WorldWideScience

Sample records for subunit vaccines ag85b-esat-6

  1. Attempted immunotherapy for Mycobacterium tuberculosis with viral and protein vaccines based on Ag85B-ESAT6 in a mouse model.

    Science.gov (United States)

    You, Qingrui; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2012-03-01

    The increasing threat of drug-resistant strains of Mycobacterium tuberculosis (M. tb) and co-infection with human immunodeficiency virus (HIV) has worsened the international public health crisis and challenged conventional chemotherapy. Therapeutic vaccines, which possess the capacity to stimulate the immune system and affect the disease progression, deserve reconsideration to aid chemotherapy. Vaccines based on Ag85B-ESAT6 fusion protein were tested as potential immunotherapeutic vaccines against ongoing intravenous infection in a mouse model. Therapeutic efficacy was evaluated by enumeration of bacilli in infected tissues and by histological examination of the lungs. Ag85B-ESAT6 with the adjuvant dimethyl dioctadecylammonium bromide (DDA) - monophosphoryl lipid A (MPL) did not reduce bacterial load, however induced a sharp weight loss and worsened pathology. Recombinant virus-based vaccines failed to protect mice against tuberculosis either. More efforts should be taken to search for protective candidates and elucidate the mechanism for immunotherapy.

  2. Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC31 adjuvant.

    Directory of Open Access Journals (Sweden)

    Arun T Kamath

    Full Text Available BACKGROUND: With the exception of some live vaccines, e.g. BCG, subunit vaccines formulated with "classical" adjuvants do not induce similar responses in neonates as in adults. The usual neonatal profile is characterized by lower levels of TH1-associated biomarkers. This has hampered the development of new neonatal vaccines for diseases that require early protection. Tuberculosis is one of the major targets for neonatal immunization. In this study, we assessed the immunogenicity of a novel candidate vaccine comprising a mycobacterial fusion protein, Ag85B-ESAT-6, in a neonatal murine immunization model. METHODS/FINDINGS: The Ag85B-ESAT-6 fusion protein was formulated either with a classical alum based adjuvant or with the novel IC31 adjuvant. Following neonatal or adult immunization, 3 parameters were studied in vivo: (1 CD4(+ T cell responses, (2 vaccine targeting/activation of dendritic cells (DC and (3 protection in a surrogate mycobacterial challenge model. Conversely to Alum, IC31 induced in both age groups strong Th1 and Th17 responses, characterized by multifunctional T cells expressing IL-2 and TNF-alpha with or without IFN-gamma. In the draining lymph nodes, a similarly small number of DC contained the adjuvant and/or the antigen following neonatal or adult immunization. Expression of CD40, CD80, CD86 and IL-12p40 production was focused on the minute adjuvant-bearing DC population. Again, DC targeting/activation was similar in adults and neonates. These DC/T cell responses resulted in an equivalent reduction of bacterial growth following infection with M. bovis BCG, whereas no protection was observed when Alum was used as adjuvant. CONCLUSION: Neonatal immunization with the IC31-adjuvanted Ag85B-ESAT-6 subunit vaccine elicited adult-like multifunctional protective anti-mycobacterial T cell responses through the induction of an adult pattern of in vivo DC activation.

  3. Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy

    Directory of Open Access Journals (Sweden)

    Doreen Manuela Floss

    2010-01-01

    Full Text Available This study explored a novel system combining plant-based production and the elastin-like peptide (ELP fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.

  4. A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Arun T Kamath

    Full Text Available BACKGROUND: In the search for more potent and safer tuberculosis vaccines, CAF01 was identified as a remarkable formulation. Based on cationic liposomes and including a synthetic mycobacterial glycolipid as TLR-independent immunomodulator, it induces strong and protective T helper-1 and T helper-17 adult murine responses to Ag85B-ESAT-6, a major mycobacterial fusion protein. Here, we assessed whether these properties extend to early life and how CAF01 mediates its adjuvant properties in vivo. METHODS/FINDINGS: Following adult or neonatal murine immunization, Ag85B-ESAT-6/CAF01 similarly reduced the post-challenge bacterial growth of M. bovis BCG, whereas no protection was observed using Alum as control. This protection was mediated by the induction of similarly strong Th1 and Th17 responses in both age groups. Multifunctional Th1 cells were already elicited after a single vaccine dose and persisted at high levels for at least 6 months even after neonatal priming. Unexpectedly, this potent adjuvanticity was not mediated by a massive targeting/activation of dendritic cells: in contrast, very few DCs in the draining lymph nodes were bearing the labeled antigen/adjuvant. The increased expression of the CD40 and CD86 activation markers was restricted to the minute portion of adjuvant-bearing DCs. However, vaccine-associated activated DCs were recovered several days after immunization. CONCLUSION: The potent adult and neonatal adjuvanticity of CAF01 is associated in vivo with an exquisite but prolonged DC uptake and activation, fulfilling the preclinical requirements for novel tuberculosis vaccines to be used in early life.

  5. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    2018-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis (TB, causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI, and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660 TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  6. Safety and immunogenicity of H1/IC31®, an adjuvanted TB subunit vaccine, in HIV-infected adults with CD4+ lymphocyte counts greater than 350 cells/mm3: a phase II, multi-centre, double-blind, randomized, placebo-controlled trial.

    Directory of Open Access Journals (Sweden)

    Klaus Reither

    Full Text Available Novel tuberculosis vaccines should be safe, immunogenic, and effective in various population groups, including HIV-infected individuals. In this phase II multi-centre, double-blind, placebo-controlled trial, the safety and immunogenicity of the novel H1/IC31 vaccine, a fusion protein of Ag85B-ESAT-6 (H1 formulated with the adjuvant IC31, was evaluated in HIV-infected adults.HIV-infected adults with CD4+ T cell counts >350/mm3 and without evidence of active tuberculosis were enrolled and followed until day 182. H1/IC31 vaccine or placebo was randomly allocated in a 5:1 ratio. The vaccine was administered intramuscularly at day 0 and 56. Safety assessment was based on medical history, clinical examinations, and blood and urine testing. Immunogenicity was determined by a short-term whole blood intracellular cytokine staining assay.47 of the 48 randomised participants completed both vaccinations. In total, 459 mild or moderate and 2 severe adverse events were reported. There were three serious adverse events in two vaccinees classified as not related to the investigational product. Local injection site reactions were more common in H1/IC31 versus placebo recipients (65.0% vs. 12.5%, p = 0.015. Solicited systemic and unsolicited adverse events were similar by study arm. The baseline CD4+ T cell count and HIV viral load were similar by study arm and remained constant over time. The H1/IC31 vaccine induced a persistent Th1-immune response with predominately TNF-α and IL-2 co-expressing CD4+ T cells, as well as polyfunctional IFN-γ, TNF-α and IL-2 expressing CD4+ T cells.H1/IC31 was well tolerated and safe in HIV-infected adults with a CD4+ Lymphocyte count greater than 350 cells/mm3. The vaccine did not have an effect on CD4+ T cell count or HIV-1 viral load. H1/IC31 induced a specific and durable Th1 immune response.Pan African Clinical Trials Registry (PACTR PACTR201105000289276.

  7. Optimized subunit vaccine protects against experimental leishmaniasis.

    Science.gov (United States)

    Bertholet, Sylvie; Goto, Yasuyuki; Carter, Lauren; Bhatia, Ajay; Howard, Randall F; Carter, Darrick; Coler, Rhea N; Vedvick, Thomas S; Reed, Steven G

    2009-11-23

    Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-gamma, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.

  8. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  9. Vaccine profile of herpes zoster (HZ/su) subunit vaccine.

    Science.gov (United States)

    Cunningham, Anthony L; Heineman, Thomas

    2017-07-01

    Herpes zoster (HZ) causes an often severe and painful rash in older people and may be complicated by prolonged pain (postherpetic neuralgia; PHN) and by dissemination in immune-compromised patients. HZ results from reactivation of latent varicella-zoster virus (VZV) infection, often associated with age-related or other causes of decreased T cell immunity. A live attenuated vaccine boosts this immunity and provides partial protection against HZ, but this decreases with age and declines over 8 years. Areas covered: A new HZ subunit (HZ/su) vaccine combines a key surface VZV glycoprotein (E) with a T cell-boosting adjuvant system (AS01 B ) and is administered by two intramuscular injections two months apart. Expert commentary: HZ/su showed excellent efficacy of ~90% in immunocompetent adults ≥50 and ≥70 years of age, respectively, in the ZOE-50 and ZOE-70 phase III controlled trials. Efficacy was unaffected by advancing age and persisted for >3 years. Approximately 9.5% of subjects had severe, but transient (1-2 days) injection site pain, swelling or redness. Compliance with both vaccine doses was high (95%). The vaccine will have a major impact on HZ management. Phase I-II trials showed safety and immunogenicity in severely immunocompromised patients. Phase III trial results are expected soon.

  10. Advancements in the development of subunit influenza vaccines

    Science.gov (United States)

    Zhang, Naru; Zheng, Bo-Jian; Lu, Lu; Zhou, Yusen; Jiang, Shibo; Du, Lanying

    2014-01-01

    The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines. PMID:25529753

  11. [Research progress in rotavirus VP4 subunit vaccine].

    Science.gov (United States)

    Jia, Lianzhi; Li, Tingdong; Ge, Shengxiang

    2017-07-25

    Rotaviruses are leading causes of worldwide acute diarrhea in children younger than 5 years old, with severe consequence of social and economic burden. Vaccination is the most effective way to control rotavirus infection, however, the licensed rotavirus vaccines are ineffective in some low-income countries of Africa and Asia, where the mortality caused by rotavirus is higher than other areas. In addition, there are also safety concerns such as increased risk of intussusception. Therefore, it is urgent to improve the efficiency and safety of rotavirus vaccine to reduce the morbidity and mortality caused by rotavirus. Till now, many efforts are made to improve the effectiveness of rotavirus vaccines, and the inactive vaccine becomes the main trend in the research of rotavirus vaccine. The developments in recombinant rotavirus vaccines, especially in VP4 subunit vaccines are summarized in this review, and it could be helpful to develop effective recombinant rotavirus vaccines in further studies.

  12. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  13. Testing experimental subunit furunculosis vaccines for rainbow trout

    DEFF Research Database (Denmark)

    Marana, Moonika H.; Chettri, Jiwan Kumar; Skov, Jakob

    2016-01-01

    Aeromonas salmonicida subsp. salmonicida (AS) is the etiological agent of typical furunculosis in salmonid fish. The disease causes bacterial septicemia and is a major fish health problem in salmonid aquaculture worldwide, inducing high morbidity and mortality. In this study we vaccinated rainbow...... trout with subunit vaccines containing protein antigens that were selected based on an in silico antigen discovery approach. Thus, the proteome of AS strain A449 was analyzed by an antigen discovery platform and its proteins consequently ranked by their predicted ability to evoke protective immune...... response against AS. Fourteen proteins were prepared in 3 different experimental subunit vaccine combinations and used to vaccinate rainbow trout by intraperitoneal (i.p.) injection. We tested the proteins for their ability to elicit antibody production and protection. Thus, fish were exposed to virulent...

  14. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge

    CSIR Research Space (South Africa)

    Mallajosyula, JK

    2014-03-01

    Full Text Available Recombinant subunit vaccines are an efficient strategy to meet the demands of a possible influenza pandemic, because of rapid and scalable production. However, vaccines made from recombinant hemagglutinin (HA) subunit protein are often of low...

  15. Subunit Recombinant Vaccine Protects Against Monkeypox

    Science.gov (United States)

    2006-05-27

    smallpox, monkeypox cannot be eradicated. The virus has an unknown animal reservoir and the existence of more virulent strains is plausible. The 2003 U.S...smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox , but is contraindicated in immunocompromised individuals...protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the

  16. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Thermostable Subunit Vaccines for Pulmonary Delivery: How Close Are We?

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    -administrable, can be distributed independently of functioning freezers and refrigerators, and can be designed to induce mucosal and/or cell-mediated immunity, which is attractive for a number of diseases requiring stimulation of local mucosal immunity for protection. However, the design and delivery of thermostable...... dry powder-based vaccines represents a technological challenge: It calls for careful formulation and dosage form design, combined with cheap and efficient delivery devices, which must be engineered via a thorough understanding of the physiological barrier and the requirements for induction of mucosal...... immunity. Here, I review state of the art and perspectives in formulation design and processing methods for powder-based subunit vaccines intended for pulmonary administration, and present dry powder inhaler technologies suitable for translating these vaccines into clinical trials....

  18. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William C Weldon

    Full Text Available Recent studies have demonstrated the effectiveness of vaccine delivery to the skin by vaccine-coated microneedles; however there is little information on the effects of adjuvants using this approach for vaccination. Here we investigate the use of TLR ligands as adjuvants with skin-based delivery of influenza subunit vaccine. BALB/c mice received 1 µg of monovalent H1N1 subunit vaccine alone or with 1 µg of imiquimod or poly(I:C individually or in combination via coated microneedle patches inserted into the skin. Poly(I:C adjuvanted subunit influenza vaccine induced similar antigen-specific immune responses compared to vaccine alone when delivered to the skin by microneedles. However, imiquimod-adjuvanted vaccine elicited higher levels of serum IgG2a antibodies and increased hemagglutination inhibition titers compared to vaccine alone, suggesting enhanced induction of functional antibodies. In addition, imiquimod-adjuvanted vaccine induced a robust IFN-γ cellular response. These responses correlated with improved protection compared to influenza subunit vaccine alone, as well as reduced viral replication and production of pro-inflammatory cytokines in the lungs. The finding that microneedle delivery of imiquimod with influenza subunit vaccine induces improved immune responses compared to vaccine alone supports the use of TLR7 ligands as adjuvants for skin-based influenza vaccines.

  19. An immune stimulating complex (iscom) subunit rabies vaccine protects dogs and mice against street rabies challenge.

    NARCIS (Netherlands)

    M. Fekadu; J.H. Schaddock; J. Ekströ m; A.D.M.E. Osterhaus (Albert); D.W. Sanderlin; B. Sundquist; B. Morein (Bror)

    1992-01-01

    textabstractDogs and mice were immunized with either a rabies glycoprotein subunit vaccine incorporated into an immune stimulating complex (ISCOM) or a commercial human diploid cell vaccine (HDCV) prepared from a Pitman Moore (PM) rabies vaccine strain. Pre-exposure vaccination of mice with two

  20. SAFETY OF CELL-DERIVED SUBUNIT ADJUVANTED INFLUENZA VACCINE FOR CHILDREN VACCINATION: DOUBLE-BLIND RANDOMIZED CLINICAL TRIAL

    Directory of Open Access Journals (Sweden)

    S.M. Kharit

    2010-01-01

    Full Text Available This article presents the safety data for cell-derived inactivated subunit adjuvanted influenza vaccine «Grippol Neo» in children 3–17 years old in comparison with reference egg-derived inactivated subunit vaccine «Grippol plus». Good test vaccine tolerability and high efficacy profile is demonstrated. Based on the results obtained vaccine «Grippol Neo» is recommended for mass influenza prophylaxis in pediatry, including National Immunization Schedule.Key words: children, influenza, vaccination, «Grippol Neo».(Voprosy sovremennoi pediatrii — Current Pediatrics. – 2010;9(4:44-49

  1. Construction and Characterization of Human Rotavirus Recombinant VP8* Subunit Parenteral Vaccine Candidates

    OpenAIRE

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-01-01

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effec...

  2. Multi-stage subunit vaccines against Mycobacterium tuberculosis: an alternative to the BCG vaccine or a BCG-prime boost?

    Science.gov (United States)

    Khademi, Farzad; Derakhshan, Mohammad; Yousefi-Avarvand, Arshid; Tafaghodi, Mohsen; Soleimanpour, Saman

    2018-01-01

    More than two billion people are latently infected with Mycobacterium tuberculosis. Most tuberculosis (TB)-subunit vaccines currently in various stages of clinical trials are designed for prevention of active TB, but not to prevent reactivation of latent TB-infection. Thus, there is an urgent need for an effective multi-stage vaccine based on early-expressed and latently-expressed antigens that prevents both acute and latent infections. Areas covered: Here, we reviewed the published pre-clinical and clinical studies of multi-stage subunit vaccines against TB, and the protective capacities of the vaccines were compared with BCG, either alone or in combination with different vaccine delivery systems/adjuvants. The results revealed that multi-stage subunit vaccines induced a wide variety of immune-responses to all forms of TB, including CD8 + T-cell-mediated cytolytic and IFN-γ responses comparable to those induced by the BCG. They could potentially be used as a booster vaccine to improve the efficacy of the BCG. Expert commentary: Multi-stage TB-vaccines could boost BCG-primed immunity, decrease bacterial loads and provide efficient protection against progressive TB-infection, especially in the latent phase. These types of vaccines administered before and after TB-infection can act as pre-exposure, post-exposure and even therapeutic vaccines. In the near future, these vaccines could provide a new generation of prime-vaccines or BCG prime-boosters.

  3. Production of a highly immunogenic subunit ISCOM vaccine against Bovine Viral Diarrhea Virus

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Roensholt, L.; Jensen, M.Holm

    1999-01-01

    by Vaccination of the dam. We describe in this report the production and initial testing of an inactivated subunit vaccine against BVDV. The vaccine is based on production of antigen in primary bovine cell cultures, extraction of antigens from infected cells with detergent, chromatographic purification......, concentration, and insertion of antigens into immune stimulating complexes (ISCOMs). Vaccines based on two different Danish strains of BVDV were injected into calves and the antisera produced were tested for neutralising activity against a panel of Danish BVDV strains. The two vaccines induced different...... neutralisation responses, which seem to partly complement each other. The implication of these observations for successful Vaccination against BVDV is discussed....

  4. Efficacy of a subunit vaccine against Actinobacillus pleuropneumoniae in an endemcally infected swine herd

    NARCIS (Netherlands)

    Jirawattanapong, P.; Stockhofe-Zurwieden, N.; Leengoed, van L.A.M.G.; Binnendijk, G.P.; Wisselink, H.J.; Raymakers, R.; Cruijsen, T.; Peet-Schwering, van der C.M.C.; Nes, van A.; Nielen, M.

    2008-01-01

    Objective: To evaluate lung lesions at slaughter after three-dose vaccination with a subunit Actinobacillus pleuropneumoniae vaccine containing ApxI, ApxII, ApxIII, and an outer membrane protein. Materials and methods: A total of 430 newborn piglets in a herd endemically infected with A

  5. Development of a classical swine fever subunit marker vaccine and companion diagnostic test

    NARCIS (Netherlands)

    Moormann, R.J.; Bouma, A.; Kramps, J.A.; Terpstra, C.; Smit, de H.J.

    2000-01-01

    The development of a classical swine fever (CSF) subunit marker vaccine, based on viral envelope glycoprotein E2, and a companion diagnostic test, based on a second viral envelope glycoprotein E(RNS), will be described. Important properties of the vaccine, such as onset and duration of immunity, and

  6. An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.

    Science.gov (United States)

    Pore, Debasis; Chakrabarti, Manoj K

    2016-01-01

    Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.

  7. A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge.

    Science.gov (United States)

    Mire, Chad E; Geisbert, Joan B; Agans, Krystle N; Feng, Yan-Ru; Fenton, Karla A; Bossart, Katharine N; Yan, Lianying; Chan, Yee-Peng; Broder, Christopher C; Geisbert, Thomas W

    2014-05-01

    Hendra virus (HeV) is a zoonotic emerging virus belonging to the family Paramyxoviridae. HeV causes severe and often fatal respiratory and/or neurologic disease in both animals and humans. Currently, there are no licensed vaccines or antiviral drugs approved for human use. A number of animal models have been developed for studying HeV infection, with the African green monkey (AGM) appearing to most faithfully reproduce the human disease. Here, we assessed the utility of a newly developed recombinant subunit vaccine based on the HeV attachment (G) glycoprotein in the AGM model. Four AGMs were vaccinated with two doses of the HeV vaccine (sGHeV) containing Alhydrogel, four AGMs received the sGHeV with Alhydrogel and CpG, and four control animals did not receive the sGHeV vaccine. Animals were challenged with a high dose of infectious HeV 21 days after the boost vaccination. None of the eight specifically vaccinated animals showed any evidence of clinical illness and survived the challenge. All four controls became severely ill with symptoms consistent with HeV infection, and three of the four animals succumbed 8 days after exposure. Success of the recombinant subunit vaccine in AGMs provides pivotal data in supporting its further preclinical development for potential human use. A Hendra virus attachment (G) glycoprotein subunit vaccine was tested in nonhuman primates to assess its ability to protect them from a lethal infection with Hendra virus. It was found that all vaccinated African green monkeys were completely protected against subsequent Hendra virus infection and disease. The success of this new subunit vaccine in nonhuman primates provides critical data in support of its further development for future human use.

  8. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  9. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction.

    Science.gov (United States)

    Renukaradhya, Gourapura J; Meng, Xiang-Jin; Calvert, Jay G; Roof, Michael; Lager, Kelly M

    2015-06-17

    Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cholera toxin B subunit modulation of mucosal vaccines for infectious and autoimmune diseases.

    Science.gov (United States)

    Langridge, William; Dénes, Béla; Fodor, István

    2010-08-01

    Parenteral vaccination is generally considered to be the most effective form of therapy for protection against infectious diseases. In recent years, vaccination at mucosal surfaces and combinatorial vaccination strategies that link immunostimulatory molecules to antigens have been developed to enhance vaccine efficacy. Prominent among immunological enhancement strategies are the bacterial A and B toxins, which include the cholera toxin (CT)A and CTB subunits. In contrast to the toxic CTA subunit, the non-toxic CTB subunit displays both carrier and immunostimulatory properties. When linked to pathogen antigens, CTB can impart immunostimulatory properties that are characteristic of the linked antigen. Vaccination strategies have also been broadened to include 'self' proteins applied for the immunological suppression of autoimmunity. When CTB is linked to an autoantigen, the outcome might be considered paradoxical. In type 1 diabetes, self proteins become strongly immunosuppressive, while cancer CTB-autoantigen fusion proteins may exert a strong inflammatory response. This review discusses the immunostimulatory and immunosuppressive roles played by the CTB subunit in vaccine protection and therapy against infectious and autoimmune diseases.

  11. A single or multistage mycobacterium avium subsp. paratuberculosis subunit vaccine

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention provides one or more immunogenic polypeptides for use in a preventive or therapeutic vaccine against latent or active infection in a human or animal caused by a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Furthermore a single or multi-phase vaccine...... comprising the one or more immunogenic polypeptides is provided for administration for the prevention or treatment of infection with a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Additionally, nucleic acid vaccines, capable of in vivo expression of the multi-phase vaccine...

  12. Safety and immunogenicity of an MF59™-adjuvanted subunit influenza vaccine in elderly Chinese subjects

    Directory of Open Access Journals (Sweden)

    Pellegrini Michele

    2008-02-01

    Full Text Available Abstract Background The safety and immunogenicity of an MF59™-adjuvanted subunit influenza vaccine (Sub/MF59™; FLUAD®, Novartis Vaccines was evaluated among elderly Chinese subjects (≥ 60 years of age. After a preliminary Phase I, open-label study (n = 25 to assess safety 1–14 days post-vaccination, a comparative observer-blind, randomised, controlled clinical trial (n = 600 was performed to assess safety and immunogenicity versus a non-adjuvanted subunit influenza vaccine (Subunit; Agrippal®, Novartis Vaccines. Subjects were randomised (2:1 to receive Sub/MF59™ or Subunit. Results Both vaccines were well tolerated, with no vaccine-related serious adverse events reported during the Phase I trial. During the observer-blind study, local and systemic reactions were generally similar for both vaccines 1–22 days post-vaccination; however, injection-site induration was more frequent among the Subunit group (P Conclusion MF59™-adjuvanted subunit influenza vaccine is well tolerated by elderly Chinese subjects and induces a higher level of immunogenicity than a non-adjuvanted subunit influenza vaccine in this population that is at high risk of influenza-related complications. Clinical trial registry http://www.clinicaltrials.gov, NCT00310648

  13. Use of a subunit feline leukemia virus vaccine in exotic cats.

    Science.gov (United States)

    Citino, S B

    1988-04-01

    Three adult bengal tigers, 2 immature white tigers, and 3 adult servals were vaccinated IM with three 1-ml doses of a subunit FeLV vaccine with dosage interval guidelines of the manufacturer. All cats had increased antibody titers to FeLV gp 70 capsular antigen and feline oncornavirus cell membrane-associated antigen during the vaccination trial. Three weeks after the third vaccination, 7 of the 8 cats had gp70 antibody titers greater than 0.2 (optical density), and all 8 cats had feline oncornavirus cell membrane-associated antigen antibody titers greater than 1:8.

  14. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines.

    Science.gov (United States)

    Moyle, Peter Michael

    Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their

  15. Hsp70 as a candidate subunit vaccine for paratuberculosis

    NARCIS (Netherlands)

    Santema, W.J.

    2011-01-01

    This thesis focuses on vaccination-based control of bovine paratuberculosis, a chronic mycobacterial infection of the small intestine. Bovine paratuberculosis is a highly prevalent disease affecting ruminants worldwide, leading to substantial economic losses. There are concerns that the causative

  16. Field Application of a Subunit Vaccine against an Enteric Protozoan Disease

    OpenAIRE

    Wallach, Michael G.; Ashash, Udi; Michael, Amnon; Smith, Nicholas C.

    2008-01-01

    BACKGROUND: Coccidiosis is a major global veterinary health problem in intensively reared chickens. It is caused by apicomplexan parasites of the genus Eimeria. PRINCIPAL FINDINGS: A subunit vaccine composed of purified antigens from the gametocytes of Eimeria maxima was used to stimulate the production and transfer of maternal antibodies between breeding hens and their hatchlings. The vaccine was injected into hens twice before they began laying eggs. Immunization had no adverse affects on e...

  17. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens.

    Science.gov (United States)

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-02-05

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on VARV antigen sequences to induce immunity against poxvirus infection.

  18. Strong protection induced by an experimental DIVA subunit vaccine against bluetongue virus serotype 8 in cattle.

    Science.gov (United States)

    Anderson, Jenna; Hägglund, Sara; Bréard, Emmanuel; Riou, Mickaël; Zohari, Siamak; Comtet, Loic; Olofson, Ann-Sophie; Gélineau, Robert; Martin, Guillaume; Elvander, Marianne; Blomqvist, Gunilla; Zientara, Stéphan; Valarcher, Jean Francois

    2014-11-20

    Bluetongue virus (BTV) infections in ruminants pose a permanent agricultural threat since new serotypes are constantly emerging in new locations. Clinical disease is mainly observed in sheep, but cattle were unusually affected during an outbreak of BTV seroype 8 (BTV-8) in Europe. We previously developed an experimental vaccine based on recombinant viral protein 2 (VP2) of BTV-8 and non-structural proteins 1 (NS1) and NS2 of BTV-2, mixed with an immunostimulating complex (ISCOM)-matrix adjuvant. We demonstrated that bovine immune responses induced by this vaccine were as good or superior to those induced by a classic commercial inactivated vaccine. In this study, we evaluated the protective efficacy of the experimental vaccine in cattle and, based on the detection of VP7 antibodies, assessed its DIVA compliancy following virus challenge. Two groups of BTV-seronegative calves were subcutaneously immunized twice at a 3-week interval with the subunit vaccine (n=6) or with adjuvant alone (n=6). Following BTV-8 challenge 3 weeks after second immunization, controls developed viremia and fever associated with other mild clinical signs of bluetongue disease, whereas vaccinated animals were clinically and virologically protected. The vaccine-induced protection was likely mediated by high virus-neutralizing antibody titers directed against VP2 and perhaps by cellular responses to NS1 and NS2. T lymphocyte responses were cross-reactive between BTV-2 and BTV-8, suggesting that NS1 and NS2 may provide the basis of an adaptable vaccine that can be varied by using VP2 of different serotypes. The detection of different levels of VP7 antibodies in vaccinated animals and controls after challenge suggested a compliancy between the vaccine and the DIVA companion test. This BTV subunit vaccine is a promising candidate that should be further evaluated and developed to protect against different serotypes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Stability of influenza sub-unit vaccine. Does a couple of days outside the refrigerator matter?

    NARCIS (Netherlands)

    Coenen, F; Tolboom, J T B M; Frijlink, H W

    2006-01-01

    In this study 27 full scale production batches of influenza sub-unit vaccine were evaluated on their stability. The batches varied with respect to the strains they contained and regarding the presence of the preservative thiomersal in the solution. The stability study showed that haemagglutinin

  20. Soybean Seeds: A Practical Host for the Production of Functional Subunit Vaccines

    Science.gov (United States)

    Hudson, Laura C.; Bost, Kenneth L.; Piller, Kenneth J.

    2014-01-01

    Soybean seeds possess several inherent qualities that make them an ideal host for the production of biopharmaceuticals when compared with other plant-based and non-plant-based recombinant expression systems (e.g., low cost of production, high protein to biomass ratio, long-term stability of seed proteins under ambient conditions, etc.). To demonstrate the practicality and feasibility of this platform for the production of subunit vaccines, we chose to express and characterize a nontoxic form of S. aureus enterotoxin B (mSEB) as a model vaccine candidate. We show that soy-mSEB was produced at a high vaccine to biomass ratio and represented ~76 theoretical doses of human vaccine per single soybean seed. We localized the model vaccine candidate both intracellularly and extracellularly and found no difference in mSEB protein stability or accumulation relative to subcellular environment. We also show that the model vaccine was biochemically and immunologically similar to native and recombinant forms of the protein produced in a bacterial expression system. Immunization of mice with seed extracts containing mSEB mounted a significant immune response within 14 days of the first injection. Taken together, our results highlight the practicality of soybean seeds as a potential platform for the production of functional subunit vaccines. PMID:24822195

  1. Soybean Seeds: A Practical Host for the Production of Functional Subunit Vaccines

    Directory of Open Access Journals (Sweden)

    Laura C. Hudson

    2014-01-01

    Full Text Available Soybean seeds possess several inherent qualities that make them an ideal host for the production of biopharmaceuticals when compared with other plant-based and non-plant-based recombinant expression systems (e.g., low cost of production, high protein to biomass ratio, long-term stability of seed proteins under ambient conditions, etc.. To demonstrate the practicality and feasibility of this platform for the production of subunit vaccines, we chose to express and characterize a nontoxic form of S. aureus enterotoxin B (mSEB as a model vaccine candidate. We show that soy-mSEB was produced at a high vaccine to biomass ratio and represented ~76 theoretical doses of human vaccine per single soybean seed. We localized the model vaccine candidate both intracellularly and extracellularly and found no difference in mSEB protein stability or accumulation relative to subcellular environment. We also show that the model vaccine was biochemically and immunologically similar to native and recombinant forms of the protein produced in a bacterial expression system. Immunization of mice with seed extracts containing mSEB mounted a significant immune response within 14 days of the first injection. Taken together, our results highlight the practicality of soybean seeds as a potential platform for the production of functional subunit vaccines.

  2. Development of a Subunit Vaccine for Contagious Bovine ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-08-11

    This project will allow researchers from Canada and Kenya to field trial a vaccine for contagious bovine pleuropneumonia. ... Researchers and practitioners gathered in Montreal on August 11, 2017 to discuss the potential of child care to benefit women through improved economic opportunities and empowerment as part of ...

  3. Safety and immunogenicity of a parenterally administered rotavirus VP8 subunit vaccine in healthy adults.

    Science.gov (United States)

    Fix, Alan D; Harro, Clayton; McNeal, Monica; Dally, Len; Flores, Jorge; Robertson, George; Boslego, John W; Cryz, Stanley

    2015-07-17

    The P2-VP8 subunit vaccine for the prevention of rotavirus gastroenteritis is comprised of a truncated VP8 subunit protein from the rotavirus Wa strain (G1[P8]) fused to the tetanus toxin P2 epitope, and adsorbed on aluminum hydroxide for intramuscular administration. Three groups of 16 adults were randomized to receive three injections of P2-VP8 (12) or placebo (4) at doses of 10, 30 or 60 μg of vaccine. IgG and IgA antibodies to P2-VP8 were assessed by ELISA in serum and lymphocyte supernatant (ALS). Serum samples were tested for neutralizing antibodies to homologous and heterologous strains of rotavirus. The vaccine was well-tolerated. All vaccine recipients demonstrated significant IgA responses and all but one demonstrated IgG responses; in the 60 μg cohort, geometric mean titers (GMTs) rose 70- and 80-fold for IgA and IgG, respectively. Homologous neutralizing antibody responses were observed in about half of participants in all three dose cohorts; in the 60 μg cohort, GMTs against Wa rose from 128 to 992. Neutralizing antibody responses were robust to P[8] strains, moderate to P[4] strains and negligible to P[6] strains. ALS IgA responses were dose dependent. The P2-VP8 subunit vaccine was well tolerated and evoked promising immune responses. NCT01764256. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Multi-stage subunit vaccine development against Mycobacterium paratuberculosis and Johne’s disease in ruminants

    DEFF Research Database (Denmark)

    Jungersen, Gregers

    , but in vaccination-challenge studies protection was not associated with level of FET-specific IFN-γ production, and Map-specific IFN-γ production appeared as a surrogate of disease with an inverse relationship to level of Map in tissues at slaughter. Polyfunctional T cells were induced by FET vaccination, but could...... in macrophages. The disease progression is very slow with neonatal animals being the most susceptible to infection, but without development of detectable IFN-γ responses for months after infection and rarely with clinical disease before the second or third year of life. Available whole cell vaccines against...... paratuberculosis provide only partial protection and interfere with diagnostic tests for JD and surveillance for bovine TB. In contrast, recombinant subunit vaccines can be designed to be used without compromising control of bTB and Map. Taking advantage of data from mouse TB studies, and early Map vaccination...

  5. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV Based Delivery System.

    Directory of Open Access Journals (Sweden)

    Sukalyani Banik

    Full Text Available Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA, chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100 doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  6. Plague in Guinea Pigs and Its Prevention by Subunit Vaccines

    Science.gov (United States)

    Quenee, Lauriane E.; Ciletti, Nancy; Berube, Bryan; Krausz, Thomas; Elli, Derek; Hermanas, Timothy; Schneewind, Olaf

    2011-01-01

    Human pneumonic plague is a devastating and transmissible disease for which a Food and Drug Administration–approved vaccine is not available. Suitable animal models may be adopted as a surrogate for human plague to fulfill regulatory requirements for vaccine efficacy testing. To develop an alternative to pneumonic plague in nonhuman primates, we explored guinea pigs as a model system. On intranasal instillation of a fully virulent strain, Yersinia pestis CO92, guinea pigs developed lethal lung infections with hemorrhagic necrosis, massive bacterial replication in the respiratory system, and blood-borne dissemination to other organ systems. Expression of the Y. pestis F1 capsule was not required for the development of pulmonary infection; however, the capsule seemed to be important for the establishment of bubonic plague. The mean lethal dose (MLD) for pneumonic plague in guinea pigs was estimated to be 1000 colony-forming units. Immunization of guinea pigs with the recombinant forms of LcrV, a protein that resides at the tip of Yersinia type III secretion needles, or F1 capsule generated robust humoral immune responses. Whereas LcrV immunization resulted in partial protection against pneumonic plague challenge with 250 MLD Y. pestis CO92, immunization with recombinant F1 did not. rV10, a vaccine variant lacking LcrV residues 271-300, elicited protection against pneumonic plague, which seemed to be based on conformational antibodies directed against LcrV. PMID:21406168

  7. Plague in Guinea pigs and its prevention by subunit vaccines.

    Science.gov (United States)

    Quenee, Lauriane E; Ciletti, Nancy; Berube, Bryan; Krausz, Thomas; Elli, Derek; Hermanas, Timothy; Schneewind, Olaf

    2011-04-01

    Human pneumonic plague is a devastating and transmissible disease for which a Food and Drug Administration-approved vaccine is not available. Suitable animal models may be adopted as a surrogate for human plague to fulfill regulatory requirements for vaccine efficacy testing. To develop an alternative to pneumonic plague in nonhuman primates, we explored guinea pigs as a model system. On intranasal instillation of a fully virulent strain, Yersinia pestis CO92, guinea pigs developed lethal lung infections with hemorrhagic necrosis, massive bacterial replication in the respiratory system, and blood-borne dissemination to other organ systems. Expression of the Y. pestis F1 capsule was not required for the development of pulmonary infection; however, the capsule seemed to be important for the establishment of bubonic plague. The mean lethal dose (MLD) for pneumonic plague in guinea pigs was estimated to be 1000 colony-forming units. Immunization of guinea pigs with the recombinant forms of LcrV, a protein that resides at the tip of Yersinia type III secretion needles, or F1 capsule generated robust humoral immune responses. Whereas LcrV immunization resulted in partial protection against pneumonic plague challenge with 250 MLD Y. pestis CO92, immunization with recombinant F1 did not. rV10, a vaccine variant lacking LcrV residues 271-300, elicited protection against pneumonic plague, which seemed to be based on conformational antibodies directed against LcrV. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Influence of maternal antibodies on efficacy of a subunit vaccine: transmission of classical swine fever virus between pigs vaccinated at 2 weeks of age

    NARCIS (Netherlands)

    Klinkenberg, D.; Moormann, R.J.M.; Smit, de A.J.; Bouma, A.; Jong, de M.C.M.

    2002-01-01

    This study shows the effectiveness of vaccination with an E2 subunit vaccine against classical swine fever (CSF) in 2-week-old piglets. Half of the piglets were carrying maternally derived antibodies (MDAs) at the time of vaccination. Three and 6 months later, antibody levels were compared between

  9. Field application of a subunit vaccine against an enteric protozoan disease.

    Directory of Open Access Journals (Sweden)

    Michael G Wallach

    Full Text Available BACKGROUND: Coccidiosis is a major global veterinary health problem in intensively reared chickens. It is caused by apicomplexan parasites of the genus Eimeria. PRINCIPAL FINDINGS: A subunit vaccine composed of purified antigens from the gametocytes of Eimeria maxima was used to stimulate the production and transfer of maternal antibodies between breeding hens and their hatchlings. The vaccine was injected into hens twice before they began laying eggs. Immunization had no adverse affects on egg laying or health of the hens and resulted in high antibody levels throughout the life of the hens. Progeny of immunized hens excreted significantly less oocysts of various species of Eimeria in their faeces than chicks from unvaccinated hens. Furthermore, the offspring of vaccinated hens developed stronger natural immunity to Eimeria, so that they were resistant to challenge infection even at 8 weeks of age, well after all maternal antibodies had left their circulation. Field trials were conducted in South Africa, Brazil and Thailand, involving at least 1 million progeny of vaccinated hens and at least 1 million positive control birds (raised on feed containing anticoccidial drugs or immunized with a live vaccine in each country. Additionally, trials were carried out in Israel involving 60 million progeny of vaccinated hens and 112 million positive control birds. There were no significant differences in growth rate, feed conversion ratios or mortality in the offspring of vaccinated hens compared with the positive control chickens in any of these countries regardless of different management practices, different breeds of chickens or climate. CONCLUSIONS: These results demonstrate that a vaccine composed of antigens purified from the gametocytes of Eimeria can be used safely and effectively to prevent the deleterious effects of coccidiosis. It is the first subunit vaccine against any protozoan parasite to be successfully applied on a commercial scale.

  10. Field application of a subunit vaccine against an enteric protozoan disease.

    Science.gov (United States)

    Wallach, Michael G; Ashash, Udi; Michael, Amnon; Smith, Nicholas C

    2008-01-01

    Coccidiosis is a major global veterinary health problem in intensively reared chickens. It is caused by apicomplexan parasites of the genus Eimeria. A subunit vaccine composed of purified antigens from the gametocytes of Eimeria maxima was used to stimulate the production and transfer of maternal antibodies between breeding hens and their hatchlings. The vaccine was injected into hens twice before they began laying eggs. Immunization had no adverse affects on egg laying or health of the hens and resulted in high antibody levels throughout the life of the hens. Progeny of immunized hens excreted significantly less oocysts of various species of Eimeria in their faeces than chicks from unvaccinated hens. Furthermore, the offspring of vaccinated hens developed stronger natural immunity to Eimeria, so that they were resistant to challenge infection even at 8 weeks of age, well after all maternal antibodies had left their circulation. Field trials were conducted in South Africa, Brazil and Thailand, involving at least 1 million progeny of vaccinated hens and at least 1 million positive control birds (raised on feed containing anticoccidial drugs or immunized with a live vaccine) in each country. Additionally, trials were carried out in Israel involving 60 million progeny of vaccinated hens and 112 million positive control birds. There were no significant differences in growth rate, feed conversion ratios or mortality in the offspring of vaccinated hens compared with the positive control chickens in any of these countries regardless of different management practices, different breeds of chickens or climate. These results demonstrate that a vaccine composed of antigens purified from the gametocytes of Eimeria can be used safely and effectively to prevent the deleterious effects of coccidiosis. It is the first subunit vaccine against any protozoan parasite to be successfully applied on a commercial scale.

  11. Proteomic and immunoproteomic characterization of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae

    Directory of Open Access Journals (Sweden)

    Maas Alexander

    2011-04-01

    Full Text Available Abstract Background Protection of pigs by vaccination against Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is hampered by the presence of 15 different serotypes. A DIVA subunit vaccine comprised of detergent-released proteins from A. pleuropneumoniae serotypes 1, 2 and 5 has been developed and shown to protect pigs from clinical symptoms upon homologous and heterologous challenge. This vaccine has not been characterized in-depth so far. Thus we performed i mass spectrometry in order to identify the exact protein content of the vaccine and ii cross-serotype 2-D immunoblotting in order to discover cross-reactive antigens. By these approaches we expected to gain results enabling us to argue about the reasons for the efficacy of the analyzed vaccine. Results We identified 75 different proteins in the vaccine. Using the PSORTb algorithm these proteins were classified according to their cellular localization. Highly enriched proteins are outer membrane-associated lipoproteins like OmlA and TbpB, integral outer membrane proteins like FrpB, TbpA, OmpA1, OmpA2, HgbA and OmpP2, and secreted Apx toxins. The subunit vaccine also contained large amounts of the ApxIVA toxin so far thought to be expressed only during infection. Applying two-dimensional difference gel electrophoresis (2-D DIGE we showed different isoforms and variations in expression levels of several proteins among the strains used for vaccine production. For detection of cross-reactive antigens we used detergent released proteins of serotype 7. Sera of pigs vaccinated with the detergent-released proteins of serotypes 1, 2, and 5 detected seven different proteins of serotype 7, and convalescent sera of pigs surviving experimental infection with serotype 7 reacted with 13 different proteins of the detergent-released proteins of A. pleuropneumoniae serotypes 1, 2, and 5. Conclusions A detergent extraction-based subunit vaccine of A. pleuropneumoniae was

  12. Immunogenicity of Mycobacterium avium subsp. paratuberculosis specific peptides for inclusion in a subunit vaccine against paratuberculosis

    DEFF Research Database (Denmark)

    Mikkelsen, Heidi; Tollefsen, S.; Olsen, I.

    Paratuberculosis in ruminants is caused by an infection with Mycobacterium avium subspecies paratuberculosis (MAP) and is a chronic disease characterized by granulomatous enteritis. Available vaccines against paratuberculosis consist of variations of whole bacteria with adjuvant showing various...... efficacies. The main problem with available vaccines is their interference with surveillance and diagnosis of bovine tuberculosis and paratuberculosis. Our ultimate aim is to develop a subunit vaccine consisting of selected MAP peptides, which allow differentiation of infected from vaccinated animals. Here...... full blood IFN-γ release assay and ELISPOT measuring IFN-γ release of PBMCs. A number of peptides resulted in high T cell proliferative responses in T-cell lines and some peptides induced IFN-γ production measured by ELISPOT. This indicates that some of the peptides in the panel contain T cell epitopes...

  13. A novel multi-stage subunit vaccine against paratuberculosis induces significant immunity and reduces bacterial burden in tissues (P4304)

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Riber, Ulla

    2013-01-01

    Effective control of paratuberculosis is hindered by lack of a vaccine preventing infection, transmission and without diagnostic interference with tuberculosis. We have developed a novel multi-stage recombinant subunit vaccine in which a fusion of four early expressed MAP antigens is combined wit...... characterized by a significant containment of bacterial burden in gut tissues compared to non-vaccinated animals. There was no cross-reaction with bovine tuberculosis in vaccinated animals. This novel multi-stage vaccine has the potential to become a marker vaccine for paratuberculosis....

  14. Immunological and protective effects of diepitopic subunit dental caries vaccines.

    Science.gov (United States)

    Smith, Daniel J; King, William F; Rivero, Joy; Taubman, Martin A

    2005-05-01

    As a prelude to development of broader-spectrum vaccines for dental caries, we explored the immune potential of constructs combining epitopes from mutans streptococcal glucosyltransferases (GTF) and glucan binding protein B (GbpB). Two diepitopic peptide constructs were synthesized in a multiple antigenic peptide (MAP) format. Both constructs contained SYI, a 20-mer GbpB peptide that included a sequence having major histocompatibility complex class II binding characteristics. One diepitopic construct (SYI-CAT) also contained a 22-mer sequence from the catalytic domain of GTF. Another diepitopic construct (SYI-GLU) contained a 22-mer sequence from the glucan binding domain of GTF. To assess the ability of each construct to induce antibody reactive with GbpB and GTF native proteins, rats were injected subcutaneously with SYI-CAT, SYI-GLU, or the constituent monoepitopic constructs. Only the SYI-CAT construct induced significant levels of serum immunoglobulin G (IgG) and IgA antibody to both pathogenesis-associated proteins. Also, immunization with SYI-CAT significantly (P caries after immunization with SYI-CAT, SYI, or CAT MAP constructs, followed by infection with Streptococcus mutans strain SJr. Dental caries were lower in each peptide-immunized group than in the sham-injected group. The level of protection after SYI-CAT immunization was similar to that after immunization with constituent MAP constructs. In another experiment, rats were infected with Streptococcus sobrinus strain 6715 under an identical protocol. Significant protection was observed on buccal surfaces in both SYI-CAT and CAT construct-immunized, but not in the SYI construct-immunized, groups. Thus, addition of the GbpB-derived SYI peptide to the GTF-derived CAT peptide construct not only enhanced the immunological response to CAT and GTF epitopes, but also extended the protective effect of the construct to include both S. mutans and S. sobrinus.

  15. Immunological and Protective Effects of Diepitopic Subunit Dental Caries Vaccines

    Science.gov (United States)

    Smith, Daniel J.; King, William F.; Rivero, Joy; Taubman, Martin A.

    2005-01-01

    As a prelude to development of broader-spectrum vaccines for dental caries, we explored the immune potential of constructs combining epitopes from mutans streptococcal glucosyltransferases (GTF) and glucan binding protein B (GbpB). Two diepitopic peptide constructs were synthesized in a multiple antigenic peptide (MAP) format. Both constructs contained SYI, a 20-mer GbpB peptide that included a sequence having major histocompatibility complex class II binding characteristics. One diepitopic construct (SYI-CAT) also contained a 22-mer sequence from the catalytic domain of GTF. Another diepitopic construct (SYI-GLU) contained a 22-mer sequence from the glucan binding domain of GTF. To assess the ability of each construct to induce antibody reactive with GbpB and GTF native proteins, rats were injected subcutaneously with SYI-CAT, SYI-GLU, or the constituent monoepitopic constructs. Only the SYI-CAT construct induced significant levels of serum immunoglobulin G (IgG) and IgA antibody to both pathogenesis-associated proteins. Also, immunization with SYI-CAT significantly (P caries after immunization with SYI-CAT, SYI, or CAT MAP constructs, followed by infection with Streptococcus mutans strain SJr. Dental caries were lower in each peptide-immunized group than in the sham-injected group. The level of protection after SYI-CAT immunization was similar to that after immunization with constituent MAP constructs. In another experiment, rats were infected with Streptococcus sobrinus strain 6715 under an identical protocol. Significant protection was observed on buccal surfaces in both SYI-CAT and CAT construct-immunized, but not in the SYI construct-immunized, groups. Thus, addition of the GbpB-derived SYI peptide to the GTF-derived CAT peptide construct not only enhanced the immunological response to CAT and GTF epitopes, but also extended the protective effect of the construct to include both S. mutans and S. sobrinus. PMID:15845483

  16. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines.

    Science.gov (United States)

    Aerts, Laetitia; Rhéaume, Chantal; Carbonneau, Julie; Lavigne, Sophie; Couture, Christian; Hamelin, Marie-Ève; Boivin, Guy

    2015-04-01

    The human metapneumovirus (HMPV) fusion (F) protein is the most immunodominant protein, yet subunit vaccines containing only this protein do not confer complete protection. The HMPV matrix (M) protein induces the maturation of antigen-presenting cells in vitro. The inclusion of the M protein into an F protein subunit vaccine might therefore provide an adjuvant effect. We administered the F protein twice intramuscularly, adjuvanted with alum, the M protein or both, to BALB/c mice at 3 week intervals. Three weeks after the boost, mice were infected with HMPV and monitored for 14 days. At day 5 post-challenge, pulmonary viral titres, histopathology and cytokine levels were analysed. Mice immunized with F+alum and F+M+alum generated significantly more neutralizing antibodies than mice immunized with F only [titres of 47 ± 7 (P<0.01) and 147 ± 13 (P<0.001) versus 17 ± 2]. Unlike F only [1.6 ± 0.5 × 10(3) TCID50 (g lung)(-1)], pulmonary viral titres in mice immunized with F+M and F+M+alum were undetectable. Mice immunized with F+M presented the most important reduction in pulmonary inflammation and the lowest T-helper Th2/Th1 cytokine ratio. In conclusion, addition of the HMPV-M protein to an F protein-based vaccine modulated both humoral and cellular immune responses to subsequent infection, thereby increasing the protection conferred by the vaccine. © 2015 The Authors.

  17. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus.

    Science.gov (United States)

    Friedrich, Brian M; Beasley, David W C; Rudra, Jai S

    2016-11-04

    A crucial issue in vaccine development is to balance safety with immunogenicity. The low immunogenicity of most subunit antigens warrants a search for adjuvants able to stimulate both cell-mediated and humoral immunity. In recent years, successful applications of nanotechnology and bioengineering in the field of vaccine development have enabled the production of novel adjuvant technologies. In this work, we investigated totally synthetic and supramolecular peptide hydrogels as novel vaccine adjuvants in conjunction with the immunoprotective envelope protein domain III (EIII) of West Nile virus as an immunogen in a mouse model. Our results indicate that, compared to the clinically approved adjuvant alum, peptide hydrogel adjuvanted antigen elicited stronger antibody responses and conferred significant protection against mortality after virus challenge. The high chemical definition and biocompatibility of self-assembling peptide hydrogels makes them attractive as immune adjuvants for the production of subunit vaccines against viral and bacterial infections where antibody-mediated protection is desirable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. N-Glycosylation of cholera toxin B subunit: serendipity for novel plant-made vaccines?

    Directory of Open Access Journals (Sweden)

    Nobuyuki eMatoba

    2015-12-01

    Full Text Available The non-toxic B subunit of cholera toxin (CTB has attracted considerable interests from vaccinologists due to strong mucosal immunomodulatory effects and potential utility as a vaccine scaffold for heterologous antigens. Along with other conventional protein expression systems, various plant species have been used as recombinant production hosts for CTB and its fusion proteins. However, it has recently become clear that the protein is N-glycosylated within the endoplasmic reticulum of plant cells – a eukaryotic post-translational modification that is not present in native CTB. While functionally active aglycosylated variants have been successfully engineered to circumvent potential safety and regulatory issues related to glycosylation, this modification may actually provide advantageous characteristics to the protein as a vaccine platform. Based on data from our recent studies, I discuss the unique features of N-glycosylated CTB produced in plants for the development of novel vaccines.

  19. Construction and Characterization of Human Rotavirus Recombinant VP8* Subunit Parenteral Vaccine Candidates

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W.; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-01-01

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in E. coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., (P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. PMID:22885016

  20. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    Science.gov (United States)

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-09-21

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in Escherichia coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. Published by Elsevier Ltd.

  2. LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis.

    Science.gov (United States)

    Conrad, Neida L; Cruz McBride, Flávia W; Souza, Jéssica D; Silveira, Marcelle M; Félix, Samuel; Mendonça, Karla S; Santos, Cleiton S; Athanazio, Daniel A; Medeiros, Marco A; Reis, Mitermayer G; Dellagostin, Odir A; McBride, Alan J A

    2017-03-01

    Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131-645)) and aluminium hydroxide (AH), in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0-100%, P leptospirosis with potential ramifications to public and veterinary health.

  3. Superior protection conferred by inactivated whole virus vaccine over subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Xu, Cheng; Mutoloki, Stephen; Evensen, Øystein

    2012-06-06

    Salmonid alphavirus 3 (SAV-3) is an emerging pathogen in Norwegian salmon farming and causes severe annual losses. We studied the immunogenicity and protective ability of subunit and DNA vaccines based on E1 and E2 spike proteins of salmonid alphavirus subtype 3 (SAV-3), and compared these to an experimental inactivated, whole virus (IWV) vaccine in Atlantic salmon. The antigens were delivered as water-in-oil emulsions for the subunit and inactivated vaccines and non-formulated for the DNA vaccines. The IWV and the E2 subunit prime-boost groups had circulating neutralizing antibodies at challenge, correlating with high protection against lethal challenge and 3-log(10) reduction of virus titer in heart for the IWV group. Prime-boost with E1 subunit vaccine also conferred significant protection against mortality, but did not correlate with neutralizing antibody levels. Protection against pathology in internal organs was only seen for the IWV group. Prime-boost with E1 and E2 DNA vaccines showed marginal protection in terms of reduction of viral replication in target organs and protection against mortality was not different from controls. The IWV group showed significant upregulation of IFNγ and IL2 mRNA expression at 4 weeks post challenge possibly indicating that other mechanisms in addition to antibody responses play a role in mediating protection against infection. This is the first report comparing the immunogenicity and protection against mortality for IWV vaccines and spike protein subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon. The IWV vaccine has superior immunogenicity over sub-unit and DNA vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Gastro-intestinal delivery of influenza subunit vaccine formulation adjuvanted with Gram-positive enhancer matrix (GEM) particles

    NARCIS (Netherlands)

    Saluja, V.; Visser, M.R.; van Roosmalen, M.L.; Leenhouts, K.; Huckriede, A.; Hinrichs, W.L.J.; Frijlink, H.W.

    2010-01-01

    In this study, a liquid formulation of influenza subunit vaccine admixed with Gram-positive enhancer matrix (GEM) particles as adjuvant was delivered to upper and lower parts of intestinal tract. The aim was to determine the most effective immunization site in the intestines. Mice were vaccinated

  5. Prospects for subunit vaccines: Technology advances resulting in efficacious antigens requires matching advances in early clinical trial investment.

    Science.gov (United States)

    McClean, Siobhán

    2016-12-01

    With the continued march of antimicrobial resistance, a renewed impetus for better vaccines has been heralded. Identification of potent subunit vaccines has been greatly facilitated by recent developments in reverse vaccinology and proteomics strategies. There are a range of antimicrobial resistant bacterial pathogens that could be targeted by potent vaccine antigens identified within the coming years. However, cost is a significant hurdle in progressing lead antigen candidates to clinical trials. In order for novel vaccine technologies to realize their clinical potential, there is a requirement to improve investment and incentives to expedite the development of vaccines that are apparently efficacious in preclinical trials.

  6. Live attenuated Shigella dysenteriae type 1 vaccine strains overexpressing shiga toxin B subunit.

    Science.gov (United States)

    Wu, Tao; Grassel, Christen; Levine, Myron M; Barry, Eileen M

    2011-12-01

    Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens.

  7. Live Attenuated Shigella dysenteriae Type 1 Vaccine Strains Overexpressing Shiga Toxin B Subunit

    Science.gov (United States)

    Wu, Tao; Grassel, Christen; Levine, Myron M.; Barry, Eileen M.

    2011-01-01

    Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens. PMID:21969003

  8. Phase III, randomized controlled trial to evaluate lot consistency of a trivalent subunit egg-based influenza vaccine in adults.

    Science.gov (United States)

    Rivera, Luis; Mazara, Sonia; Vargas, Maria; Fragapane, Elena; Casula, Daniela; Groth, Nicola

    2012-07-27

    Vaccination is the most effective preventive strategy to control influenza. The demonstration of lot-to-lot consistency to confirm the reliability of the manufacturing process has become a mandatory step in vaccine development. This phase III, observer-blind, controlled trial assessed lot-to-lot consistency, immunogenicity, and safety of a subunit trivalent influenza vaccine (Agrippal®, Novartis Vaccines and Diagnostics) in healthy adults aged 18-49 years. The immunogenicity and safety profile of Agrippal was compared with a control vaccine (Fluvirin®, Novartis Vaccines and Diagnostics). A total of 1507 subjects were randomized 2:2:2:1 to receive one vaccination of one of the three lots of influenza vaccine or control vaccine. Antibody levels were measured by hemagglutination inhibition assay on days 1 and 22. Adverse reactions were solicited via diary cards for 7 days after vaccination, and unsolicited adverse events were collected throughout the study period. Equivalence of day 22 immune responses to the three lots was shown for each of the three strains. Robust immunogenic responses after one dose were observed for all vaccine groups, and both Center for Biologics Evaluation and Research criteria for licensure of influenza vaccines were met for all three virus strains. Both vaccines exhibited a robust safety profile and were well tolerated, with no differences in local and systemic solicited reactions or in unsolicited adverse events. The demonstration of consistency between manufacturing lots confirms for purposes of clinical development the reliability of the production process. The robust immunogenic responses and favorable safety profiles further support the use of trivalent subunit influenza vaccines Agrippal and Fluvirin for active immunization against influenza. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Expression of HIV-1 antigens in plants as potential subunit vaccines

    Directory of Open Access Journals (Sweden)

    Tanzer Fiona L

    2008-06-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 has infected more than 40 million people worldwide, mainly in sub-Saharan Africa. The high prevalence of HIV-1 subtype C in southern Africa necessitates the development of cheap, effective vaccines. One means of production is the use of plants, for which a number of different techniques have been successfully developed. HIV-1 Pr55Gag is a promising HIV-1 vaccine candidate: we compared the expression of this and a truncated Gag (p17/p24 and the p24 capsid subunit in Nicotiana spp. using transgenic plants and transient expression via Agrobacterium tumefaciens and recombinant tobamovirus vectors. We also investigated the influence of subcellular localisation of recombinant protein to the chloroplast and the endoplasmic reticulum (ER on protein yield. We partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. Results Both transient and transgenic expression of the HIV antigens were successful, although expression of Pr55Gag was low in all systems; however, the Agrobacterium-mediated transient expression of p24 and p17/p24 yielded best, to more than 1 mg p24/kg fresh weight. Chloroplast targeted protein levels were highest in transient and transgenic expression of p24 and p17/p24. The transiently-expressed p17/p24 was not immunogenic in mice as a homologous vaccine, but it significantly boosted a humoral and T cell immune response primed by a gag DNA vaccine, pTHGagC. Conclusion Transient agroinfiltration was best for expression of all of the recombinant proteins tested, and p24 and p17/p24 were expressed at much higher levels than Pr55Gag. Our results highlight the usefulness of plastid signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The p17/p24 protein effectively boosted T cell and humoral responses in mice primed by the DNA vaccine pTHGagC, showing that this plant

  10. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics.

    Science.gov (United States)

    Dhanda, Sandeep Kumar; Usmani, Salman Sadullah; Agrawal, Piyush; Nagpal, Gandharva; Gautam, Ankur; Raghava, Gajendra P S

    2017-05-01

    The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases. This review describes various computational resources important for designing subunit vaccines or epitope-based immunotherapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for predicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity and immune toxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Preclinical development of a dengue tetravalent recombinant subunit vaccine: Immunogenicity and protective efficacy in nonhuman primates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Meschino, Steven; Guan, Liming; Clements, David E; ter Meulen, Jan H; Casimiro, Danilo R; Coller, Beth-Ann G; Bett, Andrew J

    2015-08-07

    We describe here the preclinical development of a dengue vaccine composed of recombinant subunit carboxy-truncated envelope (E) proteins (DEN-80E) for each of the four dengue serotypes. Immunogenicity and protective efficacy studies in Rhesus monkeys were conducted to evaluate monovalent and tetravalent DEN-80E vaccines formulated with ISCOMATRIX™ adjuvant. Three different doses and two dosing regimens (0, 1, 2 months and 0, 1, 2, and 6 months) were evaluated in these studies. We first evaluated monomeric (DEN4-80E) and dimeric (DEN4-80EZip) versions of DEN4-80E, the latter generated in an attempt to improve immunogenicity. The two antigens, evaluated at 6, 20 and 100 μg/dose formulated with ISCOMATRIX™ adjuvant, were equally immunogenic. A group immunized with 20 μg DEN4-80E and Alhydrogel™ induced much weaker responses. When challenged with wild-type dengue type 4 virus, all animals in the 6 and 20 μg groups and all but one in the DEN4-80EZip 100 μg group were protected from viremia. Two out of three monkeys in the Alhydrogel™ group had breakthrough viremia. A similar study was conducted to evaluate tetravalent formulations at low (3, 3, 3, 6 μg of DEN1-80E, DEN2-80E, DEN3-80E and DEN4-80E respectively), medium (10, 10, 10, 20 μg) and high (50, 50, 50, 100 μg) doses. All doses were comparably immunogenic and induced high titer, balanced neutralizing antibodies against all four DENV. Upon challenge with the four wild-type DENV, all animals in the low and medium dose groups were protected against viremia while two animals in the high-dose group exhibited breakthrough viremia. Our studies also indicated that a 0, 1, 2 and 6 month vaccination schedule is superior to the 0, 1, and 2 month schedule in terms of durability. Overall, the subunit vaccine was demonstrated to induce strong neutralization titers resulting in protection against viremia following challenge even 8-12 months after the last vaccine dose. Copyright © 2015 Elsevier Ltd. All rights

  12. Evaluation of the Immunogenicity of an Experimental Subunit Vaccine That Allows Differentiation between Infected and Vaccinated Animals against Bluetongue Virus Serotype 8 in Cattle

    Science.gov (United States)

    Hägglund, Sara; Bréard, Emmanuel; Comtet, Loic; Lövgren Bengtsson, Karin; Pringle, John; Zientara, Stéphan

    2013-01-01

    Bluetongue virus (BTV), the causative agent of bluetongue in ruminants, is an emerging virus in northern Europe. The 2006 outbreak of BTV serotype 8 (BTV-8) in Europe was marked by an unusual teratogenic effect and a high frequency of clinical signs in cattle. Conventional control strategies targeting small ruminants were therefore extended to include cattle. Since cattle were not routinely vaccinated before 2006, the immune responses to BTV have not been studied extensively in this species. With the aims of developing a subunit vaccine against BTV-8 for differentiation between infected and vaccinated animals based on viral protein 7 (VP7) antibody detection and of improving the current understanding of the immunogenicity of BTV proteins in cattle, the immune responses induced by recombinant VP2 (BTV-8) and nonstructural protein 1 (NS1) and NS2 (BTV-2) were studied. Cows were immunized twice (with a 3-week interval) with the experimental vaccine, a commercial inactivated vaccine, or a placebo. The two vaccines induced similar neutralizing antibody responses to BTV-8. Furthermore, the antibody responses detected against VP2, NS1, and NS2 were strongest in the animals immunized with the experimental vaccine, and for the first time, a serotype cross-reactive antibody response to NS2 was shown in cattle vaccinated with the commercial vaccine. The two vaccines evoked measurable T cell responses against NS1, thereby supporting a bovine cross-reactive T cell response. Finally, VP7 seroconversion was observed after vaccination with the commercial vaccine, as in natural infections, but not after vaccination with the experimental vaccine, indicating that the experimental vaccine may allow the differentiation of vaccinated animals from infected animals regardless of BTV serotype. The experimental vaccine will be further evaluated during a virulent challenge in a high-containment facility. PMID:23720365

  13. A randomized controlled trial comparing split and subunit influenza vaccines in adults in Colombia

    Directory of Open Access Journals (Sweden)

    A. Morales

    2003-06-01

    Full Text Available In a two-center, comparative trial, 344 adults were randomly assigned to receive a single dose of inactivated split-virion (Imovax Gripeâ or sub-unit (Agrippal S1â influenza vaccine (1999-2000 formulations. For analysis, study groups were subdivided into adult (18-60 years old and elderly (over 60 years subjects. Blood was drawn immediately before and one month after vaccination, safety was evaluated using a blind-observer design based on reporting of solicited and unsolicited adverse events. Both vaccines were very well tolerated, had similar reactogenicity profiles, and elicited fewer reports of reactions in elderly individuals. Post-vaccination Imovax Gripeâ induced seroprotective antibody titers against the three vaccine strains in 94-99% of adults and 88-97% of elderly subjects, compared with 88-100% and 88-98%, respectively, of those given Agrippal S1â. In conclusion, the split-virion and sub-unit influenza vaccines had similar safety and reactogenicity profiles, and elicited satisfactory immunity in adult and elderly subjects. However, higher post-vaccination geometric mean titer (GMT values in response to the B strain were seen with the split vaccine Imovax Gripeâ, giving it a better overall immunogenicity.En un ensayo comparativo realizado en dos centros, se asignaron de manera aleatoria 344 adultos para recibir una dosis de vacuna contra la gripe de virus fraccionado inactivado (Imovax Gripeâ o de vacuna de subunidades (Agrippal S1â (formulaciones 1999-2000. Para el análisis, los grupos estudiados fueron subdivididos en adultos (18-60 años y ancianos (más de 60 años. La sangre fue extraída justo antes y un mes después de la vacunación. La inocuidad fue evaluada utilizando un informe sobre reacciones adversas, usando un diseño de observador a ciegas. Ambas vacunas fueron muy bien toleradas, con perfiles de reactogenicidad similares y desarrollaron escasas reacciones adversas en los individuos ancianos. La vacunación con

  14. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation

    NARCIS (Netherlands)

    Saluja, V.; Amorij, J-P.; Kapteyn, J. C.; de Boer, A. H.; Frijlink, H. W.; Hinrichs, W. L. J.

    2010-01-01

    The aim of this study was to investigate two different processes to produce a stable influenza subunit vaccine powder for pulmonary immunization i.e. spray drying (SD) and spray freeze drying (SFD). The formulations were analyzed by proteolytic assay, single radial immunodiffusion assay (SRID),

  15. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus.

    Science.gov (United States)

    Xia, Ming; Wei, Chao; Wang, Leyi; Cao, Dianjun; Meng, Xiang-Jin; Jiang, Xi; Tan, Ming

    2016-05-19

    Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development.

  16. Intradermal vaccination with un-adjuvanted sub-unit vaccines triggers skin innate immunity and confers protective respiratory immunity in domestic swine.

    Science.gov (United States)

    Le Luduec, Jean-Benoît; Debeer, Sabine; Piras, Fabienne; Andréoni, Christine; Boudet, Florence; Laurent, Philippe; Kaiserlian, Dominique; Dubois, Bertrand

    2016-02-10

    Intradermal (ID) vaccination constitutes a promising approach to induce anti-infectious immunity. This route of immunization has mostly been studied with influenza split-virion vaccines. However, the efficacy of ID vaccination for sub-unit vaccines in relation to underlying skin innate immunity remains to be explored for wider application in humans. Relevant animal models that more closely mimic human skin immunity than the widely used mouse models are therefore necessary. Here, we show in domestic swine, which shares striking anatomic and functional properties with human skin, that a single ID delivery of pseudorabies virus (PRV) glycoproteins without added adjuvant is sufficient to trigger adaptive cellular and humoral immune responses, and to confer protection from a lethal respiratory infection with PRV. Analysis of early events at the skin injection site revealed up-regulation of pro-inflammatory cytokine and chemokine genes, recruitment of neutrophils and monocytes and accumulation of inflammatory DC. We further show that the sustained induction of pro-inflammatory cytokine genes results from the combined effects of skin puncture, liquid injection in the dermis and viral antigens. These data highlight that immune protection against respiratory infection can be induced by ID vaccination with a subunit vaccine and reveal that adjuvant requirements are circumvented by the mechanical and antigenic stress caused by ID injection, which triggers innate immunity and mobilization of inflammatory DC at the immunization site. ID vaccination with sub-unit vaccines may thus represent a safe and efficient solution for protection against respiratory infections in swine and possibly also in humans, given the similarity of skin structure and function in both species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Immunogenicity and Safety of the HZ/su Adjuvanted Herpes Zoster Subunit Vaccine in Adults Previously Vaccinated With a Live Attenuated Herpes Zoster Vaccine.

    Science.gov (United States)

    Grupping, Katrijn; Campora, Laura; Douha, Martine; Heineman, Thomas C; Klein, Nicola P; Lal, Himal; Peterson, James; Vastiau, Ilse; Oostvogels, Lidia

    2017-12-12

    Protection against herpes zoster (HZ) induced by the live attenuated zoster vaccine Zostavax (ZVL) wanes within 3-7 years. Revaccination may renew protection. We assessed whether (re)vaccination with the adjuvanted HZ subunit vaccine candidate (HZ/su) induced comparable immune responses in previous ZVL recipients and ZVL-naive individuals (HZ-NonVac). In an open-label, multicenter study, adults ≥65 years of age, vaccinated with ZVL ≥5 years previously (HZ-PreVac), were matched to ZVL-naive adults (HZ-NonVac). Participants received 2 doses of HZ/su 2 months apart. The primary objective of noninferiority of the humoral immune response 1 month post-dose 2 was considered demonstrated if the upper limit of the 95% confidence interval (CI) of the adjusted anti-glycoprotein E geometric mean concentration (GMC) ratio of HZ-NonVac over HZ-PreVac was <1.5. HZ/su cellular immunogenicity, reactogenicity, and safety were also assessed. In 430 participants, humoral immune response to HZ/su was noninferior in HZ-PreVac compared with HZ-NonVac (adjusted GMC ratio, 1.04 [95% CI, .92-1.17]). Cellular immunogenicity, reactogenicity, and safety appeared to be comparable between groups. HZ/su was well-tolerated, with no safety concerns raised within 1 month post-dose 2. HZ/su induces a strong immune response irrespective of prior vaccination with ZVL, and may be an attractive option to revaccinate prior ZVL recipients. NCT02581410.

  18. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin.

    Science.gov (United States)

    Wang, Chuanwen; Liu, Liping; Zhang, Zhen; Yan, Zhengui; Yu, Cuilian; Shao, Mingxu; Jiang, Xiaodong; Chi, Shanshan; Wei, Kai; Zhu, Ruiliang

    2015-10-01

    Dermonecrotic toxin (DNT) produced by Bordetella bronchiseptica (B. bronchiseptica) can cause clinical turbinate atrophy in swine and induce dermonecrotic lesions in model mice. We know that the N-terminal of DNT molecule contains the receptor-binding domain, which facilitates binding to the target cells. However, we do not know whether this domain has sufficient immunogenicity to resist B. bronchiseptica damage and thereby to develop a subunit vaccine for the swine industry. In this study, we prokaryotically expressed the recombinant N-terminal of DNT from B. bronchiseptica (named DNT-N) and prepared it for the subunit vaccine to evaluate its immunogenicity. Taishan Pinus massoniana pollen polysaccharide (TPPPS), a known immunomodulator, was used as the adjuvant to examine its immune-conditioning effects. At 49 d after inoculation, 10 mice from each group were challenged with B. bronchiseptica, and another 10 mice were intradermally challenged with native DNT, to examine the protection imparted by the vaccines. The immune parameters (T-lymphocyte counts, cytokine secretions, serum antibody titers, and survival rates) and skin lesions were determined. The results showed that pure DNT-N vaccine significantly induced immune responses and had limited ability to resist the B. bronchiseptica and DNT challenge, whereas the mice administered with TPPPS or Freund's incomplete adjuvant vaccine could induce higher levels of the above immune parameters. Remarkably, the DNT-N vaccine combined with TPPPS adjuvant protected the mice effectively to prevent B. bronchiseptica infection. Our findings indicated that DNT-N has potential for development as an effective subunit vaccine to counteract the damage of B. bronchiseptica infection, especially when used conjointly with TPPPS. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model.

    Science.gov (United States)

    Awasthi, Sita; Hook, Lauren M; Shaw, Carolyn E; Friedman, Harvey M

    2017-12-02

    An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.

  20. A novel subunit vaccine co-expressing GM-CSF and PCV2b Cap protein enhances protective immunity against porcine circovirus type 2 in piglets.

    Science.gov (United States)

    Zhang, Huawei; Qian, Ping; Peng, Bo; Shi, Lin; Chen, Huanchun; Li, Xiangmin

    2015-05-15

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated disease. Capsid (Cap) protein of PCV2 is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. GM-CSF is an immune adjuvant that enhances responses to vaccines. In this study, recombinant baculoviruses Ac-Cap and Ac-Cap-GM-CSF expressing the Cap protein alone and co-expressing the Cap protein and porcine GM-CSF, respectively, were constructed successfully. The target proteins were analyzed by western blotting and IFA. Further, these proteins were confirmed by electron microscopy, which showed that Cap proteins could self-assemble into virus-like particles having diameters of 17-25nm. Animal experiments showed that pigs immunized with Cap-GM-CSF subunit vaccine showed significantly higher levels of PCV2-specific antibodies and neutralizing antibodies than pigs immunized with the Cap subunit vaccine and a commercial vaccine (Ingelvac CircoFLEX; PGM-CSF subunit vaccine showed significantly higher average daily weight gain after wild-type PCV2 challenge than pigs receiving the other three vaccines (PGM-CSF was a powerful immunoadjuvant for PCV2 subunit vaccines because it enhanced humoral immune response and improved immune protection against PCV2 infection in pigs. Thus, the novel Cap-GM-CSF subunit vaccine has the potential to be used as an effective and safe vaccine candidate against PCV2 infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Recombinant cholera toxin B subunit and gene fusion proteins for oral vaccination.

    Science.gov (United States)

    Sanchez, J; Johansson, S; Löwenadler, B; Svennerholm, A M; Holmgren, J

    1990-01-01

    The B subunit portion of cholera toxin (CTB) is a safe and effective oral immunizing agent in humans, affording protection against both cholera and diarrhoea caused by enterotoxigenic Escherichia coli producing heat-labile toxin (LT) (Clemens et al., 1986; 1988). CTB may also be used as a carrier of various "foreign" antigens suitable for oral administration. To facilitate large-scale production of CTB for vaccine development purposes, we have constructed recombinant overexpression systems for CTB proteins in which the CTB gene is under the control of strong foreign (non-cholera) promoters and in which it is also possible to fuse oligonucleotides to the CTB gene and thereby achieve overexpression of hybrid proteins (Sanchez and Holmgren, 1989; Sanchez et al., 1988). We here expand these findings by describing overexpression of CTB by a constitutive tacP promoter as well as by the T7 RNA-polymerase promoter, and also by describing gene fusions leading to overexpression of several hybrid proteins between heat-stable E. coli enterotoxin (STa)-related peptides to either the amino or carboxy ends of CTB. Each of the hybrid proteins, when tested as immunogens in rabbits, stimulated significant anti-STa as well as anti-CTB antibody formation, although the anti-STa antibody levels attained (c.a. 1-15 micrograms/ml specific anti-STa immunoglobulin) were too low to give more than partial neutralization of STa intestinal challenge in baby mice. The hybrid proteins also had a near-native conformation, as apparent from their oligomeric nature and their strong reactivity with both a neutralizing antibody against the B subunit and a neutralizing monoclonal antibody (mAb) against STa.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Evaluation of a Subunit Vaccine to Infectious Hematopoietic Necrosis (IHN) Virus, 1984 FY Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Leong, JoAnn Ching

    1985-07-01

    A prototype subunit vaccine to IHN virus is being developed by recombinant DNA techniques. The techniques involve the isolation and characterization of the glycoprotein gene, which encodes the viral protein responsible for inducing a protective immune response in fish. The viral glycoprotein gene has been cloned and a restriction map of the cloned gene has been prepared. Preliminary DNA sequence analysis of the cloned gene has been initiated so that manipulation of the gene for maximum expression in appropriate plasmid vectors is possible. A recombinant plasmid containing the viral gene inserted in the proper orientation adjacent to a very strong lambda promoter and ribosome binding site has been constructed. Evaluation of this recombinant plasmid for gene expression is being conducted. Immunization trials with purified viral glycoprotein indicate that fish are protected against lethal doses of IHNV after immersion and intraperitoneal methods of immunization. In addition, cross protection immunization trials indicate that Type 2 and Type 1 IHN virus produce glycoproteins that are cross-protective.

  3. Efficacy of a non-updated, Matrix-C-based equine influenza subunit-tetanus vaccine following Florida sublineage clade 2 challenge

    OpenAIRE

    Pouwels, H. G. W.; Van de Zande, S. M. A.; Horspool, L. J. I.; Hoeijmakers, M. J. H.

    2014-01-01

    Assessing the ability of current equine influenza vaccines to provide cross-protection against emerging strains is important. Horses not vaccinated previously and seronegative for equine influenza based on haemagglutination inhibition (HI) assay were assigned at random to vaccinated (n=7) or non-vaccinated (control, n=5) groups. Vaccination was performed twice four weeks apart with a 1 ml influenza subunit (A/eq/Prague/1/56, A/eq/Newmarket/1/93, A/eq/Newmarket/2/93), tetanus toxoid vaccine wi...

  4. Tuberculosis-specific CD8 cells in HLA A*02-positive TB- and LTBI patients

    DEFF Research Database (Denmark)

    Fløe, Andreas; Brix, Liselotte; Wejse, Christian

    Background: Understanding the CD8+ response against Mycobacterium tuberculosis (MTB) may be a key to improved TB diagnostics and vaccine development. Aims and Objectives: To detect a CD8+ T-cell response against Mycobacterium tuberculosis (MTB) in active tuberculosis (TB) and latent TB (LTBI......), in HLA A*02 positive patients. Methods: We identified possible epitopes (antigen fragments) from 9 MTB antigens (Ag85B, ESAT-6, EsxH, Hsp65, EsxJ, rv1490, rv1614, rv2626c and 16 kDa antigen) by searching the literature, and by computer prediction of likely binding to MHC-1. We selected 24 epitope...... candidates, from which we constructed MHC multimers (Dextramers). Peripheral blood mononuclear cells (PBMC) from 7 TB-patients, 16 LTBI patients and 8 MTB-exposed, IGRA-negative, healthy subjects (HE), all HLA A*02 positive, were stained with the Dextramers and with anti-CD8 and anti-CD3, and analyzed...

  5. Immunogenicity and Safety of an Adjuvanted Herpes Zoster Subunit Vaccine Coadministered With Seasonal Influenza Vaccine in Adults Aged 50 Years or Older.

    Science.gov (United States)

    Schwarz, Tino F; Aggarwal, Naresh; Moeckesch, Beate; Schenkenberger, Isabelle; Claeys, Carine; Douha, Martine; Godeaux, Olivier; Grupping, Katrijn; Heineman, Thomas C; Fauqued, Marta Lopez; Oostvogels, Lidia; Van den Steen, Peter; Lal, Himal

    2017-12-12

    The immunogenicity and safety of an adjuvanted herpes zoster subunit (HZ/su) vaccine when coadministered with a quadrivalent seasonal inactivated influenza vaccine (IIV4) was investigated in a phase 3, open-label, randomized clinical trial in adults aged ≥50 years. Subjects were randomized 1:1 to receive either HZ/su (varicella zoster virus glycoprotein E; AS01B Adjuvant System) and IIV4 at day 0 followed by a second HZ/su dose at month 2 (coadministration group), or IIV4 at month 0 and HZ/su at months 2 and 4 (control group). The primary objectives were the HZ/su vaccine response rate in the coadministration group and the noninferiority of the antibody responses to HZ/su and IIV4 in the coadministration compared with the control group. Safety information was collected throughout the duration of the study. A total of 413 subjects were vaccinated in the coadministration group and 415 in the control group. The HZ/su vaccine response rate in the coadministration group was 95.8% (95% confidence interval, 93.3%-97.6%) and the anti-glycoprotein E GMCControl/Coadmin ratio was 1.08 (.97-1.20). The primary noninferiority objectives were met. No safety concerns were observed. No interference in the immune responses to either vaccine was observed when the vaccines were coadministered, and no safety concerns were identified. NCT01954251.

  6. Safety and Immunogenicity of an Inactivated Whole Cell Plus Recombinant B Subunit (WC/RBS) Cholera Vaccine in Healthy Adult Peruvian Military Volunteers.

    Science.gov (United States)

    1992-11-30

    AD-A260 586 IFB0 919931 MIPR NO: 92MM2532W TITLE: SAFETY AND IMMUNOGENICITY OF AN INACTIVATED WHOLE CELL PLUS RECOMBINANT B SUBUNIT (WCIRBS) COLERA ...NUMBERS Safety and Immunogenicity of an Inactivated Whole MIPR No. Cell Plus Recombinant B Subunit (WC/RBS) Colera 92MM2532 Vaccine in Healthy Adult

  7. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination : Biological properties and immunogenicity in a mouse model

    NARCIS (Netherlands)

    Amidi, Maryam; Romeijn, Stefan G.; Verhoef, J. Coos; Junginger, Hans E.; Bungener, Laura; Huckriede, Anke; Crommelin, Daan J. A.; Jiskoot, Wim

    2007-01-01

    In this study, the potential of N-trimethyl chitosan (TMC) nanoparticles as a carrier system for the nasal delivery of a monovalent influenza subunit vaccine was investigated. The antigen-loaded nanoparticles were prepared by mixing a solution containing TMC and monovalent influenza A subunit H3N2

  8. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs

    Science.gov (United States)

    Liao, Chih-Ming; Huang, Chienjin; Hsuan, Shih-Ling; Chen, Zeng-Weng; Lee, Wei-Cheng; Liu, Cheng-I; Winton, James R.; Chien, Maw-Sheng

    2006-01-01

    Three short fragments of recombinant subunit Pasteurella multocida toxin (rsPMT) were constructed for evaluation as candidate vaccines against progressive atrophic rhinitis (PAR) of swine. PMT-specific antibody secreting cells and evidence of cellular immunity were detected in rsPMT-immunized pigs following authentic PMT challenge or homologous antigen booster. Piglets immunized with rsPMT fragments containing either the N-terminal or the C-terminal portions of PMT developed high titers of neutralizing antibodies. Pregnant sows immunized with rsPMT had higher levels of maternal antibodies in their colostrum than did those immunized with a conventional PAR-toxoid vaccine. Offspring from rsPMT vaccinated sows had better survival after challenge with a five-fold lethal dose of authentic PMT and had better growth performance after challenge with a sublethal dose of toxin. Our findings indicate these non-toxic rsPMT proteins are attractive candidates for development of a subunit vaccine against PAR in pigs.

  9. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis.

    Science.gov (United States)

    Schully, K L; Bell, M G; Prouty, A M; Gallovic, M D; Gautam, S; Peine, K J; Sharma, S; Bachelder, E M; Pesce, J T; Elberson, M A; Ainslie, K M; Keane-Myers, A

    2015-11-30

    Melioidosis, a potentially lethal disease of humans and animals, is caused by the soil-dwelling bacterium Burkholderia pseudomallei. Due to B. pseudomallei's classification as a Tier 1 Select Agent, there is substantial interest in the development of an effective vaccine. Yet, despite decades of research, no effective target, adjuvant or delivery vehicle capable of inducing protective immunity against B. pseudomallei infection has been identified. We propose a microparticulate delivery vehicle comprised of the novel polymer acetalated dextran (Ac-DEX). Ac-DEX is an acid-sensitive biodegradable carrier that can be fabricated into microparticles (MPs) that are relatively stable at pH 7.4, but rapidly degrade after phagocytosis by antigen presenting cells where the pH can drop to 5.0. As compared to other biomaterials, this acid sensitivity has been shown to enhance cross presentation of subunit antigens. To evaluate this platform as a delivery system for a melioidosis vaccine, BALB/c mice were vaccinated with Ac-DEX MPs separately encapsulating B. pseudomallei whole cell lysate and the toll-like receptor (TLR) 7/8 agonist resiquimod. This vaccine elicited a robust antibody response that included both Th1 and Th2 immunity. Following lethal intraperitoneal challenge with B. pseudomallei 1026b, vaccinated mice demonstrated a significant delay to time of death compared to untreated mice. The formulation, however, demonstrated incomplete protection indicating that lysate protein offers limited value as an antigen. Nevertheless, our Ac-DEX MPs may offer an effective delivery vehicle for a subunit B. psuedomallei vaccine. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Comparison of the efficacy of a subunit and a live streptomycin-dependent porcine pleuropneumonia vaccine.

    Science.gov (United States)

    Tumamao, J Q; Bowles, R E; van den Bosch, H; Klaasen, H L B M; Fenwick, B W; Storie, G J; Blackall, P J

    2004-06-01

    To evaluate the efficacy of two new-generation porcine pleuropneumonia vaccines when challenged with Australian isolates of Actinobacillus pleuropneumoniae of serovars 1 and 15. The Porcilis APP vaccine and an experimental streptomycin-dependent strain of A pleuropneumoniae were evaluated in a standardised pen trial. Each vaccine/challenge group consisted of 10 pigs. With the serovar 1 challenge, the Porcilis APP vaccine and the live vaccine, compared with the control group, gave significant protection in terms of clinical signs, lung lesions, re-isolation scores and average daily gain (ADG) postchallenge. Only the Porcilis APP vaccine provided significant protection against mortality. In the serovar 15 challenged pigs, the only significant difference detected was that the Porcilis APP vaccinated pigs had a better postchallenge ADG than the controls. None of the Porcilis APP vaccinated pigs showed signs of depression postvaccination and none were euthanased after challenge with either serovar 1 or 15. The pigs vaccinated with the live vaccine showed obvious depression after each vaccination and a total of 3 pigs were euthanased after challenge (one with serovar 1 and two with serovar 15). Both of the vaccines provided significant protection against a severe challenge with serovar 1 A pleuropneumoniae. Neither vaccine was effective against a serovar 15 A pleuropneumoniae challenge. There was evidence that the Porcilis APP vaccine did provide some protection against the serovar 15 challenge because the ADG, after challenge of pigs given this vaccine, was greater than the control pigs.

  11. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus.

    Science.gov (United States)

    Zhang, Naru; Channappanavar, Rudragouda; Ma, Cuiqing; Wang, Lili; Tang, Jian; Garron, Tania; Tao, Xinrong; Tasneem, Sumaiya; Lu, Lu; Tseng, Chien-Te K; Zhou, Yusen; Perlman, Stanley; Jiang, Shibo; Du, Lanying

    2016-03-01

    Middle East respiratory syndrome (MERS), an emerging infectious disease caused by MERS coronavirus (MERS-CoV), has garnered worldwide attention as a consequence of its continuous spread and pandemic potential, making the development of effective vaccines a high priority. We previously demonstrated that residues 377-588 of MERS-CoV spike (S) protein receptor-binding domain (RBD) is a very promising MERS subunit vaccine candidate, capable of inducing potent neutralization antibody responses. In this study, we sought to identify an adjuvant that optimally enhanced the immunogenicity of S377-588 protein fused with Fc of human IgG (S377-588-Fc). Specifically, we compared several commercially available adjuvants, including Freund's adjuvant, aluminum, Monophosphoryl lipid A, Montanide ISA51 and MF59 with regard to their capacity to enhance the immunogenicity of this subunit vaccine. In the absence of adjuvant, S377-588-Fc alone induced readily detectable neutralizing antibody and T-cell responses in immunized mice. However, incorporating an adjuvant improved its immunogenicity. Particularly, among the aforementioned adjuvants evaluated, MF59 is the most potent as judged by its superior ability to induce the highest titers of IgG, IgG1 and IgG2a subtypes, and neutralizing antibodies. The addition of MF59 significantly augmented the immunogenicity of S377-588-Fc to induce strong IgG and neutralizing antibody responses as well as protection against MERS-CoV infection in mice, suggesting that MF59 is an optimal adjuvant for MERS-CoV RBD-based subunit vaccines.

  12. Evaluation of a liposome-supplemented intranasal influenza subunit vaccine in a murine model system : Induction of systemic and local mucosal immunity

    NARCIS (Netherlands)

    de Haan, A; van Scharrenburg, GJM; Masihi, KN; Wilschut, J

    2000-01-01

    This study reports on the mucosal immunoadjuvant activity of liposomes in an experimental influenza subunit vaccine administered intranasally (i.n.) to mice. Antibody responses induced by the i.n. liposomal vaccine were compared to those induced by an influenza infection or by subcutaneous (s.c.)

  13. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice

    NARCIS (Netherlands)

    Amorij, J-P.; Saluja, V.; Petersen, A.H.; Hinrichs, W.L.J.; Huckriede, A.; Frijlink, H.W.

    2007-01-01

    In this study pulmonary vaccination with a new influenza subunit vaccine powder was evaluated. Vaccine powder was produced by spray-freeze drying (SFD) using the oligosaccharide inulin as stabilizer. Immune responses after pulmonary vaccination of BALB/c mice with vaccine powder were determined and

  14. Intranasal delivery of influenza subunit vaccine formulated with GEM particles as an adjuvant

    NARCIS (Netherlands)

    Saluja, Vinay; Amorij, Jean P; van Roosmalen, Maarten L; Leenhouts, Kees; Huckriede, Anke; Hinrichs, Wouter L J; Frijlink, Henderik W

    Nasal administration of influenza vaccine has the potential to facilitate influenza control and prevention. However, when administered intranasally (i.n.), commercially available inactivated vaccines only generate systemic and mucosal immune responses if strong adjuvants are used, which are often

  15. Expression of Epstein-Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine.

    Science.gov (United States)

    Jackman, W T; Mann, K A; Hoffmann, H J; Spaete, R R

    1999-02-26

    There is currently no commercially available vaccine for Epstein Barr virus (EBV)-related disease in humans. Since the EBV glycoprotein gp350/220 is the primary target for EBV-neutralizing antibodies following natural infection in humans and some forms of gp350/220 have been shown to protect against EBV-related disease in animal models, it is a likely candidate for an EBV subunit vaccine. We have made gp350/220 gene constructs that facilitate gp350 secretion from CHO cells and created splice site mutations in the gene that effectively prevent production of the gp220 species. Recombinant CHO cell gp350 (MSTOP gp350) is recognized by several different anti-gp350/220 monoclonal antibodies, and is also competent to bind to the cellular EBV receptor, CD21, suggesting that the recombinant protein is conformationally similar to wild-type EBV gp350/220. The MSTOP gp350 antigen raises high antibody titers in rabbits and these antibodies neutralize wild-type EBV. These properties make MSTOP gp350 a realistic candidate for a subunit vaccine against EBV-related disease.

  16. Transcutaneous subunit vaccine delivery. A combined approach of vesicle formulations and microneedle arrays

    NARCIS (Netherlands)

    Ding, Zhi

    2010-01-01

    Traditional vaccination is performed via subcutaneous or intramuscular injections, which is painful, causes stress, especially in children and requires trained personnel. Vaccination via the skin provides effective, easy-to-use, painless, and needle-free vaccination with fewer side effects and safer

  17. A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens.

    Science.gov (United States)

    Swaminathan, Gokul; Thoryk, Elizabeth A; Cox, Kara S; Meschino, Steven; Dubey, Sheri A; Vora, Kalpit A; Celano, Robert; Gindy, Marian; Casimiro, Danilo R; Bett, Andrew J

    2016-01-02

    Sub-unit vaccines are primarily designed to include antigens required to elicit protective immune responses and to be safer than whole-inactivated or live-attenuated vaccines. But their purity and inability to self-adjuvant often result in weaker immunogenicity. Emerging evidence suggests that bio-engineered nanoparticles can be used as immunomodulatory adjuvants. Therefore, in this study we explored the potential of novel Merck-proprietary lipid nanoparticle (LNP) formulations to enhance immune responses to sub-unit viral antigens. Immunization of BALB/c and C57BL/6 mice revealed that LNPs alone or in combination with a synthetic TLR9 agonist, immune-modulatory oligonucleotides, IMO-2125 (IMO), significantly enhanced immune responses to hepatitis B virus surface antigen (HBsAg) and ovalbumin (OVA). LNPs enhanced total B-cell responses to both antigens tested, to levels comparable to known vaccine adjuvants including aluminum based adjuvant, IMO alone and a TLR4 agonist, 3-O-deactytaled monophosphoryl lipid A (MPL). Investigation of the quality of B-cell responses demonstrated that the combination of LNP with IMO agonist elicited a stronger Th1-type response (based on the IgG2a:IgG1 ratio) than levels achieved with IMO alone. Furthermore, the LNP adjuvant significantly enhanced antigen specific cell-mediated immune responses. In ELISPOT assays, depletion of specific subsets of T cells revealed that the LNPs elicited potent antigen-specific CD4(+) and CD8(+)T cell responses. Intracellular FACS analyses revealed that LNP and LNP+IMO formulated antigens led to higher frequency of antigen-specific IFNγ(+)TNFα(+)IL-2(+), multi-functional CD8(+)T cell responses, than unadjuvanted vaccine or vaccine with IMO only. Overall, our results demonstrate that lipid nanoparticles can serve as future sub-unit vaccine adjuvants to boost both B-cell and T-cell responses in vivo, and that addition of IMO can be used to manipulate the quality of immune responses. Copyright © 2015

  18. Immunisation with a multivalent, subunit vaccine reduces patent infection in a natural bovine model of onchocerciasis during intense field exposure.

    Directory of Open Access Journals (Sweden)

    Benjamin L Makepeace

    Full Text Available Human onchocerciasis, caused by the filarial nematode Onchocerca volvulus, is controlled almost exclusively by the drug ivermectin, which prevents pathology by targeting the microfilariae. However, this reliance on a single control tool has led to interest in vaccination as a potentially complementary strategy. Here, we describe the results of a trial in West Africa to evaluate a multivalent, subunit vaccine for onchocerciasis in the naturally evolved host-parasite relationship of Onchocerca ochengi in cattle. Naïve calves, reared in fly-proof accommodation, were immunised with eight recombinant antigens of O. ochengi, administered separately with either Freund's adjuvant or alum. The selected antigens were orthologues of O. volvulus recombinant proteins that had previously been shown to confer protection against filarial larvae in rodent models and, in some cases, were recognised by serum antibodies from putatively immune humans. The vaccine was highly immunogenic, eliciting a mixed IgG isotype response. Four weeks after the final immunisation, vaccinated and adjuvant-treated control calves were exposed to natural parasite transmission by the blackfly vectors in an area of Cameroon hyperendemic for O. ochengi. After 22 months, all the control animals had patent infections (i.e., microfilaridermia, compared with only 58% of vaccinated cattle (P = 0.015. This study indicates that vaccination to prevent patent infection may be an achievable goal in onchocerciasis, reducing both the pathology and transmissibility of the infection. The cattle model has also demonstrated its utility for preclinical vaccine discovery, although much research will be required to achieve the requisite target product profile of a clinical candidate.

  19. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model

    Directory of Open Access Journals (Sweden)

    Litty Babu

    2017-09-01

    Full Text Available Safety and protective efficacy of recombinant multi-epitope subunit vaccine (r-AK36 was evaluated in a mouse model. Recombinant AK36 protein comprised of immunodominant antigens from outer membrane proteins (Omp’s of Klebsiella pneumoniae namely OmpA and OmpK36. r-AK36 was highly immunogenic and the hyperimmune sera reacted strongly with native OmpA and OmpK36 proteins from different K. pneumoniae strains. Hyperimmune sera showed cross-reactivity with Omp’s of other Gram-negative organisms. Humoral responses showed a Th2-type polarized immune response with IgG1 being the predominant antibody isotype. Anti-r-AK36 antibodies showed antimicrobial effect during in vitro testing with MIC values in the range of 25–50 μg/ml on different K. pneumoniae strains. The recombinant antigen elicited three fold higher proliferation of splenocytes from immunized mice compared to those with sham-immunized mice. Anti-r-AK36 antibodies also exhibited in vitro biofilm inhibition property. Subunit vaccine r-AK36 immunization promoted induction of protective cytokines IL-2 and IFN-γ in immunized mice. When r-AK36-immunized mice were challenged with 3 × LD100 dose, ∼80% of mice survived beyond the observation period. Passive antibody administration to naive mice protected them (67% against the lethal challenge. Since the targeted OMPs are conserved among all K. pneumoniae serovars and due to the strong nature of immune responses, r-AK36 subunit vaccine could be a cost effective candidate against klebsiellosis.

  20. Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development.

    OpenAIRE

    J Sanchez; Holmgren, J

    1989-01-01

    We have constructed an overexpression system in which the gene encoding the B subunit of cholera toxin (CTB) was placed under the control of the strong tacP promoter in a wide host range plasmid. Recombinant nontoxigenic classical and E1 Tor Vibrio cholerae strains of different serotypes harboring this plasmid excreted 10- to 100-fold higher amounts of CTB than any other wild-type or recombinant strain tested and may therefore be useful killed oral vaccine strains. The manipulations to place ...

  1. Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development.

    Science.gov (United States)

    Sanchez, J; Holmgren, J

    1989-01-01

    We have constructed an overexpression system in which the gene encoding the B subunit of cholera toxin (CTB) was placed under the control of the strong tacP promoter in a wide host range plasmid. Recombinant nontoxigenic classical and E1 Tor Vibrio cholerae strains of different serotypes harboring this plasmid excreted 10- to 100-fold higher amounts of CTB than any other wild-type or recombinant strain tested and may therefore be useful killed oral vaccine strains. The manipulations to place the CTB gene under tacP also included, by design, the introduction of single enzyme restriction sites for gene fusions to the CTB amino terminus. Cloning into these sites allows construction of CTB-derived hybrid proteins carrying various putative vaccine peptide antigens.

  2. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available BACKGROUND: Foot-and-mouth disease (FMD is a highly contagious disease of livestock that causes severe economic loss in susceptible cloven-hoofed animals. Although the traditional inactivated vaccine has been proved effective, it may lead to a new outbreak of FMD because of either incomplete inactivation of FMDV or the escape of live virus from vaccine production workshop. Thus, it is urgent to develop a novel FMDV vaccine that is safer, more effective and more economical than traditional vaccines. METHODOLOGY AND PRINCIPAL FINDINGS: A recombinant silkworm baculovirus Bm-P12A3C which contained the intact P1-2A and 3C protease coding regions of FMDV Asia 1/HNK/CHA/05 was developed. Indirect immunofluorescence test and sandwich-ELISA were used to verify that Bm-P12A3C could express the target cassette. Expression products from silkworm were diluted to 30 folds and used as antigen to immunize cattle. Specific antibody was induced in all vaccinated animals. After challenge with virulent homologous virus, four of the five animals were completely protected, and clinical symptoms were alleviated and delayed in the remaining one. Furthermore, a PD(50 (50% bovine protective dose test was performed to assess the bovine potency of the subunit vaccine. The result showed the subunit vaccine could achieve 6.34 PD(50 per dose. CONCLUSION: The results suggest that this strategy might be used to develop the new subunit FMDV vaccine.

  3. Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein-Barr virus.

    Science.gov (United States)

    Wang, Man; Jiang, Shuai; Han, Zhenwei; Zhao, Bing; Wang, Li'ao; Zhou, Zhixia; Wang, Yefu

    2016-02-01

    Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is linked to the development of various malignancies. There is an urgent need for effective vaccines against EBV. EBV envelope glycoprotein gp350 is an attractive candidate for a prophylactic vaccine. This study was undertaken to produce the truncated (codons 1-443) gp350 protein (gp350(1-443)) in Pichia pastoris and evaluate its immunogenicity. The gp350(1-443) protein was expressed as a secretory protein with an N-terminal His-tag in P. pastoris and purified through Ni-NTA chromatography. Immunization with the recombinant gp350(1-443) could elicit high levels of gp350(1-443)-specific antibodies in mice. Moreover, gp350(1-443)-immunized mice developed strong lymphoproliferative and Th1/Th2 cytokine responses. Furthermore, the recombinant gp350(1-443) could stimulate CD4(+) and CD8(+) T cell responses in vaccinated mice. Collectively, these findings demonstrated that the yeast-expressed gp350(1-443) retained strong immunogenicity. This study will provide a useful source for developing EBV subunit vaccine candidates.

  4. Cloning, Expression, and Immunogenicity of Fimbrial-F17A Subunit Vaccine against Escherichia coli Isolated from Bovine Mastitis

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available There is a need to identify and select new promising immunodominant antigens that have the ability to provide protective immunity against E. coli causing bovine mastitis. Recently we showed that f17a was found to be the most prevalent and crucial virulent factor among the pathogenic E. coli isolated from bovine mastitis. Here, in this report, the recombinant F17A based subunit vaccine adjuvant with MF59 was tested for immunogenicity against E. coli in a murine model. The vaccinated mice did not show any abnormal behavioral changes and histopathological lesions after vaccination. The specific antibody level against F17A was significantly higher in MF59-adjuvant-group, and also lasted for longer duration with a significant (P<0.01 production level of IgG1 and IgG2a. Moreover, we noted higher survival rate in mice injected with F17A-MF59-adjuvant group after challenging with the clinical E. coli strain. Our findings of bacterial clearance test revealed that elimination rate from liver, spleen, and kidney in MF59-adjuvant-group was significantly higher than the control group. Finally, the proportion of CD4+T cells was increased, while CD8+ was decreased in MF59-adjuvant group. In conclusion, the current study reveals the capability of F17A-MF59 as a potential vaccine candidate against pathogenic E. coli causing mastitis in dairy animals.

  5. [Immunogenicity of inactivated subunit adsorbed monovalent vaccine against influenza A/California/7/2009 (H1N1) strain].

    Science.gov (United States)

    Zverev, V V; Kostinov, M P; Mikhailova, N A; Zhirova, S N; Mironov, A N; Terkacheva, O A; Romanova, A A; Cherdantsev, A P

    2011-01-01

    The immunogenicity of Pandeflu subunit vaccine against influenza A/California/7/2009 (H1N1) was evaluated in 70 healthy volunteers aged 18 to 60 years. The vaccine was intramuscularly injected twice at an interval of 28 days. Each dose (0.5 ml) contains A(HIN1) influenza virus hemagglutinin (15 +/- 2.2 microg), aluminum hydroxide (Denmark) (0.475 +/- 0.075 microg), and the preservative thiomerosal (merthiolate) (50 +/- 7.5 microg). The level of antibodies was determined in the microneutralization assay. After administration of two doses of the vaccine at a 28-day interval, the geometric mean antibody titer (GMAT) reached 1:21.1 with a further increase to 1:30 (the baseline GMAT) was 1:6.1). The frequencies of seroconversion and seroprotection were 71.4 and 59.2%, respectively; the antibody increase factor was 4.92, which meets the CPMP criteria. The administration of the vaccine did not result in adverse reactions in the postvaccination period.

  6. Evaluation of a Subunit Vaccine to Infectious Hematopoietic Necrosis Virus, July 31, 1989 to September 30, 1990, Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Leong, JoAnn Ching

    1990-09-01

    The IHNV glycoprotein has been identified as the virion protein which elicits neutralizing antibody in rabbits and induces protective immunity in fish to homologous and heterologous strains of IHNV (Engelking and Leong, 1989). These findings suggested that genetic engineering might be used to develop an economically feasible IHNV vaccine for fish. Thus, a clone of the IHNV glycoprotein gene was made and expression of a portion of this gene in bacteria resulted in a prototype IHNV subunit vaccine. Only 350 bases of IHNV sequence was expressed in this initial vaccine construction because there were 16 cysteine residues in the glycoprotein gene. Previous work with the rabies glycoprotein had shown that when the entire gene was expressed in bacteria, a denatured protein was produced, presumably because appropriate folding mechanisms for disulfide bond formation in protein were absent in E. coli. The IHNV vaccine clone contained a region of the gene which encoded only one cysteine residue. Despite the efficacy of the vaccine in laboratory trials, it seemed useful to determine whether other regions of the IHNV glycoprotein gene would be expressed in an antigenically recognizable form in bacteria and thereby, provide increased protection in fish. The recombinant plasmids pXL2, pXL3, and pXL7 were constructed so that all regions of the glycoprotein gene were expressed in bacteria as trpE-G fusion proteins. All of these recombinant plasmids produced fusion proteins that were also analyzed in Western immunoblots with anti-IHNV sera and specific monoclonal antibodies. These results were compared with the proteins produced by p52G and p618G, the plasmids identified in the original vaccine construction. The results of this comparison are shown.

  7. A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge.

    Science.gov (United States)

    Pallister, Jackie; Middleton, Deborah; Wang, Lin-Fa; Klein, Reuben; Haining, Jessica; Robinson, Rachel; Yamada, Manabu; White, John; Payne, Jean; Feng, Yan-Ru; Chan, Yee-Peng; Broder, Christopher C

    2011-08-05

    The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are two deadly zoonotic viruses for which no vaccines or therapeutics have yet been approved for human or livestock use. In 14 outbreaks since 1994 HeV has been responsible for multiple fatalities in horses and humans, with all known human infections resulting from close contact with infected horses. A vaccine that prevents virus shedding in infected horses could interrupt the chain of transmission to humans and therefore prevent HeV disease in both. Here we characterise HeV infection in a ferret model and show that it closely mirrors the disease seen in humans and horses with induction of systemic vasculitis, including involvement of the pulmonary and central nervous systems. This model of HeV infection in the ferret was used to assess the immunogenicity and protective efficacy of a subunit vaccine based on a recombinant soluble version of the HeV attachment glycoprotein G (HeVsG), adjuvanted with CpG. We report that ferrets vaccinated with a 100 μg, 20 μg or 4 μg dose of HeVsG remained free of clinical signs of HeV infection following a challenge with 5000 TCID₅₀ of HeV. In addition, and of considerable importance, no evidence of virus or viral genome was detected in any tissues or body fluids in any ferret in the 100 and 20 μg groups, while genome was detected in the nasal washes only of one animal in the 4 μg group. Together, our findings indicate that 100 μg or 20 μg doses of HeVsG vaccine can completely prevent a productive HeV infection in the ferret, suggesting that vaccination to prevent the infection and shedding of HeV is possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Subunit Vaccines Consisting of Antigens from Dormant and Replicating Bacteria Show Promising Therapeutic Effect against Mycobacterium Bovis BCG Latent Infection.

    Science.gov (United States)

    Li, F; Kang, H; Li, J; Zhang, D; Zhang, Y; Dannenberg, A M; Liu, X; Niu, H; Ma, L; Tang, R; Han, X; Gan, C; Ma, X; Tan, J; Zhu, B

    2017-06-01

    To screen effective antigens as therapeutic subunit vaccines against Mycobacterium latent infection, we did bioinformatics analysis and literature review to identify effective antigens and evaluated the immunogenicity of five antigens highly expressed in dormant bacteria, which included Rv2031c (HspX), Rv2626c (Hrp1), Rv2007c (FdxA), Rv1738 and Rv3130c. Then, several fusion proteins such as Rv2007c-Rv2626c (F6), Rv2031c-Rv1738-Rv1733c (H83), ESAT6-Rv1738-Rv2626c (LT40), ESAT6-Ag85B-MPT64 -Mtb8.4 (EAMM), and EAMM-Rv2626c (LT70) were constructed and their therapeutic effects were evaluated in pulmonary Mycobacterium bovis Bacilli Calmette-Guérin (BCG) - latently infected rabbit or mouse models. The results showed that EAMM and F6 plus H83 had therapeutic effect against BCG latent infection in the rabbit model, respectively, and that the combination of EAMM with F6 plus H83 significantly reduced the bacterial load. In addition, the fusion proteins LT40 and LT70 consisting of multistage antigens showed promising therapeutic effects in the mouse model. We conclude that subunit vaccines consisting of both latency and replicating-associated antigens show promising therapeutic effects in BCG latent infection animal models. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  9. Assessment of the potential utility of different regions of Streptococcus uberis adhesion molecule (SUAM) for mastitis subunit vaccine development.

    Science.gov (United States)

    Perrig, Melina Soledad; Veaute, Carolina; Renna, María Sol; Pujato, Nazarena; Calvinho, Luis; Marcipar, Iván; Barbagelata, María Sol

    2017-04-01

    Streptococcus uberis is one of the most prevalent pathogens causing clinical and subclinical mastitis worldwide. Among bacterial factors involved in intramammary infections caused by this organism, S. uberis adhesion molecule (SUAM) is one of the main virulence factors identified. This molecule is involved in S. uberis internalization to mammary epithelial cells through lactoferrin (Lf) binding. The objective of this study was to evaluate SUAM properties as a potential subunit vaccine component for prevention of S. uberis mastitis. B epitope prediction analysis of SUAM sequence was used to identify potentially immunogenic regions. Since these regions were detected all along the gene, this criterion did not allow selecting a specific region as a potential immunogen. Hence, four fractions of SUAM (-1fr, 2fr, 3fr and 4fr), comprising most of the protein, were cloned and expressed. Every fraction elicited a humoral immune response in mice as predicted by bioinformatics analysis. SUAM-1fr generated antibodies with the highest recognition ability towards SUAM native protein. Moreover, antibodies against SUAM-1fr produced the highest proportion of internalization inhibition of S. uberis to mammary epithelial cells. In conclusion, SUAM immunogenic and functionally relevant regions were identified and allowed to propose SUAM-1fr as a potential candidate for a subunit vaccine for S. uberis mastitis prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Efficacy of a non-updated, Matrix-C-based equine influenza subunit-tetanus vaccine following Florida sublineage clade 2 challenge.

    Science.gov (United States)

    Pouwels, H G W; Van de Zande, S M A; Horspool, L J I; Hoeijmakers, M J H

    2014-06-21

    Assessing the ability of current equine influenza vaccines to provide cross-protection against emerging strains is important. Horses not vaccinated previously and seronegative for equine influenza based on haemagglutination inhibition (HI) assay were assigned at random to vaccinated (n=7) or non-vaccinated (control, n=5) groups. Vaccination was performed twice four weeks apart with a 1 ml influenza subunit (A/eq/Prague/1/56, A/eq/Newmarket/1/93, A/eq/Newmarket/2/93), tetanus toxoid vaccine with Matrix-C adjuvant (EquilisPrequenza Te). All the horses were challenged individually by aerosol with A/eq/Richmond/1/07 three weeks after the second vaccination. Rectal temperature, clinical signs, serology and virus excretion were monitored for 14 days after challenge. There was no pain at the injection site or increases in rectal temperature following vaccination. Increases in rectal temperature and characteristic clinical signs were recorded in the control horses. Clinical signs were minimal in vaccinated horses. Clinical (P=0.0345) and total clinical scores (P=0.0180) were significantly lower in the vaccinated than in the control horses. Vaccination had a significant effect on indicators of viraemia - the extent (P=0.0006) and duration (P=horse was positive or negative for virus excretion during the study. Further research is needed to fully understand the specific properties of this vaccine that may contribute to its cross-protective capacity. British Veterinary Association.

  11. A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach.

    Science.gov (United States)

    Rana, Aarti; Akhter, Yusuf

    2016-04-01

    Immunizations with the conventional vaccines have failed to effectively inhibit the incidences and further dissemination of the infections. To address it, we have implemented protein structure based strategies to design an efficient multi-epitope subunit vaccine against Mycobacterium avium subsp. paratuberculosis (MAP). Previously reported immunodominant peptide epitope sequences from MAP1611 protein were conjugated together with a stretch of conserved amino acid residues of heparin-binding hemagglutinin, reported as a TLR4 agonist and was employed as an adjuvant to polarize the cellular responses toward host protective Th1 responses. These three types of component peptides were combined with the help of relevant linkers for efficient separation to improve and intensify the antigen processing and presentation. The primary structures of these multi peptides were 3-dimensional homology modeled to yield the final chimeric vaccine. Further, its conformational correctness and stability enhancement was assessed using molecular dynamics (MD) simulations. Finally, disulfide engineering in the most flexible regions of the molecule yielded three potential mutants, Y593C-E610C, Q631C-A634C and a double mutant Q631C-A634C/Y593C-E610C. The double mutant represents thermodynamically most stable version among them. It is potentially highly antigenic, soluble and non-allergen molecule interacting with the TLR receptor expressed on the immune cells. This vaccine contains both T-cell and several B-cell epitopes and an adjuvant which potentially possess protective cellular and humoral immune responses triggering properties. The presented vaccine strategy will be proven a promising pathogen specific candidate with wide therapeutic application against MAP which may be extended to other prevalent infections in future. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco.

    Directory of Open Access Journals (Sweden)

    Igor Kolotilin

    Full Text Available Post-weaning diarrhea (PWD in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc, engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc. The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R, and inhibition of the F4-possessing (F4+ ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD.

  13. The Immune Adjuvant Effects of Flounder (Paralichthys olivaceus) Interleukin-6 on E. tarda Subunit Vaccine OmpV.

    Science.gov (United States)

    Guo, Ming; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2017-07-05

    Interleukin-6 (IL-6) as a pleiotropic cytokine was widely used as an effective adjuvant for vaccines in mammals. In this study, the immune adjuvant effects of two forms of flounder (Paralichthys olivaceus) IL-6, including recombinant IL-6 (rIL-6) and pcDNA3.1-IL-6 (pcIL-6), were evaluated and comparatively analyzed on E. tarda subunit vaccine recombinant outer membrane protein V (rOmpV). The results showed that the relative percent survivals of flounder vaccinated with rOmpV plus rIL-6 or pcIL-6 were significantly higher than that in the two control groups, rOmpV plus recombinant 6× histidine-tag (rHis) or empty expression vector pcDNA3.1 (pcN3). The levels of specific serum antibodies and surface membrane immunoglobulin-positive (sIg+) lymphocytes in peripheral blood, spleen, and head kidney in the two adjuvant groups were also much higher than that in the two control groups. Compared with the two control groups, higher upregulated expressions of major histocompatibility complex class Iα (MHCIα), cluster of differentiation 8α (CD8α), MHCIIα, CD4-1, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were detected in flounder vaccinated with rOmpV plus rIL-6 or pcIL-6 after challenge. In addition, the rOmpV plus rIL-6 could induce significant higher levels of specific serum antibodies, sIg+ lymphocytes and four genes expressions than rOmpV plus pcIL-6. These results demonstrated that both rIL-6 and pcIL-6 used as adjuvants could enhance the immune response and evoke immune protections against E. tarda infection, which has a significant value in controlling diseases using vaccines in flounder.

  14. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers

    Science.gov (United States)

    Inic-Kanada, Aleksandra; Stojanovic, Marijana; Schlacher, Simone; Stein, Elisabeth; Belij-Rammerstorfer, Sandra; Marinkovic, Emilija; Lukic, Ivana; Montanaro, Jacqueline; Schuerer, Nadine; Bintner, Nora; Kovacevic-Jovanovic, Vesna; Krnjaja, Ognjen; Mayr, Ulrike Beate; Lubitz, Werner; Barisani-Asenbauer, Talin

    2015-01-01

    Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct), remains the world’s leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs). We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1–893) of the chlamydial polymorphic membrane protein C (PmpC) of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs) in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both humoral and

  15. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers.

    Directory of Open Access Journals (Sweden)

    Aleksandra Inic-Kanada

    Full Text Available Trachoma, caused by the intracellular bacterium Chlamydia trachomatis (Ct, remains the world's leading preventable infectious cause of blindness. Recent attempts to develop effective vaccines rely on modified chlamydial antigen delivery platforms. As the mechanisms engaged in the pathology of the disease are not fully understood, designing a subunit vaccine specific to chlamydial antigens could improve safety for human use. We propose the delivery of chlamydia-specific antigens to the ocular mucosa using particulate carriers, bacterial ghosts (BGs. We therefore characterized humoral and cellular immune responses after conjunctival and subcutaneous immunization with a N-terminal portion (amino acid 1-893 of the chlamydial polymorphic membrane protein C (PmpC of Ct serovar B, expressed in probiotic Escherichia coli Nissle 1917 bacterial ghosts (EcN BGs in BALB/c mice. Three immunizations were performed at two-week intervals, and the immune responses were evaluated two weeks after the final immunization in mice. In a guinea pig model of ocular infection animals were immunized in the same manner as the mice, and protection against challenge was assessed two weeks after the last immunization. N-PmpC was successfully expressed within BGs and delivery to the ocular mucosa was well tolerated without signs of inflammation. N-PmpC-specific mucosal IgA levels in tears yielded significantly increased levels in the group immunized via the conjunctiva compared with the subcutaneously immunized mice. Immunization with N-PmpC EcN BGs via both immunization routes prompted the establishment of an N-PmpC-specific IFNγ immune response. Immunization via the conjunctiva resulted in a decrease in intensity of the transitional inflammatory reaction in conjunctiva of challenged guinea pigs compared with subcutaneously and non-immunized animals. The delivery of the chlamydial subunit vaccine to the ocular mucosa using a particulate carrier, such as BGs, induced both

  16. A Soybean Oil-Based Liposome-Polymer Transfection Complex as a Codelivery System for DNA and Subunit Vaccines

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2012-01-01

    Full Text Available Inexpensive liposome-polymer transfection complexes (LPTCs were developed and used as for DNA or protein delivery. The particle sizes of the LPTCs were in the range of 212.2 to 312.1 nm, and the zetapotential was +38.7 mV. LPTCs condensed DNA and protected DNA from DNase I digestion and efficiently delivered LPTC/DNA complexes in Balb/3T3 cells. LPTCs also enhanced the cellular uptake of antigen in mouse macrophage cells and stimulated TNF-α release in naïve mice splenocytes, both indicating the potential of LPTCs as adjuvants for vaccines. In vivo studies were performed using H. pylori relative heat shock protein 60 as an antigen model. The vaccination of BALB/c mice with LPTC-complexed DNA and protein enhanced the humoral immune response. Therefore, we developed a DNA and protein delivery system using LPTCs that is inexpensive, and we successfully applied it to the development of a DNA and subunit vaccine.

  17. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice.

    Science.gov (United States)

    Alvarez, M Lucrecia; Pinyerd, Heidi L; Crisantes, Jason D; Rigano, M Manuela; Pinkhasov, Julia; Walmsley, Amanda M; Mason, Hugh S; Cardineau, Guy A

    2006-03-24

    Yersinia pestis, the causative agent of plague, is an extremely virulent bacterium but there are no approved vaccines for protection against it. Our goal was to produce a vaccine that would address: ease of delivery, mucosal efficacy, safety, rapid scalability, and cost. We developed a novel production and delivery system for a plague vaccine of a Y. pestis F1-V antigen fusion protein expressed in tomato. Immunogenicity of the F1-V transgenic tomatoes was confirmed in mice that were primed subcutaneously with bacterially-produced F1-V and boosted orally with transgenic tomato fruit. Expression of the plague antigens in fruit allowed producing an oral vaccine candidate without protein purification and with minimal processing technology.

  18. Subunit vaccine candidate AMM down-regulated the regulatory T cells and enhanced the protective immunity of BCG on a suitable schedule.

    Science.gov (United States)

    Luo, Y; Jiang, W; Da, Z; Wang, B; Hu, L; Zhang, Y; An, R; Yu, H; Sun, H; Tang, K; Tang, Z; Wang, Y; Jing, T; Zhu, B

    2012-03-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG) priming and subunit vaccine boosting strategies are urgently needed to improve the protective efficacy of BCG in adult population. However, the schedule of subunit vaccine boosting is not well investigated, especially the optimal immune responses and vaccine immunization schedules are still not clear. We have constructed a novel subunit vaccine candidate consisting of fusion protein Ag85B-Mpt64 (190-198)-Mtb8.4 (AMM) in a complex adjuvant composed of dimo-thylidioctyl ammonium bromide (DDA) and BCG polysaccharide nucleic acid (BCG-PSN). In this study, we compared the effect of different boosting schedules of the subunit vaccine in the prime-boost strategies. C57BL/6 mice were primed with BCG first and then boosted with the AMM vaccine once at 10th week, twice at 8th, 10th week, or thrice at 6th, 8th, 10th week, respectively. The immune responses were evaluated at the 14th and 20th weeks, respectively. Twelve weeks after the last immunization, the mice were challenged with virulent Mycobacterium tuberculosis strain H37Rv, and the protective effect was evaluated. The results showed that BCG priming and the AMM vaccine boosting twice induced the strongest antigen-specific IFN-γ and IL-2 production, down-regulated CD4+ CD25+ FoxP3+ regulatory T cells (Tregs) and had the best protective effect among all groups, while boosting thrice induced the strongest IL-4 production and did not improve BCG-primed protection significantly. Boosting BCG with the AMM vaccine twice instead of once or thrice induced strong Th1-type immunity and down-regulated Tregs significantly, which correlated with the best protection against M. tuberculosis infection in mice. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  19. Recombinant botulinum neurotoxin Hc subunit (BoNT Hc) and catalytically inactive Clostridium botulinum holoproteins (ciBoNT HPs) as vaccine candidates for the prevention of botulism

    Science.gov (United States)

    2017-09-03

    Recombinant botulinum neurotoxin Hc subunit (BoNT Hc) and catalytically inactive Clostridium 1 botulinum holoproteins (ciBoNT HPs) as vaccine...hundreds of years, the disease was 47 recognized as a public health concern in the United States after 32 people died in 5 outbreaks 48 associated with...ripe olives in 1919 and 1920 [3]. These incidents emphasized the need for 49 effective treatments, such as antitoxins and vaccines, to counteract

  20. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Directory of Open Access Journals (Sweden)

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  1. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Science.gov (United States)

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV receptor-binding domain as an antigen.

    Directory of Open Access Journals (Sweden)

    Jiaming Lan

    Full Text Available The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV pandemic. Some studies have indicated the receptor-binding domain (RBD protein of MERS-CoV spike (S is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m. with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum alone, alum and polyriboinosinic acid (poly I:C or alum and cysteine-phosphate-guanine (CpG oligodeoxynucleotides (ODN. The immune responses of mice vaccinated with RBD, incomplete Freund's adjuvant (IFA and CpG ODN by a subcutaneous (s.c. route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production. Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting

  3. Protective efficacy of a novel alpha hemolysin subunit vaccine (AT62) against Staphylococcus aureus skin and soft tissue infections.

    Science.gov (United States)

    Adhikari, Rajan P; Thompson, Christopher D; Aman, M Javad; Lee, Jean C

    2016-12-07

    Alpha hemolysin (Hla) is a pore-forming toxin produced by most Staphylococcus aureus isolates. Hla is reported to play a key role in the pathogenesis of staphylococcal infections, such as skin and soft tissue infection, pneumonia, and lethal peritonitis. This study makes use of a novel recombinant subunit vaccine candidate (AT62) that was rationally designed based on the Hla heptameric crystal structure. AT62 comprises a critical structural domain at the N terminus of Hla, and it has no inherent toxic properties. We evaluated the efficacy of AT62 in protection against surgical wound infection and skin and soft tissue infection. Mice were vaccinated on days 0, 14, and 28 with 20μg AT62 or bovine serum albumin (BSA) mixed with Sigma adjuvant system®. Mice immunized with AT62 produced a robust antibody response against native Hla. In the surgical wound infection model, mice immunized with AT62 and challenged with a USA300 S. aureus strain showed a significantly reduced bacterial burden in the infected tissue compared to animals given BSA. Similarly, mice passively immunized with rabbit IgG to AT62 showed reduced wound infection and tissue damage. Subcutaneous abscess formation was not prevented by immunization with AT62. However, in a skin necrosis infection model, immunization with the AT62 vaccine resulted in smaller lesions and reduced mouse weight loss compared to controls. Although AT62 immunization reduced tissue necrosis, it did not reduce the bacterial burdens in the lesions compared to controls. Our data indicate that AT62 may be a valuable component of a multivalent vaccine against S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Multiple efficacy studies of an adenovirus-vectored foot-and-mouth disease virus serotype A24 subunit vaccine in cattle using homologous challenge.

    Science.gov (United States)

    Schutta, Christopher; Barrera, José; Pisano, Melia; Zsak, Laszlo; Grubman, Marvin J; Mayr, Gregory A; Moraes, Mauro P; Kamicker, Barbara J; Brake, David A; Ettyreddy, Damodar; Brough, Douglas E; Butman, Bryan T; Neilan, John G

    2016-06-08

    The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge. Published by Elsevier Ltd.

  5. Synthetic melanin bound to subunit vaccine antigens significantly enhances CD8+ T-cell responses.

    Directory of Open Access Journals (Sweden)

    Antoine F Carpentier

    Full Text Available Cytotoxic T-lymphocytes (CTLs play a key role in immunity against cancer; however, the induction of CTL responses with currently available vaccines remains difficult. Because several reports have suggested that pigmentation and immunity might be functionally linked, we investigated whether melanin can act as an adjuvant in vaccines. Short synthetic peptides (8-35 amino acids long containing T-cell epitopes were mixed with a solution of L-Dopa, a precursor of melanin. The mixture was then oxidized to generate nanoparticles of melanin-bound peptides. Immunization with melanin-bound peptides efficiently triggered CTL responses in mice, even against self-antigens and at a very low dose of peptides (microgram range. Immunization against a tumor antigen inhibited the growth of established tumors in mice, an effect that was abrogated by the depletion of CD8+ lymphocytes. These results demonstrate the efficacy of melanin as a vaccine adjuvant.

  6. Development and evaluation of a novel subunit vaccine for Mycoplasma gallisepticum

    Directory of Open Access Journals (Sweden)

    L. Moura

    2012-12-01

    Full Text Available Adhesion proteins from Mycoplasma gallisepticum (MG encoded by cytadhesion genes mgc1 and mgc2 were cloned into plasmid vectors and transformed into E. coli. Seventeen groups of specific-pathogen free (SPF, birds at four weeks of age were used to inoculate these two proteins (MGC1 and MGC2 mixed into an oil emulsion creating a novel MG vaccine. Six different protein concentrations (50, 100, 200, 400, 800, and 1000µg/bird were tested with two equal concentration doses at four and seven weeks of age. In addition, many control groups were needed such as bacterin, membrane, no vaccine or challenge, oil emulsion alone, and no vaccine but challenged. Three weeks following the second vaccination, 50% of the birds in each treatment group were challenged with MG strain S6. The remaining birds were left as contacts to verify protection against horizontal transmission. All birds were bled before vaccinations, challenge and euthanasia. Birds were negative for MG at the first vaccination, as shown by serum plate agglutination test. At necropsy, tissue samples (trachea, lungs, and air sacs were collected for histopathological examination. Swabs from trachea were used for PCR analysis. ELISA results showed a strong immune response to both protein preparations and almost the same response level for different doses tested, proving the immunogenic features of MGC1 and MGC2. However, humoral responses failed to prevent MG infection and disease when challenged as demonstrated by PCR and histopathology. MGC1 contact birds showed some degree of infection by PCR analysis. In addition, histopathological and ELISA results suggest that contact birds did not have enough time to develop lesions and to mount an immune response.

  7. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  8. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Amara, Rama Rao; Plikaytis, Bonnie B.; Posey, James E.; Sable, Suraj B.

    2016-01-01

    Heterologous prime–boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32–52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime–Apa-subunit-boost strategy compared to Apa-subunit-prime–BCG-boost approach. However, parenteral BCG-prime–Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime–boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime–boost regimens against tuberculosis in humans. PMID:27173443

  9. Influenza virus neutralizing antibodies and IgG isotype profiles after immunization of mice with influenza A subunit vaccine using various adjuvants

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; vanderGraaff, W; Verheul, AFM; Snippe, H; Kraaijeveld, CA

    The influence of various adjuvants on the development of influenza virus neutralizing antibodies and distribution of anti-influenza virus IgG isotypes after immunization of mice with influenza A (H3N2) subunit vaccine was investigated. Serum titres of influenza virus neutralizing antibodies and

  10. Rational design of an influenza subunit vaccine powder with sugar glass technology : preventing conformational changes of haemagglutinin during freezing and freeze-drying

    NARCIS (Netherlands)

    Amorij, J-P; Meulenaar, J; Hinrichs, W L J; Stegmann, T; Huckriede, A; Coenen, F; Frijlink, H W

    2007-01-01

    The development of a stable influenza subunit vaccine in the dry state was investigated. The influence of various carbohydrates, buffer types and freezing rates on the integrity of haemagglutinin after freeze-thawing or freeze-drying was investigated with a range of analytical and immunological

  11. Innate responses induced by whole inactivated virus or subunit influenza vaccines in cultured dendritic cells correlate with immune responses in vivo.

    Directory of Open Access Journals (Sweden)

    Maaike Stoel

    Full Text Available Vaccine development involves time-consuming and expensive evaluation of candidate vaccines in animal models. As mediators of both innate and adaptive immune responses dendritic cells (DCs are considered to be highly important for vaccine performance. Here we evaluated how far the response of DCs to a vaccine in vitro is in line with the immune response the vaccine evokes in vivo. To this end, we investigated the response of murine bone marrow-derived DCs to whole inactivated virus (WIV and subunit (SU influenza vaccine preparations. These vaccine preparations were chosen because they differ in the immune response they evoke in mice with WIV being superior to SU vaccine through induction of higher virus-neutralizing antibody titers and a more favorable Th1-skewed response phenotype. Stimulation of DCs with WIV, but not SU vaccine, resulted in a cytokine response that was comparable to that of DCs stimulated with live virus. Similarly, the gene expression profiles of DCs treated with WIV or live virus were similar and differed from that of SU vaccine-treated DCs. More specifically, exposure of DCs to WIV resulted in differential expression of genes in known antiviral pathways, whereas SU vaccine did not. The stronger antiviral and more Th1-related response of DCs to WIV as compared to SU vaccine correlates well with the superior immune response found in mice. These results indicate that in vitro stimulation of DCs with novel vaccine candidates combined with the assessment of multiple parameters, including gene signatures, may be a valuable tool for the selection of vaccine candidates.

  12. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  13. Expression of HIV-1 antigens in plants as potential subunit vaccines

    CSIR Research Space (South Africa)

    Meyers, A

    2008-06-23

    Full Text Available to the chloroplast and the endoplasmic reticulum (ER) on protein yield. The authors have partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. Both transient and transgenic expression of the HIV...

  14. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ(+) CMI responses protects against a genital infection in minipigs

    DEFF Research Database (Denmark)

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin

    2016-01-01

    animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1......Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig...... trachomatis SvD bacteria (UV-SvD/CAF01) or CAF01. The Hirep1+CTH93/CAF01 vaccine induced a strong CMI response against the vaccine antigens and high titers of antibodies, particularly against the VD4 region of MOMP. Sera from Hirep1+CTH93/CAF01 immunized pigs neutralized C. trachomatis SvD and SvF infectivity...

  15. Induction of mucosal immunity and protection by intranasal immunization with a respiratory syncytial virus subunit vaccine formulation.

    Science.gov (United States)

    Garg, R; Latimer, L; Simko, E; Gerdts, V; Potter, A; van den Hurk, S van Drunen Littel-

    2014-02-01

    The majority of infections, including those caused by respiratory syncytial virus (RSV), occur at mucosal surfaces. As no RSV vaccine is available our goal is to produce an effective subunit vaccine with an adjuvant suitable for mucosal delivery and cross-presentation. A truncated secreted version of the RSV fusion (ΔF) protein formulated with polyI : C, an innate defence regulator peptide and polyphosphazene, induced local and systemic immunity, including affinity maturation of RSV F-specific IgG, IgA and virus-neutralizing antibodies, and F-specific CD8(+) T-cells in the lung, when delivered intranasally. Furthermore, this ΔF protein formulation promoted the production of CD8(+) central memory T-cells in the mediastinal lymph nodes and provided protection from RSV challenge. Formulation of ΔF protein with this adjuvant combination enhanced uptake by lung dendritic cells and trafficking to the draining lymph nodes. The ΔF protein formulation was confirmed to be highly efficacious and safe in cotton rats.

  16. In silico prediction of B- and T- cell epitope on Lassa virus proteins for peptide based subunit vaccine design.

    Science.gov (United States)

    Verma, Sitansu Kumar; Yadav, Soni; Kumar, Ajay

    2015-01-01

    Lassa fever is a severe, often-fatal and one of the most virulent disease in primates. However, the mechanism of escape of virus from the T-cell mediated immune response of the host cell is not explained in any studies yet. In our studies we had aimed to predict B- and T- cell epitope of Lassa virus protein, for impaling the futuristic approach of developing preventive measures against this disease, further we can also study its presumed viral- host mechanism. Peptide based subunit vaccine was developed from all four protein against Lassa virus. We adopted sequence, 3D structure and fold level in silico analysis to predict B-cell and T-cell epitopes. The 3-D structure was determined for all protein by homology modeling and the modeled structure validated. One T-cell epitope from Glycoprotein (WDCIMTSYQ) and one from Nucleoprotein (WPYIASRTS) binds to maximum no of MHC class I and MHC class II alleles. They also specially bind to HLA alleles namely, A*0201, A*2705, DRB*0101 and DRB*0401. Taken together, the results indicate the Glycoprotein and nucleoprotein are most suitable vaccine candidates against Lassa virus.

  17. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.; Bess, J.W. Jr.; Gonda, M.A.; Kelliher, J.C.; Gilden, R.V.; Robey, W.G.; Bolognesi, D.P.; Gallo, R.C.

    1987-12-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4/sup +/ and T8/sup +/ cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4/sup +/ cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo.

  18. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  19. Protection against bubonic and pneumonic plague with a single dose microencapsulated sub-unit vaccine.

    Science.gov (United States)

    Elvin, Stephen J; Eyles, James E; Howard, Kenneth A; Ravichandran, Easwaran; Somavarappu, Satyanarayan; Alpar, H Oya; Williamson, E Diane

    2006-05-15

    Protection against virulent plague challenge by the parenteral and aerosol routes was afforded by a single administration of microencapsulated Caf1 and LcrV antigens from Yersinia pestis in BALB/c mice. Recombinant Caf1 and LcrV were individually encapsulated in polymeric microspheres, to the surface of which additional antigen was adsorbed. The microspheres containing either Caf1 or LcrV were blended and used to immunise mice on a single occasion, by either the intra-nasal or intra-muscular route. Both routes of immunisation induced systemic and local immune responses, with high levels of serum IgG being developed in response to both vaccine antigens. In Elispot assays, secretion of cytokines by spleen and draining lymph node cells was demonstrated, revealing activation of both Th1 and Th2 associated cytokines; and spleen cells from animals immunised by either route were found to proliferate in vitro in response to both vaccine antigens. Virulent challenge experiments demonstrated that non-invasive immunisation by intra-nasal instillation can provide strong systemic and local immune responses and protect against high level challenge. Microencapsulation of these vaccine antigens has the added advantage that controlled release of the antigens occurs in vivo, so that protective immunity can be induced after only a single immunising dose.

  20. A Multistage Subunit Vaccine Effectively Protects Mice Against Primary Progressive Tuberculosis, Latency and Reactivation

    Directory of Open Access Journals (Sweden)

    Jilei Ma

    2017-08-01

    Full Text Available Adult tuberculosis (TB is the main cause of TB epidemic and death. The infection results mainly by endogenous reactivation of latent TB infection and secondarily transmitted by exogenous infection. There is no vaccine for adult TB. To this end, we first chose antigens from a potential antigenic reservoir. The antigens strongly recognized T cells from latent and active TB infections that responded to antigens expressed by Mycobacterium tuberculosis cultured under different metabolic states. Fusions of single-stage polyprotein CTT3H, two-stage polyprotein A1D4, and multistage CMFO were constructed. C57BL/6 mice vaccinated with DMT adjuvant ed CMFO (CMFO-DMT were protected more significantly than by CTT3H-DMT, and efficacy was similar to that of the only licensed vaccine, Bacillus Calmette–Guérin (BCG and A1D4-DMT in the M. tuberculosis primary infection model. In the setting of BCG priming and latent TB infection, M. tuberculosis in the lung and spleen was eliminated more effectively in mice boosted with CMFO-DMT rather than with BCG, A1D4-DMT, or CTT3H-DMT. In particular, sterile immunity was only conferred by CMFO-DMT, which was associated with expedited homing of interferon-gamma+CD4+ TEM and interleukin-2+ TCM cells from the spleen to the infected lung. CMFO-DMT represents a promising candidate to prevent the occurrence of adult TB through both prophylactic and therapeutic methods, and warrants assessment in preclinical and clinical trials.

  1. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Annual Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-16

    The goal of this proposal is to demonstrate that co-localization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of recombinant subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. NLPs are are biocompatible, high-density lipoprotein mimetics that are amenable to the incorporation of multiple, chemically-disparate adjuvant and antigen molecules. We hypothesize that the ability to co-localize optimized adjuvant formulations with subunit antigens within a single particle will enhance the stimulation and activation of key immune effector cells, increasing the protective efficacy of subunit antigen-based vaccines. While Burkholderia spp. and F. tularensis subunit antigens are the focus of this proposal, we anticipate that this approach is applicable to a wide range of DOD-relevant biothreat agents. The F344 rat aerosol challenge model for F. tularensis has been successfully established at Battelle under this contract, and Year 3 efficacy studies performed at Battelle demonstrated that an NLP vaccine formulation was able to enhance survival of female F344 rats relative to naïve animals. In addition, Year 3 focused on the incorporation of multiple Burkholderia antigens (both polysaccharides and proteins) onto adjuvanted NLPs, with immunological analysis poised to begin in the next quarter.

  2. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge.

    Science.gov (United States)

    Whitlock, Gregory C; Deeraksa, Arpaporn; Qazi, Omar; Judy, Barbara M; Taylor, Katherine; Propst, Katie L; Duffy, Angie J; Johnson, Kate; Kitto, G Barrie; Brown, Katherine A; Dow, Steven W; Torres, Alfredo G; Estes, D Mark

    2010-01-01

    Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC transporter protein) generated significant protection against lethal inhaled B. mallei ATCC23344 and B. pseudomallei 1026b challenge. Immunization with BopA elicited the greatest protective activity, resulting in 100% and 60% survival against B. mallei and B. pseudomallei challenge, respectively. Moreover, sera from recovered mice demonstrated reactivity with the recombinant proteins. Dendritic cells stimulated with each of the different recombinant proteins showed distinct cytokine patterns. In addition, T cells from immunized mice produced IFN-γ following in vitro re-stimulation. These results indicated therefore that it was possible to elicit cross-protective immunity against both B. mallei and B. pseudomallei by vaccinating animals with one or more novel recombinant proteins identified in B. mallei.

  3. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-06

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the second quarter of the third year, LLNL finalized all immunological assessments of NLP vaccine formulations in the F344 model. Battelle has immunized rats with three unique NLP formulations by either intramuscular or intranasal administration. All inoculations have been completed, and protective efficacy against an aerosolized challenge will begin at the end of October, 2014.

  4. MF59 and Pam3CSK4 boost adaptive responses to influenza subunit vaccine through an IFN type I-independent mechanism of action.

    Science.gov (United States)

    Caproni, Elena; Tritto, Elaine; Cortese, Mario; Muzzi, Alessandro; Mosca, Flaviana; Monaci, Elisabetta; Baudner, Barbara; Seubert, Anja; De Gregorio, Ennio

    2012-04-01

    The innate immune pathways induced by adjuvants required to increase adaptive responses to influenza subunit vaccines are not well characterized. We profiled different TLR-independent (MF59 and alum) and TLR-dependent (CpG, resiquimod, and Pam3CSK4) adjuvants for the ability to increase the immunogenicity to a trivalent influenza seasonal subunit vaccine and to tetanus toxoid (TT) in mouse. Although all adjuvants boosted the Ab responses to TT, only MF59 and Pam3CSK4 were able to enhance hemagglutinin Ab responses. To identify innate immune correlates of adjuvanticity to influenza subunit vaccine, we investigated the gene signatures induced by each adjuvant in vitro in splenocytes and in vivo in muscle and lymph nodes using DNA microarrays. We found that flu adjuvanticity correlates with the upregulation of proinflammatory genes and other genes involved in leukocyte transendothelial migration at the vaccine injection site. Confocal and FACS analysis confirmed that MF59 and Pam3CSK4 were the strongest inducers of blood cell recruitment in the muscle compared with the other adjuvants tested. Even though it has been proposed that IFN type I is required for adjuvanticity to influenza vaccines, we found that MF59 and Pam3CSK4 were not good inducers of IFN-related innate immunity pathways. By contrast, resiquimod failed to enhance the adaptive response to flu despite a strong activation of the IFN pathway in muscle and lymph nodes. By blocking IFN type I receptor through a mAb, we confirmed that the adjuvanticity of MF59 and Pam3CSK4 to a trivalent influenza vaccine and to TT is IFN independent.

  5. The Positive Correlation of the Enhanced Immune Response to PCV2 Subunit Vaccine by Conjugation of Chitosan Oligosaccharide with the Deacetylation Degree

    Directory of Open Access Journals (Sweden)

    Guiqiang Zhang

    2017-07-01

    Full Text Available Chitosan oligosaccharides (COS, the degraded products of chitosan, have been demonstrated to have versatile biological functions. In primary studies, it has displayed significant adjuvant effects when mixed with other vaccines. In this study, chitosan oligosaccharides with different deacetylation degrees were prepared and conjugated to porcine circovirus type 2 (PCV2 subunit vaccine to enhance its immunogenicity. The vaccine conjugates were designed by the covalent linkage of COSs to PCV2 molecules and administered to BALB/c mice three times at two-week intervals. The results indicate that, as compared to the PCV2 group, COS–PCV2 conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting lymphocyte proliferation and initiating a mixed T-helper 1 (Th1/T-helper 2 (Th2 response, including raised levels of PCV2-specific antibodies and an increased production of inflammatory cytokines. Noticeably, with the increasing deacetylation degree, the stronger immune responses to PCV2 were observed in the groups with COS-PCV2 vaccination. In comparison with NACOS (chitin oligosaccharides–PCV2 and LCOS (chitosan oligosaccharides with low deacetylation degree–PCV2, HCOS (chitosan oligosaccharides with high deacetylation degree–PCV2 showed the highest adjuvant effect, even comparable to that of PCV2/ISA206 (a commercialized adjuvant group. In summary, COS conjugation might be a viable strategy to enhance the immune response to PCV2 subunit vaccine, and the adjuvant effect was positively correlated with the deacetylation degree of COS.

  6. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-13

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the third quarter of the third year, F344 rats vaccinated with adjuvanted NLP formulations were challenged with F. tularensis SCHU S4 at Battelle. Preliminary data indicate that up to 65% of females vaccinated intranasally with an NLP-based formulation survived this challenge, compared to only 20% survival of naïve animals. In addition, NLPs were successfully formulated with Burkholderia protein antigens. IACUC approval for immunological assessments in BALB/c mice was received and we anticipate that these assessments will begin by March 2015, pending ACURO approval.

  7. Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines.

    Science.gov (United States)

    Wen, Xiaobo; Wen, Ke; Cao, Dianjun; Li, Guohua; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka; Yuan, Lijuan

    2014-07-31

    Currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in developed countries. However, the immunogenicity and efficacy of such vaccines in some developing countries are low. We reported previously that bacterially-expressed rotavirus ΔVP8* subunit vaccine candidates with P[8], P[4] or P[6] specificity elicited high-titer virus neutralizing antibodies in animals immunized intramuscularly. Of note was the finding that antibodies induced with the P[8]ΔVP8* vaccine neutralized both homotypic P[8] and heterotypic P[4] rotavirus strains to high titer. To further improve its vaccine potential, a tetanus toxoid universal CD4(+) T cell epitope P2 was introduced into P[8] or P[6]ΔVP8* construct. The resulting recombinant fusion proteins expressed in Escherichia coli were of high solubility and were produced with high yield. Two doses (10 or 20 μg/dose) of the P2-P[8]ΔVP8* vaccine or P2-P[6]ΔVP8* vaccine with aluminum phosphate adjuvant elicited significantly higher geometric mean homologous neutralizing antibody titers than the vaccines without P2 in intramuscularly immunized guinea pigs. Interestingly, high levels of neutralizing antibody responses induced in guinea pigs with 3 doses of the P2-P[8]ΔVP8* vaccine persisted for at least 6 months. Furthermore, in the gnotobiotic piglet challenge study, three intramuscular doses (50 μg/dose) of the P2-P[8]ΔVP8* vaccine with aluminum phosphate adjuvant significantly delayed the onset of diarrhea and significantly reduced the duration of diarrhea and the cumulative diarrhea score after oral challenge with virulent human rotavirus Wa (G1P[8]) strain. The P2-P[8]ΔVP8* vaccine induced serum virus neutralizing antibody and VP4-specific IgG antibody production prechallenge, and primed the pigs for higher antibody and intestinal and systemic virus-specific IFN-γ producing CD4(+) T cell responses postchallenge. These two subunit vaccines could be used at a minimum singly or

  8. Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis.

    Science.gov (United States)

    Xie, Yi-Ting; Gao, Jiang-Mei; Wu, Ya-Ping; Tang, Petrus; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2017-02-16

    stimulation with the corresponding antigens in vitro. Immunization with both ACT-F and ACT-T could confer partial to complete protection and trigger strong Th1/Th2 mixed humoral and cellular immune responses in the mouse host. This suggested that recombinant α-actinin subunit antigens may be promising vaccine candidates against trichomoniasis.

  9. Effectiveness and economic analysis of the whole cell/recombinant B subunit (WC/rbs inactivated oral cholera vaccine in the prevention of traveller's diarrhoea

    Directory of Open Access Journals (Sweden)

    Diez-Diaz Rosa

    2009-05-01

    Full Text Available Abstract Background Nowadays there is a debate about the indication of the oral whole-cell/recombinant B-subunit cholera vaccine (WC/rBS in traveller's diarrhoea. However, a cost-benefit analysis based on real data has not been published. Methods A cost-effectiveness and cost-benefit study of the oral cholera vaccine (WC/rBS, Dukoral® for the prevention of traveller's diarrhoea (TD was performed in subjects travelling to cholera risk areas. The effectiveness of WC/rBS vaccine in the prevention of TD was analyzed in 362 travellers attending two International Vaccination Centres in Spain between May and September 2005. Results The overall vaccine efficacy against TD was 42,6%. Direct healthcare-related costs as well as indirect costs (lost vacation days subsequent to the disease were considered. Preventive vaccination against TD resulted in a mean saving of 79.26 € per traveller. Conclusion According to the cost-benefit analysis performed, the recommendation for WC/rBS vaccination in subjects travelling to zones at risk of TD is beneficial for the traveller, regardless of trip duration and visited continent.

  10. BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses.

    Science.gov (United States)

    Cho, Hyun-Il; Barrios, Kelly; Lee, Young-Ran; Linowski, Angelika K; Celis, Esteban

    2013-04-01

    Therapeutic vaccines for the treatment of cancer are an attractive alternative to some of the conventional therapies that are currently used. More importantly, vaccines could be very useful to prevent recurrences when applied after primary therapy. Unfortunately, most therapeutic vaccines for cancer have performed poorly due to the low level of immune responses that they induce. Previous work done in our laboratory in cancer mouse models demonstrated that vaccines consisting of synthetic peptides representing minimal CD8 T-cell epitopes administered i.v. mixed with poly-IC and anti-CD40 antibodies (TriVax) were capable of inducing massive T cell responses similar to those found during acute infections. We now report that some peptides are capable of inducing similarly large T cell responses after vaccination with poly-IC alone (BiVax). The results show that amphiphilic peptides are more likely to function as strong immunogens in BiVax and that systemic immunizations (i.v. or i.m.) were more effective than local (s.c.) vaccine administration. The immune responses induced by BiVax were found to be effective against established tumors in two mouse cancer models. The roles of various immune-related pathways such as type-I IFN, CD40 costimulation, CD4 T cells, TLRs and the MDA5 RNA helicase were examined. The present findings could facilitate the development of simple and effective subunit vaccines for diseases where CD8 T cells provide a therapeutic benefit.

  11. BiVax: A peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T cell responses

    Science.gov (United States)

    Cho, Hyun-Il; Barrios, Kelly; Lee, Young-Ran; Linowski, Angelika K.; Celis, Esteban

    2013-01-01

    Therapeutic vaccines for the treatment of cancer are an attractive alternative to some of the conventional therapies that are currently used. More importantly, vaccines could be very useful to prevent recurrences when applied after primary therapy. Unfortunately, most therapeutic vaccines for cancer have performed poorly due to the low level of immune responses that they induce. Previous work done in our laboratory in cancer mouse models demonstrated that vaccines consisting of synthetic peptides representing minimal CD8 T cell epitopes administered i.v. mixed with poly-IC and anti-CD40 antibodies (TriVax) were capable of inducing massive T cell responses similar to those found during acute infections. We now report that some peptides are capable of inducing similarly large T cell responses after vaccination with poly-IC alone (BiVax). The results show that amphiphilic peptides are more likely to function as strong immunogens in BiVax and that systemic immunizations (i.v. or i.m.) were more effective than local (s.c.) vaccine administration. The immune responses induced by BiVax were found to be effective against established tumors in two mouse cancer models. The roles of various immune related pathways such as type-I IFN, CD40 costimulation, CD4 T cells, TLRs and the MDA5 RNA helicase were examined. The present findings could facilitate the development of simple and effective subunit vaccines for diseases where CD8 T cells provide a therapeutic benefit. PMID:23266830

  12. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines

    Directory of Open Access Journals (Sweden)

    Flower Darren R

    2007-01-01

    Full Text Available Abstract Background Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach – such as speed and cost efficiency – its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC transformation of protein sequences into uniform vectors of principal amino acid properties. Results Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen. Conclusion VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without

  13. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-γ(+) CMI responses protects against a genital infection in minipigs

    DEFF Research Database (Denmark)

    Bøje, Sarah; Olsen, Anja Weinreich; Erneholm, Karin

    2016-01-01

    Chlamydia is the most widespread sexually transmitted bacterial disease and a prophylactic vaccine is highly needed. Ideally, this vaccine is required to induce a combined response of Th1 cell-mediated immune (CMI) response in concert with neutralizing antibodies. Using a novel Göttingen minipig...... animal model, we evaluated the immunogenicity and efficacy of a multi-subunit vaccine formulated in the strong Th1-inducing adjuvant CAF01. We evaluated a mixture of two fusion proteins (Hirep1 and CTH93) designed to promote either neutralizing antibodies or cell-mediated immunity, respectively. Hirep1...... is a novel immunogen based on the variant domain (VD) 4 region from major outer membrane protein (MOMP) serovar (Sv) D, SvE and SvF, and CTH93 is a fusion molecule of three antigens (CT043, CT414 and MOMP). Pigs were immunized twice intramuscularly with either Hirep1+CTH93/CAF01, UV-inactivated Chlamydia...

  14. Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex.

    Science.gov (United States)

    Farsiani, Hadi; Mosavat, Arman; Soleimanpour, Saman; Sadeghian, Hamid; Akbari Eydgahi, Mohammad Reza; Ghazvini, Kiarash; Sankian, Mojtaba; Aryan, Ehsan; Jamehdar, Saeid Amel; Rezaee, Seyed Abdolrahim

    2016-06-21

    Tuberculosis (TB) remains a major global health threat despite chemotherapy and Bacilli Calmette-Guérin (BCG) vaccination. Therefore, a safer and more effective vaccine against TB is urgently needed. This study evaluated the immunogenicity of a recombinant fusion protein consisting of early secreted antigenic target protein 6 kDa (ESAT-6), culture filtrate protein 10 kDa (CFP-10) and the Fc-domain of mouse IgG2a as a novel subunit vaccine. The recombinant expression vectors (pPICZαA-ESAT-6:CFP-10:Fcγ2a and pPICZαA-ESAT-6:CFP-10:His) were transferred into Pichia pastoris. After SDS-PAGE and immunoblotting, the immunogenicity of the recombinant proteins was evaluated in mice. When both recombinant proteins (ESAT-6:CFP-10:Fcγ2a and ESAT-6:CFP-10:His) were used for vaccination, Th1-type cellular responses were induced producing high levels of IFN-γ and IL-12. However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a small increase in IL-4 as compared to the BCG and ESAT-6:CFP-10:His groups. Moreover, mice primed with BCG and then supplemented with ESAT-6:CFP-10:Fcγ2a produced the highest levels of IFN-γ and IL-12 in immunized groups. The findings indicate that when Fcγ2a is fused to the ESAT-6:CFP-10 complex, as a delivery vehicle, there could be an increase in the immunogenicity of this type of subunit vaccine. Therefore, additional investigations are necessary for the development of appropriate Fc-based tuberculosis vaccines.

  15. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus

    Directory of Open Access Journals (Sweden)

    Jie Jiang

    2015-11-01

    Full Text Available Channel catfish (Ictalurus punctatus is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI was mixed with aluminum hydroxide gel (AH, propolis adjuvant (PA, and Freund’s Incomplete Adjuvant (FIA. The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS, lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%, whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish.

  16. Safety and immunogenicity of two subunit influenza vaccines in healthy children, adults and the elderly: a randomized controlled trial in China.

    Science.gov (United States)

    Zhu, Feng Cai; Zhou, Weizhong; Pan, Hongxing; Lu, Lily; Gerez, Lisya; Nauta, Jos; Giezeman, Katinka; de Bruijn, Iris

    2008-08-18

    The burden of influenza is well known in the elderly and at-risk patients, but also in children. Especially in those under 5 years old, influenza may cause severe morbidity and mortality. Influenza infections and complications can be reduced by vaccination. In a randomized, endpoint-blinded, parallel group trial the immunogenicity and safety was studied of two trivalent inactivated surface antigen (subunit) influenza vaccines Influvac and Agrippal in healthy children as well as in adults and the elderly. An open safety part in 30 children aged 3-12 years and 30 adults aged 18-60 years vaccinated with Influvac was followed by an endpoint-blind, parallel group part in 300 healthy children aged 3-12 years, 300 healthy adults aged 18-59 years, and 240 healthy elderly persons aged 60 years or over, in which subjects were randomized 2:1 to vaccination with either Influvac or Agrippal. The primary immunogenicity endpoint was the geometric mean titer (GMT) 4 weeks after vaccination. Both Influvac and Agrippal induced high anti-hemagglutinin antibody titers in the children and in the adult and elderly subjects. Seroprotection rates were >85% and seroconversion rates >70% for both vaccines in all three age groups for all three-virus strains. The GMT ratios after vaccination indicated that the immunogenicity of Influvac was at least comparable with that of Agrippal in all three age groups. Both vaccines were well tolerated and safe. In this trial, Influvac and Agrippal were immunogenic, safe and well tolerated in healthy children as well as in adults and elderly people.

  17. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William P Halford

    2011-03-01

    Full Text Available Glycoprotein D (gD-2 is the entry receptor of herpes simplex virus 2 (HSV-2, and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0⁻ virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain. In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0⁻ virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.

  18. Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease.

    Science.gov (United States)

    Matsui, Takeshi; Takita, Eiji; Sato, Toshio; Aizawa, Michie; Ki, Misa; Kadoyama, Yumiko; Hirano, Kenji; Kinjo, Satoko; Asao, Hiroshi; Kawamoto, Keiko; Kariya, Haruko; Makino, Sou-Ichi; Hamabata, Takashi; Sawada, Kazutoshi; Kato, Ko

    2011-08-01

    Pig edema disease is a bacterial disease caused by enterohemorrhagic Escherichia coli. E. coli produces Shiga toxin 2e (Stx2e), which is composed of one A subunit (Stx2eA) and five B subunits (Stx2eB). We previously reported production of Stx2eB in lettuce plants as a potential edible vaccine (Matsui et al. in Biosci Biotechnol Biochem 73:1628-1634, 2009). However, the accumulation level was very low, and it was necessary to improve expression of Stx2eB for potential use of this plant-based vaccine. Therefore, in this study, we optimized the Stx2eB expression cassette and found that a double repeated Stx2eB (2× Stx2eB) accumulates to higher levels than a single Stx2eB in cultured tobacco cells. Furthermore, a linker peptide between the two Stx2eB moieties played an important role in maximizing the effects of the double repeat. Finally, we generated transgenic lettuce plants expressing 2× Stx2eB with a suitable linker peptide that accumulate as much as 80 mg per 100 g fresh weight, a level that will allow us to use these transgenic lettuce plants practically to generate vaccine material.

  19. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice.

    Directory of Open Access Journals (Sweden)

    Li Song

    Full Text Available In spring 2013, human infections with a novel avian influenza A (H7N9 virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC and polyethyleneimine (PEI, through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza.

  20. Evaluation of flagellum-related proteins FliD and FspA as subunit vaccines against Campylobacter jejuni colonisation in chickens.

    Science.gov (United States)

    Chintoan-Uta, C; Cassady-Cain, R L; Stevens, M P

    2016-04-04

    Campylobacter is the leading cause of food-borne diarrhoea in humans in the developed world and consumption of contaminated poultry meat is the main source of infection. Vaccination of broilers could reduce carcass contamination and zoonotic infections. Towards this aim, we evaluated recombinant anti-Campylobacter subunit vaccines based on the flagellum-capping protein FliD and the flagellum-secreted protein FspA as they are immunogenic in chickens and the flagellum is vital for colonisation. In three studies, a recombinant FliD vaccine induced a transient but reproducible and statistically significant decrease of c. 2 log10 CFU/g in caecal colonisation levels at 49 days post-primary vaccination on the day of hatch. Levels of serum IgY specific to FliD positively correlated with caecal bacterial counts in individual birds, indicating that such antibodies may not play a role in protection. The data add to the limited repertoire of candidate antigens for the control of a key foodborne zoonosis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. A novel respiratory syncytial virus (RSV F subunit vaccine adjuvanted with GLA-SE elicits robust protective TH1-type humoral and cellular immunity in rodent models.

    Directory of Open Access Journals (Sweden)

    Stacie L Lambert

    Full Text Available Illness associated with Respiratory Syncytial Virus (RSV remains an unmet medical need in both full-term infants and older adults. The fusion glycoprotein (F of RSV, which plays a key role in RSV infection and is a target of neutralizing antibodies, is an attractive vaccine target for inducing RSV-specific immunity.BALB/c mice and cotton rats, two well-characterized rodent models of RSV infection, were used to evaluate the immunogenicity of intramuscularly administered RSV vaccine candidates consisting of purified soluble F (sF protein formulated with TLR4 agonist glucopyranosyl lipid A (GLA, stable emulsion (SE, GLA-SE, or alum adjuvants. Protection from RSV challenge, serum RSV neutralizing responses, and anti-F IgG responses were induced by all of the tested adjuvanted RSV sF vaccine formulations. However, only RSV sF + GLA-SE induced robust F-specific TH1-biased humoral and cellular responses. In mice, these F-specific cellular responses include both CD4 and CD8 T cells, with F-specific polyfunctional CD8 T cells that traffic to the mouse lung following RSV challenge. This RSV sF + GLA-SE vaccine formulation can also induce robust RSV neutralizing titers and prime IFNγ-producing T cell responses in Sprague Dawley rats.These studies indicate that a protein subunit vaccine consisting of RSV sF + GLA-SE can induce robust neutralizing antibody and T cell responses to RSV, enhancing viral clearance via a TH1 immune-mediated mechanism. This vaccine may benefit older populations at risk for RSV disease.

  2. First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS).

    Science.gov (United States)

    Wieser, Andreas; Magistro, Giuseppe; Nörenberg, Dominik; Hoffmann, Christiane; Schubert, Sören

    2012-01-01

    Infections due to extraintestinal pathogenic E. coli (ExPEC) are very common in humans as well as in animals. In humans ExPEC infections include urinary tract infections (UTI), septicemia, and wound infections, which result in significant morbidity, mortality, and substantial healthcare costs. In view of the increasing number of ExPEC infections caused by more and more resistant strains, effective prevention would be desirable. Given the rising treatment costs, a vaccine may be cost-effective in selected patient groups, such as women with recurrent UTI, patients with neurologic disorders impairing bladder function and men with prostate hyperplasia. Previous vaccine studies used single target proteins or whole inactivated ExPEC cells. Here, we describe a vaccine system for oral application based on artificial multiple subunit vaccine proteins. Those multi-epitope proteins are composed of predicted epitopes derived from ExPEC virulence-associated proteins. As ExPEC are known to form intracellular biofilms in the urothelium and can also resist killing by non-activated macrophages, T-cell responses are supposed to be an important measure to counteract these stages of ExPEC during infection. Therefore, a live bacterial antigen delivery system based upon the Salmonella type-III secretion system (T3SS) was used in this study to directly deliver the vaccine proteins into the cytoplasm of the host cells. Epitope-rich domains of the proteins FyuA, IroN, ChuA, IreA, Iha, and Usp were expressed in an attenuated Salmonella enterica serovar Typhimurium strain and translocated into target cells for extended periods of time inducing a strong T-cell response. No significant antibody titre increase against the secreted vaccine proteins could be detected in vaginal wash or serum. Despite that, one of the vaccine proteins was able to significantly reduce bacterial load in the challenge model of intraperitoneal sepsis. This study shows that a vaccine encompassing distinct epitopes of

  3. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    Science.gov (United States)

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  4. Evaluation of the protective immunity of a novel subunit fusion vaccine in a murine model of systemic MRSA infection.

    Directory of Open Access Journals (Sweden)

    Qian-Fei Zuo

    Full Text Available Staphylococcus aureus is a common commensal organism in humans and a major cause of bacteremia and hospital acquired infection. Because of the spread of strains resistant to antibiotics, these infections are becoming more difficult to treat. Therefore, exploration of anti-staphylococcal vaccines is currently a high priority. Iron surface determinant B (IsdB is an iron-regulated cell wall-anchored surface protein of S. aureus. Alpha-toxin (Hla is a secreted cytolytic pore-forming toxin. Previous studies reported that immunization with IsdB or Hla protected animals against S. aureus infection. To develop a broadly protective vaccine, we constructed chimeric vaccines based on IsdB and Hla. Immunization with the chimeric bivalent vaccine induced strong antibody and T cell responses. When the protective efficacy of the chimeric bivalent vaccine was compared to that of individual proteins in a murine model of systemic S. aureus infection, the bivalent vaccine showed a stronger protective immune response than the individual proteins (IsdB or Hla. Based on the results presented here, the chimeric bivalent vaccine affords higher levels of protection against S. aureus and has potential as a more effective candidate vaccine.

  5. Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA as a Candidate Subunit Cholera Vaccine

    Directory of Open Access Journals (Sweden)

    Neda Molaee

    2017-01-01

    Full Text Available Vibrio cholerae is the causative agent of cholera and annually leads to death of thousands of people around the globe. Two factors in the pathogenesis of this bacterium are its pili and flagella. The main subunits of pili TcpA, TcpB, and FlaA are the constituent subunit of flagella. In this study, we studied the ability of pili and flagella subunits to stimulate immune responses in mice. After amplification of TcpA, TcpB, and FlaA genes using PCR, they were cloned in expression plasmids. After production of the above-mentioned proteins by using IPTG, the proteins were purified and then approved using immunoblot method. After injection of the purified proteins to a mice model, immune response stimulation was evaluated by measuring the levels of IgG1 and IgG2a antibody titers, IL5 and IFN-γ. Immune response stimulation against pili and flagella antigens was adequate. Given the high levels of IL5 titer and IgG1 antibody, the stimulated immune response was toward Th1. Humoral immune response stimulation is of key importance in prevention of cholera. Our immunological analysis shows the appropriate immune response in mice model after vaccination with recombinant proteins. The high level of IL5 and low level of IFN-γ show the activation of Th2 cell response.

  6. The nature and combination of subunits used in epitope-based Schistosoma japonicum vaccine formulations affect their efficacy

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2010-11-01

    Full Text Available Abstract Background Schistosomiasis remains a major public health problem in endemic countries and is caused by infections with any one of three primary schistosome species. Although there are no vaccines available to date, this strategy appears feasible since natural immunity develops in individuals suffering from repeated infection during a lifetime. Since vaccinations resulting in both Th1- and Th2-type responses have been shown to contribute to protective immunity, a vaccine formulation with the capacity for stimulating multiple arms of the immune response will likely be the most effective. Previously we developed partially protective, single Th- and B cell-epitope-based peptide-DNA dual vaccines (PDDV (T3-PDDV and B3-PDDV, respectively capable of eliciting immune responses against the Schistosoma japonicum 22.6 kDa tegument antigen (Sj22.6 and a 62 kDa fragment of myosin (Sj62, respectively. Results In this study, we developed PDDV cocktails containing multiple epitopes of S. japonicum from Sj22.6, Sj62 and Sj97 antigens by predicting cytotoxic, helper, and B-cell epitopes, and evaluated vaccine potential in vivo. Results showed that mice immunized with a single-epitope PDDV elicited either Tc, Th, or B cell responses, respectively, and mice immunized with either the T3- or B3- single-epitope PDDV formulation were partially protected against infection. However, mice immunized with a multicomponent (3 PDDV components formulation elicited variable immune responses that were less immunoprotective than single-epitope PDDV formulations. Conclusions Our data show that combining these different antigens did not result in a more effective vaccine formulation when compared to each component administered individually, and further suggest that immune interference resulting from immunizations with antigenically distinct vaccine targets may be an important consideration in the development of multicomponent vaccine preparations.

  7. Protection with Recombinant Clostridium botulinum C1 and D Binding Domain Subunit (Hc) Vaccines Against C and D Neurotoxins

    Science.gov (United States)

    2007-03-16

    lethal by erosol to nonhuman primates [J. Anderson, personal com- unication]. This information taken together supports the elief that BoNT C and D, and...vaccinations of 5 g per mouse of ither rBoNT/C1 Hc, rBoNT/D Hc, or a bivalent vaccine con- aining both antigens were challenged with 100,000 mouse D50 of

  8. [Study on the immunogenicity and safety of recombinant B-subunit/whole cell cholera vaccine infused with antacids in healthy population at ages of 2-6 years].

    Science.gov (United States)

    Huang, T; Li, R C; Liu, D P

    2017-09-06

    Objective: To assess the immunogenicity and safety of recombinant B-subunit/whole cell cholera vaccine (rBS/WC) oral cholera vaccine (Ora Vacs) infused with antacids in healthy population at ages of 2-6 years. Methods: Between December 2009 and January 2010, we recruited 900 volunteers aged 2-6 years od through giving out recruitment notice for the eligible children's parents from different vaccination clinics of Chongzuo city in Guangxi Zhuang Autonomous Region. This study was a randomized, double-blind, placebo-controlled trial, and subjects were randomly (2∶1) assigned to receive Cholera vaccine infused with antacids or placebo, and observed for safety. Serum samples of 300 subjects in immunogenicity subgroups (200 for vaccine groups, 100 for control groups) before the 1st dose and 49 d (±3 d) after immunization were collected, and determined for antibody levels against the cholera toxin (anti-CT) and cholera vibriocidal (anti-Vab) with Enzyme-linked immunosorbent assays (ELISA), based on which the GMT was calculated. There were 266 cases paired with the serum samples before and after immunization (177 for vaccine groups, 89 for control groups). The comparison of subjects' age at enrollment and the level of GMT before and after immunization between groups were analyzed by t test. The superiority test for the difference between seroconversion rates of vaccine groups and control groups were analyzed by χ(2) test. Results: Of 900 subjects enrolled, the number of males and females were 503 and 397 respectively (vaccine groups 335 vs. 265, control groups 168 vs. 132), the average ages of vaccine groups and control groups at enrollment were (4.8±1.2) years and (4.9±1.2) years respectively. There were no significant differences between groups in terms of gender and age (χ(2)=0.00, P=1.000; t=0.55, P=0.585). The 2 times increase rates of anti-CT and anti-Vab in vaccine groups after inoculation were 90.96% and 57.63% respectively, which were superiority to those

  9. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks.

    Directory of Open Access Journals (Sweden)

    Krystal Teasley Hamorsky

    Full Text Available INTRODUCTION: Cholera toxin B subunit (CTB is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. METHODOLOGY/PRINCIPAL FINDINGS: In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major

  10. RiVax, a recombinant ricin subunit vaccine, protects mice against ricin delivered by gavage or aerosol

    Science.gov (United States)

    Smallshaw, Joan E.; Richardson, James A.; Vitetta, Ellen S.

    2007-01-01

    Ricin is a plant toxin that is a CDC level B biothreat. Our recombinant ricin A chain vaccine (RiVax), which contains mutations in both known toxic sites, has no residual toxicity at doses at least 800 times the immunogenic dose. RiVax without adjuvant given intramuscularly (i.m.) protected mice against intraperitoneally administered ricin. Furthermore the vaccine without alum was safe and immunogenic in human volunteers. Here we describe the development of gavage and aerosol ricin challenge models in mice and demonstrate that i.m. vaccination protects mice against ricin delivered by either route. Also RiVax protects against aerosol-induced lung damage as determined by histology and lung function tests. PMID:17875350

  11. Montanide™ ISA 71 VG adjuvant enhances antibody and cell-mediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella. Experimental Parasitology

    Science.gov (United States)

    The present study was conducted to investigate the immunoenhancing effects of MontanideTM ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, ...

  12. Prophylactic Sublingual Immunization with Mycobacterium tuberculosis Subunit Vaccine Incorporating the Natural Killer T Cell Agonist Alpha-Galactosylceramide Enhances Protective Immunity to Limit Pulmonary and Extra-Pulmonary Bacterial Burden in Mice

    Directory of Open Access Journals (Sweden)

    Arshad Khan

    2017-12-01

    Full Text Available Infection by Mycobacterium tuberculosis (Mtb remains a major global concern and the available Bacillus Calmette-Guerin (BCG vaccine is poorly efficacious in adults. Therefore, alternative vaccines and delivery strategies focusing on Mtb antigens and appropriate immune stimulating adjuvants are needed to induce protective immunity targeted to the lungs, the primary sites of infections and pathology. We present here evidence in support of mucosal vaccination by the sublingual route in mice using the subunit Mtb antigens Ag85B and ESAT-6 adjuvanted with the glycolipid alpha-galactosylceramide (α-GalCer, a potent natural killer T (NKT cell agonist. Vaccinated animals exhibited strong antigen-specific CD4 and CD8 T cells responses in the spleen, cervical lymph nodes and lungs. In general, inclusion of the α-GalCer adjuvant significantly enhanced these responses that persisted over 50 days. Furthermore, aerosolized Mtb infection of vaccinated mice resulted in a significant reduction of bacterial load of the lungs and spleens as compared to levels seen in naïve controls or those vaccinated with subunit proteins, adjuvant , or BCG alone. The protection induced by the Mtb antigens and-GalCer vaccine through sublingual route correlated with a TH1-type immunity mediated by antigen-specific IFN-γ and IL-2 producing T cells.

  13. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity.

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    Full Text Available BACKGROUND: The current vaccine against tuberculosis (TB, BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS: In the present study we show that the fusion protein HyVac4 (H4, consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb. Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE: H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials.

  14. Inferior immunogenicity and efficacy of respiratory syncytial virus fusion protein-based subunit vaccine candidates in aged versus young mice.

    Directory of Open Access Journals (Sweden)

    Corinne Cayatte

    Full Text Available Respiratory syncytial virus (RSV is recognized as an important cause of lower and upper respiratory tract infections in older adults, and a successful vaccine would substantially lower morbidity and mortality in this age group. Recently, two vaccine candidates based on soluble purified glycoprotein F (RSV F, either alone or adjuvanted with glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE, failed to reach their primary endpoints in clinical efficacy studies, despite demonstrating the desired immunogenicity profile and efficacy in young rodent models. Here, one of the RSV F vaccine candidates (post-fusion conformation, RSV post-F, and a stabilized pre-fusion form of RSV F (RSV pre-F, DS-Cav1 were evaluated in aged BALB/c mice. Humoral and cellular immunogenicity elicited after immunization of naïve, aged mice was generally lower compared to young animals. In aged mice, RSV post-F vaccination without adjuvant poorly protected the respiratory tract from virus replication, and addition of GLA-SE only improved protection in the lungs, but not in nasal turbinates. RSV pre-F induced higher neutralizing antibody titers compared to RSV post-F (as previously reported but interestingly, RSV F-specific CD8 T cell responses were lower compared to RSV post-F responses regardless of age. The vaccines were also tested in RSV seropositive aged mice, in which both antigen forms similarly boosted neutralizing antibody titers, although GLA-SE addition boosted neutralizing activity only in RSV pre-F immunized animals. Cell-mediated immune responses in the aged mice were only slightly boosted and well below levels induced in seronegative young mice. Taken together, the findings suggest that the vaccine candidates were not able to induce a strong anti-RSV immune response in recipient mice with an aged immune system, in agreement with recent human clinical trial results. Therefore, the aged mouse model could be a useful tool to evaluate improved vaccine

  15. Whole inactivated virus influenza vaccine is superior to subunit vaccine in inducing immune responses and secretion of proinflammatory cytokines by DCs

    NARCIS (Netherlands)

    Geeraedts, Felix; Bungener, Laura; Pool, Judith; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke

    Background For protection against (re-) infection by influenza virus not only the magnitude of the immune response but also its quality in terms of antibody subclass and T helper profile is important. Information about the type of immune response elicited by vaccination is therefore urgently needed.

  16. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Thoryk

    2016-12-01

    Full Text Available A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg and Ovalbumin (OVA, respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered—both at the same time and in the same location—in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.

  17. Development of a subunit vaccine for infectious pancreatic necrosis virus using a baculovirus insect/larvae system

    Science.gov (United States)

    Shivappa, R.B.; McAllister, P.E.; Edwards, G.H.; Santi, N.; Evensen, O.; Vakharia, V.N.; ,

    2005-01-01

    Various attempts to develop a vaccine against infectious pancreatic necrosis virus (IPNV) have not yielded consistent results. Thus, at present, no commercial vaccine is available that can be used with confidence to immunize fry of salmon and trout. We generated a cDNA clone of the large genome segment A of an IPNV Sp strain and expressed all structural protein genes in insect cells and larvae using a baculovirus expression system. Green fluorescent protein was also co-expressed as a reporter molecule. High yields of IPNV proteins were obtained and the structural proteins self assembled to form virus-like particles (VLPs). We tested the immunogenicity of the putative VLP antigen in immersion vaccine experiments (two concentrations) in rainbow trout (Oncorhynchus mykiss) fry, and by intraperitoneal immunisation of Atlantic salmon (Salmo salar) pre-smolts using an oil adjuvant formulation. Rainbow trout were challenged by immersion using either the Sp or the VR-299 strain of IPNV two or three weeks post-vaccination, while Atlantic salmon were bath challenged with Sp strain after two months, after parr-smolt transformation. In the rainbow trout fry challenged two weeks post-immunization, cumulative mortality rates three weeks post challenge were 14 % in the fry that had received the highest dose versus 8 % in the control groups. No indication of protection was seen in repeated trials using a lower dose of antigen and challenge three weeks post-immunisation. The cumulative mortality rate of intraperitoneally immunised Atlantic salmon post-smolts four weeks post challenge was lower (56 %) than in the control fish (77 %), showing a dose-response pattern.

  18. CpG Oligodeoxynucleotide and Montanide ISA 51 Adjuvant Combination Enhanced the Protective Efficacy of a Subunit Malaria Vaccine

    Science.gov (United States)

    2004-02-01

    and cancers to immune enhancement of synthetic peptide- and recombinant protein-based vaccines. We investigated the adjuvant effect of murine CpG ODN...parasites. Briefly, the IFA test was done on 12-well toxoplasmosis slides (Bellco Glass, Vineland, N.J.). Twofold dilutions of test sera were added to P...to enhance the immunoge- nicity of recombinant antigens (13, 22, 33) or as monotherapy for cancers (4, 25, 42). In conclusion, our results show

  19. Adjuvanticity of a CTLA-4 3' UTR complementary oligonucleotide for emulsion formulated recombinant subunit and inactivated vaccines.

    Science.gov (United States)

    Li, Xin; Yang, Lei; Zhao, Peiyan; Yao, Yun; Lu, Fangjie; Tu, Liqun; Liu, Jiwei; Li, Zhiqin; Yu, Yongli; Wang, Liying

    2017-04-25

    Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is recognized as a critical inhibitory regulator of T-cell proliferation and activation, opposing the action of CD28-mediated co-stimulation. Interfering or blocking CTLA-4 can result in continuous T-cell activation required for the full immune response to pathogenic microbes and vaccines. To test if nucleic acid-based CTLA-4 inhibitors could be developed into a novel adjuvant, we designed two oligonucleotides, CMD-1 and CMD-2, with the sequences complementary to the conserve regions identical between human and mouse CTLA-4 mRNA 3' untranslated region (3' UTR), and tested their in vitro effects on CTLA-4 production and their adjuvanticity for vaccines in mice. We found that CMD-1 inhibited the antigen-induced CTLA-4 up-regulation on the CD4+ T cells by interfering its mRNA expression, maintained higher levels of CD80 and CD86 on the CD11c+ cells and promoted the recalled proliferation of the CD4+ T cells and CD19+ B cells, and that the CMD-1 enhanced the antibody response against recombinant PCV2b capsid protein or inactivated foot-and-mouth disease virus in both ICR and BALB/c mice. These data suggest that the CMD-1 could be used as a novel vaccine adjuvant capable of inhibiting inhibitory signals rather than inducing stimulatory signals of immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An experimental subunit vaccine based on Bluetongue virus 4 VP2 protein fused to an antigen-presenting cells single chain antibody elicits cellular and humoral immune responses in cattle, guinea pigs and IFNAR(-/-) mice.

    Science.gov (United States)

    Legisa, D M; Perez Aguirreburualde, M S; Gonzalez, F N; Marin-Lopez, A; Ruiz, V; Wigdorovitz, A; Martinez-Escribano, J A; Ortego, J; Dus Santos, M J

    2015-05-21

    Bluetongue virus (BTV), the causative agent of bluetongue disease (BT) in domestic and wild ruminants, is worldwide distributed. A total of 27 serotypes have been described so far, and several outbreaks have been reported. Vaccination is critical for controlling the spread of BTV. In the last years, subunit vaccines, viral vector vaccines and reverse genetic-based vaccines have emerged as new alternatives to conventional ones. In this study, we developed an experimental subunit vaccine against BTV4, with the benefit of targeting the recombinant protein to antigen-presenting cells. The VP2 protein from an Argentine BTV4 isolate was expressed alone or fused to the antigen presenting cell homing (APCH) molecule, in the baculovirus insect cell expression system. The immunogenicity of both proteins was evaluated in guinea pigs and cattle. Titers of specific neutralizing antibodies in guinea pigs and cattle immunized with VP2 or APCH-VP2 were high and similar to those induced by a conventional inactivated vaccine. The immunogenicity of recombinant proteins was further studied in the IFNAR(-/-) mouse model where the fusion of VP2 to APCH enhanced the cellular immune response and the neutralizing activity induced by VP2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A DNA Vaccine Encoding the Enterohemorragic Escherichia coli Shiga-Like Toxin 2 A2 and B Subunits Confers Protective Immunity to Shiga Toxin Challenge in the Murine Model▿

    Science.gov (United States)

    Bentancor, Leticia V.; Bilen, Marcos; Brando, Romina J. Fernández; Ramos, María Victoria; Ferreira, Luis C. S.; Ghiringhelli, Pablo D.; Palermo, Marina S.

    2009-01-01

    Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A1 peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A2 peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2ΔAB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A2 sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2ΔAB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae. PMID:19176691

  2. Evaluation of the C-Terminal Fragment of Entamoeba histolytica Gal/GalNAc Lectin Intermediate Subunit as a Vaccine Candidate against Amebic Liver Abscess.

    Science.gov (United States)

    Min, Xiangyang; Feng, Meng; Guan, Yue; Man, Suqin; Fu, Yongfeng; Cheng, Xunjia; Tachibana, Hiroshi

    2016-01-01

    Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis, including amebic dysentery and liver abscesses. E. histolytica invades host tissues by adhering onto cells and phagocytosing them depending on the adaptation and expression of pathogenic factors, including Gal/GalNAc lectin. We have previously reported that E. histolytica possesses multiple CXXC sequence motifs, with the intermediate subunit of Gal/GalNAc lectin (i.e., Igl) as a key factor affecting the amoeba's pathogenicity. The present work showed the effect of immunization with recombinant Igl on amebic liver abscess formation and the corresponding immunological properties. A prokaryotic expression system was used to prepare the full-length Igl and the N-terminal, middle, and C-terminal fragments (C-Igl) of Igl. Vaccine efficacy was assessed by challenging hamsters with an intrahepatic injection of E. histolytica trophozoites. Hamsters intramuscularly immunized with full-length Igl and C-Igl were found to be 92% and 96% immune to liver abscess formation, respectively. Immune-response evaluation revealed that C-Igl can generate significant humoral immune responses, with high levels of antibodies in sera from immunized hamsters inhibiting 80% of trophozoites adherence to mammalian cells and inducing 80% more complement-mediated lysis of trophozoites compared with the control. C-Igl was further assessed for its cellular response by cytokine-gene qPCR analysis. The productions of IL-4 (8.4-fold) and IL-10 (2-fold) in the spleen cells of immunized hamsters were enhanced after in vitro stimulation. IL-4 expression was also supported by increased programmed cell death 1 ligand 1 gene. Immunobiochemical characterization strongly suggests the potential of recombinant Igl, especially the C-terminal fragment, as a vaccine candidate against amoebiasis. Moreover, protection through Th2-cell participation enabled effective humoral immunity against amebic liver abscesses.

  3. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits.

    Science.gov (United States)

    Campbell, M J; Carroll, W; Kon, S; Thielemans, K; Rothbard, J B; Levy, S; Levy, R

    1987-10-15

    C3H/HeN mice were immunized with idiotypic immunoglobulin M (IgM) and its molecular subunits from the syngeneic 38C13 lymphoma. Immunization with idiotypic IgM (38C-Id) resulted in idiotype-specific humoral and cellular immunity and protection against a lethal tumor cell challenge. Heavy (H38C) and light (L38C) chains were isolated by electroelution from preparative polyacrylamide gels. Both of these immunogens induced significant resistance to a subsequent tumor challenge. Variable region immunogens, in the form of trpE-fusion proteins, were obtained by cloning heavy and light chain variable region genes into the expression plasmid pATH-11. Of these, only the trpE-VH38C immunogen yielded immune resistance to tumor challenge. Finally, the nucleic acid sequence of 38C-Id light chain was determined and, based on the corresponding amino acid sequence and an analysis of predicted secondary structure, a region of potential antigenicity in complementarity-determining region 3 was chosen for the production of a synthetic peptide. Vaccination with this synthetic peptide resulted in significant suppression of tumor growth. Analysis of the humoral and cellular immunity generated by these vaccines revealed the presence of antibodies reactive with native idiotypic IgM only in 38C-Id, H38C, and trpE-VH38C immune sera, although the latter two were not idiotype-specific. Idiotype-specific lymphocytes, which proliferated in response to native 38C-Id, were observed in all immune animals. With the exception of the fusion protein immunogens, conjugation to an immunogenic carrier protein (keyhole limpet hemocyanin or thyroglobulin) was required for optimal humoral and cellular responses.

  4. Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate.

    Science.gov (United States)

    Xue, Miaoge; Yu, Linqi; Che, Yaojian; Lin, Haijun; Zeng, Yuanjun; Fang, Mujin; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2015-05-21

    The cell-attachment protein VP8* of rotavirus is a potential candidate parenteral vaccine. However, the yield of full-length VP8 protein (VP8*, residues 1-231) expressed in Escherichia coli was low, and a truncated VP8 protein (ΔVP8*, residues 65-231) cannot elicit efficient protective immunity in a mouse model. In this study, tow novel truncated VP8 proteins, VP8-1 (residues 26-231) and VP8-2 (residues 51-231), were expressed in E. coli and evaluated for immunogenicity and protective efficacy, compared with VP8* and ΔVP8*. As well as ΔVP8*, the protein VP8-1 and VP8-2 were successfully expressed in high yield and purified in homogeneous dimeric forms, while the protein VP8* was expressed with lower yield and prone to aggregation and degradation in solution. Although the immunogenicity of the protein VP8*, VP8-1, VP8-2 and ΔVP8* was comparable, immunization of VP8* and VP8-1 elicited significantly higher neutralizing antibody titers than that of VP8-2 and ΔVP8* in mice. Furthermore, when assessed using a mouse maternal antibody model, the efficacy of VP8-1 to protect against rotavirus-induced diarrhea in pups was comparable to that of VP8*, both were dramatically higher than that of VP8-2 and ΔVP8*. Taken together, the novel truncated protein VP8-1, with increased yield, improved homogeneity and high protective efficacy, is a viable candidate for further development of a parenterally administrated prophylactic vaccine against rotavirus infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Expression and immunogenic analysis of recombinant polypeptides derived from capsid protein VP1 for developing subunit vaccine material against hepatitis A virus.

    Science.gov (United States)

    Jang, Kyoung Ok; Park, Jong-Hwa; Lee, Hyun Ho; Chung, Dae Kyun; Kim, Wonyong; Chung, In Sik

    2014-08-01

    Three recombinant polypeptides, VP1-His, VP1-3N-His, and 3D2-His, were produced by Escherichia coli expression system. Recombinant VP1-His, VP1-3N-His, and 3D2-His were expressed as bands with molecular weights of 32, 38, and 30 kDa, respectively. These were purified by affinity chromatography using Ni-NTA Fast-flow resin and/or ion-exchange chromatography using DEAE-Sepharose Fast-flow resin. Intraperitoneal immunizations of recombinant polypeptides successfully elicited the productions of VP1-His, VP1-3N-His, and 3D2-His specific IgG antibodies (IgG subclass distribution of IgG1>IgG2a>IgG2b>IgG3) in sera and induced the secretions of cytokines IFN-γ and IL-6 in spleen cells. Sera from recombinant VP1-His-, VP1-3N-His-, and 3D2-His-immunized mice neutralized the propagation of HAV. The highest neutralizing activity was shown in sera from recombinant VP1-3N-His-immunized mice. These results suggest that recombinant VP1-3N-His can be a useful source for developing hepatitis A virus (HAV) subunit vaccine candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Sublingual injection of microparticles containing glycolipid ligands for NKT cells and subunit vaccines induces antibody responses in oral cavity.

    Science.gov (United States)

    DeLyria, Elizabeth S; Zhou, Dapeng; Lee, Jun Soo; Singh, Shailbala; Song, Wei; Li, Fenge; Sun, Qing; Lu, Hongzhou; Wu, Jinhui; Qiao, Qian; Hu, Yiqiao; Zhang, Guodong; Li, Chun; Sastry, K Jagannadha; Shen, Haifa

    2015-03-20

    Natural Killer T (NKT) cells are a unique type of innate immune cells which exert paradoxical roles in animal models through producing either Th1 or Th2 cytokines and activating dendritic cells. Alpha-galactosylceramide (αGalCer), a synthetic antigen for NKT cells, was found to be safe and immune stimulatory in cancer and hepatitis patients. We recently developed microparticle-formulated αGalCer, which is selectively presented by dendritic cells and macrophages, but not B cells, and thus can avoid the anergy of NKT cells. In this study, we have examined the immunogenicity of microparticles containing αGalCer and protein vaccine components through sublingual injection in mice. The results showed that sublingual injection of microparticles containing αGalCer and ovalbumin triggered IgG responses in serum (titer >1:100,000), which persisted for more than 3months. Microparticles containing ovalbumin alone also induced comparable level of IgG responses. However, immunoglobulin subclass analysis showed that sublingually injected microparticles containing αGalCer and ovalbumin induced 20 fold higher Th1 biased antibody (IgG2c) than microparticles containing OVA alone (1:20,000 as compared to 1:1000 titer). Sublingual injection of microparticles containing αGalCer and ovalbumin induced secretion of both IgG (titer >1:1000) and IgA (titer=1:80) in saliva secretion, while microparticles containing ovalbumin alone only induced secretion of IgG in saliva. Our results suggest that sublingual injection of microparticles and their subsequent trafficking to draining lymph nodes may induce adaptive immune responses in mucosal compartments. Ongoing studies are focused on the mechanism of antigen presentation and lymphocyte biology in the oral cavity, as well as the toxicity and efficacy of these candidate microparticles for future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Co-Administration of Molecular Adjuvants Expressing NF-Kappa B Subunit p65/RelA or Type-1 Transactivator T-bet Enhance Antigen Specific DNA Vaccine-Induced Immunity

    Directory of Open Access Journals (Sweden)

    Devon J. Shedlock

    2014-03-01

    Full Text Available DNA vaccine-induced immunity can be enhanced by the co-delivery of synthetic gene-encoding molecular adjuvants. Many of these adjuvants have included cytokines, chemokines or co-stimulatory molecules that have been demonstrated to enhance vaccine-induced immunity by increasing the magnitude or type of immune responses and/or protective efficacy. In this way, through the use of adjuvants, immune responses can be highly customizable and functionally tailored for optimal efficacy against pathogen specific (i.e., infectious agent or non-pathogen (i.e., cancer antigens. In the novel study presented here, we examined the use of cellular transcription factors as molecular adjuvants. Specifically the co-delivery of (a RelA, a subunit of the NF-κB transcription complex or (b T-bet, a Th1-specific T box transcription factor, along with a prototypical DNA vaccine expressing HIV-1 proteins was evaluated. As well, all of the vaccines and adjuvants were administered to mice using in vivo electroporation (EP, a technology demonstrated to dramatically increase plasmid DNA transfection and subsequent transgene expression with concomitant enhancement of vaccine induced immune responses. As such, this study demonstrated that co-delivery of either adjuvant resulted in enhanced T and B cell responses, specifically characterized by increased T cell numbers, IFN-γ production, as well as enhanced antibody responses. This study demonstrates the use of cellular transcription factors as adjuvants for enhancing DNA vaccine-induced immunity.

  8. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  9. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.

    Directory of Open Access Journals (Sweden)

    Surender Khurana

    Full Text Available A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR. Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1 and heterologous A/Indonesia-5/2005 (clade 2.1 HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2 and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.

  10. BiVax: A peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T cell responses

    OpenAIRE

    Cho, Hyun-Il; Barrios, Kelly; Lee, Young-Ran; Linowski, Angelika K.; Celis, Esteban

    2012-01-01

    Therapeutic vaccines for the treatment of cancer are an attractive alternative to some of the conventional therapies that are currently used. More importantly, vaccines could be very useful to prevent recurrences when applied after primary therapy. Unfortunately, most therapeutic vaccines for cancer have performed poorly due to the low level of immune responses that they induce. Previous work done in our laboratory in cancer mouse models demonstrated that vaccines consisting of synthetic pept...

  11. Innate Responses Induced by Whole Inactivated Virus or Subunit Influenza Vaccines in Cultured Dendritic Cells Correlate with Immune Responses In Vivo

    NARCIS (Netherlands)

    Stoel, Maaike; Pool - Kramer, Judith; de Vries-Idema, Jacqueline; Zaaraoui-Boutahar, Fatiha; Bijl, Maarten; Andeweg, Arno C.; Wilschut, Jan; Huckriede, Anke

    2015-01-01

    Vaccine development involves time-consuming and expensive evaluation of candidate vaccines in animal models. As mediators of both innate and adaptive immune responses dendritic cells (DCs) are considered to be highly important for vaccine performance. Here we evaluated how far the response of DCs to

  12. The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8+ T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Jonatan Ersching

    2016-04-01

    Full Text Available The β1i, β2i and β5i immunoproteasome subunits have an important role in defining the repertoire of MHC class I-restricted epitopes. However, the impact of combined deficiency of the three immunoproteasome subunits in the development of protective immunity to intracellular pathogens has not been investigated. Here, we demonstrate that immunoproteasomes play a key role in host resistance and genetic vaccination-induced protection against the human pathogen Trypanosoma cruzi (the causative agent of Chagas disease, immunity to which is dependent on CD8+ T cells and IFN-γ (the classical immunoproteasome inducer. We observed that infection with T. cruzi triggers the transcription of immunoproteasome genes, both in mice and humans. Importantly, genetically vaccinated or T. cruzi-infected β1i, β2i and β5i triple knockout (TKO mice presented significantly lower frequencies and numbers of splenic CD8+ effector T cells (CD8+CD44highCD62Llow specific for the previously characterized immunodominant (VNHRFTLV H-2Kb-restricted T. cruzi epitope. Not only the quantity, but also the quality of parasite-specific CD8+ T cell responses was altered in TKO mice. Hence, the frequency of double-positive (IFN-γ+/TNF+ or single-positive (IFN-γ+ cells specific for the H-2Kb-restricted immunodominant as well as subdominant T. cruzi epitopes were higher in WT mice, whereas TNF single-positive cells prevailed among CD8+ T cells from TKO mice. Contrasting with their WT counterparts, TKO animals were also lethally susceptible to T. cruzi challenge, even after an otherwise protective vaccination with DNA and adenoviral vectors. We conclude that the immunoproteasome subunits are key determinants in host resistance to T. cruzi infection by influencing both the magnitude and quality of CD8+ T cell responses.

  13. LT-IIb(T13I, a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity.

    Directory of Open Access Journals (Sweden)

    Christopher J Greene

    Full Text Available Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d. and intranasal (i.n. routes. We report that co-administration of RiVax with LT-IIb(T13I by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I. While local inflammatory responses elicited by LT-IIb(T13I were comparable to those elicited by aluminum salts (Imject®, LT-IIb(T13I was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.

  14. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine

    DEFF Research Database (Denmark)

    Nielsen, Morten A; dos Santos Marques Resende, Mafalda; de Jongh, Willem A

    2015-01-01

    The disease caused by Plasmodium falciparum (Pf) involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM) is one such manifestation in which Pf infected erythrocytes (IE) bind to chondroitin sulphate A (CSA) through expression...... of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally...

  15. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine

    DEFF Research Database (Denmark)

    Singh, Susheel K; Roeffen, Will; Mistarz, Ulrik H

    2017-01-01

    BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission....... However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process...... or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch...

  16. Safety of the recombinant cholera toxin B subunit, killed whole-cell (rBS-WC oral cholera vaccine in pregnancy.

    Directory of Open Access Journals (Sweden)

    Ramadhan Hashim

    Full Text Available Mass vaccinations are a main strategy in the deployment of oral cholera vaccines. Campaigns avoid giving vaccine to pregnant women because of the absence of safety data of the killed whole-cell oral cholera (rBS-WC vaccine. Balancing this concern is the known higher risk of cholera and of complications of pregnancy should cholera occur in these women, as well as the lack of expected adverse events from a killed oral bacterial vaccine.From January to February 2009, a mass rBS-WC vaccination campaign of persons over two years of age was conducted in an urban and a rural area (population 51,151 in Zanzibar. Pregnant women were advised not to participate in the campaign. More than nine months after the last dose of the vaccine was administered, we visited all women between 15 and 50 years of age living in the study area. The outcome of pregnancies that were inadvertently exposed to at least one oral cholera vaccine dose and those that were not exposed was evaluated. 13,736 (94% of the target women in the study site were interviewed. 1,151 (79% of the 1,453 deliveries in 2009 occurred during the period when foetal exposure to the vaccine could have occurred. 955 (83% out of these 1,151 mothers had not been vaccinated; the remaining 196 (17% mothers had received at least one dose of the oral cholera vaccine. There were no statistically significant differences in the odds ratios for birth outcomes among the exposed and unexposed pregnancies.We found no statistically significant evidence of a harmful effect of gestational exposure to the rBS-WC vaccine. These findings, along with the absence of a rational basis for expecting a risk from this killed oral bacterial vaccine, are reassuring but the study had insufficient power to detect infrequent events.ClinicalTrials.gov NCT00709410.

  17. Vaccinations

    Science.gov (United States)

    ... disease — reinforcing the importance of vaccines in your pet's preventive health care program. Are there risks? Any treatment carries some risk, but these risks should be weighed against the benefits of protecting your pet from potentially fatal diseases. ...

  18. [Development of current smallpox vaccines].

    Science.gov (United States)

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  19. Immunogenicity and safety of an adjuvanted herpes zoster subunit candidate vaccine in adults ≥ 50 years of age with a prior history of herpes zoster: A phase III, non-randomized, open-label clinical trial.

    Science.gov (United States)

    Godeaux, Olivier; Kovac, Martina; Shu, Daniel; Grupping, Katrijn; Campora, Laura; Douha, Martine; Heineman, Thomas C; Lal, Himal

    2017-05-04

    This phase III, non-randomized, open-label, multi-center study (NCT01827839) evaluated the immunogenicity and safety of an adjuvanted recombinant subunit herpes zoster (HZ) vaccine (HZ/su) in adults aged ≥ 50 y with prior physician-documented history of HZ. Participants (stratified by age: 50-59, 60-69 and ≥ 70 y) received 2 doses of HZ/su 2 months apart and were followed-up for another 12 months. Anti-glycoprotein E (gE) antibodies were measured by enzyme-linked immunosorbent assay before vaccination and 1 month after the second dose (Month 3). Solicited local and general adverse events (AEs) were recorded for 7 d and unsolicited AEs for 30 d after each vaccination. Serious AEs were recorded until study end. The primary immunogenicity objective was met if the lower limit of the 95% confidence interval (CI) of the vaccine response rate (VRR), defined as a 4-fold increase in anti-gE over baseline, at Month 3 was ≥ 60%. 96 participants (32/age group) were enrolled. The primary immunogenicity objective was met, as the VRR at Month 3 was 90.2% (95% CI: 81.7-95.7). Geometric mean anti-gE antibody concentrations at Month 3 were similar across age groups. 77.9% and 71.6% of participants reported local and general solicited AEs, respectively. The most frequent solicited AEs were pain at injection site, fatigue, headache, myalgia and shivering. The HZ/su vaccine was immunogenic in adults aged ≥ 50 y with a physician-documented history of HZ, and no safety concerns were identified.

  20. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models.

    Science.gov (United States)

    Tkachuk, A P; Gushchin, V A; Potapov, V D; Demidenko, A V; Lunin, V G; Gintsburg, A L

    2017-01-01

    New innovative vaccines are highly needed to combat the global threat posed by tuberculosis. Efficient components-antigens and adjuvants-are crucial for development of modern recombinant TB vaccines. This study describes a new vaccine (GamTBvac) consisting of two mycobacterial antigen fusions (Ag85A and ESAT6-CFP10)-with dextran-binding domain immobilized on dextran and mixed with an adjuvant consisting of DEAE-dextran core, and with CpG oligodeoxynucleotides (TLR9 agonists). GamTBvac and its components were assessed for immunogenicity and protective efficacy in GamTBvac-prime/boost and BCG-prime/ GamTBvac-boost in murine and guinea pig TB models. Results show that in both infectious models, GamTBvac has a strong immunogenicity and significant protective effect against Mycobacterium tuberculosis strain H37Rv under aerosol and intravenous challenges. GamTBvac showed a particularly strong protective effect as a BCG booster vaccine.

  1. Immunogenicity and efficacy of intramuscular replication-defective and subunit vaccines against herpes simplex virus type 2 in the mouse genital model.

    Directory of Open Access Journals (Sweden)

    Simon Delagrave

    Full Text Available Herpes simplex virus type 2 (HSV-2 is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneously, was previously shown to protect mice from a lethal vaginal HSV-2 challenge and to afford better protection than adjuvanted glycoprotein D (gD in guinea pigs. Here we show that ACAM529 given via the intramuscular route affords significantly greater immunogenicity and protection in comparison with subcutaneous administration in the mouse vaginal HSV-2 challenge model. Further, we describe a side-by-side comparison of intramuscular ACAM529 with a gD vaccine across a range of challenge virus doses. While differences in protection against death are not significant, ACAM529 protects significantly better against mucosal infection, reducing peak challenge virus shedding at the highest challenge dose by over 500-fold versus 5-fold for gD. Over 27% (11/40 of ACAM529-immunized animals were protected from viral shedding while 2.5% (1/40 were protected by the gD vaccine. Similarly, 35% (7/20 of mice vaccinated with ACAM529 were protected from infection of their dorsal root ganglia while none of the gD-vaccinated mice were protected. These results indicate that measuring infection of the vaginal mucosa and of dorsal root ganglia over a range of challenge doses is more sensitive than evaluating survival at a single challenge dose as a means of directly comparing vaccine efficacy in the mouse vaginal challenge model. The data also support further investigation of ACAM529 for prophylaxis in human subjects.

  2. Mucosal vaccination of conserved sM2, HA2 and cholera toxin subunit A1 (CTA1) fusion protein with poly gamma-glutamate/chitosan nanoparticles (PC NPs) induces protection against divergent influenza subtypes.

    Science.gov (United States)

    Chowdhury, Mohammed Y E; Kim, Tae-Hwan; Uddin, Md Bashir; Kim, Jae-Hoon; Hewawaduge, C Y; Ferdowshi, Zannatul; Sung, Moon-Hee; Kim, Chul-Joong; Lee, Jong-Soo

    2017-03-01

    To develop a safe and effective mucosal vaccine that broad cross protection against seasonal or emerging influenza A viruses, we generated a mucosal influenza vaccine system combining the highly conserved matrix protein-2 (sM2), fusion peptide of hemagglutinin (HA 2 ), the well-known mucosal adjuvant cholera toxin subunit A1 (CTA1) and poly-γ-glutamic acid (γ-PGA)-chitosan nanoparticles (PC NPs), which are safe, natural materials that are able to target the mucosal membrane as a mucosal adjuvant. The mucosal administration of sM2HA2CTA1/PC NPs could induce a high degree of systemic immunity (IgG and IgA) at the site of inoculation as well as at remote locations and also significantly increase the levels of sM2- or HA2-specific cell-mediated immune response. In challenge tests in BALB/c mice with 10 MLD 50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird/Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005 (H7N3) or A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant sM2HA2CTA1/PC NPs provided cross protection against divergent lethal influenza subtypes and also the protection was maintained up to six months after vaccination. Thus, sM2HA2CTA1/PC NPs could be a promising strategy for a universal influenza vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Vaccine Safety and Efficacy Evaluation of a Recombinant Bovine Respiratory Syncytial Virus (BRSV) with Deletion of the SH Gene and Subunit Vaccines Based On Recombinant Human RSV Proteins: N-nanorings, P and M2-1, in Calves with Maternal Antibodies

    Science.gov (United States)

    Blodörn, Krister; Hägglund, Sara; Fix, Jenna; Dubuquoy, Catherine; Makabi-Panzu, Boby; Thom, Michelle; Karlsson, Per; Roque, Jean-Louis; Karlstam, Erika; Pringle, John; Eléouët, Jean-François; Riffault, Sabine; Taylor, Geraldine; Valarcher, Jean François

    2014-01-01

    The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71VG, SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination. Although mucosal vaccination with ΔSHrBRSV failed to induce a detectable immunological response, there was a rapid and strong anamnestic mucosal BRSV-specific IgA, virus neutralizing antibody and local T cell response following challenge with virulent BRSV. Calves immunized twice intramuscularly, three weeks apart with SUMont were also well protected two weeks after boost. The protection was not as pronounced as that in ΔSHrBRSV-immunized animals, but superior to those immunized twice subcutaneously three weeks apart with SUAbis. Antibody responses induced by the subunit vaccines were non-neutralizing and not directed against BRSV F or G proteins. When formulated as SUMont but not as SUAbis, the HRSV N, P and M2-1 proteins induced strong systemic cross-protective cell-mediated immune responses detectable already after priming. ΔSHrBRSV and SUMont are two promising DIVA-compatible vaccines, apparently inducing protection by

  4. Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant.

    Science.gov (United States)

    Holmgren, J; Bourgeois, L; Carlin, N; Clements, J; Gustafsson, B; Lundgren, A; Nygren, E; Tobias, J; Walker, R; Svennerholm, A-M

    2013-05-07

    A first-generation oral inactivated whole-cell enterotoxigenic Escherichia coli (ETEC) vaccine, comprising formalin-killed ETEC bacteria expressing different colonization factor (CF) antigens combined with cholera toxin B subunit (CTB), when tested in phase III studies did not significantly reduce overall (generally mild) ETEC diarrhea in travelers or children although it reduced more severe ETEC diarrhea in travelers by almost 80%. We have now developed a novel more immunogenic ETEC vaccine based on recombinant non-toxigenic E. coli strains engineered to express increased amounts of CF antigens, including CS6 as well as an ETEC-based B subunit protein (LCTBA), and the optional combination with a nontoxic double-mutant heat-labile toxin (LT) molecule (dmLT) as an adjuvant. Two test vaccines were prepared under GMP: (1) A prototype E. coli CFA/I-only formalin-killed whole-cell+LCTBA vaccine, and (2) A "complete" inactivated multivalent ETEC-CF (CFA/I, CS3, CS5 and CS6 antigens) whole-cell+LCTBA vaccine. These vaccines, when given intragastrically alone or together with dmLT in mice, were well tolerated and induced strong intestinal-mucosal IgA antibody responses as well as serum IgG and IgA responses to each of the vaccine CF antigens as well as to LT B subunit (LTB). Both mucosal and serum responses were further enhanced (adjuvanted) when the vaccines were co-administered with dmLT. We conclude that the new multivalent oral ETEC vaccine, both alone and especially in combination with the dmLT adjuvant, shows great promise for further testing in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Safety and tolerability of a cell culture derived trivalent subunit inactivated influenza vaccine administered to healthy children and adolescents: A Phase III, randomized, multicenter, observer-blind study.

    Science.gov (United States)

    Nolan, Terry; Chotpitayasunondh, Tawee; Capeding, Maria Rosario; Carson, Simon; Senders, Shelly David; Jaehnig, Peter; de Rooij, Richard; Chandra, Richa

    2016-01-04

    Cell culture-derived inactivated influenza vaccines (TIVc) are necessary for scale and predictability of production to meet global demand. This study compared the safety and tolerability of TIVc with an egg-derived trivalent influenza vaccine (TIVf) in 4-17 yearolds. A Phase 3 observer blind, multicenter study enrolled 2055 healthy participants randomized 2:1 to receive either TIVc or TIVf, respectively (1372 TIVc and 683 TIVf evaluable subjects). Participants received one dose each on Days 1 and 28 (4-8 year-olds not previously vaccinated [NPV]) or one dose on Day 1 (4-8 and 9-17 yearolds previously vaccinated [PV]). Solicited adverse events (AEs) occurring within 7 days after each vaccination were assessed; participants were followed up for 6 months after their last dose for safety. Most solicited and unsolicited AEs were mild to moderate with vaccine-related SAEs were reported. TIVc and TIVf were similar in percentages of participants reporting solicited reactions in 4-8 years NPV group after the 1st dose: local reactions, TIVc: 48%, TIVf: 43%; systemic reactions, TIVc: 34%, TIVf: 32%; percentages were lower following the 2nd dose in TIVc; local reactions: TIVc: 40%; TIVf: 43%; systemic reactions: TIVc: 21%; TIVf: 22%. In 4-17 years PV group, solicited reactions were lower following TIVf, local reactions: TIVc: 53%; TIVf: 43%; systemic reactions: TIVc: 37%, TIVf: 30%. Injection-site pain was the most common solicited reaction, and was similar following TIVc and TIVf in 4-8 yearolds (TIVc: 56%; TIVf: 55%), and lower following TIVf in 9-17 years group (TIVc: 52%; TIVf: 42%). Reporting of unsolicited AEs was similar for TIVc and TIVf across the two age groups. TIVc was well tolerated and had a safety and reactogenicity profile similar to that of TIVf in healthy 4-17 yearolds (NCT01857206). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Modulation of the Immune Response to DNA Vaccine Encoding Gene of 8-kDa Subunit of Echinococcus granulosus Antigen B Using Murine Interleukin-12 Plasmid in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Hakim AZIZI

    2016-12-01

    Full Text Available Background: The current study was designed to evaluate immune responses induced by DNA vaccines encoding 8-kDa subunit of antigen B (HydI of Echinococcus granulosus and murine interleukin 12 (IL-12 as genetic adjuvants in BALB/c mice.Methods: Expression plasmid pcDNA3.1 containing HydI (pcHyd1 as vaccine along with the murine interleukin 12 (pcMIL12 as adjuvant were used. Thirty-five mice in the five experimental groups received PBS, empty pcDNA3.1, pcHydІ, pcMIL-12, and pcHydІ+ pcMIL-12 in days zero, 14th and 28th. Two weeks after the last immunization, evaluation of the immune response was performed by evaluating the proliferation of splenic lymphocytes, IFN-γ and IL-4, determination of IgG isotyping titer.Results: Mice that received the pcHydI+pcMIL12 exhibited higher levels of lymphocyte proliferation compared to mice that received the pcHydI alone (P<0.001, and produced significantly more IFN-γ in comparison to other groups (P< 0.001. In addition, they produced significantly less IL-4 than mice receiving the PBS and the empty plasmid (P<0.023. The IgG2a levels were clearly higher in pcHydI+pcMIL12 group in comparison with the groups of pcHydI alone, empty plasmid, and PBS. In contrast, IgG1 was elevated in the group of pcHydI.Conclusion: Co-delivery of IL-12 with DNA encoding 8-kDa subunit of antigen B was effective significantly in inducing the immune response in mice.

  7. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Morten A Nielsen

    Full Text Available The disease caused by Plasmodium falciparum (Pf involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM is one such manifestation in which Pf infected erythrocytes (IE bind to chondroitin sulphate A (CSA through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally constrained receptor-binding domains may, theoretically, circumvent polymorphisms, reduce the risk of escape-mutants and induce cross-reactive antibodies. However, the sub-unit composition and small differences in the borders, may lead to exposure of novel immuno-dominant antibody epitopes that lead to non-functional antibodies, and furthermore influence the folding, stability and yield of expression. Candidate antigens from the pre-clinical development expressed in High-Five insect cells using the baculovirus expression vector system were transitioned into the Drosophila Schneider-2 cell (S2 expression-system compliant with clinical development. The functional capacity of antibodies against antigens expressed in High-Five cells or in S2 cells was equivalent. This enabled an extensive down-selection of S2 insect cell-expressed antigens primarily encompassing the minimal CSA-binding region of VAR2CSA. In general, we found differential potency of inhibitory antibodies against antigens with the same borders but of different var2csa sequences. Likewise, we found that subtle size differences in antigens of the same sequence gave varying levels of inhibitory antibodies. The study shows that induction of a functional response against recombinant subunits of the VAR2CSA antigen is unpredictable, demonstrating the need for large-scale screening in order to identify antigens

  8. Cell-Mediated and Humoral Immune Responses after Immunization of Calves with a Recombinant Multiantigenic Mycobacterium avium subsp. paratuberculosis Subunit Vaccine at Different Ages

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Stockmarr, Anders

    2013-01-01

    Neonates and juvenile ruminants are very susceptible to paratuberculosis infection. This is likely due to a high degree of exposure from their dams and an immature immune system. To test the influence of age on vaccine-induced responses, a cocktail of recombinant Mycobacterium avium subsp. paratu...

  9. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine

    NARCIS (Netherlands)

    Singh, S.K; Roeffen, W.; Mistarz, U.H.; Chourasia, B.K.; Yang, F.; Rand, K.D.; Sauerwein, R.W.; Theisen, M.

    2017-01-01

    BACKGROUND: The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission.

  10. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine

    Czech Academy of Sciences Publication Activity Database

    Moravec, Tomáš; Schmidt, M.A.; Herman, E.M.; Woodford-Thomas, T.

    2007-01-01

    Roč. 25, - (2007), s. 1647-1657 ISSN 0264-410X Grant - others:Marie Curie Fellowship(XE) MOIF CT 2005-008692 Institutional research plan: CEZ:AV0Z50380511 Keywords : Microbial toxin * Plant-based vaccine s * Transgenic soybean seed Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.377, year: 2007

  11. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus cholera toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity.

    Science.gov (United States)

    Maeto, Cynthia; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, María Magdalena

    2014-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.

  12. Safety and immunogenicity of a parenteral P2-VP8-P[8] subunit rotavirus vaccine in toddlers and infants in South Africa: a randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Groome, Michelle J; Koen, Anthonet; Fix, Alan; Page, Nicola; Jose, Lisa; Madhi, Shabir A; McNeal, Monica; Dally, Len; Cho, Iksung; Power, Maureen; Flores, Jorge; Cryz, Stanley

    2017-08-01

    Efficacy of live oral rotavirus vaccines is reduced in low-income compared with high-income settings. Parenteral non-replicating rotavirus vaccines might offer benefits over oral vaccines. We assessed the safety and immunogenicity of the P2-VP8-P[8] subunit rotavirus vaccine at different doses in South African toddlers and infants. This double-blind, randomised, placebo-controlled, dose-escalation trial was done at a single research unit based at a hospital in South Africa in healthy HIV-uninfected toddlers (aged 2 to placebo injection. The two highest tolerated doses were then assessed in an expanded cohort (in a 1:1:1 ratio). Parents of participants and clinical, data, and laboratory staff were masked to treatment assignment. P2-VP8-P[8] vaccine versus placebo was assessed first in toddlers (single injection) and then in infants (three injections 4 weeks apart). The primary safety endpoints were local and systemic reactions within 7 days after each injection, adverse events within 28 days after each injection, and all serious adverse events, assessed in toddlers and infants who received at least one dose. In infants receiving all study injections, primary immunogenicity endpoints were anti-P2-VP8-P[8] IgA and IgG and neutralising antibody seroresponses and geometric mean titres 4 weeks after the third injection. This trial is registered at ClinicalTrials.gov, number NCT02109484. Between March 17, 2014, and Sept 29, 2014, 42 toddlers (36 to vaccine and six to placebo) and 48 infants (36 to vaccine and 12 to placebo) were enrolled in the dose-escalation phase, in which the 30 μg and 60 μg doses where found to be the highest tolerated doses. A further 114 infants were enrolled in the expanded cohort between Nov 3, 2014, and March 20, 2015, and all 162 infants (12 assigned to 10 μg, 50 to 30 μg, 50 to 60 μg, and 50 to placebo) were included in the safety analysis. Serum IgA seroresponses were observed in 38 (81%, 95% CI 67-91) of 47 infants in the 30 μg group

  13. PCPP-Adjuvanted Respiratory Syncytial Virus (RSV) sF Subunit Vaccine: Self-Assembled Supramolecular Complexes Enable Enhanced Immunogenicity and Protection.

    Science.gov (United States)

    Cayatte, Corinne; Marin, Alexander; Rajani, Gaurav Manohar; Schneider-Ohrum, Kirsten; Snell Bennett, Angie; Marshall, Jason D; Andrianov, Alexander K

    2017-07-03

    PCPP, a well-defined polyphosphazene macromolecule, has been studied as an immunoadjuvant for a soluble form of the postfusion glycoprotein of respiratory syncytial virus (RSV sF), which is an attractive vaccine candidate for inducing RSV-specific immunity in mice and humans. We demonstrate that RSV sF-PCPP formulations induce high neutralization titers to RSV comparable to alum formulations even at a low PCPP dose and protect animals against viral challenge both in the lung and in the upper respiratory tract. PCPP formulations were also characterized by Th1-biased responses, compared to Th2-biased responses that are more typical for RSV sF alone or RSV sF-alum formulations, suggesting an inherent immunostimulating activity of the polyphosphazene adjuvant. We defined these immunologically active RSV sF-PCPP formulations as self-assembled water-soluble protein-polymer complexes with distinct physicochemical parameters. The secondary structure and antigenicity of the protein in the complex were fully preserved during the spontaneous aqueous self-assembly process. These findings further advance the concept of polyphosphazene immunoadjuvants as unique dual-functionality adjuvants integrating delivery and immunostimulating modalities in one water-soluble molecule.

  14. Vaccine adjuvants: Why and how.

    Science.gov (United States)

    Christensen, Dennis

    2016-10-02

    Novel vaccine strategies include the so-called subunit vaccines, which encompass only the part of the pathogen to which immune recognition results in protection. The high purity of these vaccines make adverse events less likely, but it also makes the vaccines less immunogenic and therefore potentially less effective. Vaccine adjuvants that increase and modulate the immunogenicity of the vaccine are therefore added to solve this problem. Besides aluminum salts, which have been used in vaccines for 90 years, a number of novel vaccine adjuvants have been included in licensed vaccines over the last 30 years. Increasing insight into immunological mechanisms and how to manipulate them has replaced empirical with rational design of adjuvants, leading to vaccine adjuvants with increased and customized immunogenicity profiles without compromising vaccine safety.

  15. An evaluation of the role of antibodies to Actinobacillus pleuropneumoniae serovar 1 and 15 in the protection provided by sub-unit and live streptomycin-dependent pleuropneumonia vaccines.

    Science.gov (United States)

    Tumamao, J Q; Bowles, R E; van den Bosch, H; Klaasen, H L B M; Fenwick, B W; Blackall, P J

    2004-12-01

    To evaluate the serological response of pigs receiving either the Porcilis APP vaccine or a modified live vaccine based on a streptomycin-dependent (SD) strain of Actinobacillus pleuropneumoniae, and then challenged with an Australian isolate of A. pleuropneumoniae of either serovar 1 or 15 as a means of understanding the protection provided by both vaccines against serovar 1 but not against serovar 15. The serological tests evaluated were serovar-specific polysaccharide ELISA tests (for serovar 1 and 15), ELISA tests for antibodies to three A. pleuropneumoniae toxins (ApxI, ApxII and ApxIII) as well as to a 42 kDa outer membrane protein (OMP), a haemolysin neutralisation (HN) assay and immunoblotting. The tests were used to detect antibodies in vaccinated pigs that had been shown to be protected against serovar 1 but not serovar 15. In the polysaccharide antigen ELISA assays, both vaccines resulted in a significant rise in the titre in the serovar 1 ELISA but not the serovar 15 ELISA. The Porcilis APP vaccinated pigs showed a significant response in the ApxI, ApxIII and 42 kDa OMP ELISA. In the ApxII ELISA, all pigs tested (the Porcilis APP vaccinates and the controls) were positive on entry to the trial. In the HN assay, the Porcilis APP vaccinated pigs showed a significant response after one dose while the SD vaccinated pigs required two doses of vaccine before a marked rise in titre was induced. Immunoblotting revealed that neither vaccine generated antibodies that recognised the ApxIII produced by serovar 15. The failure of these vaccines to provide protection against serovar 15 may be due to novel virulence factors possessed by serovar 15, significant differences between the ApxIII toxin of serovar 15 and those present in the Porcilis APP vaccine or failure by both vaccines to induce antibodies to the serovar 15 specific polysaccharide.

  16. Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model.

    Science.gov (United States)

    Platteel, Anouk C M; Nieuwenhuizen, Natalie E; Domaszewska, Teresa; Schürer, Stefanie; Zedler, Ulrike; Brinkmann, Volker; Sijts, Alice J A M; Kaufmann, Stefan H E

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette-Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8 + T cell responses in vivo . As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4 + and CD8 + T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4 + T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4 + and CD8 + T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4 + T cells responding to Ag85B- and ESAT-6

  17. Tuberculosis vaccine development: recent progress.

    Science.gov (United States)

    Orme, I M; McMurray, D N; Belisle, J T

    2001-03-01

    Recent years have seen a renewed effort to develop new vaccines against tuberculosis. As a result, several promising avenues of research have developed, including the production of recombinant vaccines, auxotrophic vaccines, DNA vaccines and subunit vaccines. In this article we briefly review this work, as well as consider the pros and cons of the animal models needed to test these new vaccines. Screening to date has been carried out in mouse and guinea pig models, which have been used to obtain basic information such as the effect of the vaccine on bacterial load, and whether the vaccine can prevent or reduce lung pathology. The results to date lead us to be optimistic that new candidate vaccines could soon be considered for evaluation in clinical trials.

  18. Adjuvanted vaccines: Aspects of immunosafety and modes of action

    NARCIS (Netherlands)

    van Aalst, S.

    2017-01-01

    New developments in vaccine design shift towards safe, though sometimes less immunogenic, subunit and synthetic antigens. Therefore, the majority of current vaccines require adjuvants to increase immunogenicity. Most adjuvants available were developed empirically and their mode of action is only

  19. Protection of Mice from Lethal Vaccinia Virus Infection by Vaccinia Virus Protein Subunits with a CpG Adjuvant

    Directory of Open Access Journals (Sweden)

    Sarah Reeman

    2017-12-01

    Full Text Available Smallpox vaccination carries a high risk of adverse events in recipients with a variety of contra-indications for live vaccines. Although alternative non-replicating vaccines have been described in the form of replication-deficient vaccine viruses, DNA vaccines, and subunit vaccines, these are less efficacious than replicating vaccines in animal models. DNA and subunit vaccines in particular have not been shown to give equivalent protection to the traditional replicating smallpox vaccine. We show here that combinations of the orthopoxvirus A27, A33, B5 and L1 proteins give differing levels of protection when administered in different combinations with different adjuvants. In particular, the combination of B5 and A27 proteins adjuvanted with CpG oligodeoxynucleotides (ODN gives a level of protection in mice that is equivalent to the Lister traditional vaccine in a lethal vaccinia virus challenge model.

  20. Probability to produce animal vaccines in insect baculovirus ...

    African Journals Online (AJOL)

    The insect baculovirus expression system is a valuable tool for the production of vaccine. Many subunit vaccines have been expressed in this system. The first vaccine produced in insect cells for animal use is now in the market. In this study, we reviewed recent progress of animal's vaccine production for different expression ...

  1. Inactivated bovine herpesvirus 1 marker vaccines are more efficacious in reducing virus excretion after reactivation than a live marker vaccine

    NARCIS (Netherlands)

    Bosch, J.C.; Kaashoek, M.J.; Oirschot, van J.T.

    1997-01-01

    A comparative study was carried out to evaluate the efficacy of three bovine herpesvirus 1 (BHV1) marker vaccines to reduce the reexcretion of virus after reactivation of latent BHV1. A live gE-negative vaccine an inactivated gE-negative vaccine and an experimental gD-subunit vaccine were tested in

  2. Brucellosis vaccines for livestock.

    Science.gov (United States)

    Goodwin, Zakia I; Pascual, David W

    2016-11-15

    Brucellosis is a livestock disease responsible for fetal loss due to abortions. Worldwide, this disease has profound economic and social impact by reducing the ability of livestock producers to provide an adequate supply of disease-free meat and dairy products. In addition to its presence in domesticated animals, brucellosis is harbored in a number of wildlife species creating new disease reservoirs, which adds to the difficulty of eradicating this disease. Broad and consistent use of the available vaccines would contribute in reducing the incidence of brucellosis. Unfortunately, this practice is not common. In addition, the current brucellosis vaccines cannot provide sterilizing immunity, and in certain circumstances, vaccinated livestock are not protected against co-mingling Brucella-infected wildlife. Given that these vaccines are inadequate for conferring complete protection for some vaccinated livestock, alternatives are being sought, and these include genetic modifications of current vaccines or their reformulations. Alternatively, many groups have sought to develop new vaccines. Subunit vaccines, delivered as a combination of soluble vaccine plus adjuvant or the heterologous expression of Brucella epitopes by different vaccine vectors are currently being tested. New live attenuated Brucella vaccines are also being developed and tested in their natural hosts. Yet, what is rarely considered is the route of vaccination which could improve vaccine efficacy. Since Brucella infections are mostly transmitted mucosally, mucosal delivery of a vaccine has the potential of eliciting a more robust protective immune response for improved efficacy. Hence, this review will examine these questions and provide the status of new vaccines for livestock brucellosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  4. HPV vaccine

    Science.gov (United States)

    Vaccine - HPV; Immunization - HPV; Gardasil; HPV2; HPV4; Vaccine to prevent cervical cancer; Genital warts - HPV vaccine; Cervical dysplasia - HPV vaccine; Cervical cancer - HPV vaccine; Cancer of the cervix - HPV vaccine; Abnormal ...

  5. Novel transgenic rice-based vaccines.

    Science.gov (United States)

    Azegami, Tatsuhiko; Itoh, Hiroshi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-04-01

    Oral vaccination can induce both systemic and mucosal antigen-specific immune responses. To control rampant mucosal infectious diseases, the development of new effective oral vaccines is needed. Plant-based vaccines are new candidates for oral vaccines, and have some advantages over the traditional vaccines in cost, safety, and scalability. Rice seeds are attractive for vaccine production because of their stability and resistance to digestion in the stomach. The efficacy of some rice-based vaccines for infectious, autoimmune, and other diseases has been already demonstrated in animal models. We reported the efficacy in mice, safety, and stability of a rice-based cholera toxin B subunit vaccine called MucoRice-CTB. To advance MucoRice-CTB for use in humans, we also examined its efficacy and safety in primates. The potential of transgenic rice production as a new mucosal vaccine delivery system is reviewed from the perspective of future development of effective oral vaccines.

  6. CD4 and CD8 T cell responses to the M. tuberculosis Ag85B-TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination

    DEFF Research Database (Denmark)

    Elvang, Tara; Christensen, Jan P; Billeskov, Rolf

    2009-01-01

    BACKGROUND: Although CD4 T cells are crucial for defense against M.tb, it is still not clear whether the optimal response against M.tb in fact involves both CD4 and CD8 T cells. To test this, we used a new vaccine strategy that generated a strong balanced T cell response consisting of both CD4......-alpha(+), whereas most of the CD8 T cells expressed IFN-gamma(+) and TNF-alpha(+) and possessed strong cytotoxic potential. The heterologous prime boost protocol also gave an increase in protective efficacy against M.tb challenge compared to H4/CAF01 and Ad-H4. Both the H4 specific CD4 and CD8 T cells were...... on the priming of CD4 and CD8 cells and in terms of the protective capacity of the vaccine, and therefore represent an interesting new vaccine strategy against M.tb. However, CD4 and CD8 T cells respond very differently to live M.tb challenge, in a manner which supports the consensus that CD4 T cells do play...

  7. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    Science.gov (United States)

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and

  8. Whole organism blood stage vaccines against malaria.

    Science.gov (United States)

    Stanisic, Danielle I; Good, Michael F

    2015-12-22

    Despite a century of research focused on the development and implementation of effective control strategies, infection with the malaria parasite continues to result in significant morbidity and mortality worldwide. An effective malaria vaccine is considered by many to be the definitive solution. Yet, after decades of research, we are still without a vaccine that is capable of inducing robust, long lasting protection in naturally exposed individuals. Extensive sub-unit vaccine development focused on the blood stage of the malaria parasite has thus far yielded disappointing results. There is now a renewed focus on whole parasite vaccine strategies, particularly as they may overcome some of the inherent weaknesses deemed to be associated with the sub-unit approach. This review discusses the whole parasite vaccine strategy focusing on the blood stage of the malaria parasite, with an emphasis on recent advances and challenges in the development of killed and live attenuated vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Keegan J. Baldauf

    2015-03-01

    Full Text Available Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT, which consists of two subunits: the A subunit (CTA and the B subunit (CTB. CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.

  10. Development of candidate rotavirus vaccines.

    Science.gov (United States)

    Bishop, R F

    1993-01-01

    Candidate rotavirus vaccines tested to date have been developed using a 'Jennerian' approach. Strains of bovine and simian rotaviruses that are naturally attenuated for humans have been assessed and found to confer immunity that is serotype specific in a varying proportion of recipients. The spectrum of protection has been widened by developing reassortants in which the bovine or simian gene coding for VP7 (the major outer capsid protein) has been replaced by the corresponding gene from human VP7 types 1, 2, 3 or 4. Once the protective antigen(s) are identified it may be possible to develop subunit vaccines that eliminate side effects sometimes observed with live vaccine candidates.

  11. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  12. Vaccine hesitancy

    Science.gov (United States)

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  13. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Maryam Yazdanian

    2015-01-01

    Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine immunization.

  14. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  15. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  16. Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation

    National Research Council Canada - National Science Library

    Kim, Eun; Erdos, Geza; Huang, Shaohua; Kenniston, Thomas; Falo, Louis D; Gambotto, Andrea

    2016-01-01

    ... in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene...

  17. [Travelers' vaccines].

    Science.gov (United States)

    Ouchi, Kazunobu

    2011-09-01

    The number of Japanese oversea travelers has gradually increased year by year, however they usually pay less attention to the poor physical condition at the voyage place. Many oversea travelers caught vaccine preventable diseases in developing countries. The Vaccine Guideline for Oversea Travelers 2010 published by Japanese Society of Travel Health will be helpful for spreading the knowledge of travelers' vaccine and vaccine preventable diseases in developing countries. Many travelers' vaccines have not licensed in Japan. I hope these travelers' vaccines, such as typhoid vaccine, meningococcal vaccine, cholera vaccine and so on will be licensed in the near future.

  18. Vaccines for Malaria: How Close Are We?

    Science.gov (United States)

    Thera, Mahamadou A.; Plowe, Christopher V.

    2012-01-01

    Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants. PMID:22077719

  19. Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation

    OpenAIRE

    Kim, Eun; Erdos, Geza; Huang, Shaohua; Kenniston, Thomas; Falo Jr, Louis D.; Gambotto, Andrea

    2016-01-01

    Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV) has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barr? syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E) fused to the T4 fibritin foldon trimerization domain (Efl). The subunit vaccine was delivered intradermally ...

  20. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations

    OpenAIRE

    Amaya Leunda; Aline Baldo; Martine Goossens; Kris Huygen; Philippe Herman; Marta Romano

    2014-01-01

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Gu?rin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already ...

  1. Vaccination against bubonic and pneumonic plague.

    Science.gov (United States)

    Titball, R W; Williamson, E D

    2001-07-20

    Yersinia pestis is the etiological agent of bubonic and pneumonic plague, diseases which have caused over 200 milllion human deaths in the past. Plague still occurs throughout the world today, though for reasons that are not fully understood pandemics of disease do not develop from these outbreaks. Antibiotic treatment of bubonic plague is usually effective, but pneumonic plague is difficult to treat and even with antibiotic therapy death often results. A killed whole cell plague vaccine has been used in the past, but recent studies in animals have shown that this vaccine offers poor protection against pneumonic disease. A live attenuated vaccine is also available. Whilst this vaccine is effective, it retains some virulence and in most countries it is not considered to be suitable for use in humans. We review here work to develop improved sub-unit and live attenuated vaccines against plague. A sub-unit vaccine based on the F1- and V-antigens is highly effective against both bubonic and pneumonic plague, when tested in animal models of disease. This vaccine has been used to explore the utility of different intranasal and oral delivery systems, based on the microencapsulation or Salmonella delivery of sub-units.

  2. Development of Stable Influenza Vaccine Powder Formulations: Challenges and Possibilities

    Science.gov (United States)

    Amorij, J-P.; Huckriede, A.; Wilschut, J.; Frijlink, H. W.

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought into the dry state using suitable excipients, stabilizers and drying processes. The resulting stable influenza vaccine powder is independent of cold-chain facilities. This can be attractive for the integration of the vaccine logistics with general drug distribution in Western as well as developing countries. In addition, a stockpile of stable vaccine formulations of potential vaccines against pandemic viruses can provide an immediate availability and simple distribution of vaccine in a pandemic outbreak. Finally, in the development of new needle-free dosage forms, dry and stable influenza vaccine powder formulations can facilitate new or improved targeting strategies for the vaccine compound. This review represents the current status of dry stable inactivated influenza vaccine development. Attention is given to the different influenza vaccine types (i.e. whole inactivated virus, split, subunit or virosomal vaccine), the rationale and need for stabilized influenza vaccines, drying methods by which influenza vaccines can be stabilized (i.e. lyophilization, spray drying, spray-freeze drying, vacuum drying or supercritical fluid drying), the current status of dry influenza vaccine development and the challenges for ultimate market introduction of a stable and effective dry-powder influenza vaccine. PMID:18338241

  3. Progress in Brucella vaccine development

    Science.gov (United States)

    YANG, Xinghong; SKYBERG, Jerod A.; CAO, Ling; CLAPP, Beata; THORNBURG, Theresa; PASCUAL, David W.

    2012-01-01

    Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines. PMID:23730309

  4. Improved immunogenicity of novel baculovirus-derived Theileria parva p67 subunit antigens

    NARCIS (Netherlands)

    Kaba, S.A.; Schaap, D.; Roode, E.C.; Nene, V.; Musoke, A.J.; Vlak, J.M.; Oers, van M.M.

    2004-01-01

    East Coast fever (ECF) in cattle is caused by the tick-borne protozoan parasite Theileria parva. The major sporozoite surface antigen of T parva (p67) is an important candidate for inclusion in a subunit vaccine. Recently, we reported the expression and production of different parts of p67 as

  5. Antibody responses elicited in mice immunized with Bacillus subtilis vaccine strains expressing Stx2B subunit of enterohaemorragic Escherichia coli O157:H7 Resposta de anticorpos obtidas em camundongos imunizados com linhagens vacinais de Bacillus subtilis expressando a subunidade B da Stx2 de Escherichia coli O157:H7 enterohemorrágica

    Directory of Open Access Journals (Sweden)

    P.A.D.P. Gomes

    2009-06-01

    Full Text Available No effective vaccine or immunotherapy is presently available for patients with the hemolytic uremic syndrome (HUS induced by Shiga-like toxin (Stx producedbyenterohaemorragic Escherichia coli (EHEC strains, such as those belonging to the O157:H7 serotype. In this work we evaluated the performance of Bacillus subtilis strains, a harmless spore former gram-positive bacterium species, as a vaccine vehicle for the expression of Stx2B subunit (Stx2B. A recombinant B. subtilis vaccine strain expressing Stx2B under the control of a stress inducible promoter was delivered to BALB/c mice via oral, nasal or subcutaneous routes using both vegetative cells and spores. Mice immunized with vegetative cells by the oral route developed low but specific anti-Stx2B serum IgG and fecal IgA responses while mice immunized with recombinant spores developed anti-Stx2B responses only after administration via the parenteral route. Nonetheless, serum anti-Stx2B antibodies raised in mice immunized with the recombinant B. subtilis strain did not inhibit the toxic effects of the native toxin, both under in vitro and in vivo conditions, suggesting that either the quantity or the quality of the induced immune response did not support an effective neutralization of Stx2 produced by EHEC strains.Até o presente o momento, não há vacina ou imunoterapia disponível para pacientes com Síndrome Hemolítica Urêmica (SHU induzida pela toxina Shiga-like (Stx produzida por linhagens de Escherichia coli entero-hemorragica (EHEC, tais como as pertencentes ao sorotipo O157:H7. Neste trabalho, avaliamos a performance de Bacillus subtilis, uma espécie bacteriana gram-positiva não-patogênica formadora de esporos, como veículo vacinal para a expressão da subunidade B da Stx2B (Stx2B. Uma linhagem vacinal recombinante de B. subtilis expressando Stx2B, sob o controle de um promoter induzível por estresse, foi administrada a camundongos BALB/c por via oral, nasal ou subcutânea usando

  6. [Current progress in the development of mucosal vaccines].

    Science.gov (United States)

    Takeyama, Natsumi; Yuki, Yoshikazu; Kiyono, Hiroshi

    2011-09-01

    Mucosal vaccination has several advantages compared with that of injection-type vaccination. Secretory IgA(SIgA) produced at mucosal surface plays a key role for inactivation of toxins and inhibition of pathogen invasion. Although oral or nasal vaccination with attenuated live microorganisms have been shown to be effective in the induction of protective immunity, these types of vaccine have the ability to infect transiently to the host. For the development of safe and effective mucosal vaccine, an obvious strategy is the preparation of inactivated subunit-type mucosal vaccine. Here we introduce our frontier technology for the development of rice-based oral vaccines, as a new generation of mucosal vaccine. Further, we also discuss recent progress in the development of other types of mucosal vaccine and adjuvant.

  7. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines

    Science.gov (United States)

    Vaccines consisting of subunit or inactivated bacteria/virus and potent adjuvants are widely used to control and prevent infectious diseases. Because inactivated and subunit antigens are often less antigenic than live microbes, a growing need exists for the development of new and improved vaccine ad...

  8. Scaling up development, production of CBPP vaccine for cattle in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Development of a Subunit Vaccine for Contagious Bovine Pleuropneumonia in Africa (CIFSRF Phase 2). This project will allow researchers from Canada and Kenya to field trial a vaccine for contagious bovine pleuropneumonia. This endemic livestock disease affects the livelihoods of more than 24 million cattle producers ...

  9. Oral vaccination with attenuated Salmonella choleraesuis C500 ...

    African Journals Online (AJOL)

    Helicobacter pylori are well known as the major gastro-duodenal pathogen of peptic ulcer disease and gastric cancer. Recombinant H. pylori vaccine comprising a single subunit antigen can only induce immune response with limited protection efficiency. Development of oral vaccine would be a new effective strategy for the ...

  10. Clinical effectiveness of conventional influenza vaccination in asthmatic children

    NARCIS (Netherlands)

    Smits, A J; Hak, E; Stalman, W A B; van Essen, G A; Hoes, A W; Verheij, Th J M

    Influenza immunization rates among young asthmatics remain unsatisfactory due to persistent concern about the impact of influenza and the benefits of the vaccine. We assessed the effectiveness of the conventional inactivated trivalent sub-unit influenza vaccine in reducing acute respiratory disease

  11. Plant glycans: friend or foe in vaccine development?

    NARCIS (Netherlands)

    Bosch, H.J.; Schots, A.

    2010-01-01

    Plants are an attractive platform for the production of N-glycosylated subunit vaccines. Wild type glycosylation of plants can be exploited to produce vaccines that antigen-presenting cells effectively take up, degrade and present to cells of the adaptive immune system. Alternatively,

  12. Polio Vaccine

    Science.gov (United States)

    ... doctorMost kids have no problems with the polio vaccine. However, call your doctor if your child has any reaction after getting the vaccine. Call ... Tell the doctor when (day and time) your child received the vaccine. You also should file a Vaccine Adverse Event ...

  13. Zika virus: Vaccine initiatives and obstacles

    Directory of Open Access Journals (Sweden)

    Reema Mukherjee

    2017-01-01

    Full Text Available Over 130,000 humans in Brazil are infected with Zika virus (ZIKV since March 2015, and presently 29 countries in Americas have reported local autochthonous ZIKV transmission. Besides the associated clinical features, Brazil has also reported a temporal and spatial association of ZIKV with Guillain-Barre syndrome (GBS and Zika fetal syndrome. ZIKV vaccine approaches include purified inactivated virus, nucleic acid-based vaccines (DNA, RNA, live vector vaccines, subunit vaccines, virus-like particle technologies, and live recombinant vaccines similar to the technologies used against other human flaviviruses. At present, 15 commercial entities are involved in the development of ZIKV vaccine. Vaccines developed through different approaches would have their own inherent advantages and disadvantages. The presentation of disease in different populations and lack of clarity on the pathogenesis and complications is the most important obstacle. Second, Zika belongs to a genus that is notorious for the antibody-mediated enhancement of infection, which proved to be a stumbling block during the development of the dengue vaccine. Identifying large naive and yet uninfected at-risk populations may be an obstacle to demonstrating efficacy. Next, the association of Zika with GBS is being researched since the vaccine may have the potential to provoke similar neuropathophysiologic mechanisms. Zika's association with adverse fetal outcomes necessitates that pregnant women and women of childbearing age are considered for evaluating vaccines, which form a vulnerable group for vaccine trials.

  14. Recombinant vaccines against bluetongue virus.

    Science.gov (United States)

    Calvo-Pinilla, Eva; Castillo-Olivares, Javier; Jabbar, Tamara; Ortego, Javier; de la Poza, Francisco; Marín-López, Alejandro

    2014-03-01

    Bluetongue (BT) is a hemorrhagic disease of ruminants caused by bluetongue virus (BTV), the prototype member of the genus Orbivirus within the family Reoviridae and is transmitted via biting midges of the genus Culicoides. BTV can be found on all continents except Antarctica, and up to 26 immunologically distinct BTV serotypes have been identified. Live attenuated and inactivated BTV vaccines have been used over the years with different degrees of success. The multiple outbreaks of BTV in Mediterranean Europe in the last two decades and the incursion of BTV-8 in Northern Europe in 2008 has re-stimulated the interest to develop improved vaccination strategies against BTV. In particular, safer, cross-reactive, more efficacious vaccines with differential diagnostic capability have been pursued by multiple BTV research groups and vaccine manufacturers. A wide variety of recombinant BTV vaccine prototypes have been investigated, ranging from baculovirus-expressed sub-unit vaccines to the use of live viral vectors. This article gives a brief overview of all these modern approaches to develop vaccines against BTV including some recent unpublished data. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Examination of some biological properties of glycoprotein subunits of PHY-LMV.42 strain of Newcastle disease virus

    Directory of Open Access Journals (Sweden)

    Milić Nenad

    2015-01-01

    Full Text Available The objective of our work was to investigate some biological characteristics of purified glycoprotein subunits of Newcastle disease virus strain PHY-LMV.42 isolated from pigeons for the purpose of vaccine production. PHY-LMV.42 strain of Newcastle disease virus was multiplied by successive passages in embryonated eggs and identified by the methods of Reverse transcriptase PCR and Real-Time PCR along with F gene sequencing. Proving the presence of HN and F antigene in the virus subunits samples was carried out by hemagglutination inhibition method with referent immune sera. Biochemical characterization of glycoprotein subunits was performed by SDS-PAGE method as well as liquid chromatography with mass spectrometry (LC ESI-TOF-MS/MS. Testing for the virus subunits immunogenicity was carried out in biological experiment on 75 laying hens Tetra-SSL and 25 chickens Isa Brown by inducing an artificial infection with Hertz 33 strain of the virus. Low concentrations of the virus antigens of 0.36 mg/ml along with glycoprotein fractions of 77 i 58 kDa manifested a strong hemagglutination activity of 4096 HJ/0,1ml. The subunit vaccines of 256 and 128 HJ/0.5 ml induced a protective immune response in all the vaccinated animals. Based on the obtained results it can be concluded that low concentrations of purified virus subunits of PHY-LMV.42 strain can be used for preparing of effective vaccines. [Projekat Ministarstva nauke Republike Srbije, br. TR 31008: Development and application of molecular methods based on polymerase chain reaction (PCR in quick and direct identification of Newcastle disease virus strains and investigation of immunogenicity of subunit vaccine prepared of their antigens

  16. Role of fused Mycobacterium tuberculosis immunogens and adjuvants in modern tuberculosis vaccines

    Directory of Open Access Journals (Sweden)

    Ana Paula eJunqueira-Kipnis

    2014-04-01

    Full Text Available Several approaches have been developed to improve or replace the only available vaccine for tuberculosis (TB, BCG (Bacille Calmette Guerin. The development of subunit protein vaccines is a promising strategy because it combines specificity and safety. In addition, subunit protein vaccines can be designed to have selected immune epitopes associated with immunomodulating components to drive the appropriate immune response. However, the limited antigens present in subunit vaccines reduce their capacity to stimulate a complete immune response compared with vaccines composed of live attenuated or killed microorganisms. This deficiency can be compensated by the incorporation of adjuvants in the vaccine formulation. The fusion of adjuvants with Mycobacterium tuberculosis (Mtb proteins or immune epitopes has the potential to become the new frontier in the TB vaccine development field. Researchers have addressed this approach by fusing the immune epitopes of their vaccines with molecules such as interleukins, lipids, lipoproteins, and immune stimulatory peptides, which have the potential to enhance the immune response. The fused molecules are being tested as subunit vaccines alone or within live attenuated vector contexts. Therefore, the objectives of this review are to discuss the association of Mtb fusion proteins with adjuvants; Mtb immunogens fused with adjuvants; and cytokine fusion with Mtb proteins and live recombinant vectors expressing cytokines. The incorporation of adjuvant molecules in a vaccine can be complex, and developing a stable fusion with proteins is a challenging task. Overall, the fusion of adjuvants with Mtb epitopes, despite the limited number of studies, is a promising field in vaccine development.

  17. Exploiting 2A peptides to elicit potent neutralizing antibodies by a multi-subunit herpesvirus glycoprotein complex.

    Science.gov (United States)

    Wussow, Felix; Chiuppesi, Flavia; Meng, Zhuo; Martinez, Joy; Nguyen, Jenny; Barry, Peter A; Diamond, Don J

    2018-01-01

    Neutralizing antibodies (NAb) interfering with glycoprotein complex-mediated virus entry into host cells are thought to contribute to the protection against herpesvirus infection. However, using herpesvirus glycoprotein complexes as vaccine antigens can be complicated by the necessity of expressing multiple subunits simultaneously to allow efficient complex assembly and formation of conformational NAb epitopes. By using a novel bacterial artificial chromosome (BAC) clone of the clinically deployable Modified Vaccinia Ankara (MVA) vector and exploiting ribosomal skipping mediated by 2A peptides, MVA vectors were generated that expressed self-processing subunits of the human cytomegalovirus (HCMV) pentamer complex (PC) composed of gH, gL, UL128, UL130, and UL131A. These MVA vectors expressed 2A-linked HCMV PC subunits that were efficiently cleaved and transported to the cell surface as protein complexes forming conformational neutralizing epitopes. In addition, vaccination of mice by only two immunizations with these MVA vectors resulted in potent HCMV NAb responses that remained stable over a period of at least six months. This method of eliciting NAb by 2A-linked, self-processing HCMV PC subunits could contribute to develop a HCMV vaccine candidate and may serve as a template to facilitate the development of subunit vaccine strategies against other herpesviruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Need for a safe vaccine against respiratory syncytial virus infection

    Directory of Open Access Journals (Sweden)

    Joo-Young Kim

    2012-09-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of severe respiratory tract illnesses in infants and young children worldwide. Despite its importance as a respiratory pathogen, there is currently no licensed vaccine for HRSV. Following failure of the initial trial of formalin-inactivated virus particle vaccine, continuous efforts have been made for the development of safe and efficacious vaccines against HRSV. However, several obstacles persist that delay the development of HRSV vaccine, such as the immature immune system of newborn infants and the possible Th2-biased immune responses leading to subsequent vaccine-enhanced diseases. Many HRSV vaccine strategies are currently being developed and evaluated, including live-attenuated viruses, subunit-based, and vector-based candidates. In this review, the current HRSV vaccines are overviewed and the safety issues regarding asthma and vaccine-induced pathology are discussed.

  19. Characterization of fimbrial subunits from Bordetella species

    NARCIS (Netherlands)

    Mooi, F.R.; Heide, H.G.J. van der; Avest, A.R. ter; Welinder, K.G.; Livey, I.; Zeijst, B.A.M. van der; Gaastra, W.

    Using antisera raised against serotype 2 and 3 fimbrial subunits from Bordetella pertussis, serologically related polypeptides were detected in Bordetella bronchiseptica, Bordetella parapertussis and Bordetella avium strains. The two B. pertussis fimbrial subunits, and three of the serologically

  20. Subunit mass analysis for monitoring antibody oxidation

    National Research Council Canada - National Science Library

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-01-01

    ... (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit...

  1. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies.......cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  2. Vaccine Finder

    Science.gov (United States)

    ... list . Showing availability for 25,354 locations. Influenza Vaccine Recommended for everyone greater than or equal to ... which one may be right for you! Flu Vaccines Protects again influenza, commonly called flu, a respiratory ...

  3. Vaccine Safety

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search The CDC Vaccine Safety Note: Javascript is disabled or is not ... CDC.gov . Recommend on Facebook Tweet Share Compartir Vaccine Adverse Events Reporting System (VAERS) New website and ...

  4. Rotavirus Vaccine

    Science.gov (United States)

    ... are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common and serious health ... to 60 died. Since the introduction of the rotavirus vaccine, hospitalizations and emergency visits for rotavirus have dropped ...

  5. Vaccination with map specific peptides reduces map burden in tissues of infected goats

    DEFF Research Database (Denmark)

    Melvang, Heidi Mikkelsen; Hassan, Sufia Butt; Thakur, Aneesh

    As an alternative to protein-based vaccines, we investigated the effect of post-exposure vaccination with Map specific peptides in a goat model aiming at developing a Map vaccine that will neither interfere with diagnosis of paratuberculosis nor bovine tuberculosis. Peptides were initially select...... in the unvaccinated control group seroconverted in ID Screen® ELISA at last sampling prior to euthanasia. These results indicate that a subunit vaccine against Map can induce a protective immune response against paratuberculosis in goats....

  6. Contraceptive Vaccines

    Directory of Open Access Journals (Sweden)

    M.V. Supotnitsky

    2014-02-01

    Full Text Available Researches to develop vaccines with contraceptive effect are being carried out since the 1920s. Since 1972, the contraceptive vaccines are one of the priority programs of the World Health Organization (WHO Special Programme of Research, Development and Research Training in Human Reproduction. Rockefeller Foundation participates in implementing the program. Openly declared objective of creating such vaccines — the regulation of the population in the Third World countries. There are currently three main directions of contraceptive vaccine design: 1 vaccines targeted at blocking the production of gametes; 2 impairing their function; 3 violating the fertilization process. Contraceptive vaccines for more than 10 years are widely used to reduce fertility and castration of wild and domestic animals. In the commercial realization there are veterinary vaccines Equity®, Improvac®, GonaCon®, Repro-BLOC (based on gonadotropin-releasing hormone; SpayVac™ and IVT-PZP® (based on zona pellucida antigens. Clinical studies have shown effective contraceptive action (in women of vaccines, in which human chorionic gonadotropin is used as an antigen. At the same time, there are found the side effects of such vaccines: for vaccines containing gonadotropin-releasing hormone and luteinizing hormone as antigenic components — castration, impotence; for vaccines containing follicle stimulating hormone — oligospermia; zona pellucida antigens — irreversible oophoritis. This paper discusses approaches to detection of sterilizing components in vaccines intended for mass prevention of infectious diseases, not reported by manufacturers, and the consequences of their use. Hidden use of contraceptive vaccines, which already took place, can be detected: 1 by the presence of antibodies to their antigenic components (in unvaccinated by contraceptive vaccines people such antibodies do not exist, except infertility cases; 2 by change in the hormonal levels of the

  7. A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine.

    Science.gov (United States)

    Lamphear, Barry J; Jilka, Joseph M; Kesl, Lyle; Welter, Mark; Howard, John A; Streatfield, Stephen J

    2004-06-23

    Recombinant plant expression systems offer a means to produce large quantities of selected antigens for subunit vaccines. Cereals are particularly well-suited expression vehicles since the expressed proteins can be stored at relatively high concentrations for extended periods of time without degradation and dry seed can be formulated into oral vaccines suitable for commercial applications. A subunit vaccine candidate directed against porcine transmissible gastroenteritis virus and expressed in corn seed has been developed for oral delivery to swine. Here, we show that this vaccine, when administered to previously sensitized gilts, can boost neutralizing antibody levels in the animals' serum, colostrum and milk. Thus, this vaccine candidate is effective at boosting lactogenic immunity and is appropriate to pursue through large-scale field trials preceding commercialization.

  8. FLU VACCINATION

    CERN Multimedia

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  9. Rotavirus vaccines.

    Science.gov (United States)

    Lynch, Maureen; Bresee, Joseph S.; Gentsch, Jon R.; Glass, Roger I.

    2000-10-01

    The past few years have seen important developments in understanding the epidemiological and virological characteristics of rotaviruses, and rapid progress has been made in rotavirus vaccine development, but further challenges remain before a vaccine is introduced into widespread use. The licensure of the first rotavirus vaccine, a tetravalent rhesus-based rotavirus vaccine, in the United States in 1998, marked a significant advance in preventing the morbidity associated with rotavirus diarrhea. The association between the tetravalent rhesus-based rotavirus vaccine and intussusception has created significant hurdles as well as new opportunities to study the pathogenesis of rotavirus and rotavirus vaccine infection. Several other rotavirus vaccine candidates are in late stages of development, and results from trials have been encouraging.

  10. ETEC vaccination in pigs.

    Science.gov (United States)

    Melkebeek, Vesna; Goddeeris, Bruno M; Cox, Eric

    2013-03-15

    Enterotoxigenic Escherichia coli (ETEC) remain an important cause of neonatal and post-weaning diarrhoea in pigs. In general, neonatal infections can be prevented effectively by passive colostral and lactogenic immunity obtained by vaccination of the sow. In this respect, several maternal vaccines are on the market. These are applied mainly parenterally in the pregnant sow. However at weaning, lactogenic protection disappears. Strains involved in post-weaning diarrhoea mostly express F4 or F18 fimbriae. These fimbriae are important virulence factors since they allow the bacteria to bind to specific receptors on small intestinal enterocytes, resulting in colonization and subsequently the secretion of enterotoxins causing diarrhoea. Consequently, an active mucosal immunity, in which the local production of F4- and/or F18-specific sIgA plays an important role, is required to protect pigs against post-weaning diarrhoea. This review aims to give an overview of the immunization strategies applied in the pig model to prevent post-weaning diarrhoea caused by F4- and/or F18- positive ETEC in pigs. These include the use of oral live and subunit vaccines, encapsulation strategies and parenteral immunization. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Expression and immunogenicity of novel subunit enterovirus 71 VP1 antigens

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Microbiology and Immunology, Nanjing Medical University (China); Wang, Shixia [China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States); Gan, Weihua [Department of Pediatrics, The Second Affiliated Hospital, Nanjing Medical University (China); Zhang, Wenhong [Department of Infectious Diseases, Huashan Hospital, Fudan University (China); Ju, Liwen [School of Public Health, Fudan University (China); Huang, Zuhu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Lu, Shan, E-mail: shan.lu@umassmed.edu [Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University (China); China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University (China); Department of Medicine, University of Massachusetts Medical School (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer EV71 is a major emerging infectious disease in many Asian countries. Black-Right-Pointing-Pointer Inactivated EV71 vaccines are in clinical studies but their safety and efficacy are unknown. Black-Right-Pointing-Pointer Developing subunit based EV71 vaccines is significant and novel antigen design is needed. Black-Right-Pointing-Pointer DNA immunization is an efficient tool to test the immunogenicity of VP1 based EV71 vaccines. Black-Right-Pointing-Pointer Multiple VP1 antigens are developed showing immunogenic potential. -- Abstract: Hand, foot, and mouth disease (HFMD) is a common viral illness in young children. HFMD is caused by viruses belonging to the enterovirus genus of the picornavirus family. Recently, enterovirus 71 (EV71) has emerged as a virulent agent for HFMD with severe clinical outcomes. In the current report, we conducted a pilot antigen engineering study to optimize the expression and immunogenicity of subunit VP1 antigen for the design of EV71 vaccines. DNA immunization was adopted as a simple technical approach to test different designs of VP1 antigens without the need to express VP1 protein in vitro first. Our studies indicated that the expression and immunogenicity of VP1 protein can be improved with alternated VP1 antigen designs. Data presented in the current report revealed novel pathways to optimize the design of VP1 antigen-based EV71 vaccines.

  12. Stoichiometry of δ subunit containing GABAA receptors

    Science.gov (United States)

    Patel, B; Mortensen, M; Smart, T G

    2014-01-01

    Background and Purpose Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Experimental Approach Using site-directed mutagenesis, we inserted a highly characterized 9′ serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Key Results Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose–response curves of cells co-expressing WT subunits with their respective L9′S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Conclusions and Implications Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. PMID:24206220

  13. Bacterial superglue enables easy development of efficient virus-like particle based vaccines

    DEFF Research Database (Denmark)

    Thrane, Susan; Janitzek, Christoph M; Matondo, Sungwa

    2016-01-01

    BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches...... vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity......, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5...

  14. Vaccine allergies.

    Science.gov (United States)

    Chung, Eun Hee

    2014-01-01

    Currently, the increasing numbers of vaccine administrations are associated with increased reports of adverse vaccine reactions. Whilst the general adverse reactions including allergic reactions caused by the vaccine itself or the vaccine components, are rare, they can in some circumstances be serious and even fatal. In accordance with many IgE-mediated reactions and immediate-type allergic reactions, the primary allergens are proteins. The proteins most often implicated in vaccine allergies are egg and gelatin, with perhaps rare reactions to yeast or latex. Numerous studies have demonstrated that the injectable influenza vaccine can be safely administered, although with appropriate precautions, to patients with severe egg allergy, as the current influenza vaccines contain small trace amounts of egg protein. If an allergy is suspected, an accurate examination followed by algorithms is vital for correct diagnosis, treatment and decision regarding re-vaccination in patients with immediate-type reactions to vaccines. Facilities and health care professionals should be available to treat immediate hypersensitivity reactions (anaphylaxis) in all settings where vaccines are administered.

  15. Subunit heterogeneity in the lima bean lectin.

    Science.gov (United States)

    Roberts, D D; Etzler, M E; Goldstein, I J

    1982-08-10

    Three forms of lectin (components I, II, and III) from lima beans (Phaseolus lunatus) have been purified on an affinity support containing the synthetic type A blood group trisaccharide alpha-D-GalNAc-(1 leads to 3)-[alpha-L-Fuc-(1 leads to 2)]-beta-D-Gal-(1 leads to). Conversion of components I and II to component III has been achieved by reduction in 10(-2) M dithiothreitol. Isoelectric focusing of lima bean lectin in the presence of 8 M urea and beta-mercaptoethanol revealed charge heterogeneity of the lectin subunits. Three major subunit classes of apparent pI 7.05, 6.65, and 6.45, designated alpha, beta, and alpha', respectively, were identified; they occur in a relative abundance of 2:5:3. Green lima beans harvested before maturity lacked the alpha' subunit (pI 6.45) which appears to accumulate during seed maturation. The three subunits are glycoproteins of identical size and immunochemical reactivity. Identical NH2-terminal sequences were found for the three subunits. Amino acid analysis and tryptic peptide mapping indicated that the observed charge heterogeneity is probably due to differences in the primary structure of the subunits. Studies of subunit composition of charge isolectins provided evidence of nonrandom subunit assembly. A model is proposed involving pairing of a pI 6.65 subunit with either a pI 7.06 or 6.45 subunit to form dimeric units. Possible roles for subunit heterogeneity and ordered subunit assembly in determining the metal and sugar binding properties of lima bean lectin are discussed.

  16. FLU VACCINATION

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  17. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  18. Flu Vaccination

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  19. Flu Vaccination

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  20. Influenza Vaccine, Live Intranasal

    Science.gov (United States)

    ... influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT be ... What is live, attenuated influenza vaccine-LAIV (nasal spray)?A dose of flu vaccine is recommended every flu season. Children younger ...

  1. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  2. The immunology of smallpox vaccines.

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2009-06-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization.

  3. The immunology of smallpox vaccines

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-01-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427

  4. Role of the Rubisco Small Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert Joseph [Univ. of Nebraska, Lincoln, NE (United States)

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  5. Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant.

    Science.gov (United States)

    Chong, Pele; Huang, Jui-Hsin; Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei

    2015-01-01

    A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies. © 2015 Elsevier Inc. All rights reserved.

  6. 28 CFR 51.6 - Political subunits.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All political...

  7. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations

    Directory of Open Access Journals (Sweden)

    Amaya Leunda

    2014-06-01

    Full Text Available Novel efficient vaccines are needed to control tuberculosis (TB, a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine. In this review we provide up to date information on novel tuberculosis (TB vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.

  8. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations.

    Science.gov (United States)

    Leunda, Amaya; Baldo, Aline; Goossens, Martine; Huygen, Kris; Herman, Philippe; Romano, Marta

    2014-06-16

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.

  9. Cancer Vaccines

    Science.gov (United States)

    ... foreign. Most preventive vaccines, including those aimed at cancer-causing viruses ( hepatitis B virus and human papillomavirus ), stimulate the ... 9 through 25 for the prevention of cervical cancer caused by HPV. Hepatitis B virus (HBV) vaccines. Chronic HBV infection can lead to ...

  10. BCG Vaccines.

    Science.gov (United States)

    Tran, Vanessa; Liu, Jun; Behr, Marcel A

    2014-02-01

    BCG is the collective name for a family of live attenuated strains of Mycobacterium bovis that are currently used as the only vaccine against tuberculosis (TB). There are two major reasons for studying the genome of these organisms: (i) Because they are attenuated, BCG vaccines provide a window into Mycobacterium tuberculosis virulence, and (ii) because they have provided protection in several clinical trials and case-control studies, BCG vaccines may shed light on properties required of a TB vaccine. Since the determination of the M. tuberculosis genome in 1998, the study of BCG vaccines has accelerated dramatically, offering data on the genomic differences between virulent M. tuberculosis, M. bovis, and the vaccine strains. While these findings have been rewarding for the study of virulence, there is unfortunately less accrued knowledge about protection. In this chapter, we review briefly the history of BCG vaccines and then touch upon studies over the past two decades that help explain how BCG underwent attenuation, concluding with some more speculative comments as to how these vaccines might offer protection against TB.

  11. Hereditary Hemochromatosis Restores the Virulence of Plague Vaccine Strains

    Science.gov (United States)

    Quenee, Lauriane E.; Hermanas, Timothy M.; Ciletti, Nancy; Louvel, Helene; Miller, Nathan C.; Elli, Derek; Blaylock, Bill; Mitchell, Anthony; Schroeder, Jay; Krausz, Thomas; Kanabrocki, Joseph; Schneewind, Olaf

    2012-01-01

    Nonpigmented Yersinia pestis (pgm) strains are defective in scavenging host iron and have been used in live-attenuated vaccines to combat plague epidemics. Recently, a Y. pestis pgm strain was isolated from a researcher with hereditary hemochromatosis who died from laboratory-acquired plague. We used hemojuvelin-knockout (Hjv−/−) mice to examine whether iron-storage disease restores the virulence defects of nonpigmented Y. pestis. Unlike wild-type mice, Hjv−/− mice developed lethal plague when challenged with Y. pestis pgm strains. Immunization of Hjv−/− mice with a subunit vaccine that blocks Y. pestis type III secretion generated protection against plague. Thus, individuals with hereditary hemochromatosis may be protected with subunit vaccines but should not be exposed to live-attenuated plague vaccines. PMID:22896664

  12. Combination vaccines

    Directory of Open Access Journals (Sweden)

    David AG Skibinski

    2011-01-01

    Full Text Available The combination of diphtheria, tetanus, and pertussis vaccines into a single product has been central to the protection of the pediatric population over the past 50 years. The addition of inactivated polio, Haemophilus influenzae, and hepatitis B vaccines into the combination has facilitated the introduction of these vaccines into recommended immunization schedules by reducing the number of injections required and has therefore increased immunization compliance. However, the development of these combinations encountered numerous challenges, including the reduced response to Haemophilus influenzae vaccine when given in combination; the need to consolidate the differences in the immunization schedule (hepatitis B; and the need to improve the safety profile of the diphtheria, tetanus, and pertussis combination. Here, we review these challenges and also discuss future prospects for combination vaccines.

  13. [Vaccines against varicella-zoster virus (VZV)].

    Science.gov (United States)

    Salleras, Luis; Salleras, Montserrat; Soldevila, Nuria; Prat, Andreu; Garrido, Patricio; Domínguez, Ángela

    2015-01-01

    In Western countries, two attenuated varicella vaccines derived from the OKA strain are licensed: Varilrix® GlaxoSmithKline (OKA/RIT strain) and Varivax® Merck Sharp and Dohme (OKA/Merck strain). Currently, in Spain, varicella vaccination is only included in the Ministry of Health, Social Services and Equality official vaccination calendar for administration in adolescents who have not had the disease. Given the good results obtained in Navarra and Madrid with universal administration of the vaccine in children, it would be desirable to include the vaccine in the routine immunization schedule, with the administration of two doses at 15-18 months of age in the future. The protective efficacy of the attenuated herpes zoster vaccine was evaluated in the Shingles Prevention Study, which showed that in the short term (0-4 years) the vaccine reduced the incidence of herpes zoster by 53%, post-herpetic neuralgia by 66%, and the disease burden in immunocompetent persons aged ≥60 years by 61%. Another study demonstrated protective efficacy in persons aged 50-59 years. Over time, the protective efficacy decreases, but remains at acceptable levels, especially for post-herpetic neuralgia and the disease burden. Recently, the results of a controlled clinical trial (phase III) conducted in 18 countries to assess the protective efficacy of the inactivated subunit vaccine (glycoprotein E) adjuvanted with the adjuvant AS01B were published. The study inferred that the vaccine significantly reduced the incidence of herpes zoster in the short term (3.2 years) in people aged ≥50 years. Vaccine protection did not decrease with age at vaccination, ranging between 96.8% and 97.9% in all age groups. Copyright © 2015. Published by Elsevier España, S.L.U.

  14. Regulatory T cell frequencies and phenotypes following anti-viral vaccination.

    Science.gov (United States)

    de Wolf, A Charlotte M T; van Aalst, Susan; Ludwig, Irene S; Bodinham, Caroline L; Lewis, David J; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2017-01-01

    Regulatory T cells (Treg) function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg) and activated (aTreg) subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation of Treg

  15. Regulatory T cell frequencies and phenotypes following anti-viral vaccination.

    Directory of Open Access Journals (Sweden)

    A Charlotte M T de Wolf

    Full Text Available Regulatory T cells (Treg function in the prevention of excessive inflammation and maintenance of immunological homeostasis. However, these cells may also interfere with resolution of infections or with immune reactions following vaccination. Effects of Treg on vaccine responses are nowadays investigated, but the impact of vaccination on Treg homeostasis is still largely unknown. This may be a relevant safety aspect, since loss of tolerance through reduced Treg may trigger autoimmunity. In exploratory clinical trials, healthy adults were vaccinated with an influenza subunit vaccine plus or minus the adjuvant MF59®, an adjuvanted hepatitis B subunit vaccine or a live attenuated yellow fever vaccine. Frequencies and phenotypes of resting (rTreg and activated (aTreg subpopulations of circulating CD4+ Treg were determined and compared to placebo immunization. Vaccination with influenza vaccines did not result in significant changes in Treg frequencies and phenotypes. Vaccination with the hepatitis B vaccine led to slightly increased frequencies of both rTreg and aTreg subpopulations and a decrease in expression of functionality marker CD39 on aTreg. The live attenuated vaccine resulted in a decrease in rTreg frequency, and an increase in expression of activation marker CD25 on both subpopulations, possibly indicating a conversion from resting to migratory aTreg due to vaccine virus replication. To study the more local effects of vaccination on Treg in lymphoid organs, we immunized mice and analyzed the CD4+ Treg frequency and phenotype in draining lymph nodes and spleen. Vaccination resulted in a transient local decrease in Treg frequency in lymph nodes, followed by a systemic Treg increase in the spleen. Taken together, we showed that vaccination with vaccines with an already established safe profile have only minimal impact on frequencies and characteristics of Treg over time. These findings may serve as a bench-mark of inter-individual variation

  16. KSAC, the first defined polyprotein vaccine candidate for visceral leishmaniasis.

    Science.gov (United States)

    Goto, Yasuyuki; Bhatia, Ajay; Raman, Vanitha S; Liang, Hong; Mohamath, Raodoh; Picone, Alessandro F; Vidal, Silvia E Z; Vedvick, Thomas S; Howard, Randall F; Reed, Steven G

    2011-07-01

    A subunit vaccine using a defined antigen(s) may be one effective solution for controlling leishmaniasis. Because of genetic diversity in target populations, including both dogs and humans, a multiple-antigen vaccine will likely be essential. However, the cost of a vaccine to be used in developing countries must be considered. We describe herein a multiantigen vaccine candidate comprised of antigens known to be protective in animal models, including dogs, and to be recognized by humans immune to visceral leishmaniasis. The polyprotein (KSAC) formulated with monophosphoryl lipid A, a widely used adjuvant in human vaccines, was found to be immunogenic and capable of inducing protection against Leishmania infantum, responsible for human and canine visceral leishmaniasis, and against L. major, responsible for cutaneous leishmaniasis. The results demonstrate the feasibility of producing a practical, cost-effective leishmaniasis vaccine capable of protecting both humans and dogs against multiple Leishmania species.

  17. An overview of FDA-approved vaccines & their innovators.

    Science.gov (United States)

    Griesenauer, Rebekah H; Kinch, Michael S

    2017-09-25

    A survey of FDA-approved biologicals focused upon the development of immunotherapies over time to gain insight on the challenges and trends of vaccine development today. Areas covered: A total of 135 different immune-based therapies were broadly divided into passive or active immunotherapies. Whereas just over half of passive immunotherapies targeted infectious diseases, the vast majority of active immunotherapy products (vaccines) were directed against a handful of viral and bacterial pathogens. We also analyze changes in vaccine strategy, including the use of viable antigens and subunit approaches. Expert commentary: An analysis of vaccine innovators revealed an ever-increasing presence of the private sector and a relatively diminishing role for the public sector . Whereas North American companies have contributed to the approval of two-thirds of vaccines, European companies have regained parity in terms of hosting innovators of vaccine research and development.

  18. Rainbow trout (Oncorhynchus mykiss) immune response towards a recombinant vaccine targeting the parasitic ciliate Ichthyophthirius multifiliis

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Kania, Per Walter; Rasmussen, Karina Juhl

    2017-01-01

    responses of vaccinated trout (subunit vaccine) were raised against one neurohypophysial n-terminal domain protein #10 of three recombinant proteins, whereas the benchmark vaccine group showed specific antibody production against all three recombinant proteins. The immunogenic parasite protein #10 may......The protective effect in rainbow trout (Oncorhynchus mykiss) of an experimental subunit vaccine targeting antigens in the parasite Ichthyophthirius multifiliis has been evaluated and compared to effects elicited by a classical parasite homogenate vaccine. Three recombinant parasite proteins (two...... produced in E. coli and one in insect cells) were combined and injected i.p., and subsequently, protection and antibody responses were analysed. Both the experimental and the benchmark vaccine induced partial but significant protection against I. multifiliis when compared to control fish. Specific antibody...

  19. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... Educators Search English Español Your Child's Immunizations: Meningococcal Vaccines KidsHealth / For Parents / Your Child's Immunizations: Meningococcal Vaccines Print The meningococcal vaccines protect ...

  20. Expression of the hemagglutinin HA1 subunit of the equine influenza virus using a baculovirus expression system.

    Science.gov (United States)

    Sguazza, Guillermo H; Fuentealba, Nadia A; Tizzano, Marco A; Galosi, Cecilia M; Pecoraro, Marcelo R

    2013-01-01

    Equine influenza virus is a leading cause of respiratory disease in horses worldwide. Disease prevention is by vaccination with inactivated whole virus vaccines. Most current influenza vaccines are generated in embryonated hens' eggs. Virions are harvested from allantoic fluid and chemically inactivated. Although this system has served well over the years, the use of eggs as the substrate for vaccine production has several well-recognized disadvantages (cost, egg supply, waste disposal and yield in eggs). The aim of this study was to evaluate a baculovirus system as a potential method for producing recombinant equine influenza hemagglutinin to be used as a vaccine. The hemagglutinin ectodomain (HA1 subunit) was cloned and expressed using a baculovirus expression vector. The expression was determined by SDS-PAGE and immunoblotting. A high yield, 20μg/ml of viral protein, was obtained from recombinant baculovirus-infected cells. The immune response in BALB/c mice was examined following rHA1 inoculation. Preliminary results show that recombinant hemagglutinin expressed from baculovirus elicits a strong antibody response in mice; therefore it could be used as an antigen for subunit vaccines and diagnostic tests. Copyright © 2013 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  1. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  2. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  3. Guidelines on Vaccinations in Paediatric Haematology and Oncology Patients

    Directory of Open Access Journals (Sweden)

    Simone Cesaro

    2014-01-01

    Full Text Available Objective. Vaccinations are the most important tool to prevent infectious diseases. Chemotherapy-induced immune depression may impact the efficacy of vaccinations in children. Patients and Methods. A panel of experts of the supportive care working group of the Italian Association Paediatric Haematology Oncology (AIEOP addressed this issue by guidelines on vaccinations in paediatric cancer patients. The literature published between 1980 and 2013 was reviewed. Results and Conclusion. During intensive chemotherapy, vaccination turned out to be effective for hepatitis A and B, whilst vaccinations with toxoid, protein subunits, or bacterial antigens should be postponed to the less intensive phases, to achieve an adequate immune response. Apart from varicella, the administration of live-attenuated-virus vaccines is not recommended during this phase. Family members should remain on recommended vaccination schedules, including toxoid, inactivated vaccine (also poliomyelitis, and live-attenuated vaccines (varicella, measles, mumps, and rubella. By the time of completion of chemotherapy, insufficient serum antibody levels for vaccine-preventable diseases have been reported, while immunological memory appears to be preserved. Once immunological recovery is completed, usually after 6 months, response to booster or vaccination is generally good and allows patients to be protected and also to contribute to herd immunity.

  4. Guidelines on vaccinations in paediatric haematology and oncology patients.

    Science.gov (United States)

    Cesaro, Simone; Giacchino, Mareva; Fioredda, Francesca; Barone, Angelica; Battisti, Laura; Bezzio, Stefania; Frenos, Stefano; De Santis, Raffaella; Livadiotti, Susanna; Marinello, Serena; Zanazzo, Andrea Giulio; Caselli, Désirée

    2014-01-01

    Vaccinations are the most important tool to prevent infectious diseases. Chemotherapy-induced immune depression may impact the efficacy of vaccinations in children. A panel of experts of the supportive care working group of the Italian Association Paediatric Haematology Oncology (AIEOP) addressed this issue by guidelines on vaccinations in paediatric cancer patients. The literature published between 1980 and 2013 was reviewed. During intensive chemotherapy, vaccination turned out to be effective for hepatitis A and B, whilst vaccinations with toxoid, protein subunits, or bacterial antigens should be postponed to the less intensive phases, to achieve an adequate immune response. Apart from varicella, the administration of live-attenuated-virus vaccines is not recommended during this phase. Family members should remain on recommended vaccination schedules, including toxoid, inactivated vaccine (also poliomyelitis), and live-attenuated vaccines (varicella, measles, mumps, and rubella). By the time of completion of chemotherapy, insufficient serum antibody levels for vaccine-preventable diseases have been reported, while immunological memory appears to be preserved. Once immunological recovery is completed, usually after 6 months, response to booster or vaccination is generally good and allows patients to be protected and also to contribute to herd immunity.

  5. Vaccine candidate discovery for the next generation of malaria vaccines.

    Science.gov (United States)

    Tuju, James; Kamuyu, Gathoni; Murungi, Linda M; Osier, Faith H A

    2017-10-01

    Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  6. Subunit mass analysis for monitoring antibody oxidation.

    Science.gov (United States)

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-04-01

    Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.

  7. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  8. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Types Seasonal Avian Swine/Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) Español ... of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. Hundreds ...

  9. Thimerosal in Flu Vaccine

    Science.gov (United States)

    ... Avian Swine/Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend on ... or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose vials ...

  10. Vaccine Basics (Smallpox)

    Science.gov (United States)

    ... Side Effects of Vaccination Who Should Get a Smallpox Vaccination? Bioterrorism The Threat Preparedness Detection and Response Bioterrorism ... Revaccinees Examples of Major or “Take” Reactions to Smallpox Vaccination Vaccine Adverse Reaction Images Laboratory Personnel Specimen Collection ...

  11. Your child's first vaccines

    Science.gov (United States)

    ... multi.html . CDC review information for Multi Pediatric Vaccines: Your Child's First Vaccines: What you need to know (VIS): ... of that vaccine. Tell the person giving the vaccines if your child has ever had a severe reaction after any ...

  12. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  13. Risk capital allocation with autonomous subunits

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Smilgins, Aleksandrs

    2016-01-01

    the sum of the risks of the individual subunits. The question is how to allocate the risk capital of the group among the subunits in a fair way. In this paper we propose to use the Lorenz set as an allocation method. We show that the Lorenz set is operational and coherent. Moreover, we propose three......Risk capital allocation problems have been widely discussed in the academic literature. We consider a set of independent subunits collaborating in order to reduce risk: that is, when subunit portfolios are merged a diversification benefit arises and the risk of the group as a whole is smaller than...... fairness tests related directly to the problem of risk capital allocation and show that the Lorenz set satisfies all three tests in contrast to other well-known coherent methods. Finally, we discuss how to deal with non-uniqueness of the Lorenz set....

  14. Good vaccination practice: it all starts with a good vaccine storage temperature.

    Science.gov (United States)

    Vangroenweghe, Frédéric

    2017-01-01

    Recent introduction of strategies to reduce antibiotic use in food animal production implies an increased use of vaccines in order to prevent the economic impact of several important diseases in swine. Good Vaccination Practice (GVP) is an overall approach on the swine farm aiming to obtain maximal efficacy of vaccination through good storage, preparation and finally correct application to the target animals. In order to have a better insight into GVP on swine farms and the vaccine storage conditions, a survey on vaccination practices was performed on a farmers' fair and temperatures in the vaccine storage refrigerators were measured during farm visits over a period of 1 year. The survey revealed that knowledge on GVP, such as vaccine storage and handling, needle management and injection location could be improved. Less than 10% had a thermometer in their vaccine storage refrigerator on the moment of the visit. Temperature measurement revealed that only 71% of the measured refrigerators were in line with the recommended temperature range of +2 °C to +8 °C. Both below +2 °C and above +8 °C temperatures were registered during all seasons of the year. Compliance was lower during summer with an average temperature of 9.2 °C while only 43% of the measured temperatures were within the recommended range. The present study clearly showed the need for continuous education on GVP for swine veterinarians, swine farmers and their farm personnel in general and vaccine storage management in particular. In veterinary medicine, the correct storage of vaccines is crucial since both too low and too high temperatures can provoke damage to specific vaccine types. Adjuvanted killed or subunit vaccines can be damaged (e.g. structure of aluminiumhydroxide in adjuvans) by too low temperatures (below 0 °C), whereas lyophilized live vaccines are susceptible (e.g. loss of vaccine potency) to heat damage by temperatures above +8 °C. In conclusion, knowledge and awareness of GVP

  15. Human Vaccines & Immunotherapeutics: News

    OpenAIRE

    Riedmann, Eva M.

    2013-01-01

    Long-term effectiveness shown for Merck’s chickenpox vaccine Again—no link between vaccines and autism Experimental ovarian cancer vaccine successful in phase 1 Sinovac’s HFMD vaccine meets phase 3 study goal A vaccine for long-suffering cat allergy patients Vaccines are key to breaking infectious disease-malnutrition cycle Cancer vaccine failures due to the adjuvant IFA? Novartis’ typhoid vaccine make good progress

  16. Methods to assess the impact of mass oral cholera vaccination campaigns under real field conditions.

    Science.gov (United States)

    Deen, Jacqueline; Ali, Mohammad; Sack, David

    2014-01-01

    There is increasing interest to use oral cholera vaccination as an additional strategy to water and sanitation interventions against endemic and epidemic cholera. There are two internationally-available and WHO-prequalified oral cholera vaccines: an inactivated vaccine containing killed whole-cells of V. cholerae O1 with recombinant cholera toxin B-subunit (WC/rBS) and a bivalent inactivated vaccine containing killed whole cells of V. cholerae O1 and V. cholerae O139 (BivWC). The efficacy, effectiveness, direct and indirect (herd) protection conferred by WC/rBS and BivWC are well established. Yet governments may need local evidence of vaccine impact to justify and scale-up mass oral cholera vaccination campaigns. We discuss various approaches to assess oral cholera vaccine protection, which may be useful to policymakers and public health workers considering deployment and evaluation of the vaccine.

  17. Methods to assess the impact of mass oral cholera vaccination campaigns under real field conditions.

    Directory of Open Access Journals (Sweden)

    Jacqueline Deen

    Full Text Available There is increasing interest to use oral cholera vaccination as an additional strategy to water and sanitation interventions against endemic and epidemic cholera. There are two internationally-available and WHO-prequalified oral cholera vaccines: an inactivated vaccine containing killed whole-cells of V. cholerae O1 with recombinant cholera toxin B-subunit (WC/rBS and a bivalent inactivated vaccine containing killed whole cells of V. cholerae O1 and V. cholerae O139 (BivWC. The efficacy, effectiveness, direct and indirect (herd protection conferred by WC/rBS and BivWC are well established. Yet governments may need local evidence of vaccine impact to justify and scale-up mass oral cholera vaccination campaigns. We discuss various approaches to assess oral cholera vaccine protection, which may be useful to policymakers and public health workers considering deployment and evaluation of the vaccine.

  18. The Shiga toxin 2 B subunit inhibits net fluid absorption in human colon and elicits fluid accumulation in rat colon loops

    Directory of Open Access Journals (Sweden)

    V. Pistone Creydt

    2004-06-01

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis, and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.

  19. Identification of protective antigens for vaccination against systemic salmonellosis

    Directory of Open Access Journals (Sweden)

    Dirk eBumann

    2014-08-01

    Full Text Available There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50-200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing.

  20. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible.

    Science.gov (United States)

    Chen, Qiang

    2015-05-01

    The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of embryos in superovulated guinea pigs following active immunization against the inhibin alpha-subunit.

    Science.gov (United States)

    Shi, F; Mochida, K; Suzuki, O; Matsuda, J; Ogura, A; Tsonis, C G; Watanabe, G; Suzuki, A K; Taya, K

    2000-08-01

    Embryo recovery and subsequent embryonic development from guinea pigs treated with or without inhibin vaccines were compared to determine the effect of active immunization against the inhibin alpha-subunit. Twenty female guinea pigs of the Hartley strain were injected 3 times either with 1 ml inhibin vaccine (recombinant ovine inhibin a-subunit in oil emulsion: 50 microg/ml, inhibin-immunized group), or 1 ml placebo (saline in oil emulsion; control group) at 4 week intervals. After one estrous cycle following the last injection, females were naturally mated and embryos were collected at 11:00 hr of day 6 of pregnancy (Day 1: sperm in the vaginal smear) for culture in vitro. Active immunization increased the number of corpora lutea (12.6+/-3.0 vs. 4.6+/-0.2, P0.05). During subsequent 8 day culture in vitro, most of the recovered embryos formed trophoblast outgrowth; 100% (14/14) and 88.2% (15/17) in control and immunized groups, respectively. High levels of inhibin antibody titers were sustained in the inhibin-immunized guinea pigs at least for 5 months after the last injection while no antibody titer was detected in the control animals. These results indicate that active immunization against the inhibin a-subunit is a long-acting and efficient method to induce superovulation with normal embryonic development in the guinea pig.

  2. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling.

    OpenAIRE

    Felix Geeraedts; Nadege Goutagny; Veit Hornung; Martina Severa; Aalzen de Haan; Judith Pool; Jan Wilschut; Katherine A Fitzgerald; Anke Huckriede

    2008-01-01

    In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV) or subunit (...

  3. Smallpox vaccines: Past, present, and future.

    Science.gov (United States)

    Parrino, Janie; Graham, Barney S

    2006-12-01

    The global eradication of smallpox was a tremendous achievement made possible by the development of an effective vaccine. Routine vaccination of the general population is no longer recommended. However, stocks of variola virus, the causative agent of smallpox, still exist in 2 secure laboratories, and permanent disposal has been controversial. In addition, there is speculation that variola virus may exist outside of these 2 facilities, and there is a concern that the threat of smallpox will be used as a bioterrorist weapon. In 2002, this concern led to a vaccination campaign in US military and civilian healthcare workers and first responders. Although the historical live virus vaccine has proven efficacy, it also is associated with serious adverse events and rare fatal reactions, particularly in the setting of immunodeficiency and atopic eczema. In addition, this vaccine was historically produced using animal intermediaries in a process that was prone to contamination and not acceptable for current manufacturing standards. Development of alternative poxvirus vaccines is focused on replication-defective viruses, gene-based vectors, and subunit approaches to improve safety and immunogenicity. The conundrum is that in the absence of an intentional release of variola, efficacy evaluation of new candidate vaccines will be limited to animal model testing, which creates new challenges for the vaccine licensure process. Although motivated by the threat of bioterrorism, the hope is for new poxvirus vaccines to have their greatest utility against other pathogenic orthopoxviruses such as monkeypox and for the development of recombinant poxvirus-based vectors to treat and prevent other diseases.

  4. Vaccine protection against Zika virus from Brazil.

    Science.gov (United States)

    Larocca, Rafael A; Abbink, Peter; Peron, Jean Pierre S; Zanotto, Paolo M de A; Iampietro, M Justin; Badamchi-Zadeh, Alexander; Boyd, Michael; Ng'ang'a, David; Kirilova, Marinela; Nityanandam, Ramya; Mercado, Noe B; Li, Zhenfeng; Moseley, Edward T; Bricault, Christine A; Borducchi, Erica N; Giglio, Patricia B; Jetton, David; Neubauer, George; Nkolola, Joseph P; Maxfield, Lori F; De La Barrera, Rafael A; Jarman, Richard G; Eckels, Kenneth H; Michael, Nelson L; Thomas, Stephen J; Barouch, Dan H

    2016-08-25

    Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.

  5. Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS.

    Directory of Open Access Journals (Sweden)

    Susan M Twine

    2010-04-01

    Full Text Available Francisella tularensis subspecies tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. An attenuated live vaccine strain (LVS has been shown to be efficacious in humans, but safety concerns have prevented its licensure by the FDA. Recently, F. tularensis LVS has been produced under Current Good Manufacturing Practice (CGMP guidelines. Little is known about the immunogenicity of this new vaccine preparation in comparison with extensive studies conducted with laboratory passaged strains of LVS. Thus, the aim of the current work was to evaluate the repertoire of antibodies produced in mouse strains vaccinated with the new LVS vaccine preparation.In the current study, we used an immunoproteomics approach to examine the repertoire of antibodies induced following successful immunization of BALB/c versus unsuccessful vaccination of C57BL/6 mice with the new preparation of F. tularensis LVS. Successful vaccination of BALB/c mice elicited antibodies to nine identified proteins that were not recognized by antisera from vaccinated but unprotected C57BL/6 mice. In addition, the CGMP formulation of LVS stimulated a greater repertoire of antibodies following vaccination compared to vaccination with laboratory passaged ATCC LVS strain. A total of 15 immunoreactive proteins were identified in both studies, however, 16 immunoreactive proteins were uniquely reactive with sera from the new formulation of LVS.This is the first report characterising the antibody based immune response of the new formulation of LVS in the widely used murine model of tularemia. Using two mouse strains, we show that successfully vaccinated mice can be distinguished from unsuccessfully vaccinated mice based upon the repertoire of antibodies generated. This opens the door towards downselection of antigens for incorporation into tularemia subunit vaccines. In addition, this work also highlights differences in the humoral immune response to

  6. Renal Disease and Adult Vaccination

    Science.gov (United States)

    ... Vaccines: The Basics Adult Vaccination Resources for Healthcare Professionals ... Influenza vaccine each year to protect against seasonal flu Tdap vaccine to protect against whooping cough and ...

  7. Liver Disease and Adult Vaccination

    Science.gov (United States)

    ... Vaccines: The Basics Adult Vaccination Resources for Healthcare Professionals ... Influenza vaccine each year to protect against seasonal flu Tdap vaccine to protect against whooping cough and ...

  8. HIV Infection and Adult Vaccination

    Science.gov (United States)

    ... Vaccines: The Basics Adult Vaccination Resources for Healthcare Professionals ... Influenza vaccine each year to protect against seasonal flu Tdap vaccine to protect against whooping cough and ...

  9. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  10. Nanoengineering of vaccines using natural polysaccharides.

    Science.gov (United States)

    Cordeiro, Ana Sara; Alonso, María José; de la Fuente, María

    2015-11-01

    Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Hookworm vaccines.

    Science.gov (United States)

    Diemert, David J; Bethony, Jeffrey M; Hotez, Peter J

    2008-01-15

    Hookworm infection caused by the soil-transmitted nematodes Necator americanus and Ancylostoma duodenale is one of the most common parasitic infections worldwide. Although not directly responsible for substantial mortality, it causes significant morbidity in the form of chronic anemia and protein malnutrition. Current global control efforts based on periodic mass anthelmintic administration are unsustainable, and new control strategies must be developed. This review describes progress in the development of vaccines against hookworm infection, including the preclinical and initial clinical testing of the N. americanus Ancylostoma Secreted Protein-2 Hookworm Vaccine. Plans call for eventual development of a vaccine that will combine at least 2 hookworm antigens--one targeting the larval stage of the life cycle and another targeting the adult worm living in the gastrointestinal tract.

  12. Mucosal vaccines

    Science.gov (United States)

    Nizard, Mevyn; Diniz, Mariana O; Roussel, Helene; Tran, Thi; Ferreira, Luis CS; Badoual, Cecile; Tartour, Eric

    2014-01-01

    The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites. PMID:25424921

  13. Effect of viral membrane fusion activity on antibody induction by influenza H5N1 whole inactivated virus vaccine

    NARCIS (Netherlands)

    Geeraedts, Felix; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke; de Haan, Aalzen

    2012-01-01

    Whole inactivated virus (WIV) influenza vaccines are more immunogenic in unprimed individuals than split-virus or subunit vaccines. In mice, this superior immunogenicity has been linked to the recognition of the viral ssRNA by endosomal TLR7 receptors in immune cells, leading to IFN alpha production

  14. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    ... cholera, hepatitis-B, and many more are in the process of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1 Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. African Journal of Biotechnology Vol. 2 (12), pp. 679-683, December 2003 ...

  15. Human papillomavirus: current status and issues of vaccination.

    Science.gov (United States)

    Malik, Heena; Khan, Fahim H; Ahsan, Haseeb

    2014-02-01

    An association between human papillomavirus (HPV) infection and the development of cervical cancer was initially suggested over 30 years ago, and today there is clear evidence that certain subtypes of HPV are the causative agents of such malignancies. Papillomaviruses make up a vast family that comprises hundreds of different viruses. These viruses infect epithelia in humans and animals and cause benign hyperproliferative lesions, commonly called warts or papillomas, which can occasionally progress to squamous cell cancer. HPV infections are considered the most common among sexually transmitted diseases. One of the most prevalent cancer types induced by HPV (mostly types 16 and 18) is cervical cancer. Vaccination is the most effective means of preventing this infectious disease. These prophylactic vaccines, based on virus-like particles (VLPs), are extremely effective in providing protection from infection in almost 100 % of cases. VLP vaccines of HPV are subunit vaccines consisting only of the major viral capsid protein of HPV. There are two types of vaccine available: bivalent vaccine (against HPV-16/18) and quadrivalent vaccine (against HPV-6/11/16/18). Second-generation prophylactic HPV vaccines, currently in clinical trials, may hold several merits over the current bivalent and quadrivalent vaccines, such as protection against additional oncogenic HPV types, less dependence on cold-chain storage and distribution, and non-invasive methods of delivery.

  16. Analysis of the DosR regulon genes to select cytotoxic T lymphocyte epitope specific vaccine candidates using a reverse vaccinology approach

    Directory of Open Access Journals (Sweden)

    Kirti Pandey

    2016-01-01

    Conclusion: Our study has generated several promiscuous antigenic peptides capable of binding to major histocompatibility complex class I with high affinity. These epitopes can become part of a postexposure multivalent subunit vaccine upon experimental validation.

  17. Vexing Vaccines

    Science.gov (United States)

    Bowman, Darcia Harris

    2004-01-01

    Schools play a key role in ensuring that children are being immunized against diseases, but conflicting research is making enforcement difficult. This article discusses a growing trend of vaccine avoidance and the endless supply of conflicting information and research about immunization safety. Despite the controversy, many people appear to accept…

  18. Valuing vaccination

    Science.gov (United States)

    Bärnighausen, Till; Bloom, David E.; Cafiero-Fonseca, Elizabeth T.; O’Brien, Jennifer Carroll

    2014-01-01

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery. PMID:25136129

  19. DNA Vaccines

    Indian Academy of Sciences (India)

    research interests include: eukaryotic gene expres- sion and infectious diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL I ... T -cells: Lymphocytes that differentiate primarily in the thymus and are central to the control and ... enhance DNA delivery into skeletal muscle.

  20. Fusion of Cholera toxin B subunit (ctxB with Shigella dysenteriae type I toxin B subunit (stxB, Cloning and Expression that in E. coli

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Background and Objective: Shiga toxin (STx is the main virulence factor in Shigella Dysenteriae type I and is composed of an enzymatic subunit STxA monomer and a receptor-binding STxB homopentamer. Shigella toxin B subunit (STxB is a non-toxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with glycolipid (Gb3. Cholera toxin B subunit (CTB has been known as a mucosal adjuvant for vaccines and genetic fusions of CTB with several hetroantigens such as stxB and can increase humoral and mucosal immunity response.Materials and Methods: In this study, after primer designing, the ctxB and stxB genes were amplified by PCR and cloned into the pGEM-T vector. The stxB gene with a nonfurin linker was fused to the ctB gene in the pGEM vector via the restriction enzyme method and thereafter the fused genes of ctB-stxB were subcloned in the pET28a(+ as an expression vector. The expressed chimeric protein was induced with IPTG and evaluated via the SDS.PAGE and Western blot techniques. Result: The pET28a (+/ctxB-stxB expression vector was confirmed by endonuclease digestion, PCR, and sequence analysis. The CTB-STB fusion protein was confirmed by the SDS-PAGE and Western-blot. Conclusion: The CTB-STB recombinant protein can be used as a new and desirable mucosal vaccine for Shigella Dysenteriae type I.

  1. Lactogenic immunity to transmissible gastroenteritis virus induced by a subunit immunogen.

    Science.gov (United States)

    Gough, P M; Frank, C J; Moore, D G; Sagona, M A; Johnson, C J

    1983-12-01

    A subunit prepared from transmissible gastroenteritis (TGE) virus and used to immunize 24 gilts prior to farrowing induced production of specific antibody in the serum and milk. Challenge of pigs, two to seven days of age and suckling on the vaccinated gilts, with the Illinois strain of TGE virus resulted in morbidity of 28% and mortality of 4% as compared with 100 and 73%, respectively, for control piglets. Piglets nursing on a sow which had been immunized approximately 10 months previously were not protected, indicating that lactogenic immunity may be of short duration. Revaccination of this animal resulted in an anamnestic response.

  2. IMMUNOGENICITY OF ADJUVANT INFLUENZA VACCINE FOR PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    M. P. Kostinov

    2017-01-01

    Full Text Available Recent epidemiological events showed that pregnant women are the most vulnerable part of population if there is the flu in the country and they die much more often than the rest part of people. That is why influenza vaccination of population including pregnant women is one of the priorities of public health service in our state. Worldwide experience of influenza vaccination of either adults or children by new adjuvant vaccine has caused our research of its efficiency among pregnant women. The aim of the study was to investigate the level of antibodies to influenza virus strain A/H1N1/v, A/H3N2 and B in pregnant women vaccinated adjuvant trivalent subunit vaccine. Our research is randomized and comparative on parallel groups. It was carried out within the demands of Russian Federation and International ethic norms adapted to such kind of researches. Evaluation of the immunogenicity of the vaccine was conducted in 27 pregnant women in the II trimester of gestation, and in 23 pregnant women in the III trimester of gestation, 19 non-pregnant women was in the control group. The level of antibodies in the serum was determined using a reaction of hemagglutination inhibition before and 1, 3, 6, 9 and 12 months after the vaccination. Revealed that influenza vaccination of pregnant women in the II and III trimester, causes the increase in titers of antibodies to vaccine influenza strains A and B, to fully meet the required criteria CPMP, and does not differ from the nonpregnant group. In a month after vaccination the level of seroprotective against A/H1N1/v was 77.0%, A/H3N2 — 88.9%, B — 85.2% after vaccination in II trimester, and 87.0; 87.0; 91.35% in III trimester of gestation. The factor of seroconversion after vaccination in II trimester for A/H1N1/v was equal to 6.5, A/H3N2 — 7.2, B — 6.5, after vaccination in III trimester of pregnancy: 7.1, 6.5 and 5.1 correspondingly. At the same time revealed accelerated decline in antibody titer against

  3. Vaccines licensed and in clinical trials for the prevention of dengue.

    Science.gov (United States)

    Torresi, J; Ebert, G; Pellegrini, M

    2017-05-04

    Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.

  4. Vaccination in European salmonid aquaculture: a review of practices and prospects.

    Science.gov (United States)

    Press, C M; Lillehaug, A

    1995-01-01

    Disease control by vaccination is widely used in European salmonid aquaculture against vibriosis (Vibrio anguillarum), cold-water vibriosis (Vibrio salmonicida), yersiniosis or enteric redmouth disease (Yersinia ruckeri) and furunculosis (Aeromonas salmonicida subsp. salmonicida). The vaccines against the Vibrio spp. and Y. ruckeri have proven effective especially when administered by injection. Furunculosis vaccines have been less successful and have relied on combination with potent adjuvants to achieve acceptable protection. Application of modern molecular techniques to furunculosis research has delivered a crop of experimental vaccines that incorporate purified virulence factors and have shown increased protection during challenge. Gene technology has also been used to create a defined, nonreverting mutation in a strain of A. salmonicida, which has enhanced the feasibility of attenuated live vaccines. The development of experimental subunit vaccines against the viral infections and the continued advances in the field of immunostimulants, adjuvants and antigen carriers provide considerable promise for the future development of commercial vaccines for use in salmonid aquaculture.

  5. Playing with fire ? What is influencing horse owners? decisions to not vaccinate their horses against deadly Hendra virus infection?

    OpenAIRE

    Goyen, Kailiea Arianna; Wright, John David; Cunneen, Alexandra; Henning, Joerg

    2017-01-01

    Hendra virus is a zoonotic paramyxovirus, which causes severe respiratory and neurological disease in horses and humans. Since 2012, the Hendra virus sub-unit G vaccine has been available for horse vaccination in Australia. Uptake of the vaccine has been limited and spill-over events of Hendra virus infection in horses continue to occur. We conducted an online, questionnaire-based cross-sectional study of 376 horse owners belonging to a variety of different equestrian clubs in Queensland, Aus...

  6. The evaluation of a nucleoprotein ELISA for the detection of equine influenza antibodies and the differentiation of infected from vaccinated horses (DIVA).

    Science.gov (United States)

    Galvin, Pamela; Gildea, Sarah; Arkins, Sean; Walsh, Cathal; Cullinane, Ann

    2013-12-01

    Antibodies against equine influenza virus (EIV) are traditionally quantified by haemagglutination inhibition (HI) or single radial haemolysis (SRH). To evaluate an ELISA for the detection of antibodies against influenza nucleoprotein in the diagnosis and surveillance of equine influenza (EI). The ELISA was compared with the SRH and HI tests. Serial serum samples from 203 naturally and 14 experimentally infected horses, from 60 weanlings following primary vaccination with five different vaccines (two whole inactivated vaccines, two ISCOM-based subunit vaccines and a recombinant canarypox virus vaccine) and from 44 adult horses following annual booster vaccination with six different vaccines were analysed. Fewer seroconversions were detected in clinical samples by ELISA than by SRH or HI but ELISA was more sensitive than SRH in naïve foals post-experimental infection. The ELISA did not detect the antibody response to vaccination with the recombinant canarypox virus vaccine confirming the usefulness of the combination of this kit and vaccine to differentiate between naturally infected and vaccinated horses, that is, DIVA. No DIVA capacity was evident with the other vaccines. The results suggest that this ELISA is a useful supplementary test for the diagnosis of EI although less sensitive than HI or SRH. It is an appropriate test for EI surveillance in a naïve population and may be combined with the recombinant canarypox virus vaccine but not with other commercially available subunit vaccines, in a DIVA strategy. © 2013 Blackwell Publishing Ltd.

  7. Therapeutic Potential of Cholera Toxin B Subunit for the Treatment of Inflammatory Diseases of the Mucosa

    Directory of Open Access Journals (Sweden)

    Joshua M. Royal

    2017-11-01

    Full Text Available Cholera toxin B subunit (CTB is a mucosal immunomodulatory protein that induces robust mucosal and systemic antibody responses. This well-known biological activity has been exploited in cholera prevention (as a component of Dukoral® vaccine and vaccine development for decades. On the other hand, several studies have investigated CTB’s immunotherapeutic potential in the treatment of inflammatory diseases such as Crohn’s disease and asthma. Furthermore, we recently found that a variant of CTB could induce colon epithelial wound healing in mouse colitis models. This review summarizes the possible mechanisms behind CTB’s anti-inflammatory activity and discuss how the protein could impact mucosal inflammatory disease treatment.

  8. Comparison of effects of adjuvants on efficacy of virion envelope herpes simplex virus vaccine against labial infection of BALB/c mice.

    OpenAIRE

    Thomson, T A; Hilfenhaus, J; Moser, H; Morahan, P S

    1983-01-01

    A subunit virion envelope vaccine of herpes simplex virus type 1 was evaluated for its ability to protect labially infected mice from development of the primary herpetic lesion, encephalitic death, and latent virus infection in the trigeminal ganglion. Several adjuvants, including aluminum hydroxide and polyriboinosinic acid-polyribocytidylic acid complexed with poly-L-lysine and carboxymethyl cellulose were investigated for their ability to enhance protection of the subunit vaccine and were ...

  9. Reasons for instability of bacterial vaccines.

    Science.gov (United States)

    Corbel, M J

    1996-01-01

    Stability problems in relation to bacterial vaccines vary widely between different types of product. Killed whole cell bacterial vaccines including pertussis, cholera and typhoid vaccines generally show a high degree of stability of potency. Reversion to toxicity may occur in incompletely inactivated pertussis vaccines. Live attenuated vaccines such as BCG and Ty21a typhoid vaccines lose potency through loss of viability when exposed to adverse conditions. Both vaccines are susceptible to ultra violet radiation but Ty21a also has low thermal stability. Its fragility is probably a consequence of multiple mutations affecting structural and metabolic factors. Diphtheria and tetanus toxoids generally show high stability of potency. Reversion to toxicity may occur if the toxoiding process is inadequate. Decline in potency may result from exposure to adverse conditions, such as freezing, that affect the interaction with the adjuvant. Similar problems may be encountered with purified subunit vaccines such as acellular pertussis preparations. Some components, in particular pertussis toxin and filamentous haemagglutinin, show inherent low stability and degrade on storage at refrigerator temperatures unless stabilized by a protein cross-linking agent. Bacterial proteases carried over from the cell cultures may also be responsible for degradation of purified components. Purified bacterial polysaccharides usually show high stability if freeze-dried under appropriate conditions. Catalytic degradation may occur however, if the stabilizers are of inadequate purity. Polysaccharide-protein conjugates such as Haemophilus influenzae b (Hib) polyribosylribityl phosphate-protein conjugates show high thermal stability if freeze dried. In the liquid state, such conjugates tend to degrade by hydrolysis of the polysaccharide chains. Combined vaccines may present special stability problems because of the interaction of the various components in the liquid state. It can be difficult to

  10. Design of a hyperstable 60-subunit protein icosahedron

    Science.gov (United States)

    Hsia, Yang; Bale, Jacob B.; Gonen, Shane; Shi, Dan; Sheffler, William; Fong, Kimberly K.; Nattermann, Una; Xu, Chunfu; Huang, Po-Ssu; Ravichandran, Rashmi; Yi, Sue; Davis, Trisha N.; Gonen, Tamir; King, Neil P.; Baker, David

    2016-07-01

    The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent ‘standard candles’ for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology.

  11. Vaccine Adverse Events

    Science.gov (United States)

    ... Biologics Evaluation & Research Vaccine Adverse Events Vaccine Adverse Events Share Tweet Linkedin Pin it More sharing options ... the primary immunization series in infants Report Adverse Event Report a Vaccine Adverse Event Contact FDA (800) ...

  12. Childhood Vaccine Schedule

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Childhood Vaccine Schedule Past Issues / Spring 2008 Table of Contents ... please turn Javascript on. When to Vaccinate What Vaccine Why Birth (or any age if not previously ...

  13. Human Papillomavirus (HPV) Vaccine

    Science.gov (United States)

    Why get vaccinated?HPV vaccine prevents infection with human papillomavirus (HPV) types that are associated with cause ... at http://www.cdc.gov/hpv. HPV Vaccine (Human Papillomavirus) Information Statement. U.S. Department of Health and ...

  14. Vaccine-Preventable Disease Photos

    Science.gov (United States)

    Home | About | A-Z | Contact | Follow Vaccine Information You Need VACCINE BASICS Evaluating Online Health Information FAQs How Vaccines Work Importance of Vaccines Paying for Vaccines State Immunization Programs ...

  15. Current Vaccine Shortages and Delays

    Science.gov (United States)

    ... value="Submit" /> Related Links Vaccines & Immunizations Current Vaccine Shortages & Delays Recommend on Facebook Tweet Share Compartir ... vaccination are included in this update. Chart of Vaccines* in Delay or Shortage National Vaccine Supply Shortages ...

  16. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy.

    Science.gov (United States)

    Jiang, Xi; Liu, Yang; Tan, Ming

    2017-04-12

    The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the 'Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed.

  17. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis

    Science.gov (United States)

    Gomez, Gabriel; Adams, Leslie G.; Rice-Ficht, Allison; Ficht, Thomas A.

    2013-01-01

    Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development. PMID:23720712

  18. Hepatitis B Vaccine

    Science.gov (United States)

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  19. Immunology Update: New Vaccines.

    Science.gov (United States)

    Starr, S Paul

    2016-11-01

    A new 9-valent human papillomavirus (HPV) vaccine is effective against more cancer-causing HPV types than previous vaccines. HPV vaccine series started with previous vaccines can be completed with the 9-valent vaccine. Two new influenza vaccines are available for adults 65 years and older: a high-dose vaccine and an enhanced adjuvant vaccine. These elicit stronger antibody responses than standard-dose vaccines. Current guidelines specify no preference for the new versus standard-dose vaccines. Two new group B meningococcal vaccines are intended for use during outbreaks and for patients with asplenia, complement deficiencies, frequent occupational meningococcus exposure, or for patients who desire protection from type B meningococcus. These are not substitutes for the quadrivalent vaccine already in use. For pneumococcus, new recommendations state that 13-valent pneumococcal conjugate vaccine (PCV13) should be administered to patients 65 years and older, followed at least 1 year later by the polyvalent pneumococcal polysaccharide vaccine (PPSV23). For patients ages 19 to 64 years with immunocompromise and not previously vaccinated against pneumococcus, administration of these two vaccines should be separated by at least 8 weeks. Rotavirus vaccine is standard for infants at age 2 months. Also, there is a new cholera vaccine approved for use in the United States. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  20. Working towards dengue as a vaccine-preventable disease: challenges and opportunities.

    Science.gov (United States)

    Shrivastava, Ambuj; Tripathi, Nagesh K; Dash, Paban K; Parida, Manmohan

    2017-10-01

    Dengue is an emerging viral disease that affects the human population around the globe. Recent advancements in dengue virus research have opened new avenues for the development of vaccines against dengue. The development of a vaccine against dengue is a challenging task because any of the four serotypes of dengue viruses can cause disease. The development of a dengue vaccine aims to provide balanced protection against all the serotypes. Several dengue vaccine candidates are in the developmental stages such as inactivated, live attenuated, recombinant subunit, and plasmid DNA vaccines. Area covered: The authors provide an overview of the progress made in the development of much needed dengue vaccines. The authors include their expert opinion and their perspectives for future developments. Expert opinion: Human trials of a live attenuated tetravalent chimeric vaccine have clearly demonstrated its potential as a dengue vaccine. Other vaccine candidate molecules such as DENVax, a recombinant chimeric vaccine andTetraVax, are at different stages of development at this time. The authors believe that the novel strategies for testing and improving the immune response of vaccine candidates in humans will eventually lead to the development of a successful dengue vaccine in future.

  1. Current and next-generation bluetongue vaccines: Requirements, strategies, and prospects for different field situations.

    Science.gov (United States)

    Feenstra, Femke; van Rijn, Piet A

    2017-03-01

    Bluetongue virus (BTV) causes the hemorrhagic disease bluetongue (BT) in ruminants. The best way to control outbreaks is vaccination. Currently, conventionally modified-live and inactivated vaccines are commercially available, which have been successfully used to control BT, but nonetheless have their specific shortcomings. Therefore, there is a need for improved BT vaccines. The ideal BT vaccine is efficacious, safe, affordable, protective against multiple serotypes and enables the differentiation of infected from vaccinated animals. Different field situations require specific vaccine profiles. Single serotype outbreaks in former BT-free areas need rapid onset of protection against viremia of the respective serotype. In contrary, endemic multiple serotype situations require long-lasting protection against all circulating serotypes. The ideal BT vaccine for all field situations does not exist and balancing between vaccine properties is needed. Many new vaccines candidates, ranging from non-replicating subunits to replicating next-generation reverse genetics based vaccines, have been developed. Some have been tested extensively in large numbers of ruminants, whereas others were developed recently and have only been tested in vitro and in mice models. Most vaccine candidates are promising, but have their specific shortcomings and advantages. In this review, current and next-generation BT vaccines are discussed in the light of prerequisites for different field situations.

  2. The path of malaria vaccine development: challenges and perspectives.

    Science.gov (United States)

    Arama, C; Troye-Blomberg, M

    2014-05-01

    Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  3. The use of transgenic parasites in malaria vaccine research.

    Science.gov (United States)

    Othman, Ahmad Syibli; Marin-Mogollon, Catherin; Salman, Ahmed M; Franke-Fayard, Blandine M; Janse, Chris J; Khan, Shahid M

    2017-07-01

    Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.

  4. Evaluation of MAP-specific peptides following vaccination of goats

    DEFF Research Database (Denmark)

    Lybeck, Kari; Sjurseth, Siri K.; Melvang, Heidi Mikkelsen

    peptides. IFN-γ responses in healthy goats after the first vaccination were low, but testing of T cell lines from MAP-infected goats identified peptides inducing strong proliferative responses. Peptides for a second vaccination were selected by combining results from this study with a parallel cattle study......Our aim is to develop a subunit MAP vaccine not interfering with the diagnosis of paratuberculosis or bovine tuberculosis. This study’s objective was to evaluate MAP-specific peptides defined by in silico analysis. Peptides were picked by 1) comparing MAP genomes to that of other mycobacterium...... species or 2) selected based on “experience”. Peptides predicted to bind bovine MHC II by in silico analysis were included in further studies, resulting in two panels 1) genome-based and 2) selected. Initially, two groups of 15 healthy goats were vaccinated with one of the two panels (50 µg/peptide in CAF...

  5. Single Amino Acid Polymorphisms of Pertussis Toxin Subunit S2 (PtxB Affect Protein Function.

    Directory of Open Access Journals (Sweden)

    Scott H Millen

    Full Text Available Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice.

  6. Detection, characterization and quantitation of coxsackievirus A16 using polyclonal antibodies against recombinant capsid subunit proteins.

    Science.gov (United States)

    Liu, Qingwei; Ku, Zhiqiang; Cai, Yicun; Sun, Bing; Leng, Qibin; Huang, Zhong

    2011-04-01

    Coxsackievirus A16 (CVA16), together with enterovirus type 71 (EV71), is responsible for most cases of hand, foot and mouth disease (HFMD) worldwide. Recent findings suggest that the recombination between CVA16 and EV71, and co-circulation of these two viruses may have contributed to the increase of HFMD cases in China over the past few years. Thus, for CVA16, further understanding of its virology, epidemiology and development of diagnostic tests and vaccines are of importance. The present study aimed to develop reagents and protocols for the detection, characterization and quantitation of CVA16. Recombinant CVA16 capsid subunit proteins VP0, VP3 and truncated VP1, were produced in Escherichia coli and used to immunize guinea pigs to generate polyclonal antibodies. The resultant three antisera detected specifically CVA16 propagated in Vero cells by immunostaining, ELISA and Western blotting. The antisera was used to show that CVA16 capsids were composed of correctly processed VP0, VP1 and VP3 subunits, and were present in the form of efficiently assembled particles. A method for the quantitation of the yield of CVA16 in Vero cells was established based on a Western blotting protocol using the recombinant VP0 as a reference standard and anti-VP0 as the detection antibody. This study shows the development and validation of reagents and methods, for qualitative and quantitative determination of CVA16, which are essential for the development of vaccines. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Cleft Lip Repair: The Hybrid Subunit Method

    OpenAIRE

    Tollefson, TT

    2016-01-01

    Copyright © 2016 by Thieme Medical Publishers, Inc. The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the ...

  8. allelic variation of hmw glutenin subunits of ethiopian bread wheat ...

    African Journals Online (AJOL)

    journal

    reduced subunits of glutenin proteins bands are separated: the high molecular weight (HMW) and low molecular weight (LMW) subunits (Payne et al.,1980; Jackson et al., 1983). The HMW glutenin subunits (GS) of wheat protein are quantitatively minor, but functionally an important group of gluten proteins in the process of ...

  9. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  10. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    Science.gov (United States)

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  11. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    NARCIS (Netherlands)

    Baldwin, S.L.; Roeffen, W.; Singh, S.K; Tiendrebeogo, R.W.; Christiansen, M.; Beebe, E.; Carter, D.; Fox, C.B.; Howard, R.F.; Reed, S.G.; Sauerwein, R.; Theisen, M.

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the

  12. Vaccination in food allergic patients

    African Journals Online (AJOL)

    allergy: • Vaccines produced in embryonated eggs, such as yellow fever vaccine, influenza vaccine and rabies vaccine. Yellow fever vaccine is most likely to contain significant amounts of egg protein. • Vaccines produced in chick fibroblast cell cultures, such as measles and measles-mumps-rubella (MMR) vaccines, do not.

  13. Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Eun Kim

    2016-11-01

    Full Text Available Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E fused to the T4 fibritin foldon trimerization domain (Efl. The subunit vaccine was delivered intradermally through carboxymethyl cellulose microneedle array (MNA. The immunogenicity of these two vaccines, named Ad5.ZIKV-Efl and ZIKV-rEfl, was tested in C57BL/6 mice. Prime/boost immunization regimen was associated with induction of a ZIKV-specific antibody response, which provided neutralizing immunity. Moreover, protection was evaluated in seven-day-old pups after virulent ZIKV intraperitoneal challenge. Pups born to mice immunized with Ad5.ZIKV-Efl were all protected against lethal challenge infection without weight loss or neurological signs, while pups born to dams immunized with MNA-ZIKV-rEfl were partially protected (50%. No protection was seen in pups born to phosphate buffered saline-immunized mice. This study illustrates the preliminary efficacy of the E ZIKV antigen vaccination in controlling ZIKV infectivity, providing a promising candidate vaccine and antigen format for the prevention of Zika virus disease.

  14. Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation.

    Science.gov (United States)

    Kim, Eun; Erdos, Geza; Huang, Shaohua; Kenniston, Thomas; Falo, Louis D; Gambotto, Andrea

    2016-11-01

    Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV) has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E) fused to the T4 fibritin foldon trimerization domain (Efl). The subunit vaccine was delivered intradermally through carboxymethyl cellulose microneedle array (MNA). The immunogenicity of these two vaccines, named Ad5.ZIKV-Efl and ZIKV-rEfl, was tested in C57BL/6 mice. Prime/boost immunization regimen was associated with induction of a ZIKV-specific antibody response, which provided neutralizing immunity. Moreover, protection was evaluated in seven-day-old pups after virulent ZIKV intraperitoneal challenge. Pups born to mice immunized with Ad5.ZIKV-Efl were all protected against lethal challenge infection without weight loss or neurological signs, while pups born to dams immunized with MNA-ZIKV-rEfl were partially protected (50%). No protection was seen in pups born to phosphate buffered saline-immunized mice. This study illustrates the preliminary efficacy of the E ZIKV antigen vaccination in controlling ZIKV infectivity, providing a promising candidate vaccine and antigen format for the prevention of Zika virus disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. History of vaccination

    OpenAIRE

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  16. History of vaccination.

    Science.gov (United States)

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  17. Your Baby's First Vaccines

    Science.gov (United States)

    ... Barcodes Related Link Vaccines & Immunizations Immunization Schedules Your Child's First Vaccines Format: Select One PDF [336K] RTF [260K] Recommend ... of that vaccine. Tell the person giving the vaccines if your child has ever had a severe reaction after any ...

  18. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  19. VACCINATION SAFETY: MODERN DATA

    Directory of Open Access Journals (Sweden)

    V.К. Tatochenko

    2007-01-01

    Full Text Available Vaccination aided disease control over infection pathology among the children led to elimination of smallpox and poliomyelitis, drastic decrease of the tuberculous meningitis recurrences, tetanus, measles and other infection diseases and their complications. At the same time, Russia is still afraid to apply certain vaccines. The reasons for that are mainly subjective. This is the unjustified caution related to the fear that it may cause severe vaccine associated complications. The data in view of the lecture indicates the safety of the vaccinal prevention procedures and measures for the prevention of their complications.Key words: vaccinal prevention, vaccination complications, vaccination safety, children.

  20. Strategic priorities for respiratory syncytial virus (RSV) vaccine development

    Science.gov (United States)

    Anderson, L.J.; Dormitzer, P.R.; Nokes, D.J.; Rappuoli, R.; Roca, A.; Graham, B.S.

    2013-01-01

    Although RSV has been a high priority for vaccine development, efforts to develop a safe and effective vaccine have yet to lead to a licensed product. Clinical and epidemiologic features of RSV disease suggest there are at least 4 distinct target populations for vaccines, the RSV naïve young infant, the RSV naïve child ≥6 months of age, pregnant women (to provide passive protection to newborns), and the elderly. These target populations raise different safety and efficacy concerns and may require different vaccination strategies. The highest priority target population is the RSV naïve child. The occurrence of serious adverse events associated with the first vaccine candidate for young children, formalin inactivated RSV (FI-RSV), has focused vaccine development for the young RSV naïve child on live virus vaccines. Enhanced disease is not a concern for persons previously primed by a live virus infection. A variety of live-attenuated viruses have been developed with none yet achieving licensure. New live-attenuated RSV vaccines are being developed and evaluated that maybe sufficiently safe and efficacious to move to licensure. A variety of subunit vaccines are being developed and evaluated primarily for adults in whom enhanced disease is not a concern. An attenuated parainfluenza virus 3 vector expressing the RSV F protein was evaluated in RSV naïve children. Most of these candidate vaccines have used the RSV F protein in various vaccine platforms including virus-like particles, nanoparticles, formulated with adjuvants, and expressed by DNA or virus vectors. The other surface glycoprotein, the G protein, has also been used in candidate vaccines. We now have tools to make and evaluate a wide range of promising vaccines. Costly clinical trials in the target population are needed to evaluate and select candidate vaccines for advancement to efficacy trials. Better data on RSV-associated mortality in developing countries, better estimates of the risk of long term

  1. Vaccination in Fish

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar

    significant losses in aquacultural enterprises but vaccination methods implemented since the 1990s have demonstrated their role as one of the most efficient disease control strategies. These have been particularly successful with regard to bacterial diseases in Norwegian salmon farming where multivalent...... vaccines have reduced the need for usage of antibiotics with more than 99 % since the 1980s. Fish can be vaccinated by three different administration routes: injection, immersion and oral vaccination. Injection vaccination (intraperitoneal injection of vaccine) is the most time consuming and labor...... intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...

  2. Oncolytic vaccines.

    Science.gov (United States)

    Elsedawy, Noura B; Russell, Stephen J

    2013-10-01

    Oncolytic viruses are ideal platforms for tumor vaccination because they can mediate the direct in situ killing of tumor cells that release a broad array of tumor antigens and alarmins or danger signals thereby cross-priming antitumor cytotoxic T lymphocytes (CTLs), which mediate the indirect killing of uninfected cells. The balance between the direct and indirect killing phases of oncolytic virotherapy is the key to its success and can be manipulated by incorporating various immunomodulatory genes into the oncolytic virus genome. Recently, the interim analysis of a large multicenter Phase III clinical trial for Talimogene laherparepvec, a granulocyte-macrophage colony stimulating factor-armed oncolytic herpes simplex virus, revealed significant improvement in objective response and durable response rates over control arm and a trend toward improved overall survival. Meanwhile, newer oncolytics are being developed expressing additional immunomodulatory transgenes to further enhance cross-priming and the generation of antitumor CTLs and to block the immunosuppressive actions of the tumor microenvironment. Since oncolytic vaccines can be engineered to kill tumor cells directly, modulate the kinetics of the antitumor immune response and reverse the immunosuppressive actions of the tumor, they are predicted to emerge as the preferred immunotherapeutic anticancer weapons of the future.

  3. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children.

    Science.gov (United States)

    Walker, Richard I

    2015-02-18

    Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis.

    Science.gov (United States)

    Larrouy-Maumus, Gérald; Layre, Emilie; Clark, Simon; Prandi, Jacques; Rayner, Emma; Lepore, Marco; de Libero, Gennaro; Williams, Ann; Puzo, Germain; Gilleron, Martine

    2017-03-07

    The bacillus Calmette Guérin (BCG) vaccine, the only licensed vaccine against TB, displays partial and variable efficacy, thus making the exploitation of novel vaccination strategies a major priority. Most of the current vaccines in pre-clinical or clinical development are based on the induction of T cells recognizing protein antigens. However, a large number of T cells specific for mycobacterial lipids are induced during infection, suggesting that lipid-based vaccines might represent an important component of novel sub-unit vaccines. Here, we investigated whether immunization with defined mycobacterial lipid antigens induces protection in guinea pigs challenged with M. tuberculosis. Two purified mycobacterial lipid antigens, the diacylated sulfoglycolipids (Ac2SGL) and the phosphatidyl-myo-inositol dimannosides (PIM2) were formulated in biophysically characterized liposomes made of dimethyl-dioctadecyl-ammonium (DDA) and synthetic trehalose 6,6'-dibehenate (TDB). In three protection trials, a reduction of bacterial load in the spleen of inoculated animals was consistently observed compared to the unvaccinated group. Moreover, a reduction in the number of lesions and severity of pathology was detected in the lungs and spleen of the lipid vaccine group compared to unvaccinated controls. As the degree of protection achieved is similar to that observed using protein antigens in the same guinea pig model, these promising results pave the way to future investigations of lipid antigens as subunit vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Stable accumulation of seed storage proteins containing vaccine peptides in transgenic soybean seeds.

    Science.gov (United States)

    Maruyama, Nobuyuki; Fujiwara, Keigo; Yokoyama, Kazunori; Cabanos, Cerrone; Hasegawa, Hisakazu; Takagi, Kyoko; Nishizawa, Keito; Uki, Yuriko; Kawarabayashi, Takeshi; Shouji, Mikio; Ishimoto, Masao; Terakawa, Teruhiko

    2014-10-01

    There has been a significant increase in the use of transgenic plants for the large-scale production of pharmaceuticals and industrial proteins. Here, we report the stable accumulation of seed storage proteins containing disease vaccine peptides in transgenic soybean seeds. To synthesize vaccine peptides in soybean seeds, we used seed storage proteins as a carrier and a soybean breeding line lacking major seed storage proteins as a host. Vaccine peptides were inserted into the flexible disordered regions in the A1aB1b subunit three-dimensional structure. The A1aB1b subunit containing vaccine peptides in the disordered regions were sorted to the protein storage vacuoles where vaccine peptides are partially cleaved by proteases. In contrast, the endoplasmic reticulum (ER)-retention type of the A1aB1b subunit containing vaccine peptides accumulated in compartments that originated from the ER as an intact pro-form. These results indicate that the ER may be an organelle suitable for the stable accumulation of bioactive peptides using seed storage proteins as carriers. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Influenza virosomes as a vaccine adjuvant and carrier system.

    Science.gov (United States)

    Moser, Christian; Amacker, Mario; Zurbriggen, Rinaldo

    2011-04-01

    Influenza virosomes have been used for more than 10 years in commercial vaccines. The technology has been further developed as a carrier and adjuvant system for subunit vaccines, in particular for synthetic peptides. The extensive amount of preclinical and clinical data supports the notion that influenza virosomes represent a platform technology that ensures robust and long-lasting immune responses against subunit antigens with an excellent safety profile. Structurally and functionally, virosomes are enveloped virus-like particles, although they are assembled in vitro. This unique feature ensures a tight control of their composition and at the same time provides the flexibility to adapt the particle to various types of antigens. The mode of action of virosomes is complex and includes carrier as well as immune-stimulatory functions.

  7. Towards a preventive strategy for neosporosis: challenges and future perspectives for vaccine development against infection with Neospora caninum.

    Science.gov (United States)

    Nishikawa, Yoshifumi

    2017-08-10

    Neosporosis is caused by the intracellular protozoan parasite Neospora caninum. This major disease-causing pathogen is responsible for inducing abortion in cattle, and these adverse events occur sporadically all over the world, including Japan. Currently, there are no vaccines on the market against infection with N. caninum. Because live and attenuated vaccines against N. caninum have had safety and effectiveness issues, development of a next-generation vaccine is urgently required. To develop a vaccine against neosporosis, my laboratory has been focused on the following: 1) understanding the host immune responses against Neospora infection, 2) identifying vaccine antigens and 3) developing an effective antigen-delivery system. The research strategy taken in my laboratory will have strong potential to progress current understanding of the pathogenesis of N. caninum infection and promote development of a novel subunit vaccine based on the specific vaccine antigen with an antigen-delivery system for controlling neosporosis.

  8. Cost-effectiveness of oral cholera vaccine in a stable refugee population at risk for epidemic cholera and in a population with endemic cholera.

    OpenAIRE

    Murray, J.; McFarland, D. A.; Waldman, R. J.

    1998-01-01

    Recent large epidemics of cholera with high incidence and associated mortality among refugees have raised the question of whether oral cholera vaccines should be considered as an additional preventive measure in high-risk populations. The potential impact of oral cholera vaccines on populations prone to seasonal endemic cholera has also been questioned. This article reviews the potential cost-effectiveness of B-subunit, killed whole-cell (BS-WC) oral cholera vaccine in a stable refugee popula...

  9. Aspergillus vaccines: Hardly worth studying or worthy of hard study?

    Science.gov (United States)

    Levitz, Stuart M

    2017-01-01

    Vaccines rank among the greatest advances in the history of public health. Yet, despite the need, there are no licensed vaccines to protect humans against fungal diseases, including aspergillosis. In this focused review, some of the major scientific and logistical challenges to developing vaccines to protect at-risk individuals against aspergillosis are discussed. Approaches that have shown promise in animal models include vaccines that protect against multiple fungal genera and those that are specifically directed to Aspergillus Advances in proteomics and glycomics have facilitated identification of candidate antigens for use in subunit vaccines. Novel adjuvants and delivery systems are becoming available that can skew vaccine responses toward those associated with protection. Immunotherapy consisting of adoptive transfer of Aspergillus-specific T cells to allogeneic hematopoietic transplant recipients has advanced to human testing but is technically difficult and of unproven benefit. While progress has been impressive, much work still needs to be done if vaccines against aspergillosis are to become a reality. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  11. Viral vaccines for bony fish: past, present and future.

    Science.gov (United States)

    Salgado-Miranda, Celene; Loza-Rubio, Elizabeth; Rojas-Anaya, Edith; García-Espinosa, Gary

    2013-05-01

    Since 1970, aquaculture production has grown. In 2010, it had an annual average rate of 6.3% with 59.9 million tons of product and soon could exceed capture fisheries as a source of fishery products. However, the occurrence of viral diseases continues to be a significant limiting factor and its control is important for the development of this sector. In aquaculture farms, fish are reared under intensive culture conditions, and the use of viral vaccines has enabled an increase in production. Several types of vaccines and strategies of vaccination have been developed; however, this approach has not reached the expected goals in the most susceptible stage (fingerlings). Currently, there are inactivated and recombinant commercial vaccines, mainly for salmonids and cyprinids. In addition, updated genomic and proteomic technology has expedited the research and expansion of new vaccine models, such as those comprised of subunits or DNA. The objective of this review is to cover the various types of viral vaccines that have been developed and are available for bony fishes, as well as the advantages and challenges that DNA vaccines present for massive administration in a growing aquaculture, possible risks for the environment, the controversy regarding genetically modified organisms and possible acceptance by consumers.

  12. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges.

    Science.gov (United States)

    Bomsel, Morgane; Tudor, Daniela; Drillet, Anne-Sophie; Alfsen, Annette; Ganor, Yonatan; Roger, Marie-Gaëlle; Mouz, Nicolas; Amacker, Mario; Chalifour, Anick; Diomede, Lorenzo; Devillier, Gilles; Cong, Zhe; Wei, Qiang; Gao, Hong; Qin, Chuan; Yang, Gui-Bo; Zurbriggen, Rinaldo; Lopalco, Lucia; Fleury, Sylvain

    2011-02-25

    Human immunodeficiency virus (HIV)-1 is mainly transmitted mucosally during sexual intercourse. We therefore evaluated the protective efficacy of a vaccine active at mucosal sites. Macaca mulatta monkeys were immunized via both the intramuscular and intranasal routes with an HIV-1 vaccine made of gp41-subunit antigens grafted on virosomes, a safe delivery carrier approved in humans with self-adjuvant properties. Six months after 13 vaginal challenges with simian-HIV (SHIV)-SF162P3, four out of five vaccinated animals remained virus-negative, and the fifth was only transiently infected. None of the five animals seroconverted to p27gag-SIV. In contrast, all 6 placebo-vaccinated animals became infected and seroconverted. All protected animals showed gp41-specific vaginal IgAs with HIV-1 transcytosis-blocking properties and vaginal IgGs with neutralizing and/or antibody-dependent cellular-cytotoxicity activities. In contrast, plasma IgGs totally lacked virus-neutralizing activity. The protection observed challenges the paradigm whereby circulating antiviral antibodies are required for protection against HIV-1 infection and may serve in designing a human vaccine against HIV-1-AIDS. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Status of vaccine research and development for Shigella.

    Science.gov (United States)

    Mani, Sachin; Wierzba, Thomas; Walker, Richard I

    2016-06-03

    Shigella are gram-negative bacteria that cause severe diarrhea and dysentery. In 2013, Shigella infections caused an estimated 34,400 deaths in children less than five years old and, in 2010, an estimated 40,000 deaths in persons older than five years globally. New disease burden estimates from newly deployed molecular diagnostic assays with increased sensitivity suggest that Shigella-associated morbidity may be much greater than previous disease estimates from culture-based methods. Primary prevention of this disease should be based on universal provision of potable water and sanitation methods and improved personal and food hygiene. However, an efficacious and low-cost vaccine would complement and accelerate disease reduction while waiting for universal access to water, sanitation, and hygiene improvements. This review article provides a landscape of Shigella vaccine development efforts. No vaccine is yet available, but human and animal challenge-rechallenge trials with virulent Shigella as well as observational studies in Shigella-endemic areas have shown that the incidence of disease decreases following Shigella infection, pointing to biological feasibility of a vaccine. Immunity to Shigella appears to be strain-specific, so a vaccine that covers the most commonly detected strains (i.e., S. flexneri 2a, 3a, 6, and S. sonnei) or a vaccine using cross-species conserved antigens would likely be most effective. Vaccine development and testing may be accelerated by use of animal models, such as the guinea pig keratoconjunctivitis or murine pneumonia models. Because there is no correlate of protection, however, human studies will be necessary to evaluate vaccine efficacy prior to deployment. A diversity of Shigella vaccine constructs are under development, including live attenuated, formalin-killed whole-cell, glycoconjugate, subunit, and novel antigen vaccines (e.g., Type III secretion system and outer membrane proteins). Copyright © 2016 World Health Organization

  14. Obesity vaccines.

    Science.gov (United States)

    Monteiro, Mariana P

    2014-01-01

    Obesity is one of the largest and fastest growing public health problems in the world. Last century social changes have set an obesogenic milieu that calls for micro and macro environment interventions for disease prevention, while treatment is mandatory for individuals already obese. The cornerstone of overweight and obesity treatment is diet and physical exercise. However, many patients find lifestyle modifications difficult to comply and prone to failure in the long-term; therefore many patients consider anti-obesity drugs an important adjuvant if not a better alternative to behavioral approach or obesity surgery. Since the pharmacological options for obesity treatment remain quite limited, this is an exciting research area, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing in energy homeostasis regulation and the use of molecular vaccines, targeting hormones such as somatostatin, GIP and ghrelin, to reduce body weight.

  15. Development of an Alternative Modified Live Influenza B Virus Vaccine

    Science.gov (United States)

    Finch, Courtney; Sutton, Troy; Obadan, Adebimpe; Aguirre, Isabel; Wan, Zhimin; Lopez, Diego; Geiger, Ginger; Gonzalez-Reiche, Ana Silvia; Ferreri, Lucas

    2017-01-01

    ABSTRACT Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo. Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines. IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013–2014, 2014–2015, and 2015–2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an

  16. Development of an Alternative Modified Live Influenza B Virus Vaccine.

    Science.gov (United States)

    Santos, Jefferson J S; Finch, Courtney; Sutton, Troy; Obadan, Adebimpe; Aguirre, Isabel; Wan, Zhimin; Lopez, Diego; Geiger, Ginger; Gonzalez-Reiche, Ana Silvia; Ferreri, Lucas; Perez, Daniel R

    2017-06-15

    Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive ( ts ) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated ( att ) virus vaccines (IAV att ). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines. IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative

  17. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladeshi children.

    Science.gov (United States)

    Saha, Amit; Chowdhury, Mohiul I; Nazim, Mohammad; Alam, Mohammad Murshid; Ahmed, Tanvir; Hossain, Mohammad Bakhtiar; Hore, Samar Kumar; Sultana, Gazi Nurun Nahar; Svennerholm, Ann-Mari; Qadri, Firdausi

    2013-01-11

    Immune responses to the inactivated oral whole cell cholera toxin B (CTB) subunit cholera vaccine, Dukoral(®), as well as three childhood vaccines in the national immunization system were compared in children living in high and low arsenic contaminated areas in Bangladesh. In addition, serum complement factors C3 and C4 levels were evaluated among children in the two areas. VACCINATIONS: Toddlers (2-5 years) were orally immunized with two doses of Dukoral 14 days apart. Study participants had also received diphtheria, tetanus and measles vaccines according to the Expanded Program on Immunization (EPI) in Bangladesh. The mean level of arsenic in the urine specimens in the children of the high arsenic area (HAA, Shahrasti, Chandpur) was 291.8μg/L while the level was 6.60μg/L in the low arsenic area (LAA, Mirpur, Dhaka). Cholera specific vibriocidal antibody responses were significantly increased in the HAA (87%, Pchildren after vaccination with Dukoral, but no differences were found between the two groups. Levels of CTB specific IgA and IgG antibodies were comparable between the two groups, whereas LPS specific IgA and IgG were higher in the LAA group, although response rates were comparable. Diphtheria and tetanus vaccine specific IgG responses were significantly higher in the HAA compared to the LAA group (Pvaccine as well as the EPI vaccines studied are immunogenic in children in high and low arsenic areas in Bangladesh. The results are encouraging for the potential use of cholera vaccines as well as the EPI vaccines in arsenic endemic areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. [Developments in HPV vaccination].

    Science.gov (United States)

    de Melker, Hester; Kenter, Gemma; van Rossum, Tekla; Conyn-van Spaendonck, Marina

    2012-01-01

    Vaccination against the human papilloma virus (HPV) has been included in the national Vaccination Programme of the Netherlands for 12-year-old girls since 2010. Vaccination coverage for the birth cohort of 1997 was 56.; there is a gradual increase in uptake. Continuous safety monitoring brought no new unknown serious side effects to light; many girls suffered from transient symptoms such as painful arm, fatigue and headache. After the current vaccines that protect against HPV types 2 and 4 types, respectively and induce some cross protection, vaccines are being developed that can induce broader protection. HPV vaccination of 12-year-old girls is cost-effective, even for relatively low vaccination coverage. The potential protection of HPV vaccination extends beyond prevention of cervical cancer by preventing other oncological manifestations of HPV infection in women as well as men and genital warts. The preventive HPV vaccines do not appear to be effective in treating existing abnormalities.

  19. Neurologic complications of vaccinations.

    Science.gov (United States)

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination. © 2014 Elsevier B.V. All rights reserved.

  20. Self-assembling protein nanoparticles in the design of vaccines

    Directory of Open Access Journals (Sweden)

    Jacinto López-Sagaseta

    2016-01-01

    Full Text Available For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.

  1. Recent advances in recombinant protein-based malaria vaccines.

    Science.gov (United States)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Vaccinations for Adults with Diabetes

    Science.gov (United States)

    Vaccinations for Adults with Diabetes The table below shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  3. Stoichiometry of δ subunit containing GABA(A) receptors.

    Science.gov (United States)

    Patel, B; Mortensen, M; Smart, T G

    2014-02-01

    Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Using site-directed mutagenesis, we inserted a highly characterized 9' serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose-response curves of cells co-expressing WT subunits with their respective L9'S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. © 2013 The British Pharmacological Society.

  4. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a doctor...

  5. Vaccines against poverty

    Science.gov (United States)

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  6. Vaccines against poverty.

    Science.gov (United States)

    MacLennan, Calman A; Saul, Allan

    2014-08-26

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.

  7. Hypersecretion of the alpha-subunit in clinically non-functioning pituitary adenomas: Diagnostic accuracy is improved by adding alpha-subunit/gonadotropin ratio to levels of alpha-subunit

    DEFF Research Database (Denmark)

    Andersen, Marianne; Ganc-Petersen, Joanna; Jørgensen, Jens O L

    2010-01-01

    In vitro, the majority of clinically non-functioning pituitary adenomas (NFPAs) produce gonadotropins or their alpha-subunit; however, in vivo, measurements of alpha-subunit levels may not accurately detect the hypersecretion of the alpha-subunit.......In vitro, the majority of clinically non-functioning pituitary adenomas (NFPAs) produce gonadotropins or their alpha-subunit; however, in vivo, measurements of alpha-subunit levels may not accurately detect the hypersecretion of the alpha-subunit....

  8. Vaccine Associated Myocarditis

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2017-04-01

    Full Text Available Most of the cases of vaccine associated myocarditis have been following small pox vaccination. Reports have also been there after streptococcal pneumonia vaccine and influenza vaccine. In some cases, autoimmune/inflammatory syndrome induced by adjuvants (ASIA used in the vaccine have been implicated. Exclusion of other causes is very important in the diagnostic process, especially that of acute coronary syndrome. Management is similar to that of other etiologies of myocarditis. These rare instances of myocarditis should not preclude one from taking necessary immunization for vaccine preventable diseases.

  9. Vaccines and Immunization Practice.

    Science.gov (United States)

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Development of a Vaccine against Escherichia coli Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Harry L. T. Mobley

    2015-12-01

    Full Text Available Urinary tract infection (UTI is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC. Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA, into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot

  11. Immune complex-based vaccine for pig protection against parvovirus.

    Science.gov (United States)

    Roić, B; Cajavec, S; Ergotić, N; Lipej, Z; Madić, J; Lojkić, M; Pokrić, B

    2006-02-01

    The insoluble immune complexes (ICs) were prepared under the conditions of double immunodiffusion in gel, using the suspension of the ultrasound treated PK-15 cell-line infected with porcine parvovirus (PPV) containing both viral particles and viral proteins, as well as pig or rabbit anti-PPV polyclonal immune sera. The immunodiffusion performed in an agarose gel allows only viral subunits with a molecular mass equal to or less than 1000 kDa, rather than the viral particles, to diffuse through the gel and reach the point where the immunoprecipitate is to be formed. The immunoprecipitation under the conditions of the diffusion ensures the optimal, i.e. equimolar ratio of both immunoprecipitating components, antibody/antigen in the IC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the Western blot analyses showed the ICs were composed of two proteins, a protein in which molecular mass corresponded to the VP2 of the PPV and a protein with a molecular mass of the IgG. This suggests that the ICs are mainly composed of the VP2 antigen and IgG class antibodies. The potency of the IC-vaccines prepared in the form of a water-in-oil-in-water emulsion was compared with that of a commercially available, inactivated oil vaccine. The vaccination of gilts, 6 weeks before mating, with the IC containing allogeneic pig antibodies, resulted in the development of high and long-lasting anti-PPV antibody titres, similar to those generated by the licenced vaccine (P > 0.01). The content of the virus material administered by the IC was twice lower than that in the licenced vaccine. Neither systemic nor local reactions were observed in the gilts during the period of the trial with the IC vaccine. The number of viable piglets per litter varied between 9 and 12 and no signs of the PPV infection were detected. Rabbits were used as one of the alternative laboratory animal models accepted for the testing of the vaccine against the PPV. The rabbit humoral immune response

  12. Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives.

    Science.gov (United States)

    Sala, Francesco; Manuela Rigano, M; Barbante, Alessandra; Basso, Barbara; Walmsley, Amanda M; Castiglione, Stefano

    2003-01-30

    Stable integration of a gene into the plant nuclear or chloroplast genome can transform higher plants (e.g. tobacco, potato, tomato, banana) into bioreactors for the production of subunit vaccines for oral or parental administration. This can also be achieved by using recombinant plant viruses as transient expression vectors in infected plants. The use of plant-derived vaccines may overcome some of the major problems encountered with traditional vaccination against infectious diseases, autoimmune diseases and tumours. They also offer a convenient tool against the threat of bio-terrorism. State of the art, experimental strategies, safety and perspectives are discussed in this article.

  13. The fimbrial protein FlfA from Gallibacterium anatis is a virulence factor and vaccine candidate

    DEFF Research Database (Denmark)

    Bager, Ragnhild Jørgensen; Nesta, Barbara; Pors, Susanne Elisabeth

    2013-01-01

    The Gram-negative bacterium Gallibacterium anatis is a major cause of salpingitis and peritonitis in egg-laying chickens, leading to decreased egg production worldwide. Widespread multidrug resistance largely prevents treatment of this organism using traditional antimicrobial agents, while antige......-independent vaccine candidate This is the first study describing a fimbrial subunit protein of G. anatis with a clear potential as a vaccine antigen....... antigenic diversity hampers disease prevention by classical vaccines. Thus, insight into its pathogenesis and knowledge about important virulence factors is urgently required. A key event during the colonization and invasion of mucosal surfaces is adherence, and recently, at least three F17-like fimbrial...

  14. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen....... There is a particular interest in developing robust high-throughput assays as chicken vaccine trials usually comprise many individuals. In many respects, the avian immune system differs from the mammalian, and T cell assessment protocols must be adjusted accordingly to account for, e.g., differences in leukocyte...

  15. Complex Minigene Library Vaccination for Discovery of Pre-Erythrocytic Plasmodium T Cell Antigens.

    Science.gov (United States)

    Stone, Brad C; Kas, Arnold; Billman, Zachary P; Fuller, Deborah H; Fuller, James T; Shendure, Jay; Murphy, Sean C

    2016-01-01

    Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens.

  16. Vaccines against a Major Cause of Abortion in Cattle, Neospora caninum Infection

    Directory of Open Access Journals (Sweden)

    Andrew Hemphill

    2011-09-01

    Full Text Available Neosporosis, caused by the apicomplexan parasite Neospora caninum, represents one of the economically most important causes of abortion in cattle. During pregnancy, the parasite infects the placental tissue and the fetus, which can lead to stillbirth, abortion, or birth of weak calves. Alternatively, calves are born without clinical symptoms, but they can carry over the parasite to the next generation. In addition, N. caninum causes neuromuscular disease in dogs. The economic importance of neosporosis has prompted researchers to invest in the development of measures to prevent infection of cattle by vaccination. A good vaccine must stimulate protective cellular immune responses as well as antibody responses at mucosal sites and, systemically, must activate T-helper cells to produce relevant cytokines, and must elicit specific antibodies that aid in limiting parasite proliferation, e.g., by interference with host cell invasion, activation of complement, and/or opsonization of parasites to have them killed by macrophages. Different types of vaccines have been investigated, either in bovines or in the mouse model. These include live vaccines such as naturally less virulent isolates of N. caninum, attenuated strains generated by irradiation or chemical means, or genetically modified transgenic strains. Live vaccines were shown to be very effective; however, there are serious disadvantages in terms of safety, costs of production, and stability of the final product. Subunit vaccines have been intensively studied, as they would have clear advantages such as reduced costs in production, processing and storage, increased stability and shelf life. The parasite antigens involved in adhesion and invasion of host cells, such as surface constituents, microneme-, rhoptry- and dense granule-components represent interesting targets. Subunit vaccines have been applied as bacterially expressed recombinant antigens or as DNA vaccines. Besides monovalent vaccines

  17. Vaccines against a Major Cause of Abortion in Cattle, Neospora caninum Infection.

    Science.gov (United States)

    Monney, Thierry; Debache, Karim; Hemphill, Andrew

    2011-09-08

    Neosporosis, caused by the apicomplexan parasite Neospora caninum, represents one of the economically most important causes of abortion in cattle. During pregnancy, the parasite infects the placental tissue and the fetus, which can lead to stillbirth, abortion, or birth of weak calves. Alternatively, calves are born without clinical symptoms, but they can carry over the parasite to the next generation. In addition, N. caninum causes neuromuscular disease in dogs. The economic importance of neosporosis has prompted researchers to invest in the development of measures to prevent infection of cattle by vaccination. A good vaccine must stimulate protective cellular immune responses as well as antibody responses at mucosal sites and, systemically, must activate T-helper cells to produce relevant cytokines, and must elicit specific antibodies that aid in limiting parasite proliferation, e.g., by interference with host cell invasion, activation of complement, and/or opsonization of parasites to have them killed by macrophages. Different types of vaccines have been investigated, either in bovines or in the mouse model. These include live vaccines such as naturally less virulent isolates of N. caninum, attenuated strains generated by irradiation or chemical means, or genetically modified transgenic strains. Live vaccines were shown to be very effective; however, there are serious disadvantages in terms of safety, costs of production, and stability of the final product. Subunit vaccines have been intensively studied, as they would have clear advantages such as reduced costs in production, processing and storage, increased stability and shelf life. The parasite antigens involved in adhesion and invasion of host cells, such as surface constituents, microneme-, rhoptry- and dense granule-components represent interesting targets. Subunit vaccines have been applied as bacterially expressed recombinant antigens or as DNA vaccines. Besides monovalent vaccines also polyvalent

  18. Immune Interference After Sequential Alphavirus Vaccine Vaccinations

    Science.gov (United States)

    2009-01-01

    containing 50gmL−1 each of neomycin and streptomycin and supplemented with 0.5% human serum albumin , U.S.P. The lyophilized vaccine is the filtered...vaccine was prepared from specific pathogen-free eggs infected with the attenuated CM4884 strain of WEE virus. The supernatant was harvested and filtered...supernatant harvested from primary chicken embryo cell cultures. The vaccine was prepared from spe- cific pathogen-free eggs infected with the

  19. Adjuvanted versus nonadjuvanted influenza vaccines in young children: comparing results from recent clinical trials

    NARCIS (Netherlands)

    E.G. Wijnans (Leonoor); D.M. Weibel (Daniel); M.C.J.M. Sturkenboom (Miriam)

    2013-01-01

    textabstractA relatively high burden of influenza is experienced by young children. In order to successfully tackle the burden of influenza in children, effective vaccines are necessary. Accumulated evidence on the efficacy and effectiveness of traditional inactivated split or subunit trivalent

  20. Plastid Molecular Pharming I. Production of Oral Vaccines via Plastid Transformation.

    Science.gov (United States)

    Berecz, Bernadett; Zelenyánszki, Helga; Pólya, Sára; Tamás-Nyitrai, Cecília; Oszvald, Mária

    2017-01-01

    Vaccines produced in plants have opened up new opportunities in vaccination. Among the various categories of vaccines, the recombinant vaccine is generally regarded as the most economical and safest type because it cannot cause disease and does not require large-scale cultivation of pathogens. Due to the low cost of their cultivation, plants may represent viable alternative platforms for producing subunit vaccines. Genetic engineering of plastids is the innovation of the last three decades and has numerous benefits when compared to nuclear transformation. Due to the high level of expression, oral vaccines produced in transplastomic plants do not have to be purified as they can be consumed raw, which, therefore, reduces the cost of preparation, transportation and handling of the vaccines. Oral vaccination also excludes the risk of other infections or contaminations, while compartmentation of the plant cell provides an excellent encapsulation to the antigen within the plastid. Herein we review the main biotechnological and immunological aspects of the progress achieved in the field of plastid derived edible vaccines during the last decade. As there is a public debate against genetically modified crops, the advantages and limitations of oral vaccines are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Diversity of heterotrimeric G-protein γ subunits in plants

    Directory of Open Access Journals (Sweden)

    Trusov Yuri

    2012-10-01

    Full Text Available Abstract Background Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. Results After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX. According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Conclusion Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species.

  2. The Corn Smut ('Huitlacoche' as a New Platform for Oral Vaccines.

    Directory of Open Access Journals (Sweden)

    Margarita Juárez-Montiel

    Full Text Available The development of new alternative platforms for subunit vaccine production is a priority in the biomedical field. In this study, Ustilago maydis, the causal agent of common corn smut or 'huitlacoche'has been genetically engineered to assess expression and immunogenicity of the B subunit of the cholera toxin (CTB, a relevant immunomodulatory agent in vaccinology. An oligomeric CTB recombinant protein was expressed in corn smut galls at levels of up to 1.3 mg g-1 dry weight (0.8% of the total soluble protein. Mice orally immunized with 'huitlacoche'-derived CTB showed significant humoral responses that were well-correlated with protection against challenge with the cholera toxin (CT. These findings demonstrate the feasibility of using edible corn smut as a safe, effective, and low-cost platform for production and delivery of a subunit oral vaccine. The implications of this platform in the area of molecular pharming are discussed.

  3. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens

    Science.gov (United States)

    Fan, Yuchen; Moon, James J.

    2016-01-01

    Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. PMID:27038091

  4. Assembly of catalytic subunits of aspartate transcarbamoylase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.L.; Schachman, H.K.

    1980-10-01

    Although extensive studies have been conducted on the assembly of the allosteric enzyme, aspartate transcarbamoylase (ATCase) from isolate, intact catalytic (C) and regulatory (R) subunits, there has been little research on the formation of these subunits from individual catalytic (c) and regulatory (r) polypeptide chains. Such studies would be useful for evaluating the strengths of the interchain bonding domains within the subunits just as earlier experiments provided valuable data regarding interactions between the subunits in ATCase. The intact enzyme comprising two C trimers and three R dimers is designated as C/sub 2/R/sub 3/ or c/sub 6/r/sub 6/.

  5. ORAL LIVE TULAREMIA VACCINE

    Science.gov (United States)

    Previously reported data on the pathogenesis and immunogenicity of live vaccine strain LVS have been sufficiently encouraging to warrant an...potential for oral immunization with live tularemia vaccine prepared from strain LVS.

  6. Vaccine Safety Datalink

    Science.gov (United States)

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  7. Vaccine Policy Issues

    National Research Council Canada - National Science Library

    Thaul, Susan

    2005-01-01

    .... Whether a vaccine's target is naturally occurring or present because of hostile intent, the issues policy makers must deal with include vaccine development, production, availability, safety, effectiveness, and access...

  8. Vaccinating against cervical cancer

    OpenAIRE

    Parry, Jane

    2007-01-01

    Since last year, it has become possible to vaccinate against the human papillomavirus (HPV) that causes most cases of cervical cancer, but countries face tough decisions before making the vaccine widely available.

  9. Vaccines and animal welfare.

    Science.gov (United States)

    Morton, D B

    2007-04-01

    Vaccination promotes animal welfare by protecting animal health, but it also has other welfare benefits, e.g. recent investigations have looked at the potential of vaccines in immunoneutering such as immunocastration--a humane alternative to the painful traditional methods. Similarly, vaccination can be used during disease outbreaks as a viable alternative to stamping-out, thus avoiding the welfare problems that on-farm mass slaughter can cause. Protecting animal health through vaccination leads to improved animal welfare, and maintaining good welfare ensures that animals can respond successfully to vaccination (as poor welfare can lead to immunosuppression, which can affect the response to vaccination). It is clear that vaccination has tremendous advantages for animal welfare and although the possible side effects of vaccination can have a negative effect on the welfare of some individual animals, the harm caused by these unwanted effects must be weighed against the undoubted benefits for groups of animals.

  10. Vaccines and Pregnancy

    Science.gov (United States)

    ... before I knew I was pregnant? Will this harm my baby? Probably not. The chance of the ... pertussis-tdap-vaccine-pregnancy/pdf/ . The need for vaccination for other diseases during pregnancy will vary and ...

  11. Vaccines and Thimerosal

    Science.gov (United States)

    ... medicines and vaccines. There is no evidence of harm caused by the low doses of thimerosal in ... and is therefore less likely to cause any harm. Thimerosal prevents the growth of bacteria in vaccines. ...

  12. The HPV Vaccination Crisis

    Science.gov (United States)

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  13. Ingredients of Vaccines

    Science.gov (United States)

    ... No vaccine produced in the United States contains penicillin. Egg protein is found in influenza and yellow ... bacteria. For children with a prior history of allergic reactions to any of these substances in vaccines, parents ...

  14. Vaccinations during Pregnancy

    Science.gov (United States)

    ... Global Map Premature Birth Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal ... Pregnancy > Prenatal care > Vaccinations and pregnancy Vaccinations and pregnancy E-mail to a friend Please fill in ...

  15. Vaccines Stop Illness

    Science.gov (United States)

    ... vaccines. Vaccine-preventable diseases have many social and economic costs: sick children miss school and can cause ... there are only a few cases of disease today, if we take away the protection given by ...

  16. Vaccines in Multiple Sclerosis.

    Science.gov (United States)

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy.

  17. Pneumococcal Vaccines (PCV, PPSV)

    Science.gov (United States)

    ... Term Complications of Diabetes Your Child's Immunizations: Pneumococcal Vaccines (PCV, PPSV) KidsHealth > For Parents > Your Child's Immunizations: ... or HIV infection); or cochlear implants. Why the Vaccines Are Recommended Children younger than 2 years old, ...

  18. [Mumps vaccine virus transmission].

    Science.gov (United States)

    Otrashevskaia, E V; Kulak, M V; Otrashevskaia, A V; Karpov, I A; Fisenko, E G; Ignat'ev, G M

    2013-01-01

    In this work we report the mumps vaccine virus shedding based on the laboratory confirmed cases of the mumps virus (MuV) infection. The likely epidemiological sources of the transmitted mumps virus were children who were recently vaccinated with the mumps vaccine containing Leningrad-Zagreb or Leningrad-3 MuV. The etiology of the described cases of the horizontal transmission of both mumps vaccine viruses was confirmed by PCR with the sequential restriction analysis.

  19. Conscientious Objection to Vaccination

    OpenAIRE

    Clarke, Steve; Giubilini, Alberto; Walker, Mary Jean

    2016-01-01

    ABSTRACT Vaccine refusal occurs for a variety of reasons. In this article we examine vaccine refusals that are made on conscientious grounds; that is, for religious, moral, or philosophical reasons. We focus on two questions: first, whether people should be entitled to conscientiously object to vaccination against contagious diseases (either for themselves or for their children); second, if so, to what constraints or requirements should conscientious objection (CO) to vaccination be subject. ...

  20. Rotavirus vaccines: an overview.

    OpenAIRE

    Midthun, K; Kapikian, A Z

    1996-01-01

    Rotavirus vaccine development has focused on the delivery of live attenuated rotavirus strains by the oral route. The initial "Jennerian" approach involving bovine (RIT4237, WC3) or rhesus (RRV) rotavirus vaccine candidates showed that these vaccines were safe, well tolerated, and immunogenic but induced highly variable rates of protection against rotavirus diarrhea. The goal of a rotavirus vaccine is to prevent severe illness that can lead to dehydration in infants and young children in both...

  1. Vaccine-associated hypersensitivity.

    Science.gov (United States)

    McNeil, Michael M; DeStefano, Frank

    2018-02-01

    Vaccine-associated hypersensitivity reactions are not infrequent; however, serious acute-onset, presumably IgE-mediated or IgG and complement-mediated anaphylactic or serious delayed-onset T cell-mediated systemic reactions are considered extremely rare. Hypersensitivity can occur because of either the active vaccine component (antigen) or one of the other components. Postvaccination acute-onset hypersensitivity reactions include self-limited localized adverse events and, rarely, systemic reactions ranging from urticaria/angioedema to full-blown anaphylaxis with multisystem involvement. Risk of anaphylaxis after all vaccines is estimated to be 1.31 (95% CI, 0.90-1.84) per million vaccine doses, respectively. Serious hypersensitivity reactions after influenza vaccines are particularly important because of the large number of persons vaccinated annually. Influenza vaccines are unique in requiring annual changes in the vaccines' antigenic composition to match the predicted circulating influenza strains. Recently, novel influenza vaccine types were introduced in the United States (recombinant vaccines, some with higher antigen content and a new adjuvanted vaccine). Providers should be aware of changing recommendations on the basis of recent published evidence for persons with a history of egg allergy to receive annual influenza vaccination. Further research is needed to elucidate the pathophysiology and risk factors for reported vaccine-associated adverse events. Further research is also needed to determine whether repeated annual inactivated influenza vaccination, the number of vaccine antigens administered at the same time, and the current timing of routine infant vaccinations are optimal for overall population well-being. Published by Elsevier Inc.

  2. Reconstruction of the nasal soft triangle subunit.

    Science.gov (United States)

    Constantine, Fadi C; Lee, Michael R; Sinno, Sammy; Thornton, James F

    2013-05-01

    Of all nine subunits, the soft triangle is perhaps the most challenging to recreate. The complexity of soft triangle reconstruction resides in its proximity to such important structures as the nasal tip, nasal ala, and distal columella. If the soft triangle is not properly reconstructed, problems with nasal function and aesthetics often arise. Anatomical asymmetries in the lower third and abnormal shadowing can occur following insufficient restoration. A retrospective review was completed of all patients undergoing reconstruction of the nasal soft triangle subunit at the University of Texas Southwestern Medical Center in Dallas, Texas, from 1995 to 2010. Defects with only external skin intact were classified as type I. Defects involving both skin and underlying soft tissue with intact mucosa were classified as type II. Finally, transmural defects with violated mucosa were classified as type III. Surgical outcomes were graded on a scale of I to IV. Grades given were based on the complexity of the existing defect and restoration of the soft triangle, with higher grades given when adjacent structures were not distorted. Of the 14 cases reviewed, two (14 percent) were type I defects, nine (64 percent) were type II defects, and three (21 percent) were type III defects. Three patients (21 percent) required revision with subsequent resurfacing and two (14 percent) required resurfacing alone. All but one patient (93 percent) had a grade of 2.0 or better, with the one patient opting not to undergo revision. The authors believe their method of soft triangle reconstruction using the proposed algorithm is an easy approach to soft triangle reconstruction that will yield consistent surgical and clinical success from aesthetic and functional perspectives. Furthermore, the authors were able to achieve excellent aesthetic outcomes without compromise or facing any structural complications. Therapeutic, IV.

  3. Interactions between subunits in heterodimeric Ncd molecules.

    Science.gov (United States)

    Kocik, Elzbieta; Skowronek, Krzysztof J; Kasprzak, Andrzej A

    2009-12-18

    The nonprocessive minus-end-directed kinesin-14 Ncd is involved in the organization of the microtubule (MT) network during mitosis. Only one of the two motor domains is involved in the interaction with the MT. The other head is tethered to the bound one. Here we prepared, purified, and characterized mutated Ncd molecules carrying point mutations in one of the heads, thus producing heterodimeric motors. The mutations tested included substitutions in Switch I and II: R552A, E585A, and E585D; the decoupling mutant N600K; and a deletion in the motor domain in one of the subunits resulting in a single-headed molecule (NcN). These proteins were isolated by two sequential affinity chromatography steps, followed by measurements of their affinities to MT, enzymatic properties, and the velocity of the microtubule gliding test in vitro. A striking observation is a low affinity of the single-headed NcN for MT both without nucleotides and in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate, implying that the tethered head has a profound effect on the structure of the Ncd-MT complex. Mutated homodimers had no MT-activated ATPase and no motility, whereas NcN had motility comparable with that of the wild type Ncd. Although the heterodimers had one fully active and one inactive head, the ATPase and motility of Ncd heterodimers varied dramatically, clearly demonstrating that interactions between motor domains exist in Ncd. We also show that the bulk property of dimeric proteins that interact with the filament with only one of its heads depends also on the distribution of the filament-interacting subunits.

  4. Development of Burkholderia mallei and pseudomallei vaccines.

    Science.gov (United States)

    Silva, Ediane B; Dow, Steven W

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  5. Development of Burkholderia mallei and pseudomallei vaccines

    Science.gov (United States)

    Silva, Ediane B.; Dow, Steven W.

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  6. A brief history of vaccines: smallpox to the present.

    Science.gov (United States)

    Hsu, Jennifer L

    2013-01-01

    Modern vaccine history began in the late 18th century with the discovery of smallpox immunization by Edward Jenner. This pivotal step led to substantial progress in prevention of infectious diseases with inactivated vaccines for multiple infectious diseases, including typhoid, plague and cholera. Each advance produced significant decreases in infection-associated morbidity and mortality, thus shaping our modem cultures. As knowledge of microbiology and immunology grew through the 20th century, techniques were developed for cell culture of viruses. This allowed for rapid advances in prevention of polio, varicella, influenza and others. Finally, recent research has led to development of alternative vaccine strategies through use of vectored antigens, pathogen subunits (purified proteins or polysaccharides) or genetically engineered antigens. As the science of vaccinology continues to rapidly evolve, knowledge of the past creates added emphasis on the importance of developing safe and effective strategies for infectious disease prevention in the 21st century.

  7. Efficient mucosal vaccination mediated by the neonatal Fc receptor.

    Science.gov (United States)

    Ye, Lilin; Zeng, Rongyu; Bai, Yu; Roopenian, Derry C; Zhu, Xiaoping

    2011-02-01

    Almost all infectious diseases are initiated at mucosal surfaces, yet intramuscular or subcutaneous vaccination usually provides only minimal protection at sites of infection owing to suboptimal activation of the mucosal immune system. The neonatal Fc receptor (FcRn) mediates the transport of IgG across polarized epithelial cells lining mucosal surfaces. We mimicked this process by fusing a model antigen, herpes simplex virus type-2 (HSV-2) glycoprotein gD, to an IgG Fc fragment. Intranasal immunization, together with the adjuvant CpG, completely protected wild-type, but not FcRn knockout, mice after intravaginal challenge with virulent HSV-2 186. This immunization strategy induced efficient mucosal and systemic antibody, B- and T-cell immune responses, with stable protection for at least 6 months after vaccination in most of the immunized animals. The FcRn-IgG transcellular transport pathway may provide a general delivery route for subunit vaccines against many mucosal pathogens.

  8. Veterinary Replicon Vaccines

    NARCIS (Netherlands)

    Hikke, Mia C.; Pijlman, Gorben P.

    2017-01-01

    Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have

  9. Vaccines against mucosal infections.

    Science.gov (United States)

    Holmgren, Jan; Svennerholm, Ann-Mari

    2012-06-01

    There remains a great need to develop vaccines against many of the pathogens that infect mucosal tissues or have a mucosal port of entry. Parenteral vaccination may protect in some instances, but usually a mucosal vaccination route is necessary. Mucosal vaccines also have logistic advantages over injectable vaccines by being easier to administer, having less risk of transmitting infections and potentially being easier to manufacture. Still, however, only relatively few vaccines for human use are available: oral vaccines against cholera, typhoid, polio, and rotavirus, and a nasal vaccine against influenza. For polio, typhoid and influenza, in which the pathogens reach the blood stream, there is also an injectable vaccine alternative. A problem with available oral live vaccines is their reduced immunogenicity when used in developing countries; for instance, the efficacy of rotavirus vaccines correlates closely with the national per capita income. Research is needed to define the impact of factors such as malnutrition, aberrant intestinal microflora, concomitant infections, and preexisting immunity as well as of host genetic factors on the immunogenicity of these vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Mucosal vaccination of fish

    NARCIS (Netherlands)

    Rombout, J.H.W.M.; Kiron, V.

    2014-01-01

    Among the novel vaccination methods, mucosal vaccination seems to possess all the desired criteria. The chapter reviews the state-of-the-art knowledge regarding this type of vaccination with a focus on their uptake, immune stimulation, and where possible, discusses their potential as future

  11. Vaccination Records for Kids

    Science.gov (United States)

    ... can also ask your doctor to record the vaccines your child has received in your state’s immunization registry. Just ... Talk to your child’s doctor to determine what vaccines your child needs for protection against vaccine preventable diseases. Immunization ...

  12. Oral vaccination of fish

    NARCIS (Netherlands)

    Embregts, Carmen W.E.; Forlenza, Maria

    2016-01-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen

  13. Vaccination: problems and perspectives.

    Directory of Open Access Journals (Sweden)

    S. M. Kharit

    2009-01-01

    Full Text Available Massive vaccination had proved its effective morbidity reduction. Today it is necessary to extend vaccination schedule, creation of selective, regional schedules based on epidemiological, clinical, economical substantiation. Development of vaccination needs the profound scientific research, modernization of adverse reaction observing system, betterment training system and awareness of population.

  14. A human Phase I/IIa malaria challenge trial of a polyprotein malaria vaccine.

    Science.gov (United States)

    Porter, David W; Thompson, Fiona M; Berthoud, Tamara K; Hutchings, Claire L; Andrews, Laura; Biswas, Sumi; Poulton, Ian; Prieur, Eric; Correa, Simon; Rowland, Rosalind; Lang, Trudie; Williams, Jackie; Gilbert, Sarah C; Sinden, Robert E; Todryk, Stephen; Hill, Adrian V S

    2011-10-06

    We examined the safety, immunogenicity and efficacy of a prime-boost vaccination regime involving two poxvirus malaria subunit vaccines, FP9-PP and MVA-PP, expressing the same polyprotein consisting of six pre-erythrocytic antigens from Plasmodium falciparum. Following safety assessment of single doses, 15 volunteers received a heterologous prime-boost vaccination regime and underwent malaria sporozoite challenge. The vaccines were safe but interferon-γ ELISPOT responses were low compared to other poxvirus vectors, despite targeting multiple antigens. There was no vaccine efficacy as measured by delay in time to parasitaemia. A number of possible explanations are discussed, including the very large insert size of the polyprotein transgene. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The strategic use of novel smallpox vaccines in the post-eradication world.

    Science.gov (United States)

    Golden, Joseph W; Hooper, Jay W

    2011-07-01

    We still face a threat of orthopoxviruses in the form of biological weapons and emerging zoonoses. Therefore, there is a need to maintain a comprehensive defense strategy to counter the low-probability, high-impact threat of smallpox, as well as the ongoing threat of naturally occurring orthopoxvirus disease. The currently licensed live-virus smallpox vaccine ACAM2000 is effective, but associated with serious and even life-threatening adverse events. The health threat posed by this vaccine, and other previously licensed vaccines, has prevented many first responders, and even many in the military, from receiving a vaccine against smallpox. At the same time, global immunity produced during the smallpox eradication campaign is waning. Here, we review novel subunit/component vaccines and how they might play roles in unconventional strategies to defend against emerging orthopoxvirus diseases throughout the world and against smallpox used as a weapon of mass destruction.

  16. Toward RNA nanoparticle vaccines: synergizing RNA and inorganic nanoparticles to achieve immunopotentiation.

    Science.gov (United States)

    DeLong, Robert K; Curtis, Chandler B

    2017-03-01

    Traditionally, vaccines have been composed of live attenuated or killed microorganisms. Alternatively, individual protein subunits or other molecular components of the microorganism can serve as the antigen and trigger an antibody response by the immune system. The immune system is a coordinated molecular and cellular response that works in concert to check the spread of infection. In the past decade, there has been much progress on DNA vaccines. DNA vaccination includes using the coding segments of a viral or bacterial genome to generate an immune response. However, the potential advantage of combining an RNA molecule with inorganic nanoparticle delivery should be considered, with the goal to achieve immuno-synergy between the two and to overcome some of the current limitations of DNA vaccines and traditional vaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1415. doi: 10.1002/wnan.1415 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  17. Immunization against Genital Herpes with a Vaccine Virus That has Defects in Productive and Latent Infection

    Science.gov (United States)

    da Costa, Xavier J.; Jones, Cheryl A.; Knipe, David M.

    1999-06-01

    An effective vaccine for genital herpes has been difficult to achieve because of the limited efficacy of subunit vaccines and the safety concerns about live viruses. As an alternative approach, mutant herpes simplex virus strains that are replication-defective can induce protective immunity. To increase the level of safety and to prove that replication was not needed for immunization, we constructed a mutant herpes simplex virus 2 strain containing two deletion mutations, each of which eliminated viral replication. The double-mutant virus induces protective immunity that can reduce acute viral shedding and latent infection in a mouse genital model, but importantly, the double-mutant virus shows a phenotypic defect in latent infection. This herpes vaccine strain, which is immunogenic but has defects in both productive and latent infection, provides a paradigm for the design of vaccines and vaccine vectors for other sexually transmitted diseases, such as AIDS.

  18. Development of a Multi-Stage Vaccine against Paratuberculosis in Cattle

    DEFF Research Database (Denmark)

    Thakur, Aneesh

    to considerable economic losses to farming community. Paratuberculosis is a staged infection in which young calves acquire the infection in the first months of life, may progress into a prolonged asymptomatic stage of about 2-5 years and may eventually become clinically infected animals. Vaccination with whole......-cell live or inactivated vaccines prevents or delays the development of clinical stage of the disease but does not eliminate MAP and is usually accompanied by interference with bovine tuberculosis diagnostics as well as local tissue damage. Subunit vaccines with well-defined antigens in combination...... vaccine with activation of protective immune response in experimentally challenged calves, with a focus on cell-mediated immune responses chiefly interferon gamma (IFN-γ) and polyfunctional T cells. The antigen composition of the vaccines was selected based on previous immunogenicity studies in cattle...

  19. Vaccines against a Major Cause of Abortion in Cattle, Neospora caninum Infection

    Science.gov (United States)

    Monney, Thierry; Debache, Karim; Hemphill, Andrew

    2011-01-01

    Simple Summary We review the efforts to develop a vaccine against neosporosis, caused by the apicomplexan parasite Neospora caninum. Vertical transmission is the main mode of infection, and can lead to stillbirth, abortion, or birth of weak calves. We provide information on the biology of Neospora caninum and on the disease caused by this parasite, and summarize the current understanding on how the host deals with infection. We review studies on live- and subunit-vaccines, and demonstrate advantages and setbacks in the use of small laboratory animal models in investigations on a disease with high relevance in cattle. Abstract Neosporosis, caused by the apicomplexan parasite Neospora caninum, represents one of the economically most important causes of abortion in cattle. During pregnancy, the parasite infects the placental tissue and the fetus, which can lead to stillbirth, abortion, or birth of weak calves. Alternatively, calves are born without clinical symptoms, but they can carry over the parasite to the next generation. In addition, N. caninum causes neuromuscular disease in dogs. The economic importance of neosporosis has prompted researchers to invest in the development of measures to prevent infection of cattle by vaccination. A good vaccine must stimulate protective cellular immune responses as well as antibody responses at mucosal sites and, systemically, must activate T-helper cells to produce relevant cytokines, and must elicit specific antibodies that aid in limiting parasite proliferation, e.g., by interference with host cell invasion, activation of complement, and/or opsonization of parasites to have them killed by macrophages. Different types of vaccines have been investigated, either in bovines or in the mouse model. These include live vaccines such as naturally less virulent isolates of N. caninum, attenuated strains generated by irradiation or chemical means, or genetically modified transgenic strains. Live vaccines were shown to be very effective

  20. Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development.

    Science.gov (United States)

    Kaeser, Gwendolyn E; Rabe, Brian A; Saha, Margaret S

    2011-04-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult nervous system, acts via two classes of receptors, the ionotropic GABA(A) and metabotropic GABA(B) receptors. During the development of the nervous system, GABA acts in a depolarizing, excitatory manner and plays an important role in various neural developmental processes including cell proliferation, migration, synapse formation, and activity-dependent differentiation. Here we describe the spatial and temporal expression patterns of the GABA(A) and GABA(B) receptors during early development of Xenopus laevis. Using in situ hybridization and qRT-PCR, GABA(A) α2 was detected as a maternal mRNA. All other α-subunits were first detected by tailbud through hatching stages. Expression of the various subunits was seen in the brain, spinal cord, cranial ganglia, olfactory epithelium, pineal, and pituitary gland. Each receptor subunit showed a distinctive, unique expression pattern, suggesting these receptors have specific functions and are regulated in a precise spatial and temporal manner. Copyright © 2011 Wiley-Liss, Inc.

  1. Transgenic papaya: a useful platform for oral vaccines.

    Science.gov (United States)

    Fragoso, Gladis; Hernández, Marisela; Cervantes-Torres, Jacquelynne; Ramírez-Aquino, Rubén; Chapula, Héctor; Villalobos, Nelly; Segura-Velázquez, René; Figueroa, Alfredo; Flores, Iván; Jiménez, Herminio; Adalid, Laura; Rosas, Gabriela; Galvez, Luis; Pezzat, Elias; Monreal-Escalante, Elizabeth; Rosales-Mendoza, Sergio; Vazquez, Luis G; Sciutto, Edda

    2017-05-01

    Transgenic papaya callus lines expressing the components of the S3Pvac vaccine constitute a stable platform to produce an oral vaccine against cysticercosis caused by Taenia solium or T. crassiceps. The development of effective delivery systems to cope with the reduced immunogenicity of new subunit vaccines is a priority in vaccinology. Herein, experimental evidence supporting a papaya-based platform to produce needle-free, recombinant, highly immunogenic vaccines is shown. Papaya (Carica papaya) callus lines were previously engineered by particle bombardment to express the three protective peptides of the S3Pvac anti-cysticercosis vaccine (KETc7, KETc12, KETc1). Calli were propagated in vitro, and a stable integration and expression of the target genes has been maintained, as confirmed by PCR, qRT-PCR, and HPLC. These results point papaya calli as a suitable platform for long-term transgenic expression of the vaccine peptides. The previously demonstrated protective immunogenic efficacy of S3Pvac-papaya orally administered to mice is herein confirmed in a wider dose-range and formulated with different delivery vehicles, adequate for oral vaccination. This protection is accompanied by an increase in anti-S3Pvac antibody titers and a delayed hypersensitivity response against the vaccine. A significant increase in CD4+ and CD8+ lymphocyte proliferation was induced in vitro by each vaccine peptide in mice immunized with the lowest dose of S3Pvac papaya (0.56 ng of the three peptides in 0.1 µg of papaya callus total protein per mouse). In pigs, the obliged intermediate host for Taenia solium, S3Pvac papaya was also immunogenic when orally administered in a two-log dose range. Vaccinated pigs significantly increased anti-vaccine antibodies and mononuclear cell proliferation. Overall, the oral immunogenicity of this stable S3Pvac-papaya vaccine in mice and pigs, not requiring additional adjuvants, supports the interest in papaya callus as a useful platform for plant

  2. Economics of animal vaccination.

    Science.gov (United States)

    McLeod, A; Rushton, J

    2007-08-01

    This paper describes the steps that might be used in assessing the economic justification for using vaccination to control animal disease, and the way that vaccination is financed and administered. It describes decisions that have been taken with respect to preserving international trade, and issues related to protection of livelihoods. Regardless of the motivation for vaccination, its costs can usually be shared between the public and private sectors. Cost-effective vaccination requires methods of delivery to be adapted to livestock production systems. The paper concludes by suggesting questions around the use of vaccination that would merit further economic analysis.

  3. Vaccinations in Older Adults.

    Science.gov (United States)

    Burke, Megan; Rowe, Theresa

    2018-02-01

    Vaccines are important for preventing infections in adults aged ≥65 years. Older adults are at increased risk for complications from vaccine-preventable illnesses due to age-associated changes in immune function and chronic medical comorbidities. Vaccination rates for older adults remain low despite widely accepted practice guidelines. Recommended vaccinations for older adults include (1) influenza; (2) pneumococcal; (3) herpes zoster; (4) tetanus, diphtheria, pertussis; and (5) hepatitis B. Cost influences vaccination rates in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Expression and purification of the central stalk subunits of Na + ...

    African Journals Online (AJOL)

    , NtpD and NtpG subunits. The aim of the present study was cloning and expression of these central stalk subunits of E. hirae V-type Na+-ATPase. Here we cloned the synthesized DNA fragments, corresponding to ntpC, ntpD and ntpG genes, ...

  5. Emerging Vaccine Informatics

    Science.gov (United States)

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  6. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J. (Medical College of Wisconsin, Milwaukee (USA))

    1989-11-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from (3H-nicotinamide)NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from (32P-adenylate)NAD (0.2 mol/mol of protein). Label from (3H-nicotinamide)NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with (3H-nicotinamide)NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis.

  7. Endotoxins in commercial vaccines.

    Science.gov (United States)

    Geier, M R; Stanbro, H; Merril, C R

    1978-01-01

    Twenty samples of commercial vaccines intended for administration to humans were assayed for the presence of bacterial endotoxins by using the Limulus amebocyte lysate test. Sixteen of the vaccines contained more than 0.1 ng of endotoxin per ml (which corresponds to 103 bacterial cell wall equivalents per ml in the undiluted vaccines). These results suggest that at some stage of preparation, the vaccines have contained varying amounts of gram-negative bacteria and may indicate the presence of other bacterial products as well. It might be useful to list the level of endotoxins, phage, and other contaminants on each vaccine lot to facilitate studies on any side effects of these contaminants. Selection of vaccine lots with the least endotoxin might reduce some of the adverse effects of vaccinations. PMID:727776

  8. Vaccines as Epidemic Insurance

    Directory of Open Access Journals (Sweden)

    Mark V. Pauly

    2017-10-01

    Full Text Available This paper explores the relationship between the research for and development of vaccines against global pandemics and insurance. It shows that development in advance of pandemics of a portfolio of effective and government-approved vaccines does have some insurance properties: it requires incurring costs that are certain (the costs of discovering, developing, and testing vaccines in return for protection against large losses (if a pandemic treatable with one of the vaccines occurs but also with the possibility of no benefit (from a vaccine against a disease that never reaches the pandemic stage. It then argues that insurance against the latter event might usefully be offered to organizations developing vaccines, and explores the benefits of insurance payments to or on behalf of countries who suffer from unpredictable pandemics. These ideas are then related to recent government, industry, and philanthropic efforts to develop better policies to make vaccines against pandemics available on a timely basis.

  9. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    Science.gov (United States)

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  10. [Penicillin acylase from Escherichia coli: catalytically active subunits].

    Science.gov (United States)

    Kabakov, V E; Kliachko, N L; Levashov, A V

    1995-05-01

    Gel filtration under denaturing conditions was used to isolate the alpha- and beta-subunits of penicillin acylase (PA). Refolded subunits were obtained through removing urea by dialysis. Both renatured subunits were catalytically active during hydrolysis of phenylacetic acid p-nitroanilide; this activity decreased after addition of a serine-specific inhibitor--phenylmethanesulfonyl fluoride. The subunits were also active in reversed micelles of Aerosol OT (AOT) in octane, the optimum hydration degree being 11.9 and 17.5 for the light (alpha) and heavy (beta) subunits, respectively. The positions of the maxima were consistent with both theoretically calculated optimum hydration degrees and the earlier reported profile of enzymatic activity for native PA in reversed micelles.

  11. Polysaccharides: Candidates of promising vaccine adjuvants.

    Science.gov (United States)

    Li, Pingli; Wang, Fengshan

    2015-04-01

    Aluminium-based adjuvants remain the only adjuvants approved for human use in the USA for over 80 years because of alum's simplicity, tolerability, safety and cost-efficiency. Recent development of vaccines, especially the increasing applications of recombinant subunit and synthetic vaccines, makes aluminium adjuvants cannot stimulate enough immunity to the antigens, since aluminium adjuvants can only induce Th2 type immune responses. So, novel adjuvants are urgent to make up the disadvantages of aluminium adjuvants. However, some major hurdles need to be overcome, not only the scientific knowledge of adjuvants but also unacceptable side-effects and toxicity. A number of carbohydrate-based polysaccharides from plant, bacterial, yeast and synthetic sources can act as pathogen-associated molecular patterns (PAMPs) and recognize pattern recognition receptors (PRRs) on immune cells, followed by triggering innate immunity and regulating adaptive immunity. What is more, polysaccharides are safe and biodegradable without tissue deposits as observed in aluminium adjuvants. Therefore, polysaccharide-based compounds and formulations are potential vaccine adjuvant candidates. Here, we mainly review polysaccharide-based adjuvants investigated in recent years.

  12. Plant-derived antigens as mucosal vaccines.

    Science.gov (United States)

    Mason, H S; Herbst-Kralovetz, M M

    2012-01-01

    During the last two decades, researchers have developed robust systems for recombinant subunit vaccine production in plants. Stably and transiently transformed plants have particular advantages that enable immunization of humans and animals via mucosal delivery. The initial goal to immunize orally by ingestion of plant-derived antigens has proven difficult to attain, although many studies have demonstrated antibody production in both humans and animals, and in a few cases, protection against pathogen challenge. Substantial hurdles for this strategy are low-antigen content in crudely processed plant material and limited antigen stability in the gut. An alternative is intranasal delivery of purified plant-derived antigens expressed with robust viral vectors, especially virus-like particles. The use of pattern recognition receptor agonists as adjuvants for mucosal delivery of plant-derived antigens can substantially enhance serum and mucosal antibody responses. In this chapter, we briefly review the methods for recombinant protein expression in plants, and describe progress with human and animal vaccines that use mucosal delivery routes. We do not attempt to compile a comprehensive list, but focus on studies that progressed to clinical trials or those that showed strong indications of efficacy in animals. Finally, we discuss some regulatory concerns regarding plant-based vaccines.

  13. Vaccines for bovine neosporosis: current status and key aspects for development.

    Science.gov (United States)

    Horcajo, P; Regidor-Cerrillo, J; Aguado-Martínez, A; Hemphill, A; Ortega-Mora, L M

    2016-12-01

    Bovine neosporosis is a worldwide concern due to its global distribution and great economic impact. Reproductive failure in cattle due to abortion leads to major economic losses associated with the disease. Currently, there is no treatment or vaccine available against abortion or transmission caused by Neospora caninum infection in cattle. However, vaccination is considered the best measure of control against bovine neosporosis. Several host and parasite factors can influence the dynamics of the infection in bovines. Moreover, the availability of well-defined infection models is a key factor for the evaluation of vaccine candidates. However, working with cattle is not easy due to difficult handling, facilities and costs, and therefore, 'more affordable' models could be used for screening of promising vaccines to establish proof of concept. So far, live-attenuated vaccines have shown good efficacy against exogenous transplacental transmission; however, they have relevant disadvantages and associated risks, which render inactivated or subunit vaccines the best way forward. The identification of novel potential targets and vaccines, and the application of innovative vaccine technologies in harmonized experimental animal models, will accelerate the development of an effective vaccine against bovine neosporosis. © 2016 John Wiley & Sons Ltd.

  14. Insect cell technology is a versatile and robust vaccine manufacturing platform.

    Science.gov (United States)

    Mena, Jimmy A; Kamen, Amine A

    2011-07-01

    Baculovirus and insect cell culture technologies have mostly been limited to research laboratories for the transient expression of target proteins for drug development purposes. With the renaissance of the vaccine field and the regulatory acceptance of recombinant DNA technology, the baculovirus expression system has been more broadly adopted for the development of subunit vaccines, including virus-like particles. In the numerous clinical trials extensively discussed and cross-referenced in this article, product quality, safety and efficacy have been demonstrated for many candidate vaccines targeting infectious diseases. The 2007 market authorization of Cervarix, a bivalent human papillomavirus virus-like particle vaccine against cervical cancer, was a critical milestone for the regulatory acceptance of insect cell technology in manufacturing human vaccines, opening the door to the approval of more baculovirus-derived vaccines. Insect cell technology is now a dominant platform for veterinary vaccines. This article covers the application of recombinant baculovirus as vectored vaccines to mediate systemic and mucosal immune responses through the display or expression of foreign antigens. We will probably observe increasingly more baculovirus-derived products and market licensing of safe and efficacious vaccines.

  15. Exploiting immunology and molecular genetics for rational vaccine design against tuberculosis.

    Science.gov (United States)

    Kaufmann, S H E; Baumann, S; Nasser Eddine, A

    2006-10-01

    One hundred years after the Nobel Prize was awarded to Robert Koch for his work on tuberculosis (TB) and 85 years after the development of the attenuated vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), by Albert Calmette and Camille Guérin, effective prevention measures against TB are still not available. However, the first decade of the 21st century will witness the implementation of clinical trials with several novel vaccine candidates. These candidates fall into two groups: (1) subunit vaccines aimed at boosting the immune response induced by a BCG prime, and (2) recombinant (r)BCG improved to replace the current BCG vaccine strain. For boosting, protein and DNA vaccines in suitable adjuvant or delivery systems, respectively, as well as recombinant viral carriers, such as recombinant modified vaccinia virus Ankara, are being tested. For rBCG prime, a vaccine strain with higher immunogenicity and a strain overexpressing a dominant antigen have been developed. These vaccine candidates will have passed phase I clinical trials before the end of 2006. The goal for the future would be to have these novel vaccine candidates tested in different combinations to facilitate the design of the most efficacious vaccination protocol.

  16. Structures and functions of calcium channel beta subunits.

    Science.gov (United States)

    Birnbaumer, L; Qin, N; Olcese, R; Tareilus, E; Platano, D; Costantin, J; Stefani, E

    1998-08-01

    Calcium channel beta subunits have profound effects on how alpha1 subunits perform. In this article we summarize our present knowledge of the primary structures of beta subunits as deduced from cDNAs and illustrate their different properties. Upon co-expression with alpha1 subunits, the effects of beta subunits vary somewhat between L-type and non-L-type channels mostly because the two types of channels have different responses to voltage which are affected by beta subunits, such as long-lasting prepulse facilitation of alpha1C (absent in alpha1E) and inhibition by G protein betagamma dimer of alpha1E, absent in alpha1C. One beta subunit, a brain beta2a splice variant that is palmitoylated, has several effects not seen with any of the others, and these are due to palmitoylation. We also illustrate the finding that functional expression of alpha1 in oocytes requires a beta subunit even if the final channel shows no evidence for its presence. We propose two structural models for Ca2+ channels to account for "alpha1 alone" channels seen in cells with limited beta subunit expression. In one model, beta dissociates from the mature alpha1 after proper folding and membrane insertion. Regulated channels seen upon co-expression of high levels of beta would then have subunit composition alpha1beta. In the other model, the "chaperoning" beta remains associated with the mature channel and "alpha1 alone" channels would in fact be alpha1beta channels. Upon co-expression of high levels of beta the regulated channels would have composition [alpha1beta]beta.

  17. Cross-stage immunity for malaria vaccine development.

    Science.gov (United States)

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Developments in L2-based human papillomavirus (HPV) vaccines.

    Science.gov (United States)

    Schellenbacher, Christina; Roden, Richard B S; Kirnbauer, Reinhard

    2017-03-02

    Infections with sexually transmitted high-risk Human Papillomavirus (hrHPV), of which there are at least 15 genotypes, are responsible for a tremendous disease burden by causing cervical, and subsets of other ano-genital and oro-pharyngeal carcinomas, together representing 5% of all cancer cases worldwide. HPV subunit vaccines consisting of virus-like particles (VLP) self-assembled from major capsid protein L1 plus adjuvant have been licensed. Prophylactic vaccinations with the 2-valent (HPV16/18), 4-valent (HPV6/11/16/18), or 9-valent (HPV6/11/16/18/31/33/45/52/58) vaccine induce high-titer neutralizing antibodies restricted to the vaccine types that cause up to 90% of cervical carcinomas, a subset of other ano-genital and oro-pharyngeal cancers and 90% of benign ano-genital warts (condylomata). The complexity of manufacturing multivalent L1-VLP vaccines limits the number of included VLP types and thus the vaccines' spectrum of protection, leaving a panel of oncogenic mucosal HPV unaddressed. In addition, current vaccines do not protect against cutaneous HPV types causing benign skin warts, or against beta-papillomavirus (betaPV) types implicated in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. In contrast with L1-VLP, the minor capsid protein L2 contains type-common epitopes that induce low-titer yet broadly cross-neutralizing antibodies to heterologous PV types and provide cross-protection in animal challenge models. Efforts to increase the low immunogenicity of L2 (poly)-peptides and thereby to develop broader-spectrum HPV vaccines are the focus of this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    DEFF Research Database (Denmark)

    Baldwin, Susan L; Roeffen, Will; Singh, Susheel K

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment...... of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions...

  20. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults.

    Science.gov (United States)

    Moutschen, Michel; Léonard, Philippe; Sokal, Etienne M; Smets, Françoise; Haumont, Michèle; Mazzu, Pasqualina; Bollen, Alex; Denamur, Francoise; Peeters, Pascal; Dubin, Gary; Denis, Martine

    2007-06-11

    Two double-blind randomised controlled studies (phase I and I/II) were performed to assess for the first time the safety and immunogenicity of a recombinant subunit gp350 Epstein-Barr virus (EBV) vaccine in 148 healthy adult volunteers. All candidate vaccine formulations had a good safety profile and were well tolerated, with the incidence of solicited and unsolicited symptoms within a clinically acceptable range. One serious adverse event was reported in the phase I trial which was considered to be of suspected relationship to vaccination. The gp350 vaccine formulations were immunogenic and induced gp350-specific antibody responses (including neutralising antibodies).

  1. [Mercury in vaccines].

    Science.gov (United States)

    Hessel, Luc

    2003-01-01

    Thiomersal, also called thimerosal, is an ethyl mercury derivative used as a preservative to prevent bacterial contamination of multidose vaccine vials after they have been opened. Exposure to low doses of thiomersal has essentially been associated with hypersensitivity reactions. Nevertheless there is no evidence that allergy to thiomersal could be induced by thiomersal-containing vaccines. Allergy to thiomersal is usually of delayed-hypersensitivity type, but its detection through cutaneous tests is not very reliable. Hypersensitivity to thiomersal is not considered as a contraindication to the use of thiomersal-containing vaccines. In 1999 in the USA, thiomersal was present in approximately 30 different childhood vaccines, whereas there were only 2 in France. Although there were no evidence of neurological toxicity in infants related to the use of thiomersal-containing vaccines, the FDA considered that the cumulative dose of mercury received by young infants following vaccination was high enough (although lower than the FDA threshold for methyl mercury) to request vaccine manufacturers to remove thiomersal from vaccine formulations. Since 2002, all childhood vaccines used in Europe and the USA are thiomersal-free or contain only minute amounts of thiomersal. Recently published studies have shown that the mercury levels in the blood, faeces and urine of children who had received thiomersal-containing vaccines were much lower than those accepted by the American Environmental Protection Agency. It has also been demonstrated that the elimination of mercury in children was much faster than what was expected on the basis of studies conducted with methyl mercury originating from food. Recently, the hypothesis that mercury contained in vaccines could be the cause of autism and other neurological developmental disorders created a new debate in the medical community and the general public. To date, none of the epidemiological studies conducted in Europe and elsewhere

  2. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  3. Building confidence in vaccines.

    Science.gov (United States)

    Smith, Jennifer C; Appleton, Mary; MacDonald, Noni E

    2013-01-01

    Despite significant efforts by governments, organizations and individuals to maintain public trust in vaccines, concerns persist and threaten to undermine the effectiveness of immunization programs. Vaccine advocates have traditionally focused on education based on evidence to address vaccine concerns and hesitancy. However, being informed of the facts about immunization does not always translate into support for immunization. While many are persuaded by scientific evidence, others are more influenced by cognitive shortcuts, beliefs, societal pressure and the media, with the latter group more likely to hesitate over immunization. Understanding evidence from the behaviour sciences opens new doors to better support individual decision-making about immunization. Drawing on heuristics, this overview explores how individuals find, process and utilize vaccine information and the role health care professionals and society can play in vaccine decision-making. Traditional, evidence-based approaches aimed at staunching the erosion of public confidence in vaccines are proving inadequate and expensive. Enhancing public confidence in vaccines will be complex, necessitating a much wider range of strategies than currently used. Success will require a shift in how the public, health care professionals and media are informed and educated about vaccine benefits, risks and safety; considerable introspection and change in current academic and vaccine decision-making practices; development of proactive strategies to broadly address current and potential future concerns, as well as targeted interventions such as programs to address pain with immunization. This overview outlines ten such opportunities for change to improve vaccine confidence.

  4. Receptor-binding domain as a target for developing SARS vaccines.

    Science.gov (United States)

    Zhu, Xiaojie; Liu, Qi; Du, Lanying; Lu, Lu; Jiang, Shibo

    2013-08-01

    A decade ago, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a global pandemic with a mortality rate of 10%. Reports of recent outbreaks of a SARS-like disease caused by Middle East respiratory syndrome coronavirus (MERS-CoV) have raised serious concerns of a possible reemergence of SARS-CoV, either by laboratory escape or the presence of a natural reservoir. Therefore, the development of effective and safe SARS vaccines is still needed. Based on our previous studies, we believe that the receptor-binding domain (RBD) in the S1 subunit of the SARS-CoV spike (S) protein is the most important target for developing a SARS vaccine. In particular, RBD of S protein contains the critical neutralizing domain (CND), which is able to induce highly potent neutralizing antibody response and cross-protection against divergent SARS-CoV strains. Furthermore, a RBD-based subunit vaccine is expected to be safer than other vaccines that may induce Th2-type immunopathology. This review will discuss key advances in the development of RBD-based SARS vaccines and the possibility of using a similar strategy to develop vaccines against MERS-CoV.

  5. Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials?

    Science.gov (United States)

    Titball, Richard W; Burtnick, Mary N; Bancroft, Gregory J; Brett, Paul

    2017-10-20

    B. pseudomallei is the cause of melioidosis, a serious an often fatal disease of humans and animals. The closely related bacterium B. mallei, which cases glanders, is considered to be a clonal derivative of B. pseudomallei. Both B. pseudomallei and B. mallei were evaluated by the United States and the former USSR as potential bioweapons. Much of the effort to devise biodefence vaccines in the past decade has been directed towards the identification and formulation of sub-unit vaccines which could protect against both melioidosis and glanders. A wide range of proteins and polysaccharides have been identified which protective immunity in mice. In this review we highlight the significant progress that has been made in developing glycoconjugates as sub-unit vaccines. We also consider some of the important the criteria for licensing, including the suitability of the "animal rule" for assessing vaccine efficacy, the protection required from a vaccine and the how correlates of protection will be identified. Vaccines developed for biodefence purposes could also be used in regions of the world where naturally occurring disease is endemic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    Science.gov (United States)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  7. HIV-1 vaccine induced immune responses in newborns of HIV-1 infected mothers.

    Science.gov (United States)

    McFarland, Elizabeth J; Johnson, Daniel C; Muresan, Petronella; Fenton, Terence; Tomaras, Georgia D; McNamara, James; Read, Jennifer S; Douglas, Steven D; Deville, Jaime; Gurwith, Marc; Gurunathan, Sanjay; Lambert, John S

    2006-07-13

    Breast milk transmission continues to account for a large proportion of cases of mother-to-child transmission of HIV-1 worldwide. An effective HIV-1 vaccine coupled with either passive immunization or short-term antiretroviral prophylaxis represents a potential strategy to prevent breast milk transmission. This study evaluated the safety and immunogenicity of ALVAC HIV-1 vaccine with and without a subunit envelope boost in infants born to HIV-1-infected women. : Placebo-controlled, double-blinded study. Infants born to HIV-1-infected mothers in the US were immunized with a prime-boost regimen using a canarypox virus HIV-1 vaccine (vCP1452) and a recombinant glycoprotein subunit vaccine (rgp120). Infants (n = 30) were randomized to receive: vCP1452 alone, vCP1452 + rgp120, or corresponding placebos. Local reactions were mild or moderate and no significant systemic toxicities occurred. Subjects receiving both vaccines had gp120-specific binding serum antibodies that were distinguishable from maternal antibody. Repeated gp160-specific lymphoproliferative responses were observed in 75%. Neutralizing activity to HIV-1 homologous to the vaccine strain was observed in 50% of the vCP1452 + rgp120 subjects who had lost maternal antibody by week 24. In some infants HIV-1-specific proliferative and antibody responses persisted until week 104. HIV-1-specific cytotoxic T lymphocyte responses were detected in two subjects in each treatment group; the frequency of HIV-1 specific cytotoxic T lymphocyte responses did not differ between vaccine and placebo recipients. The demonstration of vaccine-induced immune responses in early infancy supports further study of HIV-1 vaccination as a strategy to reduce breast milk transmission.

  8. Echinococcus granulosus Antigen B Structure: Subunit Composition and Oligomeric States

    Science.gov (United States)

    Monteiro, Karina M.; Cardoso, Mateus B.; Follmer, Cristian; da Silveira, Nádya P.; Vargas, Daiani M.; Kitajima, Elliot W.; Zaha, Arnaldo; Ferreira, Henrique B.

    2012-01-01

    Background Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the

  9. Vaccination against seasonal flu

    CERN Multimedia

    2015-01-01

    The Medical Service once again recommends you to get your annual flu vaccination for the year.   Vaccination is the most effective way of avoiding the illness and any serious consequences and protecting those around you. The flu can have especially serious consequences for people with chronic conditions (diabetes, cardio-vascular disease, etc.), pregnant women, infants, and people over 65 years of age. Remember, anyone working on the CERN site who wishes to be vaccinated against seasonal flu should go to the Infirmary (Building 57, ground floor) with their vaccine. The Medical Service will issue a prescription on the day of the vaccination for the purposes of reimbursement by UNIQA. NB: The Medical Service cannot provide this vaccination service for family members or retired members of the personnel. For more information: • The "Seasonal flu" flyer by the Medical Service • Recommendations of the Swiss Federal Office of Public...

  10. Vaccination and neurological disorders

    Directory of Open Access Journals (Sweden)

    Anastasia Gkampeta

    2015-12-01

    Full Text Available Active immunization of children has been proven very effective in elimination of life threatening complications of many infectious diseases in developed countries. However, as vaccination-preventable infectious diseases and their complications have become rare, the interest focuses on immunization-related adverse reactions. Unfortunately, fear of vaccination-related adverse effects can led to decreased vaccination coverage and subsequent epidemics of infectious diseases. This review includes reports about possible side effects following vaccinations in children with neurological disorders and also published recommendations about vaccinating children with neurological disorders. From all international published data anyone can conclude that vaccines are safer than ever before, but the challenge remains to convey this message to society.

  11. Vaccine development for syphilis.

    Science.gov (United States)

    Lithgow, Karen V; Cameron, Caroline E

    2017-01-01

    Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a globally prevalent disease despite remaining susceptible to penicillin treatment. Syphilis vaccine development is a viable preventative approach that will serve to complement public health-oriented syphilis prevention, screening and treatment initiatives to deliver a two-pronged approach to stemming disease spread worldwide. Areas covered: This article provides an overview of the need for development of a syphilis vaccine, summarizes significant information that has been garnered from prior syphilis vaccine studies, discusses the critical aspects of infection that would have to be targeted by a syphilis vaccine, and presents the current understanding within the field of the correlates of protection needed to be achieved through vaccination. Expert commentary: Syphilis vaccine development should be considered a priority by industry, regulatory and funding agencies, and should be appropriately promoted and supported.

  12. Vaccines and Kawasaki disease.

    Science.gov (United States)

    Esposito, Susanna; Bianchini, Sonia; Dellepiane, Rosa Maria; Principi, Nicola

    2016-01-01

    The distinctive immune system characteristics of children with Kawasaki disease (KD) could suggest that they respond in a particular way to all antigenic stimulations, including those due to vaccines. Moreover, treatment of KD is mainly based on immunomodulatory therapy. These factors suggest that vaccines and KD may interact in several ways. These interactions could be of clinical relevance because KD is a disease of younger children who receive most of the vaccines recommended for infectious disease prevention. This paper shows that available evidence does not support an association between KD development and vaccine administration. Moreover, it highlights that administration of routine vaccines is mandatory even in children with KD and all efforts must be made to ensure the highest degree of protection against vaccine-preventable diseases for these patients. However, studies are needed to clarify currently unsolved issues, especially issues related to immunologic interference induced by intravenous immunoglobulin and biological drugs.

  13. The Latest in Vaccine Policies: Selected Issues in School Vaccinations, Healthcare Worker Vaccinations, and Pharmacist Vaccination Authority Laws.

    Science.gov (United States)

    Barraza, Leila; Schmit, Cason; Hoss, Aila

    2017-03-01

    This paper discusses recent changes to state legal frameworks for mandatory vaccination in the context of school and healthcare worker vaccination. It then discusses state laws that allow pharmacists the authority to vaccinate.

  14. Evaluation of a Subunit Vaccine to Infectious Hematopoietic Necrosis Virus, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Leong, JoAnn Ching

    1986-09-01

    The nucleotide sequence of the IHNV glycoprotein gene has been determined from a cDNA clone containing the entire coding region. The glycoprotein cDNA clone contained a leader sequence of 48 bases, a coding region of 1524 nucleotides, and 39 bases at the 3 foot end. The entire cDNA clone contains 1609 nucleodites and encodes a protein of 508 amino acids. The deduced amino acid sequence gave a translated molecular weight of 56,795 daltons. A hydropathicity profile of the deduced amino acid sequence indicated that there were two major hydrophobic domains: one,at the N-terminus,delineating a signal peptide of 18 amino acids and the other, at the C-terminus,delineating the region of the transmembrane. Five possible sites of N-linked glyscoylation were identified. Although no nucleic acid homology existed between the IHNV glycoprotein gene and the glycoprotein genes of rabies and VSV, there was significant homology at the amino acid level between all three rhabdovirus glycoproteins.

  15. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge.

    Science.gov (United States)

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B; Buchman, George W; Volkin, David B; Middaugh, C Russell; Isaacs, Stuart N

    2013-01-02

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit-vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit-vaccine immunogenicity and protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Respiratory Syncytial Virus Vaccines

    OpenAIRE

    Dudas, Robert A; Karron, Ruth A.

    1998-01-01

    Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically d...

  17. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  18. Hybrid viral vectors for vaccine and antibody production in plants.

    Science.gov (United States)

    Yusibov, Vidadi; Streatfield, Stephen J; Kushnir, Natasha; Roy, Gourgopal; Padmanaban, Annamalai

    2013-01-01

    Plants have a demonstrated potential for large-scale, rapid production of recombinant proteins for diverse product applications, including subunit vaccines and monoclonal antibodies. In this field, the accent has recently shifted from the engineering of "edible" vaccines based on stable expression of target protein in transgenic or transplastomic plants to the development of purified formulated vaccines that are delivered via injection. The injectable vaccines are commonly produced using transient expression of target gene delivered into genetically unmodified plant host via viral or bacterial vectors. Most viral vectors are based on plant RNA viruses, where nonessential sequences are replaced with the gene of interest. Utilization of viral hybrids that consist of genes and regulatory elements of different virus species, or transcomplementation systems (vector/transgene) had a substantial impact on the level of target protein expression. Development and introduction of agroviral hybrid vectors that combine genetic elements of bacterial binary plasmids and plant viral vectors, and agroinfiltration as a tool of the vector delivery have resulted in significant progress in large-scale production of recombinant vaccines and monoclonal antibodies in plants. This article presents an overview of plant hybrid viral vector expression systems developed so far.

  19. HPV vaccines: a controversial issue?

    OpenAIRE

    Nicol, A.F.; Andrade, C.V.; Russomano, F.B.; Rodrigues, L.L.S.; Oliveira, N.S.; D.W. Provance Jr

    2016-01-01

    Controversy still exists over whether the benefits of the available HPV vaccines outweigh the risks and this has suppressed uptake of the HPV vaccines in comparison to other vaccines. Concerns about HPV vaccine safety have led some physicians, healthcare officials and parents to withhold the recommended vaccination from the target population. The most common reason for not administering the prophylactic HPV vaccines are concerns over adverse effects. The aim of this review is the assessment o...

  20. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria

    NARCIS (Netherlands)

    van Roosmalen, ML; Kanninga, R; El Khattabi, M; Neef, J; Audouy, S; Bosma, T; Kuipers, A; Post, E; Steen, A; Kok, J; Buist, G; Kuipers, OP; Robillard, G; Leenhouts, K

    Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading