WorldWideScience

Sample records for subtype influenza viruses

  1. Strategies for subtyping influenza viruses circulating in the Danish pig population

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2010-01-01

    in the Danish pig population functional and rapid subtyping assays are required. The conventional RT-PCR influenza subtyping assays developed by Chiapponi et al. (2003) have been implemented and used for typing of influenza viruses found positive in a pan influenza A real time RT-PCR assay. The H1 and N1 assays......Influenza viruses are endemic in the Danish pig population and the dominant circulating subtypes are H1N1, a Danish H1N2 reassortant, and H3N2. Here we present our current and future strategies for influenza virus subtyping. For diagnostic and surveillance of influenza subtypes circulating...... were specific when applied on Danish influenza positive samples, whereas the N2 assay consistently showed several unspecific PCR products. A subset of positive influenza samples detected by the real time RT-PCR screening assay could not be subtyped using these assays. Therefore, new influenza subtyping...

  2. Rapid detection of the avian influenza virus H5N1 subtype in Egypt

    African Journals Online (AJOL)

    Dr

    highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and ... Key words: Avian influenza virus, H5N1, fluorescent antibody enzyme-linked immunosorbent assay (ELISA) ..... poultry and is potentially zoonotic.

  3. Characterization of Seasonal Influenza Virus Type and Subtypes Isolated from Influenza Like Illness Cases of 2012.

    Science.gov (United States)

    Upadhyay, B P; Ghimire, P; Tashiro, M; Banjara, M R

    Background Seasonal influenza is one of the increasing public health burdens in Nepal. Objective The objective of this study was to isolate and characterize the influenza virus type and subtypes of Nepal. Method A total of 1536 throat swab specimens were collected from January to December 2012. Total ribonucleic acid was extracted using Qiagen viral nucleic acid extraction kit and polymerase chain reaction assay was performed following the US; CDC Real-time PCR protocol. Ten percent of positive specimens were inoculated onto Madin-Darby Canine Kidney cells. Isolates were characterized by using reference ferret antisera. Result Of the total specimens (n=1536), influenza virus type A was detected in 196 (22%) cases; of which 194 (99%) were influenza A (H1N1) pdm09 and 2 (1 %) were influenza A/H3 subtype. Influenza B was detected in 684 (76.9%) cases. Influenza A (H1N1) pdm09, A/H3 and influenza B virus were antigenically similar to the recommended influenza virus vaccine candidate of the year 2012. Although sporadic cases of influenza were observed throughout the year, peak was observed during July to November. Conclusion Similar to other tropical countries, A (H1N1) pdm09, A/H3 and influenza B viruses were co-circulated in Nepal.

  4. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Hidajat, Rachmat; Hamilton, Garrett; Horn, Noah; Nickols, Brian; Prather, Raphael O. [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States); Tumpey, Terrence M. [Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD (United States)

    2016-01-15

    Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150–200 nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation. - Highlights: • BIV gag protein was configured as influenza VLP core component. • Recombinant influenza VLPs were prepared in Sf9 cells using baculovirus expression system. • Single- and quadri-subtype VLPs were prepared by using BIV gag as a VLP core. • Co-localization of H5, H7, H9, and H10 HA was confirmed within quadri-subtype VLP. • Content of HA subtypes within quadri-subtype VLP was determined. • Potential advantages of quadri-subtype VLPs as influenza vaccine are discussed.

  5. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Hidajat, Rachmat; Hamilton, Garrett; Horn, Noah; Nickols, Brian; Prather, Raphael O.; Tumpey, Terrence M.; Pushko, Peter

    2016-01-01

    Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150–200 nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation. - Highlights: • BIV gag protein was configured as influenza VLP core component. • Recombinant influenza VLPs were prepared in Sf9 cells using baculovirus expression system. • Single- and quadri-subtype VLPs were prepared by using BIV gag as a VLP core. • Co-localization of H5, H7, H9, and H10 HA was confirmed within quadri-subtype VLP. • Content of HA subtypes within quadri-subtype VLP was determined. • Potential advantages of quadri-subtype VLPs as influenza vaccine are discussed.

  6. Rapid detection of the avian influenza virus H5N1 subtype in Egypt ...

    African Journals Online (AJOL)

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Egypt ... Effective diagnosis and control management are needed to control the disease. ... Reconstituted clinical samples consisting of H5 AIVs mixed with ...

  7. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  8. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  9. Influenza A Subtyping

    Science.gov (United States)

    Kaul, Karen L.; Mangold, Kathy A.; Du, Hongyan; Pesavento, Kristen M.; Nawrocki, John; Nowak, Jan A.

    2010-01-01

    Influenza virus subtyping has emerged as a critical tool in the diagnosis of influenza. Antiviral resistance is present in the majority of seasonal H1N1 influenza A infections, with association of viral strain type and antiviral resistance. Influenza A virus subtypes can be reliably distinguished by examining conserved sequences in the matrix protein gene. We describe our experience with an assay for influenza A subtyping based on matrix gene sequences. Viral RNA was prepared from nasopharyngeal swab samples, and real-time RT-PCR detection of influenza A and B was performed using a laboratory developed analyte-specific reagent-based assay that targets a conserved region of the influenza A matrix protein gene. FluA-positive samples were analyzed using a second RT-PCR assay targeting the matrix protein gene to distinguish seasonal influenza subtypes based on differential melting of fluorescence resonance energy transfer probes. The novel H1N1 influenza strain responsible for the 2009 pandemic showed a melting profile distinct from that of seasonal H1N1 or H3N2 and compatible with the predicted melting temperature based on the published novel H1N1 matrix gene sequence. Validation by comparison with the Centers for Disease Control and Prevention real-time RT-PCR for swine influenza A (novel H1N1) test showed this assay to be both rapid and reliable (>99% sensitive and specific) in the identification of the novel H1N1 influenza A virus strain. PMID:20595627

  10. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Anwar M. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada); Van Domselaar, Gary [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Li, Changgui; Wang, Junzhi [National Institute for the Control of Pharmaceutical and Biological Products, Beijing (China); She, Yi-Min; Cyr, Terry D. [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Sui, Jianhua [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); He, Runtao [National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB (Canada); Marasco, Wayne A. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Li, Xuguang, E-mail: Sean.Li@hc-sc.gc.ca [Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON (Canada); Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2010-12-10

    Research highlights: {yields} The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. {yields} Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. {yields} The universal antibodies cross-neutralize different influenza A subtypes. {yields} The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  11. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus

    International Nuclear Information System (INIS)

    Hashem, Anwar M.; Van Domselaar, Gary; Li, Changgui; Wang, Junzhi; She, Yi-Min; Cyr, Terry D.; Sui, Jianhua; He, Runtao; Marasco, Wayne A.; Li, Xuguang

    2010-01-01

    Research highlights: → The fusion peptide is the only universally conserved epitope in all influenza viral hemagglutinins. → Anti-fusion peptide antibodies are universal antibodies that cross-react with all influenza HA subtypes. → The universal antibodies cross-neutralize different influenza A subtypes. → The universal antibodies inhibit the fusion process between the viruses and the target cells. -- Abstract: The fusion peptide of influenza viral hemagglutinin plays a critical role in virus entry by facilitating membrane fusion between the virus and target cells. As the fusion peptide is the only universally conserved epitope in all influenza A and B viruses, it could be an attractive target for vaccine-induced immune responses. We previously reported that antibodies targeting the first 14 amino acids of the N-terminus of the fusion peptide could bind to virtually all influenza virus strains and quantify hemagglutinins in vaccines produced in embryonated eggs. Here we demonstrate that these universal antibodies bind to the viral hemagglutinins in native conformation presented in infected mammalian cell cultures and neutralize multiple subtypes of virus by inhibiting the pH-dependant fusion of viral and cellular membranes. These results suggest that this unique, highly-conserved linear sequence in viral hemagglutinin is exposed sufficiently to be attacked by the antibodies during the course of infection and merits further investigation because of potential importance in the protection against diverse strains of influenza viruses.

  12. Avian influenza A virus subtype H5N2 in a red-lored Amazon parrot.

    Science.gov (United States)

    Hawkins, Michelle G; Crossley, Beate M; Osofsky, Anna; Webby, Richard J; Lee, Chang-Won; Suarez, David L; Hietala, Sharon K

    2006-01-15

    A 3-month-old red-lored Amazon parrot (Amazona autumnalis autumnalis) was evaluated for severe lethargy. Avian influenza virus hemagglutinin subtype H5N2 with low pathogenicity was characterized by virus isolation, real-time reverse transcriptase PCR assay, chicken intravenous pathogenicity index, and reference sera. The virus was also determined to be closely related to a virus lineage that had been reported only in Mexico and Central America. The chick was admitted to the hospital and placed in quarantine. Supportive care treatment was administered. Although detection of H5 avian influenza virus in birds in the United States typically results in euthanasia of infected birds, an alternative strategy with strict quarantine measures and repeated diagnostic testing was used. The chick recovered from the initial clinical signs after 4 days and was released from quarantine 9 weeks after initial evaluation after 2 consecutive negative virus isolation and real-time reverse transcriptase PCR assay results. To the authors' knowledge, this is the first report of H5N2 avian influenza A virus isolated from a psittacine bird and represents the first introduction of this virus into the United States, most likely by illegal importation of psittacine birds. Avian influenza A virus should be considered as a differential diagnosis for clinical signs of gastrointestinal tract disease in psittacine birds, especially in birds with an unknown history of origin. Although infection with avian influenza virus subtype H5 is reportable, destruction of birds is not always required.

  13. Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes.

    Directory of Open Access Journals (Sweden)

    Neus Latorre-Margalef

    Full Text Available Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02. Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04 and the level of HA groups (p-value = 0.05. In contrast, infection patterns did not support specific immunity for neuraminidase (NA subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity.

  14. New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2005-01-01

    sequence was most closely related to the HPAIV A/Chicken/Netheriancts/01/03 (H7N7) that infected chickens and humans in the Netherlands in 2003. Ten persons with direct or indirect contact with the Danish mallard ducks showed signs Of influenza-like illness 2-3 clays following the killing of the ducks......During the past years increasing incidences of influenza A zoonosis have made it of uppermost importance to possess methods for rapid and precise identification and characterisation of influenza A Viruses. We present here a convenient one-step RT-PCR method that will amplify full......-length haemagglutinin (HA) and neuraminidase (NA) directly from clinical samples and from all known subtypes of influenza A. We applied the method on samples collected in September 2003 from a Danish flock of mallards with general health problems and by this a previously undescribed influenza A subtype combination, H5N...

  15. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.

    NARCIS (Netherlands)

    R.A.M. Fouchier (Ron); V.J. Munster (Vincent); A. Wallensten (Anders); T.M. Bestebroer (Theo); S. Herfst (Sander); D.J. Smith (Derek James); G.F. Rimmelzwaan (Guus); B. Olsen (Björn); A.D.M.E. Osterhaus (Albert)

    2005-01-01

    textabstractIn wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses

  16. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    Science.gov (United States)

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  17. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    Science.gov (United States)

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  18. Broad-spectrum detection of H5 subtype influenza A viruses with a new fluorescent immunochromatography system.

    Directory of Open Access Journals (Sweden)

    Akira Sakurai

    Full Text Available Immunochromatography (IC is an antigen-detection assay that plays an important role in the rapid diagnosis of influenza virus because the protocol is short time and easy to use. Despite the usability of IC, the sensitivity is approximately 10(3 pfu per reaction. In addition, antigen-antibody interaction-based method cannot be used for the detection of influenza viruses with major antigenic change. In this study, we established the use of fluorescent immunochromatography (FLIC to detect a broad spectrum of H5 subtype influenza A viruses. This method has improved sensitivity 10-100 fold higher than traditional IC because of the use of fluorescent conjugated beads. Our Type-E FLIC kit detected all of the H5 subtype influenza viruses that were examined, as well as recombinant hemagglutinin (HA proteins (rHAs belonging to the Eurasian H5 subtype viruses and the Type-N diagnosed North American H5 subtype influenza A viruses. Thus, this kit has the improved potential to detect H5 subtype influenza viruses of different clades with both Type-E and Type-N FLIC kits. Compared with PCR-based diagnosis, FLIC has a strong advantage in usability, because the sample preparation required for FLIC is only mix-and-drop without any additional steps such as RNA extraction. Our results can provide new strategies against the spread and transmission of HPAI H5N1 viruses in birds and mammals including humans.

  19. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  20. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses.

    Science.gov (United States)

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-02-24

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.

  1. Subtype-Specific Influenza A Virus Antibodies in Canada Geese (Branta canadensis)

    Science.gov (United States)

    Kistler, Whitney M.; Stallknecht, David E.; DeLiberto, Thomas J.; Van Why, Kyle; Yabsley, Michael J.

    2015-01-01

    Historically, surveillance for influenza A viruses (IAVs) in wild birds has relied on viral detection assays. This was largely due to poor performance of serological assays in wild birds; however, recently developed commercial serological assays have improved the ability to detect IAV antibodies in wild birds. Serological surveillance for IAV antibodies in Canada geese (Branta canadensis) has shown that, despite a low prevalence of virus isolations, Canada geese are frequently exposed to IAVs and that exposure increases with latitude, which follows virus isolation prevalence patterns observed in dabbling ducks. The objectives of this study were to further evaluate IAV antibodies in Canada geese using a subtype-specific serological assay to determine if Canada geese are exposed to subtypes that commonly circulate in dabbling ducks. We collected serum samples from Canada geese in Minnesota, New Jersey, Pennsylvania, and Wisconsin and tested for antibodies to IAVs using a blocking ELISA. Positive samples were further tested by hemagglutination inhibition for 10 hemagglutinin IAV subtypes (H1–H10). Overall, we detected antibodies to NP in 24% (714/2,919) of geese. Antibodies to H3, H4, H5, and H6 subtypes predominated, with H5 being detected most frequently. A decrease in H5 HI antibody prevalence and titers was observed from 2009 to 2012. We also detected similar exposure pattern in Canada geese from New Jersey, Minnesota, Washington and Wisconsin. Based on the published literature, H3, H4, and H6 viruses are the most commonly reported IAVs from dabbling ducks. These results indicate that Canada geese also are frequently exposed to viruses of the same HA subtypes; however, the high prevalence of antibodies to H5 viruses was not expected as H5 IAVs are generally not well represented in reported isolates from ducks. PMID:25845755

  2. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype......) and the human-fatal A/Netherlands/219/03 (H7N7), respectively. The basic polymerase 1 and 2 genes were phylogenetically equidistant to both A/Duck/Denmark/65047/04 (H5N2) and A/Chicken/Netherlands/1/03 (H7N7). The nucleoprotein and matrix gene had highest nucleotide sequence similarity to the H6 subtypes A....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  3. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based or remarkably insensitive (antibody-based. Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A

  4. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Science.gov (United States)

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-02-03

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence

  5. Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.

    Science.gov (United States)

    Goletić, Teufik; Gagić, Abdulah; Residbegović, Emina; Kustura, Aida; Kavazović, Aida; Savić, Vladimir; Harder, Timm; Starick, Elke; Prasović, Senad

    2010-03-01

    In order to determine the actual prevalence of avian influenza viruses (AIVs) in wild birds in Bosnia and Herzegovina, extensive surveillance was carried out between October 2005 and April 2006. A total of 394 samples representing 41 bird species were examined for the presence of influenza A virus using virus isolation in embryonated chicken eggs, PCR, and nucleotide sequencing. AIV subtype H5N1 was detected in two mute swans (Cygnus olor). The isolates were determined to be highly pathogenic avian influenza (HPAI) virus and the hemagglutinin sequence was closely similar to A/Cygnus olor/Astrakhan/ Ast05-2-10/2005 (H5N1). This is the first report of HPAI subtype H5N1 in Bosnia and Herzegovina.

  6. Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses.

    Science.gov (United States)

    Hoffmann, Bernd; Hoffmann, Donata; Henritzi, Dinah; Beer, Martin; Harder, Timm C

    2016-06-03

    Rapid and sensitive diagnostic approaches are of the utmost importance for the detection of humans and animals infected by specific influenza virus subtype(s). Cascade-like diagnostics starting with the use of pan-influenza assays and subsequent subtyping devices are normally used. Here, we demonstrated a novel low density array combining 32 TaqMan(®) real-time RT-PCR systems in parallel for the specific detection of the haemagglutinin (HA) and neuraminidase (NA) subtypes of avian and porcine hosts. The sensitivity of the newly developed system was compared with that of the pan-influenza assay, and the specificity of all RT-qPCRs was examined using a broad panel of 404 different influenza A virus isolates representing 45 different subtypes. Furthermore, we analysed the performance of the RT-qPCR assays with diagnostic samples obtained from wild birds and swine. Due to the open format of the array, adaptations to detect newly emerging influenza A virus strains can easily be integrated. The RITA array represents a competitive, fast and sensitive subtyping tool that requires neither new machinery nor additional training of staff in a lab where RT-qPCR is already established.

  7. Chinese and global distribution of H9 subtype avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Wenming Jiang

    Full Text Available H9 subtype avian influenza viruses (AIVs are of significance in poultry and public health, but epidemiological studies about the viruses are scarce. In this study, phylogenetic relationships of the viruses were analyzed based on 1233 previously reported sequences and 745 novel sequences of the viral hemagglutinin gene. The novel sequences were obtained through large-scale surveys conducted in 2008-2011 in China. The results revealed distinct distributions of H9 subtype AIVs in different hosts, sites and regions in China and in the world: (1 the dominant lineage of H9 subtype AIVs in China in recent years is lineage h9.4.2.5 represented by A/chicken/Guangxi/55/2005; (2 the newly emerging lineage h9.4.2.6, represented by A/chicken/Guangdong/FZH/2011, has also become prevalent in China; (3 lineages h9.3.3, h9.4.1 and h9.4.2, represented by A/duck/Hokkaido/26/99, A/quail/Hong Kong/G1/97 and A/chicken/Hong Kong/G9/97, respectively, have become globally dominant in recent years; (4 lineages h9.4.1 and h9.4.2 are likely of more risk to public health than others; (5 different lineages have different transmission features and host tropisms. This study also provided novel experimental data which indicated that the Leu-234 (H9 numbering motif in the viral hemagglutinin gene is an important but not unique determinant in receptor-binding preference. This report provides a detailed and updated panoramic view of the epidemiological distributions of H9 subtype AIVs globally and in China, and sheds new insights for the prevention of infection in poultry and preparedness for a potential pandemic caused by the viruses.

  8. Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    Science.gov (United States)

    2010-02-01

    peptide biomarker loci will increasingly fail, through false-positive and/or false-negative results. This will adversely impact critical decision...and field specimen isolates of avian influenza virus represented subtypes A/H10N7 (4), A/H7N7 (2), A/H11 (1) or A/ H13 (1). In marked contrast to

  9. Purification of neuraminidase from Influenza virus subtype H5N1

    Directory of Open Access Journals (Sweden)

    Simson Tariga

    2009-03-01

    Full Text Available Influenza-virus neuraminidase plays vital role in the survival of the organisms. Vaccination of animals with this glycoprotein confers immune responses so that enable it to protect the animals from incoming infection. Supplementation of conventional vaccines with this glycoprotein increases the protection and longevity of the vaccine. Purified neuraminidase can also be used to develop serological tests for differentiation of serologically positive animals due to infection or to vaccination. In this study purification of neuraminidase from influenza virus subtype H5N1 was described. Triton x-100 and Octyl β-D-glucopyranoside were used to extract and diluted the glycoprotein membrane. The enzymatic activity of the neuraminidase was assayed using a fluorochrome substrate, 4-methylumbelliferyl-a-D-N-acetyl neuraminic acid, which was found to be simple, sensitive and suitable for the purification purpose. The neuraminidase was absorbed selectively on an oxamic-acid agarose column. The purity of neuraminidase eluted from this affinity column was high. A higher purity of the neuraminidase was obtained by further separation with gel filtration on Superdex-200. The purified neuraminidase was enzymatically active and did not contain any detectable haemagglutinin, either by haemagglutination assay or by monospecific antibodies raised against H5N1 hemagglutinin. The purified neuraminidase was recognized strongly by antibodies raised against an internal but only weakly by that against C-terminal regions of the neuraminidase protein of H5N1-influenza virus. The purified neuraminidase was in tetrameric forms but dissociated into monomeric form on reducing condition, or mostly dimeric form on non-reducing SDS-PAGE.

  10. Establishment of the cross-clade antigen detection system for H5 subtype influenza viruses using peptide monoclonal antibodies specific for influenza virus H5 hemagglutinin.

    Science.gov (United States)

    Takahashi, Hitoshi; Nagata, Shiho; Odagiri, Takato; Kageyama, Tsutomu

    2018-04-15

    The H5 subtype of highly pathogenic avian influenza (H5 HPAI) viruses is a threat to both animal and human public health and has the potential to cause a serious future pandemic in humans. Thus, specific and rapid detection of H5 HPAI viruses is required for infection control in humans. To develop a simple and rapid diagnostic system to detect H5 HPAI viruses with high specificity and sensitivity, we attempted to prepare monoclonal antibodies (mAbs) that specifically recognize linear epitopes in hemagglutinin (HA) of H5 subtype viruses. Nine mAb clones were obtained from mice immunized with a synthetic partial peptide of H5 HA molecules conserved among various H5 HPAI viruses. The antigen-capture enzyme-linked immunosorbent assay using the most suitable combination of these mAbs, which bound specifically to lysed H5 HA under an optimized detergent condition, was specific for H5 viruses and could broadly detect H5 viruses in multiple different clades. Taken together, these peptide mAbs, which recognize linear epitopes in a highly conserved region of H5 HA, may be useful for specific and highly sensitive detection of H5 HPAI viruses and can help in the rapid diagnosis of human, avian, and animal H5 virus infections. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Isolation and characterization of virus of highly pathogenic avian influenza H5 subtype of chicken from outbreaks in Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Wiyono

    2004-03-01

    Full Text Available A study on the isolation and characterization of Highly Pathogenic Avian Influenza of chicken from outbreaks in Indonesia was conducted at Indonesian Research Institute for Veterinary Science. Outbreaks of avian disease had been reported in Indonesia since August 2003 affecting commercial layer, broiler, quail, and ostrich and also native chicken with showing clinical signs such as cyanosis of wattle and comb, nasal discharges and hypersalivation, subcutaneous ptechiae on foot and leg, diarre and sudden high mortality. The aim of this study is to isolate and characterize the causal agent of the disease. Samples of serum, feather follicle, tracheal swab, as well as organs of proventriculus, intestine, caecal tonsil, trachea and lungs were collected from infected animals. Serum samples were tested haemaglutination/haemaglutination inhibition to Newcastle Disease and Egg Drop Syndrome viruses. Isolation of virus of the causal agent of the outbreak was conducted from samples of feather follicle, tracheal swab, and organs using 11 days old specific pathogen free (SPF embryonated eggs. The isolated viruses were then characterised by agar gel precipitation test using swine influenza reference antisera, by haemaglutination inhibition using H1 to H15 reference antisera, and by electron microscope examination. The pathogenicity of the viruses was confirmed by intravenous pathogenicity index test and its culture in Chicken Embryo Fibroblast primary cell culture without addition of trypsin. The study revealed that the causative agent of the outbreaks of avian disease in Indonesia was avian influenza H5 subtype virus based upon serological tests, virus isolation and characterization using swine influenza reference antisera, and electron microscope examination. While subtyping of the viruses using H1 to H15 reference antisera suggested that the virus is very likely to be an avian influenza H5N1 subtype virus. The pathogenicity test confirmed that the viruses

  12. Complete genome amplification of Equine influenza virus subtype 2 Amplificación del genoma completo del subtipo 2 del virus de la influenza equina

    Directory of Open Access Journals (Sweden)

    G. H. Sguazza

    2009-12-01

    Full Text Available This work reports a method for rapid amplification of the complete genome of equine influenza virus subtype 2 (H3N8. A ThermoScriptTM reverse transcriptase instead of the avian myeloblastosis virus reverse transcriptase or Moloney murine leukemia virus reverse transcriptase was used. This enzyme has demonstrated higher thermal stability and is described as suitable to make long cDNA with a complex secondary structure. The product obtained by this method can be cloned, used in later sequencing reactions or nested-PCR with the purpose of achieving a rapid diagnosis and characterization of the equine influenza virus type A. This detection assay might be a valuable tool for diagnosis and screening of field samples as well as for conducting molecular studies.En este trabajo comunicamos un método rápido que permite la amplificación del genoma completo del subtipo 2 (H3N8 del virus de la influenza equina. Se utilizó la enzima transcriptasa reversa ThermoScriptTM en lugar de la transcriptasa reversa del virus de la mieloblastosis aviar o la transcriptasa reversa del virus de la leucemia murina de Moloney. Esta enzima ha demostrado tener una alta estabilidad térmica y la capacidad de hacer largas copias de ADN con una estructura secundaria compleja. El producto obtenido por esta técnica puede ser clonado y utilizado posteriormente en reacciones de secuenciación o de PCR anidada con la finalidad de lograr un diagnóstico rápido y la caracterización del virus de la influenza equina tipo A. Este ensayo de detección puede llegar a ser una valiosa herramienta para el diagnóstico y el análisis de muestras de campo, así como para la realización de estudios moleculares.

  13. Age-specific differences in influenza virus type and subtype distribution in the 2012/2013 season in 12 European countries

    DEFF Research Database (Denmark)

    Beauté, J; Zucs, P; Korsun, N

    2015-01-01

    that the overall distribution of circulating (sub)types may mask substantial differences between age groups. Thus, in cases aged 5-14 years, 75% tested positive for influenza B virus whereas all other age groups had an even distribution of influenza A and B viruses. This means that the intepretation of syndromic...

  14. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  15. Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus.

    Science.gov (United States)

    Lee, Chun-Ching; Liao, Yu-Chieh; Lai, Yu-Hsuan; Lee, Chang-Chun David; Chuang, Min-Chieh

    2015-01-01

    A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.

  16. Development of a sensitive real-time PCR for simultaneous detection and subtyping of influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Daniela Amicizia

    2005-03-01

    Full Text Available

    A new real-time PCR assay, using melting curve analysis, was developed for the rapid and reliable detection and sub-typing of influenza A and B.

    In order to evaluate it’s specificity, cell culture surnatants positive for Respiratory Syncytial Virus, Parainfluenza Viruses 1, 2 and 3, Measles Virus, Influenza A (to evaluate Influenza B primer and B (to evaluate Influenza A primer were tested and all of the results were negative.

    A series of Influenza A and B cell culture-grown viruses were diluted in virus transport medium, titrated and tested to determine the analytical sensibility which equated to 0.64, 0.026, 0.64, 0.62 PFU for A/H1N1, A/H3N2, Victoria-like and Yamagata-like B viruses, respectively. Twenty-five specimens, collected during the 2001/02 and 2002/03 seasons, which were positive for A/H1N1 (n = 7, A/H3N2 (n = 10, B Victoria-lineage (n = 5 and B Yamagata-lineage (n = 3, were tested in order to evaluate the assay’s clinical sensitivity, all of the results were positive.

    The new real-time PCR appears to be a suitable tool for virological surveillance and the diagnosis of respiratory infections.

  17. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th‐century pandemics

    Science.gov (United States)

    Pasricha, Gunisha; Mishra, Akhilesh C.; Chakrabarti, Alok K.

    2012-01-01

    Please cite this paper as: Pasricha et al. (2012) Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the Influenza A virus subtypes responsible for the 20th‐century pandemics. Influenza and Other Respiratory Viruses 7(4), 497–505. Background  PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Methods  Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Results  Analysis showed that 96·4% of the H5N1 influenza viruses harbored full‐length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th‐century pandemic influenza viruses contained full‐length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human‐ and avian host‐specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Conclusions  Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host‐specific evolution of the virus

  18. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    Science.gov (United States)

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  19. An enzyme-linked immunosorbent assay for detection of avian influenza virus subtypes H5 and H7 antibodies

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Ajjouri, Gitte; Handberg, Kurt

    2013-01-01

    subtypes H5 and H7. The ELISAs were evaluated with polyclonal chicken anti-AIV antibodies against AIV subtypes: H1N2, H5N2, H5N7, H7N1, H7N7, H9N9, H10N4 and H16N3. RESULTS: Both the H5 and H7 ELISA proved to have a high sensitivity and specificity and the ELISAs detected H5 and H7 antibodies earlier......BACKGROUND: Avian influenza virus (AIV) subtypes H5 and H7 attracts particular attention because of the risk of their potential pathogenicity in poultry. The haemagglutination inhibition (HI) test is widely used as subtype specific test for serological diagnostics despite the laborious nature...

  20. Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil.

    Directory of Open Access Journals (Sweden)

    Renata Hurtado

    Full Text Available Migratory aquatic birds play an important role in the maintenance and spread of avian influenza viruses (AIV. Many species of aquatic migratory birds tend to use similar migration routes, also known as flyways, which serve as important circuits for the dissemination of AIV. In recent years there has been extensive surveillance of the virus in aquatic birds in the Northern Hemisphere; however in contrast only a few studies have been attempted to detect AIV in wild birds in South America. There are major flyways connecting South America to Central and North America, whereas avian migration routes between South America and the remaining continents are uncommon. As a result, it has been hypothesized that South American AIV strains would be most closely related to the strains from North America than to those from other regions in the world. We characterized the full genome of three AIV subtype H11N9 isolates obtained from ruddy turnstones (Arenaria interpres on the Amazon coast of Brazil. For all gene segments, all three strains consistently clustered together within evolutionary lineages of AIV that had been previously described from aquatic birds in North America. In particular, the H11N9 isolates were remarkably closely related to AIV strains from shorebirds sampled at the Delaware Bay region, on the Northeastern coast of the USA, more than 5000 km away from where the isolates were retrieved. Additionally, there was also evidence of genetic similarity to AIV strains from ducks and teals from interior USA and Canada. These findings corroborate that migratory flyways of aquatic birds play an important role in determining the genetic structure of AIV in the Western hemisphere, with a strong epidemiological connectivity between North and South America.

  1. Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method.

    Science.gov (United States)

    Wang, Ruixue; Soll, Lindsey; Dugan, Vivien; Runstadler, Jonathan; Happ, George; Slemons, Richard D; Taubenberger, Jeffery K

    2008-05-25

    This study presents an interconnected approach for circumventing two inherent limitations associated with studies defining the natural history of influenza A viruses in wild birds. The first limiting factor is the ability to maintain a cold chain from specimen collection to the laboratory when study sites are in more remote locations. The second limiting factor is the ability to identify all influenza A virus HA subtypes present in an original sample. We report a novel method for molecular subtyping of avian influenza A virus hemagglutinin genes using degenerate primers designed to amplify all known hemagglutinin subtypes. It was shown previously that templates larger than 200 bp were not consistently amplifiable from ethanol-fixed cloacal swabs. For this study, new primer sets were designed within these constraints. This method was used to perform subtyping RT-PCR on 191 influenza RNA-positive ethanol-fixed cloacal swabs obtained from 880 wild ducks in central Alaska in 2005. Seven different co-circulating hemagglutinin subtypes were identified in this study set, including H1, H3, H4, H5, H6, H8, and H12. In addition, 16% of original cloacal samples showed evidence of mixed infection, with samples yielding from two-to-five different hemagglutinin subtypes. This study further demonstrates the complex ecobiology of avian influenza A viruses in wild birds.

  2. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    Directory of Open Access Journals (Sweden)

    Gaëlle Simon

    Full Text Available Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013 aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%, human-like reassortant swine H1N2 (13% and human-like reassortant swine H3N2 (9.1%, as well as pandemic A/H1N1 2009 (H1N1pdm virus (10.3%. Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  3. Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope

    Directory of Open Access Journals (Sweden)

    Shaoheng Chen

    2015-01-01

    Full Text Available We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA trimmer, the long alpha helix (LAH, as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR of hepatitis B virus core protein (HBc, and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (VLP. Intranasal immunization of mice with this LAH-HBc VLP plus cholera toxin B subunit with 0.2% of cholera toxin (CTB* adjuvant could effectively elicit humoral and cellular immune responses and protect mice against a lethal challenge of homologous influenza viruses (A/Puerto Rico/8/1934 (PR8 (H1N1. In addition, passage of the immune sera containing specific antibodies to naïve mice rendered them resistant against a lethal homologous challenge. Immunization with LAH-HBc VLP vaccine plus CTB* adjuvant could also fully protect mice against a lethal challenge of the 2009 pandemic H1N1 influenza virus or the avian H9N2 virus and could partially protect mice against a lethal challenge of the avian H5N1 influenza virus. This study demonstrated that the LAH-HBc VLP vaccine based on a conserved sequence of the HA trimmer stalk region is a promising candidate vaccine for developing a universal influenza vaccine against multiple influenza viruses infections.

  4. Subtyping of swine influenza viruses using a high-throughput real time PCR platform

    DEFF Research Database (Denmark)

    Goecke, Nicole Bakkegård; Krog, Jesper Schak; Hjulsager, Charlotte Kristiane

    ). The results revealed that the performance of the dynamic chip was similar to conventional real time analysis. Discussion and conclusion. Application of the chip for subtyping of swine influenza has resulted in a significant reduction in time, cost and working hours. Thereby, it is possible to offer diagnostic...... test and subsequent subtyping is performed by real time RT-PCR (RT-qPCR) but several assays are needed to cover the wide range of circulating subtypes which is expensive,resource and time demanding. To mitigate these restrictions the high-throughput qPCR platform BioMark (Fluidigm) has been explored...... services with reduced price and turnover time which will facilitate choice of vaccines and by that lead to reduction of antibiotic used....

  5. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th-century pandemics.

    Science.gov (United States)

    Pasricha, Gunisha; Mishra, Akhilesh C; Chakrabarti, Alok K

    2013-07-01

    PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Analysis showed that 96·4% of the H5N1 influenza viruses harbored full-length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th-century pandemic influenza viruses contained full-length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human- and avian host-specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host-specific evolution of the virus. However, studies are required to correlate this sequence variability with the virulence and pathogenicity. © 2012 John Wiley & Sons Ltd.

  6. The origin of the PB1 segment of swine influenza A virus subtype H1N2 determines viral pathogenicity in mice.

    Science.gov (United States)

    Metreveli, Giorgi; Gao, Qinshan; Mena, Ignacio; Schmolke, Mirco; Berg, Mikael; Albrecht, Randy A; García-Sastre, Adolfo

    2014-08-08

    Swine appear to be a key species in the generation of novel human influenza pandemics. Previous pandemic viruses are postulated to have evolved in swine by reassortment of avian, human, and swine influenza viruses. The human pandemic influenza viruses that emerged in 1957 and 1968 as well as swine viruses circulating since 1998 encode PB1 segments derived from avian influenza viruses. Here we investigate the possible role in viral replication and virulence of the PB1 gene segments present in two swine H1N2 influenza A viruses, A/swine/Sweden/1021/2009(H1N2) (sw 1021) and A/swine/Sweden/9706/2010(H1N2) (sw 9706), where the sw 1021 virus has shown to be more pathogenic in mice. By using reverse genetics, we swapped the PB1 genes of these two viruses. Similar to the sw 9706 virus, chimeric sw 1021 virus carrying the sw 9706 PB1 gene was not virulent in mice. In contrast, replacement of the PB1 gene of the sw 9706 virus by that from sw 1021 virus resulted in increased pathogenicity. Our study demonstrated that differences in virulence of swine influenza virus subtype H1N2 are attributed at least in part to the PB1 segment. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013

    DEFF Research Database (Denmark)

    Simon, Gaelle; Larsen, Lars Erik; Duerrwald, Ralf

    2014-01-01

    : avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence....... For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some......Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs...

  8. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    Science.gov (United States)

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  9. Broad spectrum reactivity versus subtype specificity-trade-offs in serodiagnosis of influenza A virus infections by competitive ELISA.

    Science.gov (United States)

    Postel, A; Ziller, M; Rudolf, M; Letzel, T; Ehricht, Ralf; Pourquier, P; Dauber, M; Grund, C; Beer, Martin; Harder, T C

    2011-04-01

    Avian influenza viruses (AIVs) of the H5 and H7 subtypes can cause substantial economic losses in the poultry industry and are a potential threat to public health. Serosurveillance of poultry populations is an important monitoring tool and can also be used for control of vaccination campaigns. The purpose of this study was to develop broadly reactive, yet subtype-specific competitive ELISAs (cELISAs) for the specific detection of antibodies to the notifiable AIV subtypes H5 and H7 as an alternative to the gold standard haemagglutination inhibition assay (HI). Broadly reacting monoclonal competitor antibodies (mAbs) and genetically engineered subtype H5 or H7 haemagglutinin antigen, expressed and in vivo biotinylated in insect cells, were used to develop the cELISAs. Sera from galliform species and water fowl (n=793) were used to evaluate the performance characteristics of the cELISAs. For the H5 specific cELISA, 98.1% test sensitivity and 91.5% test specificity (97.7% and 90.2% for galliforms; 98.9% and 92.6% for waterfowl), and for the H7 cELISA 97.3% sensitivity and 91.8% specificity (95.3% and 98.9% for galliforms; 100% and 82.7% for waterfowl) were reached when compared to HI. The use of competitor mAbs with broad spectrum reactivity within an AIV haemagglutinin subtype allowed for homogenous detection with high sensitivity of subtype-specific antibodies induced by antigenically widely distinct isolates including antigenic drift variants. However, a trade-off regarding sensitivity versus nonspecific detection of interfering antibodies induced by phylo- and antigenically closely related subtypes, e.g., H5 versus H2 and H7 versus H15, must be considered. The observed intersubtype antibody cross-reactivity remains a disturbance variable in AIV subtype-specific serodiagnosis which negatively affects specificity. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Hongmei Bao

    2014-01-01

    Full Text Available A novel influenza A (H7N9 virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans. No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9 virus from different resource samples.

  11. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Science.gov (United States)

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  12. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Directory of Open Access Journals (Sweden)

    Abdel-Ghany Ahmad E

    2010-04-01

    Full Text Available Abstract Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE. Reverse transcriptase polymerase chain reaction (RT-PCR and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas.

