treatment (CBT) combination treatment.

  15. SEVEN NEW BINARIES DISCOVERED IN THE KEPLER LIGHT CURVES THROUGH THE BEER METHOD CONFIRMED BY RADIAL-VELOCITY OBSERVATIONS

    International Nuclear Information System (INIS)

    Faigler, S.; Mazeh, T.; Tal-Or, L.; Quinn, S. N.; Latham, D. W.

    2012-01-01

    We present seven newly discovered non-eclipsing short-period binary systems with low-mass companions, identified by the recently introduced BEER algorithm, applied to the publicly available 138-day photometric light curves obtained by the Kepler mission. The detection is based on the beaming effect (sometimes called Doppler boosting), which increases (decreases) the brightness of any light source approaching (receding from) the observer, enabling a prediction of the stellar Doppler radial-velocity (RV) modulation from its precise photometry. The BEER algorithm identifies the BEaming periodic modulation, with a combination of the well-known Ellipsoidal and Reflection/heating periodic effects, induced by short-period companions. The seven detections were confirmed by spectroscopic RV follow-up observations, indicating minimum secondary masses in the range 0.07-0.4 M ☉ . The binaries discovered establish for the first time the feasibility of the BEER algorithm as a new detection method for short-period non-eclipsing binaries, with the potential to detect in the near future non-transiting brown-dwarf secondaries, or even massive planets.

  16. Estimation of the Ideal Binary Mask using Directional Systems

    DEFF Research Database (Denmark)

    Boldt, Jesper; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    The ideal binary mask is often seen as a goal for time-frequency masking algorithms trying to increase speech intelligibility, but the required availability of the unmixed signals makes it difficult to calculate the ideal binary mask in any real-life applications. In this paper we derive the theory...... and the requirements to enable calculations of the ideal binary mask using a directional system without the availability of the unmixed signals. The proposed method has a low complexity and is verified using computer simulation in both ideal and non-ideal setups showing promising results....

  17. Binary Stochastic Representations for Large Multi-class Classification

    KAUST Repository

    Gerald, Thomas

    2017-10-23

    Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance in this context, these approaches suffer of a high inference complexity, linear w.r.t. the number of categories. Different models based on the notion of binary codes have been proposed to overcome this limitation, achieving in a sublinear inference complexity. But they a priori need to decide which binary code to associate to which category before learning using more or less complex heuristics. We propose a new end-to-end model which aims at simultaneously learning to associate binary codes with categories, but also learning to map inputs to binary codes. This approach called Deep Stochastic Neural Codes (DSNC) keeps the sublinear inference complexity but do not need any a priori tuning. Experimental results on different datasets show the effectiveness of the approach w.r.t. baseline methods.

  18. Combined impact of branching and unsaturation on the autoignition of binary blends in a motored engine

    KAUST Repository

    Kang, Dongil

    2014-11-20

    The impact of a branched and unsaturated compound (diisobutylene) mixed with simple hydrocarbons such as n-heptane and isooctane in binary blends on the autoignition behavior were investigated in a modified cooperative fuel research (CFR) engine at an equivlanece ratio of 0.5 and intake temperature of 120 °C. From this test condition, a homogeneous charge of fuel and intake air can be achieved. The test fuels were prepared by addition of 5-20 vol % diisobutylene into n-heptane and isooctane. The engine compression ratio (CR) was gradually increased from the lowest point to the point where significant high temperature heat release (HTHR) was observed, and this point is also referred to as the critical compression ratio (CCR). Heat release analysis showed that each n-heptane blend had a noticeable low temperature heat release (LTHR), which was not observed in the isooctane blends. The gradual addition of diisobutylene into each primary reference fuel contributed to retarded high temperature heat release in these binary blends, increasing the in-cylinder temperature and decreasing formation of CO. The 15 and 20 vol % blends of diisobutylene in isooctane were not able to reach high temperature heat release in the CFR engine system under these test conditions. The fundamental ignition behavior such as CCR and calculated % LTHR show the impact of the presence of the C-C double bond on ignition reactivity. Species concentration profiles obtained in condensed products from the engine exhaust were measured via gas chromatrography-mass spectrometry and -flame ionization detector. The major intermediate species for each blend were captured at a compression ratio selected just before the high temperature heat release was observed. Most intermediate species were derived from n-heptane and isooctane, while diisobutylene rarely participated in forming any major species, with the exception of the formation of 4,4-dimethyl-2-pentanone. Addition of diisobutylene exhibited opposite

  19. Combined impact of branching and unsaturation on the autoignition of binary blends in a motored engine

    KAUST Repository

    Kang, Dongil; Kirby, Stephen R.; Agudelo, John Ramiro; Lapuerta, Magí n; Al-Qurashi, Khalid; Boehman, André Louis

    2014-01-01

    The impact of a branched and unsaturated compound (diisobutylene) mixed with simple hydrocarbons such as n-heptane and isooctane in binary blends on the autoignition behavior were investigated in a modified cooperative fuel research (CFR) engine at an equivlanece ratio of 0.5 and intake temperature of 120 °C. From this test condition, a homogeneous charge of fuel and intake air can be achieved. The test fuels were prepared by addition of 5-20 vol % diisobutylene into n-heptane and isooctane. The engine compression ratio (CR) was gradually increased from the lowest point to the point where significant high temperature heat release (HTHR) was observed, and this point is also referred to as the critical compression ratio (CCR). Heat release analysis showed that each n-heptane blend had a noticeable low temperature heat release (LTHR), which was not observed in the isooctane blends. The gradual addition of diisobutylene into each primary reference fuel contributed to retarded high temperature heat release in these binary blends, increasing the in-cylinder temperature and decreasing formation of CO. The 15 and 20 vol % blends of diisobutylene in isooctane were not able to reach high temperature heat release in the CFR engine system under these test conditions. The fundamental ignition behavior such as CCR and calculated % LTHR show the impact of the presence of the C-C double bond on ignition reactivity. Species concentration profiles obtained in condensed products from the engine exhaust were measured via gas chromatrography-mass spectrometry and -flame ionization detector. The major intermediate species for each blend were captured at a compression ratio selected just before the high temperature heat release was observed. Most intermediate species were derived from n-heptane and isooctane, while diisobutylene rarely participated in forming any major species, with the exception of the formation of 4,4-dimethyl-2-pentanone. Addition of diisobutylene exhibited opposite

  20. A BiCMOS Binary Hysteresis Chaos Generator

    Science.gov (United States)

    Ahmadi, S.; Newcomb, R. W.

    A previous op-amp RC circuit which was proven to give chaotic signals is converted to a BiCMOS design more suitable to integrated circuit realization. The structure results from a degree two differential equation which includes binary hysteresis as its nonlinearity. The circuit is realized by differential (voltage to current) pairs feeding two capacitors, which carry the dynamics, with the key component being a (voltage to current) binary hysteresis circuit due to Linares.