  13. A 4-year study of avian influenza virus prevalence and subtype diversity in ducks of Newfoundland, Canada.

    Science.gov (United States)

    Huang, Yanyan; Wille, Michelle; Dobbin, Ashley; Robertson, Gregory J; Ryan, Pierre; Ojkic, Davor; Whitney, Hugh; Lang, Andrew S

    2013-10-01

    The island of Newfoundland, Canada, is at the eastern edge of North America and has migratory bird connections with the continental mainland as well as across the North Atlantic Ocean. Here, we report a 4-year avian influenza virus (AIV) epidemiological study in ducks in the St. John's region of Newfoundland. The overall prevalence of AIV detection in ducks during this study was 7.2%, with American Black Ducks contributing the vast majority of the collected samples and the AIV positives. The juvenile ducks showed a significantly higher AIV detection rate (10.6%) compared with adults (3.4%). Seasonally, AIV prevalence rates were higher in the autumn (8.4%), but positives were still detected in the winter (4.6%). Preliminary serology tests showed a high incidence of previous AIV infection (20/38, 52.6%). A total of 43 viruses were characterized for their HA-NA or HA subtypes, which revealed a large diversity of AIV subtypes and little recurrence of subtypes from year to year. Investigation of the movement patterns of ducks in this region showed that it is a largely non-migratory duck population, which may contribute to the observed pattern of high AIV subtype turnover. Phylogenetic analysis of 4 H1N1 and one H5N4 AIVs showed these viruses were highly similar to other low pathogenic AIV sequences from waterfowl in North America and assigned all gene segments into American-avian clades. Notably, the H1N1 viruses, which were identified in consecutive years, possessed homologous genomes. Such detection of homologous AIV genomes across years is rare, but indicates the role of the environmental reservoir in viral perpetuation.

  14. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs.

    Science.gov (United States)

    Henritzi, Dinah; Zhao, Na; Starick, Elke; Simon, Gaelle; Krog, Jesper S; Larsen, Lars Erik; Reid, Scott M; Brown, Ian H; Chiapponi, Chiara; Foni, Emanuela; Wacheck, Silke; Schmid, Peter; Beer, Martin; Hoffmann, Bernd; Harder, Timm C

    2016-11-01

    A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine. Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Efficient SIV surveillance programmes depend on sensitive and specific diagnostic methods which allow for cost-effective large-scale analysis. New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. A diagnostic algorithm is proposed for the combined detection in clinical samples and subtyping of SIV strains currently circulating in Europe that is based on a generic, M-gene-specific influenza A virus RT-qPCR. In a second step, positive samples are examined by tetraplex HA- and triplex NA-specific RT-qPCRs to differentiate the porcine subtypes H1, H3, N1 and N2. Within the HA subtype H1, lineages "av" (European avian-derived), "hu" (European human-derived) and "pdm" (human pandemic A/H1N1, 2009) are distinguished by RT-qPCRs, and within the NA subtype N1, lineage "pdm" is differentiated. An RT-PCR amplicon Sanger sequencing method of small fragments of the HA and NA genes is also proposed to safeguard against failure of multiplex RT-qPCR subtyping. These new multiplex RT-qPCR assays provide adequate tools for sustained SIV monitoring programmes in Europe. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  15. Influenza (Flu) Viruses

    Science.gov (United States)

    ... Types Seasonal Avian Swine Variant Pandemic Other Influenza (Flu) Viruses Language: English (US) Español Recommend on Facebook ... influenza circulate and cause illness. More Information about Flu Viruses Types of Influenza Viruses Influenza A and ...

  16. Experimental Assessment of the Pathogenicity of Avian Influenza Virus H9N2 Subtype in Japanese Quail (Coturnix Coturnix Japanica

    Directory of Open Access Journals (Sweden)

    Asasi, K.

    2010-07-01

    Full Text Available H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. It has been also reported that H9N2 can cause high mortality in commercial broiler farms in Iran previously. However there was no report of H9N2 outbreak in any other species. In order to evaluate the pathogenicity of H9N2 virus in Japanese quail, 145 Japanese quail were randomly divided into 5 separate groups (116 quails in the treatment and 29 quails in the control groups. The experimental groups infected via oral rout, eye drop, intramuscular injection and spray method at the age of 32 days with 106.5 EID50/bird. The virus A/chicken/Iran/ZMT-101/98(H9N2 was kindly provided obtained from Razi vaccine& serum institute with EID50=108. The blood samples were experimented the day before use to show freedom from antibodies to influenza A and more specifically, the H9 subtype. The clinical signs and antibody titer of the infected chicks were also monitored. Five birds of each group were bled at 10 and 20 days post infection (DPI, and 20 birds of each group at 30 DPI were bled. The immune response to infection was measured by Haemmaglutination Inhibition (HI test using the H9N2 virus as antigen. Feed & water consumption were recorded on daily bases before and after inoculation. Body weight of each group was also recorded on weekly bases before and after inoculation. During the current study clinical signs such as sneezing, gasping, depression observed in challenged groups followed by decreasing in laying (1-17%. High HI antibody titers of AIV subtype H9 was seen in 10 DPI. The quails exhibited no decrease in food and water consumption and all quails were growing well and did not show any abnormality.

  17. Genome sequence of a novel H14N7 subtype influenza A virus isolated from a blue-winged teal (Anas discors) harvested in Texas, USA

    Science.gov (United States)

    Ramey, Andy M.; Reeves, Andrew; Poulson, Rebecca L.; Carter, Deborah L.; Davis-Fields, Nicholas; Stallknecht, David E.

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir.                   

  18. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies.

    Science.gov (United States)

    Zhao, Xihong; Tsao, Yu-Chia; Lee, Fu-Jung; Tsai, Woo-Hu; Wang, Ching-Ho; Chuang, Tsung-Liang; Wu, Mu-Shiang; Lin, Chii-Wann

    2016-07-01

    A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40 nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14 × 10(5) EID50/0.1 mL, and the response time was 10 min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    Science.gov (United States)

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin- and neuraminidase-specific tetra- and triplex real-time RT-PCRs

    DEFF Research Database (Denmark)

    Henritzi, Dinah; Zhao, Na; Starick, Elke

    2016-01-01

    diagnostic methods which allow for cost-effective large-scale analysis. Methods New SIV haemagglutinin (HA) and neuraminidase (NA) subtype- and lineage-specific multiplex real-time RT-PCRs (RT-qPCR) have been developed and validated with reference virus isolates and clinical samples. Results A diagnostic....... Swine influenza viruses (SIV) are widespread in European domestic pig populations and evolve dynamically. Knowledge regarding occurrence, spread and evolution of potentially zoonotic SIV in Europe is poorly understood. Objectives Efficient SIV surveillance programmes depend on sensitive and specific......Background A diversifying pool of mammalian-adapted influenza A viruses (IAV) with largely unknown zoonotic potential is maintained in domestic swine populations worldwide. The most recent human influenza pandemic in 2009 was caused by a virus with genes originating from IAV isolated from swine...

  1. Naturally occurring Influenza A virus subtype H1N2 infection in a Midwest United States mink (Mustela vison) ranch.

    Science.gov (United States)

    Yoon, Kyoung-Jin; Schwartz, Kent; Sun, Dong; Zhang, Jianqiang; Hildebrandt, Hugh

    2012-03-01

    Influenza A virus (FLUAV) causes acute respiratory disease in humans and a variety of animal species. The virus tends to remain within the species of origin; nonetheless, naturally occurring cross-species transmission of FLUAV has been periodically documented. Multiple cross-species transmissions of FLUAV have been reported from companion animals and captive wild animals, neither of which is historically considered as natural hosts of FLUAV. In the fall of 2010, mink (Mustela vison) inhabiting a 15,000-head mink farm in the Midwest United States experienced persistent severe respiratory distress and nose and/or mouth bleeding. Mink losses averaged approximately 10 animals per day. Six dead mink at 6 months of age were submitted to the Iowa State University Veterinary Diagnostic Laboratory for diagnostic investigation. Gross and microscopic examinations revealed that all 6 mink had hemorrhagic bronchointerstitial pneumonia. Hemolytic Escherichia coli was isolated from lungs, probably accounting for hemorrhagic pneumonia. All animals tested negative for Canine distemper virus and Aleutian mink disease virus. Interestingly, FLUAV of H1N2 subtype, which contained the matrix gene of swine lineage, was detected in the lungs. Serological follow-up on mink that remained in the ranch until pelting also confirmed that the ranch had been exposed to FLUAV of H1 subtype (δ clade). The case study suggests that FLUAV should be included in the differential diagnosis when mink experience epidemics of respiratory disease. Since the source of FLUAV appeared to be uncooked turkey meat, feeding animals fully cooked ration should be considered as a preventive measure.

  2. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  3. Risk factors for exposure to influenza a viruses, including subtype H5 viruses, in Thai free-grazing ducks.

    Science.gov (United States)

    Beaudoin, A L; Kitikoon, P; Schreiner, P J; Singer, R S; Sasipreeyajan, J; Amonsin, A; Gramer, M R; Pakinsee, S; Bender, J B

    2014-08-01

    Free-grazing ducks (FGD) have been associated with highly pathogenic avian influenza (HPAI) H5N1 outbreaks and may be a viral reservoir. In July-August 2010, we assessed influenza exposure of Thai FGD and risk factors thereof. Serum from 6254 ducks was analysed with enzyme-linked immunosorbent assay (ELISA) to detect antibodies to influenza A nucleoprotein (NP), and haemagglutinin H5 protein. Eighty-five per cent (5305 ducks) were seropositive for influenza A. Of the NP-seropositive sera tested with H5 assays (n = 1423), 553 (39%) were H5 ELISA positive and 57 (4%) suspect. Twelve per cent (74 of 610) of H5 ELISA-positive/suspect ducks had H5 titres ≥ 1 : 20 by haemagglutination inhibition. Risk factors for influenza A seropositivity include older age, poultry contact, flock visitors and older purchase age. Study flocks had H5 virus exposure as recently as March 2010, but no HPAI H5N1 outbreaks have been identified in Thailand since 2008, highlighting a need for rigorous FGD surveillance. © 2012 Blackwell Verlag GmbH.

  4. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals.

    Science.gov (United States)

    El-Shesheny, Rabeh; Feeroz, Mohammed M; Krauss, Scott; Vogel, Peter; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2018-04-25

    Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.

  5. Genomic characterization of H14 subtype Influenza A viruses in new world waterfowl and experimental infectivity in mallards (Anas platyrhynchos.

    Directory of Open Access Journals (Sweden)

    Andrew M Ramey

    Full Text Available Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments. In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5 or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI; however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13

  6. Genomic characterization of H14 subtype influenza A viruses in New World waterfowl and experimental infectivity in mallards Anas platyrhynchos

    Science.gov (United States)

    Ramey, Andy M.; Poulson, Rebecca L.; Gonzalez-Reiche, Ana S.; Perez, Daniel R.; Stalknecht, David E.; Brown, Justin D.

    2014-01-01

    Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in

  7. Avian influenza viruses in humans.

    Science.gov (United States)

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  8. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    Science.gov (United States)

    Ramey, Andy M.; Spackman, Erica; Yeh, Jung-Yong; Fujita, Go; Konishi, Kan; Reed, John A.; Wilcox, Benjamin R.; Brown, Justin D.; Stallknecht, David E.

    2013-01-01

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) to assess possible involvement of this species in the spread of economically important and potentially zoonotic pathogens. Antibodies to AIV were detected in 64 of 105 samples (61%). Of the 64 positives, 95% and 81% inhibited agglutination of two different H5 AIV antigens (H5N1 and H5N9), respectively. Antibodies to JEV and WNV were detected in five (5%) and none of the samples, respectively. Results provide evidence for prior exposure of migrating northern pintails to H5 AIV which couldhave implications for viral shedding and disease occurrence. Results also provide evidence for limited involvement of this species in the transmission and spread of flaviviruses during spring migration.

  9. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in China reveals a natural reassortant event.

    Science.gov (United States)

    Xie, Qingmei; Yan, Zhuanqiang; Ji, Jun; Zhang, Huanmin; Liu, Jun; Sun, Yue; Li, Guangwei; Chen, Feng; Xue, Chunyi; Ma, Jingyun; Bee, Yingzuo

    2012-09-01

    A/chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype avian influenza virus (H9N2 AIV) strain causing high morbidity that was isolated from broilers in Fujian Province of China in 2009. FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we report the complete genome sequence of FJ/G9 with natural six-way reassortment, which is the most complex genotype strain in China and even in the world so far. The present findings will aid in understanding the complexity and diversity of H9N2 subtype avian influenza virus.

  10. Influenza-A viruses in ducks in northwestern Minnesota: fine scale spatial and temporal variation in prevalence and subtype diversity

    Data.gov (United States)

    Department of the Interior — Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July – October in 2007 and 2008. AIV was detected in 222...

  11. Disease dynamics and bird migration--linking mallards Anas platyrhynchos and subtype diversity of the influenza A virus in time and space.

    Directory of Open Access Journals (Sweden)

    Gunnar Gunnarsson

    Full Text Available The mallard Anas platyrhynchos is a reservoir species for influenza A virus in the northern hemisphere, with particularly high prevalence rates prior to as well as during its prolonged autumn migration. It has been proposed that the virus is brought from the breeding grounds and transmitted to conspecifics during subsequent staging during migration, and so a better understanding of the natal origin of staging ducks is vital to deciphering the dynamics of viral movement pathways. Ottenby is an important stopover site in southeast Sweden almost halfway downstream in the major Northwest European flyway, and is used by millions of waterfowl each year. Here, mallards were captured and sampled for influenza A virus infection, and positive samples were subtyped in order to study possible links to the natal area, which were determined by a novel approach combining banding recovery data and isotopic measurements (δ(2H of feathers grown on breeding grounds. Geographic assignments showed that the core natal areas of studied mallards were in Estonia, southern and central Finland, and northwestern Russia. This study demonstrates a clear temporal succession of latitudes of natal origin during the course of autumn migration. We also demonstrate a corresponding and concomitant shift in virus subtypes. Acknowledging that these two different patterns were based in part upon different data, a likely interpretation worth further testing is that the early arriving birds with more proximate origins have different influenza A subtypes than the more distantly originating late autumn birds. If true, this knowledge would allow novel insight into the origins and transmission of the influenza A virus among migratory hosts previously unavailable through conventional approaches.

  12. Viruses associated with human and animal influenza - a review ...

    African Journals Online (AJOL)

    In this review, the most important viruses associated with human and animal influenza are reported. These include Influenza A,B and C. Influenza viruses are members of the family Orthomyxoviridae. Influenza A virus being the most pathogenic and wide spread with many subtypes has constantly cause epidemics in several ...

  13. DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7

    DEFF Research Database (Denmark)

    Yi, Sun; Dhumpa, Raghuram; Bang, Dang Duong

    2011-01-01

    of RNA extract in the liquid phase with sequence-specific nested PCR on the solid phase. A simple ultraviolet cross-linking method was used to immobilize the DNA probes over an unmodified glass surface, which makes solid-phase PCR a convenient possibility for AIV screening. The testing of 33 avian fecal....... In this article, a DNA microarray-based solid-phase polymerase chain reaction (PCR) approach has been developed for rapid detection of influenza virus type A and for simultaneous identification of pathogenic virus subtypes H5 and H7. This solid-phase RT-PCR method combined reverse-transcription amplification...

  14. Multiplex RT-PCR assay for differentiating European swine influenza virus subtypes H1N1, H1N2 and H3N2.

    Science.gov (United States)

    Chiapponi, Chiara; Moreno, Ana; Barbieri, Ilaria; Merenda, Marianna; Foni, Emanuela

    2012-09-01

    In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe. The HA PCR was able to identify the lineage (avian or human) of the HA of H1 subtypes. The analytical sensitivity of the test, considered to be unique, was assessed using three reference viruses. The detection limit corresponded to 1×10(-1) TCID(50)/200μl for avian-like H1N1, 1×10(0) TCID(50)/200μl for human-like H1N2 and 1×10(1) TCID(50)/200μl for H3N2 SIV. The multiplex RT-PCR was first carried out on a collection of 70 isolated viruses showing 100% specificity and then on clinical samples, from which viruses had previously been isolated, resulting in an 89% positive specificity of the viral subtype. Finally, the test was able to identify the viral subtype correctly in 56% of influenza A positive samples, from which SIV had not been isolated previously. It was also possible to identify mixed viral infections and the circulation of a reassortant strain before performing genomic studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7.

    Science.gov (United States)

    Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan

    2012-01-01

    A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Characterization of Low Pathogenic Avian Influenza Virus Subtype H9N2 Isolated from Free-Living Mynah Birds (Acridotheres tristis) in the Sultanate of Oman.

    Science.gov (United States)

    Body, Mohammad H; Alrarawahi, Abdulmajeed H; Alhubsy, Saif S; Saravanan, Nirmala; Rajmony, Sunil; Mansoor, Muhammad Khalid

    2015-06-01

    A low pathogenic avian influenza virus was identified from free-living birds (mynah, Acridotheres tristis) of the starling family. Virus was isolated by inoculation of homogenized suspension from lung, tracheal, spleen, and cloacal swabs into the allantoic cavity of embryonated chicken eggs. Subtype of the isolate was characterized as H9N2 by hemagglutination inhibition test using monospecific chicken antisera to a wide range of influenza reference strain. Pathogenicity of the isolate was determined by intravenous pathogenicity index. The virus was reisolated from experimentally infected chicken. Additionally, the isolate was subjected to reverse transcriptase PCR using partial hemagglutinin (HA) gene-specific primers and yielded an amplicon of 487 bp. HA gene sequence analysis revealed 99% sequence homology among mynah and chicken isolates from Oman. On phylogenetic analysis, isolates from mynah (A/mynnah/Oman/AIVS6/2005) and chicken (A/chicken/Oman/AIVS3/2006; A/chicken/Oman/AIVS7/2006) clustered together tightly, indicating these free-flying birds may be a source of introduction of H9N2 subtype in poultry bird in Oman. Moreover, the HA gene of H9N2 isolates from Oman resembled those of viruses of the G1-like lineage and were very similar to those from United Arab Emirates.

  17. Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes.

    Science.gov (United States)

    Choi, Won-Suk; Jeong, Ju Hwan; Kwon, Jin Jung; Ahn, Su Jeong; Lloren, Khristine Kaith S; Kwon, Hyeok-Il; Chae, Hee Bok; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J; Govorkova, Elena A; Choi, Young Ki; Baek, Yun Hee; Song, Min-Suk

    2018-01-01

    Several subtypes of avian influenza viruses (AIVs) are emerging as novel human pathogens, and the frequency of related infections has increased in recent years. Although neuraminidase (NA) inhibitors (NAIs) are the only class of antiviral drugs available for therapeutic intervention for AIV-infected patients, studies on NAI resistance among AIVs have been limited, and markers of resistance are poorly understood. Previously, we identified unique NAI resistance substitutions in AIVs of the N3, N7, and N9 NA subtypes. Here, we report profiles of NA substitutions that confer NAI resistance in AIVs of the N4, N5, N6, and N8 NA subtypes using gene-fragmented random mutagenesis. We generated libraries of mutant influenza viruses using reverse genetics (RG) and selected resistant variants in the presence of the NAIs oseltamivir carboxylate and zanamivir in MDCK cells. In addition, two substitutions, H274Y and R292K (N2 numbering), were introduced into each NA gene for comparison. We identified 37 amino acid substitutions within the NA gene, 16 of which (4 in N4, 4 in N5, 4 in N6, and 4 in N8) conferred resistance to NAIs (oseltamivir carboxylate, zanamivir, or peramivir) as determined using a fluorescence-based NA inhibition assay. Substitutions conferring NAI resistance were mainly categorized as either novel NA subtype specific (G/N147V/I, A246V, and I427L) or previously reported in other subtypes (E119A/D/V, Q136K, E276D, R292K, and R371K). Our results demonstrate that each NA subtype possesses unique NAI resistance markers, and knowledge of these substitutions in AIVs is important in facilitating antiviral susceptibility monitoring of NAI resistance in AIVs. IMPORTANCE The frequency of human infections with avian influenza viruses (AIVs) has increased in recent years. Despite the availability of vaccines, neuraminidase inhibitors (NAIs), as the only available class of drugs for AIVs in humans, have been constantly used for treatment, leading to the inevitable emergence

  18. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  19. SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests

    Science.gov (United States)

    Tsukamoto, K.; Javier, P.C.; Shishido, M.; Noguchi, D.; Pearce, J.; Kang, H.-M.; Jeong, O.M.; Lee, Y.-J.; Nakanishi, K.; Ashizawa, T.

    2012-01-01

    Continuing outbreaks of H5N1 highly pathogenic (HP) avian influenza virus (AIV) infections of wild birds and poultry worldwide emphasize the need for global surveillance of wild birds. To support the future surveillance activities, we developed a SYBR green-based, real-time reverse transcriptase PCR (rRT-PCR) for detecting nucleoprotein (NP) genes and subtyping 16 hemagglutinin (HA) and 9 neuraminidase (NA) genes simultaneously. Primers were improved by focusing on Eurasian or North American lineage genes; the number of mixed-base positions per primer was set to five or fewer, and the concentration of each primer set was optimized empirically. Also, 30 cycles of amplification of 1:10 dilutions of cDNAs from cultured viruses effectively reduced minor cross- or nonspecific reactions. Under these conditions, 346 HA and 345 NA genes of 349 AIVs were detected, with average sensitivities of NP, HA, and NA genes of 10 1.5, 10 2.3, and 10 3.1 50% egg infective doses, respectively. Utility of rRT-PCR for subtyping AIVs was compared with that of current standard serological tests by using 104 recent migratory duck virus isolates. As a result, all HA genes and 99% of the NA genes were genetically subtyped, while only 45% of HA genes and 74% of NA genes were serologically subtyped. Additionally, direct subtyping of AIVs in fecal samples was possible by 40 cycles of amplification: approximately 70% of HA and NA genes of NP gene-positive samples were successfully subtyped. This validation study indicates that rRT-PCR with optimized primers and reaction conditions is a powerful tool for subtyping varied AIVs in clinical and cultured samples. Copyright ?? 2012, American Society for Microbiology. All Rights Reserved.

  20. Detection of antibody responses by using haemagglutination inhibiton test and the protection titer of avian influenza virus H5N1 subtype

    Directory of Open Access Journals (Sweden)

    Risa Indriani

    2004-10-01

    Full Text Available Study on the detection of antibody responses using haemagglutination inhibition (HI test and the protection titer to Avian influenza (AI virus H5N1 subtype local isolate has been conducted at the Research Institute for Veterinary Science (RIVS. A total number of 50 village chicken (10 chicken served as un-injected controls and 30 quail were injected intramuscularly with inactivated virus of AI H5N1 subtype local isolate. Serum samples were collected 3 weeks after injection and were tested using haemagglutination inhibition tests. The correlation between antibody titer and its protection to AI virus H5N1 local isolate were measured by challenging the birds with AI virus H5N1 local isolate The HI test was then used to determine field serum samples. A total number of 48 village chicken from three (3 Districts (Bekasi, Tangerang and Bogor and 96 quails from two (2 farms in District of Sukabumi which were all vaccinated with commercial AI adjuvant vaccine were sampled. The study revealed that village chicken and quails showed antibody responses after 3 weeks vaccination and that titer of ≥ 3 log 2 was able to protect chicken and quails when they were challenged with local isolate virus. Based on this result, village chicken field samples from Districts of Tangerang, Bekasi and Bogor showed antibody titer which will protect 50, 100 and 85% of the flocks respectively. While quail field samples from Farm I and Farm II in District of Sukabumi showed antibody titer which will protect 60-100% and 0-80% of the flocks respectively. It is concluded that the study has successfully measured antibody titer to AI virus H5N1 subtype which protect village chicken and quails from local isolate virus challenge so that the results will be used to analyze field serum samples after vaccination program to eradicate AI from Indonesia.

  1. Molecular detection and typing of influenza viruses. Are we ready for an influenza pandemic?

    NARCIS (Netherlands)

    MacKay, W.G.; Loon, A.M. van; Niedrig, M.; Meijer, A.; Lina, B.; Niesters, H.G.M.

    2008-01-01

    BACKGROUND: We cannot predict when an influenza pandemic will occur or which variant of the virus will cause it. Little information is currently available on the ability of laboratories to detect and subtype influenza viruses including the avian influenza viruses. OBJECTIVES: To assess the ability

  2. Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin

    OpenAIRE

    Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.; Taubenberger, Jeffery K.

    2014-01-01

    ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backb...

  3. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik

    2013-01-01

    BACKGROUND: The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically...... and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. METHODS: Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation...... with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. RESULTS: The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene...

  4. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    Science.gov (United States)

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  5. 2009 Pandemic Influenza A Virus Subtype H1N1 in Morocco, 2009–2010: Epidemiology, Transmissibility, and Factors Associated With Fatal Cases

    Science.gov (United States)

    Barakat, Amal; Ihazmad, Hassan; El Falaki, Fatima; Tempia, Stefano; Cherkaoui, Imad; El Aouad, Rajae

    2012-01-01

    Background. Following the emergence of 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) in the United States and Mexico in April 2009, A(H1N1)pdm09 spread rapidly all over the world. There is a dearth of information about the epidemiology of A(H1N1)pdm09 in Africa, including Morocco. We describe the epidemiologic characteristics of the A(H1N1)pdm09 epidemic in Morocco during 2009–2010, including transmissibility and risk factors associated with fatal disease. Methods. We implemented influenza surveillance for patients presenting with influenza-like illness (ILI) at 136 private and public clinics for patients with severe acute respiratory illness (SARI) at 16 regional public hospitals from June 2009 through February 2010. Respiratory samples and structured questionnaires were collected from all enrolled patients, and samples were tested by real-time reverse-transcription polymerase chain reaction for influenza viruses. We estimated the risk factors associated with fatal disease as well as the basic reproduction number (R0) and the serial interval of the pandemic virus. Results. From June 2009 through February 2010, we obtained 3937 specimens, of which 1452 tested positive for influenza virus. Of these, 1398 (96%) were A(H1N1)pdm09. Forty percent of specimens from ILI cases (1056 of 2646) and 27% from SARI cases (342 of 1291) were positive for A(H1N1)pdm09. Sixty-four deaths occurred among laboratory-confirmed A(H1N1)pdm09 SARI cases. Among these cases, those who had hypertension (age-adjusted odd ratio [aOR], 28.2; 95% confidence interval [CI], 2.0–398.7), had neurological disorders (aOR, 7.5; 95% CI, 1.5–36.4), or were obese (aOR, 7.1; 95% CI, 1.6–31.1), as well as women of gestational age who were pregnant (aOR, 2.5; 95% CI, 1.1–5.6), were at increased risk of death. Across the country, elevated numbers of locally acquired infections were detected 4 months after the detection of the first laboratory-confirmed case and coincided with the

  6. Consecutive natural influenza a virus infections in sentinel mallards in the evident absence of subtype-specific hemagglutination inhibiting antibodies.

    Science.gov (United States)

    Globig, A; Fereidouni, S R; Harder, T C; Grund, C; Beer, M; Mettenleiter, T C; Starick, E

    2013-10-01

    Dabbling ducks, particularly Mallards (Anas platyrhynchos) have been frequently and consistently reported to play a pivotal role as a reservoir of low pathogenic avian influenza viruses (AIV). From October 2006 to November 2008, hand-raised Mallard ducks kept at a pond in an avifaunistically rich area of Southern Germany served as sentinel birds in the AIV surveillance programme in Germany. The pond was regularly visited by several species of dabbling ducks. A flock of sentinel birds, consisting of the same 16 individual birds during the whole study period, was regularly tested virologically and serologically for AIV infections. Swab samples were screened by RT-qPCR and, if positive, virus was isolated in embryonated chicken eggs. Serum samples were tested by the use of competitive ELISA and hemagglutinin inhibition (HI) assay. Sequences of full-length hemagglutinin (HA) and neuraminidase (NA) genes were phylogenetically analysed. Four episodes of infections with Eurasian-type AIV occurred in August (H6N8), October/November (H3N2, H2N3) 2007, in January (H3N2) and September (H3N8) 2008. The HA and NA genes of the H3N2 viruses of October 2007 and January 2008 were almost identical rendering the possibility of a re-introduction of that virus from the environment of the sentinel flock highly likely. The HA of the H3N8 virus of September 2008 belonged to a different cluster. As a correlate of the humoral immune response, titres of nucleocapsid protein-specific antibodies fluctuated in correlation with the course of AIV infection episodes. However, no specific systemic response of hemagglutination inhibiting antibodies could be demonstrated even if homologous viral antigens were used. Besides being useful as early indicators for the circulation of influenza viruses in a specific region, the sentinel ducks also contributed to gaining insights into the ecobiology of AIV infection in aquatic wild birds. © 2012 Blackwell Verlag GmbH.

  7. Overview of incursions of Asian H5N1 subtype highly pathogenic avian influenza virus into Great Britain, 2005-2008.

    Science.gov (United States)

    Alexander, Dennis J; Manvell, Ruth J; Irvine, Richard; Londt, Brandon Z; Cox, Bill; Ceeraz, Vanessa; Banks, Jill; Browna, Ian H

    2010-03-01

    Since 2005 there have been five incursions into Great Britain of highly pathogenic avian influenza (HPAI) viruses of subtype H5N1 related to the ongoing global epizootic. The first incursion occurred in October 2005 in birds held in quarantine after importation from Taiwan. Two incursions related to wild birds: one involved a single dead whooper swan found in March 2006 in the sea off the east coast of Scotland, and the other involved 10 mute swans and a Canada goose found dead over the period extending from late December 2007 to late February 2008 on or close to a swannery on the south coast of England. The other two outbreaks occurred in commercial poultry in January 2007 and November 2007, both in the county of Suffolk. The first of these poultry outbreaks occurred on a large turkey farm, and there was no further spread. The second outbreak occurred on a free-range farm rearing turkeys, ducks, and geese and spread to birds on a second turkey farm that was culled as a dangerous contact. Viruses isolated from these five outbreaks were confirmed to be Asian H5N1 HPAI viruses; the quarantine outbreak was attributed to a clade 2.3 virus and the other four to clade 2.2 viruses. This article describes the outbreaks, their control, and the possible origins of the responsible viruses.

  8. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  9. Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail.

    Science.gov (United States)

    Alexander, D J; Parsons, G; Manvell, R J

    1986-01-01

    Clinical signs, death, virus excretion and immune response were measured in 2-week-old chickens, turkeys, quail and ducks infected by intramuscular, intranasal and contact routes with eight influenza viruses of H5 subtype. Six of the viruses: A/chicken/Scotland/59 (H5N1), ck/Scot; A/tern/South Africa/61 (H5N3), tern/SA; A/turkey/Ontario/ 7732/66 (H5N9); ty/Ont; A/chicken/Pennsylvania/1370/83 (H5N2); Pa/1370; A/turkey/Ireland/83 (H5N8); ty/Ireland, and A/duck/Ireland/ 113/84 (HSN8); dk/Ireland, were highly pathogenic for chickens and turkeys. Two viruses, A/chicken/Pennsylvania/1/83 (H5N2), Pa/1 and A/turkey/Italy/ZA/80 (H5N2), ty/Italy, were of low pathogenicity. Ck/Scot was more pathogenic for chickens than turkeys while ty/Ont was more pathogenic for turkeys than chickens. Other viruses showed little difference in their pathogenicity for these two hosts. No clinical signs or deaths were seen in any of the infected ducks. Only two viruses, dk/Ireland and ty/Ireland, produced consistent serological responses in ducks, although intramuscular infection with tern/SA and ty/Italy resulted in some ducks with positive HI titres. These four were the only viruses reisolated from ducks. Quail showed some resistance to viruses which were highly pathogenic for chickens and turkeys, most notably to ck/Scot and ty/Ont and to a lesser extent tern/SA and Pa/1370. Transmission of virus from intranasally infected birds to birds placed in contact varied considerably with both host and infecting virus and the various combinations of these.

  10. Incidence of contamination of live bird markets in Bangladesh with influenza A virus and subtypes H5, H7 and H9.

    Science.gov (United States)

    Biswas, P K; Giasuddin, M; Chowdhury, P; Barua, H; Debnath, N C; Yamage, M

    2018-06-01

    In the absence of robust active surveillance of avian influenza viruses (AIV) affecting poultry in South Asian countries, monitoring of live bird markets (LBMs) can be an alternative. In a longitudinal study of 32 LBM, five environments were sampled as follows: market floor, stall floor, slaughter area, poultry holding cage and water used for meat processing. Samples were taken monthly for 5 months, September 2013-January 2014. Incidence rates (IRs) of LBM contamination with AIV and its subtypes H5, H7 and H9 were assessed. In 10 of the LBM selected, biosecurity measures had been implemented through FAO interventions: the other 22 were non-intervened. Standard procedures were applied to detect AIV and three subtypes in pooled samples (1:5). An LBM was considered positive for AIV or a subtype if at least one of the pooled samples tested positive. The incidence rates of LBM contamination with AIV, H5, H7 and H9 were 0.194 (95% confidence interval (CI) 0.136-0.276), 0.031 (95% CI 0.013-0.075), 0 and 0.175 (95% CI 0.12-0.253) per LBM-month at risk, respectively. The log IR ratio between the FAO-intervened and non-intervened LBM for contamination with AIV was -0.329 (95% CI -1.052 to -0.394, p = .372), 0.598 (95% CI -1.593 to 2.789, p = .593) with subtype H5 and -0.500 (95% CI -1.249 to 0.248, p = .190) with subtype H9, indicating no significant difference. The results obtained suggest that both H5 and H9 were circulating in LBM in Bangladesh in the second half of 2013. The incidence of contamination with H9 was much higher than with H5. © 2017 Blackwell Verlag GmbH.

  11. Genetic characterization of natural reassortant H4 subtype avian influenza viruses isolated from domestic ducks in Zhejiang province in China from 2013 to 2014.

    Science.gov (United States)

    Wu, Haibo; Peng, Xiuming; Peng, Xiaorong; Cheng, Linfang; Lu, Xiangyun; Jin, Changzhong; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2015-12-01

    The H4 subtype of the influenza virus was first isolated in 1999 from pigs with pneumonia in Canada. H4 avian influenza viruses (AIVs) are able to cross the species barrier to infect humans. In order to better understand the genetic relationships between H4 AIV strains circulating in Eastern China and other AIV strains from Asia, a survey of domestic ducks in live poultry markets was undertaken in Zhejiang province from 2013 to 2014. In this study, 23 H4N2 (n = 14) and H4N6 (n = 9) strains were isolated from domestic ducks, and all eight gene segments of these strains were sequenced and compared to reference AIV strains available in GenBank. The isolated strains clustered primarily within the Eurasian lineage. No mutations associated with adaption to mammalian hosts or drug resistance was observed. The H4 reassortant strains were found to be of low pathogenicity in mice and able to replicate in the lung of the mice without prior adaptation. Continued surveillance is required, given the important role of domestic ducks in reassortment events leading to new AIVs.

  12. Purification and production of monospecific antibody to the hemagglutinin from Subtype H5N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2010-12-01

    Full Text Available The purpose of this study was to purify the hemagglutinin from H5N1 virus and to generate monospecific antibody appropriate for production of sensitive and specific immunoassay for H5N1 avian influenza. For this purpose, a local isolate H5N1 virus (A/Ck/West Java/Hamd/2006 was propagated in chicken embryos. The viral pellet was dissolved in a Triton-X-100 solution, undissolved viral particles were pelleted by ultracentrifuge, and the supernatant containing viral surface glycoproteins (Hemagglutinin and neuraminidase was collected. The neuraminidase in the supernatant was absorbed by passing the supernatant through an Oxamic-acid-superose column. After dialyzing extensively, the filtrate was further fractionated with an anion exchange chromatography (Q-sepharose column. Proteins adsorbed by the column were eluted stepwisely with 0.10, 0.25, 0.25 and 0.75 M NaCl in 20 mM Tris, ph 8. Hemagglutinin (H5 was found to be eluted from the column with the 0.5 M NaCl elution buffer. The purified H5 was free from other viral proteins based on immunoassays using commercial antibodies to H5N1 nucleoprotein and neuraminidase. When used as ELISA’s coating antigen, the purified H5 proved to be sensitive and specific for hemagglutinin H5. Cross reactions with other type-A-influenza virus, H6, H7 dan H9, were negligibly low. For the production of monospecific antiserum, the purified H5 was separated with SDS-PAGE, the band containing the H5 monomer was cut out , homogenised and injected into rabbits. The antiserum was capable of detecting the presence of inactivated H5N1 virus in a very dilute suspension, with a detection limit of 0.04 heagglutination (HA unit. The purified hemagglutinin and the serum raised against it should be useful for developing specific, sensitive and affordable immunoassay for H5N1 avian influenza.

  13. [An overview on swine influenza viruses].

    Science.gov (United States)

    Yang, Shuai; Zhu, Wen-Fei; Shu, Yue-Long

    2013-05-01

    Swine influenza viruses (SIVs) are respiratory pathogens of pigs. They cause both economic bur den in livestock-dependent industries and serious global public health concerns in humans. Because of their dual susceptibility to human and avian influenza viruses, pigs are recognized as intermediate hosts for genetic reassortment and interspecies transmission. Subtypes H1N1, H1N2, and H3N2 circulate in swine populations around the world, with varied origin and genetic characteristics among different continents and regions. In this review, the role of pigs in evolution of influenza A viruses, the genetic evolution of SIVs and interspecies transmission of SIVs are described. Considering the possibility that pigs might produce novel influenza viruses causing more outbreaks and pandemics, routine epidemiological surveillance of influenza viruses in pig populations is highly recommended.

  14. Avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  15. Optimization of incubation temperature in embryonated chicken eggs inoculated with H9N2 vaccinal subtype of avian influenza virus

    Directory of Open Access Journals (Sweden)

    Saeed Sedigh-Eteghad

    2013-09-01

    Full Text Available There are little information about growth properties of low pathogenic (LP avian influenza virus (AIV in embryonated chicken eggs (ECEs at different incubation temperatures. Knowledge of this information increases the quantity and quality of antigen in vaccine production process. For this purpose, 10-5 dilution of AIV (A/Chicken/Iran/99/H9N2 was inoculated (Intra-allantoic into 400, 11-day old specific pathogen free (SPF ECEs in the 0.1 mL per ECE rate and incubated in 32, 33, 34, 35, 36, 37.5, 38, 39 ̊C for 72 hr in 65% humidity. Early death embryos in first 24 hr were removed. Amnio-allantoic fluid was withdrawn into the measuring cylinder, and tested for hemagglutination (HA activity and egg infective dose 50 (EID50. The utilizable ECEs and amnio-allantoic fluid volume was significantly increased in 35 ̊C, (p < 0.05. Significant difference in HA and EID50 titers, were seen only in 39 ̊C group. Therefore, 35°C is an optimum temperature for incubation of inoculated ECEs.

  16. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    Science.gov (United States)

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  17. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs

    NARCIS (Netherlands)

    Verhagen, Josanne H.; Lexmond, Pascal; Vuong, Oanh; Schutten, Martin; Guldemeester, Judith; Osterhaus, Albert D.M.E.; Elbers, Armin R.W.; Slaterus, Roy; Hornman, Menno; Koch, Guus; Fouchier, Ron A.M.; Lierz, Michael

    2017-01-01

    Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and

  18. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA

    DEFF Research Database (Denmark)

    Munch, M.; Nielsen, L.P.; Handberg, Kurt

    2001-01-01

    A. A panel of reference influenza strains from various hosts including avian species, human, swine and horse were evaluated in a one tube RT-PCR using primers designed for the amplification of a 218 bp fragment of the NP gene. The PCR products were detected by PCR-ELISA by use of an internal......Avian influenza virus infections are a major cause of morbidity and rapid identification of the virus has important clinical, economical and epidemiological implications. We have developed a one-tube Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) for the rapid diagnosis of avian influenza...... catching probe confirming the NP influenza A origin. The PCR-ELISA was about 100 times more sensitive than detection of PCR products by agarose gel electrophoresis. RT-PCR and detection by PCR-ELISA is comparable in sensitivity to virus propagation in eggs. We also designed primers for the detection...

  19. Characterisation and Identification of Avian Influenza Virus (AI

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  20. Disease dynamics and bird migration-linking mallards Anas platyrhynchos and subtype diversity of the influenza a virus in time and space

    NARCIS (Netherlands)

    G. Gunnarsson (Gunnar); N. Latorre-Margalef (Neus); K.A. Hobson (Keith); S.L. van Wilgenburg (Steven); J. Elmberg (Johan); B. Olsen (Björn); R.A.M. Fouchier (Ron); J. Waldenström (Jonas)

    2012-01-01

    textabstractThe mallard Anas platyrhynchos is a reservoir species for influenza A virus in the northern hemisphere, with particularly high prevalence rates prior to as well as during its prolonged autumn migration. It has been proposed that the virus is brought from the breeding grounds and

  1. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  2. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  3. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Wong Emily HM

    2010-08-01

    Full Text Available Abstract Background The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. Results Relative Synonymous Codon Usage (RSCU values of the genes from segment 1 to segment 6 of avian and human influenza viruses, including pandemic H1N1, were studied via Correspondence Analysis (CA. The codon usage patterns of seasonal human influenza viruses were distinct among their subtypes and different from those of avian viruses. Newly isolated viruses could be added to the CA results, creating a tool to investigate the host origin and evolution of viral genes. It was found that the 1918 pandemic H1N1 virus contained genes with mammalian-like viral codon usage patterns, indicating that the introduction of this virus to humans was not through in toto transfer of an avian influenza virus. Many human viral genes had directional changes in codon usage over time of viral isolation, indicating the effect of host selection pressures. These changes reduced the overall GC content and the usage of G at the third codon position in the viral genome. Limited evidence of translational selection pressure was found in a few viral genes. Conclusions Codon usage patterns from CA allowed identification of host origin and evolutionary trends in influenza viruses, providing an alternative method and a tool to understand the evolution of influenza viruses. Human influenza viruses are subject to selection pressure on codon usage which might assist in understanding the characteristics of newly emerging viruses.

  4. The rapid identification of human influenza neuraminidase N1 and N2 subtypes by ELISA.

    Science.gov (United States)

    Barr, I G; McCaig, M; Durrant, C; Shaw, R

    2006-11-10

    An ELISA assay was developed to allow the rapid and accurate identification of human influenza A N1 and N2 neuraminidases. Initial testing using a fetuin pre-coating of wells correctly identified 81.7% of the neuraminidase type from a series of human A(H1N1), A(H1N2) and A(H3N2) viruses. This result could be improved to detect the neuraminidase subtype of almost all human influenza A viruses from a large panel of viruses isolated from 2000 to 2005, if the fetuin pre-coating was removed and the viruses were coated directly onto wells. This method is simple, rapid and can be used to screen large numbers of currently circulating human influenza A viruses for their neurraminidase subtype and is a good alternative to RT-PCR.

  5. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    Science.gov (United States)

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  6. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  7. Survival of influenza virus on banknotes.

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-05-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness.

  8. Survival of Influenza Virus on Banknotes▿

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-01-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness. PMID:18359825

  9. Rapid separation and identification of the subtypes of swine and equine influenza A viruses by electromigration techniques with UV and fluorometric detection

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Kubíček, O.; Kubesová, Anna; Rosenbergová, K.; Kubíčková, Z.; Šlais, Karel

    2011-01-01

    Roč. 136, č. 14 (2011), s. 3010-3015 ISSN 0003-2654 R&D Projects: GA AV ČR IAAX00310701; GA MV VG20112015021 Institutional research plan: CEZ:AV0Z40310501 Keywords : influenza viruses * capillary zone electrophoresis (CZE) * capillary isoelectric focusing (CIEF) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.230, year: 2011

  10. Evaluation of a commercial competitive enzyme-linked immunosorbent assay for detection of avian influenza virus subtype H5 antibodies in zoo birds

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Andersen, Jannie Holmegaard; Hjulsager, Charlotte Kristiane

    2017-01-01

    The hemagglutination inhibition (HI) test is the current gold standard for detecting antibodies to avian influenza virus (AIV). Enzyme-linked immunosorbent assays (ELISAs) have been explored for use in poultry and certain wild bird species because of high efficiency and lower cost. This study com...

  11. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    Science.gov (United States)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  12. Host cytokine responses of pigeons infected with highly pathogenic Thai avian influenza viruses of subtype H5N1 isolated from wild birds.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05 isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection.

  13. The public health impact of avian influenza viruses.

    Science.gov (United States)

    Katz, J M; Veguilla, V; Belser, J A; Maines, T R; Van Hoeven, N; Pappas, C; Hancock, K; Tumpey, T M

    2009-04-01

    Influenza viruses with novel hemagglutinin and 1 or more accompanying genes derived from avian influenza viruses sporadically emerge in humans and have the potential to result in a pandemic if the virus causes disease and spreads efficiently in a population that lacks immunity to the novel hemagglutinin. Since 1997, multiple avian influenza virus subtypes have been transmitted directly from domestic poultry to humans and have caused a spectrum of human disease, from asymptomatic to severe and fatal. To assess the pandemic risk that avian influenza viruses pose, we have used multiple strategies to better understand the capacity of avian viruses to infect, cause disease, and transmit among mammals, including humans. Seroepidemiologic studies that evaluate the frequency and risk of human infection with avian influenza viruses in populations with exposure to domestic or wild birds can provide a better understanding of the pandemic potential of avian influenza subtypes. Investigations conducted in Hong Kong following the first H5N1 outbreak in humans in 1997 determined that exposure to poultry in live bird markets was a key risk factor for human disease. Among poultry workers, butchering and exposure to sick poultry were risk factors for antibody to H5 virus, which provided evidence for infection. A second risk assessment tool, the ferret, can be used to evaluate the level of virulence and potential for host-to-host transmission of avian influenza viruses in this naturally susceptible host. Avian viruses isolated from humans exhibit a level of virulence and transmissibility in ferrets that generally reflects that seen in humans. The ferret model thus provides a means to monitor emerging avian influenza viruses for pandemic risk, as well as to evaluate laboratory-generated reassortants and mutants to better understand the molecular basis of influenza virus transmissibility. Taken together, such studies provide valuable information with which we can assess the public

  14. Increased pathogenicity and shedding in chickens of a wild bird-origin low pathogenicity avian influenza virus of the H7N3 subtype following multiple in vivo passages in quail and turkey.

    Science.gov (United States)

    Cilloni, Filippo; Toffan, Anna; Giannecchini, Simone; Clausi, Valeria; Azzi, Alberta; Capua, Ilaria; Terregino, Calogero

    2010-03-01

    In order to investigate viral adaptation mechanisms to poultry, we performed serial in vivo passages of a wild bird low pathogenicity avian influenza isolate of the H7N3 subtype (A/mallard/Italy/33/01) in three different domestic species (chicken, turkey, and Japanese quail). The virus under study was administered via natural routes at the dose of 10(6) egg infective dose50/ 0.1 ml to chickens, turkeys, and quails in order to investigate the clinical susceptibility and the shedding levels after infection. Multiple in vivo passages of the virus were performed by serially infecting groups of five naive birds of each species, with samples collected from a previously infected group. Quails and turkeys were susceptible to infection for 10 serial passages, whereas chickens were susceptible to two cycles of infection only. Infection of chicken with the quail- and turkey-adapted viruses showed an increased pathogenicity and/or shedding, causing more severe clinical signs and/or higher levels of viral excretion compared to the original strain. The data obtained herein suggest that infection of selected avian species may facilitate the adaptation of avian influenza viruses originating from the wild bird reservoir to chicken. This is the first time turkey has been shown to act as a species in which a virus from the wild reservoir can increase its replication activity in other domestic species.

  15. Protection patterns in duck and chicken after homo- or hetero-subtypic reinfections with H5 and H7 low pathogenicity avian influenza viruses: a comparative study.

    Directory of Open Access Journals (Sweden)

    Coralie Chaise

    Full Text Available Avian influenza viruses are circulating continuously in ducks, inducing a mostly asymptomatic infection, while chickens are accidental hosts highly susceptible to respiratory disease. This discrepancy might be due to a different host response to the virus between these two bird species and in particular to a different susceptibility to reinfection. In an attempt to address this question, we analyzed, in ducks and in chickens, the viral load in infected tissues and the humoral immune response after experimental primary and secondary challenge infections with either homologous or heterologous low pathogenicity avian influenza viruses (LPAIV. Following homologous reinfection, ducks were only partially protected against viral shedding in the lower intestine in conjunction with a moderate antibody response, whereas chickens were totally protected against viral shedding in the upper respiratory airways and developed a stronger antibody response. On the contrary, heterologous reinfection was not followed by a reduced viral excretion in the upper airways of chickens, while ducks were still partially protected from intestinal excretion of the virus, with no correlation to the antibody response. Our comparative study provides a comprehensive demonstration of the variation of viral tropism and control of the host humoral response to LPAIV between two different bird species with different degrees of susceptibility to avian influenza.

  16. Predicting Hotspots for Influenza Virus Reassortment

    Science.gov (United States)

    Gilbert, Marius; Martin, Vincent; Cappelle, Julien; Hosseini, Parviez; Njabo, Kevin Y.; Abdel Aziz, Soad; Xiao, Xiangming; Daszak, Peter; Smith, Thomas B.

    2013-01-01

    The 1957 and 1968 influenza pandemics, each of which killed ≈1 million persons, arose through reassortment events. Influenza virus in humans and domestic animals could reassort and cause another pandemic. To identify geographic areas where agricultural production systems are conducive to reassortment, we fitted multivariate regression models to surveillance data on influenza A virus subtype H5N1 among poultry in China and Egypt and subtype H3N2 among humans. We then applied the models across Asia and Egypt to predict where subtype H3N2 from humans and subtype H5N1 from birds overlap; this overlap serves as a proxy for co-infection and in vivo reassortment. For Asia, we refined the prioritization by identifying areas that also have high swine density. Potential geographic foci of reassortment include the northern plains of India, coastal and central provinces of China, the western Korean Peninsula and southwestern Japan in Asia, and the Nile Delta in Egypt. PMID:23628436

  17. Multisegment one-step RT-PCR fluorescent labeling of influenza A virus genome for use in diagnostic microarray applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasin, A V; Plotnikova, M A; Klotchenko, S A; Elpaeva, E A; Komissarov, A B; Egorov, V V; Kiselev, O I [Research Institute of Influenza of the Ministry of Health and Social Development of the Russian Federation, 15/17 Prof. Popova St., St. Petersburg (Russian Federation); Sandybaev, N T; Chervyakova, O V; Strochkov, V M; Taylakova, E T; Koshemetov, J K; Mamadaliev, S M, E-mail: vasin@influenza.spb.ru [Research Institute for Biological Safety Problems of the RK NBC/SC ME and S RK, Gvardeiskiy (Kazakhstan)

    2011-04-01

    Microarray technology is one of the most challenging methods of influenza A virus subtyping, which is based on the antigenic properties of viral surface glycoproteins - hemagglutinin and neuraminidase. On the example of biochip for detection of influenza A/H5N1 virus we showed the possibility of using multisegment RTPCR method for amplification of fluorescently labeled cDNA of all possible influenza A virus subtypes with a single pair of primers in influenza diagnostic microarrays.

  18. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  19. SEROMONITORING OF AVIAN INFLUENZA H9 SUBTYPE IN BREEDERS AND COMMERCIAL LAYER FLOCKS

    Directory of Open Access Journals (Sweden)

    M. Numan, M. Siddique and M. S. Yousaf1

    2005-07-01

    Full Text Available A serological survey for detection of antibodies against avian influenza virus (AIV subtype H9 in vaccinated layer flocks was carried out. Serum samples were divided into age groups A, B, C, D (commercial layers and E, F, G, H (layer breeders. Haemagglutination inhibition (HI test was performed to determine serum antibodies against AIV-H9 subtype. Geometric mean titer (GMT values were calculated. Results showed the level of protection of vaccinated birds was satisfactory.

  20. Isolation of influenza A virus, subtype H5N2, and avian paramyxovirus type 1 from a flock of ostriches in Europe

    DEFF Research Database (Denmark)

    Jørgensen, Poul Henrik; Nielsen, O.L.; Hansen, C.

    1998-01-01

    A total of 146 of 506 ostriches (Struthio camelus) introduced into a quarantine in Denmark died within the first 23 days. The majority of deaths were in young birds up to 10 kg body weight. Avian influenza A viruses (AIVs) were isolated from 14 pools of organ tissues representing seven groups each......-Q-R-E-T-R*G-L-F- at the cleavage site of the haemagglutinin protein, typical of non-pathogenic AIVs. In addition, an avirulent avian paramyxovirus type 1 virus was isolated from one pool of kidney tissues. Bacteriological examination gave no significant results. The most characteristic pathological findings were impaction...

  1. Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates.

    Directory of Open Access Journals (Sweden)

    Giovanni Cattoli

    Full Text Available Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level.

  2. Mimotopes selected with neutralizing antibodies against multiple subtypes of influenza A

    Directory of Open Access Journals (Sweden)

    Zhong Yanwei

    2011-12-01

    Full Text Available Abstract Background The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice. Methods The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI assay and enzyme-linked immunosorbent assay (ELISA. The lung inflammation level was evaluated by hematoxylin and eosin (HE. Results Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups. Conclusions Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.

  3. New world bats harbor diverse influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Suxiang Tong

    Full Text Available Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.

  4. Influenza Virus Infection in Nonhuman Primates

    Science.gov (United States)

    Karlsson, Erik A.; Engel, Gregory A.; Feeroz, M.M.; San, Sorn; Rompis, Aida; Lee, Benjamin P. Y.-H.; Shaw, Eric; Oh, Gunwha; Schillaci, Michael A.; Grant, Richard; Heidrich, John; Schultz-Cherry, Stacey

    2012-01-01

    To determine whether nonhuman primates are infected with influenza viruses in nature, we conducted serologic and swab studies among macaques from several parts of the world. Our detection of influenza virus and antibodies to influenza virus raises questions about the role of nonhuman primates in the ecology of influenza. PMID:23017256

  5. Antiviral Protein of Momordica charantia L. Inhibits Different Subtypes of Influenza A

    Directory of Open Access Journals (Sweden)

    Viroj Pongthanapisith

    2013-01-01

    Full Text Available The new antiviral activity of the protein extracted from Momordica charantia was determined with different subtypes of influenza A. The protein was purified from the seed of M. charantia using an anion exchanger and a Fast Protein Liquid Chromatography (FPLC system. At the concentration of 1.401 mg/mL, the protein did not exhibit cytotoxicity in Madin-Darby canine kidney cells (MDCK but inhibited FFU influenza A/PR/8/34 H1N1 virus at 56.50%, 65.72%, and 100% inhibition by the protein treated before the virus (pretreated, the protein treated alongside with the virus (simultaneously treated, and the protein treated after the virus (posttreated during incubation, respectively. Using 5, 25, and 100 TCID50 of influenza A/New Caledonia/20/99 H1N1, A/Fujian/411/01 H3N2 and A/Thailand/1(KAN-1/2004 H5N1, the IC50 was calculated to be 100, 150, and 200; 75, 175, and 300; and 40, 75, and 200 μg/mL, respectively. Our present finding indicated that the plant protein inhibited not only H1N1 and H3N2 but also H5N1 subtype. As a result of the broad spectrum of its antiviral activity, this edible plant can be developed as an effective therapeutic agent against various and even new emerging subtypes of influenza A.

  6. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  7. The evolving history of influenza viruses and influenza vaccines.

    Science.gov (United States)

    Hannoun, Claude

    2013-09-01

    The isolation of influenza virus 80 years ago in 1933 very quickly led to the development of the first generation of live-attenuated vaccines. The first inactivated influenza vaccine was monovalent (influenza A). In 1942, a bivalent vaccine was produced after the discovery of influenza B. It was later discovered that influenza viruses mutated leading to antigenic changes. Since 1973, the WHO has issued annual recommendations for the composition of the influenza vaccine based on results from surveillance systems that identify currently circulating strains. In 1978, the first trivalent vaccine included two influenza A strains and one influenza B strain. Currently, there are two influenza B lineages circulating; in the latest WHO recommendations, it is suggested that a second B strain could be added to give a quadrivalent vaccine. The history of influenza vaccine and the associated technology shows how the vaccine has evolved to match the evolution of influenza viruses.

  8. Tissue tropism of highly pathogenic avian influenza virus subtype H5N1 in naturally infected mute swans (Cygnus Olor ), domestic geese (Aser Anser var. domestica), pekin ducks (Anas platyrhynchos) and mulard ducks ( Cairina moschata x anas platyrhynchos).

    Science.gov (United States)

    Szeredi, Levente; Dán, Adám; Pálmai, Nimród; Ursu, Krisztina; Bálint, Adám; Szeleczky, Zsófia; Ivanics, Eva; Erdélyi, Károly; Rigó, Dóra; Tekes, Lajos; Glávits, Róbert

    2010-03-01

    The 2006 epidemic due to highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in Hungary caused the most severe losses in waterfowl which were, according to the literature at the time, supposed to be the most resistant to this pathogen. The presence of pathological lesions and the amount of viral antigen were quantified by gross pathology, histopathology and immunohistochemistry (IHC) in the organs of four waterfowl species [mute swans (n = 10), domestic geese (n = 6), mulard ducks (n = 6) and Pekin ducks (n = 5)] collected during the epidemic. H5N1 subtype HPAIV was isolated from all birds examined. Quantitative real-time reverse transcriptase-polymerase chain reaction (qRRT-PCR) was also applied on a subset of samples [domestic geese (n = 3), mulard (n = 4) and Pekin duck (n = 4)] in order to compare its sensitivity with IHC. Viral antigen was detected by IHC in all cases. However, the overall presence of viral antigen in tissue samples was quite variable: virus antigen was present in 56/81 (69%) swan, 22/38 (58%) goose, 28/46 (61%) mulard duck and 5/43 (12%) Pekin duck tissue samples. HPAIV subtype H5N1 was detected by qRRT-PCR in all birds examined, in 19/19 (100%) goose, 7/28 (25%) mulard duck and 12/28 (43%) Pekin duck tissue samples. As compared to qRRTPCR, the IHC was less sensitive in geese and Pekin ducks but more sensitive in mulard ducks. The IHC was consistently positive above 4.31 log10 copies/reaction but it gave very variable results below that level. Neurotropism of the isolated virus strains was demonstrated by finding the largest amount of viral antigen and the highest average RNA load in the brain in all four waterfowl species examined.

  9. Pandemic swine influenza virus: Preparedness planning | Ojogba ...

    African Journals Online (AJOL)

    The novel H1N1 influenza virus that emerged in humans in Mexico in early 2009 and transmitted efficiently in the human population with global spread was declared a pandemic strain. The introduction of different avian and human influenza virus genes into swine influenza viruses often result in viruses of increased fitness ...

  10. Evaluation of multiplex assay platforms for detection of influenza hemagglutinin subtype specific antibody responses.

    Science.gov (United States)

    Li, Zhu-Nan; Weber, Kimberly M; Limmer, Rebecca A; Horne, Bobbi J; Stevens, James; Schwerzmann, Joy; Wrammert, Jens; McCausland, Megan; Phipps, Andrew J; Hancock, Kathy; Jernigan, Daniel B; Levine, Min; Katz, Jacqueline M; Miller, Joseph D

    2017-05-01

    Influenza hemagglutination inhibition (HI) and virus microneutralization assays (MN) are widely used for seroprevalence studies. However, these assays have limited field portability and are difficult to fully automate for high throughput laboratory testing. To address these issues, three multiplex influenza subtype-specific antibody detection assays were developed using recombinant hemagglutinin antigens in combination with Chembio, Luminex ® , and ForteBio ® platforms. Assay sensitivity, specificity, and subtype cross-reactivity were evaluated using a panel of well characterized human sera. Compared to the traditional HI, assay sensitivity ranged from 87% to 92% and assay specificity in sera collected from unexposed persons ranged from 65% to 100% across the platforms. High assay specificity (86-100%) for A(H5N1) rHA was achieved for sera from exposed or unexposed to hetorosubtype influenza HAs. In contrast, assay specificity for A(H1N1)pdm09 rHA using sera collected from A/Vietnam/1204/2004 (H5N1) vaccinees in 2008 was low (22-30%) in all platforms. Although cross-reactivity against rHA subtype proteins was observed in each assay platform, the correct subtype specific responses were identified 78%-94% of the time when paired samples were available for analysis. These results show that high throughput and portable multiplex assays that incorporate rHA can be used to identify influenza subtype specific infections. Published by Elsevier B.V.

  11. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... people has ranged from mild to severe. Avian Influenza Transmission Avian Influenza Transmission Infographic [555 KB, 2 pages] Spanish [ ... important for public health. Signs and Symptoms of Avian Influenza A Virus Infections in Humans The reported signs ...

  12. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    Directory of Open Access Journals (Sweden)

    Claire M. Smith

    2016-08-01

    Full Text Available Defective interfering (DI viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8 was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1; it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  13. Molecular Epidemiology and Antigenic Characterization of Seasonal Influenza Viruses Circulating in Nepal.

    Science.gov (United States)

    Upadhyay, B P; Ghimire, P; Tashiro, M; Banjara, M R

    2017-01-01

    Influenza is one of the public health burdens in Nepal and its epidemiology is not clearly understood. The objective of this study was to explore the molecular epidemiology and the antigenic characteristics of the circulating influenza viruses in Nepal. A total of 1495 throat swab specimens were collected from January to December, 2014. Real time PCR assay was used for identification of influenza virus types and subtypes. Ten percent of the positive specimens were randomly selected and inoculated onto Madin-Darby Canine Kidney Epithelial cells (MDCK) for influenza virus isolation. All viruses were characterized by the hemagglutination inhibition (HI) assay. Influenza viruses were detected in 421/1495 (28.2%) specimens. Among positive cases, influenza A virus was detected in 301/421 (71.5%); of which 120 (39.9%) were influenza A/H1N1 pdm09 and 181 (60.1%) were influenza A/H3 subtype. Influenza B viruses were detected in 119/421 (28.3%) specimens. Influenza A/H1N1 pdm09, A/H3 and B viruses isolated in Nepal were antigenically similar to the vaccine strain influenza A/California/07/2009(H1N1pdm09), A/Texas/50/2012(H3N2), A/New York/39/2012(H3N2) and B/Massachusetts/2/2012, respectively. Influenza viruses were reported year-round in different geographical regions of Nepal which was similar to other tropical countries. The circulating influenza virus type and subtypes of Nepal were similar to vaccine candidate virus which could be prevented by currently used influenza vaccine.

  14. Influenza A (H10N7) Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets

    NARCIS (Netherlands)

    van den Brand, Judith M A; Wohlsein, Peter; Herfst, Sander; Bodewes, Rogier; Pfankuche, Vanessa M; van de Bildt, Marco W G; Seehusen, Frauke; Puff, Christina; Richard, Mathilde; Siebert, Ursula; Lehnert, Kristina; Bestebroer, Theo; Lexmond, Pascal; Fouchier, Ron A M; Prenger-Berninghoff, Ellen; Herbst, Werner; Koopmans, Marion; Osterhaus, Albert D M E; Kuiken, Thijs; Baumgärtner, Wolfgang

    2016-01-01

    Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7) in harbor seals (Phoca vitulina). This epidemic

  15. Typing of Poultry Influenza Virus (H5 and H7 by Reverse Transcription- Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Cesare Bonacina

    2010-01-01

    Full Text Available The ability of the influenza Orthomixovirus to undergo to continually antigenically changes that can affect its pathogenicity and its diffusion, explains the growing seriousness of this disease and the recent epizoozies in various parts of the world. There have been 15 HA and 9 NA type A sub-types of the influenza virus identified all of which are present in birds. Until now the very virulent avian influenza viruses identified were all included to the H5 and H7 sub-types. We here show that is possible to identify the H5 and H7 sub-types with reverse transcription-polymerase chain reaction (RT-PCR by using a set of specific primers for each HA sub-type. The RT-PCR is a quick and sensitive method of identifying the HA sub-types of the influenza virus directly from homogenised organs.

  16. First characterization of avian influenza viruses from Greenland 2014

    DEFF Research Database (Denmark)

    Hartby, Christina Marie; Krog, Jesper Schak; Ravn Merkel, Flemming

    2016-01-01

    In late February 2014, unusually high numbers of wild birds, thick-billed murre (Uria lomvia), were found dead at the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examinations in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2...

  17. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available H9N2 avian influenza virus (AIV has caused significant losses in chicken flocks throughout china in recent years. There is a limited understanding of the genetic and antigenic characteristics of the H9N2 virus isolated in chickens in southwestern China. In this study a total of 12 field strains were isolated from tissue samples from diseased chickens between 2013 and 2016. Phylogenetic analysis of the Hemagglutinin (HA and Neuraminidase (NA nucleotide sequences from the 12 field isolates and other reference strains showed that most of the isolates in the past four years could be clustered into a major branch (HA-branch A and NA-branch I in the Clade h9.4.2 lineages. These sequences are accompanied by nine and seven new amino acids mutations in the HA and NA proteins, respectively, when compared with those previous to 2013. In addition, four new isolates were grouped into a minor branch (HA-branch B in the Clade h9.4.2 lineages and two potential N-glycosylation sites were observed due to amino acid mutations in the HA protein. Three antigenic groups (1-3, which had low antigenic relatedness with two commonly used vaccines in China, were identified among the 12 isolates by antigenMap analysis. Immunoprotection testing showed that those two vaccines could efficiently prevent the shedding of branch A viruses but not branch B viruses. In conclusion, these results indicate the genotype of branch B may become epidemic in the next few years and that a new vaccine should be developed for the prevention of H9N2 AIV.

  18. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    OpenAIRE

    Hadipour,MM

    2010-01-01

    Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known ab...

  19. Current situation of H9N2 subtype avian influenza in China.

    Science.gov (United States)

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  20. Influenza B viruses : not to be discounted

    NARCIS (Netherlands)

    van de Sandt, Carolien E; Bodewes, Rogier; Rimmelzwaan, Guus F; de Vries, Rory D

    2015-01-01

    In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and

  1. Influenza in migratory birds and evidence of limited intercontinental virus exchange.

    Directory of Open Access Journals (Sweden)

    Scott Krauss

    2007-11-01

    Full Text Available Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey, United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event.

  2. Transmission of Avian Influenza Virus (H3N2) to Dogs

    OpenAIRE

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) is...

  3. Swine Influenza Virus Antibodies in Humans, Western Europe, 2009

    Science.gov (United States)

    Gerloff, Nancy A.; Kremer, Jacques R.; Charpentier, Emilie; Sausy, Aurélie; Olinger, Christophe M.; Weicherding, Pierre; Schuh, John; Van Reeth, Kristien

    2011-01-01

    Serologic studies for swine influenza viruses (SIVs) in humans with occupational exposure to swine have been reported from the Americas but not from Europe. We compared levels of neutralizing antibodies against 3 influenza viruses—pandemic (H1N1) 2009, an avian-like enzootic subtype H1N1 SIV, and a 2007–08 seasonal subtype H1N1—in 211 persons with swine contact and 224 matched controls in Luxembourg. Persons whose profession involved contact with swine had more neutralizing antibodies against SIV and pandemic (H1N1) 2009 virus than did the controls. Controls also had antibodies against these viruses although exposure to them was unlikely. Antibodies against SIV and pandemic (H1N1) 2009 virus correlated with each other but not with seasonal subtype H1N1 virus. Sequential exposure to variants of seasonal influenza (H1N1) viruses may have increased chances for serologic cross-reactivity with antigenically distinct viruses. Further studies are needed to determine the extent to which serologic responses correlate with infection. PMID:21392430

  4. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    Science.gov (United States)

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.

  5. Novel reassortant swine influenza viruses are circulating in Danish pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    of the reassortant viruses comprised a HA gene similar to H1 of H1N1 avian-like swine influenza virus (SIV) and a NA gene most closely related to N2 gene of human H3N2 influenza virus that circulated in humans in the mid 1990s. The internal genes of this reassortant virus with the subtype H1avN2hu all belonged...... to the H1N1 avian-like SIV lineages. Until now this novel virus H1avN2hu has only been detected in Danish swine. The other novel reassortant virus contained the HA gene from H1N1pdm09 virus and a NA gene similar to the N2 gene of H3N2 SIV that have been circulating in European swine since the mid 1980s...

  6. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2007-01-01

    textabstractViral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses

  7. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus

    OpenAIRE

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A. Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines ha...

  8. Molecular diagnostics of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Petrović Tamaš

    2006-01-01

    Full Text Available The success of supervizing an infectious disease depends on the ability for speedy detection and characterization of the cause and the forming of a corresponding system for examining the success of control implemented in order to prevent a recurrence of the disease. Since influenza viruses continue to circle, causing significant morbidity and mortality both among the human population and among animals all over the world, it is essential to secure the timely identification and monitoring of the strains that are in circulation. The speedy detection and characterization of new highly-virulent varieties is one of the priorities of the World Health Organization monitoring network. The implementation of molecular methods has an increasingly significant role in diagnostics and the monitoring of the influenza virus. Among a large number of molecular methods, the one particularly in use is the reverse transcription-polimerase chain reaction (PT-PCR. Technological progress in the area of the conducting of molecular methods has enabled that we can prove, in one day, using the RT-PCR method even very small quantities of the infective agent in a sample. In an obtained PCR product, we can relatively easily establish the nucleotide sequence, a detailed analysis and molecular epidemiology of the circulating strains. The molecular diagnostics procedure (RT-PCR is based on the correct choice or designing of primers depending on the desired knowledge. In order to obtain a specific diagnosis of influenza A, B or C, primers are used which multiply internal genes, such as the nucleoprotein (NP or matrix gene (M, because these are genes that are highly conserved among the virus types. In the event that we are interested in the subtype of influenza A, after obtaining a positive reaction, primers for genes of surface antigens are selected, such as hemagglutinin. Following the correct detection of the H subtype, it is possible to establish the virus virulence through the

  9. A reverse genetic analysis of human Influenza A virus H1N2

    OpenAIRE

    Anton, Aline

    2010-01-01

    Reassortment between influenza A viruses of different subtypes rarely appears. Even in a community where H1N1 and H3N2 viruses co-circulate, reassortment to produce persistent viruses of mixed gene segments does not readily occur. H1N2 viruses, that circulated between 2001-2003 were considered to have arisen through the reassortment of the two human influenza subtypes H1N1 and H3N2. Due to the fact they make such a rare appearance, H1N2 viruses used to have new characteristics compared to the...

  10. viruses associated with human and animal influenza - a review 40

    African Journals Online (AJOL)

    DR. AMINU

    These include Influenza A,B and C. Influenza viruses are members of the family. Orthomyxoviridae. .... low pathogenicity avian influenza may be as mild as ruffled feathers, a ... influenza A viruses are zoonotic agents recognized as continuing ...

  11. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    Science.gov (United States)

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    Science.gov (United States)

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  13. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  14. Isolation of H13N2 influenza A virus from turkeys and surface water.

    Science.gov (United States)

    Sivanandan, V; Halvorson, D A; Laudert, E; Senne, D A; Kumar, M C

    1991-01-01

    This is the first report of the isolation of H13N2 avian influenza virus (AIV) subtype from domestic turkeys. This subtype was also isolated from nearby surface water. The observation of large numbers of gulls in close association with turkeys on range before the virus isolations suggests that this virus subtype was transmitted from gulls to range turkeys. Turkey flocks infected by this virus subtype did not show any clinical signs of the disease, although seroconversion did occur. The H13N2 isolates were found to be non-pathogenic in chickens.

  15. Evolution of Therapeutic Antibodies, Influenza Virus Biology, Influenza, and Influenza Immunotherapy

    Directory of Open Access Journals (Sweden)

    Urai Chaisri

    2018-01-01

    Full Text Available This narrative review article summarizes past and current technologies for generating antibodies for passive immunization/immunotherapy. Contemporary DNA and protein technologies have facilitated the development of engineered therapeutic monoclonal antibodies in a variety of formats according to the required effector functions. Chimeric, humanized, and human monoclonal antibodies to antigenic/epitopic myriads with less immunogenicity than animal-derived antibodies in human recipients can be produced in vitro. Immunotherapy with ready-to-use antibodies has gained wide acceptance as a powerful treatment against both infectious and noninfectious diseases. Influenza, a highly contagious disease, precipitates annual epidemics and occasional pandemics, resulting in high health and economic burden worldwide. Currently available drugs are becoming less and less effective against this rapidly mutating virus. Alternative treatment strategies are needed, particularly for individuals at high risk for severe morbidity. In a setting where vaccines are not yet protective or available, human antibodies that are broadly effective against various influenza subtypes could be highly efficacious in lowering morbidity and mortality and controlling unprecedented epidemic/pandemic. Prototypes of human single-chain antibodies to several conserved proteins of influenza virus with no Fc portion (hence, no ADE effect in recipients are available. These antibodies have high potential as a novel, safe, and effective anti-influenza agent.

  16. Isolation of a highly pathogenic influenza virus from turkeys.

    Science.gov (United States)

    McNulty, M S; Allan, G M; McCracken, R M; McParland, P J

    1985-01-01

    An influenza virus was isolated from turkeys with an acute disease causing 30% mortality. The virus was subtyped as H5 N8. The nomenclature A/turkey/Ireland/83 (H5 N8) is proposed for this isolate. The virus had an ICPI of 1.80 to 1.85 for 1-day-old chicks and an IVPI of 2.74 for 6-week-old chickens. Following oronasal inoculation of juvenile and adult turkeys, chickens and ducks with the isolate, 100% mortality occurred in turkeys and chickens. No clinical signs were observed in inoculated ducks, but all developed serum antibody titres against the virus.

  17. A simple and rapid characterization of influenza virus isolates by monoclonal antibodies in radioimmunoassay

    International Nuclear Information System (INIS)

    Kostolansky, F.; Styk, B.; Russ, G.

    1986-01-01

    Radioimmunoassay is described with infectious allantoic fluid directly bound to solid phase, suitable for the detection and further characterization of influenza virus isolates. This simple and rapid method was applied for the description of isolates obtained from different regions of Czechoslovakia during the influenza epidemic in 1983. The results confirmed that all 13 examined isolates represented influenza A viruses possessing H3 subtype haemagglutinin very similar to haemagglutinin of influenza viruses A/Bangkok/1/79 (H3N2), A/Belgium/2/81 (H3N2) and A/Philippines/2/82 (H3N2). (author)

  18. Emerging influenza virus: A global threat

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Emerging influenza virus: A global threat. 475. J. Biosci. ... pathogens and are of major global health concern. Recently, ..... cases among persons in 14 countries in Asia, the Middle ... of influenza, investment in pandemic vaccine research and.

  19. Avian influenza virus risk assessment in falconry

    Directory of Open Access Journals (Sweden)

    Lüschow Dörte

    2011-04-01

    Full Text Available Abstract Background There is a continuing threat of human infections with avian influenza viruses (AIV. In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008 falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54 in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74 and 3.8% of ducks (n = 53 using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.

  20. Replication of avian influenza viruses in equine tracheal epithelium but not in horses

    OpenAIRE

    Chambers, Thomas M.; Balasuriya, Udeni B. R.; Reedy, Stephanie E.; Tiwari, Ashish

    2013-01-01

    We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exh...

  1. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    OpenAIRE

    Christine L. P. Eng; Joo Chuan Tong; Tin Wee Tan

    2017-01-01

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains th...

  2. Weighing serological evidence of human exposure to animal influenza viruses - a literature review.

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-11-03

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. This article is copyright of The Authors, 2016.

  3. Weighing serological evidence of human exposure to animal influenza viruses − a literature review

    Science.gov (United States)

    Sikkema, Reina Saapke; Freidl, Gudrun Stephanie; de Bruin, Erwin; Koopmans, Marion

    2016-01-01

    Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America. PMID:27874827

  4. Influenza Virus A (H1N1) in Giant Anteaters (Myrmecophaga tridactyla)

    OpenAIRE

    Nofs, Sally; Abd-Eldaim, Mohamed; Thomas, Kathy V.; Toplon, David; Rouse, Dawn; Kennedy, Melissa

    2009-01-01

    In February 2007, an outbreak of respiratory disease occurred in a group of giant anteaters (Myrmecophaga tridactyla) at the Nashville Zoo. Isolates from 2 affected animals were identified in March 2007 as a type A influenza virus related to human influenza subtype H1N1.

  5. Influenza virus A (H1N1) in giant anteaters (Myrmecophaga tridactyla).

    Science.gov (United States)

    Nofs, Sally; Abd-Eldaim, Mohamed; Thomas, Kathy V; Toplon, David; Rouse, Dawn; Kennedy, Melissa

    2009-07-01

    In February 2007, an outbreak of respiratory disease occurred in a group of giant anteaters (Myrmecophaga tridactyla) at the Nashville Zoo. Isolates from 2 affected animals were identified in March 2007 as a type A influenza virus related to human influenza subtype H1N1.

  6. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.

    NARCIS (Netherlands)

    Fouchier, R.A.M.; Schneeberger, P.M.; Rozendaal, F.W.; Broekman, J.M.; Kemink, S.A.G.; Munnster, V.; Kuiken, T.; Rimmelzwaan, G.F.; Schutten, M.; Doornum, van G.J.J.; Koch, G.; Bosman, A.; Koopmans, M.; Osterhaus, A.D.M.E.

    2004-01-01

    Highly pathogenic avian influenza A viruses of subtypes H5 and H7 are the causative agents of fowl plague in poultry. Influenza A viruses of subtype H5N1 also caused severe respiratory disease in humans in Hong Kong in 1997 and 2003, including at least seven fatal cases, posing a serious human

  7. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    OpenAIRE

    Renström Lena HM; Isaksson Mats; Berg Mikael; Zohari Siamak; Widén Frederik; Metreveli Giorgi; Bálint Ádám; Wallgren Per; Belák Sándor; Segall Thomas; Kiss István

    2009-01-01

    Abstract The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority o...

  8. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established.

    Directory of Open Access Journals (Sweden)

    Nigel J Dimmock

    Full Text Available Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1. Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.

  9. Influenza A Viruses of Human Origin in Swine, Brazil.

    Science.gov (United States)

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  10. Influenza A Viruses of Human Origin in Swine, Brazil

    Science.gov (United States)

    Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-01-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil’s swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009–2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance. PMID:26196759

  11. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase gene...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  12. Replication of avian influenza A viruses in mammals.

    OpenAIRE

    Hinshaw, V S; Webster, R G; Easterday, B C; Bean, W J

    1981-01-01

    The recent appearance of an avian influenza A virus in seals suggests that viruses are transmitted from birds to mammals in nature. To examine this possibility, avian viruses of different antigenic subtypes were evaluated for their ability to replicate in three mammals-pigs, ferrets, and cats. In each of these mammals, avian strains replicated to high titers in the respiratory tract (10(5) to 10(7) 50% egg infective doses per ml of nasal wash), with peak titers at 2 to 4 days post-inoculation...

  13. Surveillance programs in Denmark has revealed the circulation of novel reassortant influenza A viruses in swine

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2014-01-01

    avH1N1 and H3N2 which is different from the dominating European H1N2 subtype (1). The prevalence of the H1N1pdm09 virus in swine has increased since 2009 in some countries including Denmark. Here we present the results of the national passive surveillance program on influenza in swine performed from...... by the combination of the gene segments hemagglutinin (HA) and neuraminidase (NA). In most European countries, the avian-like (av)H1N1, the 2009 pandemic variant (H1N1pdm09), H1N2 and H3N2 subtypes have constituted the dominating SIV subtypes during recent years. In Denmark, the H1N2 subtype is a reassortant between......Swine influenza is a respiratory disease caused by multiple subtypes of influenza A virus. Swine influenza virus (SIV) is enzootic in swine populations in Europe, Asia, North and South America. The influenza A virus genome consist of eight distinct gene segments and SIV subtypes are defined...

  14. Genetic characterization of avian influenza subtype H4N6 and H4N9 from live bird market, Thailand

    Directory of Open Access Journals (Sweden)

    Kitikoon Pravina

    2011-03-01

    Full Text Available Abstract A one year active surveillance program for influenza A viruses among avian species in a live-bird market (LBM in Bangkok, Thailand was conducted in 2009. Out of 970 samples collected, influenza A virus subtypes H4N6 (n = 2 and H4N9 (n = 1 were isolated from healthy Muscovy ducks. All three viruses were characterized by whole genome sequencing with subsequent phylogenetic analysis and genetic comparison. Phylogenetic analysis of all eight viral genes showed that the viruses clustered in the Eurasian lineage of influenza A viruses. Genetic analysis showed that H4N6 and H4N9 viruses display low pathogenic avian influenza characteristics. The HA cleavage site and receptor binding sites were conserved and resembled to LPAI viruses. This study is the first to report isolation of H4N6 and H4N9 viruses from birds in LBM in Thailand and shows the genetic diversity of the viruses circulating in the LBM. In addition, co-infection of H4N6 and H4N9 in the same Muscovy duck was observed.

  15. Influenza A outbreaks in Minnesota turkeys due to subtype H10N7 and possible transmission by waterfowl.

    Science.gov (United States)

    Karunakaran, D; Hinshaw, V; Poss, P; Newman, J; Halvorson, D

    1983-01-01

    Avian influenza outbreaks in Minnesota involving the H10N7 subtype occurred on two turkey farms in 1979 and on a third in 1980. The H10N7 (Hav2 Neq1) subtype had not previously been detected in turkeys in Minnesota or reported in the United States. The clinical signs ranged from severe, with a mortality rate as high as 31%, to subclinical. Antigenically indistinguishable viruses were isolated from healthy mallards on a pond adjacent to the turkey farms, suggesting that the virus responsible for the outbreak may have been introduced by feral ducks.

  16. Global surveillance of emerging Influenza virus genotypes by mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Rangarajan Sampath

    2007-05-01

    Full Text Available Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS technology.Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999-2006 showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005-2006 showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution.Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance.

  17. IDENTIFICATION OF INFLUENZA VIRUSES IN HUMAN AND POULTRY IN THE AREA OF LARANGAN WET MARKET SIDOARJO-EAST JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Edith Frederika

    2013-10-01

    Full Text Available Background: Influenza is a viral infection that attacks the respiratory system (nose, throat, and lungs that commonly known as “flu”. There are 3 types ofinfluenza viruses, such as type A, type B, and type C. Influenza virus type A is the type ofvirus that can infect both human and animals, virus type B are normally found only in human, and Influenza virus type C can cause mild illness in human and not causing any epidemics or pandemics. Among these 3 types of influenza viruses, only influenza A viruses infect birds, particularly wild bird that are the natural host for all subtypes ofinfluenza A virus. Generally, those wild birds do not get sick when they are infected with influenza virus, unlike chickens or ducks which may die from avian influenza. Aim: In this study, we are identifying the influenza viruses among poultry in Larangan wet market. Method: Around 500 kinds ofpoultry were examined from cloacal swab. Result: Those samples were restrained with symptoms ofsuspected H5. The people who worked as the poultry-traders intact with the animal everyday were also examined, by taking nasopharyngeal swab and blood serum. Conclusion: Identification of influenza viruses was obtained to define the type and subtype ofinfluenza virus by PCR.

  18. Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses.

    Science.gov (United States)

    Song, Min-Suk; Marathe, Bindumadhav M; Kumar, Gyanendra; Wong, Sook-San; Rubrum, Adam; Zanin, Mark; Choi, Young-Ki; Webster, Robert G; Govorkova, Elena A; Webby, Richard J

    2015-11-01

    Human infections with avian influenza viruses are a serious public health concern. The neuraminidase (NA) inhibitors (NAIs) are the frontline anti-influenza drugs and are the major option for treatment of newly emerging influenza. Therefore, it is essential to identify the molecular markers of NAI resistance among specific NA subtypes of avian influenza viruses to help guide clinical management. NAI-resistant substitutions in NA subtypes other than N1 and N2 have been poorly studied. Here, we identified NA amino acid substitutions associated with NAI resistance among influenza viruses of N3, N7, and N9 subtypes which have been associated with zoonotic transmission. We applied random mutagenesis and generated recombinant influenza viruses carrying single or double NA substitution(s) with seven internal genes from A/Puerto Rico/8/1934 (H1N1) virus. In a fluorescence-based NA inhibition assay, we identified three categories of NA substitutions associated with reduced inhibition by NAIs (oseltamivir, zanamivir, and peramivir): (i) novel subtype-specific substitutions in or near the enzyme catalytic site (R152W, A246T, and D293N, N2 numbering), (ii) subtype-independent substitutions (E119G/V and/or D and R292K), and (iii) substitutions previously reported in other subtypes (Q136K, I222M, and E276D). Our data show that although some markers of resistance are present across NA subtypes, other subtype-specific markers can only be determined empirically. The number of humans infected with avian influenza viruses is increasing, raising concerns of the emergence of avian influenza viruses resistant to neuraminidase (NA) inhibitors (NAIs). Since most studies have focused on NAI-resistance in human influenza viruses, we investigated the molecular changes in NA that could confer NAI resistance in avian viruses grown in immortalized monolayer cells, especially those of the N3, N7, and N9 subtypes, which have caused human infections. We identified not only numerous NAI

  19. Virulence determinants of pandemic influenza viruses

    Science.gov (United States)

    Tscherne, Donna M.; García-Sastre, Adolfo

    2011-01-01

    Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics. PMID:21206092

  20. Application and evaluation of RT-PCR-ELISA for the nucleoprotein and RT-PCR for detection of low-pathogenic H5 and H7 subtypes of avian influenza virus

    DEFF Research Database (Denmark)

    Dybkær, Karen; Munch, Mette; Handberg, Kurt J.

    2004-01-01

    Three 1-tube Reverse Transcriptase Polymerase Chain Reactions (RT-PCR) directed against the genes encoding the nucleoprotein (NP) and the H5 and H7 hemagglutinin (HA) gene, respectively, were used for detection of avian influenza virus (AIV) in various specimens. A total of 1,040 samples...... originating from chickens experimentally infected with 2 different low pathogenic avian influenza viruses, from domestic ducks and from wild aquatic birds were examined. The outcome of 1) the universal AIV RT-PCR including a PCR-enzyme-linked immunosorbent assay (ELISA) procedure directed against NP (NP RT...

  1. Avian influenza virus transmission to mammals.

    Science.gov (United States)

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  2. [Molecular analyses of human influenza viruses. Circulation of new variants since 1995/96].

    Science.gov (United States)

    Biere, B; Schweiger, B

    2008-09-01

    The evolution of influenza viruses is increasingly pursued by molecular analyses that complement classical methods. The analyses focus on the two surface proteins hemagglutinin (HA) and neuraminidase (NA) which determine the viral antigenic profile. Influenza A(H3N2) viruses are exceptionally variable, so that usually at least two virus variants cocirculate at the same time. Together with influenza B viruses they caused approximately 90% of influenza virus infections in Germany during the last 12 seasons, while influenza A(H1N1) viruses only played a subordinate part. Unexpectedly, reassorted viruses of subtype A(H1N2) appeared during the seasons 2001/02 and 2002/03, but were isolated only rarely and gained no epidemiological significance. Furthermore, during the season 2001/02 influenza B viruses of the Victoria-lineage reappeared in Germany and other countries of the northern hemisphere after 10 years of absence. These viruses reassorted with the cocirculating Yamagata-like influenza B viruses, as could be seen by the appearance of viruses with a Victoria-like HA and a Yamagata-like NA.

  3. H7N2 feline influenza virus evaluated in a poultry model

    Science.gov (United States)

    In November and December of 2016 a novel influenza virus was isolated from cats from an animal shelter from New York City(NYC). The virus caused respiratory disease and was found in cats in several shelters in NYC, and one human also became infected. The H7N2 subtype isolate was sequenced and it w...

  4. Serological evidence of influenza a viruses in frugivorous bats from Africa

    NARCIS (Netherlands)

    G.S. Freidl (Gudrun); T. Binger (Tabea); M.A. Müller (Marcel); E.I. de Bruin (Esther); J. van Beek (Janko); V.M. Corman (Victor); A. Rasche (Andrea); J.-F. Drexler (Jan-Felix); Sylverken, A. (Augustina); S. Oppong (Samuel); Y. Adu-Sarkodie (Yaw); M. Tschapka (Marco); V.M. Cottontail (Veronika); C. Drosten (Christian); M.P.G. Koopmans D.V.M. (Marion)

    2015-01-01

    textabstractBats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes - H17N10 and H18N11 - in Central and South American fruit bats.

  5. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    Science.gov (United States)

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus. © 2010 Blackwell Verlag GmbH.

  6. Media use and communication inequalities in a public health emergency: a case study of 2009-2010 pandemic influenza A virus subtype H1N1.

    Science.gov (United States)

    Lin, Leesa; Jung, Minsoo; McCloud, Rachel F; Viswanath, Kasisomayajula

    2014-01-01

    Studies have shown that differences among individuals and social groups in accessing and using information on health and specific threats have an impact on their knowledge and behaviors. These differences, characterized as communication inequalities, may hamper the strength of a society's response to a public health emergency. Such inequalities not only make vulnerable populations subject to a disproportionate burden of adversity, but also compromise the public health system's efforts to prevent and respond to pandemic influenza outbreaks. We investigated the effect of socioeconomic status (SES) and health communication behaviors (including barriers) on people's knowledge and misconceptions about pandemic influenza A(H1N1) (pH1N1) and adoption of prevention behaviors. The data for this study came from a survey of 1,569 respondents drawn from a nationally representative sample of American adults during pH1N1. We conducted logistic regression analyses when appropriate. We found that (1) SES has a significant association with barriers to information access and processing, levels of pH1N1-related knowledge, and misconceptions; (2) levels of pH1N1-related knowledge are associated positively with the adoption of recommended prevention measures and negatively with the adoption of incorrect protective behaviors; and (3) people with higher SES, higher news exposure, and higher levels of pH1N1-related knowledge, as well as those who actively seek information, are less likely than their counterparts to adopt incorrect prevention behaviors. Strategic public health communication efforts in public health preparedness and during emergencies should take into account potential communication inequalities and develop campaigns that reach across different social groups.

  7. Prevalence of influenza virus among the paediatric population in Mumbai during 2007-2009.

    Science.gov (United States)

    Roy, S; Patil, D; Dahake, R; Mukherjee, S; Athlekar, S V; Deshmukh, R A; Chowdhary, A

    2012-01-01

    Influenza has a major impact on public heath, annually affecting 15-20% of the global population. Information on the activity of influenza virus in Mumbai is limited. The present study was carried out to determine the prevalence of influenza viruses causing acute respiratory infections in children by molecular methods. To study the prevalence of influenza viruses among the paediatric population in Mumbai by real-time reverse-transcriptase polymerase chain reaction (rRT-PCR). From July 2007 to July 2009, 100 respiratory samples (nasal and throat swabs) were collected from paediatric patients with acute respiratory symptoms. attending out patients department, and admitted to the paediatric wards of B. J. Wadia Hospital for Children, Mumbai. The samples were collected and processed as per World Health Organization (WHO) guidelines. Viral RNA was extracted and one-step rRT-PCR was performed to detect influenza type A (H1 and H3) and influenza type B virus. Out of 100 samples processed by rRT-PCR, a total of 11 samples (11%) were positive for influenza virus. The typing for influenza A subtypes showed 1% (1) positivity for H1 and 5% (5) positivity for H3 subtypes and 5% (5) samples tested positive for influenza type B virus. It was observed that both influenza type A and B viruses were prevalent in Mumbai during the study period. Such surveillance data are important in the early detection of any antigenic variants that may be helpful in global influenza vaccine preparation and for any pandemic preparedness activity.

  8. Isolation of avian influenza virus in Texas.

    Science.gov (United States)

    Glass, S E; Naqi, S A; Grumbles, L C

    1981-01-01

    An avian influenza virus with surface antigens similar to those of fowl plague virus (Hav 1 Nav 2) was isolated in 1979 from 2 commercial turkey flocks in Central Texas. Two flocks in contact with these infected flocks developed clinical signs, gross lesions, and seroconversion but yielded no virus. This was the first recorded incidence of clinical avian influenza in Texas turkeys and only the second time that an agent with these surface antigens was isolated from turkeys in U.S.

  9. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B

    OpenAIRE

    Gong, Xin; Yin, He; Shi, Yuhua; He, Xiaoqiu; Yu, Yongjiao; Guan, Shanshan; Kuai, Ziyu; Haji, Nasteha M; Haji, Nafisa M; Kong, Wei; Shan, Yaming

    2016-01-01

    The ectodomain of the influenza A virus (IAV) hemagglutinin (HA) stem is highly conserved across strains and has shown promise as a universal influenza vaccine in a mouse model. In this study, potential B-cell epitopes were found through sequence alignment and epitope prediction in a stem fragment, HA2:90-105, which is highly conserved among virus subtypes H1, H3 and B. A norovirus (NoV) P particle platform was used to express the HA2:90-105 sequences from subtypes H1, H3 and B in loops 1, 2 ...

  10. Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza A virus that expresses an altered nucleoprotein sequence.

    Directory of Open Access Journals (Sweden)

    Megan K L Macleod

    Full Text Available Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes.

  11. Serological evidence of influenza A viruses in frugivorous bats from Africa.

    Directory of Open Access Journals (Sweden)

    Gudrun Stephanie Freidl

    Full Text Available Bats are likely natural hosts for a range of zoonotic viruses such as Marburg, Ebola, Rabies, as well as for various Corona- and Paramyxoviruses. In 2009/10, researchers discovered RNA of two novel influenza virus subtypes--H17N10 and H18N11--in Central and South American fruit bats. The identification of bats as possible additional reservoir for influenza A viruses raises questions about the role of this mammalian taxon in influenza A virus ecology and possible public health relevance. As molecular testing can be limited by a short time window in which the virus is present, serological testing provides information about past infections and virus spread in populations after the virus has been cleared. This study aimed at screening available sera from 100 free-ranging, frugivorous bats (Eidolon helvum sampled in 2009/10 in Ghana, for the presence of antibodies against the complete panel of influenza A haemagglutinin (HA types ranging from H1 to H18 by means of a protein microarray platform. This technique enables simultaneous serological testing against multiple recombinant HA-types in 5 μl of serum. Preliminary results indicate serological evidence against avian influenza subtype H9 in about 30% of the animals screened, with low-level cross-reactivity to phylogenetically closely related subtypes H8 and H12. To our knowledge, this is the first report of serological evidence of influenza A viruses other than H17 and H18 in bats. As avian influenza subtype H9 is associated with human infections, the implications of our findings from a public health context remain to be investigated.

  12. [Burden of influenza virus type B and mismatch with the flu vaccine in Spain].

    Science.gov (United States)

    Eiros-Bouza, Jose Ma; Pérez-Rubio, Alberto

    2015-02-01

    Since the 80s two lineages of type B viruses are co - circulating in the world. Antigenic differences between them are important and it leads to lack of cross-reactivity. The impact on the burden of disease due to influenza B virus, poor foresight in estimating which of the two lineages of B viruses circulate in the season, and the consequent lack of immunity in case of including the wrong strain make that the availability of the quadrivalent vaccine is very useful. The aim of this paper is to analyze the past influenza seasons in Spain to assess the burden of disease, divergence between the vaccine strain and the circulating B and viral characteristics associated with type B in each seasonal epidemic. Review of all reports issued by the Influenza Surveillance System in Spain since the 2003-2004 season to 2012-2013. Over the past influenza seasons, although type A was present mostly, circulation of influenza B virus in each season was observed, even being co - dominant in some of them. In a high number of seasons the divergence between the vaccine strain and the circulating strain lineage has been observed The protective effect of influenza vaccine has varied depending on the type / subtype of influenza virus studied. The vaccine effectiveness against influenza infection by influenza B virus has varied greatly depending on the season analyzed.

  13. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Science.gov (United States)

    2010-11-10

    ... Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and Sweden... status of the Czech Republic and Sweden relative to highly pathogenic avian influenza (HPAI) subtype H5N1...

  14. Isolation of herpesvirus and Newcastle disease virus from White Storks (Ciconia ciconia) maintained at four rehabilitation centres in northern Germany during 1983 to 2001 and failure to detect antibodies against avian influenza A viruses of subtypes H5 and H7 in these birds.

    Science.gov (United States)

    Kaleta, Erhard F; Kummerfeld, Norbert

    2012-01-01

    Herpesvirus isolations from peripheral white blood cells of 253 White Storks (Ciconia ciconia) were obtained during a long-term study (1983 to 2001). The storks lived for a few months to 20 years at four rehabilitation centres. Isolates were obtained from 83 of 253 storks. This herpesvirus is indigenous for storks and unrelated to any other avian herpesvirus. Significantly more herpesvirus isolates were obtained during spring than in autumn samplings. The intervals between the first and last virus isolation ranged from 1 to 15 years. Herpesvirus isolates were simultaneously obtained from white blood cells and from pharyngeal swabs of four of 34 storks but not from cloacal swabs. Neutralizing antibodies to stork herpesvirus were detected in 178 of 191 examined blood plasma samples. Neutralizing antibodies against stork herpesvirus did not correlate with herpesvirus viraemia. The results further substantiate the persistence of herpesvirus in White Storks and underline the previously unrecorded long periods of virus and antibody presence. Virulent avian paramyxovirus type 1 (APMV-1; Newcastle disease virus) was isolated from white blood cells during 1992 and 1993 from four healthy migrating storks, and possessed virulence markers on the cleavage site of the H and F genes. These properties resemble the NE type of APMV-1. Haemagglutination inhibition antibodies against APMV-1 were detected in 16 of 191 blood plasma samples. Avian influenza A virus was not isolated and antibodies against subtypes H5 and H7 were not detected.

  15. Infection and Replication of Influenza Virus at the Ocular Surface.

    Science.gov (United States)

    Creager, Hannah M; Kumar, Amrita; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M; Belser, Jessica A

    2018-04-01

    Although influenza viruses typically cause respiratory tract disease, some viruses, particularly those with an H7 hemagglutinin, have been isolated from the eyes of conjunctivitis cases. Previous work has shown that isolates of multiple subtypes from both ocular and respiratory infections are capable of replication in human ex vivo ocular tissues and corneal or conjunctival cell monolayers, leaving the determinants of ocular tropism unclear. Here, we evaluated the effect of several variables on tropism for ocular cells cultured in vitro and examined the potential effect of the tear film on viral infectivity. All viruses tested were able to replicate in primary human corneal epithelial cell monolayers subjected to aerosol inoculation. The temperature at which cells were cultured postinoculation minimally affected infectivity. Replication efficiency, in contrast, was reduced at 33°C relative to that at 37°C, and this effect was slightly greater for the conjunctivitis isolates than for the respiratory ones. With the exception of a seasonal H3N2 virus, the subset of viruses studied in multilayer corneal tissue constructs also replicated productively after either aerosol or liquid inoculation. Human tears significantly inhibited the hemagglutination of both ocular and nonocular isolates, but the effect on viral infectivity was more variable, with tears reducing the infectivity of nonocular isolates more than ocular isolates. These data suggest that most influenza viruses may be capable of establishing infection if they reach the surface of ocular cells but that this is more likely for ocular-tropic viruses, as they are better able to maintain their infectivity during passage through the tear film. IMPORTANCE The potential spread of zoonotic influenza viruses to humans represents an important threat to public health. Unfortunately, despite the importance of cellular and tissue tropism to pathogenesis, determinants of influenza virus tropism have yet to be fully

  16. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    Science.gov (United States)

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Influenza A and B viruses in the population of Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Radovanov J.

    2014-01-01

    Full Text Available At present, two influenza A viruses, H1N1pdm09 and H3N2, along with influenza B virus co-circulate in the human population, causing endemic and seasonal epidemic acute febrile respiratory infections, sometimes with life-threatening complications. Detection of influenza viruses in nasopharyngeal swab samples was done by real-time RT-PCR. There were 60.2% (53/88 positive samples in 2010/11, 63.4% (52/82 in 2011/12, and 49.9% (184/369 in 2012/13. Among the positive patients, influenza A viruses were predominant during the first two seasons, while influenza B type was more active during 2012/13. Subtyping of influenza A positive samples revealed the presence of A (H1N1pdm09 in 2010/11, A (H3N2 in 2011/12, while in 2012/13, both subtypes were detected. The highest seroprevalence against influenza A was in the age-group 30-64, and against influenza B in adults aged 30-64 and >65. [Projekat Ministarstva nauke Republike Srbije, br. TR31084

  18. Native nucleic acid electrophoresis as an efficient alternative for genotyping method of influenza virus.

    Science.gov (United States)

    Pajak, Beata; Lepek, Krzysztof

    2014-01-01

    Influenza viruses are the worldwide major causative agents of human and animal acute respiratory infections. Some of the influenza subtypes have caused epidemics and pandemics among humans. The varieties of methods are available for the rapid isolation and identification of influenza viruses in clinical and environmental samples. Since nucleic acids amplification techniques such as RT-PCR have been adapted, fast and sensitive influenza type and subtype determination is possible. However, in some ambiguous cases other, more detailed assay might be desired. The genetic material of influenza virus is highly unstable and constantly mutates. It is known that single nucleotide polymorphisms (SNPs) results in resistance to commercially available anti-viral drugs. The genetic drift of the virus could also result in weakening of immune response to infection. Finally, in a substantial number of patients co-infection with various virus strains or types has been confirmed. Although the detection of co-infection or presence of minor genetic variants within flu-infected patients is not a routine procedure, a rapid and wide spectrum diagnostics of influenza virus infections could reveal an accurate picture of the disease and more importantly, is crucial for choosing the appropriate therapeutics and virus monitoring. Herein we present the evidences that native gel electrophoresis and MSSCP--a method based on multitemperature single strand conformation polymorphism could furnish a useful technique for minor variants, which escape discovery by conventional diagnostic assays.

  19. Unique Structural Features of Influenza Virus H15 Hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Tzarum, Netanel; McBride, Ryan; Nycholat, Corwin M.; Peng, Wenjie; Paulson, James C.; Wilson, Ian A. (Scripps)

    2017-04-12

    Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.

    IMPORTANCEIn the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can

  20. Screening for influenza viruses in 7804 patients with influenza-like symptoms

    International Nuclear Information System (INIS)

    Xuehui Li; Nan Lv; Chen Hangwe; Lanhua You; Huimin Wang

    2010-01-01

    To screen a large number of patients with influenza-like symptoms by using the gold-immunochromatographic assay kit. All patients with influenza-like symptoms visiting the outpatient department of the General Hospital of Beijing Military Region, Beijing, China between May 2009 and January 2010 were enrolled in the study. Nasopharyngeal swabs were collected immediately after the patient visited, then a gold-immunochromatographic assay was performed for screening of influenza A and B viruses according to the kit protocol. Among the 7804 patients enrolled in this study, 202 patients were influenza virus-positive; the positive cases accounted for 2.6% of all cases detected. Among the 202 influenza virus-positive patients, 171 patients were influenza virus A-positive, 24 were influenza virus B-positive, and 7 were co-infected with influenza virus A and B. More than 57% of the virus-positive patients were younger than 30 years old. Symptoms such as fever, sore throat, nasal congestion, sneezing, runny nose, and joint pain were more frequently observed in influenza virus A-positive patients than in influenza virus B-positive and influenza virus-negative patients. The gold immunochromatographic assay kit is very useful for screening a large number of patients with influenza-like symptoms. A higher number of influenza virus A-positive patients have sore throat, nasal congestion, sneezing, runny nose, and joint pain than influenza virus B-positive and influenza virus-negative patients (Author).

  1. History of Swine influenza viruses in Asia.

    Science.gov (United States)

    Zhu, Huachen; Webby, Richard; Lam, Tommy T Y; Smith, David K; Peiris, Joseph S M; Guan, Yi

    2013-01-01

    The pig is one of the main hosts of influenza A viruses and plays important roles in shaping the current influenza ecology. The occurrence of the 2009 H1N1 pandemic influenza virus demonstrated that pigs could independently facilitate the genesis of a pandemic influenza strain. Genetic analyses revealed that this virus was derived by reassortment between at least two parent swine influenza viruses (SIV), from the northern American triple reassortant H1N2 (TR) and European avian-like H1N1 (EA) lineages. The movement of live pigs between different continents and subsequent virus establishment are preconditions for such a reassortment event to occur. Asia, especially China, has the largest human and pig populations in the world, and seems to be the only region frequently importing pigs from other continents. Virological surveillance revealed that not only classical swine H1N1 (CS), and human-origin H3N2 viruses circulated, but all of the EA, TR and their reassortant variants were introduced into and co-circulated in pigs in this region. Understanding the long-term evolution and history of SIV in Asia would provide insights into the emergence of influenza viruses with epidemic potential in swine and humans.

  2. Fluorescent immunochromatography for rapid and sensitive typing of seasonal influenza viruses.

    Directory of Open Access Journals (Sweden)

    Akira Sakurai

    Full Text Available Lateral flow tests also known as Immunochromatography (IC is an antigen-detection method conducted on a nitrocellulose membrane that can be completed in less than 20 min. IC has been used as an important rapid test for clinical diagnosis and surveillance of influenza viruses, but the IC sensitivity is relatively low (approximately 60% and the limit of detection (LOD is as low as 10³ pfu per reaction. Recently, we reported an improved IC assay using antibodies conjugated with fluorescent beads (fluorescent immunochromatography; FLIC for subtyping H5 influenza viruses (FLIC-H5. Although the FLIC strip must be scanned using a fluorescent reader, the sensitivity (LOD is significantly improved over that of conventional IC methods. In addition, the antibodies which are specific against the subtypes of influenza viruses cannot be available for the detection of other subtypes when the major antigenicity will be changed. In this study, we established the use of FLIC to type seasonal influenza A and B viruses (FLIC-AB. This method has improved sensitivity to 100-fold higher than that of conventional IC methods when we used several strains of influenza viruses. In addition, FLIC-AB demonstrated the ability to detect influenza type A and influenza type B viruses from clinical samples with high sensitivity and specificity (Type A: sensitivity 98.7% (74/75, specificity 100% (54/54, Type B: sensitivity 100% (90/90, specificity 98.2% (54/55 in nasal swab samples in comparison to the results of qRT-PCR. And furthermore, FLIC-AB performs better in the detection of early stage infection (under 13 h than other conventional IC methods. Our results provide new strategies to prevent the early-stage transmission of influenza viruses in humans during both seasonal outbreaks and pandemics.

  3. Experimental assessment of the pathogenicity of two avian influenza A H5 viruses in ostrich chicks (Struthio camelus) and chickens

    DEFF Research Database (Denmark)

    Manvell, R.J.; Jørgensen, Poul Henrik; Nielsen, O.L.

    1998-01-01

    Virus excretion, immune response, and, for chickens, deaths were recorded in 3-week-old ostriches and chickens inoculated by either the intramuscular or intranasal route with one of two influenza A viruses of subtype H5, One of the viruses, A/turkey/England/50-92/91 (H5N1) (50/92), was highly...

  4. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  5. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.

    Science.gov (United States)

    Tilmanis, Danielle; van Baalen, Carel; Oh, Ding Yuan; Rossignol, Jean-Francois; Hurt, Aeron C

    2017-11-01

    Nitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide. An optimised cell culture-based focus reduction assay was used to determine the susceptibility of A(H1N1)pdm09, A(H3N2), and influenza B viruses circulating in the southern hemisphere from the period March 2014 to August 2016. Tizoxanide showed potent in vitro antiviral activity against all influenza viruses tested, including neuraminidase inhibitor-resistant viruses, allowing the establishment of a baseline level of susceptibility for each subtype. Median EC 50 values (±IQR) of 0.48 μM (0.33-0.71), 0.62 μM (0.56-0.75), 0.66 μM (0.62-0.69), and 0.60 μM (0.51-0.67) were obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses respectively. There was no significant difference in the median baseline tizoxanide susceptibility for each influenza subtype tested. This is the first report on the susceptibility of circulating viruses to tizoxanide. The focus reduction assay format described is sensitive, robust, and less laborious than traditional cell based antiviral assays, making it highly suitable for the surveillance of tizoxanide susceptibility in circulating seasonal influenza viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. [Contemporary threat of influenza virus infection].

    Science.gov (United States)

    Płusa, Tadeusz

    2010-01-01

    Swine-origine H1N1 influenza virus (S-OIV) caused a great mobilization of health medical service over the world. Now it is well known that a vaccine against novel virus is expected as a key point in that battle. In the situation when recommended treatment with neuraminidase inhibitors is not sufficient to control influenza A/H1N1 viral infection the quick and precisely diagnostic procedures should be applied to save and protect our patients.

  7. Isolation and genetic characterization of avian influenza viruses and a Newcastle disease virus from wild birds in Barbados: 2003-2004.

    Science.gov (United States)

    Douglas, Kirk O; Lavoie, Marc C; Kim, L Mia; Afonso, Claudio L; Suarez, David L

    2007-09-01

    Zoonotic transmission of an H5N1 avian influenza A virus to humans in 2003-present has generated increased public health and scientific interest in the prevalence and variability of influenza A viruses in wild birds and their potential threat to human health. Migratory waterfowl and shorebirds are regarded as the primordial reservoir of all influenza A viral subtypes and have been repeatedly implicated in avian influenza outbreaks in domestic poultry and swine. All of the 16 hemagglutinin and nine neuraminidase influenza subtypes have been isolated from wild birds, but waterfowl of the order Anseriformes are the most commonly infected. Using 9-to-11-day-old embryonating chicken egg culture, virus isolation attempts were conducted on 168 cloacal swabs from various resident, imported, and migratory bird species in Barbados during the months of July to October of 2003 and 2004. Hemagglutination assay and reverse transcription-polymerase chain reaction were used to screen all allantoic fluids for the presence of hemagglutinating agents and influenza A virus. Hemagglutination positive-influenza negative samples were also tested for Newcastle disease virus (NDV), which is also found in waterfowl. Two influenza A viruses and one NDV were isolated from Anseriformes (40/168), with isolation rates of 5.0% (2/40) and 2.5% (1/40), respectively, for influenza A and NDV. Sequence analysis of the influenza A virus isolates showed them to be H4N3 viruses that clustered with other North American avian influenza viruses. This is the first report of the presence of influenza A virus and NDV in wild birds in the English-speaking Caribbean.

  8. Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses

    DEFF Research Database (Denmark)

    Mordstein, M; Kochs, G; Dumoutier, L

    2008-01-01

    Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses....... Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants...

  9. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    Science.gov (United States)

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  10. Assessment of zoonotic potential of four European swine influenza viruses in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    herds and enhanced focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Of the four viruses, two were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian......The reverse zoonotic events that introduced the 2009 pandemic influenza virus into swine herds have drastically increased the diversity of reassortants throughout Europe. The pandemic potential of these novel reassortments is unknown, hence necessitating enhanced surveillance of European swine...... to neuraminidase inhibitors. These findings suggest that the investigated viruses have the potential to infect humans and further underline the need for continued surveillance as well as pandemic and zoonotic assessment of new influenza reassortants....

  11. Epidemiological and molecular surveillance of influenza and respiratory syncytial viruses in children with acute respiratory infections (2004/2005 season

    Directory of Open Access Journals (Sweden)

    Alessandra Zappa

    2008-03-01

    Full Text Available Objective. During the 2004/2005 influenza season an active virological surveillance of influenza viruses and respiratory syncytial virus (RSV was carried out to monitor the epidemiologic trend of acute respiratory infections (ARI in the paediatric community. Materials and methods. 100 patients (51 males, 49 females; mean age: 19 months, either treated at the Emergency Unit or hospitalized in the Pediatric Unit of “San Carlo Borromeo Hospital” (Milan, reporting symptoms related to ARI were enrolled. Pharyngeal swabs were collected for virological investigation by: 1 multiplexnested- PCR for the simultaneous identification of both influenza A and B viruses and RSV; 2 multiplex-nested- PCR for the subtyping of influenza A viruses (H1 and H3. Results. 12% (12/100 subjects were infected with influenza A virus, 4% (4/100 with influenza B virus and 14 (14% with RSV. Of all the 12 influenza A positive samples 4 (33.3% belonged to subtype H1 and 8 (66.7% to subtype H3. Bronchiolitis and bronchitis episodes were significantly higher among RSV-infected subjects than among influenza- infected subjects (42.8% vs 6.2%; p<0.05 and 35.7% vs 6.2%; p<0.05, respectively. Pneumonia episodes occurred similarly both in influenza-infected children and in RSV-infected ones. Conclusions. During the 2004/2005 influenza season, influenza viruses and RSV were liable for high morbidity among paediatric subjects.The present study underlies the importance of planning an active surveillance of respiratory viral infections among paediatric cases requiring hospitalization due to ARI.A thorough analysis of target population features, of viruses antigenic properties and seasonality will be decisive in the evaluation of each clinical event.

  12. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  13. The evolutionary genetics and emergence of avian influenza viruses in wild birds.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    2008-05-01

    Full Text Available We surveyed the genetic diversity among avian influenza virus (AIV in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA and neuraminidase (NA subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient "genome constellations," continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.

  14. Comparison of the Outcomes of Individuals With Medically Attended Influenza A and B Virus Infections Enrolled in 2 International Cohort Studies Over a 6-Year Period

    DEFF Research Database (Denmark)

    Dwyer, Dominic E; Lynfield, Ruth; Losso, Marcelo H

    2017-01-01

    Background: Outcome data from prospective follow-up studies comparing infections with different influenza virus types/subtypes are limited. Methods: Demographic, clinical characteristics and follow-up outcomes for adults with laboratory-confirmed influenza A(H1N1)pdm09, A(H3N2), or B virus infect...

  15. Influenza A (H3N2) Variant Virus

    Science.gov (United States)

    ... Swine Variant Pandemic Other Influenza A (H3N2) Variant Virus Language: English (US) Español Recommend on Facebook Tweet Share Compartir Influenza viruses that normally circulate in pigs are called “variant” ...

  16. Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan.

    Science.gov (United States)

    Uchida, Yuko; Mase, Masaji; Yoneda, Kumiko; Kimura, Atsumu; Obara, Tsuyoshi; Kumagai, Seikou; Saito, Takehiko; Yamamoto, Yu; Nakamura, Kikuyasu; Tsukamoto, Kenji; Yamaguchi, Shigeo

    2008-09-01

    On April 21, 2008, four whooper swans were found dead at Lake Towada, Akita prefecture, Japan. Highly pathogenic avian influenza virus of the H5N1 subtype was isolated from specimens of the affected birds. The hemagglutinin (HA) gene of the isolate belongs to clade 2.3.2 in the HA phylogenetic tree.

  17. Efficacy of Influenza Vaccination and Tamiflu? Treatment ? Comparative Studies with Eurasian Swine Influenza Viruses in Pigs

    OpenAIRE

    Duerrwald, Ralf; Schlegel, Michael; Bauer, Katja; Vissiennon, Th?ophile; Wutzler, Peter; Schmidtke, Michaela

    2013-01-01

    Recent epidemiological developments demonstrated that gene segments of swine influenza A viruses can account for antigenic changes as well as reduced drug susceptibility of pandemic influenza A viruses. This raises questions about the efficacy of preventive measures against swine influenza A viruses. Here, the protective effect of vaccination was compared with that of prophylactic Tamiflu® treatment against two Eurasian swine influenza A viruses. 11-week-old pigs were infected by aerosol nebu...

  18. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    OpenAIRE

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are l...

  19. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    Science.gov (United States)

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  20. The Genetic Diversity of Influenza A Viruses in Wild Birds in Peru

    Science.gov (United States)

    Nelson, Martha I.; Pollett, Simon; Ghersi, Bruno; Silva, Maria; Simons, Mark P.; Icochea, Eliana; Gonzalez, Armando E.; Segovia, Karen; Kasper, Matthew R.; Montgomery, Joel M.; Bausch, Daniel G.

    2016-01-01

    Our understanding of the global ecology of avian influenza A viruses (AIVs) is impeded by historically low levels of viral surveillance in Latin America. Through sampling and whole-genome sequencing of 31 AIVs from wild birds in Peru, we identified 10 HA subtypes (H1-H4, H6-H7, H10-H13) and 8 NA subtypes (N1-N3, N5-N9). The majority of Peruvian AIVs were closely related to AIVs found in North America. However, unusual reassortants, including a H13 virus containing a PA segment related to extremely divergent Argentinian viruses, suggest that substantial AIV diversity circulates undetected throughout South America. PMID:26784331

  1. Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season.

    Science.gov (United States)

    Xu, Xiyan; Smith, Catherine B; Mungall, Bruce A; Lindstrom, Stephen E; Hall, Henrietta E; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2002-11-15

    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.

  2. Original antigenic sin responses to influenza viruses.

    Science.gov (United States)

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  3. An influenza A virus agglutination test using antibody-like polymers.

    Science.gov (United States)

    Sukjee, Wannisa; Thitithanyanont, Arunee; Wiboon-Ut, Suwimon; Lieberzeit, Peter A; Paul Gleeson, M; Navakul, Krongkaew; Sangma, Chak

    2017-10-01

    Antibodies are commonly used in diagnostic routines to identify pathogens. The testing protocols are relatively simple, requiring a certain amount of a specific antibody to detect its corresponding pathogen. Antibody functionality can be mimicked by synthesizing molecularly imprinted polymers (MIPs), i.e. polymers that can selectively recognize a given template structure. Thus, MIPs are sometimes termed 'plastic antibody (PA)'. In this study, we have synthesized new granular MIPs using influenza A virus templates by precipitation polymerization. The selective binding of influenza A to the MIP particles was assessed and subsequently contrasted with other viruses. The affinities of influenza A virus towards the MIP was estimated based on an agglutination test by measuring the amount of influenza subtypes absorbed onto the MIPs. The MIPs produced using the H1N1 template showed specific reactivity to H1N1 while those produced using H5N1 and H3N2 templates showed cross-reactivity.

  4. Whole-Genome Characterization of a Novel Human Influenza A(H1N2) Virus Variant, Brazil.

    Science.gov (United States)

    Resende, Paola Cristina; Born, Priscila Silva; Matos, Aline Rocha; Motta, Fernando Couto; Caetano, Braulia Costa; Debur, Maria do Carmo; Riediger, Irina Nastassja; Brown, David; Siqueira, Marilda M

    2017-01-01

    We report the characterization of a novel reassortant influenza A(H1N2) virus not previously reported in humans. Recovered from a a pig farm worker in southeast Brazil who had influenza-like illness, this virus is a triple reassortant containing gene segments from subtypes H1N2 (hemagglutinin), H3N2 (neuraminidase), and pandemic H1N1 (remaining genes).

  5. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan.

    Science.gov (United States)

    Nemoto, Manabu; Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-03-22

    We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. Copyright © 2018 Nemoto et al.

  6. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential

    Science.gov (United States)

    Richard, Mathilde; Fouchier, Ron A.M.

    2015-01-01

    Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks. PMID:26385895

  7. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment.

    Science.gov (United States)

    Hoffmann, Julia; Schneider, Carola; Heinbockel, Lena; Brandenburg, Klaus; Reimer, Rudolph; Gabriel, Gülsah

    2014-04-01

    Influenza A viruses are a continuous threat to human health as illustrated by the 2009 H1N1 pandemic. Since circulating influenza virus strains become increasingly resistant against currently available drugs, the development of novel antivirals is urgently needed. Here, we have evaluated a recently described new class of broad-spectrum antiviral peptides (synthetic anti-lipopolysaccharide peptides; SALPs) for their potential to inhibit influenza virus replication in vitro and in vivo. We found that particularly SALP PEP 19-2.5 shows high binding affinities for the influenza virus receptor molecule, N-Acetylneuraminic acid, leading to impaired viral attachment and cellular entry. As a result, replication of several influenza virus subtypes (H7N7, H3N2 and 2009 pandemic H1N1) was strongly reduced. Furthermore, mice co-treated with PEP 19-2.5 were protected against an otherwise 100% lethal H7N7 influenza virus infection. These findings show that SALPs exhibit antiviral activity against influenza viruses by blocking virus attachment and entry into host cells. Thus, SALPs present a new class of broad-spectrum antiviral peptides for further development for influenza virus therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G. Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.

  9. Serologic evidence of influenza A (H14) virus introduction into North America

    Science.gov (United States)

    Latorre-Margalef, Neus; Ramey, Andy M.; Fojtik, Alinde; Stallknecht, David E.

    2015-01-01

    Although a diverse population of influenza A viruses (IAVs) is maintained among ducks, geese, shorebirds, and gulls, not all of the 16 avian hemagglutinin (HA) subtypes are equally represented (1). The 14th HA subtype, commonly known as the H14 subtype, was historically limited to isolates from the former Soviet Union in the 1980s (2) and was not subsequently detected until 2010, when isolated in Wisconsin, USA from long-tailed ducks and a white-winged scoter (3–5). In the United States, the H14 subtype has since been isolated in California (6), Mississippi, and Texas (7); and has been reported in waterfowl in Guatemala (7). In this study, we examined whether there was serologic evidence of H14 spread among ducks in North America before (2006–2010) and after (2011–2014) the initial detection of the H14 subtype virus on this continent.

  10. Transmission of influenza A viruses between pigs and people, Iowa, 2002-2004.

    Science.gov (United States)

    Terebuh, Pauline; Olsen, Christopher W; Wright, Jennifer; Klimov, Alexander; Karasin, Alexander; Todd, Karla; Zhou, Hong; Hall, Henrietta; Xu, Xiyan; Kniffen, Tim; Madsen, David; Garten, Rebecca; Bridges, Carolyn B

    2010-11-01

    Triple-reassortant (tr) viruses of human, avian, and swine origin, including H1N1, H1N2, and H3N2 subtypes, emerged in North American swine herds in 1998 and have become predominant. While sporadic human infections with classical influenza A (H1N1) and with tr-swine influenza viruses have been reported, relatively few have been documented in occupationally exposed swine workers (SW). We conducted a 2-year (2002-2004) prospective cohort study of transmission of influenza viruses between pigs and SW from a single pork production company in Iowa. Respiratory samples were collected and tested for influenza viruses from SW and from pigs under their care through surveillance for influenza-like illnesses (ILI). Serial blood samples from study participants were tested by hemagglutination inhibition (HI) for antibody seroconversion against human and swine influenza viruses (SIV), and antibody seroprevalence was compared to age-matched urban Iowa blood donors. During the first year, 15 of 88 SW had ILI and were sampled; all were culture-negative for influenza. During the second year, 11 of 76 SW had ILI and were sampled; one was culture-positive for a human seasonal H3N2 virus. Among 20 swine herd ILI outbreaks sampled, influenza A virus was detected by rRT-PCR from 17 with 11 trH1N1 and five trH3N2 virus isolates cultured. During both years, HI geometric mean titers were significantly higher among SW compared to blood donor controls for three SIV: classical swine Sw/WI/238/97 (H1N1), tr Sw/IN/9K035/99 (H1N2), and trSw/IA/H02NJ56371/02 (H1N1)] (P influenza viruses and were exposed to diverse influenza virus strains circulating in pigs. Influenza virus surveillance among pigs and SW should be encouraged to better understand cross-species transmission and diversity of influenza viruses at the human-swine interface. © 2010 Blackwell Publishing Ltd.

  11. Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, Susanna; Vasby, Ditte

    2013-01-01

    This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were...... results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs....

  12. [Molecular characterization of human influenza viruses--a look back on the last 10 years].

    Science.gov (United States)

    Schweiger, Brunhilde

    2006-01-01

    Influenza A (H3N2) viruses and influenza B viruses have caused more than 90% of influenza infections in Germany during the last then years. Continuous and extensive antigenic variation was evident for both the hemagglutinin (HA) and neuraminidase (NA) surface proteins of H3N2 and influenza B viruses. Molecular characterisation revealed an ongoing genetic drift even in years when the antigenic profiles of circulating strains were indistinguishable from those of the previous season. Retrospective phylogenetic studies showed that viruses similar to vaccine strains circulated one or two years before a given strain was recommended as vaccine strain. New drift variants of H3N2 viruses with significantly changed antigenic features appeared during the seasons 1997/1998 and 2002/2003. Most influenza seasons were characterised by a co-circulation of at least two different lineages of H3N2 viruses. Genetic reassortment between H3N2 viruses belonging to separate lineages caused the different evolutionary pathways of the HA and viruses was responsible for the occurrence of H1N2 viruses during the season 2001/02. This new subtype has been detected only sporadically in Germany. The evolution of influenza B viruses was characterised by the re-emergence of B/Victoria/2/87-lineage viruses and their co-circulation with viruses of the B/Yamagata/16/88-lineage. Reassortant B viruses possessing a Victoria/87-lineage HA and a Yamagata/88-like NA were predominant in Germany during 2002/03 and 2004/05.

  13. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  14. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-01-01

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza

  15. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  16. Respiratory viruses involved in influenza-like illness in a Greek pediatric population during the winter period of the years 2005-2008.

    Science.gov (United States)

    Pogka, Vasiliki; Kossivakis, Athanasios; Kalliaropoulos, Antonios; Moutousi, Afroditi; Sgouras, Dionyssios; Panagiotopoulos, Takis; Chrousos, George P; Theodoridou, Maria; Syriopoulou, Vassiliki P; Mentis, Andreas F

    2011-10-01

    Viruses are the major cause of pediatric respiratory tract infection and yet many suspected cases of illness remain uncharacterized. This study aimed to determine the distribution of several respiratory viruses in children diagnosed as having influenza-like illness, over the winter period of 2005-2008. Molecular assays including conventional and real time PCR protocols, were employed to screen respiratory specimens, collected by clinicians of the Influenza sentinel system and of outpatient pediatric clinics, for identification of several respiratory viruses. Of 1,272 specimens tested, 814 (64%) were positive for at least one virus and included 387 influenza viruses, 160 rhinoviruses, 155 respiratory syncytial viruses, 95 adenoviruses, 81 bocaviruses, 47 parainfluenza viruses, 44 metapneumoviruses, and 30 coronaviruses. Simultaneous presence of two or three viruses was observed in 173 of the above positive cases, 21% of which included influenza virus and rhinovirus. The majority of positive cases occurred during January and February. Influenza virus predominated in children older than 1 year old, with type B being the dominant type for the first season and subtypes A/H3N2 and A/H1N1 the following two winter seasons, respectively. Respiratory syncytial virus prevailed in children younger than 2 years old, with subtypes A and B alternating from year to year. This is the most comprehensive study of the epidemiology of respiratory viruses in Greece, indicating influenza, rhinovirus and respiratory syncytial virus as major contributors to influenza-like illness in children. Copyright © 2011 Wiley-Liss, Inc.

  17. Prevalence and risk factors for H1N1 and H3N2 influenza A virus infections in Minnesota turkey premises.

    Science.gov (United States)

    Corzo, Cesar A; Gramer, Marie; Lauer, Dale; Davies, Peter R

    2012-09-01

    Influenza virus infections can cause respiratory and systemic disease of variable severity and also result in economic losses for the turkey industry. Several subtypes of influenza can infect turkeys, causing diverse clinical signs. Influenza subtypes of swine origin have been diagnosed in turkey premises; however, it is not known how common these infections are nor the likely routes of transmission. We conducted a cross-sectional study to estimate the prevalence of influenza viruses and examine factors associated with infection on Minnesota turkey premises. Results from influenza diagnostic tests and turkey and pig premise location data were obtained from the Minnesota Poultry Testing Laboratory and the Minnesota Board of Animal Health, respectively, from January 2007 to September 2008. Diagnostic data from 356 premises were obtained, of which 17 premises tested positive for antibodies to influenza A virus by agar gel immunodiffusion assay and were confirmed as either H1N1 or H3N2 influenza viruses by hemagglutination and neuraminidase inhibition assays. Influenza infection status was associated with proximity to pig premises and flock size. The latter had a sparing effect on influenza status. This study suggests that H1N1 and H3N2 influenza virus infections of turkey premises in Minnesota are an uncommon event. The route of influenza virus transmission could not be determined; however, the findings suggest that airborne transmission should be considered in future studies.

  18. Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jan A van Gils

    Full Text Available It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell naturally infected with low-pathogenic avian influenza (LPAI A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.

  19. New reassortant and enzootic European swine influenza 1 viruses transmits efficiently through direct contact in the ferret model

    DEFF Research Database (Denmark)

    Fobian, Kristina; P. Fabrizio, Thomas; Yoon, Sun-Woo

    2015-01-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs...... with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian-like H1...... and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics...

  20. Dual Infection of Novel Influenza Viruses A/H1N1 and A/H3N2 in a Cluster of Cambodian Patients

    Science.gov (United States)

    2011-01-01

    influenza viruses as well as the avian influenza virus A/H5N1...on full genome sequencing. This incident confirms dual influenza virus infections and highlights the risk of zoonotic and seasonal influenza viruses ...North American swine influenza viruses , North American avian influenza viruses , human influenza viruses , and a Eurasian swine influenza virus . 18

  1. Surveillance for avian influenza viruses in wild birds in Denmark and Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona

    Avian influenza (AI) is a disease of major threat to poultry production. Surveillance of AI in wild birds contributes to the control of AI. In Denmark (DK) and Greenland (GL), extensive surveillance of AI viruses in the wild bird population has been conducted. The surveillance aimed at detecting......7 subtypes were detected throughout the period together with several other LPAI subtypes. In GL, HPAI was not detected, but few samples were PCR positive for AI. The occurrence of AI subtypes in the wild bird population correlates with concurrent outbreaks of LPAI in Danish poultry, which may...

  2. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Donald D.; Bajic, Goran; Ferdman, Jack; Suphaphiphat, Pirada; Settembre, Ethan C.; Moody, M. Anthony; Schmidt, Aaron G.; Harrison, Stephen C. (Duke-MED); (CH-Boston); (Seqirus)

    2017-12-18

    Antigenic variation requires frequent revision of annual influenza vaccines. Next-generation vaccine design strategies aim to elicit a broader immunity by directing the human immune response toward conserved sites on the principal viral surface protein, the hemagglutinin (HA). We describe a group of antibodies that recognize a hitherto unappreciated, conserved site on the HA of H1 subtype influenza viruses. Mutations in that site, which required a change in the H1 component of the 2017 vaccine, had not previously “taken over” among circulating H1 viruses. Our results encourage vaccine design strategies that resurface a protein to focus the immune response on a specific region.

  3. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness

    Directory of Open Access Journals (Sweden)

    Uyeki Timothy M

    2010-01-01

    Full Text Available Abstract Background Influenza is a major cause of morbidity and hospitalization among children. While less often reported in adults, gastrointestinal symptoms have been associated with influenza in children, including abdominal pain, nausea, vomiting, and diarrhea. Methods From September 2005 and April 2008, pediatric patients in Indonesia presenting with concurrent diarrhea and influenza-like illness were enrolled in a study to determine the frequency of influenza virus infection in young patients presenting with symptoms less commonly associated with an upper respiratory tract infection (URTI. Stool specimens and upper respiratory swabs were assayed for the presence of influenza virus. Results Seasonal influenza A or influenza B viral RNA was detected in 85 (11.6% upper respiratory specimens and 21 (2.9% of stool specimens. Viable influenza B virus was isolated from the stool specimen of one case. During the time of this study, human infections with highly pathogenic avian influenza A (H5N1 virus were common in the survey area. However, among 733 enrolled subjects, none had evidence of H5N1 virus infection. Conclusions The detection of influenza viral RNA and viable influenza virus from stool suggests that influenza virus may be localized in the gastrointestinal tract of children, may be associated with pediatric diarrhea and may serve as a potential mode of transmission during seasonal and epidemic influenza outbreaks.

  4. Radioimmunoassay of influenza A virus haemagglutinin. I

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Polakova, K.

    1978-01-01

    Haemagglutinin released from influenza A virus recombinant MRC11 [antigenically identical to the strain A/Port Chalmers/1/73 (H3N2)] by bromelain treatment and purified by rate zonal centrifugation (further on B-HA) was examined for possible contamination by neuraminidase. Specific enzymatic activities of the MRC11 virus and the B-HA respectively showed that B-HA contained less than 0.1% of enzymatically active neuraminidase originally present in the virus. Gel double diffusion tests, specificities of rabbit antisera induced by B-HA as well as radioimmunoprecipitation experiments demonstrated that B-HA was devoid of any antigenically active neuraminidase. Precipitation of 125 I-labelled B-HA with antisera to influenza virus recombinants with N2 neuraminidase was evidently caused by antibodies to host antigenic determinant(s) present in these sera. As for purity and radioimmunoprecipitation properties, B-HA is quite suitable for radioimmunoassay experiments. (author)

  5. Molecular epidemiology of H9N2 influenza viruses in Northern Europe.

    Science.gov (United States)

    Lindh, Erika; Ek-Kommonen, Christine; Väänänen, Veli-Matti; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2014-08-27

    Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    Science.gov (United States)

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  7. Evolution of canine and equine influenza (H3N8) viruses co-circulating between 2005 and 2008

    International Nuclear Information System (INIS)

    Rivailler, Pierre; Perry, Ijeoma A.; Jang Yunho; Davis, C. Todd; Chen Limei; Dubovi, Edward J.; Donis, Ruben O.

    2010-01-01

    Influenza virus, subtype H3N8, was transmitted from horses to greyhound dogs in 2004 and subsequently spread to pet dog populations. The co-circulation of H3N8 viruses in dogs and horses makes bi-directional virus transmission between these animal species possible. To understand the dynamics of viral transmission, we performed virologic surveillance in dogs and horses between 2005 and 2008 in the United States. The genomes of influenza A H3N8 viruses isolated from 36 dogs and horses were sequenced to determine their origin and evolution. Phylogenetic analyses revealed that H3N8 influenza viruses from horses and dogs were monophyletic and distinct. There was no evidence of canine influenza virus infection in horses with respiratory disease or new introductions of equine influenza viruses into dogs in the United States. Analysis of a limited number of equine influenza viruses suggested substantial separation in the transmission of viruses causing clinically apparent influenza in dogs and horses.

  8. Capture of cell culture-derived influenza virus by lectins: strain independent, but host cell dependent.

    Science.gov (United States)

    Opitz, Lars; Zimmermann, Anke; Lehmann, Sylvia; Genzel, Yvonne; Lübben, Holger; Reichl, Udo; Wolff, Michael W

    2008-12-01

    Strategies to control influenza outbreaks are focused mainly on prophylactic vaccination. Human influenza vaccines are trivalent blends of different virus subtypes. Therefore and due to frequent antigenic drifts, strain independent manufacturing processes are required for vaccine production. This study verifies the strain independency of a capture method based on Euonymus europaeus lectin-affinity chromatography (EEL-AC) for downstream processing of influenza viruses under various culture conditions propagated in MDCK cells. A comprehensive lectin binding screening was conducted for two influenza virus types from the season 2007/2008 (A/Wisconsin/67/2005, B/Malaysia/2506/2004) including a comparison of virus-lectin interaction by surface plasmon resonance technology. EEL-AC resulted in a reproducible high product recovery rate and a high degree of contaminant removal in the case of both MDCK cell-derived influenza virus types demonstrating clearly the general applicability of EEL-AC. In addition, host cell dependency of EEL-AC was studied with two industrial relevant cell lines: Vero and MDCK cells. However, the choice of the host cell lines is known to lead to different product glycosylation profiles. Hence, altered lectin specificities have been observed between the two cell lines, requiring process adaptations between different influenza vaccine production systems.

  9. Conducting polymers as sorbents of influenza viruses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, V. T.; Garina, E. O.; Burtseva, E. I.; Kirillova, E. S.; Ivanova, M. V.; Stejskal, Jaroslav; Sapurina, Irina

    2017-01-01

    Roč. 71, č. 2 (2017), s. 495-503 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S; GA MŠk(CZ) LH14199 Institutional support: RVO:61389013 Keywords : influenza viruses * conducting polymers * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  10. A High Diversity of Eurasian Lineage Low Pathogenicity Avian Influenza A Viruses Circulate among Wild Birds Sampled in Egypt

    Science.gov (United States)

    Gerloff, Nancy A.; Jones, Joyce; Simpson, Natosha; Balish, Amanda; ElBadry, Maha Adel; Baghat, Verina; Rusev, Ivan; de Mattos, Cecilia C.; de Mattos, Carlos A.; Zonkle, Luay Elsayed Ahmed; Kis, Zoltan; Davis, C. Todd; Yingst, Sam; Cornelius, Claire; Soliman, Atef; Mohareb, Emad; Klimov, Alexander; Donis, Ruben O.

    2013-01-01

    Surveillance for influenza A viruses in wild birds has increased substantially as part of efforts to control the global movement of highly pathogenic avian influenza A (H5N1) virus. Studies conducted in Egypt from 2003 to 2007 to monitor birds for H5N1 identified multiple subtypes of low pathogenicity avian influenza A viruses isolated primarily from migratory waterfowl collected in the Nile Delta. Phylogenetic analysis of 28 viral genomes was performed to estimate their nearest ancestors and identify possible reassortants. Migratory flyway patterns were included in the analysis to assess gene flow between overlapping flyways. Overall, the viruses were most closely related to Eurasian, African and/or Central Asian lineage low pathogenicity viruses and belonged to 15 different subtypes. A subset of the internal genes seemed to originate from specific flyways (Black Sea-Mediterranean, East African-West Asian). The remaining genes were derived from a mixture of viruses broadly distributed across as many as 4 different flyways suggesting the importance of the Nile Delta for virus dispersal. Molecular clock date estimates suggested that the time to the nearest common ancestor of all viruses analyzed ranged from 5 to 10 years, indicating frequent genetic exchange with viruses sampled elsewhere. The intersection of multiple migratory bird flyways and the resulting diversity of influenza virus gene lineages in the Nile Delta create conditions favoring reassortment, as evident from the gene constellations identified by this study. In conclusion, we present for the first time a comprehensive phylogenetic analysis of full genome sequences from low pathogenic avian influenza viruses circulating in Egypt, underscoring the significance of the region for viral reassortment and the potential emergence of novel avian influenza A viruses, as well as representing a highly diverse influenza A virus gene pool that merits continued monitoring. PMID:23874653

  11. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  12. Influenza vaccine effectiveness for hospital and community patients using control groups with and without non-influenza respiratory viruses detected, Auckland, New Zealand 2014.

    Science.gov (United States)

    Pierse, Nevil; Kelly, Heath; Thompson, Mark G; Bissielo, Ange; Radke, Sarah; Huang, Q Sue; Baker, Michael G; Turner, Nikki

    2016-01-20

    We aimed to estimate the protection afforded by inactivated influenza vaccine, in both community and hospital settings, in a well characterised urban population in Auckland during 2014. We used two different comparison groups, all patients who tested negative for influenza and only those patients who tested negative for influenza and had a non-influenza respiratory virus detected, to calculate the vaccine effectiveness in a test negative study design. Estimates were made separately for general practice outpatient consultations and hospitalised patients, stratified by age group and by influenza type and subtype. Vaccine status was confirmed by electronic record for general practice patients and all respiratory viruses were detected by real time polymerase chain reaction. 1039 hospitalised and 1154 general practice outpatient consultations met all the study inclusion criteria and had a respiratory sample tested for influenza and other respiratory viruses. Compared to general practice patients, hospitalised patients were more likely to be very young or very old, to be Māori or Pacific Islander, to have a low income and to suffer from chronic disease. Vaccine effectiveness (VE) adjusted for age and other participant characteristics using all influenza negative controls was 42% (95% CI: 16 to 60%) for hospitalised and 56% (95% CI: 35 to 70%) for general practice patients. The vaccine appeared to be most effective against the influenza A(H1N1)pdm09 strain with an adjusted VE of 62% (95% CI:38 to 77%) for hospitalised and 59% (95% CI:36 to 74%) for general practice patients, using influenza virus negative controls. Similar results found when patients testing positive for a non-influenza respiratory virus were used as the control group. This study contributes to validation of the test negative design and confirms that inactivated influenza vaccines continue to provide modest but significant protection against laboratory-confirmed influenza. Copyright © 2015 Elsevier Ltd

  13. Virus genetic variations and evade from immune system, the present influenza challenges: review article

    Directory of Open Access Journals (Sweden)

    Shahla Shahsavandi

    2015-10-01

    Full Text Available The spread of influenza viruses in multiple bird and mammalian species is a worldwide serious threat to human and animal populations' health and raise major concern for ongoing pandemic in humans. Direct transmission of the avian viruses which have sialic acid specific receptors similar to human influenza viruses are a warning to the emergence of a new mutant strain that is likely to share molecular determinants to facilitate their replication in human host. So the emerge virus can be transmitted easily through person to person. The genetic variations of the influenza viruses, emerge and re-emerge of new antigenic variants, and transmission of avian influenza viruses to human may raise wide threat to public health and control of pandemic influenza. Vaccination, chemoprophylaxis with specific antiviral drugs, and personal protective non-pharmacological measures are tools to treat influenza virus infection. The emergence of drug resistant strains of influenza viruses under drug selective pressure and their limited efficacy in severe cases of influenza infections highlight the need to development of new therapies with alternative modes. In recent years several studies have been progressed to introduce components to be act at different stages of the viral life cycle with broad spectrum reactivity against mammalian and bird influenza subtypes. A wide variety of different antiviral strategies include inhibition of virus entry, blocking of viral replication or targeting of cellular signaling pathways have been explored. The current inactivated influenza vaccines are eliciting only B-cell responses. Application of the vaccines has been limited due to the emergence of the new virus antigenic variants. In recent decade development of gene vaccines by targeting various influenza virus proteins have been interested because significant potential for induction of both humoral and cell mediated immunity responses. Enhanced and directed immune responses to

  14. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    Directory of Open Access Journals (Sweden)

    Renström Lena HM

    2009-10-01

    Full Text Available Abstract The European swine influenza viruses (SIVs show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA of the human-like H1N2 SIV viruses and the neuraminidase (NA of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain. The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  15. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant.

    Science.gov (United States)

    Bálint, Adám; Metreveli, Giorgi; Widén, Frederik; Zohari, Siamak; Berg, Mikael; Isaksson, Mats; Renström, Lena Hm; Wallgren, Per; Belák, Sándor; Segall, Thomas; Kiss, István

    2009-10-28

    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain.The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  16. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    Science.gov (United States)

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  17. tion and/or treatment of influenza virus infections

    African Journals Online (AJOL)

    Repro

    more frequent in children and more seri- ous in the elderly, ... The main option for the prevention of influenza and ... rapid development of influenza virus resistance ... drugs that affect the CNS, particu- .... include employees of hospitals, clinics ...

  18. (Highly pathogenic) Avian Influenza as a zoonotic agent

    OpenAIRE

    Kalthoff , Donata; Globig , Anja; Beer , Martin

    2010-01-01

    Summary Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence b...

  19. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Frobert, Emilie [Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, F-69677 Bron Cedex, Lyon (France); Yver, Matthieu; Traversier, Aurelien [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Wolff, Thorsten [Division of Influenza/Respiratory Viruses, Robert Koch Institute, Nordufer 20, D-13353 Berlin (Germany); Riteau, Beatrice [Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Naffakh, Nadia [Institut Pasteur, Unite de Genetique Moleculaire des Virus Respiratoires, URA CNRS 3015, EA302 Universite Paris Diderot, Paris (France); and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  20. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990-2010.

    Science.gov (United States)

    Shu, Bo; Garten, Rebecca; Emery, Shannon; Balish, Amanda; Cooper, Lynn; Sessions, Wendy; Deyde, Varough; Smith, Catherine; Berman, LaShondra; Klimov, Alexander; Lindstrom, Stephen; Xu, Xiyan

    2012-01-05

    Swine influenza viruses (SIV) have been recognized as important pathogens for pigs and occasional human infections with swine origin influenza viruses (SOIV) have been reported. Between 1990 and 2010, a total of twenty seven human cases of SOIV infections have been identified in the United States. Six viruses isolated from 1990 to 1995 were recognized as classical SOIV (cSOIV) A(H1N1). After 1998, twenty-one SOIV recovered from human cases were characterized as triple reassortant (tr_SOIV) inheriting genes from classical swine, avian and human influenza viruses. Of those twenty-one tr_SOIV, thirteen were of A(H1N1), one of A(H1N2), and seven of A(H3N2) subtype. SOIV characterized were antigenically and genetically closely related to the subtypes of influenza viruses circulating in pigs but distinct from contemporary influenza viruses circulating in humans. The diversity of subtypes and genetic lineages in SOIV cases highlights the importance of continued surveillance at the animal-human interface. Copyright © 2011. Published by Elsevier Inc.

  1. Oseltamivir resistance among influenza viruses: surveillance in northern Viet Nam, 2009-2012.

    Science.gov (United States)

    Hoang Vu, Mai-Phuong; Nguyen, Co Thach; Nguyen, Le Khanh Hang; Nguyen, Thi Kim Phuong; Le, Quynh Mai

    2013-01-01

    Antiviral resistance has been reported in seasonal influenza A viruses and avian influenza A(H5N1) viruses in Viet Nam, raising concerns about the efficacy of treatment. We analysed specimens from two sources during the period 2009-2012: influenza-positive samples from influenza-like illness patients at sentinel clinics in northern Viet Nam and isolates from patients with confirmed A(H5N1) infections. Pyrosequencing was used to detect mutations: H275Y [for A(H1N1) and A(H5N1)], E119V [for A(H3N2)] and I117V [for A(H5N1)]. A neuraminidase inhibition assay was used to determine the Inhibitory Concentration 50 (IC₅₀) values for all influenza A and B isolates. There were 341 influenza A positive samples identified; influenza A(H1N1)pdm09 was identified most frequently (n = 215). In 2009, oseltamivir resistance was observed in 100% (19 of 19) of seasonal A(H1N1) isolates and 1.4% (3/215) of A(H1N1)pdm09 isolates. This H275Y mutation was not found in influenza subtypes A(H5N1) or A(H3N2) isolates. In Viet Nam, seasonal and A(H5N1) influenza vaccines are not currently available; thus, effective treatment is required. The presence of oseltamivir-resistant viruses is therefore a concern. Active surveillance for oseltamivir resistance among influenza viruses circulating in Viet Nam should be continued.

  2. Establishment of an H6N2 Influenza Virus Lineage in Domestic Ducks in Southern China ▿ †

    Science.gov (United States)

    Huang, K.; Bahl, J.; Fan, X. H.; Vijaykrishna, D.; Cheung, C. L.; Webby, R. J.; Webster, R. G.; Chen, H.; Smith, Gavin J. D.; Peiris, J. S. M.; Guan, Y.

    2010-01-01

    Multiple reassortment events between different subtypes of endemic avian influenza viruses have increased the genomic diversity of influenza viruses circulating in poultry in southern China. Gene exchange from the natural gene pool to poultry has contributed to this increase in genetic diversity. However, the role of domestic ducks as an interface between the natural gene pool and terrestrial poultry in the influenza virus ecosystem has not been fully characterized. Here we phylogenetically and antigenically analyzed 170 H6 viruses isolated from domestic ducks from 2000 to 2005 in southern China, which contains the largest population of domestic ducks in the world. Three distinct hemagglutinin lineages were identified. Group I contained the majority of isolates with a single internal gene complex and was endemic in domestic ducks in Guangdong from the late 1990s onward. Group II was derived from reassortment events in which the surface genes of group I viruses were replaced with novel H6 and N2 genes. Group III represented H6 viruses that undergo frequent reassortment with multiple virus subtypes from the natural gene pool. Surprisingly, H6 viruses endemic in domestic ducks and terrestrial poultry seldom reassort, but gene exchanges between viruses from domestic ducks and migratory ducks occurred throughout the surveillance period. These findings suggest that domestic ducks in southern China mediate the interaction of viruses between different gene pools and facilitate the generation of novel influenza virus variants circulating in poultry. PMID:20463062

  3. Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine.

    Directory of Open Access Journals (Sweden)

    Victoria Matyushenko

    Full Text Available Live attenuated influenza vaccines (LAIVs are considered as safe and effective tool to control influenza in different age groups, especially in young children. An important part of the LAIV safety evaluation is the detection of vaccine virus replication in the nasopharynx of the vaccinees, with special attention to a potential virus transmission to the unvaccinated close contacts. Conducting LAIV clinical trials in some geographical regions with year-round circulation of influenza viruses warrants the development of robust and reliable tools for differentiating vaccine viruses from wild-type influenza viruses in nasal pharyngeal wash (NPW specimens of vaccinated subjects. Here we report the development of genotyping assay for the detection of wild-type and vaccine-type influenza virus genes in NPW specimens of young children immunized with Russian-backbone seasonal trivalent LAIV using Sanger sequencing from newly designed universal primers. The new primer set allowed amplification and sequencing of short fragments of viral genes in NPW specimens and appeared to be more sensitive than conventional real-time RT-PCR protocols routinely used for the detection and typing/subtyping of influenza virus in humans. Furthermore, the new assay is capable of defining the origin of wild-type influenza virus through BLAST search with the generated sequences of viral genes fragments.

  4. Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry

    Science.gov (United States)

    2007-05-30

    Intercontinental circulation of human influenza A( H1N2 ) reassortant viruses during the 2001–2002 influenza season. J Infect Dis 186: 1490–1493. 6. Taubenberger...Global Surveillance of Emerging Influenza Virus Genotypes by Mass Spectrometry Rangarajan Sampath1*, Kevin L. Russell2, Christian Massire1, Mark W...Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America Background. Effective influenza surveillance requires

  5. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells

    International Nuclear Information System (INIS)

    Sato, Yoshiko; Yoshioka, Kenichi; Suzuki, Chie; Awashima, Satoshi; Hosaka, Yasuhiro; Yewdell, Jonathan; Kuroda, Kazumichi

    2003-01-01

    We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses

  6. [Swine influenza virus: evolution mechanism and epidemic characterization--a review].

    Science.gov (United States)

    Qi, Xian; Lu, Chengping

    2009-09-01

    Pigs may play an important role in the evolution and ecology of influenza A virus. The tracheal epithelium of pigs contain both SA alpha 2,6 Gal and SA alpha 2,3 Gal receptors and can be infected with swine, human and avian viruses, therefore, pigs have been considered as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. Evolution patterns among swine influenza viruses including evolution of host adaptation, antigenic drift and genetic reassortment, and the latter is the main one. Unlike human influenza viruses, swine viruses have different epizootiological patterns in different areas of world, which is enzootic and geographic dependence. Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2, and these include classical swine H1N1, avian-like H1N1, human-like H3N2, reassortant H3N2 and various genotype H1N2 viruses. In Europe, North America and China, influenza A viruses circulating in pigs are distinct in the genetic characteristics and genetic sources. Since 1979, three subtypes, avian-like H1N1, reassortant H1N2 and H3N2 viruses, have been co-circulating in European swine. Before 1998, classical H1N1 viruses were the exclusive cause of swine influenza in North America. However, after that, three triple-reassortant H1N2, H3N2 and H1N1 viruses with genes of human, swine and avian virus began to emerge in pigs. Genetically, the pandemic viruses emerging in human, so called influenza A (H1N1) viruses, contain genes from both Europe and North American SIV lineages. SIV is not the same as Europe and the United States in the prevalence and genetic background in China, mainly classical swine H1N1 and human-like H3N2 type virus. However, in recent years, SIV from Europe and North America have been introduced into Chinese pig herds, so more attention should be given on the evolutionary of SIV in China

  7. Changes in genetically drifted H3N2 influenza A viruses and vaccine effectiveness in adults 65 years and older during the 2016/17 season in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Fischer, Thea K; Krause, Tyra Grove

    2017-01-01

    BACKGROUND: In Denmark, influenza A virus of the subtype H3N2 has been dominating the 2016/17 season, as in most countries of the Northern Hemisphere. OBJECTIVES: This study was conducted as part of the Danish seasonal influenza surveillance programme to genetically characterize circulating H3N2...

  8. A phylogeny-based global nomenclature system and automated annotation tool for H1 hemagglutinin genes from swine influenza A viruses

    Science.gov (United States)

    The H1 subtype of influenza A viruses (IAV) has been circulating in swine since the 1918 human influenza pandemic. Over time, and aided by further introductions from non-swine hosts, swine H1 have diversified into three genetic lineages. Due to limited global data, these H1 lineages were named based...

  9. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    Science.gov (United States)

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.

  10. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... August 7, 2017 Increase in Human Infections with Avian Influenza A(H7N9) Virus During the Fifth Epidemic — China, October 2016–February 2017 Antigenic and genetic characteristics of zoonotic influenza viruses and candidate vaccine viruses developed for ...

  11. Transmission of Influenza B Viruses in the Guinea Pig

    Science.gov (United States)

    Pica, Natalie; Chou, Yi-Ying; Bouvier, Nicole M.

    2012-01-01

    Epidemic influenza is typically caused by infection with viruses of the A and B types and can result in substantial morbidity and mortality during a given season. Here we demonstrate that influenza B viruses can replicate in the upper respiratory tract of the guinea pig and that viruses of the two main lineages can be transmitted with 100% efficiency between inoculated and naïve animals in both contact and noncontact models. Our results also indicate that, like in the case for influenza A virus, transmission of influenza B viruses is enhanced at colder temperatures, providing an explanation for the seasonality of influenza epidemics in temperate climates. We therefore present, for the first time, a small animal model with which to study the underlying mechanisms of influenza B virus transmission. PMID:22301149

  12. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    Science.gov (United States)

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  13. Sialic acid tissue distribution and influenza virus tropism

    OpenAIRE

    Kumlin, Urban; Olofsson, Sigvard; Dimock, Ken; Arnberg, Niklas

    2008-01-01

    Abstract? Avian influenza A viruses exhibit a strong preference for using ?2,3?linked sialic acid as a receptor. Until recently, the presumed lack of this receptor in human airways was believed to constitute an efficient barrier to avian influenza A virus infection of humans. Recent zoonotic outbreaks of avian influenza A virus have triggered researchers to analyse tissue distribution of sialic acid in further detail. Here, we review and extend the current knowledge about sialic acid distribu...

  14. Influenza Virus and Glycemic Variability in Diabetes: A Killer Combination?

    Directory of Open Access Journals (Sweden)

    Katina D. Hulme

    2017-05-01

    Full Text Available Following the 2009 H1N1 influenza virus pandemic, numerous studies identified the striking link between diabetes mellitus and influenza disease severity. Typically, influenza virus is a self-limiting infection but in individuals who have a pre-existing chronic illness, such as diabetes mellitus, severe influenza can develop. Here, we discuss the latest clinical and experimental evidence for the role of diabetes in predisposing the host to severe influenza. We explore the possible mechanisms that underlie this synergy and highlight the, as yet, unexplored role that blood glucose oscillations may play in disease development. Diabetes is one of the world’s fastest growing chronic diseases and influenza virus represents a constant and pervasive threat to human health. It is therefore imperative that we understand how diabetes increases influenza severity in order to mitigate the burden of future influenza epidemics and pandemics.

  15. Cross talk between animal and human influenza viruses.

    Science.gov (United States)

    Ozawa, Makoto; Kawaoka, Yoshihiro

    2013-01-01

    Although outbreaks of highly pathogenic avian influenza in wild and domestic birds have been posing the threat of a new influenza pandemic for the past decade, the first pandemic of the twenty-first century came from swine viruses. This fact emphasizes the complexity of influenza viral ecology and the difficulty of predicting influenza viral dynamics. Complete control of influenza viruses seems impossible. However, we must minimize the impact of animal and human influenza outbreaks by learning lessons from past experiences and recognizing the current status. Here, we review the most recent influenza virology data in the veterinary field, including aspects of zoonotic agents and recent studies that assess the pandemic potential of H5N1 highly pathogenic avian influenza viruses.

  16. The influenza A virus matrix protein as a marker to monitor initial virus internalisation.

    Science.gov (United States)

    Eierhoff, Thorsten; Ludwig, Stephan; Ehrhardt, Christina

    2009-01-01

    The uptake of influenza A viruses (IAV) into cells represents an attractive antiviral drug target, e.g., by interfering with essential cellular or viral entry factors. So far, this process could only be studied by time-consuming microscopical methods. Thus, there is a lack of rapid and easy assay systems to monitor viral entry. Here, we describe a rapid procedure to analyse internalisation of IAV via Western blot detection of virion-associated matrix protein (M1), the most abundant protein within the viral particle. The assay is broadly applicable and detects different virus strains of various subtypes. As a proof of principle, treatment of cells with various known or presumed entry inhibitors resulted in reduced M1 levels. Removal of sialic acids, the receptors for IAV, led to a complete loss of the M1 signal, indicating that virus internalisation can be monitored already at the stage of attachment. Prevention of endosomal acidification resulted in a delayed degradation of M1 indicative of IAV particles trapped in endosomes. Thus, early detection of the virus-associated M1 protein is a rapid method to monitor different steps of influenza virus internalisation and has potential for application as a screening method for drugs that interfere with the uptake of IAV.

  17. DAMPs and influenza virus infection in ageing.

    Science.gov (United States)

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Contribution of murine innate serum inhibitors toward interference within influenza virus immune assays.

    Science.gov (United States)

    Cwach, Kevin T; Sandbulte, Heather R; Klonoski, Joshua M; Huber, Victor C

    2012-03-01

    Prior to detection of an antibody response toward influenza viruses using the hemagglutination inhibition assay (HAI), sera are routinely treated to inactivate innate inhibitors using both heat inactivation (56°C) and recombinant neuraminidase [receptor-destroying enzyme (RDE)]. We revisited the contributions of innate serum inhibitors toward interference with influenza viruses in immune assays, using murine sera, with emphasis on the interactions with influenza A viruses of the H3N2 subtype. We used individual serum treatments: 56°C alone, RDE alone, or RDE + 56°C, to treat sera prior to evaluation within HAI, microneutralization, and macrophage uptake assays. Our data demonstrate that inhibitors present within untreated murine sera interfere with the HAI assay in a manner that is different from that seen for the microneutralization assay. Specifically, the γ class inhibitor α(2) -Macroglobulin (A2-M) can inhibit H3N2 viruses within the HAI assay, but not in the microneutralization assay. Based on these findings, we used a macrophage uptake assay to demonstrate that these inhibitors can increase uptake by macrophages when the influenza viruses express an HA from a 1968 H3N2 virus isolate, but not a 1997 H3N2 isolate. The practice of treating sera to inactivate innate inhibitors of influenza viruses prior to evaluation within immune assays has allowed us to effectively detect influenza virus-specific antibodies for decades. However, this practice has yielded an under-appreciation for the contribution of innate serum inhibitors toward host immune responses against these viruses, including contributions toward neutralization and macrophage uptake. © 2011 Blackwell Publishing Ltd.

  19. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile.

    Science.gov (United States)

    Bravo-Vasquez, N; Di Pillo, F; Lazo, A; Jiménez-Bluhm, P; Schultz-Cherry, S; Hamilton-West, C

    2016-11-01

    In South America little is known regarding influenza virus circulating in backyard poultry and swine populations. Backyard productive systems (BPS) that breed swine and poultry are widely distributed throughout Chile with high density in the central zone, and several BPS are located within the "El Yali" (EY) ecosystem, which is one of the most important wetlands in South America. Here, 130 different wild bird species have been described, of them, at least 22 species migrate yearly from North America for nesting. For this reason, EY is considered as a high-risk zone for avian influenza virus. This study aims to identify if backyard poultry and swine bred in the EY ecosystem have been exposed to influenza A virus and if so, to identify influenza virus subtypes. A biosecurity and handling survey was applied and samples were collected from BPS in two seasons (spring 2013 and fall 2014) for influenza seroprevalence, and in one season (fall 2014) for virus presence. Seroprevalence at BPS level was 42% (95% CI:22-49) during spring 2013 and 60% (95% CI 43-72) in fall 2014. rRT-PCR for the influenza A matrix gene indicated a viral prevalence of 27% (95% CI:14-39) at BPS level in fall 2014. Eight farms (73% of rRT-PCR positive farms) were also positive to the Elisa test at the same time. One BPS was simultaneously positive (rRT-PCR) in multiple species (poultry, swine and geese) and a H1N2 virus was identified from swine, exemplifying the risk that these BPS may pose for generation of novel influenza viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. New influenza A virus reassortments have been found in Danish swine in 2011

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2012-01-01

    viruses which have been circulating in Danish pigs since it was found for the first time in 1981. ii) H1N2 reassortant viruses which comprise HA from “avian like” H1N1 and NA from swine H3N2. The reassortant H1N2 virus was discovered in Danish pig for the first time in 2003 and is now well established......In 2011 a passive surveillance for influenza A virus was conducted in Danish swine. Tested samples were clinical samples from affected pigs submitted to the Danish National Veterinary Institute for swine influenza virus detection. In total 713 samples from 276 herds were analysed and about 24......% of the samples were positive for swine influenza virus. All influenza positive samples were tested for the H1N1pdm09 virus by a real time RT-PCR assay specific for the pandemic HA gene and 26% of the samples were positive. Subtyping of 90 samples by sequencing revealed the presence of; i) H1N1 “avian like...

  1. Proteotyping for the rapid identification of influenza virus and other biopathogens.

    Science.gov (United States)

    Downard, Kevin M

    2013-11-21

    The influenza virus is one of the most deadly infectious agents known to man and has been responsible for the deaths of some hundred million lives throughout human history. The need to rapidly and reliably survey circulating virus strains down to the molecular level is ever present. This tutorial describes the development and application of a new proteotyping approach that harnesses the power of high resolution of mass spectrometry to characterise the influenza virus, and by extension other bacterial and viral pathogens. The approach is shown to be able to type, subtype, and determine the lineage of human influenza virus strains through the detection of one or more signature peptide ions in the mass spectrum of whole virus digests. Pandemic strains can be similarly distinguished from seasonal ones, and new computer algorithms have been written to allow reassorted strains that pose the greatest pandemic risk to be rapidly identified from such datasets. The broader application of the approach is further demonstrated here for the parainfluenza virus, a virus which can be life threatening to children and presents similar clinical symptoms to influenza.

  2. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China.

    Science.gov (United States)

    Xu, Chuantian; Zhu, Qiyun; Yang, Huanliang; Zhang, Xiumei; Qiao, Chuanling; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2009-10-01

    H1N2 is one of the main subtypes of influenza, which circulates in swine all over the world. To investigate the prevalence and genetic of H1N2 in swine of China. Two H1N2 swine influenza viruses were isolated from Tianjin and Guangdong province of China in 2004 and 2006, respectively. The molecular evolution of eight gene segments was analyzed. A/Swine/Tianjin/1/2004 has low identity with A/Swine/Guangdong/2006; in the phylogenetic tree of PA gene, A/Swine/Guangdong/1/2006 and A/Swine/Guangxi/1/2006 along with the H1N2 swine isolates of North America formed a cluster; and A/Swine/Tianjin/2004 and A/Swine/Zhejiang/2004, along with the classical H1N1 swine isolates formed another cluster; except that NA gene of A/Swine/Tianjin/1/2004 fell into the cluster of the H3N2 human influenza virus, indicating the reassortment between H3N2 human and H1N1 swine influenza viruses. Two different genotypes of H1N2 appeared among pigs in China. A/swine/Guangdong/1/06 was probably from H1N2 swine influenza viruses of North America; while A/swine/Tianjin/1/04 maybe come from reassortments of classical H1N1 swine and H3N2 human viruses prevalent in North America.

  3. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); M.A. den Bakker (Michael); L.M.E. Leijten (Lonneke); S. Chutinimitkul (Salin); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2010-01-01

    textabstractInfluenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by

  4. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    Science.gov (United States)

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  5. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    International Nuclear Information System (INIS)

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaëlle; Frobert, Emilie; Yver, Matthieu; Traversier, Aurelien; Wolff, Thorsten; Riteau, Beatrice; Naffakh, Nadia

    2012-01-01

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus–host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  6. Characterization of influenza virus among influenza like illness cases in Mumbai, India

    OpenAIRE

    Roy, Soumen; Dahake, Ritwik; Patil, Deepak; Tawde, Shweta; Mukherjee, Sandeepan; Athlekar, Shrikant; Chowdhary, Abhay; Deshmukh, Ranjana

    2014-01-01

    The present study was carried out to monitor influenza viruses by identifying the virus and studying the seasonal variation during 2007–2009 in Mumbai. A total of 193 clinical respiratory samples (nasal and throat swab) were collected from patients having influenza like illness in Mumbai region. One-step real-time reverse-transcriptase PCR (rRTPCR) was used to detect Influenza type A (H1 and H3) and Influenza type B virus. Isolation of the virus was carried out using in vitro system which was...

  7. Investigation of avian influenza virus in poultry and wild birds due to novel avian-origin influenza A(H10N8) in Nanchang City, China.

    Science.gov (United States)

    Ni, Xiansheng; He, Fenglan; Hu, Maohong; Zhou, Xianfeng; Wang, Bin; Feng, Changhua; Wu, Yumei; Li, Youxing; Tu, Junling; Li, Hui; Liu, Mingbin; Chen, Haiying; Chen, Shengen

    2015-01-01

    Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: The virus-specific cytotoxic T lymphocyte (CTL induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1 survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. CONCLUSIONS/SIGNIFICANCE: This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.

  9. Epidemiological surveillance of low pathogenic avian influenza virus (LPAIV from poultry in Guangxi Province, Southern China.

    Directory of Open Access Journals (Sweden)

    Yi Peng

    Full Text Available Low pathogenic avian influenza virus (LPAIV usually causes mild disease or asymptomatic infection in poultry. However, some LPAIV strains can be transmitted to humans and cause severe infection. Genetic rearrangement and recombination of even low pathogenic influenza may generate a novel virus with increased virulence, posing a substantial risk to public health. Southern China is regarded as the world "influenza epicenter", due to a rash of outbreaks of influenza in recent years. In this study, we conducted an epidemiological survey of LPAIV at different live bird markets (LBMs in Guangxi province, Southern China. From January 2009 to December 2011, we collected 3,121 cotton swab samples of larynx, trachea and cloaca from the poultry at LBMs in Guangxi. Virus isolation, hemagglutination inhibition (HI assay, and RT-PCR were used to detect and subtype LPAIV in the collected samples. Of the 3,121 samples, 336 samples (10.8% were LPAIV positive, including 54 (1.7% in chicken and 282 (9.1% in duck. The identified LPAIV were H3N1, H3N2, H6N1, H6N2, H6N5, H6N6, H6N8, and H9N2, which are combinations of seven HA subtypes (H1, H3, H4, H6, H9, H10 and H11 and five NA subtypes (N1, N2, N5, N6 and N8. The H3 and H9 subtypes are predominant in the identified LPAIVs. Among the 336 cases, 29 types of mixed infection of different HA subtypes were identified in 87 of the cases (25.9%. The mixed infections may provide opportunities for genetic recombination. Our results suggest that the LPAIV epidemiology in poultry in the Guangxi province in southern China is complicated and highlights the need for further epidemiological and genetic studies of LPAIV in this area.

  10. Host adaptation and transmission of influenza A viruses in mammals

    Science.gov (United States)

    Schrauwen, Eefje JA; Fouchier, Ron AM

    2014-01-01

    A wide range of influenza A viruses of pigs and birds have infected humans in the last decade, sometimes with severe clinical consequences. Each of these so-called zoonotic infections provides an opportunity for virus adaptation to the new host. Fortunately, most of these human infections do not yield viruses with the ability of sustained human-to-human transmission. However, animal influenza viruses have acquired the ability of sustained transmission between humans to cause pandemics on rare occasions in the past, and therefore, influenza virus zoonoses continue to represent threats to public health. Numerous recent studies have shed new light on the mechanisms of adaptation and transmission of avian and swine influenza A viruses in mammals. In particular, several studies provided insights into the genetic and phenotypic traits of influenza A viruses that may determine airborne transmission. Here, we summarize recent studies on molecular determinants of virulence and adaptation of animal influenza A virus and discuss the phenotypic traits associated with airborne transmission of newly emerging influenza A viruses. Increased understanding of the determinants and mechanisms of virulence and transmission may aid in assessing the risks posed by animal influenza viruses to human health, and preparedness for such risks. PMID:26038511

  11. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  12. Aerosolized avian influenza virus by laboratory manipulations.

    Science.gov (United States)

    Li, Zhiping; Li, Jinsong; Zhang, Yandong; Li, Lin; Ma, Limin; Li, Dan; Gao, Feng; Xia, Zhiping

    2012-08-06

    Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  13. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  14. New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model.

    Science.gov (United States)

    Fobian, Kristina; Fabrizio, Thomas P; Yoon, Sun-Woo; Hansen, Mette Sif; Webby, Richard J; Larsen, Lars E

    2015-07-01

    The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.

  15. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Tseng

    Full Text Available Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14, a reassortant virus between A/Vietnam/1194/2004 (H5N1 virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15 was generated and can grow over 10(8 TCID(50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.

  16. A Historical Perspective of Influenza A(H1N2) Virus

    OpenAIRE

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase ...

  17. A human monoclonal antibody with neutralizing activity against highly divergent influenza subtypes.

    Directory of Open Access Journals (Sweden)

    Nicola Clementi

    Full Text Available The interest in broad-range anti-influenza A monoclonal antibodies (mAbs has recently been strengthened by the identification of anti-hemagglutinin (HA mAbs endowed with heterosubtypic neutralizing activity to be used in the design of "universal" prophylactic or therapeutic tools. However, the majority of the single mAbs described to date do not bind and neutralize viral isolates belonging to highly divergent subtypes clustering into the two different HA-based influenza phylogenetic groups: the group 1 including, among others, subtypes H1, H2, H5 and H9 and the group 2 including, among others, H3 subtype. Here, we describe a human mAb, named PN-SIA28, capable of binding and neutralizing all tested isolates belonging to phylogenetic group 1, including H1N1, H2N2, H5N1 and H9N2 subtypes and several isolates belonging to group 2, including H3N2 isolates from the first period of the 1968 pandemic. Therefore, PN-SIA28 is capable of neutralizing isolates belonging to subtypes responsible of all the reported pandemics, as well as other subtypes with pandemic potential. The region recognized by PN-SIA28 has been identified on the stem region of HA and includes residues highly conserved among the different influenza subtypes. A deep characterization of PN-SIA28 features may represent a useful help in the improvement of available anti-influenza therapeutic strategies and can provide new tools for the development of universal vaccinal strategies.

  18. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    2014-10-01

    Full Text Available Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV. Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1. This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2 showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  19. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    Science.gov (United States)

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  20. A historical perspective of influenza A(H1N2) virus.

    Science.gov (United States)

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  1. Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, the Netherlands, 2016

    NARCIS (Netherlands)

    Beerens, Nancy; Heutink, Rene; Bergervoet, Saskia A.; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-01-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird

  2. Highly pathogenic avian influenza A (H5N1) virus in wildlife: diagnostics, epidemiology and molecular characteristics

    NARCIS (Netherlands)

    Keawcharoen, J.

    2010-01-01

    Since 2003, highly pathogenic avian influenza virus subtype H5N1 outbreaks have been reported in Southeast Asia causing high mortality in poultry and have also been found to cross the species barrier infecting human and other mammalian species. Thailand is one of the countries severely affected by

  3. The molecular determinants of antibody recognition and antigenic drift in the H3 hemagglutinin of swine influenza A virus

    Science.gov (United States)

    Influenza A virus (IAV) of the H3 subtype is an important pathogen that affects both humans and swine. The main intervention strategy for preventing infection is vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA). However, due to antigenic drift, vaccin...

  4. Population dynamics of swine influenza virus in farrow-to-finish and specialised finishing herds in the Netherlands

    NARCIS (Netherlands)

    Loeffen, W.L.A.; Hunneman, W.A.; Quak, J.; Verheijden, J.H.M.; Stegeman, J.A.

    2009-01-01

    Influenza virus infections with subtypes H1N1, H3N2 and H1N2 are very common in domestic pigs in Europe. Data on possible differences of population dynamics in finishing pigs in farrow-to-finish herds and in specialised finishing herds are, however, scarce. The presence of sows and weaned piglets on

  5. Emergence of influenza viruses with zoonotic potential: open issues which need to be addressed. A review.

    Science.gov (United States)

    Capua, Ilaria; Munoz, Olga

    2013-07-26

    The real and perceived impact of influenza infections in animals has changed dramatically over the last 10 years, due mainly to the better understanding of the public health implications of avian and swine influenza viruses. On a number of occasions in the last decade avian-to-human transmissions of H5, H7 and H9 virus subtypes have occurred, and the first influenza pandemic of the new millennium occurred as a result of the emergence and spread of a virus from pigs. Although the mechanisms that allow influenza viruses to jump from one host species to another are not fully understood, several genetic signatures linked to the crossing of species barriers have been identified. This has led to a re-evaluation of the importance of understanding these viruses in the animal reservoir, to the extent that millions of euros have been invested in surveillance, research and capacity building worldwide. This has resulted in an enhanced collaboration with our medical counterparts, leading to many discoveries that will contribute to an understanding of the complex mechanisms that lead to the emergence of a pandemic virus. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Epidemic dynamics of two coexisting hepatitis C virus subtypes.

    Science.gov (United States)

    Jiménez-Hernández, Nuria; Torres-Puente, Manuela; Bracho, Maria Alma; García-Robles, Inmaculada; Ortega, Enrique; del Olmo, Juan; Carnicer, Fernando; González-Candelas, Fernando; Moya, Andrés

    2007-01-01

    Hepatitis C virus (HCV) infection affects about 3% of the human population. Phylogenetic analyses have grouped its variants into six major genotypes, which have a star-like distribution and several minor subtypes. The most abundant genotype in Europe is the so-called genotype 1, with two prevalent subtypes, 1a and 1b. In order to explain the higher prevalence of subtype 1b over 1a, a large-scale sequence analysis (100 virus clones) has been carried out over 25 patients of both subtypes in two regions of the HCV genome: one comprising hypervariable region 1 and another including the interferon sensitivity-determining region. Neither polymorphism analysis nor molecular variance analysis (attending to intra- and intersubtype differences, age, sex and previous history of antiviral treatment) was able to show any particular difference between subtypes that might account for their different prevalence. Only the demographic history of the populations carrying both subtypes and analysis of molecular variance (AMOVA) for risk practice suggested that the route of transmission may be the most important factor to explain the observed difference.

  7. Methods for molecular surveillance of influenza

    OpenAIRE

    Wang, Ruixue; Taubenberger, Jeffery K

    2010-01-01

    Molecular-based techniques for detecting influenza viruses have become an integral component of human and animal surveillance programs in the last two decades. The recent pandemic of the swine-origin influenza A virus (H1N1) and the continuing circulation of highly pathogenic avian influenza A virus (H5N1) further stress the need for rapid and accurate identification and subtyping of influenza viruses for surveillance, outbreak management, diagnosis and treatment. There has been remarkable pr...

  8. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  9. Influenza A virus infections in marine mammals and terrestrial carnivores.

    Science.gov (United States)

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  10. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... and Treatment of Avian Influenza A Viruses in People Language: English (US) Español Recommend on Facebook Tweet ... can happen when enough virus gets into a person’s eyes, nose or mouth, or is inhaled. This ...

  11. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  12. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    Directory of Open Access Journals (Sweden)

    Christine L. P. Eng

    2017-05-01

    Full Text Available Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  13. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    Science.gov (United States)

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  14. Characterization of influenza virus among influenza like illness cases in Mumbai, India.

    Science.gov (United States)

    Roy, Soumen; Dahake, Ritwik; Patil, Deepak; Tawde, Shweta; Mukherjee, Sandeepan; Athlekar, Shrikant; Chowdhary, Abhay; Deshmukh, Ranjana

    2014-01-01

    The present study was carried out to monitor influenza viruses by identifying the virus and studying the seasonal variation during 2007-2009 in Mumbai. A total of 193 clinical respiratory samples (nasal and throat swab) were collected from patients having influenza like illness in Mumbai region. One-step real-time reverse-transcriptase PCR (rRTPCR) was used to detect Influenza type A (H1 and H3) and Influenza type B virus. Isolation of the virus was carried out using in vitro system which was further confirmed and typed by hemagglutination assay and hemagglutination inhibition assay. Out of 193 samples 24 (12.4 3%) samples tested positive for influenza virus, of which 13 (6.73 %) were influenza type A virus and 10 (5.18 %) were influenza type B virus, while 1 sample (0.51 %) was positive for both. By culture methods, 3 (1.55 %) viral isolates were obtained. All the three isolates were found to be Influenza type B/Malaysia (Victoria lineage) by Hemagglutination Inhibition Assay. The data generated from the present study reveals that both Influenza type A and B are prevalent in Mumbai with considerable activity. The peak activity was observed during monsoon season.

  15. Flock-based surveillance for lowpathogenic avian influenza virus in ...

    African Journals Online (AJOL)

    Flock-based surveillance for lowpathogenic avian influenza virus in commercial breeders and layers, southwest Nigeria. ... African Journal of Infectious Diseases ... Background: Flock surveillance systems for avian influenza (AI) virus play a critical role in countries where vaccination is not practiced so as to establish the ...

  16. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Dang, Thai Trung; Nguyen, Phi Hung

    2012-01-01

    The emergence of the H1N1 swine flu pandemic has the possibility to develop the occurrence of disaster- or drug-resistant viruses by additional reassortments in novel influenza A virus. In the course of an anti-influenza screening program for natural products, 10 xanthone derivatives (1-10) were ...

  17. radioprotective and interferonogenic characteristics of influenza virus vaccine

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Ershov, F.I.; Ulanova, A.M.; Kuz'mina, T.D.; Stavrakova, N.M.; Tazulakhova, Eh.B.; Shal'nova, G.A.; Akademiya Meditsinskikh Nauk SSSR, Moscow

    1995-01-01

    Different methods of prophylactic treatment with influenza virus vaccina increase survival of irradiated mice and hamsters by 25-55% as compared to unprotected ones. Higher radioresistance occurs in the same time intervals as a rise of interferon in the blood after immunization with influenza virus vaccine. 7 refs.; 2 figs.; 2 tabs

  18. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, M. van; Koopmans, M.; Du Ry van Beest Holle, M.; Meijer, Adam; Klinkenberg, D.; Donnelly, C.A.; Heesterbeek, J.A.P.

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  19. Detecting emerging transmissibility of avian influenza virus in human households

    NARCIS (Netherlands)

    Boven, van R.M.; Koopmans, M.; Du Ry Beest Holle, van M.; Meijer, A.; Klinkenberg, D.; Donnelly, C.; Heesterbeek, J.A.P.

    2007-01-01

    Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore,

  20. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B.

    Science.gov (United States)

    Gong, Xin; Yin, He; Shi, Yuhua; He, Xiaoqiu; Yu, Yongjiao; Guan, Shanshan; Kuai, Ziyu; Haji, Nasteha M; Haji, Nafisa M; Kong, Wei; Shan, Yaming

    2016-05-25

    The ectodomain of the influenza A virus (IAV) hemagglutinin (HA) stem is highly conserved across strains and has shown promise as a universal influenza vaccine in a mouse model. In this study, potential B-cell epitopes were found through sequence alignment and epitope prediction in a stem fragment, HA2:90-105, which is highly conserved among virus subtypes H1, H3 and B. A norovirus (NoV) P particle platform was used to express the HA2:90-105 sequences from subtypes H1, H3 and B in loops 1, 2 and 3 of the protrusion (P) domain, respectively. Through mouse immunization and microneutralization assays, the immunogenicity and protective efficacy of the chimeric NoV P particle (trivalent HA2-PP) were tested against infection with three subtypes (H1N1, H3N2 and B) of IAV in Madin-Darby canine kidney cells. The protective efficacy of the trivalent HA2-PP was also evaluated preliminarily in vivo by virus challenge in the mouse model. The trivalent HA2-PP immunogen induced significant IgG antibody responses, which could be enhanced by a virus booster vaccination. Moreover, the trivalent HA2-PP immunogen also demonstrated in vitro neutralization of the H3 and B viruses, and in vivo protection against the H3 virus. Our results support the notion that a broadly protective vaccine approach using an HA2-based NoV P particle platform can provide cross-protection against challenge viruses of different IAV subtypes. The efficacy of the immunogen should be further enhanced for practicality, and a better understanding of the protective immune mechanism will be critical for the development of HA2-based multivalent vaccines.

  1. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China.

    Science.gov (United States)

    Gu, Min; Chen, Hongzhi; Li, Qunhui; Huang, Junqing; Zhao, Mingjun; Gu, Xiaobing; Jiang, Kaijun; Wang, Xiaoquan; Peng, Daxin; Liu, Xiufan

    2014-12-05

    Avian influenza viruses of subtype H9N2 are widely prevalent in poultry in many Asian countries, and the segmented nature of the viral genome results in multiple distinct genotypes via reassortment. In this study, genetic evolution of H9N2 viruses circulating in eastern China during 2007-2013 was analyzed. The results showed that the diversity of the gene constellations generated six distinct genotypes, in which a novel genotype (S) bearing the backbone of A/chicken/Shanghai/F/98-like viruses by acquiring A/quail/Hong Kong/G1/97-like polymerase basic subunit 2 and matrix genes has gradually established its ecological niche and been consistently prevalent in chicken flocks in eastern China since its first detection in 2007. Furthermore, genotype S possessed the peculiarity to donate most of its gene segments to other emerging influenza A viruses in China, including the novel reassortant highly pathogenic avian influenza H5N2, the 2013 novel H7N7, H7N9 and the latest reassortant H10N8 viruses, with potential threat to poultry industry and human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Prevalence and control of H7 avian influenza viruses in birds and humans.

    Science.gov (United States)

    Abdelwhab, E M; Veits, J; Mettenleiter, T C

    2014-05-01

    The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.

  3. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Science.gov (United States)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  4. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenzaviruses.

    Science.gov (United States)

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenzaviruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  5. No serological evidence that harbour porpoises are additional hosts of influenza B viruses

    NARCIS (Netherlands)

    R. Bodewes (Rogier); M.W.G. van de Bildt (Marco); C.E. van Elk; P.E. Bunskoek (Paulien); D.A.M.C. van de Vijver (David); S.L. Smits (Saskia); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses

  6. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    Science.gov (United States)

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  7. Molecular Determinants of Influenza Virus Pathogenesis in Mice

    Science.gov (United States)

    Katz, Jaqueline M.; York, Ian A.

    2015-01-01

    Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account. PMID:25038937

  8. Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2014-01-01

    Full Text Available Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8 probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.

  9. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  10. The Mutational Robustness of Influenza A Virus.

    Directory of Open Access Journals (Sweden)

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  11. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands.

    NARCIS (Netherlands)

    Koopmans, M.; Wilbrink, B.; Conyn, M.; Natrop, G.; Nat, H. van der; Vennema, H.; Meijer, A.; Steenbergen, J. van; Fouchier, R.; Osterhaus, A.; Bosman, A.

    2004-01-01

    BACKGROUND: An outbreak of highly pathogenic avian influenza A virus subtype H7N7 started at the end of February, 2003, in commercial poultry farms in the Netherlands. Although the risk of transmission of these viruses to humans was initially thought to be low, an outbreak investigation was launched

  12. Genetic drift of HA and NA in Danish swine influenza virus from the period 2003-2012

    DEFF Research Database (Denmark)

    Fobian, Kristina; Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane

    2012-01-01

    . Currently at least three influenza A subtypes (H1N1, H1N2 and H3N2) are endemic in the Danish swine population, and since 2010 the pandemic virus (H1N1pdm09) have also frequently been detected. The focus in this study will be on H1N1 and H1N2, since the prevalence of H3N2 have declined over the past years...... will provide a more complete picture of the molecular epidemiology of the H1N1 and H1N2 swine influenza viruses in Denmark. A thorough knowledge of the antigenic drift in surface genes is very important concerning evaluation of the zoonotic potential of existing and future swine influenza virus strains......The aim of this study is to analyze; the genetic drift in hemagglutinin (HA) and neuraminidase (NA) genes from influenza viruses isolated from Danish swine over the past decade; the antigenic evolution and relatedness between swine influenza virus strains of the H1 subtype by antigenic cartography...

  13. Laboratory preparedness in EU/EEA countries for detection of novel avian influenza A(H7N9) virus, May 2013

    Science.gov (United States)

    Broberg, E; Pereyaslov, D; Struelens, M; Palm, D; Meijer, A; Ellis, J; Zambon, M; McCauley, J; Daniels, R

    2015-01-01

    Following human infections with novel avian influenza A(H7N9) viruses in China, the European Centre for Disease Prevention and Control, the World Health Organization (WHO) Regional Office for Europe and the European Reference Laboratory Network for Human Influenza (ERLI-Net) rapidly posted relevant information, including real-time RT-PCR protocols. An influenza RNA sequence-based computational assessment of detection capabilities for this virus was conducted in 32 national influenza reference laboratories in 29 countries, mostly WHO National Influenza Centres participating in the WHO Global Influenza Surveillance and Response System (GISRS). Twenty-seven countries considered their generic influenza A virus detection assay to be appropriate for the novel A(H7N9) viruses. Twenty-two countries reported having containment facilities suitable for its isolation and propagation. Laboratories in 27 countries had applied specific H7 real-time RT-PCR assays and 20 countries had N9 assays in place. Positive control virus RNA was provided by the WHO Collaborating Centre in London to 34 laboratories in 22 countries to allow evaluation of their assays. Performance of the generic influenza A virus detection and H7 and N9 subtyping assays was good in 24 laboratories in 19 countries. The survey showed that ERLI-Net laboratories had rapidly developed and verified good capability to detect the novel A(H7N9) influenza viruses. PMID:24507469

  14. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  15. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection

    OpenAIRE

    Wu, Donglin; Zou, Shumei; Bai, Tian; Li, Jing; Zhao, Xiang; Yang, Lei; Liu, Hongmin; Li, Xiaodan; Yang, Xianda; Xin, Li; Xu, Shuang; Zou, Xiaohui; Li, Xiyan; Wang, Ao; Guo, Junfeng

    2015-01-01

    Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-Oc...

  16. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Science.gov (United States)

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  17. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  18. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  19. [Human immunodeficiency virus type 1 subtypes in Djibouti].

    Science.gov (United States)

    Abar, A Elmi; Jlizi, A; Darar, H Youssouf; Ben Nasr, M; Abid, S; Kacem, M Ali Ben Hadj; Slim, A

    2012-01-01

    The authors had for aim to study the distribution of HIV-1 subtypes in a cohort of HIV positive patients in the hospital General Peltier of Djibouti. An epidemiological study was made on 40 HIV-1 positive patients followed up in the Infectious Diseases Department over three months. All patients sample were subtyped by genotyping. Thirty-five patients (15 men and 20 women) were found infected by an HIV-1 strain belonging to the M group. Genotyping revealed that - 66% of samples were infected with subtype C, 20% with CRF02_AG, 8.5% with B, 2.9% with CRF02_AG/C and 2.9% with K/C. In fact, Subtype C prevalence has been described in the Horn of Africa and a similar prevalence was previously reported in Djibouti. However our study describes the subtype B in Djibouti for the first time. It is the predominant subtype in the Western world. The detection of CRF02_AG strains indicates that they are still circulating in Djibouti, the only country in East Africa in which this recombinant virus was found. CRF02_AG recombinant isolates were primarily described in West and Central Africa. The presence of this viral heterogeneity, probably coming from the mixing of populations in Djibouti, which is an essential economic and geographical crossroads, incites us to vigilance in the surveillance of this infection.

  20. Two avian H10 influenza A virus strains with different pathogenicity for mink (Mustela vison).

    Science.gov (United States)

    Englund, L; Hård af Segerstad, C

    1998-01-01

    We compared two strains of avian influenza A viruses of subtype H10 by exposing mink to aerosols of A/mink/Sweden/3,900/84 (H10N4) naturally pathogenic for mink, or A/chicken/Germany/N/49, (H10N7). Lesions in the respiratory tract during the first week after infection were studied and described. Both virus strains caused inflammatory reactions in the lungs and antibody production in exposed mink but only mink/84 virus was reisolated. The lesions caused by mink/84 virus were more severe with higher area density of pneumonia, lower daily weight gain, and more virus in the tissues detected by immunohistochemistry. The results indicate that mink/84 (H10N4), but not chicken/49 virus (H10N7), established multiple cycle replication in infected cells in the mink.

  1. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    Science.gov (United States)

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  2. Flow cytometric monitoring of influenza A virus infection in MDCK cells during vaccine production

    Directory of Open Access Journals (Sweden)

    Reichl Udo

    2008-04-01

    Full Text Available Abstract Background In cell culture-based influenza vaccine production the monitoring of virus titres and cell physiology during infection is of great importance for process characterisation and optimisation. While conventional virus quantification methods give only virus titres in the culture broth, data obtained by fluorescence labelling of intracellular virus proteins provide additional information on infection dynamics. Flow cytometry represents a valuable tool to investigate the influences of cultivation conditions and process variations on virus replication and virus yields. Results In this study, fluorescein-labelled monoclonal antibodies against influenza A virus matrix protein 1 and nucleoprotein were used for monitoring the infection status of adherent Madin-Darby canine kidney cells from bioreactor samples. Monoclonal antibody binding was shown for influenza A virus strains of different subtypes (H1N1, H1N2, H3N8 and host specificity (human, equine, swine. At high multiplicity of infection in a bioreactor, the onset of viral protein accumulation in adherent cells on microcarriers was detected at about 2 to 4 h post infection by flow cytometry. In contrast, a significant increase in titre by hemagglutination assay was detected at the earliest 4 to 6 h post infection. Conclusion It is shown that flow cytometry is a sensitive and robust method for the monitoring of viral infection in fixed cells from bioreactor samples. Therefore, it is a valuable addition to other detection methods of influenza virus infection such as immunotitration and RNA hybridisation. Thousands of individual cells are measured per sample. Thus, the presented method is believed to be quite independent of the concentration of infected cells (multiplicity of infection and total cell concentration in bioreactors. This allows to perform detailed studies on factors relevant for optimization of virus yields in cell cultures. The method could also be used for process

  3. Influenza AH1N2 Viruses, United Kingdom, 2001?02 Influenza Season

    OpenAIRE

    Ellis, Joanna S.; Alvarez-Aguero, Adriana; Gregory, Vicky; Lin, Yi Pu; Hay, A.; Zambon, Maria C.

    2003-01-01

    During the winter of 2001?02, influenza AH1N2 viruses were detected for the first time in humans in the U.K. The H1N2 viruses co-circulated with H3N2 viruses and a very small number of H1N1 viruses and were isolated in the community and hospitalized patients, predominantly from children

  4. Full-Genome Analysis of Avian Influenza A(H5N1) Virus from a Human, North America, 2013

    Science.gov (United States)

    Pabbaraju, Kanti; Tellier, Raymond; Wong, Sallene; Li, Yan; Bastien, Nathalie; Tang, Julian W.; Drews, Steven J.; Jang, Yunho; Davis, C. Todd; Tipples, Graham A.

    2014-01-01

    Full-genome analysis was conducted on the first isolate of a highly pathogenic avian influenza A(H5N1) virus from a human in North America. The virus has a hemagglutinin gene of clade 2.3.2.1c and is a reassortant with an H9N2 subtype lineage polymerase basic 2 gene. No mutations conferring resistance to adamantanes or neuraminidase inhibitors were found. PMID:24755439

  5. Seroepizootiological investigations of animals from Obedska bara locality for presence of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Đuričić Bosiljka

    2010-01-01

    Full Text Available The disease caused by Influenza viruses has been well known for a very long time. In the recent period there has been noted an occurrence of pandemics caused by Influenza viruses type A with a high rate of mortality. The ongoing pandemic caused by avian influenza virus serotype H9N9 began in Hong Kong in 1992, and another pandemic caused by serotype H5N1 began in China (Hong Kong in 1999. The world wide spreading of these viruses occurred due to migratory birds. Avian influenza was confirmed in Serbia in 2007. The goal of this study was to examine whether the avian influenza viruses type A circulate in the region of the Obedska bara marsh, which is a famous resort for many birds in Serbia, as well as many birds migrating from Europe to Africa and vice versa. The samples of blood sera of many animal species (123 samples from fowl, 64 samples from donkeys, 40 samples from horses were tested by serologic reaction of inhibition of haemmaglutination (IHA for the presence of antibodies to influenza A subtypes H5N1, H5N2, H5N3, H7N1 and H7N2. Also, the samples of blood sera of experimental chicken exposed to wild life in Obedska bara (sentinel species were tested. Antibodies to subtypes H5N1, H5N2, H5N3, H7N1 and H7N2 were found in chicken from Dec, Boljevci, Petrovcic and Kupinovo villages but no antibodies were found in blood sera from hams from Dobanovci, Jakovo, Becmen and Surcin villages. From 23 samples from ducks antibodies were detected in 3 samples, and from 22 geese blood sera antibodies were found in 4 samples. From a total of 40 horse blood sera tested one was tested positive, and from 64 donkey sera 17 were positive for the presence of antibodies for avian influenza type A. In blood sera of experimental chicken antibodies were found by subtype H5N1 with corrections with H5N2 and H7N1.

  6. Influenza virus and endothelial cells: a species specific relationship

    Directory of Open Access Journals (Sweden)

    Kirsty Renfree Short

    2014-12-01

    Full Text Available Influenza A virus infection is an important cause of respiratory disease in humans. The original reservoirs of influenza A virus are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI. Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection.

  7. Pathogenesis, Transmissibility, and Tropism of a Highly Pathogenic Avian Influenza A(H7N7) Virus Associated With Human Conjunctivitis in Italy, 2013.

    Science.gov (United States)

    Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M

    2017-09-15

    H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  9. Molecular characterization of influenza viruses collected from young children in Uberlandia, Brazil - from 2001 to 2010.

    Science.gov (United States)

    de Mattos Silva Oliveira, Thelma Fátima; Yokosawa, Jonny; Motta, Fernando Couto; Siqueira, Marilda Mendonça; da Silveira, Hélio Lopes; Queiróz, Divina Aparecida Oliveira

    2015-02-18

    Influenza remains a major health problem due to the seasonal epidemics that occur every year caused by the emergence of new influenza virus strains. Hemagglutinin (HA) and neuraminidase (NA) glycoproteins are under selective pressure and subjected to frequent changes by antigenic drift. Therefore, our main objective was to investigate the influenza cases in Uberlândia city, Midwestern Brazil, in order to monitor the appearance of new viral strains, despite the availability of a prophylactic vaccine. Nasopharyngeal samples were collected from 605 children less than five years of age presenting with acute respiratory disease and tested by immunofluorescence assay (IFA) for detection of adenovirus, respiratory syncytial virus, parainfluenza virus types 1, 2, and 3 and influenza virus types A and B. A reverse transcription-PCR (RT-PCR) for influenza viruses A and B was carried out to amplify partial segments of the HA and NA genes. The nucleotide sequences were analyzed and compared with sequences of the virus strains of the vaccine available in the same year of sample collection. Forty samples (6.6%) were tested positive for influenza virus by IFA and RT-PCR, with 39 samples containing virus of type A and one of type B. By RT-PCR, the type A viruses were further characterized in subtypes H3N2, H1N2 and H1N1 (41.0%, 17.9%, and 2.6%, respectively). Deduced amino acid sequence analysis of the partial hemagglutinin sequence compared to sequences from vaccine strains, revealed that all strains found in Uberlândia had variations in the antigenic sites. The sequences of the receptor binding sites were preserved, although substitutions with similar amino acids were observed in few cases. The neuraminidase sequences did not show significant changes. All the H3 isolates detected in the 2001-2003 period had drifted from vaccine strain, unlike the isolates of the 2004-2007 period. These results suggest that the seasonal influenza vaccine effectiveness could be reduced because

  10. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza.

    Science.gov (United States)

    Qiu, Yu; De Hert, Karl; Van Reeth, Kristien

    2015-09-24

    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs.

  12. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  13. Comparison of chest-CT findings of Influenza virus-associated pneumonia in immunocompetent vs. immunocompromised patients

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, C., E-mail: christopher.kloth@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, 72076 Tübingen (Germany); Forler, S.; Gatidis, S. [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, 72076 Tübingen (Germany); Beck, R. [Institute of Medical Virology and Epidemiology of Viral Diseases, Eberhard-Karls-University, Elfriede-Aulhorn-Straße 6, 72076 Tübingen (Germany); Spira, D.; Nikolaou, K.; Horger, M. [Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, 72076 Tübingen (Germany)

    2015-06-15

    Highlights: • Patterns of pulmonary infiltration caused by Influenza viruses do not significantly differ between immunocompetent and immunocompromised patients or between different types and subtypes of Influenza virus. • Patterns of pulmonary infiltration caused by Influenza viruses seem to be interchangeable which might in part explain the great overlap in CT-imaging findings that has been reported in the past. • Interestingly, pattern transition from interstitial into airway-centric pattern seems to be frequent in immunocompromised patients receiving specific antiviral therapy, whereas the conversion of the airway-centric pattern into an interstitial pattern was observed more frequent in immunocompetent patients developing ARDS. - Abstract: Purpose: To retrospectively compare CT-patterns of pulmonary infiltration caused by different Influenza virus types and subtypes in immunocompetent and immunocompromised patients for possible discrimination. Materials and methods: Retrospective database search at our institution yielded 237 patients who were tested positive for Influenza virus type A or type B by bronchoalveolar lavage between January 2009 and April 2014. Fifty-six of these patients (female 26; male 30; median age 55.8 y, range 17–86 y; SD ± 14.4 y) underwent chest-HRCT due to a more severe clinical course of pulmonary infection. We registered all CT-findings compatible with pulmonary infection classifying them as airway predominant (tree-in-bud, centrilobular nodules, bronchial wall thickening ± peribronchial ground-glass opacity and consolidation) vs. interstitial-parenchymal predominant (bilateral, symmetrical GGO, consolidation, crazy paving and/or interlobular septal thickening). Twenty-six patients (46.4%) had follow-up CT-studies (0.78 mean, SD ± 5.8 scans). Results: Thirty-six patients were immunocompromised (group I) whereas 20 patients were immunocompetent (group II). An airway-centric pattern of infection was found in 15 patients (group

  14. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    Science.gov (United States)

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  15. H9N2 avian influenza virus antibody titers in human population in fars province, Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-09-01

    Full Text Available Among the avian influenza A virus subtypes, H5N1 and H9N2 viruses have the potential to cause an influenza pandemic because they are widely prevalent in avian species in Asia and have demonstrated the ability to infect humans. This study was carried out to determined the seroprevalence of H9N2 avian influenza virus in different human populations in Fars province, which is situated in the south of Iran. Antibodies against H9N2 avian influenza virus were measured using hemagglutination-inhibition (HI test in sera from 300 individuals in five different population in Fars province, including poultry-farm workers, slaughter-house workers, veterinarians, patients with clinical signs of respiratory disease, and clinically normal individuals, who were not or rarely in contact with poultry. Mean antibody titers of 7.3, 6.8, 6.1, 4.5, and 2.9 and seroprevalences of 87%, 76.2%, 72.5%, 35.6%, and 23% were determined in those groups, respectively. Higher prevalences were detected in poultry-farm workers, slaughter-house workers, and veterinarians, possibly due to their close and frequent contact with poultry.

  16. Inhibition of influenza virus replication by targeting broad host cell pathways.

    Directory of Open Access Journals (Sweden)

    Isabelle Marois

    Full Text Available Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs and calcium modulators (CMs, which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly.

  17. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    Science.gov (United States)

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  18. Isolation and characterization of H3N2 influenza A virus from turkeys.

    Science.gov (United States)

    Tang, Y; Lee, C W; Zhang, Y; Senne, D A; Dearth, R; Byrum, B; Perez, D R; Suarez, D L; Saif, Y M

    2005-06-01

    Five 34-wk-old turkey breeder layer flocks in separate houses of 2550 birds each in a single farm in Ohio experienced a drop in egg production from late January to early February 2004. Tracheal swabs (n = 60), cloacal swabs (n = 50), and convalescent sera (n = 110) from the flocks were submitted to the laboratory for diagnostics. Virus isolation was attempted in specific-pathogen free embryonating chicken eggs and Vero and MDCK cells. Virus characterization was performed using agar gel immunodiffusion, the hemagglutination test, the hemagglutination inhibition test, the virus neutralization test, reverse transcription-polymerase chain reaction, sequencing, and phylogenetic analysis. A presumptive influenza virus was successfully propagated and isolated on the first passage in MDCK cells, but initially not in Vero cells or specific-pathogen free chicken embryos. After two passages in MDCK cells, it was possible to propagate the isolate in specific-pathogen free chicken embryos. Preliminary sequence analysis of the isolated virus confirmed that it was influenza A virus with almost 100% (235/236) identity with the matrix gene of a swine influenza A virus, A/Swine/Illinois/100084/01 (H1N2). However, it was not possible to subtype the virus using conventional serotyping methods. The results of genetic characterization of the isolated virus showed that it was the H3N2 subtype and was designated as A/Turkey/OH/313053/04 (H3N2). Phylogenetic analysis of the eight gene segments of the virus showed that A/Turkey/OH/313053/04 (H3N2) isolate was most closely related to the triple-reassortant H3N2 swine viruses [A/Swine/WI/14094/99 (H3N2)] that have been circulating among pigs in the United States since 1998, which contains gene segments from avian, swine, and human viruses. The A/Turkey/OH/313053/04 (H3N2) isolated from turkeys in this study was classified as a low pathogenic avian influenza A virus because it only caused a drop in egg production with minor other clinical

  19. Co-circulation of avian influenza viruses in commercial farms, backyards and

    Directory of Open Access Journals (Sweden)

    H.A. Kaoud

    2014-12-01

    Full Text Available Cloacal and tracheal swab-samples were collected from commercial farms, backyards and live market birds (LBM to identify the potential existence and genetic drifts of avian influenza subtypes (AI H5 and H9 that are circulating among bird species in Egypt. The results revealed that, one sample out of 50 samples of chicken commercial farms was positive for the isolation of subtype H9N2 [KC699549, Influenza A virus: A/chicken/Egypt/VRLCU-R33/2012(H9N2]; from Sharkeia province. Two samples out of 20 samples of Backyard ducks were positive for the isolation of 2 subtypes H5N1; [KC699547, Influenza A virus: A/duck/Egypt/VRLCU-R11/2012(H5N1, “backyard duck”] from El-Fayoum province and the other from Giza province [A/duck/Egypt/VRLCU-R28/2012(H5N1, “backyard duck”]. Analysis of haemagglutinin (HA and the phylogenetic tree of the isolated viruses (H5N1 were fallen within the clade 2.2.1.1. Antigenic cartography for the isolated Egyptian H9N2 AI virus can intuitively be of group-B. The number of mutations in the amino acid sites (33, 47, 65, 90, 92, 143, and 150 and the Long Branch observed in the phylogenetic tree may suggest a rather long evolution period. The sequenced H9N2 Egyptian virus in the study was closely related to the previous Egyptian isolates.

  20. Overvågning af influenza afslører flere subtyper

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Lars Erik

    2015-01-01

    Et forskerteam fra DTU har færdiggjort rapport om overvågning af influenza A i 2014. Målet med overvågningen var at identificere hvilke influenzavirus subtyper og stammer, der cirkulerer blandt danske svin samt at kortlægge sygdomsårsager med henblik på at sikre det strategiske mål – at mindske...

  1. Virological surveillance and preliminary antigenic characterization of influenza viruses in pigs in five European countries from 2006 to 2008.

    Science.gov (United States)

    Kyriakis, C S; Brown, I H; Foni, E; Kuntz-Simon, G; Maldonado, J; Madec, F; Essen, S C; Chiapponi, C; Van Reeth, K

    2011-03-01

    This study presents the results of the virological surveillance for swine influenza viruses (SIVs) in Belgium, UK, Italy, France and Spain from 2006 to 2008. Our major aims were to clarify the occurrence of the three SIV subtypes - H1N1, H3N2 and H1N2 - at regional levels, to identify novel reassortant viruses and to antigenically compare SIVs with human H1N1 and H3N2 influenza viruses. Lung tissue and/or nasal swabs from outbreaks of acute respiratory disease in pigs were investigated by virus isolation. The hemagglutinin (HA) and neuraminidase (NA) subtypes were determined using standard methods. Of the total 169 viruses, 81 were classified as 'avian-like' H1N1, 36 as human-like H3N2 and 47 as human-like H1N2. Only five novel reassortant viruses were identified: two H1N1 viruses had a human-like HA and three H1N2 viruses an avian-like HA. All three SIV subtypes were detected in Belgium, Italy and Spain, while only H1N1 and H1N2 viruses were found in UK and Northwestern France. Cross-hemagglutination inhibition (HI) tests with hyperimmune sera against selected older and recent human influenza viruses showed a strong antigenic relationship between human H1N1 and H3N2 viruses from the 1980s and H1N2 and H3N2 human-like SIVs, confirming their common origin. However, antisera against human viruses isolated during the last decade did not react with currently circulating H1 or H3 SIVs, suggesting that especially young people may be, to some degree, susceptible to SIV infections. © 2009 Blackwell Verlag GmbH.

  2. Genetic and antigenic characterization of influenza A virus circulating in Danish swine during the past decade

    DEFF Research Database (Denmark)

    Fobian, Kristina; Kirk, Isa Kristina; Breum, Solvej Østergaard

    Influenza A virus has been endemic in Danish swine for the last 30 years, with H1N1 and H1N2 being the dominating subtypes. The purpose of this study was to investigate the genetic and antigenic evolution of the influenza viruses found in Danish swine during the last 10 years. A total of 78 samples...... to the complex epidemiology of circulating swine influenza virus in Denmark and indicates that vaccine development targeted against Danish H1N1 and H1N2 need only to include few components for the induction of cross protection against the predominant strains. The study was supported by grants from “European......-synonymous substitutions for H1, N1 and N2 were found to be in agreement with previously observed values for Eurasian swine lineages. Calculation of possible glycosylation sites in the hemagglutinin gene revealed that the H1N2 and H1N1 subtypes had three well conserved glycosylation sites in common. The results of the HI...

  3. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    Science.gov (United States)

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  4. A competitive-inhibiton radioimmunoassay for influenza virus envelope antigens

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Vareckova, E.; Polakova, K.

    1976-01-01

    A double-antibody competitive-inhibition radioimmunoassay for influenza virus envelope antigens is described. A viral antigen preparation from influenza A virus recombinant MRC11 [antigenically identical to A/Port Chalmers/1/73 (H3N2)] consisting of haemagglutinin and neuraminidase was labelled with radioiodine. Rabbit antisera were allowed to react with the labelled antigen and the resultant antigen-antibody complexes were precipitated with the appropriate antiglobulin. The competitive-inhibition radioimmunoassay very sensitively elucidated differences even among closely related influenza virus strains. Attempts have been made to eliminate neuraminidase from radioimmunoprecipitation to obtain a competitive-inhibition radioimmunoassay system for haemagglutinin alone. (author)

  5. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    OpenAIRE

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antoni; Abad, Francesc Xavier; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-01-01

    Abstract An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in bot...

  6. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses.

    Directory of Open Access Journals (Sweden)

    Xuyong Li

    2014-11-01

    Full Text Available H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific "internal-gene-combination" predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as "vehicles" to deliver different subtypes of influenza viruses from avian species to humans.

  7. Serological Evidence for Influenza A Virus Exposure in Wild Birds in Trinidad & Tobago

    Directory of Open Access Journals (Sweden)

    Arianne Brown Jordan

    2018-05-01

    Full Text Available Migratory waterfowl and shorebirds are known to be important reservoirs for influenza A viruses (IAV and they have been repeatedly implicated as causing avian influenza virus (AIV outbreaks in domestic poultry flocks worldwide. In recent years, wild birds have been implicated in spreading zoonotic H5 influenza viruses to many countries, which has generated high levels of public health concern. Trinidad and Tobago (T&T is positioned along the wintering route of migratory birds from the Americas; every year, many species of wild birds stopover on the islands of T&T, potentially carrying AIVs and exposing local populations of wild and domestic birds, including commercial poultry, to infection. The aim of this study was to trap, sample, and test as many wild bird species as possible to see whether they were actively infected or previously exposed to AIV. A total of 38 wild birds were trapped, sampled, and tested for IAV RNA, antibodies specific for influenza A nucleoprotein (NP and antibodies that were specific for H5 and H7 subtypes. Five of the samples tested antibody positive for IAV, while three of these samples had positive titres (≥16 for the H5 subtype, indicating that they were likely to have been previously infected with an H5 IAV subtype. One of the samples tested positive for IAV (M gene RNA. These results highlight the potential threat that is posed by wild birds to backyard and commercial poultry in T&T and emphasise the importance of maintaining high levels of biosecurity on poultry farms, ensuring that domestic and wild birds are not in direct or indirect contact. The results also underline the need to carry out routine surveillance for AIV in domestic and wild birds in T&T and the wider Caribbean region.

  8. Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China.

    Science.gov (United States)

    Chen, Jidang; Ma, Jun; White, Sarah K; Cao, Zhenpeng; Zhen, Yun; He, Shuyi; Zhu, Wanjun; Ke, Changwen; Zhang, Yongbiao; Su, Shuo; Zhang, Guihong

    2015-12-31

    Guangdong Province is recognized for dense populations of humans, pigs, poultry and pets. In order to evaluate the threat of viral infection faced by those working with animals, a cross-sectional, sero-epidemiological study was conducted in Guangdong between December 2013 and January 2014. Individuals working with swine, at poultry farms, or live poultry markets (LPM), and veterinarians, and controls not exposed to animals were enrolled in this study and 11 (4 human, 3 swine, 3 avian, and 1 canine) influenza A viruses were used in hemagglutination inhibition (HI) assays (7 strains) and the cross-reactivity test (9 strains) in which 5 strains were used in both tests. Univariate analysis was performed to identify which variables were significantly associated with seropositivity. Odds ratios (OR) revealed that swine workers had a significantly higher risk of elevated antibodies against A/swine/Guangdong/L6/2009(H1N1), a classical swine virus, and A/swine/Guangdong/SS1/2012(H1N1), a Eurasian avian-like swine virus than non-exposed controls. Poultry farm workers were at a higher risk of infection with avian influenza H7N9 and H9N2. LPM workers were at a higher risk of infection with 3 subtypes of avian influenza, H5N1, H7N9, and H9N2. Interestingly, the OR also indicated that LPM workers were at risk of H1N1 swine influenza virus infection, perhaps due to the presence of pigs in the LPM. While partial confounding by cross-reactive antibodies against human viruses or vaccines cannot be ruled out, our data suggests that animal exposed people as are more likely to have antibodies against animal influenza viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene.

    Directory of Open Access Journals (Sweden)

    Antoinette J Piaggio

    Full Text Available A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV. We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event, as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.

  10. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar

    Directory of Open Access Journals (Sweden)

    Laure Guerrini

    2014-05-01

    Full Text Available While the spatial pattern of the highly pathogenic avian influenza H5N1 virus has been studied throughout Southeast Asia, little is known on the spatial risk factors for avian influenza in Africa. In the present paper, we combined serological data from poultry and remotely sensed environmental factors in the Lake Alaotra region of Madagascar to explore for any association between avian influenza and landscape variables. Serological data from cross-sectional surveys carried out on poultry in 2008 and 2009 were examined together with a Landsat 7 satellite image analysed using supervised classification. The dominant landscape features in a 1-km buffer around farmhouses and distance to the closest water body were extracted. A total of 1,038 individual bird blood samples emanating from 241 flocks were analysed, and the association between avian influenza seroprevalence and these landcape variables was quantified using logistic regression models. No evidence of the presence of H5 or H7 avian influenza subtypes was found, suggesting that only low pathogenic avian influenza (LPAI circulated. Three predominant land cover classes were identified around the poultry farms: grassland savannah, rice paddy fields and wetlands. A significant negative relationship was found between LPAI seroprevalence and distance to the closest body of water. We also found that LPAI seroprevalence was higher in farms characterised by predominant wetlands or rice landscapes than in those surrounded by dry savannah. Results from this study suggest that if highly pathogenic avian influenza H5N1 virus were introduced in Madagascar, the environmental conditions that prevail in Lake Alaotra region may allow the virus to spread and persist.

  11. Effective lethal mutagenesis of influenza virus by three nucleoside analogs.

    Science.gov (United States)

    Pauly, Matthew D; Lauring, Adam S

    2015-04-01

    Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low

  12. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    Science.gov (United States)

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  13. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  14. Comparison of the usefulness of the CACO-2 cell line with standard substrates for isolation of swine influenza A viruses.

    Science.gov (United States)

    Chiapponi, Chiara; Zanni, Irene; Garbarino, Chiara; Barigazzi, Giuseppe; Foni, Emanuela

    2010-01-01

    Influenza A virus isolation is undertaken routinely in embryonated chicken eggs, but to improve virus detection various cell lines can be used. The CACO-2 cell line was compared to the MDCK cell line and embryonated chicken eggs for the isolation of H1N1, H1N2, H3N2 swine influenza A virus subtypes from clinical specimens. From 2006 to 2008, 104 influenza A samples found positive by PCR from 42 respiratory outbreaks in Italian swine farms were examined by virus isolation. Sixty swine influenza A viruses were isolated (16 H1N1, 28 H1N2 and 16 H3N2) and their growth behaviour on the different substrates was examined. 16/16 H1N1, 28/28 H1N2 and 8/16 of H3N2 viruses were isolated from the CACO-2 cell line, while 7/16 H1N1, 3/28 H1N2 and 16/16 H3N2 viruses were isolated using embryonated chicken eggs. Only 9/16 H1N1, 1/28 H1N2 and 6/16 H3N2 viruses replicated in MDCK cells. A link was found between viral hemagglutinin and the isolation rate on the various substrates. The CACO-2 line was statistically more sensitive (Fisher's exact test, pH1N2 subtypes. In contrast influenza A H3N2 virus was isolated more readily in embryonated chicken eggs than in cultured cells (Fisher's exact test, p<0.01).

  15. Comparison of the Outcomes of Individuals With Medically Attended Influenza A and B Virus Infections Enrolled in 2 International Cohort Studies Over a 6-Year Period

    DEFF Research Database (Denmark)

    Dwyer, Dominic E; Lynfield, Ruth; Losso, Marcelo H

    2017-01-01

    Background: Outcome data from prospective follow-up studies comparing infections with different influenza virus types/subtypes are limited. Methods: Demographic, clinical characteristics and follow-up outcomes for adults with laboratory-confirmed influenza A(H1N1)pdm09, A(H3N2), or B virus infect...... to be hospitalized than those with A(H3N2). Hospitalized patients infected with A(H1N1)pdm09 were younger and more likely to have severe disease at study entry (measured by ICU enrollment), but did not have worse 60-day outcomes.......Background: Outcome data from prospective follow-up studies comparing infections with different influenza virus types/subtypes are limited. Methods: Demographic, clinical characteristics and follow-up outcomes for adults with laboratory-confirmed influenza A(H1N1)pdm09, A(H3N2), or B virus...... infections were compared in 2 prospective cohorts enrolled globally from 2009 through 2015. Logistic regression was used to compare outcomes among influenza virus type/subtypes. Results: Of 3952 outpatients, 1290 (32.6%) had A(H1N1)pdm09 virus infection, 1857 (47.0%) had A(H3N2), and 805 (20.4%) had...

  16. Continental synchronicity of human influenza virus epidemics despite climactic variation.

    Science.gov (United States)

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the

  17. Population dynamics of swine influenza virus in finishing pigs

    NARCIS (Netherlands)

    Loeffen, W.L.A.

    2008-01-01

    Influenza virus infections in swine were first noticed in the US in 1918, during the human pandemic of the Spanish flu. In Europe, seroprevalences for the three most common swine influenza strains at the moment, H1N1, H3N2 and H1N2, range from 20-80% in finishing pigs at the end of the finishing

  18. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  19. Avian influenza virus antibodies in Pacific Coast Red Knots (Calidris canutus rufa)

    Science.gov (United States)

    Johnson, James A.; DeCicco, Lucas H.; Ruthrauff, Daniel R.; Krauss, Scott; Hall, Jeffrey S.

    2014-01-01

    Prevalence of avian influenza virus (AIV) antibodies in the western Atlantic subspecies of Red Knot (Calidris canutus rufa) is among the highest for any shorebird. To assess whether the frequency of detection of AIV antibodies is high for the species in general or restricted only to C. c. rufa, we sampled the northeastern Pacific Coast subspecies of Red Knot (Calidris canutus roselaari) breeding in northwestern Alaska. Antibodies were detected in 90% of adults and none of the chicks sampled. Viral shedding was not detected in adults or chicks. These results suggest a predisposition of Red Knots to AIV infection. High antibody titers to subtypes H3 and H4 were detected, whereas low to intermediate antibody levels were found for subtypes H10 and H11. These four subtypes have previously been detected in shorebirds at Delaware Bay (at the border of New Jersey and Delaware) and in waterfowl along the Pacific Coast of North America.

  20. Modes of transmission of influenza B virus in households.

    Directory of Open Access Journals (Sweden)

    Benjamin J Cowling

    Full Text Available While influenza A and B viruses can be transmitted via respiratory droplets, the importance of small droplet nuclei "aerosols" in transmission is controversial.In Hong Kong and Bangkok, in 2008-11, subjects were recruited from outpatient clinics if they had recent onset of acute respiratory illness and none of their household contacts were ill. Following a positive rapid influenza diagnostic test result, subjects were randomly allocated to one of three household-based interventions: hand hygiene, hand hygiene plus face masks, and a control group. Index cases plus their household contacts were followed for 7-10 days to identify secondary infections by reverse transcription polymerase chain reaction (RT-PCR testing of respiratory specimens. Index cases with RT-PCR-confirmed influenza B were included in the present analyses. We used a mathematical model to make inferences on the modes of transmission, facilitated by apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We estimated that approximately 37% and 26% of influenza B virus transmission was via the aerosol mode in households in Hong Kong and Bangkok, respectively. In the fitted model, influenza B virus infections were associated with a 56%-72% risk of fever plus cough if infected via aerosol route, and a 23%-31% risk of fever plus cough if infected via the other two modes of transmission.Aerosol transmission may be an important mode of spread of influenza B virus. The point estimates of aerosol transmission were slightly lower for influenza B virus compared to previously published estimates for influenza A virus in both Hong Kong and Bangkok. Caution should be taken in interpreting these findings because of the multiple assumptions inherent in the model, including that there is limited biological evidence to date supporting a difference in the clinical features of influenza B virus infection by different modes.

  1. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Directory of Open Access Journals (Sweden)

    Paul Kim

    2018-04-01

    Full Text Available Glycosylation of the hemagglutinin (HA and neuraminidase (NA of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness.

  2. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Science.gov (United States)

    Kim, Paul; Jang, Yo Han; Kwon, Soon Bin; Lee, Chung Min; Han, Gyoonhee; Seong, Baik Lin

    2018-01-01

    Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness. PMID:29642453

  3. Influenza research database: an integrated bioinformatics resource for influenza virus research

    Science.gov (United States)

    The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics, an...

  4. Influenza surveillance

    Directory of Open Access Journals (Sweden)

    Karolina Bednarska

    2016-04-01

    Full Text Available Influenza surveillance was established in 1947. From this moment WHO (World Health Organization has been coordinating international cooperation, with a goal of monitoring influenza virus activity, effective diagnostic of the circulating viruses and informing society about epidemics or pandemics, as well as about emergence of new subtypes of influenza virus type A. Influenza surveillance is an important task, because it enables people to prepare themselves for battle with the virus that is constantly mutating, what leads to circulation of new and often more virulent strains of influenza in human population. As vaccination is the most effective method of fighting the virus, one of the major tasks of GISRS is developing an optimal antigenic composition of the vaccine for the current epidemic season. European Influenza Surveillance Network (EISN has also developed over the years. EISN is running integrated epidemiological and virological influenza surveillance, to provide appropriate data to public health experts in member countries, to enable them undertaking relevant activities based on the current information about influenza activity. In close cooperation with GISRS and EISN are National Influenza Centres - national institutions designated by the Ministry of Health in each country.

  5. Influenza-associated encephalopathy: no evidence for neuroinvasion by influenza virus nor for reactivation of human herpesvirus 6 or 7.

    NARCIS (Netherlands)

    van Zeijl, J.H.; Bakkers, J.; Wilbrink, B.; Melchers, W.J.; Mullaart, R.A.; Galama, J.M.

    2005-01-01

    During 2 consecutive influenza seasons we investigated the presence of influenza virus, human herpesvirus (HHV) type 6, and HHV-7 in cerebrospinal fluid samples from 9 white children suffering from influenza-associated encephalopathy. We conclude that it is unlikely that neuroinvasion by influenza

  6. Surveillance and identification of influenza A viruses in wild aquatic birds in the Crimea, Ukraine (2006-2008).

    Science.gov (United States)

    Kulak, M V; Ilinykh, F A; Zaykovskaya, A V; Epanchinzeva, A V; Evstaphiev, I L; Tovtunec, N N; Sharshov, K A; Durimanov, A G; Penkovskaya, N A; Shestopalov, A M; Lerman, A I; Drozdov, I G; Swayne, D E

    2010-09-01

    The ecology of avian influenza (AI) viruses in wild aquatic birds of Asia is poorly understood, especially for the H5N1 high pathogenicity AI (HPAI) viruses. From March 2006 through November 2008, 20 AI viruses were isolated in the Crimea region of Ukraine with an overall frequency of virus recovery of 3.3%. All the viruses were isolated from three species of dabbling ducks: mallard (Anas platyrhynchos), wigeon (Anas penelope), and garganey (Anas querquedula), making the frequency of virus recovery for dabbling ducks 6.3%. The viruses were predominantly isolated during the fall sampling period. All viruses were genetically and antigenically characterized. No H5N1 HPAI viruses were isolated, but other HA and NA subtypes were identified including H3N1 (2), H3N6 (3), H3N8 (4), H4N6 (6), H5N2 (3), H7N8 (1), and H10N6 (1) subtypes. All isolates were of low pathogenicity, as determined by the intravenous pathogenicity index of 0.00. For H5N2 and H7N8 isolates, the HA gene was sequenced and the phylogenetic analysis revealed possible ecologic connections of the Crimea region with AI viruses from Siberia and Europe. No influenza A isolates were recovered from other Anseriformes (diving ducks [two species of pochards] and graylag geese), Columbiformes (collared doves), Gruiformes (coot), and Galliformes (gray partridges).

  7. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  8. Clinical accuracy of a PLEX-ID flu device for simultaneous detection and identification of influenza viruses A and B.

    Science.gov (United States)

    Tang, Yi-Wei; Lowery, Kristin S; Valsamakis, Alexandra; Schaefer, Virginia C; Chappell, James D; White-Abell, Jill; Quinn, Criziel D; Li, Haijing; Washington, Cicely A; Cromwell, Jenna; Giamanco, Chantel M; Forman, Michael; Holden, Jeffery; Rothman, Richard E; Parker, Michelle L; Ortenberg, Elaine V; Zhang, Lei; Lin, Yea-Lin; Gaydos, Charlotte A

    2013-01-01

    Respiratory tract infections caused by influenza A and B viruses often present nonspecifically, and a rapid, high-throughput laboratory technique that can identify influenza viruses is clinically and epidemiologically desirable. The PLEX-ID Flu assay (Abbott Molecular Inc., Des Plaines, IL) incorporates multilocus PCR and electrospray ionization-mass spectrometry to detect and differentiate influenza A 2009 H1N1 (H1N1-p), seasonal H1N1 (H1N1-s), influenza A H3N2, and influenza B viruses in nasopharyngeal swab (NPS) specimens. The clinical performance characteristics of the PLEX-ID Flu assay in symptomatic patients were determined in this multicenter trial. A total of 2,617 prospectively and retrospectively collected NPS specimens from patients with influenza-like illness between February 2008 and 28 May 2010 were eligible for inclusion in the study. Each specimen was tested in parallel by the PLEX-ID Flu assay and by the Prodesse ProFLU+ assay (Prodesse Inc., Madison, WI), to detect influenza A and B viruses. Specimens testing positive for influenza A virus by ProFLU+ were subtyped as H1N1-p, H1N1-s, or H3N2 by using the ProFAST+ assay (Gen-Probe Prodesse Inc.). The reproducibility of the PLEX-ID Flu assay ranged from 98.3 to 100.0%, as determined by testing a nine-specimen panel at three clinical sites on each of 5 days. Positive percent agreements (PPAs) and negative percent agreements (NPAs) of the PLEX-ID Flu assay were 94.5% and 99.0% for influenza A virus and 96.0% and 99.9% for influenza B virus, respectively. For the influenza A virus subtyping characterization, the PLEX-ID Flu assay had PPAs and NPAs of 98.3% and 97.5% for H1N1-p, 88.6% and 100.0% for H1N1-s, and 98.0% and 99.9% for H3N2, respectively. The overall agreements between the PLEX-ID and Prodesse ProFLU+/ProFAST+ assays were 97.1 to 100.0%. Bidirectional Sanger sequencing analysis revealed that 87.5% of 96 discrepant results between the PLEX-ID Flu and ProFLU+/ProFAST+ assays were found upon

  9. Identifikasi Secara Serologi Galur Virus Flu Burung Subtipe H5N1 Clade 2.1.3 dan Clade 2.3.2 pada Ayam Petelur (SEROLOGICAL IDENTIFICATION OF AVIAN INFLUENZA STRAIN VIRUS SUBTYPE H5N1 CLADE 2.1.3 AND CLADE 2.3.2 FROM LAYER

    Directory of Open Access Journals (Sweden)

    Aprilia Kusumastuti

    2015-10-01

    Full Text Available The aim of the study was to know avian influenza (AI infection in field by using serology test in threemarketing area of AI vaccines. Haemagglutination inhibition methode was used in this test. There werefour antigen strains of AI subtype H5N1 clade 2.1.3 (AIstrainA/Chicken/West Java/PWT-WIJ/2006, AIstrain A/Chicken/Garut/BBVW-223/2007, AI strain A/Chicken/West Java-Nagrak/30/2007, and AI strainA/Chicken/Pekalongan/BBVW-208/2007 and 2 antigen strains of AI subtype H5N1 clade 2.3.2 (AI strainA/duck/Sukoharjo/BBVW-1428-9/2012 and AI strain A/duck/Sleman/BBVW-1463-10/2012 was used inthis study for HI test. The result presents that 93,33% chicken farms in three marketing area of PT. SanbioLaboratories have positive antibody titre to AI subtype H5N1 clade 2.1.3. This titre may be obtained fromAI clade 2.1.3 vaccination. From 15 samples, 92,86% are positive to AI subtype H5N1 clade 2.3.2A/duck/Sukoharjo/BBVW-1428-9/2012 and 92,31% are positive to A/duck/Sleman/BBVW-1463-10/2012 evenwithout AI clade 2.3.2 vaccination. This antibody titre may be obtained from AI clade 2.1.3 vaccine crossprotection or field infection.

  10. Swine influenza virus infection dynamics in two pig farms; results of a longitudinal assessment

    Directory of Open Access Journals (Sweden)

    Simon-Grifé Meritxell

    2012-03-01

    Full Text Available Abstract In order to assess the dynamics of influenza virus infection in pigs, serological and virological follow-ups were conducted in two whole batches of pigs from two different farms (F1 and F2, from 3 weeks of age until market age. Anti-swine influenza virus (SIV antibodies (measured by ELISA and hemagglutination inhibition and nasal virus shedding (measured by RRT-PCR and isolation in embryonated chicken eggs and MDCK cells were carried out periodically. SIV isolates were subtyped and hemagglutinin and neuraminidase genes were partially sequenced and analyzed phylogenetically. In F1, four waves of viral circulation were detected, and globally, 62/121 pigs (51.2% were positive by RRT-PCR at least once. All F1 isolates corresponded to H1N1 subtype although hemagglutination inhibition results also revealed the presence of antibodies against H3N2. The first viral wave took place in the presence of colostral-derived antibodies. Nine pigs were positive in two non-consecutive sampling weeks, with two of the animals being positive with the same isolate. Phylogenetic analyses showed that different H1N1 variants circulated in that farm. In F2, only one isolate, H1N2, was detected and all infections were concentrated in a very short period of time, as assumed for a classic influenza outbreak. These findings led us to propose that influenza virus infection in pigs might present different patterns, from an epidemic outbreak to an endemic form with different waves of infections with a lower incidence.

  11. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  12. Interaction of influenza virus proteins with nucleosomes

    International Nuclear Information System (INIS)

    Garcia-Robles, Inmaculada; Akarsu, Hatice; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence

    2005-01-01

    During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed

  13. Pathogenesis of swine influenza virus (Thai isolates in weanling pigs: an experimental trial

    Directory of Open Access Journals (Sweden)

    Kitikoon Pravina

    2009-03-01

    Full Text Available Abstract Background The objective of this study is to investigate the pathogenesis of swine influenza virus (SIV subtype H1N1 and H3N2 (Thai isolates in 22-day-old SPF pigs. Results The study found that all pigs in the infected groups developed typical signs of flu-like symptoms on 1–4 days post- infection (dpi. The H1N1-infected pigs had greater lung lesion scores than those of the H3N2-infected pigs. Histopathological lesions related to swine influenza-induced lesions consisting of epithelial cells damage, airway plugging and peribronchial and perivascular mononuclear cell infiltration were present in both infected groups. Immunofluorescence and immunohistochemistry using nucleoprotein specific monoclonal antibodies revealed positive staining cells in lung sections of both infected groups at 2 and 4 dpi. Virus shedding was detected at 2 dpi from both infected groups as demonstrated by RT-PCR and virus isolation. Conclusion The results demonstrated that both SIV subtypes were able to induce flu-like symptoms and lung lesions in weanling pigs. However the severity of the diseases with regards to lung lesions both gross and microscopic lesions was greater in the H1N1-infected pigs. Based on phylogenetic analysis, haemagglutinin gene of subtype H1N1 from Thailand clustered with the classical H1 SIV sequences and neuraminidase gene clustered with virus of avian origin, whereas, both genes of H3N2 subtype clustered with H3N2 human-like SIV from the 1970s.

  14. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic. PMID:28293218

  15. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012-2016.

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/ Pavo Cristatus /Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~10 4.3 TCID 50 . A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the "gene pool" circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic.

  16. Virulent PB1-F2 residues: effects on fitness of H1N1 influenza A virus in mice and changes during evolution of human influenza A viruses.

    Science.gov (United States)

    Alymova, Irina V; McCullers, Jonathan A; Kamal, Ram P; Vogel, Peter; Green, Amanda M; Gansebom, Shane; York, Ian A

    2018-05-10

    Specific residues of influenza A virus (IAV) PB1-F2 proteins may enhance inflammation or cytotoxicity. In a series of studies, we evaluated the function of these virulence-associated residues in the context of different IAV subtypes in mice. Here, we demonstrate that, as with the previously assessed pandemic 1968 (H3N2) IAV, PB1-F2 inflammatory residues increase the virulence of H1N1 IAV, suggesting that this effect might be a universal feature. Combining both inflammatory and cytotoxic residues in PB1-F2 enhanced virulence further, compared to either motif alone. Residues from these virulent motifs have been present in natural isolates from human seasonal IAV of all subtypes, but there has been a trend toward a gradual reduction in the number of virulent residues over time. However, human IAV of swine and avian origin tend to have more virulent residues than do the human-adapted seasonal strains, raising the possibility that donation of PB1 segments from these zoonotic viruses may increase the severity of some seasonal human strains. Our data suggest the value of surveillance of virulent residues in both human and animal IAV to predict the severity of influenza season.

  17. Reduction of Influenza Virus Titer and Protection against Influenza Virus Infection in Infant Mice Fed Lactobacillus casei Shirota

    OpenAIRE

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetsuji

    2004-01-01

    We investigated whether oral administration of Lactobacillus casei strain Shirota to neonatal and infant mice ameliorates influenza virus (IFV) infection in the upper respiratory tract and protects against influenza infection. In a model of upper respiratory IFV infection, the titer of virus in the nasal washings of infant mice administered L. casei Shirota (L. casei Shirota group) was significantly (P < 0.05) lower than that in infant mice administered saline (control group) (102.48 ± 100.31...

  18. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States.

    Science.gov (United States)

    Bevins, S N; Dusek, R J; White, C L; Gidlewski, T; Bodenstein, B; Mansfield, K G; DeBruyn, P; Kraege, D; Rowan, E; Gillin, C; Thomas, B; Chandler, S; Baroch, J; Schmit, B; Grady, M J; Miller, R S; Drew, M L; Stopak, S; Zscheile, B; Bennett, J; Sengl, J; Brady, Caroline; Ip, H S; Spackman, E; Killian, M L; Torchetti, M K; Sleeman, J M; Deliberto, T J

    2016-07-06

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  20. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  1. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    Science.gov (United States)

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis?

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2016-08-01

    Full Text Available Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1 has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.

  3. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    Science.gov (United States)

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  4. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  5. Development and evaluation of an avian influenza, neuraminidase subtype 1, indirect enzyme-linked immunosorbent assay for poultry using the differentiation of infected from vaccinated animals control strategy.

    Science.gov (United States)

    Liu, Y; Mundt, E; Mundt, A; Sylte, M; Suarez, D L; Swayne, D E; García, M

    2010-03-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed using baculovirus, purified, recombinant N1 protein from A/chicken/Indonesia/PA7/2003 (H5N1) virus. The N1-ELISA showed high selectivity for detection of N1 antibodies, with no cross-reactivity with other neuraminidase subtypes, and broad reactivity with sera to N1 subtype isolates from North American and Eurasian lineages. Sensitivity of the N1-ELISA to detect N1 antibodies in turkey sera, collected 3 wk after H1N1 vaccination, was comparable to detection of avian influenza antibodies by the commercial, indirect ELISAs ProFLOK AIV Plus ELISA Kit (Synbiotics, Kansas City, MO) and Avian Influenza Virus Antibody Test Kit (IDEXX, Westbrook, ME). However, 6 wk after vaccination, the Synbiotics ELISA kit performed better than the N1-ELISA and the IDEXX ELISA kit. An evaluation was made of the ability of the N1-ELISA to discriminate vaccinated chickens from subsequently challenged chickens. Two experiments were conducted, chickens were vaccinated with inactivated H5N2 and H5N9 viruses and challenged with highly pathogenic H5N1 virus, and chickens were vaccinated with recombinant poxvirus vaccine encoding H7 and challenged with highly pathogenic H7N1 virus. Serum samples were collected at 14 days postchallenge and tested by hemagglutination inhibition (HI), quantitative neuraminidase inhibition (NI), and N1-ELISA. At 2 days postchallenge, oropharyngeal swabs were collected for virus isolation (VI) to confirm infection. The N1-ELISA was in fair agreement with VI and HI results. Although the N1-ELISA showed a lower sensitivity than the NI assay, it was demonstrated that detection of N1 antibodies by ELISA was an effective and rapid assay to identify exposure to the challenge virus in vaccinated chickens. Therefore, N1-ELISA can facilitate a vaccination strategy with differentiation of infected from vaccinated animals using a neuraminidase heterologous approach.

  6. Microdroplet sandwich real-time rt-PCR for detection of pandemic and seasonal influenza subtypes.

    Directory of Open Access Journals (Sweden)

    Stephanie L Angione

    Full Text Available As demonstrated by the recent 2012/2013 flu epidemic, the continual emergence of new viral strains highlights the need for accurate medical diagnostics in multiple community settings. If rapid, robust, and sensitive diagnostics for influenza subtyping were available, it would help identify epidemics, facilitate appropriate antiviral usage, decrease inappropriate antibiotic usage, and eliminate the extra cost of unnecessary laboratory testing and treatment. Here, we describe a droplet sandwich platform that can detect influenza subtypes using real-time reverse-transcription polymerase chain reaction (rtRT-PCR. Using clinical samples collected during the 2010/11 season, we effectively differentiate between H1N1p (swine pandemic, H1N1s (seasonal, and H3N2 with an overall assay sensitivity was 96%, with 100% specificity for each subtype. Additionally, we demonstrate the ability to detect viral loads as low as 10(4 copies/mL, which is two orders of magnitude lower than viral loads in typical infected patients. This platform performs diagnostics in a miniaturized format without sacrificing any sensitivity, and can thus be easily developed into devices which are ideal for small clinics and pharmacies.

  7. The Role of Extracellular Histones in Influenza Virus Pathogenesis.

    Science.gov (United States)

    Ashar, Harshini K; Mueller, Nathan C; Rudd, Jennifer M; Snider, Timothy A; Achanta, Mallika; Prasanthi, Maram; Pulavendran, Sivasami; Thomas, Paul G; Ramachandran, Akhilesh; Malayer, Jerry R; Ritchey, Jerry W; Rajasekhar, Rachakatla; Chow, Vincent T K; Esmon, Charles T; Teluguakula, Narasaraju

    2018-01-01

    Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Influenza A (H10N7 Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7 in harbor seals (Phoca vitulina. This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals

  9. The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice

    Directory of Open Access Journals (Sweden)

    Reading Patrick C

    2008-08-01

    Full Text Available Abstract Background Neutrophils have been shown to play a role in host defence against highly virulent and mouse-adapted strains of influenza virus, however it is not clear if an effective neutrophil response is an important factor moderating disease severity during infection with other virus strains. In this study, we have examined the role of neutrophils during infection of mice with influenza virus strain HKx31, a virus strain of the H3N2 subtype and of moderate virulence for mice, to determine the role of neutrophils in the early phase of infection and in clearance of influenza virus from the respiratory tract during the later phase of infection. Methods The anti-Gr-1 monoclonal antibody (mAb RB6-8C5 was used to (i identify neutrophils in the upper (nasal tissues and lower (lung respiratory tract of uninfected and influenza virus-infected mice, and (ii deplete neutrophils prior to and during influenza virus infection of mice. Results Neutrophils were rapidly recruited to the upper and lower airways following influenza virus infection. We demonstrated that use of mAb RB6-8C5 to deplete C57BL/6 (B6 mice of neutrophils is complicated by the ability of this mAb to bind directly to virus-specific CD8+ T cells. Thus, we investigated the role of neutrophils in both the early and later phases of infection using CD8+ T cell-deficient B6.TAP-/- mice. Infection of B6.TAP-/- mice with a low dose of influenza virus did not induce clinical disease in control animals, however RB6-8C5 treatment led to profound weight loss, severe clinical disease and enhanced virus replication throughout the respiratory tract. Conclusion Neutrophils play a critical role in limiting influenza virus replication during the early and later phases of infection. Furthermore, a virus strain of moderate virulence can induce severe clinical disease in the absence of an effective neutrophil response.

  10. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus.

    Science.gov (United States)

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5N x viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines have been demonstrated to be efficacious and safe in poultry. Herein, we developed an NDV-based H5 vaccine (NDV-H5) that expresses a codon-optimized ectodomain of the hemagglutinin from the A/chicken/Iowa/04-20/2015 (H5N2) virus and evaluated its efficacy in chickens. Results showed that both live and inactivated NDV-H5 vaccines induced hemagglutinin inhibition antibody titers against the H5N2 virus in immunized chickens after prime and booster, and both NDV-H5 vaccines completely protected chickens from lethal challenge with the highly pathogenic H5N2 A/turkey/Minnesota/9845-4/2015 virus. No clinical signs and only minimal virus shedding was observed in both vaccinated groups. In contrast, all mock-vaccinated, H5N2-infected chickens shed virus and died within 5 days post challenge. Furthermore, one dose of the live NDV-H5 vaccine also provided protection of 90% chickens immunized by coarse spraying; after exposure to H5N2 challenge, sera from vaccinated surviving chickens neutralized both highly pathogenic H5N1 and H5N8 viruses. Taken together, our results suggest that the NDV-based H5 vaccine is able to protect chickens against intercontinental highly pathogenic H5N x viruses and can be used by mass application to protect the poultry industry.

  11. Sentinel model for influenza A virus monitoring in free-grazing ducks in Thailand.

    Science.gov (United States)

    Boonyapisitsopa, Supanat; Chaiyawong, Supassama; Nonthabenjawan, Nutthawan; Jairak, Waleemas; Prakairungnamthip, Duangduean; Bunpapong, Napawan; Amonsin, Alongkorn

    2016-01-01

    Influenza A virus (IAV) can cause influenza in birds and mammals. In Thailand, free-grazing ducks are known IAV reservoirs and can spread viruses through frequent movements in habitats they share with wild birds. In this study, the sentinel model for IAV monitoring was conducted over 4 months in two free-grazing duck flocks. IAV subtypes H4N6 (n=1) and H3N8 (n=5) were isolated from sentinel ducks at the ages of 13 and 15 weeks. Clinical signs of depression and ocular discharge were observed in the infected ducks. Phylogenetic analysis and genetic characterization of the isolated IAVs indicated that all Thai IAVs were clustered in the Eurasian lineage and pose low pathogenic avian influenza characteristics. Serological analysis found that antibodies against IAVs could be detected in the ducks since 9-weeks-old. In summary, our results indicate that the sentinel model can be used for IAV monitoring in free-grazing duck flocks. Since free-grazing ducks are potential reservoirs and transmitters of IAVs, routine IAV surveillance in free-grazing duck flocks can be beneficial for influenza prevention and control strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microsurgeon Hirudo medicinalis as a Natural Bioshuttle for Spontaneous Mass Vaccination against Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Sajjad Khani

    2011-09-01

    Full Text Available Introduction: Recent report on existence of a stem region of hemagglutinin has arisen new hopes for vaccination of influenza A as it consist of a conserve fusion peptide shared across several influenza subtypes and can be targeted by human immune system. Methods: Given that traditional vaccination based on live attenuated viruses often fails to surpass such viral infection, a great deal of attention has been devoted to develop a safe yet efficient system for vaccination influenza A. We believe that a natural bioshuttle can be recruited for spontaneous mass vaccination. Results: Thus, here, we hypothesize that a bioengineered transgenic Hirudo medicinalis can be considered as an alive bioshuttle for in-situ vaccination against influenza A virus. By introducing the designated gene(s encoding the target fragment (i.e., stem region of hemagglutinin, this microsurgeon can act as a rapid microproducer of viral proteins for in-house mass vaccination through imparting the necessary proteins such as those, naturally presented in leech's saliva. Conclusion: This peculiar bioshuttle can be easily exploited as a medical modality choice at home resulting in greater patient compliance.

  13. An epidemiological study of avian influenza A (H5) virus in nomadic ducks and their raising practices in northeastern Bangladesh, 2011-2012.

    Science.gov (United States)

    Sarkar, Shamim; Khan, Salah Uddin; Mikolon, Andrea; Rahman, Mohammad Ziaur; Abedin, Jaynal; Zeidner, Nord; Sturm-Ramirez, Katherine; Luby, Stephen P

    2017-05-01

    In Bangladesh, nomadic duck flocks are groups of domestic ducks reared for egg production that are moved to access feeding sites beyond their owners' village boundaries and are housed overnight in portable enclosures in scavenging areas. The objectives of this study were to measure the prevalence of influenza A virus RNA and H5-specific antibodies in nomadic ducks and to characterize nomadic duck raising practices in northeastern Bangladesh. We tested duck egg yolk specimens by competitive ELISA to detect antibodies against avian influenza A (H5) and environmental fecal samples by real-time reverse-transcription polymerase chain reaction (rRT-PCR) to detect influenza A virus RNA and H5 subtype. The median age of the ducks was 24 months (range: 8-36 months) and the median flock size was 300 ducks (range: 105-1100). Of 1860 egg yolk samples, 556 (30%, 95% confidence interval (CI): 28-32) were positive for antibodies against H5 and 58 flocks (94%) had at least one egg with H5-specific antibodies. Of 496 fecal samples, 121 (24%, 95% CI: 22-29) had detectable influenza A RNA. Thirty-three flocks (53%) had at least one fecal sample positive for influenza A RNA. Nomadic ducks in Bangladesh are commonly infected with avian influenza A (H5) virus and may serve as a bridging host for transmission of avian influenza A (H5) virus or other avian influenza A viruses subtypes between wild waterfowl, backyard poultry, and humans in Bangladesh. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  14. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    Energy Technology Data Exchange (ETDEWEB)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Oshita, Masatoshi; Ideno, Shoji [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Yunoki, Mikihiro [Osaka Research Laboratory, Benesis Corporation, Yodogawa-ku, Osaka 532-6505 (Japan); Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan); Kuhara, Motoki [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano 396-0002 (Japan); Yamamoto, Naomasa [Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611 (Japan); Okuno, Yoshinobu [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa 768-0061 (Japan); Ikuta, Kazuyoshi, E-mail: ikuta@biken.osaka-u.ac.jp [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871 (Japan)

    2009-09-11

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  15. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors

    International Nuclear Information System (INIS)

    Kubota-Koketsu, Ritsuko; Mizuta, Hiroyuki; Oshita, Masatoshi; Ideno, Shoji; Yunoki, Mikihiro; Kuhara, Motoki; Yamamoto, Naomasa; Okuno, Yoshinobu; Ikuta, Kazuyoshi

    2009-01-01

    Human monoclonal antibodies (HuMAbs) prepared from patients with viral infections could provide information on human epitopes important for the development of vaccines as well as potential therapeutic applications. Through the fusion of peripheral blood mononuclear cells from a total of five influenza-vaccinated volunteers, with newly developed murine-human chimera fusion partner cells, named SPYMEG, we obtained 10 hybridoma clones stably producing anti-influenza virus antibodies: one for influenza A H1N1, four for influenza A H3N2 and five for influenza B. Surprisingly, most of the HuMAbs showed broad reactivity within subtype and four (two for H3N2 and two for B) showed broad neutralizing ability. Importantly, epitope mapping revealed that the two broad neutralizing antibodies to H3N2 derived from different donors recognized the same epitope located underneath the receptor-binding site of the hemagglutinin globular region that is highly conserved among H3N2 strains.

  16. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection. IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  17. No serological evidence that harbour porpoises are additional hosts of influenza B viruses.

    Directory of Open Access Journals (Sweden)

    Rogier Bodewes

    Full Text Available Influenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses that are antigenetically distinct from influenza B viruses circulating among humans suggest that influenza B viruses have been introduced into this seal population by another, non-human, host. Harbour porpoises (Phocoena phocoena are sympatric with seals in these waters and are also occasionally in close contact with humans after stranding and subsequent rehabilitation. In addition, virus attachment studies demonstrated that influenza B viruses can bind to cells of the respiratory tract of these animals. Therefore, we hypothesized that harbour porpoises might be a reservoir of influenza B viruses. In the present study, an unique set of serum samples from 79 harbour porpoises, stranded alive on the Dutch coast between 2003 and 2013, was tested for the presence of antibodies against influenza B viruses by use of the hemagglutination inhibition test and for antibodies against influenza A viruses by use of a competitive influenza A nucleoprotein ELISA. No antibodies were detected against either virus, suggesting that influenza A and B virus infections of harbour porpoises in Dutch coastal waters are not common, which was supported by statistical analysis of the dataset.

  18. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    International Nuclear Information System (INIS)

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M.; Kapczynski, Darrell R.

    2017-01-01

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.

  19. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    Energy Technology Data Exchange (ETDEWEB)

    Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Tretyakova, Irina; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Zsak, Aniko; Chrzastek, Klaudia [USDA SEPRL, 934 College Station Rd, Athens, GA (United States); Tumpey, Terrence M. [Influenza Division, CDC,1600 Clifton Road N.E., Atlanta, GA (United States); Kapczynski, Darrell R. [USDA SEPRL, 934 College Station Rd, Athens, GA (United States)

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.

  20. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    International Nuclear Information System (INIS)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan

    2016-01-01

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  1. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2016-11-15

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  2. Control of Influenza and Poliomyelitis with Killed Virus Vaccines

    Science.gov (United States)

    Salk, Jonas; Salk, Darrell

    1977-01-01

    Discusses control of poliomyelitis and influenza by live and killed virus vaccines. Considered are the etiological agents, pathogenic mechanisms and epidemiology of each disease. Reviews recent scientific studies of the diseases. Recommends use of killed virus vaccines in controlling both diseases. (CS)

  3. Avian influenza A viruses: From zoonosis to pandemic

    NARCIS (Netherlands)

    M. Richard (Mathilde); M.T. de Graaf (Marieke); S. Herfst (Sander)

    2014-01-01

    textabstractZoonotic influenza A viruses originating from the animal reservoir pose a threat for humans, as they have the ability to trigger pandemics upon adaptation to and invasion of an immunologically naive population. Of particular concern are the H5N1 viruses that continue to circulate in

  4. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  5. Avian influenza a virus budding morphology: spherical or filamentous?

    Science.gov (United States)

    Most strains of influenza A virus (IAV) can produce long (µm length) filamentous virus particles as well as ~100 nm diameter spherical virions. The function of the filamentous particles is unclear but is hypothesized to facilitate transmission within or from the respiratory tract. In mammalian IAVs,...

  6. Transmission of highly pathogenic avian influenza H7 virus

    NARCIS (Netherlands)

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The

  7. Influenza virus and endothelial cells: A species specific relationship

    NARCIS (Netherlands)

    K.R. Short (Kirsty); E.J.B. Veldhuis Kroeze (Edwin); L.A. Reperant (Leslie); M. Richard (Mathilde); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target

  8. A cross-sectional serological survey of the Dutch commercial poultry population for the presence of Low Pathogenic Avian Influenza virus infection

    NARCIS (Netherlands)

    Wit, de J.J.; Koch, G.; Fabri, T.H.F.; Elbers, A.R.W.

    2004-01-01

    After the discovery of poultry infected with highly pathogenic avian influenza (HPAI) virus of subtype H7N7 in the central area of the Netherlands on 28 February 2003, the hypothesis was put forward that an outbreak of the low pathogenic (LP) variant of H7N7 had preceded, unnoticed, the occurrence

  9. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the Guinea pig model

    NARCIS (Netherlands)

    J.D. Gabbard (Jon); D. Dlugolenski (Daniel); D.A.J. van Riel (Debby); N. Marshall (Nicolle); S.E. Galloway (Summer); E.W. Howerth (Elizabeth); P.J. Campbell (Patricia); C. Jones (Catherine); S. Johnson (Scott); L. Byrd-Leotis (Lauren); L. Steinhauer (Laura); T. Kuiken (Thijs); S.M. Tompkins (S. Mark); R.A. Tripp (Ralph); A.C. Lowen (Anice); J. Steel (John)

    2014-01-01

    textabstractThe zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or

  10. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J.; Bestebroer, Theo M.; Vuong, Oanh; Scheuer, Rachel D.; Jeugd, van der Henk P.; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; Brand, van den Judith M.A.; Begeman, Lineke; Vliet, van der Stefan; Müskens, Gerhard J.D.M.; Majoor, Frank A.; Koopmans, Marion P.G.; Kuiken, Thijs; Fouchier, Ron A.M.

    2018-01-01

    Introduction: Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in southeast Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  11. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    NARCIS (Netherlands)

    Poen, Marjolein J; Bestebroer, Theo M; Vuong, Oanh; Scheuer, Rachel D; van der Jeugd, Henk P; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; van den Brand, Judith M A; Begeman, Lineke; van der Vliet, Stefan; Müskens, Gerhard J D M; Majoor, Frank A; Koopmans, Marion P G; Kuiken, Thijs; Fouchier, Ron A M

    IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild

  12. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine.

    Science.gov (United States)

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo; Montoya, María

    2015-11-01

    Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we

  13. Influenza and other respiratory viruses in three Central American countries

    Science.gov (United States)

    Laguna‐Torres, Victor A.; Sánchez‐Largaespada, José F.; Lorenzana, Ivette; Forshey, Brett; Aguilar, Patricia; Jimenez, Mirna; Parrales, Eduardo; Rodriguez, Francisco; García, Josefina; Jimenez, Ileana; Rivera, Maribel; Perez, Juan; Sovero, Merly; Rios, Jane; Gamero, María E.; Halsey, Eric S.; Kochel, Tadeusz J.

    2010-01-01

    Please cite this paper as: Laguna‐Torres et al. (2011) Influenza and other respiratory viruses in three Central American countries. Influenza and Other Respiratory Viruses 5(2), 123–134. Background  Despite the disease burden imposed by respiratory diseases on children in Central America, there is a paucity of data describing the etiologic agents of the disease. Aims  To analyze viral etiologic agents associated with influenza‐like illness (ILI) in participants reporting to one outpatient health center, one pediatric hospital, and three general hospitals in El Salvador, Honduras, and Nicaragua Material & Methods  Between August 2006 and April 2009, pharyngeal swabs were collected from outpatients and inpatients. Patient specimens were inoculated onto cultured cell monolayers, and viral antigens were detected by indirect and direct immunofluorescence staining. Results  A total of 1,756 patients were enrolled, of whom 1,195 (68.3%) were under the age of 5; and 183 (10.4%) required hospitalization. One or more viral agents were identified in 434 (24.7%) cases, of which 17 (3.9%) were dual infections. The most common viruses isolated were influenza A virus (130; 7.4% of cases), respiratory syncytial virus (122; 6.9%), adenoviruses (63; 3.6%), parainfluenza viruses (57; 3.2%), influenza B virus (47; 2.7% of cases), and herpes simplex virus 1 (22; 1.3%). In addition, human metapneumovirus and enteroviruses (coxsackie and echovirus) were isolated from patient specimens. Discussion  When compared to the rest of the population, viruses were isolated from a significantly higher percentage of patients age 5 or younger. The prevalence of influenza A virus or influenza B virus infections was similar between the younger and older age groups. RSV was the most commonly detected pathogen in infants age 5 and younger and was significantly associated with pneumonia (p < 0.0001) and hospitalization (p < 0.0001). Conclusion  Genetic analysis of influenza

  14. Influenza virus neutralizing antibodies and IgG isotype profiles after immunization of mice with influenza A subunit vaccine using various adjuvants

    NARCIS (Netherlands)

    Benne, CA; Harmsen, M; vanderGraaff, W; Verheul, AFM; Snippe, H; Kraaijeveld, CA

    The influence of various adjuvants on the development of influenza virus neutralizing antibodies and distribution of anti-influenza virus IgG isotypes after immunization of mice with influenza A (H3N2) subunit vaccine was investigated. Serum titres of influenza virus neutralizing antibodies and

  15. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    Science.gov (United States)

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  16. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs

    Directory of Open Access Journals (Sweden)

    Viuff Birgitte M

    2011-09-01

    Full Text Available Abstract Background Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3 and swine/human (SA-alpha-2,6 influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA I, and II, and Sambucus Nigra (SNA. Furthermore, the predilection sites of swine influenza virus (SIV subtypes H1N1 and H1N2 as well as avian influenza virus (AIV subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods. Results SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0% at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas. Conclusions A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated

  17. Neuraminidase inhibitor R-125489 - A promising drug for treating influenza virus: Steered molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Binh Khanh [Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City (Viet Nam); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2011-07-08

    Highlights: {yields} We study binding affinity of R-125489 and its prodrug CS-8958 to neuraminidase of pathogenic influenza viruses by molecular dynamics simulations. {yields} It is shown that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. {yields} We predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus. {yields} The high correlation between theoretical and experimental data implies that SMD is a very promising tool for drug design. -- Abstract: Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson-Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.

  18. Neuraminidase inhibitor R-125489 - A promising drug for treating influenza virus: Steered molecular dynamics approach

    International Nuclear Information System (INIS)

    Mai, Binh Khanh; Li, Mai Suan

    2011-01-01

    Highlights: → We study binding affinity of R-125489 and its prodrug CS-8958 to neuraminidase of pathogenic influenza viruses by molecular dynamics simulations. → It is shown that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. → We predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus. → The high correlation between theoretical and experimental data implies that SMD is a very promising tool for drug design. -- Abstract: Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson-Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.

  19. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-03-01

    Full Text Available Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 700 backyard chickens from villages around the Caspian Sea, Northern Iran, using the hemagglutination-inhibition (HI test. The studied backyard chickens had not been previously vaccinated and showed no clinical signs of disease. The mean antibody titers found were 6.8, 7.5, 5.9, 7.2, 5.7, 6.4, 6.2 and the seroprevalence was 76.2%, 79.5%, 68.18%, 78.27%, 65%, 72.31% and 71.4% as found in seven villages. Overall HI titer and seroprevalence against H9N2 were 6.52 and 72.98%, respectively.

  20. Divergent genetic evolution of hemagglutinin in influenza A H1N1 and A H1N2 subtypes isolated in the south-France since the winter of 2001-2002.

    Science.gov (United States)

    Al Faress, Shaker; Cartet, Gaëlle; Ferraris, Olivier; Norder, Helene; Valette, Martine; Lina, Bruno

    2005-07-01

    Influenza A viruses are divided into subtypes based on their hemagglutinin (H1 to H15) and neuraminidase (N1 to N9) glycoproteins. Of these, three A subtypes H1N1, H3N2 and H1N2 circulate in the human population. Influenza A viruses display a high antigenic variability called "antigenic drift" which allows the virus to escape antibody neutralization. Evaluate the mutations apparition that might predict a divergent antigenic evolution of hemagglutinin in influenza A H1N1 and A H1N2 viruses. During the three winters of 2001-2002 to 2003-2004, 58 A H1N1 and 23 A H1N2 subtypes have been isolated from patients with influenza-like illness in the south of France. The HA1 region was analyzed by RT-PCR and subsequently sequenced to compare the HA1 genetic evolution of influenza A H1N1 and A H1N2 subtypes. Our results showed that 28 amino acid substitutions have accumulated in the HA1 region since the circulation of A/New Caledonia/20/99-like viruses in France. Of these, fifteen were located in four antigenic sites (B, C, D and E). Six of them were observed only in the A H1N2 isolates, six only in the A H1N1 isolates and three in both subtypes. Furthermore, nine of twenty two A H1N2 isolates from the winter of 2002-2003 shared a T90A amino acid change which has not been observed in any A H1N1 isolate; resulting in the introduction of a new glycosylation site close to the antigenic site E. This might mask some antigenic E determinants and therefore, modify the A H1N2 antigenicity. The divergent genetic evolution of hemagglutinin may ultimately lead to a significant different antigenicity between A H1N1 and A H1N2 subtypes that would require the introduction of a new subtype in the vaccine batches.

  1. Chiropteran influenza viruses: flu from bats or a relic from the past?

    Science.gov (United States)

    Brunotte, Linda; Beer, Martin; Horie, Masayuki; Schwemmle, Martin

    2016-02-01

    The identification of influenza A-like genomic sequences in bats suggests the existence of distinct lineages of chiropteran influenza viruses in South and Central America. These viruses share similarities with conventional influenza A viruses but lack the canonical receptor-binding property and neuraminidase function. The inability to isolate infectious bat influenza viruses impeded further studies, however, reverse genetic analysis provided new insights into the molecular biology of these viruses. In this review, we highlight the recent developments in the field of the newly discovered bat-derived influenza A-like viruses. We also discuss whether bats are a neglected natural reservoir of influenza viruses, the risk associated with bat influenza viruses for humans and whether these viruses originate from the pool of avian IAV or vice versa. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Influenza-Like Illnesses in Senegal: Not Only Focus on Influenza Viruses

    Science.gov (United States)

    Dia, Ndongo; Diene Sarr, Fatoumata; Thiam, Diamilatou; Faye Sarr, Tening; Espié, Emmanuelle; OmarBa, Ibrahim; Coly, Malang; Niang, Mbayame; Richard, Vincent

    2014-01-01

    Influenza surveillance in African countries was initially restricted to the identification of circulating strains. In Senegal, the network has recently been enhanced (i) to include epidemiological data from Dakar and other regions and (ii) to extend virological surveillance to other respiratory viruses. Epidemiological data from the sentinel sites is transmitted daily by mobile phone. The data include those for other febrile syndromes similar to influenza-like illnesses (ILI), corresponding to integrated approach. Also, clinical samples are randomly selected and analyzed for influenza and other respiratory viruses. There were 101,640 declared visits to the 11 sentinel sites between week 11-2012 and week 35-2013; 22% of the visits were for fever syndromes and 23% of the cases of fever syndrome were ILI. Influenza viruses were the second most frequent cause of ILI (20%), after adenoviruses (21%) and before rhinoviruses (18%) and enteroviruses (15%). Co-circulation and co-infection were frequent and were responsible for ILI peaks. The first months of implementation of the enhanced surveillance system confirmed that viruses other the influenza make large contributions to influenza-like illnesses. It is therefore important to consider these etiologies in the development of strategies to reduce respiratory infections. More informative tools and research studies are required to assess the burden of respiratory infections in developing countries. PMID:24675982

  3. Avian Influenza Virus A (H5N1), Detected through Routine Surveillance, in Child, Bangladesh

    Science.gov (United States)

    Alamgir, A.S.M.; Sultana, Rebecca; Islam, M. Saiful; Rahman, Mustafizur; Fry, Alicia M.; Shu, Bo; Lindstrom, Stephen; Nahar, Kamrun; Goswami, Doli; Haider, M. Sabbir; Nahar, Sharifun; Butler, Ebonee; Hancock, Kathy; Donis, Ruben O.; Davis, Charles T.; Zaman, Rashid Uz; Luby, Stephen P.; Uyeki, Timothy M.; Rahman, Mahmudur

    2009-01-01

    We identified avian influenza virus A (H5N1) infection in a child in Bangladesh in 2008 by routine influenza surveillance. The virus was of the same clade and phylogenetic subgroup as that circulating among poultry during the period. This case illustrates the value of routine surveillance for detection of novel influenza virus. PMID:19751601

  4. Frequent presence of subtype A virus in Epstein-Barr virus-associated malignancies

    NARCIS (Netherlands)

    Peh, SC; Kim, LH; Poppema, S

    2002-01-01

    Aims: Epstein-Barr virus (EBV) is associated with many human malignancies. It is implicated in a pathogenetic role in some of these tumours. Two subtypes, type A and B have been identified on the basis of DNA sequence divergence in the nuclear protein genes (EBNA) 2, 3, 4 and 6. They differ in their

  5. Lessons from the Largest Epidemic of Avian Influenza Viruses in Taiwan, 2015.

    Science.gov (United States)

    Chang, Ching-Fen; King, Chwan-Chuen; Wan, Cho-Hua; Chang, Yun-Cheng; Chan, Ta-Chien; David Lee, Chang-Chun; Chou, Po-Hao Borris; Li, Zheng-Rong Tiger; Li, Yao-Tsun; Tseng, Tzu-Jung; Lee, Pei-Fen; Chang, Chuan-Hsiung

    2016-05-01

    The largest epidemic of avian influenza (AI) in history attacked poultry and wild birds throughout Taiwan starting January 6, 2015. This study analyzed surveillance results, epidemiologic characteristics, and viral sequences by using government-released information, with the intention to provide recommendations to minimize future pandemic influenza. The H5 clade 2.3.4.4 highly pathogenic AI viruses (HPAIVs) had not been detected in Taiwan before 2015. During this epidemic, four types of etiologic agents were identified: the three novel subtypes H5N2, H5N8, and H5N3 clade 2.3.4.4 HPAIVs and one endemic chicken H5N2 subtype (Mexican-like lineage) of low pathogenic AI viruses. Cocirculation of mixed subtypes also occurred, with H5N2 clade 2.3.4.4 HPAIVs accompanied by the H5N8 and H5N3 subtypes or old H5N2 viruses in the same farm. More than 90% of domestic geese died from this AI epidemic; geese were affected the most at the early outbreaks. The epidemic peaked in mid-January for all three novel H5 subtypes. Spatial epidemiology found that most affected areas were located in southwestern coastal areas. In terrestrial poultry (mostly chickens), different geographic distributions of AI virus subtypes were detected, with hot spots of H5N2 clade 2.3.4.4 vs. past-endemic old H5N2 viruses in Changhwa (P = 0.03) and Yunlin (P = 0.007) counties, respectively, of central Taiwan. Phylogenetic and sequence analyses of all the early 10 Taiwan H5 clade 2.3.4.4 isolates covering the three subtypes showed that they were very different from the HA of the past local H5 viruses from domestic ducks (75%-80%) and chickens (70%-75%). However, they had the highest sequence identity percentages (99.53%-100%), with the HA of A/crane/Kagoshima/KU13/2014(H5N8) isolated on December 7, 2014, in Japan being higher than those of recent American and Korean H5 HPAIVs [A/Northern pintail/Washington/40964/2014 (H5N2) and A/gyrfalcon/Washington/41088-6/2014 (H5N8): 99.02%-99.54% and A/Baikal teal

  6. Evidence of cross-reactive immunity to 2009 pandemic influenza A virus in workers seropositive to swine H1N1 influenza viruses circulating in Italy.

    Directory of Open Access Journals (Sweden)

    Maria A De Marco

    Full Text Available BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs and 379 control subjects (Cs, not exposed to pig herds, were tested by haemagglutination inhibition (HI assay against selected SIVs belonging to H1N1 (swH1N1, H1N2 (swH1N2 and H3N2 (swH3N2 subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes. Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs and after (n. 39 SWs; n. 145 Cs the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively. Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively. No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4% and swH3N2 (51.2 vs. 55.4% viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001 whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed

  7. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibin [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen, Aizhong [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Miao, Yi [Shanghai Xuhui Central Hospital, Shanghai 200031 (China); Xia, Shengli [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Ling, Zhiyang; Xu, Ke; Wang, Tongyan [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shu, Yuelong [Chinese Center for Disease Control and Prevention, Beijing 102206 (China); Ma, Xiaowei [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Xu, Bianli; Zhang, Jin [Center for Disease Control and Prevention of Henan Province, Zhengzhou 450016 (China); Lin, Xiaojun, E-mail: linxiaojun@hualan.com [Hualan Biological Bacterin Company, Xinxiang 453003 (China); Bian, Chao, E-mail: cbian@sibs.ac.cn [Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Sun, Bing, E-mail: bsun@sibs.ac.cn [Molecular Virus Unit, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Key Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2013-01-20

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  8. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    International Nuclear Information System (INIS)

    Hu, Weibin; Chen, Aizhong; Miao, Yi; Xia, Shengli; Ling, Zhiyang; Xu, Ke; Wang, Tongyan; Xu, Ying; Cui, Jun; Wu, Hongqiang; Hu, Guiyu; Tian, Lin; Wang, Lingling; Shu, Yuelong; Ma, Xiaowei; Xu, Bianli; Zhang, Jin; Lin, Xiaojun; Bian, Chao; Sun, Bing

    2013-01-01

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarily targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.

  9. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  10. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    Science.gov (United States)

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  11. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    Science.gov (United States)

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed......Serum amyloid P component (SAP) binds in vitro Ca(2+)-dependently to several ligands including oligosaccharides with terminal mannose and galactose. We have earlier reported that SAP binds to human influenza A virus strains, inhibiting hemagglutinin (HA) activity and virus infectivity in vitro...... that SAP bound to HA trimers, monomers and HA1 and HA2 subunits of influenza A virus. Binding studies indicated that galactose, mannose and fucose moieties contributed to the SAP reacting site(s). Intranasal administration of human SAP to mice induced no demonstrable toxic reactions, and circulating...

  13. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model

    Science.gov (United States)

    Zanin, Mark; Koçer, Zeynep A.; Poulson, Rebecca L.; Gabbard, Jon D.; Howerth, Elizabeth W.; Jones, Cheryl A.; Friedman, Kimberly; Seiler, Jon; Danner, Angela; Kercher, Lisa; McBride, Ryan; Paulson, James C.; Wentworth, David E.; Krauss, Scott; Tompkins, Stephen M.; Stallknecht, David E.

    2016-01-01

    ABSTRACT H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. IMPORTANCE Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild

  14. Animal Models for Influenza Viruses: Implications for Universal Vaccine Development

    Directory of Open Access Journals (Sweden)

    Irina Margine

    2014-10-01

    Full Text Available Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop