WorldWideScience

Sample records for substrate silicon microstrip

  1. Aleph silicon microstrip vertex detector

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This microstrip vertex locator was located at the heart of the ALEPH experiment, one of the four experiments at the Large Electron-Positron (LEP) collider. In the experiments at CERN's LEP, which ran from 1989 to 2000, modern silicon microvertex detectors, such as those used at ALEPH, monitored the production of short-lived particles close to the beam pipe.

  2. Investigation of design parameters and choice of substrate resistivity and crystal orientation for the CMS silicon microstrip detector

    CERN Document Server

    Braibant, S

    2000-01-01

    The electrical characteristics ( interstrip and backplane capacitance, leakage current, depletion and breakdown voltage) of silicon microstrip detectors were measured for strip pitches between 60 um and 240 um and various strip implant and metal widths on multi-geometry devices. Both AC and DC coupled devices wereinvestigated. Measurements on detectors were performed before and after irradiation with 24 GeV/c protons up to a fluence of 4.1x10E14 cm-2. We found that the total strip capacitance can be parametrized as a linear function of the ratio of the implant width over the read-out pitch only. We found a significant increase in the interstrip capacitance after radiation on detectors with standard <111> crystal orientation but not on sensors with <100> crystal orientation. We analyzed the measured depletion voltages as a function of the detector geometrical parameters ( read-out pitch, strip width and substrate thickness) found in the literature and we found a linear dependence in...

  3. A silicon microstrip gas chamber

    Energy Technology Data Exchange (ETDEWEB)

    Van der Marel, J. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Van den Bogaard, A. (Delft Inst. of Microelectronics and Submicrotechnology, Delft Univ. of Tech. (Netherlands)); Van Eijk, C.W.E. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Hollander, R.W. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Okx, W.J.C. (Radiation Technology Group, Faculty of Applied Physics, Delft Univ. of Tech. (Netherlands)); Sarro, P.M. (Delft Inst. of Microelectronics and Submicrotechnology, Delft Univ. of Tech. (Netherlands))

    1994-09-01

    We are manufacturing microstrip gas chambers (MSGC) on silicon with an insulating SiO[sub 2] layer. To study the effect of the sheet resistance of the SiO[sub 2] on the operation of the detector several processes to modify the SiO[sub 2] layer have been investigated: ion implantation, boron and phosphorus diffusion, phosphosilicate glass evaporation and polycrystalline silicon deposition. The dependence of the gas gain on the potentials of the different electrodes and the long term stability have been studied. ((orig.))

  4. Processing of microstrip detectors on Czochralski grown high resistivity silicon substrates

    CERN Document Server

    Härkönen, J; Tuovinen, E; Mehtälä, P; Lassila-Perini, K M; Ovchinnikov, V; Heikkilä, P; Ylikoski, M; Palmu, L; Kallijärvi, S; Nikkila, H; Anttila, O; Niinikoski, T O; Eremin, V; Ivanov, A; Verbitskaya, E

    2003-01-01

    We have processed large-area strip sensors on silicon wafers grown by the magnetic Czochralski (MCZ) method. The n-type MCZ silicon wafers manufactured by Okmetic Oyj have nominal resistivity of 900 Omega cm and oxygen concentration of less than 10 ppma. The Photoconductive Decay (PCD) measurements, current-voltage measurements and capacitance-voltage measurements were made to characterise the samples. The leakage current of 3 muA at 900 V bias voltage was measured on the 32.5 cm**2 detector. Detector depletion took place at about 420 V. According to PCD measurements, process induced contamination was effectively bound and neutralised by the oxygen present in Czochralski silicon. During the sample processing, the silicon resistivity increased in spite of the lack of specific donor- killing heat treatment.

  5. A comparison on radiation tolerance of microstrip detectors built on <1 0 0> and <1 1 1> silicon substrates after proton irradiation

    CERN Document Server

    Creanza, D; De Palma, M; Fiore, L; My, S; Radicci, V; Selvaggi, G; Tempesta, P

    2002-01-01

    A comparative study on silicon microstrip detectors of the same geometry built on low resistivity and high resistivity substrates has been carried out. Leakage current, depletion voltage and interstrip capacitance have been measured before and after irradiation with 34 MeV protons at regular intervals during the beneficial annealing period. The samples were irradiated at four different fluences up to approx =2x10 sup 1 sup 4 n/cm sup 2. The measurements after irradiation show that leakage current does not depend on substrate resistivity and crystal orientation. Above type inversion also, the depletion voltage does not depend substantially on the initial resistivity. The interstrip capacitance is damaged both for and silicon substrates, even if in the first case the interstrip capacitance increase is lower, as expected from the known difference in charge trapping effects. The results of this work are compared with previous measurements performed on identical structures irradiated with neutrons.

  6. Integrated double-sided silicon microstrip detectors

    Directory of Open Access Journals (Sweden)

    Perevertailo V. L.

    2011-11-01

    Full Text Available The problems of design, technology and manufacturing double-sided silicon microstrip detectors using standard equipment production line in mass production of silicon integrated circuits are considered. The design of prototype high-energy particles detector for experiment ALICE (CERN is presented. The parameters of fabricated detectors are comparable with those of similar foreign detectors, but they are distinguished by lesser cost.

  7. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  8. Charge collection efficiency of standard and oxygenated silicon microstrip detectors

    CERN Document Server

    Stavitski, I; Bisello, D; Bacchetta, N; Candelori, A; Kaminski, A; Wyss, J

    2002-01-01

    Two silicon microstrip detectors, one fabricated from a standard and the second from a highly oxygenated substrate, were non-uniformly irradiated by 24 GeV protons to fluences ranging between 2.3 and 6.3 * 10/sup 14/ cm/sup -2/. Charge collection efficiency measurements, performed by pulsing the detectors with a 1060 mu m wavelength laser, show that the beneficial effect of the oxygenation remains, although reduced with respect to that observed by C-V measurements on diodes fabricated with the detectors. (10 refs).

  9. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Chalupkova, I; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector (ID) of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules with a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each side of the barrel). The SCT silicon microstrip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICs ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational ever since. Calibration data has been taken regularly and analysed to determine the noise performance of the system. ...

  10. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Johansson, Per; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibers. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analyzed to determine the noise performance of the ...

  11. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    NAGAI, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. Data is transferred to the off-detector readout electronics via optical fibres. The completed SCT has been installed inside the ATLAS experimental cavern since 2007 and has been operational since then. Calibration data has been taken regularly and analysed to determine the noise performance of the ...

  12. Investigation of design parameters for radiation hard silicon microstrip detectors

    CERN Document Server

    Braibant, S; Feld, L; Frey, A; Fürtjes, A; Glessing, W D; Hammarström, R; Honma, A; Mannelli, M; Mariotti, C; Mättig, P; Migliore, E; Piperov, S; Runólfsson, O; Schmitt, B; Söldner-Rembold, S; Surrow, B

    2002-01-01

    In the context of the development of radiation hard silicon microstrip detectors for the CMS Tracker, we have investigated the dependence of interstrip and backplane capacitance as well as depletion and breakdown voltage on the design parameters and substrate characteristics of the devices. Measurements have been made for strip pitches between 60 and 240 mu m and various strip implants and metal widths, using multi-geometry devices, fabricated on wafers of either or crystal orientation, of resistivities between 1 and 6 k Omega cm and of thicknesses between 300 and 410 mu m. The effect of irradiation on properties of devices has been studied with 24 GeV/c protons up to a fluence of 4.3*10/sup 14/ cm /sup -2/. (15 refs).

  13. First test of cold edgeless silicon microstrip detectors

    Science.gov (United States)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M.; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Morelli, A.; Oljemark, F.; Palmieri, V. G.; Perea-Solano, B.; Tapprogge, S.

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam (≈1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130° K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  14. First test of cold edgeless silicon microstrip detectors

    CERN Document Server

    Avati, V; Borer, K; Bozzo, M; Capra, R; Casagrande, L; Eggert, Karsten; Heijne, Erik H M; Klauke, S; Li, Z; Mäki, T; Morelli, A; Oljemark, F; Palmieri, V G; Perea-Solano, B; Tapprogge, Stefan

    2004-01-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam ( approximately equals 1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130 degree K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  15. First test of cold edgeless silicon microstrip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M. E-mail: marco.bozzo@cern.ch; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Maeki, T.; Morelli, A.; Oljemark, F.; Palmieri, V.G.; Perea-Solano, B.; Tapprogge, S

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam ({approx}1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130 deg. K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  16. Radiation damage studies of silicon microstrip sensors

    CERN Document Server

    Nakayama, T; Hara, K; Shimojima, M; Ikegami, Y; Iwata, Y; Johansen, L G; Kobayashi, H; Kohriki, T; Kondo, T; Nakano, I; Ohsugi, T; Riedler, P; Roe, S; Stapnes, Steinar; Stugu, B; Takashima, R; Tanizaki, K; Terada, S; Unno, Y; Yamamoto, K; Yamamura, K

    2000-01-01

    Various types of large area silicon microstrip detectors were fabricated for the development of radiation-tolerant detectors that will operate in the LHC ATLAS SCT. The detectors were irradiated with 12-GeV protons at KEK to fluences of 1.7*10/sup 14/ and 4.2*10/sup 14 / protons/cm/sup 2/. Irradiated samples included n-on-n detectors with 4 k Omega cm bulk resistivity and p-on-n detectors with 1 k Omega cm and 4 k Omega cm bulk resistivities. Four patterns of p-stop structures are configured in the n-on-n detectors. Although Hamamatsu fabricated most of the detectors, p-on-n detectors by SINTEF are also included, as well as those fabricated in a modified process by Hamamatsu. The detector performances after irradiation that are compared are the probability of creation of faulty coupling capacitors, C-V characteristics, charge curves, and total leakage current. The p-on-n are similar to the n-on-n detectors in these performances, and will remain operational in the ATLAS radiation environment. (12 refs).

  17. Analysis of Rectangular Microstrip Antennas with Air Substrates ...

    African Journals Online (AJOL)

    This paper presents an analysis of rectangular microstrip antennas with air substrates. The effect of the substrate thickness on the bandwidth and the efficiency are examined. An additional thin layer supporting the dielectric material is added to the air substrate in order to make the antenna mechanically rigid and easy to ...

  18. Microstrip gas chambers on implanted substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Barthe, S. [Laboratoire PHASE (UPR 292 du CNRS), 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Bergtold, A.M. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Brom, J.M. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Cailleret, J. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Christophel, E. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Coffin, J. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Eberle, H. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Fang, R. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Fontaine, J.C. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Geist, W. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Kachelhoffer, T. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Levy, J.M. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Mack, V. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Schunck, J.P. [Laboratoire PHASE (UPR 292 du CNRS), 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France); Sigward, M.H. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires

    1995-12-11

    We have studied the performance of several Microstrip Gas Chamber (MSGC) prototypes made on standard Desag D263 boron implanted glass. The purpose of the implantation is to reduce the surface resistance. The long term stability of this implantation has been measured under applied bias voltage. Comparative tests have been carried out on prototypes made on implanted and unimplanted detectors under electron ({sup 90}Sr) and X-ray (8 keV) irradiation. The total dose was approximately 7 mC/cm. (orig.).

  19. RF Transmission Lines on Silicon Substrates

    Science.gov (United States)

    Ponchak, George E.

    1999-01-01

    A review of RF transmission lines on silicon substrates is presented. Through measurements and calculated results, it is shown that attenuation is dominated by conductor loss if silicon substrates with a resistivity greater than 2500 Ohm-cm are used. Si passivation layers affect the transmission line attenuation; however, measured results demonstrate that passivation layers do not necessarily increase attenuation. If standard, low resistivity Si wafers must be used, alternative transmission lines such as thin film microstrip and Co-Planar Waveguide (CPW) on thick polyimide layers must be used. Measured results presented here show that low loss per unit length is achievable with these transmission lines.

  20. Automated assembly in the construction of silicon microstrip detector modules

    CERN Document Server

    Eckert, S; Meinhardt, J; Runge, K; Benes, J

    2002-01-01

    The paper concerns silicon microstrip trackers for future experiments at the Large Hadron Collider (LHC). It describes a system for the automated assembly of the trackers. The aim is uniform quality and a mechanical precision of better than 5 mu m. It has been implemented based on an industrial gantry robot. The gantry is equipped with a complex vacuum system which dispenses glue, and places the mechanical parts and the ASICS and the four silicon sensors with the required precision. The modules are double sided and 18 cm * 6 cm in dimension. (5 refs).

  1. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices of the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of $4088$ silicon detector modules for a total of 6.3 million channels. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel ($4$ cylinders) and two end-cap systems (9 disks on each). The current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. The operation of the detector including an overview of the main issues encountered is reported. The main emphasis is be given to the tracking performance of the SCT and the data quality during the $>2$ years of data taking of proton-proton collision data at $7$ TeV (and short periods of heavy ion collisions). The SCT has been fully operational throughout a...

  2. ATLAS Silicon Microstrip Tracker Operation and Performance

    CERN Document Server

    Barone, G; The ATLAS collaboration

    2013-01-01

    The Semi-Conductor Tracker (SCT) is a silicon strip detector and one of the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The modules are mounted into two types of structures: one barrel (4 cylinders) and two end-cap systems (9 disks on each end of the barrel). In the talk the current results from the successful operation of the SCT Detector at the LHC and its status after three years of operation will be presented. We will report on the operation of the detector including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk damage due to non-ionising radiation. The main emphasis will be given to the tracking performance of the SCT and the data quality during the >2 ye...

  3. Strip defect recognition in electrical tests of silicon microstrip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Valentan, Manfred, E-mail: valentan@mpp.mpg.de

    2017-02-11

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the “typical value”. To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these “would-be” values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  4. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  5. The silicon microstrip sensors of the ATLAS semiconductor tracker

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  6. Lithographically patterned silicon nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, Nacera [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Piret, Gaeelle; Galopin, Elisabeth; Coffinier, Yannick [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Hadjersi, Toufik, E-mail: hadjersi@yahoo.com [Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Elkechai, Omar [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); and others

    2012-06-01

    The paper reports on controlled formation of silicon nanostructures patterns by the combination of optical lithography and metal-assisted chemical dissolution of crystalline silicon. First, a 20 nm-thick gold film was deposited onto hydrogen-terminated silicon substrate by thermal evaporation. Gold patterns (50 {mu}m Multiplication-Sign 50 {mu}m spaced by 20 {mu}m) were transferred onto the silicon wafer by means of photolithography. The etching process of crystalline silicon in HF/AgNO{sub 3} aqueous solution was studied as a function of the silicon resistivity, etching time and temperature. Controlled formation of silicon nanowire arrays in the unprotected areas was demonstrated for highly resistive silicon substrate, while silicon etching was observed on both gold protected and unprotected areas for moderately doped silicon. The resulting layers were characterized using scanning electron microscopy (SEM).

  7. Assembly and validation of the SSD silicon microstrip detector of ALICE

    NARCIS (Netherlands)

    de Haas, A.P.; Kuijer, P.G.; Nooren, G.J.L.; Oskamp, C.J.; Sokolov, A.N.; van den Brink, A.

    2006-01-01

    The Silicon Strip Detector (SSD) forms the two outermost layers of the Inner Tracking System (ITS) of ALICE. The SSD detector consists of 1698 double-sided silicon microstrip modules. The electrical connection between silicon sensor and front-end electronics is made via TAB-bonded

  8. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    CERN Document Server

    Casse, G; Lozano, M; Martí i García, S; Turner, P R

    2004-01-01

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n- type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and succesfully used to process miniatur...

  9. Use of silicon microstrip detectors for precise measurement of high momenta

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.A.; Beusch, W.; French, B.R.; Goldschmidt-Clermont, Y.; Jacholkowski, A.; Quercigh, E.; Redaelli, N.; Rossi, L.; Bloodworth, I.J.; Carney, J.N.

    1989-01-01

    The WA76 experiment performed at the facility at CERN required a high precision measurement of the forward produced particle whose momentum was close to 300 GeV/c. A telescope made of 12 silicon microstrip detectors has been built and operated for such a purpose.

  10. Production Testing and Quality Assurance of CMS Silicon Microstrip Tracker Readout Chips

    CERN Document Server

    Barrillon, Pierre; Hall, Geoffrey; Leaver, James; Noah, E; Raymond, M; Bisello, Dario; Candelori, Andrea; Kaminski, A; Stefanuti, L; Tessaro, Mario; French, Marcus

    2004-01-01

    The APV25 is the 128 channel CMOS chip developed for readout of the silicon microstrip tracker in the CMS experiment at the CERN Large Hadron Collider. The detector is now under construction and will be the largest silicon microstrip system ever built, with ~200m^2 of silicon sensors. Around 10^5 chips are required to instrument the system, which must operate for about 10 years in a high radiation environment with little or no possibility of microstrip system ever built, with ~200m^2 of silicon sensors. Around 10^5 chips are required to instrument the system, which must operate for about 10 years in a high radiation environment with little or no possibility of assurance of long term performance of the readout electronics, especially verification of radiation tolerance, is highly desirable. This has been achieved by means of automated probe testing of every chip on the silicon wafers from the foundry, followed by studies of sample die to evaluate in more detail properties of the chips which cannot easily be ex...

  11. Characteristics of a high T{sub c} superconducting rectangular microstrip patch on uniaxially anisotropic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Benkouda, Siham; Messai, Abderraouf [Electronics Department, University of Constantine 1, 25000 Constantine (Algeria); Amir, Mounir; Bedra, Sami [Electronics Department, University of Batna, 05000 Batna (Algeria); Fortaki, Tarek, E-mail: t_fortaki@yahoo.fr [Electronics Department, University of Batna, 05000 Batna (Algeria)

    2014-07-15

    Highlights: • We model a microstrip antenna with anisotropic substrate and superconductor patch. • The extended full-wave analysis is used to solve for the antenna characteristics. • The accuracy of the method is checked by comparing our results with published data. • Uniaxial anisotropy affects the resonant characteristics of the antenna. • Patch on uniaxial substrate is more advantageous than the one on isotropic medium. - Abstract: Resonant characteristics of a high T{sub c} superconducting rectangular microstrip patch printed on uniaxially anisotropic substrate are investigated using a full-wave spectral analysis in conjunction with the complex resistive boundary condition. The uniaxial medium shows anisotropy of an electric type as well as anisotropy of a magnetic type. Both permittivity and permeability tensors of the substrate are included in the formulation of the dyadic Green’s function of the problem. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate materials. Numerical data of the resonant frequency and bandwidth as a function of electric anisotropy ratio are presented. Variations of the resonant frequency and bandwidth with the magnetic anisotropy ratio are also given. Finally, results showing the influence of the temperature on the resonant frequency and quality factor of the high T{sub c} superconducting rectangular microstrip patch on a uniaxial substrate are also given.

  12. Spatial Resolution of Double-Sided Silicon Microstrip Detectors for the PAMELA Apparatus

    CERN Document Server

    Straulino, S; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Fedele, D; Grandi, M; Papini, P; Ricciarini, S B; Spillantini, P; Taccetti, F; Taddei, E; Vannuccini, E

    2006-01-01

    The PAMELA apparatus has been assembled and it is ready to be launched in a satellite mission to study mainly the antiparticle component of cosmic rays. In this paper the performances obtained for the silicon microstrip detectors used in the magnetic spectrometer are presented. This subdetector reconstructs the curvature of a charged particle in the magnetic field produced by a permanent magnet and consequently determines momentum and charge sign, thanks to a very good accuracy in the position measurements (better than 3 um in the bending coordinate). A complete simulation of the silicon microstrip detectors has been developed in order to investigate in great detail the sensor's characteristics. Simulated events have been then compared with data gathered from minimum ionizing particle (MIP) beams during the last years in order to tune free parameters of the simulation. Finally some either widely used or original position finding algorithms, designed for such kind of detectors, have been applied to events with...

  13. Method For Producing Mechanically Flexible Silicon Substrate

    KAUST Repository

    Hussain, Muhammad Mustafa

    2014-08-28

    A method for making a mechanically flexible silicon substrate is disclosed. In one embodiment, the method includes providing a silicon substrate. The method further includes forming a first etch stop layer in the silicon substrate and forming a second etch stop layer in the silicon substrate. The method also includes forming one or more trenches over the first etch stop layer and the second etch stop layer. The method further includes removing the silicon substrate between the first etch stop layer and the second etch stop layer.

  14. Study of LDPE/Al2O3 composite material as substrate for microstrip antenna

    Science.gov (United States)

    Sarmah, Debashis; Bhattacharyya, N. S.; Bhattacharyya, S.; Gogoi, J. P.

    2013-01-01

    Low density polyethylene (LDPE)/Alumina (Al2O3) composite systems have been studied as an alternate substrate for microstrip patch antennas (MPA). Morphological, thermal and microwave characterizations of the composites are carried out for different volume fractions of Al2O3 in the LDPE matrix. The size and the distribution of alumina particles are quite uniform in the composite. Enhancement of thermal and microwave properties of the composite over the parent polymer is observed. Simple rectangular MPA in X-band is fabricated on the composite material to verify its applicability as substrates for MPA. A return loss of ~ -26dB is observed at the design frequency.

  15. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  16. Effect of radiation-induced substrate defects on microstrip gas chamber gain behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A.; Brom, J.M.; Bergdolt, A.M.; Coffin, J.; Eberle, H.; Sigward, M.H. [Institute de Recherches Subatomiques, 67 - Strasbourg (France); Fontaine, J.C. [Universite de Haute Alsace, GRPHE, 61 rue Albert Camus, 68093 Mulhouse Cedex (France); Barthe, S.; Schunck, J.P. [Laboratoire PHASE (UPR 292 du CNRS), 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France)

    1998-08-01

    The aim of this work was to quantify the influence of radiation-induced substrate defects on microstrip gas chamber (MSGC) gain behaviour. The first part of this paper focuses on radiation effects on a typical MSGC substrate: Desag D263 glass. Defect generation was studied for Desag D263 with pure silica (Suprasil 1) as a reference. We studied the evolution of defect concentration with respect to accumulated doses up to 480 kGy. Annealing studies of defects in Desag D263 were also performed. In the second part, the radiation sensitivity of Desag D263 glass has been linked to the behaviour of the detector under irradiation. Comparative gain measurements were taken before and after substrate irradiation at 10 and 80 kGy the minimal dose received during LHC operation and the dose for which defect density is maximum (respectively). (orig.) 26 refs.

  17. A possible role for silicon microstrip detectors in nuclear medicine Compton imaging of positron emitters

    CERN Document Server

    Scannavini, M G; Royle, G J; Cullum, I; Raymond, M; Hall, G; Iles, G

    2002-01-01

    Collimation of gamma-rays based on Compton scatter could provide in principle high resolution and high sensitivity, thus becoming an advantageous method for the imaging of radioisotopes of clinical interest. A small laboratory prototype of a Compton camera is being constructed in order to initiate studies aimed at assessing the feasibility of Compton imaging of positron emitters. The design of the camera is based on the use of a silicon collimator consisting of a stack of double-sided, AC-coupled microstrip detectors (area 6x6 cm sup 2 , 500 mu m thickness, 128 channels/side). Two APV6 chips are employed for signal readout on opposite planes of each detector. This work presents the first results on the noise performance of the silicon strip detectors. Measurements of the electrical characteristics of the detector are also reported. On the basis of the measured noise, an angular resolution of approximately 5 deg. is predicted for the Compton collimator.

  18. Dielectric parameter estimation of novel magneto-dielectric substrate based microstrip antenna

    Science.gov (United States)

    Saini, Ashish; Kumar, P.; Ravelo, B.; Thakur, Atul; Thakur, Preeti

    2016-05-01

    The effective relative permittivity and effective relative permeability of magneto-dielectric materials when used as substrate for microstrip antenna shows interdependency. This dependency was analyzed through simulation and verified by synthesizing nano composite ferrite. The 40nm nano crystallite size particles were synthesized using a co- precipitation method. Matching values of complex permittivity (ɛ* = 4.2-0.1j) and complex permeability (μ* = 4.3-0.2j) at 1 GHz were obtained from the electromagnetic characterization. The microstrip antenna with coaxial feed was fabricated and the interdependence of relative permittivity and relative permeability was verified. An error of 7% in the drawn length was observed for ɛr and μr of the order of 4. The magneto-dielectric material with composition Mn0.5Zn0.3Co0.2Fe2O4+BaFe12O19 proposed in this paper definitely can be proposed as a substrate material for miniaturized antenna. The antenna with desired resonant frequency can be fabricated by calculating the effective medium parameters as discussed in the paper.

  19. Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates

    Directory of Open Access Journals (Sweden)

    S. Bedra

    2017-05-01

    Full Text Available In this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials.  Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.

  20. A radiographic imaging system based upon a 2-D silicon microstrip sensor

    CERN Document Server

    Papanestis, A; Corrin, E; Raymond, M; Hall, G; Triantis, F A; Manthos, N; Evagelou, I; Van den Stelt, P; Tarrant, T; Speller, R D; Royle, G F

    2000-01-01

    A high resolution, direct-digital detector system based upon a 2-D silicon microstrip sensor has been designed, built and is undergoing evaluation for applications in dentistry and mammography. The sensor parameters and image requirements were selected using Monte Carlo simulations. Sensors selected for evaluation have a strip pitch of 50mum on the p-side and 80mum on the n-side. Front-end electronics and data acquisition are based on the APV6 chip and were adapted from systems used at CERN for high-energy physics experiments. The APV6 chip is not self-triggering so data acquisition is done at a fixed trigger rate. This paper describes the mammographic evaluation of the double sided microstrip sensor. Raw data correction procedures were implemented to remove the effects of dead strips and non-uniform response. Standard test objects (TORMAX) were used to determine limiting spatial resolution and detectability. MTFs were determined using the edge response. The results indicate that the spatial resolution of the...

  1. The Silicon Microstrip Sensors of the ATLAS SemiConductor Tracker

    CERN Document Server

    Ahmad, A; Allport, P P; Alonso, J; Andricek, L; Apsimon, R J; Barr, A J; Bates, R L; Beck, G A; Bell, P J; Belymam, A; Benes, J; Berg, C M; Bernabeu, J; Bethke, S; Bingefors, N; Bizzell, J P; Bohm, J; Brenner, R; Brodbeck, T J; Bruckman De Renstrom, P; Buttar, C M; Campbell, D; Carpentieri, C; Carter, A A; Carter, J R; Charlton, D G; Casse, G-L; Chilingarov, A; Cindro, V; Ciocio, A; Civera, J V; Clark, A G; Colijn, A-P; Costa, M J; Dabrowski, W; Danielsen, K M; Dawson, I; Demirkoz, B; Dervan, P; Dolezal, Z; Dorholt, O; Duerdoth, I P; Dwuznik, M; Eckert, S; Ekelöf, T; Eklund, L; Escobar, C; Fasching, D; Feld, L; Ferguson, D P S; Ferrere, D; Fortin, R; Foster, J M; Fox, H; French, R; Fromant, B P; Fujita, K; Fuster, J; Gadomski, S; Gallop, B J; Garcia, C; Garcia-Navarro, J E; Gibson, M D; Gonzalez, S; Gonzalez-Sevilla, S; Goodrick, M J; Gornicki, E; Green, C; Greenall, A; Grigson, C; Grillo, A A; Grosse-Knetter, J; Haber, C; Handa, T; Hara, K; Harper, R S; Hartjes, F G; Hashizaki, T; Hauff, D; Hessey, N P; Hill, J C; Hollins, T I; Holt, S; Horazdovsky, T; Hornung, M; Hovland, K M; Hughes, G; Huse, T; Ikegami, Y; Iwata, Y; Jackson, J N; Jakobs, K; Jared, R C; Johansen, L G; Jones, R W L; Jones, T J; de Jong, P; Joseph, J; Jovanovic, P; Kaplon, J; Kato, Y; Ketterer, C; Kindervaag, I M; Kodys, P; Koffeman, E; Kohriki, T; Kohout, Z; Kondo, T; Koperny, S; van der Kraaij, E; Kral, V; Kramberger, G; Kudlaty, J; Lacasta, C; Limper, M; Linhart, V; Llosa, G; Lozano, M; Ludwig, I; Ludwig, J; Lutz, G; Macpherson, A; McMahon, S J; Macina, D; Magrath, C A; Malecki, P; Mandic, I; Marti-Garcia, S; Matsuo, T; Meinhardt, J; Mellado, B; Mercer, I J; Mikestikova, M; Mikuz, M; Minano, M; Mistry, J; Mitsou, V; Modesto, P; Mohn, B; Molloy, S D; Moorhead, G; Moraes, A; Morgan, D; Morone, M C; Morris, J; Moser, H-G; Moszczynski, A; Muijs, A J M; Nagai, K; Nakamura, Y; Nakano, I; Nicholson, R; Niinikoski, T; Nisius, R; Ohsugi, T; O'Shea, V; Oye, O K; Parzefall, U; Pater, J R; Pernegger, H; Phillips, P W; Posisil, S; Ratoff, P N; Reznicek, P; Richardson, J D; Richter, R H; Robinson, D; Roe, S; Ruggiero, G; Runge, K; Sadrozinski, H F W; Sandaker, H; Schieck, J; Seiden, A; Shinma, S; Siegrist, J; Sloan, T; Smith, N A; Snow, S W; Solar, M; Solberg, A; Sopko, B; Sospedra, L; Spieler, H; Stanecka, E; Stapnes, S; Stastny, J; Stelzer, F; Stradling, A; Stugu, B; Takashima, R; Tanaka, R; Taylor, G; Terada, S; Thompson, R J; Titov, M; Tomeda, Y; Tovey, D R; Turala, M; Turner, P R; Tyndel, M; Ullan, M; Unno, Y; Vickey, T; Vos, M; Wallny, R; Weilhammer, P; Wells, P S; Wilson, J A; Wolter, M; Wormald, M; Wu, S L; Yamashita, T; Zontar, D; Zsenei, A

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd supplied 92.2% of the 15,392 installed sensors, with the remainder supplied by CiS.

  2. Silicon microstrip detectors for digital mammography - evaluation and spatial resolution study

    CERN Document Server

    Mali, T; Mikuz, M

    2001-01-01

    Silicon microstrip detectors were used to build an experimental X-ray imaging setup. The detectors were used in an 'edge-on' geometry, with the photons hitting the detector from the side. Efficiencies up to 90% at 20 keV photon energy could be achieved. The system was tested using a standard mammographic phantom. Images of modeled microcalcifications with various diameters down to 200 mu m and images of modeled tumors were made. Spatial resolution of the system was studied on an X-ray test pattern with frequency of line-pairs between 1 and 10l p/mm. An appropriate scanning step combined with knowledge of the system's line spread function was used to deconvolve the measured image and increase the spatial resolution. In this way the effective pixel size was reduced as much as for a factor of approx 3.

  3. Silicon microstrip detectors and the measurement of lifetimes of charmed hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Masciocchi, Silvia [Max Planck Institute for Nuclear Physics, Heidelberg (Germany)

    1996-10-16

    WA89 is a fixed target experiment with a 340 GeV/c hyperon beam at the SPS at CERN. One of the main topics of its physics program is the study of the properties of charmed baryons. For the measurement of their lifetimes, silicon microstrip detectors are an essential tool to measure with the required resolution the production and the decay point of short living particles. The development and the test of a system with double sided counters and zero suppression readout has been presented. The device is now installed at the “next generation” hyperon beam experiment SELEX at Fermilab, downstream of the vertex area. The success of the project supports the possibility of including double sided detectors close to the vertex area to limit the amount of scattering material and improve pattern recognition.

  4. Beam splash effects on ATLAS silicon microstrip detectors evaluated using 1-w Nd YAG laser

    CERN Document Server

    Hara, K; Kohriki, T; Kuwano, T; Moorhead, G F; Terada, S; Unno, Y

    2005-01-01

    On an incident of accelerator beam loss, the tracking detector located close to the beam line is subjected to receive intensive radiation in a short period. We used a 1-W focused Nd: YAG laser and simulated the effects on the ATLAS microstrip detector. The laser corresponds to intensity of up to 1 multiplied by 109mips/pulse with a pulse width of about 10 ns. We observed breaks on Al strips on extreme conditions, depending on the laser intensity and bias voltage applied to the silicon sensor. The break can be interpreted as the oxide breakdown due to a large voltage locally created across the oxide by the intensive signal charges. The robustness of the Semiconductor Tracker (SCT) module including readout ASICs is also evaluated.

  5. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2017-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker. In order to minimise the amount of material in the detector, circuit boards with readout electronics will be glued on to the active area of the sensor. Several adhesives investigated to be used for the construction of detector modules were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high- radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By pointing the beam both inside the sensor and parallel to the sensor surface, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibility of silicon strip sensors to light contamination from fluorescent mate...

  6. Construction of the new silicon microstrips tracker for the Phase-II ATLAS detector

    CERN Document Server

    Liang, Zhijun; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of silicon microstrip sensors. This paper will focus on the latest research and development act...

  7. RF transmission lines on silicon substrates

    OpenAIRE

    Ponchak, George E.

    1999-01-01

    A review of RF transmission lines on silicon substrates is presented. Through measurements and calculated results, it is shown that attenuation is dominated by conductor loss if silicon substrates with a resistivity greater than 2500 Q-cm are used. Si passivation layers affect the transmission line attenuation; however, measured results demonstrate that passivation layers do not necessarily increase attenuation. If standard, low resistivity Si wafers must be used, alternative transmission lin...

  8. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    Science.gov (United States)

    Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  9. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  10. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2018-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker (ITk). In order to minimise the amount of material in the ITk, circuit boards with readout electronics will be glued onto the active area of the sensor. Several adhesives, investigated to be used for the construction of detector modules, were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high-radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By positioning the beam parallel to the sensor surfave and pointing it both inside the sensor and above the sensor surface inside the deposited glue, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibilit...

  11. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Lars Gimmestad

    2005-07-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  12. Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    CERN Document Server

    Barth, C; Bloch, I.; Bögelspacher, F.; de Boer, W.; Daniels, M.; Dierlamm, A.; Eber, R.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Erfle, J.; Feld, L.; Garutti, E.; Gregor, I. -M.; Guthoff, M.; Hartmann, F.; Hauser, M.; Husemann, U.; Jakobs, K.; Junkes, A.; Karpinski, W.; Klein, K.; Kuehn, S.; Lacker, H.; Mahboubi, K.; Müller, Th.; Mussgiller, A.; Nürnberg, A.; Parzefall, U.; Poehlsen, T.; Poley, L.; Preuten, M.; Rehnisch, L.; Sammet, J.; Schleper, P.; Schuwalow, S.; Sperlich, D.; Stanitzki, M.; Steinbrück, G.; Wlochal, M.

    2016-01-01

    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Phys...

  13. Boron imaging with a microstrip silicon detector for applications in BNCT

    Science.gov (United States)

    Mattera, A.; Basilico, F.; Bolognini, D.; Borasio, P.; Cappelletti, P.; Chiari, P.; Conti, V.; Frigerio, M.; Gelosa, S.; Giannini, G.; Hasan, S.; Mascagna, V.; Mauri, P.; Monti, A. F.; Mozzanica, A.; Ostinelli, A.; Prest, M.; Scazzi, S.; Vallazza, E.; Zanini, A.

    2009-06-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique exploiting the α particles produced after the irradiation of the isotope 10 of boron with thermal neutrons in the capture reaction B(n,α)710Li. It is used to treat tumours that for their features (radioresistance, extension, localization near vital organs) cannot be treated through conventional photon-beams radiotherapy. One of the main limitations of this technique is the lack of specificity (i.e. the ability of localizing in tumour cells, saving the healthy tissues) of the compounds used to carry the 10B isotope in the organs to be treated. This work, developed in the framework of the INFN PhoNeS project, describes the possibility of boron imaging performed exploiting the neutrons photoproduced by a linac (the Clinac 2100C/D of the S. Anna Hospital Radiotherapy Unit in Como, Italy) and detecting the α s with a non-depleted microstrip silicon detector: the result is a 1D scan of the boron concentration. Several boron doped samples have been analysed, from solutions of H3BO3 (reaching a minimum detectable amount of 25 ng of 10B) to biological samples of urine containing BPA and BSH (the two molecules currently used for the clinical trials in BNCT) in order to build kinetic curves (showing the absolute 10B concentration as a function of time). Further measurements are under way to test the imaging system with 10BPA-Fructose complex perfused human lung samples.

  14. The silicon tracking system of the CBM experiment at FAIR. Development of microstrip sensors and signal transmission lines for a low-mass, low-noise system

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Minni

    2014-01-29

    In this thesis, different physical and electrical aspects of silicon microstrip sensors and low-mass multi-line readout cables have been investigated. These silicon microstrip sensors and readout cables will be used in the Silicon Tracking System (STS) of the fixed-target heavy-ion Compressed Baryonic Matter (CBM) experiment which is under development at the upcoming Facility for Antiproton and ion Research (FAIR) in Darmstadt, Germany. The highly segmented low-mass tracking system is a central CBM detector system to resolve the high tracking densities of charged particles originating from beam-target interactions. Considering the low material budget requirement the double-sided silicon microstrip detectors have been used in several planar tracking stations. The readout electronics is planned to be installed at the periphery of the tracking stations along with the cooling system. Low-mass multi-line readout cables shall bridge the distance between the microstrip sensors and the readout electronics. The CBM running operational scenario suggests that some parts of the tracking stations are expected to be exposed to a total integrated particle fluence of the order of 1 x 10{sup 14} n{sub eq}/cm{sup 2}. After 1 x 10{sup 14} n{sub eq}/cm{sup 2} the damaged modules in the tracking stations will be replaced. Thus radiation hard sensor is an important requirement for the sensors. Moreover, to cope with the high reaction rates, free-streaming (triggerless) readout electronics with online event reconstruction must be used which require high signal-to-noise (SNR) ratio (i.e., high signal efficiency, low noise contributions). Therefore, reduction in noise is a major goal of the sensor and cable development. For better insight into the different aspects of the silicon microstrip sensors and multi-line readout cables, the simulation study has been performed using SYNOPSYS TCAD tools. 3D models of the silicon microstrip sensors and the readout cables were implemented which is

  15. Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate

    Directory of Open Access Journals (Sweden)

    M. R. Ahsan

    2014-01-01

    Full Text Available This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.

  16. Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Arshad, H; Mansor, M F

    2014-01-01

    This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.

  17. Development of a Test System for the Quality Assurance of Silicon Microstrip Detectors for the Inner Tracking System of the CMS Experiment

    CERN Document Server

    Axer, Markus

    2003-01-01

    The inner tracking system of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) which is being built at the European Laboratory for Particle Physics CERN (Geneva, Switzerland) will be equipped with two different technologies of silicon detectors. While the innermost tracker will be composed of silicon pixel detectors, silicon microstrip detectors are envisaged for the outer tracker architecture. The silicon microstrip tracker will house about 15,000 single detector modules each composed of a set of silicon sensors, the readout electronics (front end hybrid), and a support frame. It will provide a total active area of 198 m2 and ten million analogue channels read out at the collider frequency of 40 MHz. This large number of modules to be produced and integrated into the tracking system is an unprecedented challenge involving industrial companies and various research institutes from many different countries. This thesis deals with the physics of silicon sensors and the preparation of ...

  18. Boron imaging with a microstrip silicon detector for applications in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mattera, A. [Universita degli Studi dell' Insubria (Italy); INFN, sez. Milano Bicocca (Italy)], E-mail: andrea.mattera@gmail.com; Basilico, F. [CNR di Milano (Italy); Bolognini, D. [Universita degli Studi dell' Insubria (Italy); INFN, sez. Milano Bicocca (Italy); Borasio, P. [Azienda Universitaria Ospedaliera ' S. Luigi' Orbassano (Tonga) (Italy); Cappelletti, P. [Azienda Ospedaliera Sant' Anna di Como (Italy); Chiari, P. [Universita degli Studi di Pavia (Italy); Conti, V. [Universita degli Studi di Milano (Italy); Frigerio, M.; Gelosa, S. [Azienda Ospedaliera Sant' Anna di Como (Italy); Giannini, G. [INFN, sez. Trieste (Italy); Hasan, S. [Universita degli Studi dell' Insubria (Italy); INFN, sez. Milano Bicocca (Italy); Mascagna, V. [Universita degli Studi dell' Insubria (Italy); Universita degli Studi di Brescia (Italy); Mauri, P. [CNR di Milano (Italy); Monti, A.F. [Azienda Ospedaliera Sant' Anna di Como (Italy); Mozzanica, A. [Paul Scherrer Institut, Villigen (Switzerland); Ostinelli, A. [Azienda Ospedaliera Sant' Anna di Como (Italy); Prest, M. [Universita degli Studi dell' Insubria (Italy); INFN, sez. Milano Bicocca (Italy); Scazzi, S. [Universita degli Studi dell' Insubria (Italy); Vallazza, E. [INFN, sez. Trieste (Italy); Zanini, A. [INFN, sez. Torino (Italy)

    2009-06-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique exploiting the {alpha} particles produced after the irradiation of the isotope 10 of boron with thermal neutrons in the capture reaction {sup 10}B(n,{alpha}){sup 7}Li. It is used to treat tumours that for their features (radioresistance, extension, localization near vital organs) cannot be treated through conventional photon-beams radiotherapy. One of the main limitations of this technique is the lack of specificity (i.e. the ability of localizing in tumour cells, saving the healthy tissues) of the compounds used to carry the {sup 10}B isotope in the organs to be treated. This work, developed in the framework of the INFN PhoNeS project, describes the possibility of boron imaging performed exploiting the neutrons photoproduced by a linac (the Clinac 2100C/D of the S. Anna Hospital Radiotherapy Unit in Como, Italy) and detecting the {alpha} s with a non-depleted microstrip silicon detector: the result is a 1D scan of the boron concentration. Several boron doped samples have been analysed, from solutions of H{sub 3}BO{sub 3} (reaching a minimum detectable amount of 25 ng of {sup 10}B) to biological samples of urine containing BPA and BSH (the two molecules currently used for the clinical trials in BNCT) in order to build kinetic curves (showing the absolute {sup 10}B concentration as a function of time). Further measurements are under way to test the imaging system with {sup 10}BPA-Fructose complex perfused human lung samples.

  19. Hybrid stretchable circuits on silicone substrate

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk [Nanoscience Centre, University of Cambridge, Cambridge CB01FF (United Kingdom); Liu, Q.; Suo, Z. [School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States); Lacour, S. P., E-mail: stephanie.lacour@epfl.ch [Centre for Neuroprosthetics and Laboratory for Soft Bioelectronics Interfaces, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 (Switzerland)

    2014-04-14

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  20. Multifunctional epitaxial systems on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968 (United States); Prater, John Thomas [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-09-15

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO{sub 3}, SrTiO{sub 3} (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin

  1. Towards Gotthard-II: development of a silicon microstrip detector for the European X-ray Free-Electron Laser

    Science.gov (United States)

    Zhang, J.; Andrä, M.; Barten, R.; Bergamaschi, A.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Redford, S.; Ruat, M.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Turcato, M.; Vetter, S.

    2018-01-01

    Gotthard-II is a 1-D microstrip detector specifically developed for the European X-ray Free-Electron Laser. It will not only be used in energy dispersive experiments but also as a beam diagnostic tool with additional logic to generate veto signals for the other 2-D detectors. Gotthard-II makes use of a silicon microstrip sensor with a pitch of either 50 μm or 25 μm and with 1280 or 2560 channels wire-bonded to adaptive gain switching readout chips. Built-in analog-to-digital converters and digital memories will be implemented in the readout chip for a continuous conversion and storage of frames for all bunches in the bunch train. The performance of analogue front-end prototypes of Gotthard has been investigated in this work. The results in terms of noise, conversion gain, dynamic range, obtained by means of infrared laser and X-rays, will be shown. In particular, the effects of the strip-to-strip coupling are studied in detail and it is found that the reduction of the coupling effects is one of the key factors for the development of the analogue front-end of Gotthard-II.

  2. Composite single crystal silicon scan mirror substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  3. Resonance of High Tc Superconducting Microstrip Patch in a Substrate-Superstrate Configuration

    Directory of Open Access Journals (Sweden)

    S. Benkouda

    2014-02-01

    Full Text Available The effect of a protecting dielectric superstrate on the resonance of a high Tc superconducting microstrip patch is investigated. The analysis approach is based on the spectral-domain method of moments in conjunction with the complex resistive boundary condition. The complex surface impedance of the superconducting thin film is determined using London’s equation and the two-fluid model of Gorter and Casimir. Numerical results show that the resonant frequency of the high Tc superconducting rectangular patch decreases monotonically with increasing superstrate thickness, the decrease being greater for high permittivity loading.

  4. Polycrystalline silicon thin-film solar cells on various substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjing [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Xu, Ying [Beijing Solar Energy Research Institute, Beijing 100083 (China); Shen, Hui [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510070 (China)

    2006-03-15

    Thin-film polycrystalline silicon solar cells have been fabricated on various substrates, such as inactive P{sup ++} mono-crystalline silicon substrates, p{sup ++} mono-Si substrates covered by thermally oxidized SiO{sub 2} and ceramic substrates by means of a rapid thermal chemical vapour deposition (RTCVD) technique. Zone melting recrystallization (ZMR) was applied in the process in order to enlarge the grain size of the deposited silicon thin film. The deposition conditions were studied. The scanning rate of the ZMR process was investigated. The best conversion efficiency of 15.12% (AM1.5G, 24.5 C) has been achieved on inactive P{sup ++} mono-crystalline silicon substrates without cell surface texture and 10.21% (AM1.5, 24.5 C) on p{sup ++} c-Si substrates covered by thermally oxidized SiO{sub 2} with the cell area of 1.07 cm{sup 2}. The polycrystalline silicon thin film was also deposited on Al{sub 2}O{sub 3} substrates by a RTCVD process. A simple ZMR process was used without any intermediate layer and cap layers. The maximum grain size of the silicon thin film was about one millimeter in width and a few millimeters in length after ZMR. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. The front-end amplifier for the silicon microstrip sensors of the PANDA MVD

    Energy Technology Data Exchange (ETDEWEB)

    Di Pietro, Valentino; Brinkmann, Kai-Thomas; Riccardi, Alberto [II. Physikalisches Institut, JLU Giessen (Germany); Rivetti, Angelo; Rolo, Manuel [INFN Sezione di Torino (Italy)

    2015-07-01

    The most common readout systems designed for the nuclear physics detectors are based on amplitude measurements. The information that needs to be preserved is the charge delivered by a particle hitting the sensor. The electronic chain employed in these cases is made from two main building blocks: front-end amplifier and ADC. One of the issues associated with the implementation of such an architecture in scaled CMOS technologies is the dynamic range, because the charge information is extrapolated through the sampling of the peak of the front-end output signal. It is therefore interesting to explore the possibility of using time-based architectures offering better performances from that point of view. In fact, in these topologies the linearity between the charge and the signal duration can be maintained even if some building blocks in the chain saturate. The main drawback is the loss in resolution since a duration measurement involves the difference between two time measurements. This work will present the design of a front-end optimized for fast Time-over-Threshold applications. The circuit has been developed for the microstrip detectors of the PANDA experiment. The key features of the front-end amplifier are illustrated and both schematic level, and post-layout simulations are discussed.

  6. Intrinsic gettering of nickel impuriy deep levels in silicon substrate ...

    African Journals Online (AJOL)

    The intrinsic gettering of nickel impurity in p-type silicon substrate has been investigated. The density of electrically active nickel in intentionally contaminated silicon was determined before and after oxygen precipitation by means of resistivity measurements. These data, coupled with minority carrier lifetime and infrared ...

  7. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    CERN Document Server

    Bacchetta, N; Candelori, A; Da Rold, M; Descovich, M; Kaminski, A; Messineo, A; Rizzo, F; Verzellesi, G

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC. (3 refs).

  8. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    Science.gov (United States)

    Bacchetta, N.; Bisello, D.; Candelori, A.; Da Rold, M.; Descovich, M.; Kaminski, A.; Messineo, A.; Rizzo, F.; Verzellesi, G.

    2001-04-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC.

  9. Microstructure Control of Columnar-Grained Silicon Substrate Solidified from Silicon Melts Using Gas Pressure

    Directory of Open Access Journals (Sweden)

    Jun-Kyu Lee

    2015-01-01

    Full Text Available A silicon substrate with the dimensions of 100 × 140 × 0.3 mm was grown directly from liquid silicon with gas pressure. The silicon melt in the sealed melting part was injected into the growth part at applied pressure of 780–850 Torr. The solidified silicon substrate was then transferred by the pull of the cooled dummy bar. A desirable structure with a liquid-solid interface perpendicular to the pulling direction was formed when the mold temperature in the solidification zone of the growth part was much higher than that of the dummy bar, as this technique should be able to overcome thermal loss through the molds and the limited heat flux derived from the very narrow contact area between the silicon melt and the dummy bar. In addition, because the metallic impurities and expansion of volume during solidification are preferably moved to a liquid phase, a high-quality silicon substrate, without defects such as cracks and impurities in the substrate, could be manufactured in the interface structure. The present study reports the experimental findings on a new and direct growth system for obtaining silicon substrates characterized by high quality and productivity, as a candidate for alternate routes for the fabrication of silicon substrates.

  10. Characterisation of micro-strip and pixel silicon detectors before and after hadron irradiation

    CERN Document Server

    Allport, P.P

    2012-01-01

    The use of segmented silicon detectors for tracking and vertexing in particle physics has grown substantially since their introduction in 1980. It is now anticipated that roughly 50,000 six inch wafers of high resistivity silicon will need to be processed into sensors to be deployed in the upgraded experiments in the future high luminosity LHC (HL-LHC) at CERN. These detectors will also face an extremely severe radiation environment, varying with distance from the interaction point. The volume of required sensors is large and their delivery is required during a relatively short time, demanding a high throughput from the chosen suppliers. The current situation internationally, in this highly specialist market, means that security of supply for large orders can therefore be an issue and bringing additional potential vendors into the field can only be an advantage. Semiconductor companies that could include planar sensors suitable for particle physics in their product lines will, however, need to prove their pro...

  11. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    Science.gov (United States)

    Khalil, M.; Laurent, P.; Lebrun, F.; Tatischeff, V.; Dolgorouky, Y.; Bertoli, W.; Breelle, E.

    2016-11-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1-10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1-10 MeV range.

  12. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M., E-mail: khalilmohammad@hotmail.com [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Laurent, P.; Lebrun, F. [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); CEA, Centre de Saclay, 91191 Gif-Sur-Yvette Cedex (France); Tatischeff, V. [CSNSM, IN2P3/CNRSand Paris-Sud University, 91405 Orsay Campus (France); Dolgorouky, Y.; Bertoli, W.; Breelle, E. [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2016-11-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1–10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1–10 MeV range.

  13. Testbeam studies of silicon microstrip sensor architectures modified to facilitate detector module mass production

    CERN Document Server

    Poley, Anne-luise; The ATLAS collaboration

    2016-01-01

    For the High Luminosity Upgrade of the LHC, the Inner Detector of the ATLAS detector will be replaced by an all-silicon tracker, consisting of pixel and strip sensor detector modules. Silicon strip sensors are being developed to meet both the tracking requirements in a high particle density environment and constraints imposed by the construction process. Several thousand wire bonds per module, connecting sensor strips and readout channels, need to be produced with high reliability and speed, requiring wire bond pads of sufficient size on each sensor strip. These sensor bond pads change the local sensor architecture and the resulting electric field and thus alter the sensor performance. These sensor regions with bond pads, which account for up to 10 % of a silicon strip sensor, were studied using both an electron beam at DESY and a micro-focused X-ray beam at the Diamond Light Source. This contribution presents measurements of the effective strip width in sensor regions where the structure of standard parallel...

  14. Wetting of silicone oil onto a cell-seeded substrate

    Science.gov (United States)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  15. Digital Radiography of Mammographic Phantoms and Biologic Samples Using a 64 Microstrips Crystalline Silicon Detector Coupled to the RX64 ASIC

    Science.gov (United States)

    Leyva, A.; Montaño, L. M.; Díaz, C. C.; Ortiz, C. M.; Padilla, F.; de la Mora, R.; Fontaine, M.; Cabal, A.; Piñera, I.; Abreu, Y.; Cruz, C. M.

    2008-08-01

    The present paper synthesizes the results obtained in the evaluation of a 64 microstrips crystalline silicon detector coupled to RX64 ASIC, designed for high-energy physics experiments, as a useful X-ray detector in advanced medical radiography, specifically in digital mammography. Research includes the acquisition of two-dimensional radiography of a mammography phantom using the scanning method, and the comparison of experimental profile with mathematically simulated one. The paper also shows the experimental images of three biological samples taken from breast biopsies, where it is possible to identify the presence of possible pathological tissues.

  16. Towards substrate engineering of graphene-silicon Schottky diode photodetectors.

    Science.gov (United States)

    Selvi, Hakan; Unsuree, Nawapong; Whittaker, Eric; Halsall, Matthew P; Hill, Ernie W; Thomas, Andrew; Parkinson, Patrick; Echtermeyer, Tim J

    2018-02-01

    Graphene-silicon Schottky diode photodetectors possess beneficial properties such as high responsivities and detectivities, broad spectral wavelength operation and high operating speeds. Various routes and architectures have been employed in the past to fabricate devices. Devices are commonly based on the removal of the silicon-oxide layer on the surface of silicon by wet-etching before deposition of graphene on top of silicon to form the graphene-silicon Schottky junction. In this work, we systematically investigate the influence of the interfacial oxide layer, the fabrication technique employed and the silicon substrate on the light detection capabilities of graphene-silicon Schottky diode photodetectors. The properties of devices are investigated over a broad wavelength range from near-UV to short-/mid-infrared radiation, radiation intensities covering over five orders of magnitude as well as the suitability of devices for high speed operation. Results show that the interfacial layer, depending on the required application, is in fact beneficial to enhance the photodetection properties of such devices. Further, we demonstrate the influence of the silicon substrate on the spectral response and operating speed. Fabricated devices operate over a broad spectral wavelength range from the near-UV to the short-/mid-infrared (thermal) wavelength regime, exhibit high photovoltage responses approaching 106 V W-1 and short rise- and fall-times of tens of nanoseconds.

  17. Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays

    Science.gov (United States)

    Jhabvala, Murzy; Franz, David E.; Ewin, Audrey J.; Jhabvala, Christine; Babu, Sachi; Snodgrass, Stephen; Costen, Nicholas; Zincke, Christian

    2009-01-01

    The silicon substrate carrier was created so that a large-area array (in this case 62,000+ elements of a microshutter array) and a variety of discrete passive and active devices could be mounted on a single board, similar to a printed circuit board. However, the density and number of interconnects far exceeds the capabilities of printed circuit board technology. To overcome this hurdle, a method was developed to fabricate this carrier out of silicon and implement silicon integrated circuit (IC) technology. This method achieves a large number of high-density metal interconnects; a 100-percent yield over a 6-in. (approximately equal to 15-cm) diameter wafer (one unit per wafer); a rigid, thermally compatible structure (all components and operating conditions) to cryogenic temperatures; re-workability and component replaceability, if required; and the ability to precisely cut large-area holes through the substrate. A method that would employ indium bump technology along with wafer-scale integration onto a silicon carrier was also developed. By establishing a silicon-based version of a printed circuit board, the objectives could be met with one solution. The silicon substrate would be 2 mm thick to survive the environmental loads of a launch. More than 2,300 metal traces and over 1,500 individual wire bonds are required. To mate the microshutter array to the silicon substrate, more than 10,000 indium bumps are required. A window was cut in the substrate to allow the light signal to pass through the substrate and reach the microshutter array. The substrate was also the receptacle for multiple unpackaged IC die wire-bonded directly to the substrate (thus conserving space over conventionally packaged die). Unique features of this technology include the implementation of a 2-mmthick silicon wafer to withstand extreme mechanical loads (from a rocket launch); integrated polysilicon resistor heaters directly on the substrate; the precise formation of an open aperture

  18. Dual detection biosensor based on porous silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Simion, Monica, E-mail: moni304ro@yahoo.com; Kusko, Mihaela; Mihalache, Iuliana; Brăgaru, Adina

    2013-11-20

    Due to the high surface-to-volume ratio (hundreds of m{sup 2}/cm{sup 3}) porous silicon became during the last years a good candidate material as substrate for biosensor application. Moreover, the versatility of surface chemistry allows different functionalization approaches and large number of molecules to be captured on well-defined areas. This paper reports a dual detection method for protein recognition processes developed on different nanostructured porous silicon (PS) substrates, based on using two complementary spectroscopic techniques: fluorescence and electrochemical impedance. The structures were tested for biomolecular recognition – biotin–strepavidin couples – in order to achieve an optimum surface for protein's immobilizations. Comparative analyses of the attachment degree and preservation of the biomolecules activity on the porous silicon surfaces and silicon slides are also described.

  19. A binary readout chip for silicon microstrip detector in proton imaging application

    Science.gov (United States)

    Sipala, V.; Bruzzi, M.; Bondì, M.; Bonanno, D.; Cadeddu, S.; Carpinelli, M.; Cirrone, G. A. P.; Civinini, C.; Cuttone, G.; Lai, A.; Leonora, E.; Lo Presti, D.; Maccioni, G.; Pallotta, S.; Randazzo, N.; Scaringella, M.; Talamonti, C.; Tesi, M.; Vanzi, E.

    2017-01-01

    The mixed-signal PRIMA-chip has been developed for sensitive-position silicon detector in proton imaging application. The chip is based upon the binary readout architecture which, providing fully parallel signal processing, is a good solution for high intensity radiation application. It includes 32-front-end channels with a charge preamplifier, a shaper and a comparator. In order to adjust the comparator thresholds, each channel contains a 8-bit DAC, programmed using an I2C like interface. The PRIMA-chip has been fabricated using the AMS 0.35 μm standard CMOS process and its performances have been tested coupling it to the detectors used in the tracker assembled for the pCT (proton Computed Tomography) apparatus.

  20. Mechanically flexible optically transparent porous mono-crystalline silicon substrate

    KAUST Repository

    Rojas, Jhonathan Prieto

    2012-01-01

    For the first time, we present a simple process to fabricate a thin (≥5μm), mechanically flexible, optically transparent, porous mono-crystalline silicon substrate. Relying only on reactive ion etching steps, we are able to controllably peel off a thin layer of the original substrate. This scheme is cost favorable as it uses a low-cost silicon <100> wafer and furthermore it has the potential for recycling the remaining part of the wafer that otherwise would be lost and wasted during conventional back-grinding process. Due to its porosity, it shows see-through transparency and potential for flexible membrane applications, neural probing and such. Our process can offer flexible, transparent silicon from post high-thermal budget processed device wafer to retain the high performance electronics on flexible substrates. © 2012 IEEE.

  1. Ultrathin polypyrrole films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Intelmann, Carl Matthias [Hahn-Meitner-Institut Berlin GmbH, Department Silicon Photovoltaics, Kekulestrasse 5, 12489 Berlin (Germany)], E-mail: matthias.intelmann@hmi.de; Syritski, Vitali [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Tsankov, Dimiter [Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 9, 1113 Sofia (Bulgaria); Hinrichs, Karsten [ISAS-Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany); Rappich, Joerg [Hahn-Meitner-Institut Berlin GmbH, Department Silicon Photovoltaics, Kekulestrasse 5, 12489 Berlin (Germany)

    2008-04-20

    The electrochemical deposition of polypyrrole (PPy) on p-Si(1 0 0) electrodes was investigated. The electrodeposition was performed in aqueous electrolyte solutions utilising cyclic voltammetry. Thin, adhesive, uniform PPy films were successfully deposited on p-Si(1 0 0) electrodes. The Si/PPy interface was characterised with infrared spectroscopic ellipsometry (IR-SE) and photoluminescence (PL) measurements to obtain information of a possible oxidation of the Si interface and charge carrier recombination at the interface, respectively. Very small amounts of interfacial silicon oxides have been found at the Si/PPy interface. PL measurements lead to the assumption that electrodeposition of PPy onto the Si electrodes generated only very few additional non-radiative recombination-active (nr) defects. Hence, polypyrrole is an excellent passivation of nr defects at the silicon surface.

  2. Porous silicon and aluminum co-gettering experiment in p-type multicrystalline silicon substrate

    Directory of Open Access Journals (Sweden)

    P.N. Vinod

    2007-01-01

    Full Text Available The lifetimes of non-equilibrium minority carriers, which bound with the diffusion length, are considered as two important parameters of the low-quality multicrystalline silicon (mc-Si substrate. Its value defines the quality of the initial substrate. It is also subjected to change as a result of many high-temperature operations during the device fabrication. Therefore, it is necessary to incorporate certain processing steps that either improve or preserve the electronic quality of the mc-Si substrate. In this study, a novel porous silicon and aluminum co-gettering experiment has been applied as a beneficial approach to improve the electronic quality of the low-resistivity mc-Si substrates. Porous silicon layers were prepared by anodization of the n+ silicon region by a simple electrochemical etching process using an aqueous HF-based electrolyte, which leads to the creation of porous silicon microcavities. Besides making porous silicon and aluminum co-gettered samples, both phosphorous and aluminum alloy-gettered samples and reference samples were made. The gettering-induced lifetime enhancement in the test samples was monitored by measuring the lifetime/diffusion length of the test samples using two independent methods such as photoconductivity decay (PCD measurement and the photocurrent generation method (PCM, respectively. The result in both the measurements has shown a reasonably good agreement with each other. Therefore, it is inferred that the applied co-gettering experiment has a synergetic effect to improve the lifetime of the mc-Si substrate.

  3. 10?GHz bandstop microstrip filter using excitation of magnetostatic surface wave in a patterned Ni78Fe22 ferromagnetic film

    NARCIS (Netherlands)

    Vroubel, M.; Zhuang, Y.; Rejaei, B.; Burghartz, J.N.

    2006-01-01

    Various microstrips with a ferromagnetic core were designed and fabricated on a silicon substrate. The core was formed by a 0.5-?m-thick Ni78Fe22 film, patterned into rectangular prisms. Measurement results for attenuation constant versus frequency show a peak value of ? 50?dB/cm around 10?GHz.

  4. Aging of Silicon Nanocrystals on Elastomer Substrates: Photoluminescence Effects.

    Science.gov (United States)

    Mandal, Rajib; Anthony, Rebecca J

    2016-12-28

    Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications such as light-emitting devices (LEDs), electronic displays, sensors, and solar-photovoltaics. To date, however, luminescent silicon nanocrystals have been used exclusively in traditional rigid devices, leaving a gap in knowledge regarding how they behave on elastomeric substrates. The present study shows how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (SiNCs) change when they are deposited on stretchable substrates made from polydimethylsiloxane (PDMS). Our results indicate that SiNCs deposited directly from the gas phase onto PDMS exhibit morphological changes, as well as modified aging characteristics due to enhanced oxidation. These results begin to fill the knowledge gap and point to the potential of using luminescent SiNC layers for flexible and stretchable electronics such as LEDs, displays, and sensors.

  5. Foundations for microstrip circuit design

    CERN Document Server

    Edwards, Terry

    2016-01-01

    Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.

  6. Method of Forming Textured Silicon Substrate by Maskless Cryogenic Etching

    Science.gov (United States)

    Yee, Karl Y. (Inventor); Homyk, Andrew P. (Inventor)

    2014-01-01

    Disclosed herein is a textured substrate comprising a base comprising silicon, the base having a plurality of needle like structures depending away from the base, wherein at least one of the needle like structures has a depth of greater than or equal to about 50 micrometers determined perpendicular to the base, and wherein at least one of the needle like structures has a width of less than or equal to about 50 micrometers determined parallel to the base. An anode and a lithium ion battery comprising the textured substrate, and a method of producing the textured substrate are also disclosed.

  7. Fabrication of thick silicon nitride blocks embedded in low-resistivity silicon substrates for radio frequency applications

    OpenAIRE

    Fernandez, L.J.; Berenschot, Johan W.; Wiegerink, Remco J.; Flokstra, Jakob; Flokstra, Jan; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2006-01-01

    Thick silicon nitride blocks embedded in silicon wafers were recently proposed as a substrate for RF devices. In this paper we show that deep trenches filled with silicon nitride—having thin slices of monocrystalline silicon in between—already result in a significantly improved RF behavior. Measurement results are presented on RF coplanar waveguides using solid silicon nitride blocks and silicon nitride filled trenches with various dimensions and orientations with respect to the transmission ...

  8. Fabrication of thick silicon nitride blocks embedded in low-resistivity silicon substrates for radio frequency applications

    NARCIS (Netherlands)

    Fernandez, L.J.; Berenschot, Johan W.; Wiegerink, Remco J.; Flokstra, Jakob; Flokstra, Jan; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2006-01-01

    Thick silicon nitride blocks embedded in silicon wafers were recently proposed as a substrate for RF devices. In this paper we show that deep trenches filled with silicon nitride—having thin slices of monocrystalline silicon in between—already result in a significantly improved RF behavior.

  9. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  10. Doping of graphene induced by boron/silicon substrate

    Science.gov (United States)

    Dianat, Arezoo; Liao, Zhongquan; Gall, Martin; Zhang, Tao; Gutierrez, Rafael; Zschech, Ehrenfried; Cuniberti, Gianaurelio

    2017-05-01

    In this work, we show the doping of graphene most likely from heteroatoms induced by the substrate using Raman spectra, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy and ab initio molecular dynamics (MD) simulations. The doping of graphene on a highly boron-doped silicon substrate was achieved by an annealing at 400 K for about 3 h in an oven with air flow. With the same annealing, only the Raman features similar to that from the pristine graphene were observed in the freestanding graphene and the graphene on a typical Si/SiO2 wafer. Ab initio MD simulations were performed for defected graphene on boron-doped silicon substrate at several temperatures. All vacancy sites in the graphene are occupied either with B atoms or Si atoms resulting in the mixed boron-silicon doping of the graphene. The MD simulations validated the experimetal finding of graphene doped behavior observed by Raman spectrum. The electronic structure analysis indicated the p-type nature of doped graphene. The observed doping by the possible incorporation of heteroatoms into the graphene, simply only using 400 K annealing the boron-doped Si substrate, could provide a new approach to synthesize doped graphene in a more economic way.

  11. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

    Directory of Open Access Journals (Sweden)

    Gammon P.M.

    2017-01-01

    Full Text Available A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si wafer bonded to silicon carbide (SiC. This novel silicon-on-silicon-carbide (Si/SiC substrate solution promises to combine the benefits of silicon-on-insulator (SOI technology (i.e device confinement, radiation tolerance, high and low temperature performance with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance. Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.

  12. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, Iurii

    2013-07-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10{sup 14} n{sub eq}/cm{sup 2} (n{sub eq}-neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the

  13. Study of micro-strip gas ionisation chambers substrates for CMS experiment at LHC; Etude de substrats pour chambres gazeuses a micropistes dans le cadre de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pallares, A.

    1996-06-14

    High luminosity, expected interaction and dose rates of the future LHC collider require the development of micro-strips gas chambers. In addition to optimization of this new detector, this work is concerned with understanding of gain loss phenomena. Influence of the gas substrate is carefully analysed, as well as theoretical concepts concerning glasses and their behaviour under polarization and irradiation, and the consequence on detection operations.Electron spin resonance is used to study, in standard glass, creation of radiation induced defects which may be charged. (D.L.). 14 refs.

  14. Thermal and electrical properties of silicon nitride substrates

    Directory of Open Access Journals (Sweden)

    H. S. Dow

    2017-09-01

    Full Text Available This work presents the results of studies on the thermal and electrical properties of sintered silicon nitride to investigate the effects of non-oxide additives. With regard to electrical transport properties, a high electrical resistivity of 1014 ∼ 1015 Ωcm at 323 K was observed with Si3N4 substrates. Typical electrical resistivity and thermal conductivity values of the Si3N4 substrates were 1015 Ωcm and 90 W/mK at room temperature, respectively. Based on the results of XPS measurement, it is suggested that the addition of Nb significantly improved oxygen gettering by the phases of Nb2O5. Based on the analysis of the thermal conductivity of Si3N4 substrates, it appears that the interaction between oxygen and Nb in Si3N4, enhanced the thermal conduction rate of Si3N4.

  15. Silicon thin-film transistor backplanes on flexible substrates

    Science.gov (United States)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  16. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    This work deals with low-temperature solution growth of micro-crystalline silicon on glass. The task is motivated by the application in low-cost solar cells. As glass is an amorphous material, conventional epitaxy is not applicable. Therefore, growth is conducted in a two-step process. The first step aims at the spatial arrangement of silicon seed crystals on conductive coated glass substrates, which is realized by means of vapor-liquid-solid processing using indium as the solvent. Seed crystals are afterwards enlarged by applying a specially developed steady-state solution growth apparatus. This laboratory prototype mainly consists of a vertical stack of a silicon feeding source and the solvent (indium). The growth substrate can be dipped into the solution from the top. The system can be heated to a temperature below the softening point of the utilized glass substrate. A temperature gradient between feeding source and growth substrate promotes both, supersaturation and material transport by solvent convection. This setup offers advantages over conventional liquid phase epitaxy at low temperatures in terms of achievable layer thickness and required growth times. The need for convective solute transport to gain the desired thickness of at least 50 {mu}m is emphasized by equilibrium calculations in the binary system indium-silicon. Material transport and supersaturation conditions inside the utilized solution growth crucible are analyzed. It results that the solute can be transported from the lower feeding source to the growth substrate by applying an appropriate heating regime. These findings are interpreted by means of a hydrodynamic analysis of fluid flow and supporting FEM simulation. To ensure thermodynamic stability of all materials involved during steady-state solution growth, the ternary phase equilibrium between molybdenum, indium and silicon at 600 C was considered. Based on the obtained results, the use of molybdenum disilicide as conductive coating

  17. Study of LDPE/TiO2 and PS/TiO2 Composites as Potential Substrates for Microstrip Patch Antennas

    Science.gov (United States)

    Sarmah, Debashis; Deka, Juti R.; Bhattacharyya, Satyajib; Bhattacharyya, Nidhi S.

    2010-10-01

    Low-density polyethylene (LDPE)/titania (TiO2) and polystyrene (PS)/titania (TiO2) composite systems have been developed as alternative substrates for microstrip patch antennas (MPA) for handheld devices. Morphological, thermal, and microwave characterizations of these composites have been conducted for different volume fractions of TiO2 in the polymer matrix. The size of the titania particles was found to be of the order of 0.5 μm, and their distribution in the composite was quite uniform. Composite materials showed an improvement in thermal and microwave properties over the parent polymer. Verification of these composites as potential substrates for MPA was carried out by fabricating simple rectangular patch X-band antennas. Materials with optimized substrate properties were chosen to design the MPA. The patches were designed with 4% volume fraction TiO2 in the LDPE composite system and 6% volume fraction TiO2 in the PS composite system. Return loss of ˜18 dB was observed for both systems.

  18. First prototype of a silicon microstrip detector with the data-driven readout chip FSSR2 for a tracking-based trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Dinardo, M.E. [INFN and Universita degli Studi di Milan (Italy); Cardoso, G. [Fermi National Accelerator Laboratory (United States); Hoff, J. [Fermi National Accelerator Laboratory (United States); Manghisoni, M. [INFN Pavia and Universita degli Studi di Bergamo (Italy)]. E-mail: massimo.manghisoni@unibg.it; Mekkaoui, A. [Fermi National Accelerator Laboratory (United States); Moroni, L. [INFN and Universita degli Studi di Milan (Italy); Ratti, L. [INFN Pavia and Universita degli Studi di Pavia (Italy); Re, V. [INFN Pavia and Universita degli Studi di Bergamo (Italy); Valsecchi, F. [INFN and Universita degli Studi di Milan (Italy); Yarema, R. [Fermi National Accelerator Laboratory (United States)

    2007-03-01

    We developed and characterized the first prototype of a silicon microstrip detector system to be used in the forward region (high rapidity) of high energy physics experiments. This detector features an innovative readout integrated circuit, the second version of the Fermilab Silicon Strip Readout chip (FSSR2), which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be read out in real time without any external trigger and any particular limitation due to deadtime. The chip services 128 strips providing the address, the time-stamp and a 3 bit amplitude information for all hits. Several programmable features are included in the chip, such as an internal pulser, a baseline restorer, and a selectable signal peaking time and gain. The performance in terms of noise and threshold dispersion have been measured with and without sensor connected to the chip and at different values of peaking time and gain, confirming that the FSSR2 meets the design requirements. The electronic calibration has been crosschecked with a radioactive source of {sup 241}Am.

  19. Development and Evaluation of a Test System for the Quality Assurance during the Mass Production of Silicon Microstrip Detector Modules for the CMS Experiment

    CERN Document Server

    Franke, Torsten

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of four large-scale experiments that is going to be installed at the Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). For CMS an inner tracking system entirely equipped with silicon microstrip detectors was chosen. With an active area of about 198 m2 it will be the largest tracking device of the world that was ever constructed using silicon sensors. The basic components in the construction of the tracking system are approximately 16,000 so-called modules, which are pre-assembled units consisting of the sensors, the readout electronics and a support structure. The module production is carried out by a cooperation of number of institutes and industrial companies. To ensure the operation of the modules within the harsh radiation environment extensive tests have to be performed on all components. An important contribution to the quality assurance of the modules is made by a test system of which all components were developed in Aachen. In ad...

  20. Analysis of biconical microstrip antennas

    Science.gov (United States)

    Lin, Y.; Shafai, L.

    1992-12-01

    Biconical microstrip antennas having a conical patch over a conical substrate are investigated. Analytical expressions for the field distribution inside the conical cavity are developed in a spherical coordinate system and used to determine the eigenvalues of the resonant modes. It is found that, in addition to the axially symmetric modes, TE modes can also resonate which are asymmetric and dependent on the azimuthal angle. For coaxial probe excitation of the cavity its analytic expressions for the field components are determined and used to investigate the antenna input parameters and radiation patterns. The special case of a conical patch microstrip antenna with a planar substrate is also studied. It is shown that, in comparison with circular disk microstrip antennas, a conical patch yields a wider impedance bandwidth and higher gain.

  1. Intrinsic Gettering of Manganese Impurity in Silicon Substrate

    Science.gov (United States)

    Adegboyega, G. A.; Osasona, O.; Susi, E.

    1997-05-01

    Intrinsic gettering of manganese impurity atoms has been investigated in p-type silicon by means of resistivity and minority carrier lifetime measurements and infrared absorption spectroscopy. Manganese proved to be a donor impurity in p-Si and its presence led to a reduction by a factor of about 7 in the lifetime of minority carriers by formation of deep level traps. There is strong evidence that high temperature oxygen precipitation is enhanced by the presence of the Mn impurity in the substrate. The resulting oxygen precipitate provided an efficient gettering sink for the Mn impurity.

  2. Monolithic amorphous silicon modules on continuous polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  3. The effect of substrate morphological structure on photoelectrical conversion performance of silicon solar cell

    Science.gov (United States)

    Li, Yongtao; Sun, Xiaomeng; Xia, Yang

    2017-03-01

    A novel method is proposed to evaluate electrical characteristics of silicon solar cell at real operating conditions. Silicon solar cells with different substrate morphological structures have various photoelectrical performances. The effect of substrate morphological structure on photoelectrical conversation performance of silicon solar cell has been investigated by illustration analysis, mathematical model and I-V test system. Results show that the solar cell with the porous-sponge like substrate has better electrical characteristics than those with conical like substrate morphological structure. The output power of porous substrate solar cell can exceed by 11% at 40 degree incident angle of sunlight compared to conical substrate solar cell.

  4. Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates

    Science.gov (United States)

    Ahn, Jaehyun; Chou, Harry; Banerjee, Sanjay K.

    2017-04-01

    The quest of obtaining sustainable, clean energy is an ongoing challenge. While silicon-based solar cells have widespread acceptance in practical commercialization, continuous research is important to expand applicability beyond fixed-point generation to other environments while also improving power conversion efficiency (PCE), stability, and cost. In this work, graphene-on-silicon Schottky junction and graphene-insulator-silicon (GIS) solar cells are demonstrated on flexible, thin foils, which utilize the electrical conductivity and optical transparency of graphene as the top transparent contact. Multi-layer graphene was grown by chemical vapor deposition on Cu-Ni foils, followed by p-type doping with Au nanoparticles and encapsulated in poly(methyl methacrylate), which showed high stability with minimal performance degradation over more than one month under ambient conditions. Bendable silicon film substrates were fabricated by a kerf-less exfoliation process based on spalling, where the silicon film thickness could be controlled from 8 to 35 μm based on the process recipe. This method allows for re-exfoliation from the parent Si wafer and incorporates the process for forming the backside metal contact of the solar cell. GIS cells were made with a thin insulating Al2O3 atomic layer deposited film, where the thin Al2O3 film acts as a tunneling barrier for holes, while simultaneously passivating the silicon surface, increasing the minority carrier lifetime from 2 to 27 μs. By controlling the Al2O3 thickness, an optimized cell with 7.4% power conversion efficiency (PCE) on a 35 μm thick silicon absorber was fabricated.

  5. Measurement of the Inclusive $b$-jet cross section in $p\\bar{p}$ collisions at CDF RunII and Development of silicon microstrip detectors for the ATLAS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    D' Onofrio, Monica [Univ. of Geneva (Switzerland)

    2005-01-01

    In the past twenty years, the study of events with bottom quark has led to many important Tevatron results- as the discovery of the top quark- and it will be as well crucial at the LHC for the search of new physics phenomena. This analysis exploits the good tracking capabilities of the detector and relies on b-jet identification made by secondary vertex reconstruction. The study of the Inner Tracker system performance and in particular the Semi conductor Tracker (SCT), can be considered one of the fundamental issues in the construction of the apparatus. The second part of this thesis work reports some of the crucial tests performed during the development of the silicon microstrip detectors composing the SCT.

  6. Simple method for the growth of 4H silicon carbide on silicon substrate

    Directory of Open Access Journals (Sweden)

    M. Asghar

    2016-03-01

    Full Text Available In this study we report thermal evaporation technique as a simple method for the growth of 4H silicon carbide on p-type silicon substrate. A mixture of Si and C60 powder of high purity (99.99% was evaporated from molybdenum boat. The as grown film was characterized by XRD, FTIR, UV-Vis Spectrophotometer and Hall Measurements. The XRD pattern displayed four peaks at 2Θ angles 28.550, 32.700, 36.100 and 58.900 related to Si (1 1 1, 4H-SiC (1 0 0, 4H-SiC (1 1 1 and 4H-SiC (2 2 2, respectively. FTIR, UV-Vis spectrophotometer and electrical properties further strengthened the 4H-SiC growth.

  7. Simple method for the growth of 4H silicon carbide on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Asghar, M.; Shahid, M. Y.; Iqbal, F.; Fatima, K.; Nawaz, Muhammad Asif; Arbi, H. M. [Department of Physics, The Islamia University of Bahawalpur, 63100 Bahawalpur (Pakistan); Tsu, R. [Department of Electrical Engineering and Computer Science, 28223-0001 UNC-Charlotte, NC (United States)

    2016-03-15

    In this study we report thermal evaporation technique as a simple method for the growth of 4H silicon carbide on p-type silicon substrate. A mixture of Si and C{sub 60} powder of high purity (99.99%) was evaporated from molybdenum boat. The as grown film was characterized by XRD, FTIR, UV-Vis Spectrophotometer and Hall Measurements. The XRD pattern displayed four peaks at 2Θ angles 28.55{sup 0}, 32.70{sup 0}, 36.10{sup 0} and 58.90{sup 0} related to Si (1 1 1), 4H-SiC (1 0 0), 4H-SiC (1 1 1) and 4H-SiC (2 2 2), respectively. FTIR, UV-Vis spectrophotometer and electrical properties further strengthened the 4H-SiC growth.

  8. Hot wire CVD deposition of nanocrystalline silicon solar cells on rough substrates

    NARCIS (Netherlands)

    Li, H. B. T.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2009-01-01

    In silicon thin film solar cell technology, frequently rough or textured substrates are used to scatter the light and enhance its absorption. The important issue of the influence of substrate roughness on silicon nanocrystal growth has been investigated through a series of nc-Si:H single junction

  9. High quality silicon-based substrates for microwave and millimeter wave passive circuits

    Science.gov (United States)

    Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.

    2017-09-01

    Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous

  10. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  11. Improved Gain Microstrip Patch Antenna

    Science.gov (United States)

    2015-08-06

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...08-2015 Publication Improved Gain Microstrip Patch Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L...Distribution A An antenna for mounting on a ground plane includes a dielectric substrate for mounting on the ground plane. A conductive patch

  12. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    Science.gov (United States)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  13. Multifunctional Electronics Core Substrate Configurable Electronics Functionality with Stacked Silicon and Multi-Chip Modules Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A custom multifunctional core substrate scheme comprised of next generation polyimide, ceramic and/or silicon materials will be designed to integrate new 2.5D and...

  14. Hyperon production in proton-nucleus collisions at a center-of-mass energy of {radical}(s{sub NN}) = 41.6 GeV at HERA-B and design of silicon microstrip detectors for tracking at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Agari, Michaela

    2006-07-01

    The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at {radical}(s)=41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland). {lambda}, {xi} and {omega} hyperons and their antiparticles were reconstructed from 113.5 . 10{sup 6} inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, d{sigma}/dp{sub T}{sup 2} (for {lambda} and {xi}) and rapidity, d{sigma}/dy (for {lambda} only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been designed for the tracking system of the LHCb detector. Evaluating the performance in beam tests at CERN, the strip geometry and sensor thickness were varied optimizing for a large signal-to-noise ratio, a small number of read-out channels and a low occupancy. The detector is currently being built to be operational for first proton-proton collisions in autumn 2007. (orig.)

  15. Plasma deposition of thin film silicon at low substrate temperature and at high growth rate

    NARCIS (Netherlands)

    Verkerk, A.D.

    2009-01-01

    To expand the range of applications for thin film solar cells incorporating hydrogenated amorphous silicon (a-Si:H) and hydrogenated nanocrystalline silicon (nc-Si:H), the growth rate has to be increased 0.5 or less to several nm/s and the substrate temperature should be lowered to around 100 C. In

  16. Collected charge and Lorentz angle measurement on non-irradiated ATLAS silicon micro-strip sensors for the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Eda

    2017-02-15

    In this thesis, the collected charge and the Lorentz angle on non-irradiated and the irradiated miniature of the current test silicon micro-strip sensors (ATLAS12) of the future ATLAS inner tracker are measured. The samples are irradiated up to 5 x 10{sup 15} 1 MeV n{sub eq}/cm{sup 2} and some of them also measured after short-term annealing (80 min at 60 C). The measurements are performed at the DESY II test beam, which provides the advantage of tracking to suppress noise hits. The collected charge is measured at various bias voltages for each sample. The results are compared with the measurements performed using a Sr{sup 90} radioactive source. It is shown that the measurements with beam and radioactive source are consistent with each other, and the advantage of tracking at the beam measurements provides the measurement of collected charge on highly irradiated sensors at lower bias voltages. The Lorentz angle is measured for each sample at different magnetic field strengths between 0 T and 1 T, the results are extrapolated to 2 T, which is the magnetic field in the inner tracker of the ATLAS detector. Most of the measurements are performed at -500 V bias voltage, which is the planned operation bias voltage of the future strip tracker. Some samples are also measured at different bias voltages to observe the effect of bias voltage on the Lorentz angle. The signal reconstruction of the strip sensors are performed using the lowest possible signal-to-noise thresholds. For non-irradiated samples, the measured Lorentz angle agrees with the prediction of the BFK model. On the irradiated samples, the results suggest that the Lorentz angle decreases with increasing bias voltage due to the increasing electric field in the sensor. The Lorentz angle decreases with increasing irradiation level; however, if the sample is under-depleted, the effect of electric field dominates and the Lorentz angle increases. Once the irradiation level becomes too high, hence the collected charge

  17. Hot Pressing and Characterization of Powder Based Silicon Substrates for Photovoltaic Applications.

    OpenAIRE

    Juven, Phillip

    2012-01-01

    High purity silicon material in solar cell fabrication constitutes 40% of the total cost for conventional solar cell production. One approach to reduce costs would be to use less of this expensive silicon by making thin film solar cells and use a cheaper substrate as mechanical carrier.In this work the main objective has been to manufacture silicon substrates from powder by hot-pressing. The effect of the sintering parameters has been characterized. A secondary objective was to look at the po...

  18. Coplanar, Microstrips and Coupled Microstrip Lines

    DEFF Research Database (Denmark)

    Jensen, Bent Poul

    1995-01-01

    In the accessible literature is applied simplified calculation methods for coupled microstrips, as give a fair decision of the characteristic impedances within 10-20% accuracy. In this report it is succeeded to appear calculation methods that give the desired exactly calculations of differential...... mode impedance (identical to 2x odd mode impedance) and commom mode impedance (identical to 1/2x even mode impedance). The conformal mapping with Schwarz-Christoffel formula give no possibility for the inverse functions for a synthesis optimization. For that reason there is calculated figures, who can...... be used for stipulation of strip dimensions within 4% precision, referred to produced coupled microstrips and measured impedances. The report is initiated with exactly calculation of impedances for coplanar strips and microstrips, because these calculations apply to the calculations of coupled microstrips....

  19. Non-contact temperature measurement of silicon substrate in sputtering plasma using optical interferometer

    Science.gov (United States)

    Ohta, Takayuki; Hattori, Katsuhiro; Oda, Akinori; Kousaka, Hiroyuki

    2015-09-01

    The substrate temperature is one of important parameters to control the plasma processing and involve the film properties or the chemistry of gas phase. High power impulse magnetron sputtering (HIPIMS) realizes a very significant fraction of the ionized species and which induced onto the substrate and heated it. It is essential to analyze the substrate temperature and the heating mechanisms. In this study, we have measured the silicon substrate temperature in HiPIMS by using the optical low-coherence interferometry. The reflected light from the front surface interferes that from back surface. The optical path length of Si wafer is obtained by the inverse Fourier transform of spectral interferogram and varies with the change in the silicon temperature. The silicon temperatures with various resistivities were measured and the change in the optical thickness increased with decreasing the resistivity owing to the carrier density of the silicon substrate. The time variation of Si substrate temperatures at various applied voltages in the HiPIMS using the titanium target was measured and the silicon temperatures increased with increasing the applied voltage.

  20. Microstrip Resonators on Anisotropic Substrates

    Science.gov (United States)

    1992-04-01

    371. Sept. 1976. [25) S. S. Stuchly. M. A. Rzpecka, and M. F. Iskander, "Permittivity [21 M. A. Stuchly. S. S. Stuchly. and G. Kantor. " Diathermy ...435-441. 1984. 191 T. W. Athey. J. B. Leonard and D. Giroux, "Improved phantom materials for use at shortwave frequencies," in Bioelectromagnetic

  1. Effect of surface cleanliness of aluminium substrates on silicone rubber adhesion

    Science.gov (United States)

    Petersson, L.; Meier, P.; Kornmann, X.; Hillborg, H.

    2011-01-01

    The aim of this work was to determine the minimum surface cleanliness of aluminium substrates required for good and reproducible silicone rubber adhesion. Aluminium substrates were prepared, ranging from 'contaminated' to different degrees of 'cleaned'. The surface energy of the substrates was determined by contact angle measurements. The surfaces were also compared using simplified methods, such as a wettability test or by the use of inks with known surface tension. Silicone rubber was then compression moulded onto the cleaned and primed substrates. The silicone rubber adhesion was then evaluated by lap-shear testing, before and after ageing. The ageing step consisted of immersion of samples in boiling water for 100 h to evaluate the hydrolytic stability of the interfaces. The failure modes after lap-shear testing were determined using optical microscopy and scanning electron microscopy and were divided into three different categories: cohesive failure, adhesive failure or a mixture thereof. Energy dispersive x-ray mapping was useful in clarifying the failure modes by determining the position of the primer, which contained Ti. It was concluded that in order to obtain a strong and stable interface, exhibiting mainly cohesive failure between the aluminium substrate and silicone rubber, the surface energy of the substrate before priming should be >45 mJ m-2, including a polar component of >10 mJ m-2. This corresponded to a hydrophobicity class of the substrate of >=6, according to IEC 62073.

  2. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  3. Synthesis and characterization of copper nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kanitkar, P; Aiyer, R C [Department of Physics, University of Pune, Pune 411 007, Maharashtra (India); Sen, S; Muthe, K P; Gupta, S K [Technical Physics and Prototype Engineering Division(TPPED), BARC, Mumbai 400 085, Maharashtra (India)], E-mail: drgupta@barc.gov.in

    2008-05-01

    Vacuum vapour deposition technique has been utilized for the synthesis of copper nanostructures on Si(111), Si(100) and Si(110) substrates at an optimized substrate temperature of 750 deg. C. The samples are characterized by SEM, AFM and XPS. Their morphology is strongly governed by orientation of substrate. It is possible to realize the growth of triangular, square like and rod shaped geometries by choosing an appropriate orientation. This variation is attributed to the surface reconstruction which occurs at high temperature.

  4. Characterization and modeling of the metal diffusion from deep ultraviolet photoresist and silicon-based substrate.

    Science.gov (United States)

    Wang, T K; Wan, M Y; Ko, F H; Tseng, C L

    2001-05-01

    The radioactive tracer technique was applied to investigate the out-diffusion of the transition metals (Cu, Fe and Co) from deep ultraviolet (DUV) photoresist into underlying substrate. Two important process parameters, viz., baking temperatures and substrate types (i.e., bare silicon, polysilicon, silicon oxide and silicon nitride), were evaluated. Results indicate that the out-diffusion of Co is insignificant, irrespective of the substrate type and baking temperature. The out-diffusion of Cu is significant for substrates of bare silicon and polysilicon but not for silicon oxide and nitride; for Fe, the story is reversed. The substrate type appears to strongly affect the diffusion, while the baking temperature does not. Also, the effect of solvent evaporation was found to play an important role in impurity diffusion. Using the method of numerical analysis, a diffusion profile was depicted in this work to describe the out-diffusion of metallic impurities from photoresist layer under various baking conditions. In addition, the effectiveness of various wet-cleaning recipes in removing metallic impurities such as Cu, Fe and Co was also studied using the radioactive tracer technique. Among the six cleaning solutions studied, SC2 and SPM are the most effective in impurity removal. An out-diffusion cleaning model was first proposed to describe the cleaning process. A new cleaning coefficient, h(T), was suggested to explain the cleaning effect. The cleaning model could explain the tracer results.

  5. Solution and interfacial behavior of modified silicone polymers and their interactions with solid substrates

    Science.gov (United States)

    Purohit, Parag

    Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone

  6. ZnO nanocoral reef grown on porous silicon substrates without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Abdulgafour, H.I., E-mail: hind_alshaikh@yahoo.com [School of Physics, University Sains Malaysia 11800 Penang (Malaysia); Yam, F.K.; Hassan, Z.; AL-Heuseen, K.; Jawad, M.J. [School of Physics, University Sains Malaysia 11800 Penang (Malaysia)

    2011-05-05

    Research highlights: > Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates. > Flower-like aligned ZnO nanorods are fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. > The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency. > This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices. - Abstract: Porous silicon (PS) technology is utilized to grow coral reef-like ZnO nanostructures on the surface of Si substrates with rough morphology. Flower-like aligned ZnO nanorods are also fabricated directly onto the silicon substrates through zinc powder evaporation using a simple thermal evaporation method without a catalyst for comparison. The characteristics of these nanostructures are investigated using field-emission scanning electron microscopy, grazing-angle X-ray diffraction (XRD), and photoluminescence (PL) measurements of structures grown on both Si and porous Si substrates. The texture coefficient obtained from the XRD spectra indicates that the coral reef-like nanostructures are highly oriented on the porous silicon substrate with decreasing nanorods length and diameter from 800-900 nm to 3.5-5.5 {mu}m and from 217-229 nm to 0.6-0.7 {mu}m, respectively. The PL spectra show that for ZnO nanocoral reefs the UV emission shifts slightly towards lower frequency and the intensity increase with the improvement of ZnO crystallization. This non-catalyst growth technique on the rough surface of substrates may have potential applications in the fabrication of nanoelectronic and nanooptical devices.

  7. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  8. Atomic Layer Epitaxial Growth of Gaas on Porous Silicon Substrate

    OpenAIRE

    Mohamed Lajnef; Afrah Bardaoui; Isabelle Sagne; Radwan Chtouroua; Hatem Ezzaouia

    2008-01-01

    GaAs thin film has been grown on porous silicon by metal organic chemical vapour deposition (MOCVD) for different growth temperatures using atomic layer epitaxy (ALE) technique. The morphology of GaAs layer was investigated by atomic force microscopy (AFM). The effect of growth temperature is studied using photoluminescence measurements (PL).The photoluminescence spectra revealed a dissymmetry form toward high energies attributed to strain effect resulting from the lattice mismatch between Ga...

  9. Design,construction and commissioning of a cylinder of double-sided silicon micro-strips detectors for the Star experiment at RHIC; Developpement et mise en oeuvre de detecteurs silicium a micropistes pour l'experience star

    Energy Technology Data Exchange (ETDEWEB)

    Guedon, M

    2005-05-15

    This study has been performed in the frame of quark gluon plasma physics research in the STAR experiment at RHIC. It deals with the design, the construction and the commissioning of a barrel of silicon-strip detectors (SSD). Added to the Silicon Vertex Tracker (SVT) of the STAR detector, it extends the capabilities of track reconstruction for charged particles emitted in ultra-relativistic heavy-ion collisions. It also contributes to the general study of the quark-gluon plasma production undertaken at STAR. The SSD is a cylinder of 1 m long and of 23 cm radius, and it is composed of 320 compact identical modules. Each module includes one double-sided silicon micro-strip detector, 12 readout chips ALICE 128C, 12 TAB ribbons, 2 COSTAR control chips and 2 hybrids supporting all the components. The document explains why the SSD is an important and relevant element, and justifies the technological choices as well as their validation by in-beam characterization. All component functionalities, characteristics and test procedures are presented. The data and test results are stored in a database for tracing purpose. Component and module production is described. Two parallel studies have been performed, analysed and described. One on the temperature dependence of the module performances and the other one on the optimal adjustments of the analogue blocks inside the ALICE 128C chip. The SSD installation on the RHIC site as well as the commissioning are presented together with the first data takings. (author)

  10. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  11. Fabrication of 25 μm-filter microfluidic chip on silicon substrate

    Science.gov (United States)

    Ngan Le, Nguyen; Khanh Huynh, Kim; Cam Hue Phan, Thi; Dung Dang, Thi My; Chien Dang, Mau

    2017-03-01

    This paper presents the entire fabrication process including photolithography, sputtering, deep reactive ion etching (Bosch DRIE process) on silicon substrate and bonding process between the lid and silicon substrate to create a designed filtration microfluidic chip with dimension of 28 mm × 7 mm, one inlet port and one outlet port. A pattered silver thin film was deposited on a silicon sample by the lift-off method. Subsequently the newly fabricated sample was anisotropically etched by Bosch DRIE process. Some parameters of Bosch DRIE process such as bias power, duration of etching step and passivation step, oxygen presence were studied to explore the dependence of silicon channel depth and etched shape profile on these parameters. An optimized process was utilized to fabricate a featured silicon channel with vertical, smooth sidewalls and an overall good uniformity. The silicon channel has four arrays of microposts with various distances between microposts from 25 μm to 100 μm. The depth of the silicon channel was about 150 μm. After that, silicon substrate was bonded with mica lid by adhesive bonding method to form the completed filtration microfluidic chip. The samples were characterized by scanning electron microscopy (SEM), mechanical profilometer (DEKTAK 6 M), optical microscopy (Olympus MX51). In this paper a test was performed to demonstrate how the microfluidic chip works by pumping solution with many various sizes of particles through the inlet port of the microfluidic chip and obtaining a solution with desired particles sizes (smaller than 25 μm) through another port. Moreover, the chip could be pumped de-ionized water through outlet port for backwash in order to make this microfluidic chip reusable. Finally, a few applications of microfluidic chips are presented to illustrate the advantages of this technology and the potential for future development. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology

  12. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, M., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.; Dahiya, V.; Cavallo, F. [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Myers, S. [SKINfrared, LLC, Lobo Venture Lab, 801 University Blvd., Suite 10, Albuquerque, New Mexico 87106 (United States); Krishna, S., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States); SKINfrared, LLC, Lobo Venture Lab, 801 University Blvd., Suite 10, Albuquerque, New Mexico 87106 (United States)

    2016-02-29

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  13. Is silicon dioxide essential to make graphene visible? Case studies of graphene-substrate interaction

    Science.gov (United States)

    Chen, Chia-Hao; Shiu, Hung Wei; Lo Yueh, Lo Yueh; Chen, Hung-Ying; Gwo, Shangjr

    2014-03-01

    Making exfoliated graphene flakes visible is the key to successfully study the fundamental properties of graphene. Conventionally, this can be achieved by placing the graphene flakes on top of silicon substrate with 300 nm SiO2, but this silicon dioxide layer may cause substrate charging effect. We therefore started to ask ourselves, is silicon dioxide the only material to make graphene visible? Moreover, a recent study has successfully demonstrated a working GaN LEDs with CVD-synthesized multi-layer graphene as conduction electrodes. However, the energy coupling between graphene and GaN is still unclear. To fully utilize the advantage of graphene as transparent electrode, a further understanding of the electronic structure between graphene and the substrate is an urgent task. To answer those questions, we employed theoretical simulation using a model based on Fresnel's law, to calculate the optical contrast of single-layer graphene on various substrate structures. Based on the results, we grew those particular substrates to test the graphene visibility. The graphene flakes and thickness were verified by optical microscope and micro-Raman spectroscopy. The graphene-substrate interactions were then studied by scanning photoelectron microscopy. National Science Council of Taiwan (grants NSC-98-2112-M-213-002-MY2 and NSC-101- 2112-M-213-005-MY3).

  14. CBC3: a CMS microstrip readout ASIC with logic for track-trigger modules at HL-LHC

    CERN Document Server

    Prydderch, Mark Lyndon; Bell, Stephen Jean-marc; Key-Charriere, M; Jones, Lawrence; Auzinger, Georg; Borg, Johan; Hall, Geoffrey; Pesaresi, Mark Franco; Raymond, David Mark; Uchida, Kirika; Goldstein, Joel; Seif El Nasr, Sarah

    2017-01-01

    The CBC3 is the latest version of the CMS Binary Chip ASIC for readout of the outer radial region of the upgraded CMS Tracker at HL-LHC. This 254-channel, 130nm CMOS ASIC is designed to be bump-bonded to a substrate to which sensors will be wire-bonded. It will instrument double-layer 2S-modules, consisting of two overlaid silicon microstrip sensors with aligned microstrips. On-chip logic identifies first level trigger primitives from high transverse-momentum tracks by selecting correlated hits in the two sensors. Delivered in late 2016, the CBC3 has been under test for several months, including X-ray irradiations and SEU testing. Results and performance are reported.

  15. Film forming properties of silicon nanoparticles on SixNy coated substrates during excimer laser annealing

    Science.gov (United States)

    Caninenberg, M.; Kiesler, D.; Benson, N.; Schmechel, R.

    2017-05-01

    In this article we investigate the film forming properties of excimer laser annealed silicon nanoparticles on non-silicon substrates. In contrast to their film forming properties on oxide free silicon substrates, the nanoparticle thin film tends to dewet and form a porous μ-structure on the silicon nitrite covered glass model substrates considered for our investigation. This is quantified using a SEM study in conjunction with image processing software, in order to evaluate the μ-structure size and inter μ-structure distance in dependence of the laser energy density. To generalize our results, the film forming process is described using a COMSOL Multiphysics ® fluid dynamics model, which solves the Navier Stokes equation for incompressible Newtonian fluids. To account for the porous nanoparticle thin film structure in the simulation, an effective medium approach is used by applying a conservative level set one phase method to our mesh. This effort allows us to predict the Si melt film formation ranging from a porous Si μ-structure to a compact 100% density Si thin film in dependence of the substrate / thin film interaction, as well as the laser energy used for the nanoparticle processing.

  16. Sequential purification and crystal growth for the production of low cost silicon substrates

    Science.gov (United States)

    Liaw, M.; Daragona, F. S.

    The objective of this program is to identify and develop low cost processing for fabricating large grain size polycrystalline silicon substrates. Metallurigical grade silicon (MG-Si) which is low cost and abundant for industrial usage was chosen as starting material. However, MG-Si cannot be used directly as substrates for solar cell fabrication for the following reasons: (1) it contains 1 to 2 percent metallic impurities, and (2) it is produced as irregular shapes with a fine grain structure. Various purification techniques have been reported. The techniques being studied under this program use direct methods for the purification of MG-Si. The process uses sequential steps of purification followed by crystal growth. The steps of sequential purification include: (1) leaching of MG-Si charge, (2) phase separation of nonsoluble impurities from molten silicon, (3) reactive gas treatment of molten silicon, (4) liquid liquid extraction (called slagging), and (5) impurity redistribution using ingot pulling. All the purification steps, with the exception of step (1), are performed in a consecutive manner using a crystal puller. The purified ingots will be produced in a desired ingot dimension and further recrystallization is not necessary. The theory and experimental results for each purification technique are presented. The relative effectiveness of the various steps are assessed and the most import step(s) are recommended. Finally the electrical characteristics of solar cells built on a thin epitaxial layer deposited on single pulled MG-Si substrates are discussed and compared to single crystal substrates.

  17. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    Directory of Open Access Journals (Sweden)

    Michael A. Marrs

    2016-07-01

    Full Text Available Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  18. Numerical verification of substrate current model in silicon IGFETs

    Science.gov (United States)

    Faricelli, John; Gildenblat, Gennady

    1987-06-01

    With the advent of near and sub-micrometer scaled MOS devices, understanding the physics of substrate current generation has become more important. The results of extensive two-dimensional numerical simulation are presented in order to clarify the underlying physics of substrate current generation by weak avalanche in the drain region of IGFETs. We then use simulation to understand why one-dimensional analytic models for substrate current manage to describe this complicated generation mechanism in a reasonable fashion. In particular it is shown that the electron-hole pair production in short-channel devices is strongly localized close to the surface, which leads to the approximate agreement with one-dimensional models. A significant deviation from this pattern is found however for long channel devices and/or small gate voltages. The spatial distribution of the generation rate, current density and components of electric field is investigated for different impurity profiles and bias conditions. The results of the numerical simulation are compared with a one-dimensional model.

  19. Growth and tribological properties of diamond films on silicon and tungsten carbide substrates

    Science.gov (United States)

    Radhika, R.; Ramachandra Rao, M. S.

    2016-11-01

    Hot filament chemical vapor deposition technique was used to deposit microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films on silicon (Si) and tungsten carbide (WC-6Co) substrates. Friction coefficient of larger diamond grains deposited on WC-6Co substrate shows less value approximately 0.2 while this differs marginally on films grown on Si substrate. The study claims that for a less friction coefficient, the grain size is not necessarily smaller. However, the less friction coefficient (less than 0.1 saturated value) in MCD and NCD deposited on Si is explained by the formation of graphitized tribolayer. This layer easily forms when diamond phase is thermodynamically unstable.

  20. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  1. Design, fabrication and characterisation of advanced substrate crosstalk suppression structures in silicon on insulator substrates with buried ground planes (GPSOI)

    CERN Document Server

    Stefanou, S

    2002-01-01

    Substrate crosstalk or coupling has been acknowledged to be a limiting factor in mixed signal RF integration. Although high levels of integration and high frequencies of operation are desirable for mixed mode RF and microwave circuits, they make substrate crosstalk more pronounced and may lead to circuit performance degradation. High signal isolation is dictated by requirements for low power dissipation, reduced number of components and lower integration costs for feasible system-on-chip (SoC) solutions. Substrate crosstalk suppression in ground plane silicon-on-insulator (GPSOI) substrates is investigated in this thesis. Test structures are designed and fabricated on SOI substrates with a buried WSi sub 2 plane that is connected to ground; hence it is called a ground plane. A Faraday cage structure that exhibits very high degrees of signal isolation is presented and compared to other SOI isolation schemes. The Faraday cage structure is shown to achieve 20 dB increased isolation in the frequency range of 0.5-...

  2. Metal Nanoparticles Deposited on Porous Silicon Templates as Novel Substrates for SERS

    Directory of Open Access Journals (Sweden)

    Lara Mikac

    2015-12-01

    Full Text Available In this paper, results on preparation of stable and uniform SERS solid substrates using macroporous silicon (pSi with deposited silver and gold are presented. Macroporous silicon is produced by anodisation of p-type silicon in hydrofluoric acid. The as prepared pSi is then used as a template for Ag and Au depositions. The noble metals were deposited in three different ways: by immersion in silver nitrate solution, by drop-casting silver colloidal solution and by pulsed laser ablation (PLA. Substrates obtained by different deposition processes were evaluated for SERS efficiency using methylene blue (MB and rhodamine 6G (R6G at 514.5, 633 and 785 nm. Using 514.5 nm excitation and R6G the limits of detection (LOD for macroporous Si samples with noble metal nanostructures obtained by immersion of pSi sample in silver nitrate solution and by applying silver colloidal solution to pSi template were 10–9 M and 10–8 M respectively. Using 633 nm laser and MB the most noticeable SERS activity gave pSi samples ablated with 30000 and 45000 laser pulses where the LODs of 10–10 M were obtained. The detection limit of 10–10 M was also reached for 4 mA cm–2-15 min pSi sample, silver ablated with 30000 pulses. Macroporous silicon proved to be a good base for the preparation of SERS substrates.

  3. Compatibility of cancer cells with nanostructured oxidized porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, Tal; Parush, Ran; Massad, Na' ama [Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Segal, Ester [Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2011-06-15

    The attachment and long-term viability of three types of human cancer cell lines (glioma U87, breast cancer MDA-MB-231, and cervical cancer HeLa) onto nanostructured oxidized porous Si substrates is investigated. The porous layers are fabricated to give cylindrically-shaped structures with pore diameters in the tunable range of 10 to 150 nm by anodizing a heavily-doped p-type Si. The Alamar Blue viability assay and optical microscopy are employed to assess the attachment, viability and the morphology of the cells. The results show that cells remain viable and proliferate on all surfaces. The nano-architecture of the studied scaffolds does not exert a deleterious effect on cancer cells. Cell coverage levels comparable to standard culture preparations on tissue culture polystyrene are observed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    Science.gov (United States)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the

  5. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  6. The design and manufacturing development of an active silicon substrate MCM

    Science.gov (United States)

    Roughton, M. G.; Waite, L.

    1994-10-01

    The demand for engine control systems with reduced weight, size and cost, increased integration, improved reliability and higher temperature operation drives the system designer to the use of advanced hybrid assembly technologies. This paper describes the design and manufacturing development of a silicon based 'D' type multichip module, MCM, containing an active substrate of memory. This CPU module is one of the building blocks for a range of generic engine control systems. The active substrate approach potentially gives higher packing density than wafer scale due to its 3D configuration. The active substrate comprises 12 SRAM 128K x 8 bit of diffused memory arranged in groups of three. The design is organized so that a 'memory manager' ASIC selects pages of good memory from the substrate die thus obtaining the best possible yield. A single wafer contains 4 silicon hybrid substrates, each approximately 40mm sq, which will be processed before separating into discrete circuits. The MCM structure is comprised of four aluminium metallization layers with benzocyclobutene, BCB, as the dielectric. Approximately 16 other devices including a processor, the 'memory manager' ASIC, a Processor Support ASIC and EDPROM, plus resistor network chips and decoupling capacitors will be added to the silicon substrate using adhesive and wire bond interconnection. The 'memory manager' ASIC tests the RAM on power-up, reject areas of bad memory and configures the good areas such that a continuous block of functional RAM is available to the processor. The RAM is configured as a 16 bit wide with both 16 bit and 8 bit read/write accesses being supported. The total module is to be assembled in a high temperature co-fired ceramic package with 200 I/O. After test and any rework that may be necessary the package will be sealed with a Kovar lid ready for final test.

  7. Enhancing formation rate of highly-oriented silicon nanowire arrays with the assistance of back substrates.

    Science.gov (United States)

    Chen, Chia-Yun; Wei, Ta-Cheng; Lin, Cheng-Ting; Li, Jheng-Yi

    2017-06-09

    Facile, effective and reliable etching technique for the formation of uniform silicon (Si) nanowire arrays were realized through the incorporation of back substrates with metal-assisted chemical etching (MaCE). In comparison with conventional MaCE process, a dramatic increase of etching rates upon MaCE process could be found by employing the conductive back substrates on p-type Si, while additionally prevented the creation of nanopores from catalytic etching reaction. Examinations on the involving etching kinetics, morphologies, wetting behaviors and surface structures were performed that validated the role of back substrates upon MaCE process. It was found that the involved two pathways for the extraction of electrons within Si favored the localized oxidation of Si at Si/Ag interfaces, thereby increasing the etching rate of MaCE process. This back-substrate involved MaCE could potentially meet the practical needs for the high-yield formation of Si nanowire arrays.

  8. Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cardinale, G.F.; Howitt, D.G. [California Univ., Davis, CA (United States). Dept. of Mechanical Engineering; Mirkarimi, P.B.; McCarty, K.F.; Klaus, E.J.; Medlin, D.L. [Sandia National Labs., Livermore, CA (United States)

    1994-08-01

    Effect of environmental conditions on cubic boron nitride (cBN) film adhesion to silicon substrates was studied. cBN films were deposited onto (100)-oriented silicon substrates by ion-assisted pulsed laser deposition. Irradiating ions were mixtures of nitrogen with argon, krypton, and xenon. Under room-ambient conditions, the films delaminated in the following time order: N/Xe, N/Kr, and N/Ar. cBN films deposited using N/Xe ion-assisted deposition were exposed to four environmental conditions for several weeks: a 1-mTorr vacuum, high humidity, dry oxygen, and dry nitrogen. Films exposed to the humid environment delaminated whereas those stored under vacuum or in dry gases did not. Films stored in dry nitrogen were removed after nearly two weeks and placed in the high-humidity chamber; these films subsequently delaminated within 14 hours.

  9. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    Science.gov (United States)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  10. 40 Gbaud binary phase shift keying signal modulation using a substrate removed silicon modulator

    Science.gov (United States)

    Li, Miaofeng; Xiao, Xi; Yang, Qi; Yu, Shaohua

    2017-07-01

    Substrate removing technique is proposed in silicon Mach-Zehnder modulator (MZM) to improve the electro-optic bandwidth. Based on this technique, a silicon MZM with 3 dB electro-optical bandwidth of 55 GHz is achieved at 5 V reverse bias for the first time. The Vπṡ L of the modulator is 1.3 Vṡcm with an on-chip insertion loss of 5.4 dB. The substrate removing technique reduces the electrode transmission loss, achieves the electro-optical group index matching and realizes 50 Ω impedance matching, simultaneously. In this work, we experimentally demonstrate BPSK modulation based on this modulator at the baud rate up to 56 Gb/s.

  11. Recent results for the CMS tracker silicon detectors

    OpenAIRE

    Dell'Orso, R

    2001-01-01

    The paper reports on a detailed study of the radiation resistance of p/sup +/ on n silicon microstrip detectors for the CMS tracking system. From this study, it is seen that the use of low-resistivity substrates with crystal lattice orientation promises excellent performance of the Inner Tracker after heavy irradiation in the Large Hadron Collider environment. Furthermore, the advantage of using detectors thicker than 300 mu m in the Outer Tracker is discussed together with experimental meas...

  12. ARTICLE Growth of Nano Crystalline Diamond on Silicon Substrate Using Different Etching Gases by HFCVD

    Science.gov (United States)

    Khalaj, Z.; Ghoranneviss, M.; Nasirilaheghi, S.; Ghorannevis, Z.; Hatakeyama, R.

    2010-12-01

    We investigate the effects of etching gases on the synthesis of nano crystalline diamonds grown on silicon substrate at the substrate temperature of 550°C and the reaction pressure of 4 kPa by hot filament chemical vapor deposition method, in which CH4 and H2 act as a source and diluting gases, respectively. N2, H2, and NH3 were used as the etching gases, respectively. Results show that the optimum conditions can be obtained only for the case of H2 gas. The crystal morphology and crystallinity of the samples have been examined by scanning electron microscopy and X-ray diffraction, respectively.

  13. Nanohole processing on silicon substrate by femtosecond laser pulse with localized surface plasmon polariton

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Petar A. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., Sofia 1784 (Bulgaria)]. E-mail: paatanas@ie.bas.bg; Takada, Hiroto [Keio University, Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nedyalkov, Nikolay N. [Keio University, Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., Sofia 1784 (Bulgaria); Obara, Minoru [Keio University, Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2007-07-31

    We demonstrate nanohole fabrication on silicon surface by femtosecond laser pulse irradiation mediated by gold nanoparticles. Gold spheres with diameters of 40, 80 or 200 nm are placed on the silicon substrate surface by a spin-coating method. The laser pulse with duration of 150 fs and wavelength of 820 nm is used to irradiate the Si substrate. Laser fluences applied are in the range of 140-300 mJ/cm{sup 2}, i.e. below or near the ablation threshold fluence of the bulk silicon substrate without gold particles. The morphological changes of the laser-irradiated areas are investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). Their dependence on the particle diameter, shape and laser fluence is investigated. The ablated surface morphologies are found to strongly depend on the polarization and the energy of the laser pulse. Nanoholes with diameters of about 150 nm and depths in the range of 30 nm are produced in the case of 200 nm diameter particles at fluences below the threshold for Si without Au particles. At fixed laser fluence the diameter and depth of the holes increase with the particle sizes. The optical field enhancement factor on the Si surface is calculated using an FDTD simulation code. A maximal value of about 26 is obtained for 200 nm Au particles. The comparison between the theoretical results for the electromagnetic field enhancement factor achieved and the experimental results is made in order to explain the physics of the nanomachining process.

  14. Synthesis of silicon nanocomposite for printable photovoltaic devices on flexible substrate

    Science.gov (United States)

    Odo, E. A.; Faremi, A. A.

    2017-06-01

    Renewed interest has been established in the preparation of silicon nanoparticles for electronic device applications. In this work, we report on the production of silicon powders using a simple ball mill and of silicon nanocomposite ink for screen-printable photovoltaic device on a flexible substrate. Bulk single crystalline silicon was milled for 25 h in the ball mill. The structural properties of the produced silicon nanoparticles were investigated using X-ray diffraction (XRD) and transmission electron microscopy. The results show that the particles remained highly crystalline, though transformed from their original single crystalline state to polycrystalline. The elemental composition using energy dispersive X-ray florescence spectroscopy (EDXRF) revealed that contamination from iron (Fe) and chromium (Cr) of the milling media and oxygen from the atmosphere were insignificant. The size distribution of the nanoparticles follows a lognormal pattern that ranges from 60 nm to about 1.2 μm and a mean particle size of about 103 nm. Electrical characterization of screen-printed PN structures of the nanocomposite formed by embedding the powder into a suitable water-soluble polymer on Kapton sheet reveals an enhanced photocurrent transport resulting from photo-induced carrier generation in the depletion region with energy greater that the Schottky barrier height at the metal-composite interface.

  15. Microstrip Patch Sensor for Salinity Determination

    Directory of Open Access Journals (Sweden)

    Kibae Lee

    2017-12-01

    Full Text Available In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS, and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under −20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of −35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF tunable sensors for salinity determination.

  16. Microstrip Patch Sensor for Salinity Determination.

    Science.gov (United States)

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  17. Collapsed adhesion of carbon nanotubes on silicon substrates: continuum mechanics and atomistic simulations

    Science.gov (United States)

    Yuan, Xuebo; Wang, Youshan

    2018-02-01

    Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.

  18. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  19. Formation of ultra-shallow p{sup +}/n junctions in silicon-on-insulator (SOI) substrate using laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ong, K.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)]. E-mail: ph718122@ntu.edu.sg; Pey, K.L. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Lee, P.S. [School of Materials Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Wee, A.T.S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Chong, Y.F. [Chartered Semiconductor Manufacturing Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore); Yeo, K.L. [Chartered Semiconductor Manufacturing Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore); Wang, X.C. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2004-12-15

    Laser annealing (LA), in which the laser melts the surface layer of silicon and causes the dopants to be distributed uniformly within the melted region, produces abrupt, highly activated and ultrashallow junctions. The degree of melting is determined by the extent of laser absorption and rate of heat dissipation, which are dependent on the substrate properties. When applying LA on substrates such as silicon-on-insulator (SOI), the heating and cooling characteristics are expected to be different from that of a typical Si substrate. This work compares the redistribution of boron atoms in silicon (1 0 0) and SOI substrates after laser annealing. SIMS analysis shows that laser induced melting is significantly deeper for the SOI than the silicon substrates using the same laser fluence. The enhancement of melting is attributed to the heat insulating effect of the buried oxide (BOX) layer. With multiple-pulse LA, the junction depth in the SOI substrate increases with subsequent laser pulses, a feature that is absent in silicon substrate. In the SOI substrate, the sheet resistance remains relatively constant regardless of deeper junction formed with multiple pulse conditions, implying the maximum dopant activation at a given laser fluence is reached. Boron profiles annealed in the non-melt regime with 20 laser pulses or less overlap with the as-implanted profiles, suggesting that no melting has occurred. However, significant melting is observed at 50-pulse annealing. The corresponding sheet resistance shows a sharp decrease with the initial pulses and consequently decreases slightly with increasing pulses.

  20. An Uncoventional Approach for a Straw Tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2004-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  1. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  2. Growth mechanism of chemically prepared ZnO-SiO2 nanostructures grown on glass and silicon substrates

    Science.gov (United States)

    Simfroso, K. T.; Candidato, R. T., Jr.; Bagsican, F. R.; Jabian, M. E.; Odarve, M. K. G.; Paylaga, G. J.; Sambo, B. R. B.; Vequizo, R. M.; Alguno, A. C.

    2015-06-01

    Different surface morphology of ZnO-SiO2 has been successfully grown on glass and silicon substrates using chemical bath deposition method. The dependence on the substrates used on the morphology of ZnO-SiO2 was investigated. The morphology of ZnO- SiO2 on glass substrate was flake-like in form and changes to protruding hemispherical structures when grown on silicon substrate. Elemental composition analysis verified the presence of ZnO and SiO2. Infrared characteristics showed an absorption band for the binding of ZnO and SiO2 and revealed the presence of zinc complexes. We proposed a mechanism on the growth of ZnO-SiO2 on glass and silicon substrate using low temperature deposition technique.

  3. Optical Absorption Enhancement in CdTe Thin Films by Microstructuration of the Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Jesús Rangel-Cárdenas

    2017-06-01

    Full Text Available In this work, the reflectance, optical absorption, and band gap have been determined for CdTe thin films grown on planar and microstructured substrates. The treated surface was prepared by laser ablation of a silicon wafer, forming holes in a periodic arrangement. Thin films were grown by pulsed laser ablation on silicon samples kept at 200 °C inside a vacuum chamber. The presence of CdTe was verified with X-ray diffraction and Raman spectroscopy indicating a nanocrystalline zinc blended structure. The optical absorption of thin films was calculated by using the Fresnel laws and the experimental reflectance spectrum. Results show that reflectance of 245 nm films deposited on modified substrates is reduced by up to a factor of two than the obtained on unchanged silicon and the optical absorption is 16% higher at ~456 nm. Additionally, it was determined that the band gap energy for planar and microstructured films is about 1.44 eV for both cases.

  4. A novel approach for osteocalcin detection by competitive ELISA using porous silicon as a substrate.

    Science.gov (United States)

    Rahimi, Fereshteh; Mohammadnejad Arough, Javad; Yaghoobi, Mona; Davoodi, Hadi; Sepehri, Fatemeh; Amirabadizadeh, Masood

    2017-11-01

    In this study, porous silicon (PSi) was utilized instead of prevalent polystyrene platforms, and its capability in biomolecule screening was examined. Here, two types of porous structure, macroporous silicon (Macro-PSi) and mesoporous silicon (Meso-PSi), were produced on silicon wafers by electrochemical etching using different electrolytes. Moreover, both kinds of fresh and oxidized PSi samples were investigated. Next, osteocalcin as a biomarker of the bone formation process was used as a model biomarker, and the colorimetric detection was performed by competitive enzyme-linked immunosorbent assay (ELISA). Both Macro-PSi and Meso-PSi substrates in the oxidized state, specifically the Meso-porous structure, were reported to have higher surface area to volume ratio, more capacitance of surface-antigen interaction, and more ability to capture antigen in comparison with the prevalent platforms. Moreover, the optical density signal of osteocalcin detected by the ELISA technique was notably higher than the common platforms. Based on the findings of this study, PSi can potentially be used in the ELISA to achieve better results and consequently more sensitivity. A further asset of incorporating such a nanometer structure in the ELISA technique is that the system response to analyte concentration could be maintained by consuming lower monoclonal antibody (or antigen) and consequently reduces the cost of the experiment. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  5. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate.

    Science.gov (United States)

    Ferrara, James; Yang, Weijian; Zhu, Li; Qiao, Pengfei; Chang-Hasnain, Connie J

    2015-02-09

    We report an electrically pumped hybrid cavity AlGaInAs-silicon long-wavelength VCSEL using a high contrast grating (HCG) reflector on a silicon-on-insulator (SOI) substrate. The VCSEL operates at silicon transparent wavelengths ~1.57 μm with >1 mW CW power outcoupled from the semiconductor DBR, and single-mode operation up to 65 °C. The thermal resistance of our device is measured to be 1.46 K/mW. We demonstrate >2.5 GHz 3-dB direct modulation bandwidth, and show error-free transmission over 2.5 km single mode fiber under 5 Gb/s direct modulation. We show a theoretical design of SOI-HCG serving both as a VCSEL reflector as well as waveguide coupler for an in-plane SOI waveguide, facilitating integration of VCSEL with in-plane silicon photonic circuits. The novel HCG-VCSEL design, which employs scalable flip-chip eutectic bonding, may enable low cost light sources for integrated optical links.

  6. The microstrip SQUID amplifier

    Science.gov (United States)

    Therrien, Roy

    A Superconducting Quantum Interference Devices (SQUIDS) can operate at frequencies up to several GHz and can be cooled to less than 100 mK. Such characteristics make the SQUID---a flux-to-voltage transducer---an excellent candidate for use as a low-noise rf amplifier. Coupling of input signals of frequencies larger than 200 MHz, however, has been limited by the parasitic capacitance between the input coil and SQUID body. We present experimental observations of a do SQUID-based rf amplifier which circumvents this problem by incorporating the input coil as a microstrip resonator. The microstrip input configuration uses the capacitance and inductance of the input coil to form a resonant cavity capable of operating up to several GHz. The input signal is applied between the SQUID body and one end of the input coil, while the other end of the coil is left open. We present data from microstrip SQUID amplifiers with gains of up to 22 dB at 900 MHz. In order to understand the gain and input impedance of the microstrip SQUID in greater detail, we made and studied a 1:190 scale analog patterned on a double-sided printed circuit board consisting of copper deposited on a kapton sheet. The measured input impedance of the analog SQUID is successfully modeled by describing the microstrip input as a low-loss transmission line. When operated with the slit in the copper washer ground plane shorted, the input coil behaves exactly like a linear resonator with the resonant frequency given by f = 1/2ℓ(L 0C0)1/2, where L0 and C0 are the inductance and capacitance per unit length and ℓ is the coil length. With the slit in the washer left open, the inductance of the input coil is significantly altered in a manner partially consistent with the Ketchen-Jaycox model in which the reflected inductance of the input coil is Li = n2L, where L is the inductance of the washer loop and n is the number of turns in the coil. We present input impedance measurements on microstrip SQUIDs cooled to 4

  7. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  8. Evolution and prevention of meltback etching: Case study of semipolar GaN growth on patterned silicon substrates

    Science.gov (United States)

    Khoury, Michel; Tottereau, Olivier; Feuillet, Guy; Vennéguès, Philippe; Zúñiga-Pérez, Jesus

    2017-09-01

    Meltback etching, a deteriorating chemical reaction occurring between gallium and silicon under typical metal organic chemical vapor deposition growth conditions, is a common problem that often limits the development of GaN on silicon substrates, in particular, patterned substrates, and therefore must be circumvented. To further understand this reaction, energy dispersive X-ray spectroscopy was performed in cross-section, and a proposed 2-dimensional model on how meltback etching evolves throughout the growth process is discussed, which indicated an inter-diffusion reaction occurring primarily between gallium and silicon where gallium from GaN diffuses into the silicon substrate while silicon from the substrate diffuses out and incorporates into the GaN crystal. Moreover, we demonstrate an anisotropic behavior of the gallium penetrating the silicon substrate, which has shown to be delimited by the Si {111 } planes. Finally, an approach to prevent meltback etching by changing the fractions of nitrogen and hydrogen in the carrier gas is presented and discussed.

  9. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker

    Energy Technology Data Exchange (ETDEWEB)

    Gunda, Naga Siva Kumar [Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8 (Canada); Singh, Minashree [Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada T6G 1C9 (Canada); Norman, Lana [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V4 (Canada); Kaur, Kamaljit [Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada T6G 1C9 (Canada); Mitra, Sushanta K., E-mail: sushanta.mitra@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8 (Canada)

    2014-06-01

    In the present work, we developed and optimized a technique to produce a thin, stable silane layer on silicon substrate in a controlled environment using (3-aminopropyl)triethoxysilane (APTES). The effect of APTES concentration and silanization time on the formation of silane layer is studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR). Biomolecules of interest are immobilized on optimized silane layer formed silicon substrates using glutaraldehyde linker. Surface analytical techniques such as ellipsometry, FTIR, contact angle measurement system, and atomic force microscopy are employed to characterize the bio-chemically modified silicon surfaces at each step of the biomolecule immobilization process. It is observed that a uniform, homogenous and highly dense layer of biomolecules are immobilized with optimized silane layer on the silicon substrate. The developed immobilization method is successfully implemented on different silicon substrates (flat and pillar). Also, different types of biomolecules such as anti-human IgG (rabbit monoclonal to human IgG), Listeria monocytogenes, myoglobin and dengue capture antibodies were successfully immobilized. Further, standard sandwich immunoassay (antibody–antigen–antibody) is employed on respective capture antibody coated silicon substrates. Fluorescence microscopy is used to detect the respective FITC tagged detection antibodies bound to the surface after immunoassay.

  10. Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zignani, F.; Desalvo, A.; Centurioni, E.; Iencinella, D.; Rizzoli, R.; Summonte, C.; Migliori, A

    2004-03-22

    In the framework of plasma deposition of silicon heterojunction solar cells, the issue of depositing by very high frequency, a microcrystalline emitter, without affecting the passivating properties of the underlying amorphous buffer layer, is addressed. The sequence, deposition-exposure to H{sub 2} plasma-deposition, was used to fabricate the microcrystalline emitter. Using high-resolution transmission electron microscopy, we give microscopic evidence of the long-range effects of hydrogen, already inferred by large area optical techniques. Upon exposure to H{sub 2} plasma, it is observed that silicon nanocrystallites are formed within the amorphous layer. Thinner amorphous layers undergo etching, and epitaxial growth takes place from the substrate. Photovoltaic devices with open circuit voltage up to 638 mV were fabricated.

  11. Assembly of europium organic framework–gold nanoparticle composite thin films on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@gmail.com [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India); Kaur, Rajnish [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India); Kumar, Parveen [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Kumar, Pawan; Paul, A.K. [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India)

    2014-08-28

    Metal organic frameworks are a sub-class of coordination polymers and rapidly generating huge research interests in several technological areas. One of the emerging areas of their potential applications is the photovoltaics. The present study proposes the assembly of europium organic framework–gold nanoparticle nanocomposite thin film on silicon substrate. Microscopic, X-ray diffraction, surface area measurement and thermal studies have indicated the formation of the desired thin film. Spectral studies have been used to highlight their solid state optical property. Current–voltage studies have established semiconducting property of the above thin films. - Highlights: • Thin film of europium organic framework/gold nanoparticles is prepared on silicon. • Fairly homogeneous films with a roughness factor of 5–10 nm are obtained. • Above thin films offer solid-state photoluminescence and semiconducting properties.

  12. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology

    KAUST Repository

    Marinaro, Giovanni

    2015-01-01

    The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is

  13. Gold nano-island arrays on silicon as SERS active substrate for organic molecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Ignat, Teodora, E-mail: teodora.ignat@imt.ro [National Institute for Research and Development in Microtechnologies, Laboratory of Nanobiotechnology, 126A, Erou Iancu Nicolae Street, 077190 (Romania); Husanu, Marius-Adrian, E-mail: adrianhusanu@gmail.com [National Institute of Materials Physics, Atomistilor Str. 105bis, PO Box MG 7, Magurele, Bucharest 077125 (Romania); Munoz, Roberto, E-mail: rmunoz@icmm.csic.es [Inasmet Fdn, Dept. Biomat and Nanotechnol, San Sebastian (Spain); Kusko, Mihaela, E-mail: mihaela.kusko@imt.ro [National Institute for Research and Development in Microtechnologies, Laboratory of Nanobiotechnology, 126A, Erou Iancu Nicolae Street, 077190 (Romania); Danila, Mihai, E-mail: mihai.danila@imt.ro [National Institute for Research and Development in Microtechnologies, Laboratory of Nanobiotechnology, 126A, Erou Iancu Nicolae Street, 077190 (Romania); Teodorescu, Cristian Mihail, E-mail: teodorescu@infim.ro [National Institute of Materials Physics, Atomistilor Str. 105bis, PO Box MG 7, Magurele, Bucharest 077125 (Romania)

    2014-01-01

    Gold islands forming highly controlled arrays have been fabricated by two potential step electrochemical deposition method using nanopatterned Si surface templates. In the present work, the Raman scattering studies realized using 11-mercaptoundecanoic probe molecule showed that such structures exhibit an enhanced Raman signal compared with nanostructured physical deposited thin gold film on flat silicon substrate and can be valued as surface-enhanced Raman scattering substrates. Besides the more appropriate management of nano-island arrays distribution, the high ratio of their Raman signals can be explain by the epitaxial-like growth mechanism of the metallic nano-islands, clearly showed by X-ray diffraction studies. Furthermore, the substrates enabled reproducibility and stability detection due to the chemically assembling of organothiol molecules, the X-ray photoelectron spectroscopy studies confirming formation of the thiolate species which corresponds to Au-S bonds, and also, the unwanted ‘hot-spots’ are missing, which make them suitable for high sensitivity biosensing applications. - Highlights: • Gold nano-islands are electrochemical deposited on nanopatterned silicon. • The X-ray diffraction studies revealed the epitaxial-like growth mechanism. • Enhanced Raman signal of Au nano-islands was observed compared with Au nano-film.

  14. Adhesion of single- and multi-walled carbon nanotubes to silicon substrate: atomistic simulations and continuum analysis

    Science.gov (United States)

    Yuan, Xuebo; Wang, Youshan

    2017-10-01

    The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.

  15. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Energy Technology Data Exchange (ETDEWEB)

    Balpande, Suresh S., E-mail: balpandes@rknec.edu [Ph.D.. Scholar, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India); Pande, Rajesh S. [Professor, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India)

    2016-04-13

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  16. Studying signal collection in the punch-through protection area of a silicon micro-strip sensor using a micro-focused X-ray beam

    CERN Document Server

    Poley, Anne-luise; The ATLAS collaboration

    2018-01-01

    For the Phase-II Upgrade of the ATLAS detector, a new, all-silicon tracker will be constructed in order to cope with the increased track density and radiation level of the High-Luminosity Large Hadron Collider. While silicon strip sensors are designed to minimise the fraction of dead material and maximise the active area of a sensor, concessions must be made to the requirements of operating a sensor in a particle physics detector. Sensor geometry features like the punch-through protection deviate from the standard sensor architecture and thereby affect the charge collection in that area. In order to study the signal collection of silicon strip sensors over their punch-through-protection area, ATLAS silicon strip sensors were scanned with a micro-focused X-ray beam at the Diamond Light Source. Due to the highly focused X-ray beam ($\\unit[2\\times3]{\\upmu\\text{m}}^2$) and the short average path length of an electron after interaction with an X-ray photon ($\\unit[\\leq2]{\\upmu\\text{m}}$), local signal collection i...

  17. Anti-phase boundaries-Free GaAs epilayers on "quasi-nominal" Ge-buffered silicon substrates

    Science.gov (United States)

    Bogumilowicz, Y.; Hartmann, J. M.; Cipro, R.; Alcotte, R.; Martin, M.; Bassani, F.; Moeyaert, J.; Baron, T.; Pin, J. B.; Bao, X.; Ye, Z.; Sanchez, E.

    2015-11-01

    We have obtained Anti-Phase Boundary (APB) free GaAs epilayers on "quasi-nominal" (001) silicon substrates, while using a thick germanium strain relaxed buffer between the GaAs layer and the silicon substrate in order to accommodate the 4% lattice mismatch between the two. As silicon (001) substrates always have a small random offcut angle from their nominal surface plane, we call them "quasi-nominal." We have focused on the influence that this small (≤0.5°) offcut angle has on the GaAs epilayer properties, showing that it greatly influences the density of APBs. On 0.5° offcut substrates, we obtained smooth, slightly tensile strained (R = 106%) GaAs epilayers that were single domain (e.g., without any APB), showing that it is not necessary to use large offcut substrates, typically 4° to 6°, for GaAs epitaxy on silicon. These make the GaAs layers more compatible with the existing silicon manufacturing technology that uses "quasi-nominal" substrates.

  18. Growth and characterization of thick cBN coatings on silicon and tool substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bewilogua, K. [Fraunhofer Institute for Surface Engineering and Thin Films, D-38108 Braunschweig (Germany)]. E-mail: bew@ist.fraunhofer.de; Keunecke, M. [Fraunhofer Institute for Surface Engineering and Thin Films, D-38108 Braunschweig (Germany); Weigel, K. [Fraunhofer Institute for Surface Engineering and Thin Films, D-38108 Braunschweig (Germany); Wiemann, E. [Institute for Machine Tools and Factory Management, Technical University Berlin (Germany)

    2004-12-22

    Recently some research groups have achieved progress in the deposition of cubic boron nitride (cBN) coatings with a thickness of 2 {mu}m and more, which is necessary for cutting tool applications. In our laboratory, thick cBN coatings were sputter deposited on silicon substrates using a boron carbide target. Following a boron carbide interlayer (few 100 nm thick), a gradient layer with continuously increasing nitrogen content was prepared. After the cBN nucleation, the process parameters were modified for the cBN film growth to a thickness of more than 2 {mu}m. However, the transfer of this technology to technically relevant substrates, like cemented carbide cutting inserts, required some further process modifications. At first, a titanium interlayer had to be deposited followed by a more than 1-{mu}m-thick boron carbide layer. The next steps were identical to those on silicon substrates. The total coating thickness was in the range of 3 {mu}m with a 0.5- to nearly 1-{mu}m-thick cBN top layer. In spite of the enormous intrinsic stress, both the coatings on silicon and on cemented carbide exhibited a good adhesion and a prolonged stability in humid air. Oxidation experiments revealed a stability of the coating system on cemented carbide up to 700 deg. C and higher. Coated cutting inserts were tested in turning operations with different metallic workpiece materials. The test results will be compared to those of well-established cutting materials, like polycrystalline cubic boron nitride (PCBN) and oxide ceramics, considering the wear of coated tools.

  19. Development and characterization of coatings on Silicon Pore Optics substrates for the ATHENA mission

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Jakobsen, Anders Clemen; Christensen, Finn Erland

    2012-01-01

    We present description and results of the test campaign performed on Silicon Pore Optics (SPO) samples to be used on the ATHENA mission. We perform a pre-coating characterization of the substrates using Atomic Force Microscopy (AFM), X-ray Re ectometry (XRR) and scatter measurements. X-ray tests...... roughness in the coatings. Both processes show promising results. Measurements of the coatings were carried out at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II to determine re ectivity at the grazing incidence angles and energies of ATHENA...

  20. Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time

    OpenAIRE

    R. Shabannia

    2015-01-01

    Vertically aligned ZnO nanorods were successfully grown on porous silicon (PS) substrates by chemical bath deposition at a low temperature. X-ray diffraction, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration (2 h to 8 h) on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO (0 0 2) peaks of the ZnO nanorods proved th...

  1. Study of silicon-on-insulator substrates incorporated with buried MoSi{sub 2} layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chao [Nano Technology Laboratory, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China); Liu Weili [Nano Technology Laboratory, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China)], E-mail: rabbitlwl@mail.sim.ac.cn; Ma Xiaobo; Shen Qinwo; Song Zhitang; Lin Chenglu [Nano Technology Laboratory, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050 (China)

    2009-02-27

    Silicon-on-Insulator (SOI) substrates incorporated with buried MoSi{sub 2} were fabricated using room temperature plasma bonding technology and smart cut technology. The molybdenum disilicide phase formation and morphology were studied by means of four-point probe measurements, X-ray diffraction analysis, atomic force microscopy and transmission electron microscopy examination. It is found that the transition of high-resistance phase Mo{sub 3}Si to low-resistance phase h-MoSi{sub 2} occurs at approximately 750 deg. C . The t-MoSi{sub 2} phase emerges at approximately 900 deg. C . SOI substrate incorporated with buried silicide layer of complete t-MoSi{sub 2} phase can be achieved by 900 deg. C annealing for 20 min.

  2. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  3. ZnO buffer layer for metal films on silicon substrates

    Science.gov (United States)

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  4. Effect of ion species on apatite-forming ability of silicone elastomer substrates irradiated by cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan)], E-mail: m-kawa@ecei.tohoku.ac.jp; Araki, Rei; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University (Japan)

    2009-04-15

    Indwelling catheters made of silicone elastomers sometimes cause serious infections owing to their poor biocompatibility. It is believed that these infections can be prevented by coating the silicone surface with apatite, which has excellent biocompatibility. If the surface of the silicone elastomer is in advance modified to have an apatite-forming ability, apatite can be coated on the modified silicone surface by soaking it in an aqueous solution such as a simulated body fluid (SBF) supersaturated with respect to apatite. In this study, silicone substrates were irradiated by four types of ion beams (Ar cluster, Ar cluster and monomer (Ar CM), O{sub 2} cluster, and O{sub 2} cluster and monomer (O{sub 2} CM) ion beams) at an acceleration voltage of 7 kV and a dose of 1 x 10{sup 15} ions/cm{sup 2}, and subsequently soaked in CaCl{sub 2} solution. The apatite-forming abilities of the substrates were examined using a metastable calcium phosphate solution whose ion concentration was 1.5 times that of SBF (1.5 SBF). Silicon oxide (SiO{sub x}) clusters were formed on the silicone surface and the hydrophilicity of the substrates was improved by the irradiation, irrespective of the ion species used. The irradiation with O{sub 2} CM ion beams resulted in the highest apatite-forming ability among the analyzed ion beams.

  5. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    band characteristics. The controlling of the electromagnetic radiation was possible by employing two frequency selective switches. Use of such MBG structures for the non-destructive evaluation of material properties was demonstrated by replacing the substrate with silicon. Pramana – J. Phys., Vol. 70, No. 4, April 2008. 745 ...

  6. Band-gap dependence of field emission from one-dimensional nanostructures grown on n-type and p-type silicon substrates

    Science.gov (United States)

    Chang, C. S.; Chattopadhyay, S.; Chen, L. C.; Chen, K. H.; Chen, C. W.; Chen, Y. F.; Collazo, R.; Sitar, Z.

    2003-09-01

    Field emission of electrons from narrow-band-gap and wide-band-gap one-dimensional nanostructures were studied. N-type silicon substrates enhanced the emission from the low-band-gap silicon nanowires and carbon nanotubes, whereas p-type substrates were a better choice for field emission from wide-band-gap silicon carbon nitride nanocrystalline thin films and nanorods. The role of the substrate-nanostructure interface was modeled based on different junction mechanisms to explain, qualitatively, the fundamentally different emission behavior of these nanostructures when n- and p-type silicon substrates were used. The results could be explained on the basis of simple carrier transport across the silicon-silicon nanowire interface and subsequent tunneling of electrons for the silicon nanowires. Schottky barrier theory can explain the better field emission of electrons from the n-type silicon supported carbon nanotubes. The decreased barrier height at the interface of the silicon-silicon carbon nitride heterojunction, when p-type silicon substrate was used, could explain the superior field emission in comparison to when n-type silicon substrates were used.

  7. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    Science.gov (United States)

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  8. Controlling the shapes of coated silicon substrates via magnetic fields, a progress report

    Science.gov (United States)

    Ulmer, Melville P.; Coppejans, Rocco; Buchholz, David B.; Cao, Jian; Wang, Xiaoli; Mercado, Alejandro M.; Qian, Jun; Assoufid, Lahsen; O'Donnell, Allison E.; Condron, Kyle S.; Harpt, Benjamin E.

    2017-08-01

    We describe our progress in developing a method for correcting residual figure errors in X-ray mirrors. The technology has applications to both synchrotron radiation beamlines and X-ray astronomy. Our concept is to develop mirrors that are on the order of a millimeter thick. A magnetic smart material (MSM) is deposited onto the mirror substrate (silicon) and coated with a magnetically hard material. The shape of the mirror can be controlled by applying an external magnetic field to the mirror. This causes the MSM to expand or contract, thereby applying a magnetostrictive stress to the mirror and changing its shape. The shape change is maintained after the field has been removed by the magnetic hard material, which retains part of the field and prevents the MSM from relaxing. Here we present the results of shaping 200 µm thick silicon (100) 14 × 2 mm cantilevers and 50 × 50 × 0.1 mm substrates. We demonstrate that not only can a sizable deflection be created, but it can also be retained for ˜ 60 hours.

  9. Gold nanoparticle growth control - Implementing novel wet chemistry method on silicon substrate

    KAUST Repository

    Al-Ameer, Ammar

    2013-04-01

    Controlling particle size, shape, nucleation, and self-assembly on surfaces are some of the main challenges facing electronic device fabrication. In this work, growth of gold nanoparticles over a wide range of sizes was investigated by using a novel wet chemical method, where potassium iodide is used as the reducing solution and gold chloride as the metal precursor, on silicon substrates. Four parameters were studied: soaking time, solution temperature, concentration of the solution of gold chloride, and surface pre-treatment of the substrate. Synthesized nanoparticles were then characterized using scanning electron microscopy (SEM). The precise control of the location and order of the grown gold overlayer was achieved by using focused ion beam (FIB) patterning of a silicon surface, pre-treated with potassium iodide. By varying the soaking time and temperature, different particle sizes and shapes were obtained. Flat geometrical shapes and spherical shapes were observed. We believe, that the method described in this work is potentially a straightforward and efficient way to fabricate gold contacts for microelectronics. © 2013 IEEE.

  10. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, A.; Slaoui, A. [InESS-UdS-CNRS, Strasbourg (France); Schneider, J. [CSG Solar AG, Thalheim (Germany); Fraunhofer Centre for Silicon Photovoltaics, Halle (Germany); Dore, J. [CSG Solar AG, Thalheim (Germany); Suntech R and D Australia Pty Ltd, Sydney (Australia); Mermet, F. [IREPA Laser, Strasbourg (France)

    2012-06-15

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns-V{sub oc} analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V{sub oc} of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V{sub oc}. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V{sub oc} reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation. (orig.)

  11. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate

    Science.gov (United States)

    Kunert, B.; Guo, W.; Mols, Y.; Tian, B.; Wang, Z.; Shi, Y.; Van Thourhout, D.; Pantouvaki, M.; Van Campenhout, J.; Langer, R.; Barla, K.

    2016-08-01

    We report on an integration approach of III/V nano ridges on patterned silicon (Si) wafers by metal organic vapor phase epitaxy (MOVPE). Trenches of different widths (≤500 nm) were processed in a silicon oxide (SiO2) layer on top of a 300 mm (001) Si substrate. The MOVPE growth conditions were chosen in a way to guarantee an efficient defect trapping within narrow trenches and to form a box shaped ridge with increased III/V volume when growing out of the trench. Compressively strained InGaAs/GaAs multi-quantum wells with 19% indium were deposited on top of the fully relaxed GaAs ridges as an active material for optical applications. Transmission electron microcopy investigation shows that very flat quantum well (QW) interfaces were realized. A clear defect trapping inside the trenches is observed whereas the ridge material is free of threading dislocations with only a very low density of planar defects. Pronounced QW photoluminescence (PL) is detected from different ridge sizes at room temperature. The potential of these III/V nano ridges for laser integration on Si substrates is emphasized by the achieved ridge volume which could enable wave guidance and by the high crystal quality in line with the distinct PL.

  12. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    Science.gov (United States)

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Characterisation of silicon microstrip detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Hamburg (Germany); Blue, Andrew; Bates, Richard [Glasgow Univ. (United Kingdom). SUPA School of Physics and Astronomy; and others

    2016-03-15

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity, totalling 1 x 10{sup 35} cm{sup -2}s{sup -1} after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at 3000 fb{sup -1}, requiring the tracking detectors to withstand hadron equivalences to over 1 x 10{sup 16} 1 MeV neutrons per cm{sup 2}. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (Endcap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). Sub-strip resolution of the 74.5 μm strips was achieved for both detectors. Investigation of the p-stop diffusion layers between strips is shown in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stops regions between the strips rather than the strip pitch. The collected signal allowed for the identification of operating thresholds for both devices, making it possible to compare signal response between different versions of silicon strip detector modules.

  14. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate

    Science.gov (United States)

    Schmitt, S. W.; Brönstrup, G.; Shalev, G.; Srivastava, S. K.; Bashouti, M. Y.; Döhler, G. H.; Christiansen, S. H.

    2014-06-01

    Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for

  15. Recrystallized thin-film silicon solar cell on graphite substrate with laser single side contact and hydrogen passivation

    Directory of Open Access Journals (Sweden)

    Li Da

    2015-01-01

    Full Text Available Laser single side contact formation (LSSC and the hydrogen passivation process are studied and developed for crystalline silicon thin film (CSiTF solar cells on graphite substrates. The results demonstrate that these two methods can improve cell performance by increasing the open circuit voltage and fill factor. In comparison with our previous work, we have achieved an increase of 3.4% absolute cell efficiency for a 40 μm thick 4 cm2 aperture area silicon thin film solar cell on graphite substrate. Current density-voltage (J-V measurement, quantum efficiency (QE and light beam induced current (LBiC are used as characterization methods.

  16. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current–voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O–H and C–O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  17. Optimisation of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    H. El Hamchary

    1996-04-01

    Full Text Available When choosing the most appropriate microstrip antenna configuration for particular applications, the kind of excitation of the radiating element is an essential factor that requires careful considerations. For controlling the distribution of energy of the linear or planar array of elements and for coupling energy to the individual elements, a wide variety of feed mechanisms are available. In this paper, the coaxial antenna feeding is assumed and the best (optimised feeding is found. Then, antenna characteristics such as radiation pattern, return loss, input impedance, and VSWR are obtained.

  18. Band offsets for biaxially and uniaxially stressed silicon-germanium layers with arbitrary substrate and channel orientations

    Energy Technology Data Exchange (ETDEWEB)

    Eneman, Geert; Roussel, Philippe; Brunco, David Paul; Collaert, Nadine; Mocuta, Anda; Thean, Aaron [Imec, Kapeldreef 75, 3001 Heverlee (Belgium)

    2016-08-07

    The conduction and valence band offsets between a strained silicon-germanium layer and a silicon-germanium substrate are reported for arbitrary substrate and channel crystal orientations. The offsets are calculated both for the case of biaxial stress, corresponding approximately to the stress state of a thin strained channel in a planar field-effect transistor (FET), and for uniaxial stress, which is the approximate stress state for strained channels in a FinFET configuration. Significant orientation dependence is found for the conduction band offset, overall leading to the strongest electron quantum confinement in biaxial-tensile stressed channels on {100}-oriented substrates, and uniaxial-tensile stressed channels in the 〈100〉 and 〈110〉 directions. For biaxially stressed layers on {111} substrates, the conduction band offset is significantly smaller than for {100} or {110} directions. For the valence band offset, the dependence on crystal orientation is found to be small.

  19. A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization

    Science.gov (United States)

    U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.

    2016-01-01

    A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.

  20. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Science.gov (United States)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  1. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    Science.gov (United States)

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  2. Immobilization of Reduced Graphene Oxide on Hydrogen-Terminated Silicon Substrate as a Transparent Conductive Protector.

    Science.gov (United States)

    Tu, Yudi; Utsunomiya, Toru; Kokufu, Sho; Soga, Masahiro; Ichii, Takashi; Sugimura, Hiroyuki

    2017-10-17

    Silicon is a promising electrode material for photoelectrochemical and photocatalytic reactions. However, the chemically active surface of silicon will be easily oxidized when exposed to the oxidation environment. We immobilized graphene oxide (GO) onto hydrogen-terminated silicon (H-Si) and reduced it through ultraviolet (UV) and vacuum-ultraviolet (VUV) irradiation. This acted as an ultrathin conductive layer to protect H-Si from oxidation. The elemental evolution of GO was studied by X-ray photoelectron spectroscopy, and it was found that GO was partially reduced soon after the deposition onto H-Si and further reduced after UV or VUV light irradiation. The VUV photoreduction demonstrated ca. 100 times higher efficiency compared to the UV reduction based on the irradiation dose. The saturated oxygen-to-carbon ratio (RO/C) of the reduced graphene oxide (rGO) was 0.21 ± 0.01, which is lower than the photoreduction of GO on SiO2 substrate. This indicated the H-Si played an important role in assisting the photoreduction of GO. No obvious exfoliation of rGO was observed after sonicating the rGO-covered H-Si sample in water, which indicated rGO was immobilized on H-Si. The electrical conductivity of H-Si surface was maintained in the rGO-covered region while the exposed H-Si region became insulating, which was observed by conductive atomic force microscopy. The rGO was verified capable to protect the active H-Si against the oxidation under an ambient environment.

  3. Silicone Substrate with Collagen and Carbon Nanotubes Exposed to Pulsed Current for MSC Osteodifferentiation

    Directory of Open Access Journals (Sweden)

    Daniyal Jamal

    2017-01-01

    Full Text Available Autologous human adipose tissue-derived mesenchymal stem cells (MSCs have the potential for clinical translation through their induction into osteoblasts for regeneration. Bone healing can be driven by biophysical stimulation using electricity for activating quiescent adult stem cells. It is hypothesized that application of electric current will enhance their osteogenic differentiation, and addition of conductive carbon nanotubes (CNTs to the cell substrate will provide increased efficiency in current transmission. Cultured MSCs were seeded and grown onto fabricated silicone-based composites containing collagen and CNT fibers. Chemical inducers, namely, glycerol phosphate, dexamethasone, and vitamin C, were then added to the medium, and pulsatile submilliampere electrical currents (about half mA for 5 cycles at 4 mHz, twice a week were applied for two weeks. Calcium deposition indicative of MSC differentiation and osteoblastic activity was quantified through Alizarin Red S and spectroscopy. It was found that pulsed current significantly increased osteodifferentiation on silicone-collagen films without CNTs. Under no external current, the presence of 10% (m/m CNTs led to a significant and almost triple upregulation of calcium deposition. Both CNTs and current parameters did not appear to be synergistic. These conditions of enhanced osteoblastic activities may further be explored ultimately towards future therapeutic use of MSCs.

  4. Vertical optical ring resonators fully integrated with nanophotonic waveguides on silicon-on-insulator substrates.

    Science.gov (United States)

    Madani, Abbas; Kleinert, Moritz; Stolarek, David; Zimmermann, Lars; Ma, Libo; Schmidt, Oliver G

    2015-08-15

    We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step toward 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO(2) nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out-of-plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. In this vertical transmission scheme, resonant filtering of optical signals at telecommunication wavelengths is demonstrated based on subwavelength thick-walled microcavities. Moreover, an array of microtube cavities is prepared, and each microtube cavity is integrated with multiple waveguides, which opens up interesting perspectives toward parallel and multi-routing through a single-cavity device as well as high-throughput optofluidic sensing schemes.

  5. Microstrip Patch Antenna Design with Artificial Material Loadings

    OpenAIRE

    Calafell Rueda, Irene

    2009-01-01

    Conventional microstrip patch antennas can be easily miniaturized by increasing the substrate electric permittivity (εr) although the fractional bandwith (FBW) is dramatically decreased. In this work, the use of metamaterials as artificial antenna substrates is studied as an alternative method to eficiently miniaturize patch antennas, accounting not only electric permittivity εr but also magnetic permeability μr. In addition, a compact FBW formulation proposed by Yaghjian et al. [10] is ap...

  6. Infrared measurement of undercooling during silicon solidification on bare and Si3N4 coated quartz substrates

    Science.gov (United States)

    Yang, C. F.; Tsoutsouva, M. G.; Hsu, H. P.; Lan, C. W.

    2016-11-01

    Undercooling is one of the most significant parameters in the solidification of silicon since it controls the grain structure formation, which determines the final performance of solar cell. Here a new and simple experimental facility is proposed to provide reliable undercooling values and visualize the melting-solidification process when silicon solidifies on a bare and a Si3N4 coated quartz (SiO2) substrate. A lamp heating system was used for the melting, the undercooling temperature was measured with the aid of an infrared single-color pyrometer while the morphologies of the growing silicon on the SiO2 and Si3N4-coated SiO2 substrates are also investigated through a digital microscope. The high precision and accuracy of the given undercooling values when using the present setup comes from the principle of minimizing the background radiation that can significantly influence the pyrometer measurements.

  7. Gladiolus production and nutritional status as a function of silicon application to the substrate

    Directory of Open Access Journals (Sweden)

    Maristela Pereira Carvalho-Zanão

    2017-06-01

    Full Text Available Gladiolus is among the most traditional and important cut flowers in Brazil. Silicon (Si is an element that has increased the production and quality of some ornamental plants. This study aimed at evaluating the production and nutritional status of gladiolus cultivars under greenhouse conditions, according to the Si doses applied to the substrate. The experimental design was randomized blocks, in a 3 x 4 factorial scheme, being three gladiolus cultivars ('White Friendship', 'Rose Friendship' and 'Red Beauty' and four Si doses (0 mg dm-3, 150 mg dm-3, 300 mg dm-3 and 600 mg dm-3, with five replicates. Morphological traits and leaf Si, macro and micronutrients were evaluated. 'White Friendship' and 'Red Beauty' developed taller plants, with a higher diameter and spikes heavier and longer than 'Rose Friendship'. The order of leaf nutrient concentrations for all the cultivars evaluated was the same (K > N > Ca > Mg > S > P > Fe > Mn > B > Zn > Cu, with all of them being classified as Si non-accumulators. Neither the evaluated morphological variables, nor the uptake of the nutrients N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn, were affected by the Si supplementation, suggesting that the addition of Si to the substrate does not enhance the gladiolus production.

  8. Internal friction study of microplasticity of aluminum thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Tanahashi, K.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-12-01

    Internal friction in aluminum thin films 0.2 to 2.0 {mu}m thick on silicon substrates has been investigated between 180 and 360 K as a function of strain amplitude by means of a free-decay method of flexural vibration. According to the constitutive equation, the internal friction in the film alone can be evaluated separately from the data on the film/substrate composite. The amplitude-dependent part of internal friction in aluminum films is found in the strain range approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction can be converted into the plastic strain as a function of the effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 in creases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of the microplastic deformation. At all temperatures examined, the microflow stress at a constant level of the plastic strain varies inversely with the film thickness, which qualitatively agrees with the variation in macroscopic yield stress. 36 refs., 7 figs.

  9. The nanoindentation behaviour of hard and soft films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Beegan, D.; Chowdhury, S.; Laugier, M.T

    2004-11-01

    Carbon nitride and copper films of thickness 550 and 400 nm, respectively have been sputter deposited on silicon substrates. The indentation behaviour of these films is investigated by analysis of the load-displacement curves and by imaging of the residual indents. The Oliver and Pharr method is used to calculate the hardness from the load-displacement curve, while the contact area measured by atomic force microscopy is used in the traditional hardness equation: H=P/A. The carbon nitride films exhibited neither pile-up nor sink-in behaviour and the hardnesses determined by both methods are very similar. The copper films showed pile-up at the indent edges at nearly all loads, and there is then a large difference between the hardness values measured by the two methods. Both films show the effect of the substrate on the hardness values as the indentation depth increases. In order to distinguish the 'true' film hardness from the measured composite hardness, Korsunksy's composite hardness model is applied.

  10. Characterization of the interface between highly conductive Ga:ZnO films and the silicon substrate

    Science.gov (United States)

    Gabás, M.; Ochoa-Martínez, E.; Navarrete-Astorga, E.; Landa-Cánovas, A. R.; Herrero, P.; Agulló-Rueda, F.; Palanco, S.; Martínez-Serrano, J. J.; Ramos-Barrado, J. R.

    2017-10-01

    Gallium-doped zinc oxide films are an interesting alternative for transparent conductive materials. To improve their performance, the interface between the grown layer and the substrate must be fully understood. Accordingly, ZnO and Ga:ZnO films have been deposited onto p-type doped Si (111) substrates by magnetron sputtering for 1, 2, 3 and 20 min and their interfaces characterized by transmission electron microscopy, photoelectron spectroscopy, spectroscopic ellipsometry and impedance spectroscopy. The combination of transmission electron microscopy techniques suggested a more complex interface chemistry in the Ga:ZnO/Si case, a point confirmed by x-ray photoelectron spectroscopy measurements on very thin films. While the ZnO/Si interface consists mostly of silicon oxides, zinc silicates and some Zn0, the Ga:ZnO/Si interface, besides these constituents, has a noticeable amount of Ga:ZnO and small quantities of Ga0. The band alignment deduced from the photoelectron spectroscopy measurements, together with the layers and Si band gap values, evidences a higher work function for the doped film and a smaller conduction band barrier for the Ga:ZnO/Si interface. Concerning the optical and electrical characteristics, spectroscopic ellipsometry revealed no significant differences between the two interfaces, while impedance spectroscopy measurements demonstrated that the Ga:ZnO/Si interface is less resistive than the ZnO/Si one.

  11. Vertically aligned ZnO nanorods on porous silicon substrates: Effect of growth time

    Directory of Open Access Journals (Sweden)

    R. Shabannia

    2015-04-01

    Full Text Available Vertically aligned ZnO nanorods were successfully grown on porous silicon (PS substrates by chemical bath deposition at a low temperature. X-ray diffraction, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, and photoluminescence (PL analyses were carried out to investigate the effect of growth duration (2 h to 8 h on the optical and structural properties of the aligned ZnO nanorods. Strong and sharp ZnO (0 0 2 peaks of the ZnO nanorods proved that the aligned ZnO nanorods were preferentially fabricated along the c-axis of the hexagonal wurtzite structure. FESEM images demonstrated that the ZnO nanorod arrays were well aligned along the c-axis and perpendicular to the PS substrates regardless of the growth duration. The TEM image showed that the top surfaces of the ZnO nanorods were round with a smooth curvature. PL spectra demonstrated that the ZnO nanorods grown for 5 h exhibited the sharpest and most intense PL peaks within the ultraviolet range among all samples.

  12. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    Science.gov (United States)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  13. Nitride-based Quantum-Confined Structures for Ultraviolet-Visible Optical Devices on Silicon Substrates

    KAUST Repository

    Janjua, Bilal

    2017-04-01

    III–V nitride quantum-confined structures embedded in nanowires (NWs), also known as quantum-disks-in-nanowires (Qdisks-in-NWs), have recently emerged as a new class of nanoscale materials exhibiting outstanding properties for optoelectronic devices and systems. It is promising for circumventing the technology limitation of existing planar epitaxy devices, which are bounded by the lattice-, crystal-structure-, and thermal- matching conditions. This work presents significant advances in the growth of good quality GaN, InGaN and AlGaN Qdisks-in-NWs based on careful optimization of the growth parameters, coupled with a meticulous layer structure and active region design. The NWs were grown, catalyst-free, using plasma assisted molecular beam epitaxy (PAMBE) on silicon (Si) substrates. A 2-step growth scheme was developed to achieve high areal density, dislocation free and vertically aligned NWs on Ti/Si substrates. Numerical modeling of the NWs structures, using the nextnano3 software, showed reduced polarization fields, and, in the presence of Qdisks, exhibited improved quantum-confinement; thus contributing to high carrier radiative-recombination rates. As a result, based on the growth and device structure optimization, the technologically challenging orange and yellow NWs light emitting devices (LEDs) targeting the ‘green-yellow’ gap were demonstrated on scalable, foundry compatible, and low-cost Ti coated Si substrates. The NWs work was also extended to LEDs emitting in the ultraviolet (UV) range with niche applications in environmental cleaning, UV-curing, medicine, and lighting. In this work, we used a Ti (100 nm) interlayer and Qdisks to achieve good quality AlGaN based UV-A (320 - 400 nm) device. To address the issue of UV-absorbing polymer, used in the planarization process, we developed a pendeo-epitaxy technique, for achieving an ultra-thin coalescence of the top p-GaN contact layer, for a self-planarized Qdisks-in-NWs UV-B (280 – 320 nm) LED grown

  14. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Carmen, E-mail: carmen.moldovan@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Mihailescu, Carmen, E-mail: carmen_mihail28@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Stan, Dana, E-mail: dana_stan2005@yahoo.com [DDS Diagnostic, 1 Segovia Street, Bucharest (Romania); Ruta, Lavinia, E-mail: laviniacoco@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Iosub, Rodica, E-mail: rodica.iosub@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Gavrila, Raluca, E-mail: raluca.gavrila@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Purica, Munizer, E-mail: munizer.purica@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Vasilica, Schiopu, E-mail: vasilica.schiopu@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania)

    2009-08-30

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab'){sub 2} fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  15. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  16. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    Science.gov (United States)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0

  17. Front-Side Microstrip Line Feeding a Raised Antenna Patch

    Science.gov (United States)

    Hodges, Richard; Hoppe, Daniel

    2005-01-01

    An improved design concept for a printed-circuit patch antenna and the transmission line that feeds the patch calls for (1) a microstrip transmission line on the front (radiative) side of a printed-circuit board based on a thin, high-permittivity dielectric substrate; (2) using the conductor covering the back side of the circuit board as a common ground plane for both the microstrip line and the antenna patch; (3) supporting the antenna patch in front of the circuit board on a much thicker, lower-permittivity dielectric spacer layer; and (4) connecting the microstrip transmission line to the patch by use of a thin wire or narrow ribbon that extends through the thickness of the spacer and is oriented perpendicularly to the circuit-board plane. The thickness of the substrate is typically chosen so that a microstrip transmission line of practical width has an impedance between 50 and 100 ohms. The advantages of this design concept are best understood in the context of the disadvantages of prior design concepts, as explained

  18. Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions

    Science.gov (United States)

    Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward; Moseley, Samuel; Hsieh, Wen-Ting

    2011-01-01

    The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield. This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation. The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum

  19. Self-assembled molecular magnets on patterned silicon substrates: bridging bio-molecules with nanoelectronics.

    Science.gov (United States)

    Chang, Chia-Ching; Sun, Kien Wen; Lee, Shang-Fan; Kan, Lou-Sing

    2007-04-01

    The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (001) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three-dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.

  20. Metamaterial CRLH Antennas on Silicon Substrate for Millimeter-Wave Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Gheorghe Ioan Sajin

    2012-01-01

    Full Text Available The paper presents two composite right/left-handed (CRLH coplanar waveguide (CPW zeroth-order resonant (ZOR antennas which were designed, processed, and electrically characterized for applications in the millimetric wave frequency range. Two CRLH antennas were developed for f=27 GHz and f=38.5, GHz, respectively. The CRLH antenna on f=27 GHz shows a return loss of RL<−18.78 dB at f=26.88 GHz. The −3 dB radiation characteristic beamwidth was approximately 37° and the gain was Gi=2.82 dBi. The CRLH antenna on f=38.5 GHz has a return loss of RL<−38.5 dB at f=38.82 GHz and the −3 dB radiation characteristic beamwidth of approximately 17°. The gains were Gi=1.08 dBi at f=38 GHz and Gi=1.2 dBi at f=38.6 GHz. The maximum measured gain was Gi=1.75 dBi at f=38.2 GHz. It is, upon the authors' knowledge, the first report of millimeter wave CRLH antennas on silicon substrate in CPW technique for use in mm-wave monolithic integrated circuit.

  1. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates.

    Science.gov (United States)

    Sarkar, Anirban; Daniels-Race, Theda

    2013-05-13

    Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs) by electrophoretic deposition (EPD) on semiconductor (silicon) substrates with 3-aminopropyl-triethoxysilane (APTES) surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs) is greatly assisted by the Coulombic force of attraction existing between the positively charged -NH₂ surface groups of APTES and the acid treated, negatively charged nanotubes migrating towards the deposition surfaces. The remarkable deposition characteristics of the CNT coatings by EPD in comparison to the dip coating method and the influence of isopropyl (IPA)-based CNT suspension in the fabricated film quality has also been revealed in this study. The effect of varying APTES concentration (5%-100%) on the Raman spectroscopy and thickness of the deposited CNT film has been discussed in details, as well. The deposition approach has eliminated the need of metal deposition in the electrophoretic deposition approach and, therefore, establishes a cost-effective, fast and entirely room temperature-based fabrication strategy of CNT thin films for a wide range of next generation electronic applications.

  2. Artificial neuron synapse transistor based on silicon nanomembrane on plastic substrate

    Science.gov (United States)

    Liu, Minjie; Huang, Gaoshan; Feng, Ping; Guo, Qinglei; Shao, Feng; Tian, Ziao; Li, Gongjin; Wan, Qing; Mei, Yongfeng

    2017-06-01

    Silicon nanomembrane (SiNM) transistors gated by chitosan membrane were fabricated on plastic substrate to mimic synapse behaviors. The device has both a bottom proton gate (BG) and multiple side gates (SG). Electrical transfer properties of BG show hysteresis curves different from those of typical SiO2 gate dielectric. Synaptic behaviors and functions by linear accumulation and release of protons have been mimicked on this device: excitatory post-synaptic current (EPSC) and paired pulse facilitation behavior of biological synapses were mimicked and the paired-pulse facilitation index could be effectively tuned by the spike interval applied on the BG. Synaptic behaviors and functions, including short-term memory and long-term memory, were also experimentally demonstrated in BG mode. Meanwhile, spiking logic operation and logic modulation were realized in SG mode. Project supported by the National Natural Science Foundation of China (No. 51322201), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120071110025), and Science and Technology Commission of Shanghai Municipality (No. 14JC1400200).

  3. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES Surface Functionalized Silicon Substrates

    Directory of Open Access Journals (Sweden)

    Theda Daniels-Race

    2013-05-01

    Full Text Available Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs by electrophoretic deposition (EPD on semiconductor (silicon substrates with 3-aminopropyl-triethoxysilane (APTES surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs is greatly assisted by the Coulombic force of attraction existing between the positively charged –NH2 surface groups of APTES and the acid treated, negatively charged nanotubes migrating towards the deposition surfaces. The remarkable deposition characteristics of the CNT coatings by EPD in comparison to the dip coating method and the influence of isopropyl (IPA-based CNT suspension in the fabricated film quality has also been revealed in this study. The effect of varying APTES concentration (5%–100% on the Raman spectroscopy and thickness of the deposited CNT film has been discussed in details, as well. The deposition approach has eliminated the need of metal deposition in the electrophoretic deposition approach and, therefore, establishes a cost-effective, fast and entirely room temperature-based fabrication strategy of CNT thin films for a wide range of next generation electronic applications.

  4. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  5. Realization of dual-heterojunction solar cells on ultra-thin ∼25 μm, flexible silicon substrates

    KAUST Repository

    Onyegam, Emmanuel U.

    2014-04-14

    Silicon heterojunction (HJ) solar cells with different rear passivation and contact designs were fabricated on ∼ 25 μ m semiconductor-on-metal (SOM) exfoliated substrates. It was found that the performance of these cells is limited by recombination at the rear-surface. Employing the dual-HJ architecture resulted in the improvement of open-circuit voltage (Voc) from 605 mV (single-HJ) to 645 mV with no front side intrinsic amorphous silicon (i-layer) passivation. Addition of un-optimized front side i-layer passivation resulted in further enhancement in Voc to 662 mV. Pathways to achieving further improvement in the performance of HJ solar cells on ultra-thin SOM substrates are discussed. © 2014 AIP Publishing LLC.

  6. Influence of a silicon (Si14)-based coating substrate for biomaterials on fibroblast growth and human C5a.

    Science.gov (United States)

    Hiebl, B; Hopperdietzel, C; Hünigen, H; Jung, F; Scharnagl, N

    2013-01-01

    Despite considerable efforts in biomaterial development there is still a lack on substrates for cardiovascular tissue engineering approaches which allow the establishment of a tight a functional endothelial layer on their surface to provide hemocompatibility. The study aimed to test the biocompatibility of a silicon (Si14)-based coating substrate (Supershine Medicare, Permanon) which was designed to resist temperatures from -40°C up to 300°C and which allows the use of established heat-inducing sterilization techniques respectively. By X-ray photoelectron spectroscopy it could be validated that this substrate is able to establish a 40-50 nm thick layer of silica, oxygen and carbon without including any further elements from the substrate on an exemplary selection of materials (silicone, soda-lime-silica glass, stainless steel). Analysis of the LDH-release, the cell activity/proliferation (MTS assay) and the cell phenotype after growing 3T3 cells with extracts of the coated materials did not indicate any signs of cytotoxicity. Additionally by measuring the C5a release after exposure of the coated materials with human serum it could be demonstrated, that the coating had no impact on the activation of the complement system. These results generally suggest the tested substrate as a promising candidate for the coating of materials which are aimed to be used in cardiovascular tissue engineering approaches.

  7. Upconversion and tribological properties of β-NaYF{sub 4}:Yb,Er film synthesized on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuanying [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Cheng, Xianhua, E-mail: xhcheng@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-05-15

    Highlights: • β-NaYF{sub 4}:Yb,Er upconversion (UC) film was synthesized on silicon substrate. • Tribological test was used to qualitatively evaluate the adhesion of the UC film. • The UC film was combined with Si substrate by covalent chemical bonds. • The method used in this work can be applicable for other UC films. - Abstract: In this work, β-NaYF{sub 4}:Yb,Er upconversion (UC) film was successfully prepared on silicon (Si) substrate via self-assemble method for the first time. The chemical composition and surface morphology of the UC film were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA), X-ray power diffraction (XRD), and scanning electron microscopy (SEM) measurements. To investigate the effects of KH-560 primer film and chemical reactions on the UC luminescence properties of β-NaYF{sub 4}:Yb,Er UC film, decay profiles of the 540 nm and 655 nm radiations were measured. Furthermore, tribological test was applied to qualitatively evaluate the adhesion of the UC film. The results indicate that the UC film has been successfully prepared on Si substrate by covalent chemical bonds. This work provides a facile way to synthesize β-NaYF{sub 4}:Yb,Er UC film with robust adhesion to the substrate, which can be applicable for other UC films.

  8. Investigation of graphene based miniaturized terahertz antenna for novel substrate materials

    Directory of Open Access Journals (Sweden)

    Rajni Bala

    2016-03-01

    Full Text Available The selection of appropriate substrate material acts as a performance regulator for miniaturized graphene patch antenna. The substrate material not only controls the transport properties of graphene but also influences the resonant properties of the graphene patch antenna. The edge fed microstrip line graphene based rectangular patch antenna is designed here for operating in the frequency range 2.67–2.92 THz for wireless applications. The performance is investigated for silicon nitride, aluminum oxide, boron nitride, silica and quartz substrate materials on the basis of return loss, voltage standing wave ratio (VSWR, absorption cross section, bandwidth and radiation efficiency. The comparison of results shows that silicon nitride exhibits overall excellent performance by the virtue of having higher bandwidth and radiation efficiency as compared to other chosen substrate materials.

  9. Nanocrystalline ZnO film deposited by ultrasonic spray on textured silicon substrate as an anti-reflection coating layer

    Energy Technology Data Exchange (ETDEWEB)

    Sali, S., E-mail: samira_sali@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria); Houari Boumediene University (USTHB), Faculty of Physics, Algiers (Algeria); Boumaour, M. [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria); Kechouane, M. [Houari Boumediene University (USTHB), Faculty of Physics, Algiers (Algeria); Kermadi, S.; Aitamar, F. [Silicon Technology Development Unit (UDTS), 02 Bd, Frantz FANON, B.P. 140, Algiers (Algeria)

    2012-07-01

    A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na{sub 2}CO{sub 3}). Textured with Na{sub 2}CO{sub 3} solution, the sample surface exhibits uniform pyramids with an average height of 5 {mu}m. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn-O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.

  10. Factors influencing the performances of micro-strips gas chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mack, V.; Brom, J.M.; Fang, R.; Fontaine, J.C.; Huss, D.; Kachelhoffer, T.; Kettunen, H.; Levy, J.M.; Pallares, A.; Bergdolt, A.M.; Cailleret, J.; Christophel, E.; Coffin, J.; Eberle, H.; Osswald, F.; Sigward, M.H. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Barthe, S.; Schunck, J.P. [Laboratoire PHASE, 67 - Strasbourg (France)

    1995-12-31

    Damages to MSGCs (Micro-Strips Gas Chambers) induced by discharges have been investigated. Optimization of electrode shapes and/or deposition of a protective coating allows the potential difference between anode and cathode, thus increasing the gain. For prototypes of MSGCs made at the Centre de Recherches Nucleaires, each step of the manufacturing processes was carefully controlled. Results are presented on the influence of cleaning processes on the surface resistance of glass substrates. (author). 21 refs., 8 figs., 2 tabs.

  11. Finite Element Analysis of Silicon Thin Films on Soft Substrates as Anodes for Lithium Ion Batteries

    Science.gov (United States)

    Shaffer, Joseph

    2011-12-01

    The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing its energy density, and by changing the electrode materials, greater energy capacities can be realized. Silicon (Si) is a very attractive option because it has the highest known theoretical charge capacity. Current Si anodes, however, suffer from early capacity fading caused by pulverization from the stresses induced by large volumetric changes that occur during charging and discharging. An innovative system aimed at resolving this issue is being developed. This system incorporates a thin Si film bonded to an elastomeric substrate which is intended to provide the desired stress relief. Non-linear finite element simulations have shown that a significant amount of deformation can be accommodated until a critical threshold of Li concentration is reached; beyond which buckling is induced and a wavy structure appears. When compared to a similar system using rigid substrates where no buckling occurs, the stress is reduced by an order of magnitude, significantly prolonging the life of the Si anode. Thus the stress can be released at high Li-ion diffusion induced strains by buckling the Si thin film. Several aspects of this anode system have been analyzed including studying the effects of charge rate and thin film plasticity, and the results are compared with preliminary empirical measurements to

  12. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    Science.gov (United States)

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. Copyright © 2013 Wiley Periodicals, Inc.

  13. Recent results for the CMS tracker silicon detectors

    CERN Document Server

    Dell'Orso, R

    2001-01-01

    The paper reports on a detailed study of the radiation resistance of p/sup +/ on n silicon microstrip detectors for the CMS tracking system. From this study, it is seen that the use of low-resistivity substrates with crystal lattice orientation promises excellent performance of the Inner Tracker after heavy irradiation in the Large Hadron Collider environment. Furthermore, the advantage of using detectors thicker than 300 mu m in the Outer Tracker is discussed together with experimental measurements on prototypes. (18 refs).

  14. Signal coupling to embedded pitch adapters in silicon sensors

    CERN Document Server

    Artuso, Marina; Bezshyiko, Iaroslava; Blusk, Steven R.; Brundler Denzer, Ruth; Bugiel, Szymon; Dasgupta, Roma; Dendek, Adam Mateusz; Dey, Biplab; Ely, Scott Edward; Lionetto, Federica; Petruzzo, Marco; Polyakov, Ivan; Rudolph, Matthew Scott; Schindler, Heinrich; Steinkamp, Olaf; Stone, Sheldon

    2017-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  15. A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates

    Science.gov (United States)

    Ryu, H. Y.; Jeon, K. S.; Kang, M. G.; Yuh, H. K.; Choi, Y. H.; Lee, J. S.

    2017-04-01

    We investigated the efficiency droop and polarization-induced internal electric field of InGaN blue light-emitting diodes (LEDs) grown on silicon(111) and c-plane sapphire substrates. The efficiency droop of the LED sample grown on silicon substrates was considerably lower than that of the identically fabricated LED sample grown on sapphire substrates. Consequently, the LED on silicon showed higher efficiency at a sufficiently high injection current despite the lower peak efficiency caused by the poorer crystal quality. The reduced efficiency droop for the LED on silicon was attributed to its lower internal electric field, which was confirmed by reverse-bias electro-reflectance measurements and numerical simulations. The internal electric field of the multiple quantum wells (MQWs) on silicon was found to be reduced by more than 40% compared to that of the MQWs on sapphire, which resulted in a more homogenous carrier distribution in InGaN MQWs, lower Auger recombination rates, and consequently reduced efficiency droop for the LEDs grown on the silicon substrates. Owing to its greatly reduced efficiency droop, the InGaN blue LED on silicon substrates is expected to be a good cost effective solution for future lighting technology.

  16. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  17. A Novel Approach for an Integrated Straw Tube-Microstrip Detector

    Science.gov (United States)

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Passamonti, L.; Pierluigi, D.; Pucci, C.; Russo, A.; Saviano, G.; Casali, F.; Bettuzzi, M.; Bianconi, D.; Baruffaldi, F.; Perilli, E.; Massa, F.

    2006-06-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell/spl reg/ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported as well.

  18. A Novel Approach for an Integrated Straw tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2005-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell $^{\\circledR}$ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  19. Structural characterisation of silicon-germanium virtual substrate- based heterostructures grown by low pressure chemical vapour deposition

    CERN Document Server

    Mihai-Dilliway, G D

    2002-01-01

    Silicon-germanium heterostructures incorporating compositionally graded virtual substrates are important for the fabrication of a variety of advanced electronic devices. Their successful application depends critically on their surface morphology and defect content. The aim of this research project is to characterise the way in which these structural properties are influenced by the growth parameters used in low pressure chemical vapour deposition (LPCVD) at the Southampton University Microelectronics Centre (SUMC). To this end, a comparative study of the surface quality and the distribution and density of misfit strain relaxation induced defects in SiGe virtual substrate-based heterostructures grown under varying conditions, was carried out. The growth parameters varied have been: growth temperature, initial and final Ge content, Ge concentration gradient, type of Ge grading profile (linear and stepwise) in the virtual substrate, and thickness and presence of a device structure in the capping layer of constan...

  20. Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering.

    Science.gov (United States)

    Leng, Weinan; Yasseri, Amir A; Sharma, Shashank; Li, Zhiyong; Woo, Han Young; Vak, Doojin; Bazan, Guillermo C; Kelley, Anne Myers

    2006-09-01

    Metal catalyzed, CVD-grown silicon nanowires decorated by chemical assembly of closely spaced Ag nanocrystals were modified with the well-known "silver mirror" reaction and investigated as substrates for surface-enhanced Raman (SERS) and hyper-Raman (SEHRS) spectroscopy. Four chromophores were examined: Rhodamine 6G, crystal violet, a cyanine dye, and a cationic donor-acceptor substituted stilbene. After soaking the substrates overnight in 10(-4) M aqueous chromophore solutions, all four chromophores gave good-quality SERS spectra in < or =60 s using <1 microW of 458-nm cw laser power, and SEHRS spectra are obtained in < or =120 s using <1 mW of mode-locked 916-nm laser power. Results from this substrate are compared with those on colloidal silver nanoparticles deposited as a film, as well as surfaces grown by the silver mirror reaction.

  1. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  2. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are ...

  3. Solar thermoelectric generators fabricated on a silicon-on-insulator substrate

    Science.gov (United States)

    de Leon, Maria Theresa; Chong, Harold; Kraft, Michael

    2014-08-01

    Solar thermal power generation is an attractive electricity generation technology as it is environment-friendly, has the potential for increased efficiency, and has high reliability. The design, modelling, and evaluation of solar thermoelectric generators (STEGs) fabricated on a silicon-on-insulator substrate are presented in this paper. Solar concentration is achieved by using a focusing lens to concentrate solar input onto the membrane of the STEG. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. This thermal model is shown to be in good agreement with actual measurement results. For a 1 W laser input with a spot size of 1 mm, a maximum open-circuit voltage of 3.06 V is obtained, which translates to a temperature difference of 226 °C across the thermoelements and delivers 25 µW of output power under matched load conditions. Based on solar simulator measurements, a maximum TEG voltage of 803 mV was achieved by using a 50.8 mm diameter plano-convex lens to focus solar input to a TEG with a length of 1000 µm, width of 15 µm, membrane diameter of 3 mm, and 114 thermocouples. This translates to a temperature difference of 18 °C across the thermoelements and an output power under matched load conditions of 431 nW. This paper demonstrates that by utilizing a solar concentrator to focus solar radiation onto the hot junction of a TEG, the temperature difference across the device is increased; subsequently improving the TEG’s efficiency. By using materials that are compatible with standard CMOS and MEMS processes, integration of solar-driven TEGs with on-chip electronics is seen to be a viable way of solar energy harvesting where the resulting microscale system is envisioned to have promising applications in on-board power sources, sensor networks, and autonomous microsystems.

  4. A tunable band-stop filter using a metamaterial structure and MEMS bridges on a silicon substrate

    Science.gov (United States)

    Kundu, Avra; Das, Sonali; Maity, Santanu; Gupta, Bhaskar; Lahiri, Samir K.; Saha, Hiranmay

    2012-04-01

    A band-stop filter using a metamaterial structure (complementary U-shaped split resonator; CUSR) on a silicon substrate with a 13% tuning range is presented for Ka band applications. The metamaterial structure is used as a frequency-selective geometry on a coplanar waveguide (CPW) and tunability is achieved with the help of MEMS bridges. The rejection in the stop band is around 25 dB for the entire tuning range. A low insertion loss of 0.5 dB is obtained in the pass band. A simple electrical model of the proposed device and the design guidelines are presented. The filter is realized by a novel fabrication methodology involving the micromachining of two bonded silicon wafers and initial fabricated results are reported.

  5. MOCVD Grown InP and Related Thin Films on Silicon Substrates for Electron and Photonic Devices Applications

    Science.gov (United States)

    Zhong, Zhenyu

    Heterogeneous integration of III-V compound semiconductor with silicon is attracting renewed attention in recent years due to its potential in electronic and photonic applications. For electronic applications, a robust integration allows low-voltage and high-speed III-V based transistors to couple with mature silicon-based technologies for functional circuit blocks. Several successful demonstrations have been achieved by molecular beam epitaxy (MBE). In regard to photonic applications, silicon photonics is an important area of research with its possible replacement of copper interconnects. The well-developed III-V photonic devices can be utilized on a silicon platform if a seamless integration can be realized. This concept has been extensively demonstrated by wafer bonding, whereas the manufacturing complexity, reliability and yield are main challenges in this transfer technique. In this thesis, demonstration of heterogeneous integration of III-V based electron and photonic devices on silicon substrates is described, using Metal organic chemical vapor deposition (MOCVD), which is considered more compatible with CMOS processes with good potential for wafer level manufacturing. In this work, InP thin films with smooth surface morphology were firstly achieved by introducing thin GaAs buffer layers. The GaAs buffer was optimized based on the surface morphology, crystalline quality and in situ RAS signal. The total thickness of the buffer layer was finally reduced to 1.2mum by trimming the GaAs buffers as a thin buffer is more desirable for process integration. On top of the thin InP buffer layers, high performance metamorphic high electron mobility transistors (mHEMTs) have been demonstrated for the first time. To implement photonic devices on the buffers, the epitaxial films quality was further improved utilizing novel post-treatment techniques, including thermal process and strained layers for defects reduction. InGaAs p-i-n photodetectors lattice-matched to In

  6. Transparent graphene microstrip filters for wireless communications

    Science.gov (United States)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  7. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate.

    Science.gov (United States)

    Dave, Utsav D; Ciret, Charles; Gorza, Simon-Pierre; Combrie, Sylvain; De Rossi, Alfredo; Raineri, Fabrice; Roelkens, Gunther; Kuyken, Bart

    2015-08-01

    We demonstrate the generation of an octave-spanning supercontinuum in InGaP membrane waveguides on a silicon substrate pumped by a 1550-nm femtosecond source. The broadband nature of the supercontinuum in these dispersion-engineered high-index-contrast waveguides is enabled by dispersive wave generation on both sides of the pump as well as by the low nonlinear losses inherent to the material. We also measure the coherence properties of the output spectra close to the pump wavelength and find that the supercontinuum is highly coherent at least in this wavelength range.

  8. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  9. The fabrication and characterization of flexible single-crystalline silicon and germanium p-intrinsic-n photodetectors on plastic substrates

    Science.gov (United States)

    Dang, Mengjiao; Yuan, Hao-Chih; Ma, Zhenqiang; Ma, Jianguo; Qin, Guoxuan

    2017-06-01

    The flexible photodetector is the essential device for many of the optoelectronic applications and its performance can be influenced by a number of factors, including semiconductor materials, illumination conditions, device structures, etc. Therefore, in order to better design and use the flexible photodetectors, it is necessary to understand how these factors affect their performance. In this study, we fabricated flexible lateral p-intrinsic-n photodetectors formed with single-crystalline silicon and germanium nanomembranes on polyethylene terephthalate substrates. The performance of the flexible photodetectors with various dimensions is presented under different illumination conditions. The influences of different semiconductor materials, illumination conditions (wavelength and power of the incident light), and dimensions of the intrinsic region (length and width) on the photocurrent and efficiency are investigated, and the underlying mechanisms are studied based on experimental, simulation, and theoretical analysis. The results provide guidelines for the design and fabrication of flexible single-crystalline semiconductor photodetectors on the plastic substrates.

  10. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.

    Science.gov (United States)

    Dawood, M K; Zheng, H; Liew, T H; Leong, K C; Foo, Y L; Rajagopalan, R; Khan, S A; Choi, W K

    2011-04-05

    We describe a new method of fabricating large-area, highly scalable, "hybrid" superhydrophobic surfaces on silicon (Si) substrates with tunable, spatially selective adhesion behavior by controlling the morphologies of Si nanowire arrays. Gold (Au) nanoparticles were deposited on Si by glancing-angle deposition, followed by metal-assisted chemical etching of Si to form Si nanowire arrays. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Au nanoparticles with different size distributions resulted in the synthesis of Si nanowires with very different morphologies (i.e., clumped and straight nanowire surfaces). The difference in nanowire morphology is attributed to capillary force-induced nanocohesion, which is due to the difference in nanowire porosity. The clumped nanowire surface demonstrated the lotus effect, and the straighter nanowires demonstrated the ability to pin water droplets while maintaining large contact angles (i.e., the petal effect). The high contact angles in both cases are explained by invoking the Cassie-Baxter wetting state. The high adhesion behavior of the straight nanowire surface may be explained by a combination of attractive van der Waals forces and capillary adhesion. We demonstrate the spatial patterning of both low- and high-adhesion superhydrophobicity on the same substrate by the simultaneous synthesis of clumped and straight silicon nanowires. The demonstration of hybrid superhydrophobic surfaces with spatially selective, tunable adhesion behavior on single substrates paves the way for future applications in microfluidic channels, substrates for biologically and chemically based analysis and detection where it is necessary to analyze a particular droplet in a defined location on a surface, and as a platform to study in situ chemical mixing and interfacial reactions of liquid pearls.

  11. Drift mechanism of mass transfer on heterogeneous reaction in crystalline silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, S.A. [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation); Osipov, A.V., E-mail: Andrey.V.Osipov@gmail.com [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation)

    2017-05-01

    This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. In the proposed hydraulic model, the dependences of the film thickness both on the gas pressure and time have been calculated. It was shown that not only the qualitative but also quantitative correspondence between theoretical and experimental results takes place. As one would expect, due to the Einstein relation, at short growth times the drift model coincides with the diffusion one. Consequences of this drift mechanism of epitaxial film growing are discussed. - Graphical abstract: This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. - Highlights: • It is established that the greater pressure, the smaller is the reaction rate. • The reaction product prevents penetration of the reagent into a reaction zone. • For description the hydraulic model of crystal lattice channels is developed. • Theoretical results for polytropic

  12. Floating Substrate Process. Large-Area Silicon Sheet Task, Low-Cost Solar Array Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkel, M.; Hall, R.N.

    1978-06-23

    The work described was directed toward the demonstration of the practical feasibility of the Floating Substrate Process for the growth of silicon sheet. Supercooling of silicon--tin alloy melts was studied. Values as high as 78/sup 0/C at 1100/sup 0/C and 39/sup 0/C at 1200/sup 0/C were observed, corresponding to supersaturation parameter values 0.025 and 0.053 at 1050/sup 0/C and 1150/sup 0/C, respectively. The interaction of tin with silane gas streams was investigated over the temperature range 1000 to 1200/sup 0/C. Single-pass conversion efficiencies exceeding 30% were obtained. The growth habit of spontaneously-nucleated surface growth was determined to be consistent with dendritic and web growth from <111> singly-twinned triangular nucleii. Surface growth of interlocking silicon crystals, thin enough to follow the surface of the liquid and with growth velocity as high as 5 mm/min, was obtained. Large area single-crystal growth along the melt surface was not achieved. Small single-crystal surface growth was obtained which did not propagate beyond a few millimeters. The probable reason for the polycrystalline growth is the poisoning of the growth interface by impurities.

  13. Pendeo-epitaxial growth of GaN on SiC and silicon substrates via metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Linthicum, K.J.; Gehrke, T.; Thomson, D.; Ronning, C.; Carlson, E.P.; Zorman, C.A.; Mehregany, M.; Davis, R.F.

    1999-07-01

    Pendeo-epitaxial lateral growth (PE) of GaN epilayers on (0001) 6H-silicon carbide and (111) Si substrates has been achieved. Growth on the latter substrate was accomplished through the use of a 3C-SiC transition layer. The coalesced PE GaN epilayers were characterized using scanning electron diffraction, x-ray diffraction and photoluminescence spectroscopy. The regions of lateral growth exhibited {approximately} 0.2{degree} crystallographic tilt relative to the seed layer. The GaN seed and PE epilayers grown on the 3C-SiC/Si substrates exhibited comparable optical characteristics to the GaN seed and PE grown on 6H-SiC substrates. The near band-edge emission of the GaN/3C-SiC/Si seed was 3.450 eV (FWHM {approximately} 19 meV) and the GaN/6H-SiC seed was 3.466 eV (FWHM {approximately} 4 meV).

  14. Effect of annealing temperature on optical and electrical properties of metallophthalocyanine thin films deposited on silicon substrate

    Directory of Open Access Journals (Sweden)

    Skonieczny R.

    2016-09-01

    Full Text Available The cobalt phthalocyanine (CoPc thin films (300 nm thick deposited on n-type silicon substrate have been studied using micro-Raman spectroscopy, atomic force spectroscopy (AFM and I-V measurement. The CoPc thin layers have been deposited at room temperature by the quasi-molecular beam evaporation technique. The micro-Raman spectra of CoPc thin films have been recorded in the spectral range of 1000 cm-1 to 1900 cm-1 using 488 nm excitation wavelength. Moreover, using surface Raman mapping it was possible to obtain information about polymorphic forms distribution (before and after annealing of metallophthalocyanine (α and β form from polarized Raman spectra. The I-V characteristics of the Au/CoPc/n-Si/Al Schottky barrier were also investigated. The obtained results showed that influence of the annealing process plays a crucial role in the ordering and electrical conductivity of the molecular structure of CoPc thin films deposited on n-type silicon substrate.

  15. Silicon accumulation and distribution in petunia and sunflower grown in a rice hull-amended substrate

    Science.gov (United States)

    Silicon (Si) is a plant beneficial element associated with mitigation of abiotic and biotic stresses. Most greenhouse-grown ornamentals are considered low Si accumulators based on foliar Si concentration. However, Si accumulates in all tissues, and there is little published data on the distributio...

  16. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.|info:eu-repo/dai/nl/325844208

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  17. Giant Dirac point shift of graphene phototransistors by doped silicon substrate current

    Directory of Open Access Journals (Sweden)

    Masaaki Shimatani

    2016-03-01

    Full Text Available Graphene is a promising new material for photodetectors due to its excellent optical properties and high-speed response. However, graphene-based phototransistors have low responsivity due to the weak light absorption of graphene. We have observed a giant Dirac point shift upon white light illumination in graphene-based phototransistors with n-doped Si substrates, but not those with p-doped substrates. The source-drain current and substrate current were investigated with and without illumination for both p-type and n-type Si substrates. The decay time of the drain-source current indicates that the Si substrate, SiO2 layer, and metal electrode comprise a metal-oxide-semiconductor (MOS capacitor due to the presence of defects at the interface between the Si substrate and SiO2 layer. The difference in the diffusion time of the intrinsic major carriers (electrons and the photogenerated electron-hole pairs to the depletion layer delays the application of the gate voltage to the graphene channel. Therefore, the giant Dirac point shift is attributed to the n-type Si substrate current. This phenomenon can be exploited to realize high-performance graphene-based phototransistors.

  18. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Comparison of CAD Formulas, Method of Moments and Experiments for Rectangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Z. Novacek

    2003-04-01

    Full Text Available Calculations of several cases for rectangular microstrip patchantennas using more accurate cavity model have been compared with theconventional cavity calculations, expressions generated by curvefitting to full wave solutions and method of moments. Calculated aswell as experimental values have been studied for different thickness,patch sizes and substrate materials with different permittivities andlosses.

  20. Performance of microstrip proportional counters for x-ray astronomy on spectrum-roentgen-gamma

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; BAHNSEN, A; Christensen, Finn Erland

    1991-01-01

    DSRI will provide a set of four imaging proportional counters for the Danish-Soviet X-ray telescopes XSPECT/SODART. The sensor principle is based on the novel micro-strip proportional counter (MSPC), where the strip electrodes are deposited by photolithography onto a rigid substrate. The MSPC off...

  1. Synthesis and optical properties of zinc oxide nanoparticles grown on Sn-coated silicon substrate by thermal evaporation method

    Science.gov (United States)

    Somvanshi, Divya; Jit, S.

    2013-01-01

    The Zinc oxide (ZnO) nanoparticles have been grown on n type silicon substrate using tin (Sn) metal as seed layer by a low cost thermal evaporation method. SEM images show that the ZnO nanoparticles have been uniformely grown on the whole substrate surface relatively perpendicular to the substrate. The Photoluminescence (PL) spectrum consists of strong UV emission at wavelength of 355 nm along with a broad near band edge (NBE) emission covering a wide range of wavelength from 370 to 550 nm. This broadening region exhibits blue, violet and green emission due to the presence of native defects such as zinc interstitial (Zni), oxygen vacancy (VO) and oxygen interstitial (Oi) in the band gap of ZnO. Raman spectroscopy shows the existence of E2 mode at 437 cm-1 which confirms the pure wurtzite hexagonal phase of ZnO. The optical and structural properties of ZnO nanoparticles could be explored for blue-violet light emitting diodes (LEDs) and gas sensing applications.

  2. Plasma silicon oxide films on garnet substrates: measurement of their thickness and refractive index by the prism coupling technique.

    Science.gov (United States)

    Hou, T W; Mogab, C J

    1981-09-15

    The prism coupling technique has been used to measure the refractive index and thickness of plasma silicon oxide films deposited on garnet substrates. The film thickness is also measured with a mechanical stylus (Talystep) for comparison. A linearly polarized He-Ne laser at 632.8-nm wavelength or a He-Cd laser at 441.6-nm wavelength is used as the light source in the prism coupler. The use of the He-Ne laser is demonstrated to result in a fluctuation in the detector output due to light interference in the substrate. The He-Cd laser is shown to be superior because the substrate is sufficiently absorbing that interference is eliminated. It also permits thickness measurements on thinner films. The agreement between thickness measurements by the prism coupler and the mechanical stylus is within +/-0.015 microm for films of 0.4 microm or thicker and +/-0.010 microm for thinner films. The error in thickness measurement caused by an error in refractive index assumed or in determining the coupling angles for films thinner than 0.30 microm is also estimated.

  3. Nano-cube MgO formed on silicon substrate using pulsed laser deposition.

    Science.gov (United States)

    Kaneko, Satoru; Ito, Takeshi; Akiyama, Kensuke; Yasui, Manabu; Hirabayashi, Yasuo; Soga, Masayasu; Miyake, Yumiko; Yoshimoto, Mamoru

    2012-03-01

    Nano-cube MgO particles were formed on Si substrates by deposition of an MgO target using pulsed laser deposition method. An epitaxial film grows on Si(001) substrate with its contraction of lattice constants. In this study, expecting high quality MgO film, the MgO film prepared in the oxygen pressure ranging from 75-400 mTorr at the high temperature of -750 degrees C. The deposited MgO showed the growth of (001) preferred orientation on the Si(001) substrate. However, X-ray Photoelectron Spectroscopy (XPS) indicated the MgO film did not form a continuous film on the Si surface. Interestingly, the surface morphology observed by an Atomic Force Microscopy (AFM) showed nano-cube MgO particles scattered on the smooth surface of Si substrate. After annealing the nano-cube MgO, the shape of MgO particles were changed from nano-cube to round shaped particles. The AFM image of the surface showed round shaped MgO nanoparticles scattered on rough surface. X-ray Diffraction (XRD) revealed the epitaxial growth of MgO(001) with cubic on cubic arrangement on the Si(001) substrate (MgO[100] parallel to Si[100]).

  4. Design and Fabrication of Graphene Reinforced Polymer Conductive Patch-Based Inset Fed Microstrip Antenna

    Science.gov (United States)

    Deepak, A.; Kannan, P. Muthu; Shankar, P.

    This work explores the design and fabrication of graphene reinforced polyvinylidene fluoride (PVDF) patch-based microstrip antenna. Primarily, antenna was designed at 6GHz frequency and simulation results were obtained using Ansoft HFSS tool. Later fabrication of antenna was carried out with graphene-PVDF films as conducting patch deposited on bakelite substrate and copper as ground plane. Graphene-PVDF films were prepared using solvent casting process. The radiation efficiency of fabricated microstrip patch antenna was 48% entailing it to be adapted as a practically functional antenna. Both simulated and the practical results were compared and analyzed.

  5. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates.

    Science.gov (United States)

    Ihn, Soo-Ghang; Song, Jong-In; Kim, Tae-Wook; Leem, Dong-Seok; Lee, Takhee; Lee, Sang-Geul; Koh, Eui Kwan; Song, Kyung

    2007-01-01

    GaAs nanowires were epitaxially grown on Si(001) and Si(111) substrates by using Au-catalyzed vapor-liquid-solid (VLS) growth in a solid source molecular beam epitaxy system. Scanning electron microscopy analysis revealed that almost all the GaAs nanowires were grown along directions on both Si substrates for growth conditions investigated. The GaAs nanowires had a very uniform diameter along the growth direction. X-ray diffraction data and transmission electron microscopy analysis revealed that the GaAs nanowires had a mixed crystal structure of the hexagonal wurtzite and the cubic zinc-blende. Current-voltage characteristics of junctions formed by the epitaxially grown GaAs nanowires and the Si substrate were investigated by using a current-sensing atomic force microscopy.

  6. Cathodic cage plasma deposition of TiN and TiO{sub 2} thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Romulo R. M. de [Department of Mechanics, Federal Institute of Education, Science, and Technology of Piaui, Praça da Liberdade, 1597, CEP 64000-040 Teresina, Piaui, Brazil and Department of Mechanical Engineering, Federal University of Piaui, Campus Min. Petronio Portela, Ininga, CEP 64049-550 Teresina, Piaui (Brazil); Sato, Patricia S.; Nascente, Pedro A. P., E-mail: nascente@ufscar.br [Department of Materials Engineering, Federal University of Sao Carlos, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, Sao Paulo (Brazil); Viana, Bartolomeu C. [Department of Physics, Federal University of Piaui, Campus Min. Petronio Portela, Ininga, CEP 64049-550 Teresina, Piaui (Brazil); Alves, Clodomiro [Department of Exact and Natural Sciences, Federal Rural University of Semi Arido, Avenida Francisco Mota, 572, CEP 59625-900 Mossoro, Rio Grande do Norte (Brazil); Nishimoto, Akio [Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2015-07-15

    Cathodic cage plasma deposition (CCPD) was used for growing titanium nitride (TiN) and titanium dioxide (TiO{sub 2}) thin films on silicon substrates. The main advantages of the CCPD technique are the uniformity, tridimensionality, and high rate of the film deposition that occurs at higher pressures, lower temperatures, and lower treatment times than those used in conventional nitriding treatments. In this work, the influence of the temperature and gas atmosphere upon the characteristics of the deposited films was investigated. The TiN and TiO{sub 2} thin films were characterized by x-ray diffraction, scanning electron microscopy, and Raman spectroscopy to analyze their chemical, structural, and morphological characteristics, and the combination of these results indicates that the low-cost CCPD technique can be used to produce even and highly crystalline TiN and TiO{sub 2} films.

  7. Optoelectrical Properties of a Heterojunction with Amorphous InGaZnO Film on n-Silicon Substrate

    Science.gov (United States)

    Jiang, D. L.; Ma, X. Z.; Li, L.; Xu, Z. K.

    2017-10-01

    An a-IGZO/ n-Si heterojunction device has been fabricated at room temperature by depositing amorphous InGaZnO (a-IGZO) film on n-type silicon substrate by plasma-assisted pulsed laser deposition and its optoelectrical properties studied in detail. The heterojunction showed distinct rectifying characteristic with rectification ratio of 1.93 × 103 at ±2 V bias and reverse leakage current density of 1.6 × 10-6 A cm-2 at -2 V bias. More interestingly, the heterojunction not only showed the characteristic of unbiased photoresponse, but could also detect either ultraviolet or ultraviolet-visible light by simply changing the polarity of the bias applied to the heterojunction. The variable photoresponse phenomenon and the charge transport mechanisms in the heterojunction are explained based on the energy band diagram of the heterojunction.

  8. Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric

    Science.gov (United States)

    Guo, Xiaohui; Huang, Ying; Cai, Xia; Liu, Caixia; Liu, Ping

    2016-04-01

    To achieve the wearable comfort of electronic skin (e-skin), a capacitive sensor printed on a flexible textile substrate with a carbon black (CB)/silicone rubber (SR) composite dielectric was demonstrated in this paper. Organo-silicone conductive silver adhesive serves as a flexible electrodes/shielding layer. The structure design, sensing mechanism and the influence of the conductive filler content and temperature variations on the sensor performance were investigated. The proposed device can effectively enhance the flexibility and comfort of wearing the device asthe sensing element has achieved a sensitivity of 0.02536%/KPa, a hysteresis error of 5.6%, and a dynamic response time of ~89 ms at the range of 0-700 KPa. The drift induced by temperature variations has been calibrated by presenting the temperature compensation model. The research on the time-space distribution of plantar pressure information and the experiment of the manipulator soft-grasping were implemented with the introduced device, and the experimental results indicate that the capacitive flexible textile tactile sensor has good stability and tactile perception capacity. This study provides a good candidate for wearable artificial skin.

  9. Immobilization and detection of platelet-derived extracellular vesicles on functionalized silicon substrate: cytometric and spectrometric approach.

    Science.gov (United States)

    Gajos, Katarzyna; Kamińska, Agnieszka; Awsiuk, Kamil; Bajor, Adrianna; Gruszczyński, Krzysztof; Pawlak, Anna; Żądło, Andrzej; Kowalik, Artur; Budkowski, Andrzej; Stępień, Ewa

    2017-02-01

    Among the various biomarkers that are used to diagnose or monitor disease, extracellular vesicles (EVs) represent one of the most promising targets in the development of new therapeutic strategies and the application of new diagnostic methods. The detection of circulating platelet-derived microvesicles (PMVs) is a considerable challenge for laboratory diagnostics, especially in the preliminary phase of a disease. In this study, we present a multistep approach to immobilizing and detecting PMVs in biological samples (microvesicles generated from activated platelets and human platelet-poor plasma) on functionalized silicon substrate. We describe the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and spectroscopic ellipsometry methods to the detection of immobilized PMVs in the context of a novel imaging flow cytometry (ISX) technique and atomic force microscopy (AFM). This novel approach allowed us to confirm the presence of the abundant microvesicle phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) on a surface with immobilized PMVs. Phosphatidylcholine groups (C5H12N+; C5H15PNO4+) were also detected. Moreover, we were able to show that ellipsometry permitted the immobilization of PMVs on a functionalized surface to be evaluated. The sensitivity of the ISX technique depends on the size and refractive index of the analyzed microvesicles. Graphical abstract Human platelets activated with thrombin (in concentration 1IU/mL) generate population of PMVs (platelet derived microvesicles), which can be detected and enumerated with fluorescent-label method (imaging cytometry). Alternatively, PMVs can be immobilized on the modified silicon substrate which is functionalized with a specific IgM murine monoclonal antibody against human glycoprotein IIb/IIIa complex (PAC-1). Immobilized PMVs can be subjected to label-free analyses by means ellipsometry, atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry

  10. Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment

    Science.gov (United States)

    Zahid, A.; Dai, B.; Hong, R.; Zhang, D.

    2017-10-01

    In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.

  11. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhou, Shizhong; Lin, Zhiting [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641 (China); Li, Guoqiang, E-mail: msgli@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641 (China); Department of Electronic Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is a direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.

  12. A Comprehensive Computational Design for Microstrip Passive and Active Linear Circuits

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2012-08-01

    Full Text Available In this paper, a complete program called HHSS2 is introduced which is a user-oriented program capable of designing linear active and passive microstrip circuits such as amplifiers, oscillators, mixers, lowpass filters, and couplers. The substrate parameters and the characteristic impedance of the microstrip lines are given to the program as a common statement. Examples for the design of a 3-GHz high gain amplifier, 2.6-GHz oscillator, ring coupler operated at 3.33 GHz, Lange coupler operated at 3.3 GHz, and maximally-flat lowpass filter operated at 2 GHz with 0.75 GHz cutoff frequency are introduced.    Key Words: Computational Microstrip Circuit Design, Microwave Circuits, Computer Aided Design.

  13. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates.

    Science.gov (United States)

    Kim, Joonyeong; Seidler, Paul; Wan, Lai Sze; Fill, Catherine

    2009-01-01

    Amino-functionalized organic films were prepared by self-assembling 3-aminopropyltriethoxysilane (APTES) on silicon wafers in either anhydrous toluene or phosphate-buffered saline (PBS) for varied deposition times. Fourier transform infrared spectroscopy (FTIR) and ellipsometry have shown that the structure and thickness of APTES films are governed by the deposition time and reaction solution. Deposition from an anhydrous toluene solution produces APTES films ranging from 10 to 144 A in thickness, depending on the reaction time. FTIR spectra indicate that film growth initially proceeds by adsorption of APTES to the silicon surface followed by siloxane condensation, and after an extended period of time APTES molecules accumulate on the underlying APTES film by either covalent or noncovalent interactions. In contrast, spectroscopically indistinguishable APTES films in thickness ranging from 8 to 13 A were formed when deposition was conducted in aqueous solutions. Measured water contact angles indicate that APTES films deposited in aqueous solutions are more hydrophilic compared to those prepared in toluene solutions. Fluorescence measurements revealed that APTES films prepared in toluene solutions contain more reactive surface amino groups by ca. 3 to 10 times than those prepared in aqueous solutions for the identical reaction time.

  14. Fabrication of open-top microchannel plate using deep X-ray exposure mask made with silicon on insulator substrate

    CERN Document Server

    Fujimura, T; Etoh, S I; Hattori, R; Kuroki, Y; Chang, S S

    2003-01-01

    We propose a high-aspect-ratio open-top microchannel plate structure. This type of microchannel plate has many advantages in electrophoresis. The plate was fabricated by deep X-ray lithography using synchrotron radiation (SR) light and the chemical wet etching process. A deep X-ray exposure mask was fabricated with a silicon on insulator (SOI) substrate. The patterned Si microstructure was micromachined into a thin Si membrane and a thick Au X-ray absorber was embedded in it by electroplating. A plastic material, polymethylmethacrylate (PMMA) was used for the plate substrate. For reduction of the exposure time and high-aspect-ratio fast wet development, the fabrication condition was optimized with respect to not the exposure dose but to the PMMA mean molecular weight (M.W.) changing after deep X-ray exposure as measured by gel permeation chromatography (GPC). Decrement of the PMMA M.W. and increment of the wet developer temperature accelerated the etching rate. Under optimized fabrication conditions, a microc...

  15. Surface Recombination of Crystalline Silicon Substrates Passivated by Atomic-Layer-Deposited AlOx

    Science.gov (United States)

    Arafune, Koji; Miki, Shohei; Matsutani, Ryosuke; Hamano, Junpei; Yoshida, Haruhiko; Tachibana, Tomihisa; Lee, Hyun Ju; Ogura, Atsuhi; Ohshita, Yoshio; Satoh, Shin-ichi

    2012-04-01

    AlOx films as passivation layers for p-type crystalline silicon were prepared by atomic layer deposition with ozone as an oxidant, and the effects of the AlOx film thickness and deposition temperature on the maximum recombination velocity (Smax) were evaluated. Smax is improved by increasing the layer thickness but saturates at a layer thickness of about 30 nm. In the case of samples deposited at room temperature, Smax is improved fivefold when the thickness is increased from 20 to 33 nm. Smax also improved as the deposition temperature was increased to 300 °C then deteriorated when it was further increased to 350 °C. After postdeposition annealing, we obtained an Smax of 8.5 cm/s.

  16. Autoassembly of nanofibrous zeolite crystals via silicon carbide substrate self-transformation.

    Science.gov (United States)

    Ivanova, Svetlana; Louis, Benoit; Ledoux, Marc-Jacques; Pham-Huu, Cuong

    2007-03-21

    ZSM-5 zeolite nanofibers with a size of 90 nm and lengths up to several micrometers were prepared via in-situ silicon carbide support self-transformation. The morphology and aggregation degree of these zeolite nanofibers could be modified by adjusting the pH conditions, the nature of the mineralizer (OH- or F-), or the synthesis duration. The novelty consists of the preparation of zeolite nanowires without the use of any organogelating agent, along with controlled macroscopic shapes (extrudates, foam monolith) for direct use as a structured reactor. Finally, these materials are catalytically active in the conversion of methanol to gasoline range hydrocarbons (MTG process) and hence exhibit the typical solid acidity of zeolitic materials.

  17. Three dimensional accurate morphology measurements of polystyrene standard particles on silicon substrate by electron tomography.

    Science.gov (United States)

    Hayashida, Misa; Kumagai, Kazuhiro; Malac, Marek

    2015-12-01

    Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lechen, E-mail: yanglechen@163.com [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China); Shi, Xueshun [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Science and Technology on Electronic Test and Measurement Laboratory, Qingdao 266555, Shandong Province (China); Chen, Kunfeng [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Fu, Kai; Zhang, Baoshun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China)

    2013-12-15

    In this paper, two-dimensional photonic crystals working at terahertz (THz) frequency is analyzed, a multi-frequency terahertz microstrip patch antenna on photonic crystal substrate is presented and its electromagnetic wave propagation phenomenon is investigated. The proposed antenna can work at five frequency points' scope at terahertz frequency regions, and the radiation efficiency is as high as ∼96%. The photonic crystal structure of the substrate is used to enhance the gain, directivity and radiation efficiency of the antenna.

  19. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    Science.gov (United States)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  20. Structural and microstructural characterization of III-nitrides on 6H-silicon carbide (0001) substrates

    Science.gov (United States)

    Preble, Edward Alfred

    Characterization of nitride films on 6H-SiC (0001) wafers via x-ray, TEM, and AFM was accomplished on standard GAN thin films with AlN or AlGaN buffer layers. TEM sample thinning capability was improved through the use of Nomarski in an optical microscope to gauge the thickness of the sample during preparation. TEM analysis was then completed of Au and Pt films deposited on chemical vapor cleaned GaN with annealed up to 800°C. Chemical reactions were detected in x-ray measurements of the 800°C Pt samples and GaN/metal interface roughening were confirmed by TEM images in both metals. Interface roughening is attributed to the chemical reactions and interfacial stresses greater than the yield stress of the metal created during heat treatments by the difference in the thermal expansion coefficients of the Ga and the metals. The GaN rocking curves were found to track very closely to the values of the underlying substrate and changes in buffer layer growth temperatures were found to change the screw and edge dislocation populations of subsequent GaN layers. GaN grown on 1030°C AlN buffer layers showed the lowest edge dislocation populations when compared against buffers grown in the range of 1010--1220°C, even though the 1220°C AlN was much smoother. AlGaN buffer layers provided more edge dislocation reduction, with a 1090°C Al0.2Ga0.8N layer yielding the best GaN rocking curve values found in this work. GaN films with AlN buffer layers grown on hydrogen etched SiC substrates did not show rocking curve improvement when compared against samples with unetched substrates. The AlN layers showed extremely narrow, substrate limited, on-axis rocking curve values, but it is not clear as to whether additional defects are present that may broaden the off-axis rocking curves, causing the poorer results seen in the GaN films. Reciprocal space maps of uncoalesced, maskless pendeo epitaxy samples revealed that the wing regions are shielded from poor substrate material when

  1. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    Directory of Open Access Journals (Sweden)

    Johan Jaime Medina Benavente

    Full Text Available Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions.

  2. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2014-01-07

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

  3. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  4. Resonant frequency of microstrip antennas calculated from TE-excitation of an infinite strip embedded in a grounded dielectric slab

    Science.gov (United States)

    Bailey, M. C.

    1979-01-01

    The calculation of currents induced by a plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer the resonant width (or frequency) of rectangular microstrip antennas. By placing the strip inside the dielectric, the effect of a dielectric cover of the same material as the substrate can be included in the calculation of resonant frequency. A comparison with measured results indicated agreement of 1 percent or better for rectangular microstrip antennas constructed on Teflon-fiberglass substrate.

  5. SAW characteristics of AlN films sputtered on silicon substrates.

    Science.gov (United States)

    Clement, M; Vergara, L; Sangrador, J; Iborra, E; Sanz-Hervás, A

    2004-04-01

    This article is focused on the analysis of the electroacoustic response of surface acoustic wave (SAW) filters made of aluminium nitride (AlN) thin films on various types of Si wafers. AlN films with (00.2) orientation were deposited by RF reactive sputtering of an Al target in Ar and N(2) admixtures on Si(100) and (111) wafers with resistivities ranging between 10 and 2000 Omega cm. The electroacoustic response of SAW filters with an acoustic wavelength of 40 microm was analysed by measuring the Sij parameters with a network analyser. We have determined that the out-of-band loss is directly related to the Si substrate resistivity, varying from 26 dB for 10 Omega cm to 55 dB for 2000 Omega cm. The SAW velocity depends on the orientation of the Si wafer, being approximately 4700 m/s for Si(111) and 5100 m/s for Si(100). The electroacoustic responses of the SAW filters were fitted by computations based on a simple circuital model that takes into account parasitic effects such as airborne electromagnetic coupling and conduction through the substrate. This procedure provides accurate values of the electromechanical coupling factor k2 even for devices with poor characteristics. Good quality SAW filters of AlN on high resistivity Si(100) wafers with k2 larger than 0.12% are demonstrated.

  6. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    Directory of Open Access Journals (Sweden)

    M. Sreekanth

    2015-06-01

    Full Text Available In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D is substantially suppressed as compared to graphitic peak (G resulting in significant reduction in ID/IG value in CNT/Al/Si film. Field emission (FE current density of CNT/Al/Si film (∼25 mA/cm2 is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm2. A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  7. Neuron Stimulation Device Integrated with Silicon Nanowire-Based Photodetection Circuit on a Flexible Substrate

    Directory of Open Access Journals (Sweden)

    Suk Won Jung

    2016-12-01

    Full Text Available This paper proposes a neural stimulation device integrated with a silicon nanowire (SiNW-based photodetection circuit for the activation of neurons with light. The proposed device is comprised of a voltage divider and a current driver in which SiNWs are used as photodetector and field-effect transistors; it has the functions of detecting light, generating a stimulation signal in proportion to the light intensity, and transmitting the signal to a micro electrode. To show the applicability of the proposed neural stimulation device as a high-resolution retinal prosthesis system, a high-density neural stimulation device with a unit cell size of 110 × 110 μ m and a resolution of 32 × 32 was fabricated on a flexible film with a thickness of approximately 50 μm. Its effectiveness as a retinal stimulation device was then evaluated using a unit cell in an in vitro animal experiment involving the retinal tissue of retinal Degeneration 1 (rd1 mice. Experiments wherein stimulation pulses were applied to the retinal tissues successfully demonstrate that the number of spikes in neural response signals increases in proportion to light intensity.

  8. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate

    Science.gov (United States)

    D’Archivio, Angelo Antonio; Maggi, Maria Anna; Odoardi, Antonella; Santucci, Sandro; Passacantando, Maurizio

    2018-02-01

    Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.

  9. Investigations of chemical modifications of amino-terminated organic films on silicon substrates and controlled protein immobilization.

    Science.gov (United States)

    Kim, Joonyeong; Cho, Joungmo; Seidler, Paul M; Kurland, Nicholas E; Yadavalli, Vamsi K

    2010-02-16

    Fourier transform infrared spectroscopy by grazing-angle attenuated total reflection (FTIR-GATR), ellipsometry, atomic force microscopy (AFM), UV-visible spectroscopy, and fluorescence microscopy were employed to investigate chemical modifications of amino-terminated organic thin films on silicon substrates, protein immobilization, and the biological activity and hydrolytic stability of immobilized proteins. Amino-terminated organic films were prepared on silicon wafers by self-assembling 3-aminopropyltriethoxysilane (APTES) in anhydrous toluene. Surface amino groups were derivatized into three different linkers: N-hydroxysuccinimide (NHS) ester, hydrazide, and maleimide ester groups. UV-visible absorption measurements and fluorescence microscopy revealed that more than 40% of surface amino groups were chemically modified. Protein immobilization was carried out on modified APTES films containing these linkers via coupling with primary amines (-NH(2)) in intact monoclonal rabbit immunoglobulin G (IgG), the aldehyde (-CHO) of an oxidized carbohydrate residue in IgG, or the sulfhydryl (-SH) of fragmented half-IgG, respectively. FTIR spectra contain vibrational signatures of these functional groups present in modified APTES films and immobilized IgGs. Changes in the APTES film thickness after chemical modifications and protein immobilization were also observed by ellipsometric measurements. The biological activity and long-term hydrolytic stability of immobilized IgGs on modified APTES films were estimated by fluorescence measurements of an adsorbed antigen, fluorescein isothiocyanate (FITC)-labeled goat anti-rabbit IgG (FITC-Ab). Our results indicate that the FITC-Ab binding capacity of half-IgG immobilized via maleimide groups is greater than that of the oxidized IgG and the intact IgG immobilized via hydrazide and NHS ester groups, respectively. In addition, IgGs immobilized using all coupling chemistries were hydrolytically stable in phosphate-buffered saline (PBS).

  10. Epitaxial growth and properties of zinc oxide thin films on silicon substrates

    Science.gov (United States)

    Guo, Wei

    ZnO is an attractive material for promising applications in short wavelength optoelectronic devices because of its wide band gap and large exciton binding energy at room temperature (RT). This dissertation is devoted to the development of high quality, single-crystalline ZnO-based light-emitting devices on Si substrates, involving thin film synthesis by pulsed laser deposition, structure-property characterization, prototype device fabrication, strain engineering of thick films, and p-type doping with antimony (Sb). ZnO epitaxy with exceptional quality was achieved on (111) Si substrates for the advantages of inexpensive large wafers, mature device technologies, and multifunctional device integration. Epitaxial bixbyite oxides M2O3 (M=Sc, Lu, Gd) were originally employed as the buffer layer between ZnO and Si. The single-crystalline ZnO films has superior structural, electrical, and optical qualities than all previous reports of ZnO on Si, such as narrow o-rocking curves, low dislocation densities, high electron mobilities at RT, and comparable photoluminescence characteristics to those of ZnO single crystal. The epitaxial orientation relationship, intrinsic donors, microstructural defects, and residual strain of the films were investigated. Prototype n-ZnO/ M2O3/p-Si devices were constructed, and ZnO near-band-edge emission was observed in electroluminescence at RT. Strain engineering of thick films by insertion of low-temperature grown ZnO interlayers was performed to improve the cracking critical thickness to ≥2 mum. Reliable ZnO p-type doping using large-size-mismatched Sb dopant was achieved for the films grown on both (0001) Al2O 3 and (100) Si substrates, with a resistivity of 4.2-60 O cm, a Hall mobility of 0.5-7.7 cm2/V s, and a hole concentration of 3.2x1016-2.2x1017 cm-3 . The origin of p-type conductivity was elucidated from conjugated effects of oxygen-rich growth condition, adequate doping concentration, and dislocation-facilitated formation of

  11. Heterojunction photodiode fabricated from hydrogen treated ZnO nanowires grown on p-silicon substrate.

    Science.gov (United States)

    Shao, Dali; Yu, Mingpeng; Lian, Jie; Sawyer, Shayla

    2012-11-19

    A heterojunction photodiode was fabricated from ZnO nanowires (NWs) grown on a p-type Si (100) substrate using a hydrothermal method. Post growth hydrogen treatment was used to improve the conductivity of the ZnO NWs. The heterojunction photodiode showed diode characteristics with low reverse saturation current (5.58 × 10(-7) A), relatively fast transient response, and high responsivity (22 A/W at 363 nm). Experiments show that the photoresponsivity of the photodiode is dependent on the polarity of the voltages. The photoresponsivity of the device was discussed in terms of the band diagrams of the heterojunction and the carrier diffusion process.

  12. Dual-Band Microstrip Patch Antenna Miniaturization Using Metamaterial

    Directory of Open Access Journals (Sweden)

    Indrasen Singh

    2013-01-01

    Full Text Available A dual-band microstrip patch antenna is designed and analyzed using metamaterial artificial substrate. Metamaterial based substrate is designed using Square Split Ring Resonator (SSRR and Wire Strip. The antenna is tuned to work at two resonating frequencies in the frequency range from 1 GHz to 4 GHz depending on the geometric specifications of SSRR, strip line, radiating patch, and feed location point. Proposed antenna provides good return loss behavior at both resonating frequencies. The obtained VSWR at both resonating frequencies is very much near to 1. Proposed antenna covers applications in mobile communication and Wi-MAX. Proposed patch antenna is compared with the conventional patch antenna, which shows the significant miniaturization as compared to conventional patch antenna.

  13. Performance Investigations of Quasi-Yagi Loop and Dipole Antennas on Silicon Substrate for 94 GHz Applications

    Directory of Open Access Journals (Sweden)

    Osama M. Haraz

    2014-01-01

    Full Text Available This paper introduces the design and implementation of two high gain Quasi-Yagi printed antennas developed on silicon substrate for 94 GHz imaging applications. The proposed antennas are based on either driven loop or dipole antennas fed by a coplanar waveguide (CPW feeding structure. For better matching with the driven antennas, a matching section has been added between the CPW feedline and the driven antenna element. To improve the gain of either loop or dipole antennas, a ground reflector and parasitic director elements have been added. Two Quasi-Yagi antenna prototypes based on loop and dipole antenna elements have been fabricated and experimentally tested using W-band probing station (75–110 GHz. The measured results show good agreement with simulated results and confirm that the proposed antennas are working. In addition, a feed and matching configuration is proposed to enable coupling a microbolometer element to the proposed Quasi-Yagi antenna designs for performing radiation pattern measurements.

  14. Study of nanoparticles TiO{sub 2} thin films on p-type silicon substrate using different alcoholic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Muaz, A. K. M.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my; Arshad, M. K. Md. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia)

    2016-07-06

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films. The prepared TiO{sub 2} sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO{sub 2}) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO{sub 2} thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO{sub 2} films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO{sub 2} thin films were measured using two-point-probe technique.

  15. Effect of time and of precursor molecule on the deposition of hydrophobic nanolayers on ethyelene tetrafluoroethylene–silicon oxide substrates

    Directory of Open Access Journals (Sweden)

    Gabriella Rossi

    2016-01-01

    Full Text Available Abstract A method was developed for generating transparent and hydrophobic nanolayers chemisorbed onto flexible substrates of ethylene tetrafluoroethylene–silicon oxide (ETFE–SiOx. In particular, the effect of the deposition time and of the precursor molecule on the nanocoating process was analyzed with the aim of pursuing an optimization of the above method in an industrial application perspective. It was found that precursor molecule of triethoxysilane allowed to obtain better hydrophobic properties on the SiOx surface in shorter times compared to trichlorosilane, reaching the 92 % of final contact angle (CA value of 106° after only 1 h of deposition. The optical properties and surface morphology were also assessed in function of time, revealing that an initial transparency reduction is followed by a subsequent transmittance increase during the self assembly of fluoroalkylsilanes on the SiOx surface, coherently with the surface roughness analysis data. Encouraging results were also obtained in terms of oleophobic properties improvement of the nanocoated surfaces.

  16. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate: a molecular dynamics study

    Science.gov (United States)

    Wei, Ye; Sang, Shengbo; Zhou, Bing; Deng, Xiao; Chai, Jing; Ji, Jianlong; Ge, Yang; Huo, Yuanliang; Zhang, Wendong

    2017-09-01

    Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices’ properties. Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110).

  17. Potential applications of microstrip devices with traveling wave resonators

    Directory of Open Access Journals (Sweden)

    Glushechenko E. N.

    2013-05-01

    Full Text Available The shortcomings of the known microwave filters in microstrip lines are considered, the advantages of the use of directional traveling-wave filters in microstrip performance and examples of their potential applications are shown.

  18. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    Science.gov (United States)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of

  19. Fabrication and characterization of surface barrier detector from commercial silicon substrate; Fabricacao e caracterizacao de detector de barreira de superficie a partir de substrato de silicio comercial

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Julio Batista Rodrigues

    2016-10-01

    In this work it was developed radiation detectors silicon surface barrier that were capable of detecting the presence of gamma radiation from a low energy of iodine-125 seeds used in brachytherapy treatments. >From commercial silicon substrates detectors were developed, one sequence left of chemical treatments to the surfaces of these substrates with the intention of minimizing the possible noise generated, validation of the samples obtained as diodes, ensuring detector characteristics and effective use as detector for Iodine-125 radioactive sources with energy of about 25 keV and Americium-251 with energy on the order of 59 keV. Finished performing the analysis of the obtained energy spectra and so it was possible to observe the ability of these detectors to measure the energy from these seeds. (author)

  20. Energy Dissipation and the High-Strain Rate Dynamic Response of Vertically Aligned Carbon Nanotube Ensembles Grown on Silicon Wafer Substrate

    Directory of Open Access Journals (Sweden)

    P. Raju Mantena

    2013-01-01

    Full Text Available The dynamic mechanical behavior and high-strain rate response characteristics of a functionally graded material (FGM system consisting of vertically aligned carbon nanotube ensembles grown on silicon wafer substrate (VACNT-Si are presented. Flexural rigidity (storage modulus and loss factor (damping were measured with a dynamic mechanical analyzer in an oscillatory three-point bending mode. It was found that the functionally graded VACNT-Si exhibited significantly higher damping without sacrificing flexural rigidity. A Split-Hopkinson pressure bar (SHPB was used for determining the system response under high-strain rate compressive loading. Combination of a soft and flexible VACNT forest layer over the hard silicon substrate presented novel challenges for SHPB testing. It was observed that VACNT-Si specimens showed a large increase in the specific energy absorption over a pure Si wafer.

  1. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Science.gov (United States)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  2. Preparation and magnetic properties of Ni–P–La coating by electroless plating on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yun [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Jihui, E-mail: jhwang@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, Jing [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China); Li, Haiqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007 (China)

    2016-02-28

    Graphical abstract: The content of Ni phase, which is the main ferromagnetic phase in Ni–P–La coating, is almost increased linearly with the concentration of La in plating solution. - Highlights: • The La element improves the magnetic properties of Ni–P–La coating. • Magnetism increases but the stability of bath decreases with La content and pH. • Coatings peel off at high temperature (≥80 °C) and magnetism is weak in short time. • The optimum is the La{sub 2}O{sub 3} of 10 mg L{sup −1}, pH of 5.0, temperature of 75 °C and time of 45 min. - Abstract: Ni–P–La coatings were prepared on Si substrate by electroless plating method under different La content, pH value, plating temperature and plating time. The surface morphology, chemical composition, structure and magnetic properties of coatings were observed and determined by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and vibrating sample magnetometer (VSM). The results showed that Ni–P–La coating is smooth and uniform with a cellular morphology grown in columnar manner. With the increase of La content, pH value and plating time, the thickness and saturation magnetization of coating are increased continuously, but the stability of plating bath is decreased greatly with La content and pH value. Under higher plating temperature, the thickness and saturation magnetization of coatings are obviously enhanced. But too high plating temperature is harmful to the plating bath and coating. The optimum plating conditions for Ni–P–La coating is La{sub 2}O{sub 3} addition of 10 mg L{sup −1}, pH value of 5.0, plating temperature of 75 °C and plating time of 45 min. The role of La element is to benefit the deposition of Ni element, promote the formation of Ni phase during the annealing process, and thus improve the magnetic properties of Ni–P–La coating.

  3. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    Science.gov (United States)

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  4. Germanium thin film integration on silicon substrates via oxide heterostructure buffers

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Alessandro

    2010-02-15

    Following the GeOI heteroepitaxial approach, Ge was deposited by molecular beam epitaxy (MBE) on PrO{sub 2}(111)/Si(111) support systems, and the initial growth stages were studied by means of in-situ reflection high energy electron diffraction (RHEED), and X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS, respectively). It was shown that in the first evaporation stages an amorphous GeO{sub 2}-like layer forms as a result of the Ge adatom interaction with the PrO{sub 2} substrate, namely the diffusion of lattice oxygen from the dielectric into the growing semiconductor deposit. In consequence the PrO{sub 2}(111) buffer oxide is fully reduced to an oxygen-deficient cub (cubic) Pr{sub 2}O{sub 3}(111) film structure. Since no oxidizing species are available in the process anymore, the Ge oxide layer converts under continuous Ge evaporation to GeO, which is volatile at the deposition temperature ({proportional_to}550 C). The sublimation of GeO uncovers the cub-Pr{sub 2}O{sub 3}(111) surface, which finally provides a thermodynamically stable template for the heteroepitaxial growth of elemental Ge. A Volmer-Weber growth mode is initially observed, which, by properly tuning the deposition parameters, results after island coalescence in the formation of a closed and flat Ge/cub-Pr{sub 2}O{sub 3}/Si heterostructure. Ge epilayer thickness (in the range 20-1000 nm) and morphology were studied ex-situ by means of X-ray reflectivity (XRR) and secondary electron microscopy (SEM). Dynamic secondary ion mass spectroscopy (D-SIMS) was employed to study the chemical compositions of the Ge films, which turned out to be free from Si and Pr impurities at the sensitivity of some parts-per-billion (ppbs), even after supplying a high thermal budget. Then, laboratory- and synchrotron-based X-ray diffraction (XRD) analyses were performed to assess the epitaxial relationship and the defect structure of the Ge epifilms. It was demonstrated that the Ge layers grow single

  5. Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

    Directory of Open Access Journals (Sweden)

    Huang Jingjian

    2014-01-01

    Full Text Available The high cross-polarization of the microstrip integrated balun-fed printed dipole antenna cannot meet the demands of many engineering applications. This kind of antennas has high cross-polarization levels (about −20 dB. And we find that the high cross-polarization radiation is mainly produced by the microstrip integrated balun rather than the dipole itself. The very limited method to lower the cross-polarization level of this kind of antennas is to reduce the substrate thickness. In this paper, to improve the low cross-polarized performance, firstly, an equivalent model is presented to analyze the cross-polarization radiation. Secondly, a novel structure with low cross-polarization is proposed. The microstrip integrated balun is enclosed by a center slotted cavity. The E-field of the microstrip integrated balun is transformed parallel to the dipole arms by the slot, so the radiation of the cross-polarized component is suppressed. Measured results show that this structure can achieve a bandwidth wider than 40% while reducing the cross-polarization level to less than −35 dB within the frequency band.

  6. Low Cost Glass and Glass-Ceramic Substrates for Thin-Film Silicon Solar Cells: Final Subcontract Report, 25 January 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ast, D.; Nemchuk, N.; Krasula, S.

    2002-07-01

    This report describes how Cornell University researchers developed several low-cost and simple barrier layers and tested their effectiveness both analytically (by SIMS) and by evaluating the electrical characteristics of devices fabricated on barrier-coated substrates. Devices fabricated included both majority-carrier devices (thin-film transistors) and minority-carrier devices (p-i-n junction diodes simulating solar cells) using various deposition techniques including the chemical vapor deposition of polysilicon from silane at low pressures (at Cornell University) and from dichlorosilane at atmospheric pressure (cooperation with Neudeck at Purdue University). The structure of the films deposited was investigated by using TEM and X-ray analysis. The performance of the minority- and majority-carrier devices fabricated on barrier-coated glass ceramic substrates was found to be identical to devices fabricated on control substrates of oxidized silicon and fused silica.

  7. Combined Effect of Surface Nano-Topography and Delivery of Therapeutics on the Adhesion of Tumor Cells on Porous Silicon Substrates

    KAUST Repository

    De Vitis, S.

    2016-02-23

    Porous silicon is a nano material in which pores with different sizes, densities and depths are infiltrated in conventional silicon imparting it augmented properties including biodegradability, biocompatibility, photoluminescence. Here, we realized porous silicon substrates in which the pore size and the fractal dimension were varied over a significant range. We loaded the described substrates with a PtCl(O, O′ − acac)(DMSO) antitumor drug and determined its release profile as a function of pore size over time up to 15 days. We observed that the efficacy of delivery augments with the pore size moving from small (∼ 8nm, efficiency of delivery ∼ 0.2) to large (∼ 55nm, efficiency of delivery ∼ 0.7). Then, we verified the adhesion of MCF-7 breast cancer cells on the described substrates with and without the administration of the antitumor drug. This permitted to decouple and understand the coincidental effects of nano-topography and a controlled dosage of drugs on cell adhesion and growth. While large pore sizes guarantee elevated drug dosages, large fractal dimensions boost cell adhesion on a surface. For the particular case of tumor cells and the delivery of an anti-tumor drug, substrates with a small fractal dimension and large pore size hamper cell growth. The competition between nano-topography and a controlled dosage of drugs may either accelerate or block the adhesion of cells on a nanostructured surface, for applications in tissue engineering, regenerative medicine, personalized lab-on-a-chips, and the rational design of implantable drug delivery systems.

  8. Evolvement of cell-substrate interaction over time for cells cultivated on a 3-aminopropyltriethoxysilane ({gamma}-APTES) modified silicon dioxide (SiO{sub 2}) surface

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chung-Ping [Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 40705, Taiwan, ROC (China); School of Medicine, National Yang Ming University, Taipei, 11221, Taiwan, ROC (China); Hsu, Po-Yen [Department of Electrical Engineering, National Chi Nan University, Puli, Nantou, 54561, Taiwan, ROC (China); Wu, You-Lin, E-mail: ylwu@ncnu.edu.tw [Department of Electrical Engineering, National Chi Nan University, Puli, Nantou, 54561, Taiwan, ROC (China); Hsu, Wan-Yun [Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung, 40705, Taiwan, ROC (China); Lin, Jing-Jenn [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli, Nantou, 54561, Taiwan, ROC (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Cell-substrate interaction of single cells was observed directly from the post-cell-removal imprint left on {gamma}-APTES soft substrate surface. Black-Right-Pointing-Pointer The time evolvement of the cell-substrate interaction can be obtained by cultivating cells on the {gamma}-APTES surface for different periods of time. Black-Right-Pointing-Pointer The cell-substrate interaction property can be found from the post-cell-removal surface morphology profiles determined by AFM. Black-Right-Pointing-Pointer It was found that the cancer cells tend to form deeper trenches along the circumference of the imprints, while the normal cells do not. - Abstract: Since cell-substrate interaction is directly related to the traction force of the cell, the cell property can be judged from the imprint it leaves on the soft substrate surface onto which the cell is cultured. In this letter, the evolvement of the cell-substrate interaction over time was observed by cultivating cells on a 3-aminopropyltriethoxysilane ({gamma}-APTES) modified silicon dioxide (SiO{sub 2}) surface for different periods of time. The cell-substrate interaction property as a function of time can then be found from the post-cell-removal surface morphology profiles determined by atomic force microscopy (AFM). Different surface morphology profiles were found between normal cells and cancer cells. It was found that the cancer cells tend to form deeper trenches along the circumference of the imprints, while the normal cells do not. In addition, our results indicated that normal cells involve cell-substrate interaction mechanisms that are different from those for cancer cells.

  9. A Novel Bandpass Filter Using a Combination of Open-Loop Defected Ground Structure and Half-Wavelength Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    P. Vagner

    2010-09-01

    Full Text Available This paper deals with a defected ground structure (DGS open-loop resonator analysis and bandpass filter design, using coupled DGS and microstrip resonators. The combination of DGS and microstrip resonators allows using top and bottom sides of the microwave substrate, therefore the resonators can partially overlap and a desired coupling coefficient can be easily achieved. The open-loop DGS resonator properties are investigated, as well as coupling types between the resonators. Finally, two bandpass filters are designed and simulated. The sixth order filter is fabricated and the results are compared with measurement. The introduced structure represents an alternative to a conventional parallel-coupled half wavelength microstrip resonator bandpass filter.

  10. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  11. Passive and active reconfigurable microstrip reflectarray antennas

    NARCIS (Netherlands)

    Hajian, M.

    2008-01-01

    Novel solutions for conceiving microstrip reflectarray antennas (MRA) using various types of patches are presented in this PhD thesis. The approach is based on the integration of a varactor diode active device into elementary hollow patch radiators. In the first part of the thesis, a new concept for

  12. Experience with the silicon strip detector of ALICE

    NARCIS (Netherlands)

    Nooren, G.J.L.

    2009-01-01

    The Silicon Strip Detector (SSD) forms the two outermost layers of the ALICE Inner Track- ing System (ITS), connecting the TPC with the inner layers of the ITS. The SSD consists of 1698 double-sided silicon microstrip modules, 95 μm pitch, distributed in two cylindrical bar- rels, whose radii are

  13. Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors

    Directory of Open Access Journals (Sweden)

    Ali Daliri

    2014-01-01

    Full Text Available Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection.

  14. Low Loss, Finite Width Ground Plane, Thin Film Microstrip Lines on Si Wafers

    Science.gov (United States)

    Ponchak, George E.; Margomenos, Alexandros; Katehi, Linda P. B.

    1999-01-01

    Si RFICs on standard, 2 Omega-cm. Si wafers require novel transmission lines to reduce the loss caused by the resistive substrate. One such transmission line is commonly called Thin Film Microstrip (TFMS), which is created by depositing a metallic ground plane, thin insulating layers, and the microstrip lines on the Si wafer. Thus, the electric fields are isolated from the Si wafer. In this paper, it is shown through experimental results that the ground plane of TFMS may be finite width and comparable to the strip width in size while still achieving low loss on 2 Omega-cm Si. Measured effective permittivity shows that the field interaction with the Si wafer is small.

  15. IMPROVEMENT OF PARAMETERS OF STACKED MICROSTRIP PATCH ANTENNA USING EDGE COUPLED PARASITIC PATCHES AND METAMATERIAL SUPERSTRATE

    Directory of Open Access Journals (Sweden)

    Shridhar E. Mendhe

    2016-06-01

    Full Text Available High directive stacked multilayer and edge coupled planar microstrip patch antenna made from a single-layer helical resonating metamaterial superstrate has been investigated. Metamaterials are artificial materials whose properties not found in nature. These materials have negative permittivity and permeability and negative index of refraction over a frequency band. In this paper, an innovative design of stacked rectangular microstrip patch antenna using four edge coupled parasitic patches and helical resonating metamaterial superstrate is explored. The Rogers RO3003 material of dielectric constant 3 has been used as the substrate of the antenna. Investigation is carried out related to bandwidth, gain and directivity enhancement by using edge coupled patches and metamaterial superstrate also the study of highest reduction in the size of helical resonator is carried out and highest reduction in size of helical resonator is achieved at a metallic fill ratio of 0.2. The proposed antenna exhibits wide percentage bandwidth of approximately 72.62%.

  16. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.

    Science.gov (United States)

    Harrison, R K; Ben-Yakar, Adela

    2010-10-11

    We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

  17. 77 GHz MEMS antennas on high-resistivity silicon for linear and circular polarization

    KAUST Repository

    Sallam, M. O.

    2011-07-01

    Two new MEMS antennas operating at 77 GHz are presented in this paper. The first antenna is linearly polarized. It possesses a vertical silicon wall that carries a dipole on top of it. The wall is located on top of silicon substrate covered with a ground plane. The other side of the substrate carries a microstrip feeding network in the form of U-turn that causes 180 phase shift. This phase-shifter feeds the arms of the dipole antenna via two vertical Through-Silicon Vias (TSVs) that go through the entire wafer. The second antenna is circularly polarized and formed using two linearly polarized antennas spatially rotated with respect to each other by 90 and excited with 90 phase shift. Both antennas are fabricated using novel process flow on a single high-resistivity silicon wafer via bulk micromachining. Only three processing steps are required to fabricate these antennas. The proposed antennas have appealing characteristics, such as high polarization purity, high gain, and high radiation efficiency. © 2011 IEEE.

  18. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yueh-Chieh; Jiang, Gerald [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Tu, Chia-Hao [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Chang Chi [Institute of Nanotechnology and Microsystems Engineering, No.1, University Road, Tainan 701, Taiwan (China); Liu, Chuan-pu; Ting, Jyh-Ming [Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan (China); Lee, Hsin-Li [Industrial Technology Research Institute - South, Tainan 701, Taiwan (China); Tzeng, Yonhua [Institute of Microelectronics, No.1, University Road, Tainan 701, Taiwan (China); Advanced Optoelectronics Technology Center, No.1, University Road, Tainan 701, Taiwan (China); Auciello, Orlando [Argonne National Laboratory, Materials Science Division, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States)

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  19. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements.

    Science.gov (United States)

    Käppler, Andrea; Windrich, Frank; Löder, Martin G J; Malanin, Mikhail; Fischer, Dieter; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2015-09-01

    The presence of microplastics in aquatic ecosystems is a topical problem and leads to the need of appropriate and reliable analytical methods to distinctly identify and to quantify these particles in environmental samples. As an example transmission, Fourier transform infrared (FTIR) imaging can be used to analyze samples directly on filters without any visual presorting, when the environmental sample was afore extracted, purified, and filtered. However, this analytical approach is strongly restricted by the limited IR transparency of conventional filter materials. Within this study, we describe a novel silicon (Si) filter substrate produced by photolithographic microstructuring, which guarantees sufficient transparency for the broad mid-infrared region of 4000-600 cm(-1). This filter type features holes with a diameter of 10 μm and exhibits adequate mechanical stability. Furthermore, it will be shown that our Si filter substrate allows a distinct identification of the most common microplastics, polyethylene (PE), and polypropylene (PP), in the characteristic fingerprint region (1400-600 cm(-1)). Moreover, using the Si filter substrate, a differentiation of microparticles of polyesters having quite similar chemical structure, like polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), is now possible, which facilitates a visualization of their distribution within a microplastic sample by FTIR imaging. Finally, this Si filter can also be used as substrate for Raman microscopy-a second complementary spectroscopic technique-to identify microplastic samples.

  20. Large area lateral epitaxial overgrowth (LEO) of gallium nitride (GAN) thin films on silicon substrates and their characterization. Final report 1 March--30 September 99

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.; Linthicum, K.J.; Gehrke, T.; Thomson, D.; Ronning, C.

    1999-09-01

    Pendeo-epitaxial lateral growth (PE) of GaN epilayers on (0001) 6H-silicon carbide and (111) Si substrates has been achieved. Growth on the latter substrate was accomplished through the use of a 3C-SiC transition layer. The coalesced PE GaN epilayers were characterized using scanning electron diffraction, x-ray diffraction and photoluminescence spectroscopy. The regions of lateral growth exhibited {approximately} 0.2 deg crystallographic tilt relative to the seed layer. The GaN seed and PE epilayers grown on the 3C-SiC/Si substrates exhibited comparable optical characteristics to the GaN seed and PE grown on 6H- SiC substrates. The near band-edge emission of the GaN/3C-SiC/Si seed was 3.450 eV (FWHM approx. 19 meV) and the GaN/6H-SiC seed was 3.466 eV (FWHM approx. 4 meV).

  1. Flexible Microstrip Circuits for Superconducting Electronics

    Science.gov (United States)

    Chervenak, James; Mateo, Jennette

    2013-01-01

    Flexible circuits with superconducting wiring atop polyimide thin films are being studied to connect large numbers of wires between stages in cryogenic apparatus with low heat load. The feasibility of a full microstrip process, consisting of two layers of superconducting material separated by a thin dielectric layer on 5 mil (approximately 0.13 mm) Kapton sheets, where manageable residual stress remains in the polyimide film after processing, has been demonstrated. The goal is a 2-mil (approximately 0.051-mm) process using spin-on polyimide to take advantage of the smoother polyimide surface for achieving highquality metal films. Integration of microstrip wiring with this polyimide film may require high-temperature bakes to relax the stress in the polyimide film between metallization steps.

  2. Study on Horizontally Polarized Omnidirectional Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Kun Wei

    2016-01-01

    Full Text Available A horizontally polarized omnidirectional microstrip antenna is proposed in this paper. The structure of designed antenna is with two back-to-back horizontally polarized microstrip antenna elements. Gain variation on main radiation plane of this new antenna is analyzed and radiation theory is deduced; formula of directivity on main radiation plane is given. Better omnidirectional characteristic of this antenna can be obtained by decreasing patch physical length. Both simulated and measured results verify the omnidirectional radiation patterns and input impedance characteristics. Good omnidirectional radiation patterns (gain variation in E-plane less than ±0.4 dBi and input impedance characteristics are obtained; moreover, cross polarization less than −20 dBi is achieved.

  3. 5G MIMO Conformal Microstrip Antenna Design

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.

  4. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition.

    Science.gov (United States)

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-01-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  5. The Frequency Characteristics of Coupled Microstrip Lines

    Directory of Open Access Journals (Sweden)

    Audrius Krukonis

    2013-05-01

    Full Text Available The article deals with the use of the finite difference time domain method and uniaxial perfectly matching layer for analysis of frequency characteristics of coupled microstrip transmission lines. It describes calculation techniques for voltage, current, characteristic impedance and effective dielectric constant of each signal conductor. Besides, it analyses the frequency dependencies of characteristic impedance and the effective dielectric constant.Article in Lithuanian

  6. Characterization of Gd{sub 2}O{sub 2}S:Tb scintillator screen with pixelated silicon substrate for digital X-ray imaging application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Yul

    2010-02-15

    X-ray imaging detector in combination with scintillator screens have been widely used in digital X-ray imaging applications. The degradation of spatial resolution by light diffusion in scintillator layer can be overcome by pixelation. In this research, terbium doped gadolinium oxysulfide (Gd{sub 2}O{sub 2}S:Tb) was used as scintillation material for pixelated scintillator screen based on silicon substrates with micropore array of various dimensions fabricated using the photolithography and deep reactive ion etching (DRIE) process. The relative light output and the modulation transfer function (MTF) of each fabricated scintillator screen were measured by a cooled CCD for analysis of the effect of pixelated silicon substrate and optimization of micropore geometry in pixelated scintillator screen. The light transport simulation in pixelated scintillator geometry is conducted using MCNPX and LightTools simulation code. The simulation result is well matched with measurement results when compared of the measurement and simulation results. As the results, higher spatial resolution was obtained for smaller micropore pitch. The light output of the pixelated scintillator screens with equivalent fill factor decreases as the micropore pitch size decreases or the micropore thickness increases. This is most likely due to the light absorption in silicon wall surfaces. Therefore, further treatment of the wall surface, such as SiO2 reflective coating, seems necessary to compensate the reduction of the light generated. Then, the micropore thickness can be optimized to maximize the light output. The Gd{sub 2}O{sub 2}S:Tb pixelated scintillator screen that has optimized micropore geometry could be applied to digital X-ray imaging.

  7. Impact of deposition temperature on the properties of SnS thin films grown over silicon substrate—comparative study of structural and optical properties with films grown on glass substrates

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-11-01

    Tin sulfide (SnS) thin films were chemically deposited over silicon substrate in a temperature range of 250 °C–400 °C. The effects of deposition temperature on the structural, morphological and optical properties of the films were evaluated. All films present an orthorhombic SnS structure with a preferred orientation along (040). High absorption coefficients (in the range of 105 cm‑1) were found for all obtained films with an increase in α value when deposition temperature decreases. Furthermore, the effects of substrate type were investigated based on comparison between the present results and those obtained for SnS films grown under the same deposition conditions but over glass substrate. The results suggest that the formation of SnS films onto glass substrate is faster than onto silicon substrate. It is found that the substrate nature affects the orientation growth of the films and that SnS films deposited onto Si present more defects than those deposited onto glass substrate. The optical transmittance is also restricted by the substrate type, mostly below 1000 nm. The obtained results for SnS films onto silicon suggest their promising integration within optoelectronic devices.

  8. Investigation of microstructure and morphology for the Ge on porous silicon/Si substrate hetero-structure obtained by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Gouder, S. [IM2NP Aix-Marseille Universités, UMR CNRS n°7334, Faculté des Sciences St-Jérôme - Case 142, 13397 Marseille Cedex 20 France (France); Electronics Department, University Hadj Lakhdar, Batna 05000 (Algeria); Mahamdi, R. [Electronics Department, University Hadj Lakhdar, Batna 05000 (Algeria); Aouassa, M.; Escoubas, S.; Favre, L.; Ronda, A.; Berbezier, I. [IM2NP Aix-Marseille Universités, UMR CNRS n°7334, Faculté des Sciences St-Jérôme - Case 142, 13397 Marseille Cedex 20 France (France)

    2014-01-01

    Thick porous silicon (PS) buffer layers are used as sacrificial layers to epitaxially grow planar and fully relaxed Ge membranes. The single crystal Ge layers have been deposited by molecular beam epitaxy (MBE) on PS substrate. During deposition, the pore network of PS layers has been filled with Ge. We investigate the structure and morphology of PS as fabricated and after annealing at various temperatures. We show that the PS crystalline lattice is distorted and expanded in the direction perpendicular to the substrate plane due to the presence of chemisorbed –OH. An annealing at high temperature (> 500 °C), greatly changes the PS morphology and structure. This change is marked by an increase of the pore diameter while the lattice parameter becomes tensily strained in the plane (compressed in the direction perpendicular). The morphology and structure of Ge layers are investigated by transmission electron microscopy, high resolution X-ray diffraction and atomic force microscopy as a function of the deposition temperature and deposited thickness. The results show that the surface roughness, level of relaxation and Si-Ge intermixing (Ge content) depend on the growth temperature and deposited thickness. Two sub-layers are distinguished: the layer incorporated inside the PS pores (high level of intermixing) and the layer on top of the PS surface (low level of intermixing). When deposited at temperature > 500 °C, the Ge layers are fully relaxed with a top Si{sub 1−x}Ge{sub x} layer x = 0.74 and a very flat surface. Such layer can serve as fully relaxed ultra-thin SiGe pseudo-substrate with high Ge content. The epitaxy of Ge on sacrificial soft PS pseudo-substrate in the experimental conditions described here provides an easy way to fabricate fully relaxed SiGe pseudo-substrates. Moreover, Ge thin films epitaxially deposited by MBE on PS could be used as relaxed pseudo-substrate in conventional microelectronic technology. - Highlights: • We have developed a rapid

  9. Electrodynamic modeling applied to micro-strip gas chambers

    Energy Technology Data Exchange (ETDEWEB)

    Fang, R

    1998-12-31

    Gas gain variations as functions of time, counting rate and substrate resistivity have been observed with Micro-Strip Gas Chambers (MSGC). Such a chamber is here treated as a system of 2 dielectrics, gas and substrate, with finite resistivities. Electric charging between their interface results in variations of the electric field and the gas gain. The electrodynamic equations (including time dependence) for such a system are proposed. A Rule of Charge Accumulation (RCA) is then derived which allows to determine the quantity and sign of charges accumulated on the surface at equilibrium. In order to apply the equations and the rule to MSGCs, a model of gas conductance induced by ionizing radiation is proposed, and a differential equation and some formulae are derived to calculate the rms dispersion and the spatial distribution of electrons (ions) in inhomogeneous electric fields. RCA coupled with a precise simulation of the electric fields gives the first quantitative explanation of gas gain variations of MSGCs. Finally an electrodynamic simulation program is made to reproduce the dynamic process of gain variation due to surface charging with an uncertainty of at most 15% relative to experimental data. As a consequence, the methods for stabilizing operation of MSGCs are proposed. (author) 18 refs.

  10. Bonding of the Inner Tracker Silicon Microstrip Modules

    CERN Document Server

    Bosi, Filippo; Brianzi, Mirko; Cariola, P; Costa, Salvatore; Demaria, Natale; Dumitrache, Floarea; Farano, R; Fiore, Luigi; Galet, G; Giudice, Nunzio; Kaminski, A; Mammini, Paolo; Manolescu, Florentina; Pantano, Devis; Profeti, Alessandro; Raimondo, F S; Saizu, Mirela Angela; Scarlini, Enrico; Tempesta, Paolo; Tessaro, Mario

    2008-01-01

    Microbonding of the CMS Tracker Inner Barrel (TIB) and Tracker Inner Disks (TID) modules was shared among six different Italian Institutes. The organization devised and the infrastructure deployed to handle this task is illustrated. Microbonding specifications and procedures for the different types of TIB and TID modules are given. The tooling specially designed and developed for these types of modules is described. Experience of production is presented. Attained production rates are given. An analysis of the microbonding quality achieved is presented, based on bond strengths measured in sample bond pull tests as well as on rates of bonding failures. Italian Bonding Centers routinely performed well above minimum specifications and a very low global introduced failure rate, at the strip level, of only $\\sim$0.015 \\% is observed.

  11. Uniformity study of amorphous and microcrystalline silicon thin films deposited on 10cm x 10 cm glass substrate using hot wire CVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, P.A.; Nos, O.; Carreras, P.; Roldan, R.; Asensi, J.M.; Bertomeu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona (Spain); Calvo, J.D. [Dept. de Fisica, Universidad Autonoma de Chiriqui, Chiriqui (Panama)

    2010-04-15

    The scaling up of the Hot Wire Chemical Vapor Deposition (HW-CVD) technique to large deposition area can be done using a catalytic net of equal spaced parallel filaments. The large area deposition limit is defined as the limit whenever a further increment of the catalytic net area does not affect the properties of the deposited film. This is the case when a dense catalytic net is spread on a surface considerably larger than that of the film substrate. To study this limit, a system able to hold a net of twelve wires covering a surface of about 20 cm x 20 cm was used to deposit amorphous (a-Si:H) and microcrystalline ({mu} c-Si:H) silicon over a substrate of 10 cm x 10 cm placed at a filament-substrate distance ranging from 1 to 2 cm. The uniformity of the film thickness d and optical constants, n (x, {lambda}) and {alpha} (x, {Dirac_h}{omega}), was studied via transmission measurements. The thin film uniformity as a function of the filament-substrate distance was studied. The experimental thickness profile was compared with the theoretical result obtained solving the diffusion equations. The optimization of the filament-substrate distance allowed obtaining films with inhomogeneities lower than {+-}2.5% and deposition rates higher than 1 nm/s and 4.5 nm/s for ({mu} c-Si:H) and (a-Si:H), respectively. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates

    Science.gov (United States)

    Pandey, Akhilesh; Dutta, Shankar; Prakash, Ravi; Raman, R.; Kapoor, Ashok Kumar; Kaur, Davinder

    2018-02-01

    This paper reports on the comparison of residual stresses in AlN thin films sputter-deposited in identical conditions on Si (100) (110) and (111) substrates. The deposited films are of polycrystalline wurtzite structure with preferred orientation along the (002) direction. AlN film on the Si (111) substrate showed a vertical columnar structure, whereas films on Si (100) and (110) showed tilted columnar structures. Residual stress in the AlN films is estimated by x-ray diffraction (XRD), infra-red absorption method and wafer curvature technique. Films residual stress are found compressive and values are in the range of - 650 (± 50) MPa, - 730 (± 50) MPa and - 300 (± 50) MPa for the AlN films grown on Si (100), (110) and (111) substrates, respectively, with different techniques. The difference in residual stresses can be attributed to the microstructure of the films and mismatch between in plane atomic arrangements of the film and substrates.

  13. Printable Silicon Nanomembranes for Solar-Powered, Bi-Directional Phased-Array-Antenna Communication System on Flexible Substrates

    Science.gov (United States)

    2013-04-01

    PCW on SOI substrate [34] and the transmission spectrum of GaAs PCW membranes [35] have shown that the disorder-induced scattering completely...Fully cure the NOA 61 and slowly remove the stamp g. Clean the Kapton substrate with acetone, methanol and nitrogen. Spin cast NOA 61 and...acetone and methanol before use. A gentle oxygen plasma or UV exposure could improve the adhesion between the adhesive and the Kapton surface. Later on

  14. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  15. Efficient Terahertz Plasmonic Absorbers with V-Grooves Using Highly Doped Silicon Substrate and Simple Wet-Etching Techniques

    Science.gov (United States)

    Zhai, Mengfei; Yuan, Wei; Han, Zhanghua

    2017-12-01

    We experimentally demonstrate that at terahertz frequencies perfect plasmonic absorbers made from a 3D V-groove array in a highly doped silicon wafer can be easily realized using simple wet-etching process. The surface plasmon modes can be excited by the V-groove array and get decayed when they propagate along the silicon surface and enter the grooves, inducing a broadband near-zero dip in the reflection spectra. The reflection spectrum of the fabricated absorber is characterized using a terahertz time-domain spectroscopy system, and the experimental results are in good agreement with numerical simulations. The high performance including high absorptivity and large bandwidth together with the easy fabrication processes presented in this paper make this plasmonic absorber promising for a wide range of practical applications in terahertz regime.

  16. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  17. Flexible three-dimensional printed antenna substrates

    Directory of Open Access Journals (Sweden)

    Syed Sheheryar Bukhari

    2015-08-01

    Full Text Available Flexible heterogeneous substrates have been constructed, using three-dimensional printing in a single process, by introducing air-filled slots. These substrates have been used to substantially reduce the substrate losses for a flexible microstrip patch antenna causing an increase in its radiation efficiency. By combining transverse magnetic (TM10 and TM01 modes the bandwidth of this antenna has also been increased.

  18. Tracking and Alignment Performance of the LHCb silicon detectors

    OpenAIRE

    Borghi, Silvia

    2011-01-01

    The LHCb experiment is primarily dedicated to the study of new physics through the heavy flavour decays. The tracking system of LHCb is composed of a silicon micro-strip vertex detector, two silicon strip tracker detectors and straw-tube drift chambers in front of and behind a dipole generating a magnetic field. This system provides precise measure of the vertex position and high momentum resolution. The performances of the silicon tracking subdetectors in terms of hit resolution and detector...

  19. Optical modelling of incoherent substrate light-trapping in silicon thin film multi-junction solar cells with finite elements and domain decomposition

    Science.gov (United States)

    Hammerschmidt, Martin; Lockau, Daniel; Zschiedrich, Lin; Schmidt, Frank

    2014-03-01

    In many experimentally realized applications, e.g. photonic crystals, solar cells and light-emitting diodes, nanophotonic systems are coupled to a thick substrate layer, which in certain cases has to be included as a part of the optical system. The finite element method (FEM) yields rigorous, high accuracy solutions of full 3D vectorial Maxwell's equations1 and allows for great flexibility and accuracy in the geometrical modelling. Time-harmonic FEM solvers have been combined with Fourier methods in domain decomposition algorithms to compute coherent solutions of these coupled system.2, 3 The basic idea of a domain decomposition approach lies in a decomposition of the domain into smaller subdomains, separate calculations of the solutions and coupling of these solutions on adjacent subdomains. In experiments light sources are often not perfectly monochromatic and hence a comparision to simulation results might only be justified if the simulation results, which include interference patterns in the substrate, are spectrally averaged. In this contribution we present a scattering matrix domain decomposition algorithm for Maxwell's equations based on FEM. We study its convergence and advantages in the context of optical simulations of silicon thin film multi-junction solar cells. This allows for substrate lighttrapping to be included in optical simulations and leads to a more realistic estimation of light path enhancement factors in thin-film devices near the band edge.

  20. Fabrication and impact performance of three-dimensionally integrated microstrip antennas with microstrip and coaxial feeding

    Science.gov (United States)

    Yao, Lan; Wang, Xin; Xu, Fujun; Zhao, Da; Jiang, Muwen; Qiu, Yiping

    2009-09-01

    A conformal load-bearing antenna structure (CLAS) combines the antenna into a composite structure such that it can carry the designed load while functioning as an antenna. In this paper, two types of new 3D integrated microstrip antennas (3DIMAs) with different feeding methods are designed to work at the radar L-band. Different from the conventional CLAS, the radiating patch and the ground plane of the 3DIMA are both composed of woven conductive wires and are bonded into the 3D composite physically by Z-yarns, greatly improving the damage tolerance of the antenna. The return loss of the coaxial-fed antenna is -13.15 dB with a resonant frequency of 1.872 GHz, while that of the microstrip-fed antenna is -31.50 dB with a resonant frequency of 1.33 GHz. Both of the 3DIMAs have similar radiation patterns to that of the traditionally designed microstrip antenna. In addition, an experimental investigation of the impact response of the coaxial-fed 3DIMA was carried out and the results showed the radiation pattern had almost no change even when the antenna received an impact energy of 15 J, exhibiting superior impact resistance to that of a conventional microstrip antenna.

  1. Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures

    CERN Document Server

    Casagrande, L; Bartalini, P; Bell, W H; Borer, K; Bowcock, T J V; Buytaert, J; Chochula, P; Collins, P; Da Vià, C; Dijkstra, H; Dormond, O; Esposito, A P; Frei, R; Granata, V; Janos, S; Konorov, I; Lourenço, C; Niinikoski, T O; Pagano, S; Palmieri, V G; Parkes, C; Paul, S; Pretzl, Klaus P; Ruf, T; Ruggiero, G; Saladino, S; Schmitt, L; Smith, K; Sonderegger, P; Stavitski, I; Steele, D; Vitobello, F

    1999-01-01

    In this work we show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of $\\sim\\,4\\times 10^{14}$ p/cm$^2$, no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at $T<120$~K. Besides confirming the previously observed `Lazarus effect' in single diodes, these results establish for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments.

  2. Growth of gallium nitride and aluminum gallium nitride thin films using conventional and pendeo-expitaxial growth processes on hydrogen(6)-silicon carbide(0001) and silicon(111) substrates

    Science.gov (United States)

    Gehrke, Thomas

    Pendeo-epitaxy (PE) of individual GaN and AlxGa1-x N films and single- and multi-layer heterostructures of these materials with low densities of dislocations and without coalescence boundaries have been achieved on striped GaN seed layers previously grown on AlN/6H-SiC (0001) substrates using metallorganic chemical vapor deposition (MOCVD). A reduction in the dislocation density of approximately five orders of magnitude was achieved in the laterally grown regions between the GaN stripes. The RMS roughness of the (112¯0) side wall of the uncoalesced areas of GaN was 0.099 nm. The application of a mask on the [11¯00] oriented GaN stripes hindered the vertical propagation of threading dislocations during regrowth; however, it also caused tilting in the moving fronts and associated crystallographic misregistry in the areas of coalescence over the stripes as well as the generation of dislocations propagating from the resulting boundaries. All of these problems were eliminated by the exclusion of the masks, as determined via X-ray diffraction and scanning and transmission electron microscopies. A comparative study of fully coalesced PE-AlxGa1-xN films with conventionally grown AlxGa1-xN films was conducted using scanning electron microscopy, X-ray diffraction (XRD), and high resolution scanning Auger microprobe analysis. An XRD FWHM of 794 arcsec was measured for PE-Al 10Ga90N films; this is comparable to conventionally grown films on these substrates. A variation of 1% in the atomic Al content of the Al10Ga90N films was determined to be related to the position in the microstructure. Films of PE-GaN and PE-AlxGa1-xN were also grown on Si(111) substrates via the use of an intermediate 3C-SiC transition layer capped by a high-temperature AlN(0001) buffer layer. The 3C-SiC transition layer eliminated chemical reactions between the Si and the NH3 and between the Si and Ga metal derived from the decomposition of triethylgallium. A similar reduction in the dislocation

  3. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  4. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates

    Science.gov (United States)

    Cirlin, G. E.; Reznik, R. R.; Shtrom, I. V.; Khrebtov, A. I.; Soshnikov, I. P.; Kukushkin, S. A.; Leandro, L.; Kasama, T.; Akopian, Nika

    2017-12-01

    The data on growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on different (1 1 1) substrates by Au-assisted molecular beam epitaxy are presented. The influence of nanowires growth conditions on structural and optical properties is studied in detail. It is shown that by varying the growth parameters it is possible to form structures like quantum dots that emit in a wide wavelengths range. These quantum dots show sharp and intense emission lines when an optical signal is collected from a single nanowire. The technology proposed opens new possibilities for integration of direct-band A III B V materials on silicon platform.

  5. Enhanced piezoelectric properties of (110)-oriented PbZr1-xTixO3 epitaxial thin films on silicon substrates at shifted morphotropic phase boundary

    Science.gov (United States)

    Wan, X.; Houwman, E. P.; Steenwelle, R.; van Schaijk, R.; Nguyen, M. D.; Dekkers, M.; Rijnders, G.

    2014-03-01

    Piezoelectrical, ferroelectrical, and structural properties of epitaxial pseudocubic (110)pc oriented 500 nm thick PbZr1-xTixO3 thin films, prepared by pulsed laser deposition on (001) silicon substrates, were measured as a function of composition. The dependence of the measurement data on the Ti content is explained by an abrupt transition from the rhombohedral r-phase to the tetragonal (c/a)45 phase for x ≈ 0.6, indicating a shift of the Morphotropic Phase Boundary to this value, where the effective piezoelectric coefficient e31,eff and dielectric constant ɛ33,eff reach their maximum values. These findings are of great significance for Si-based piezo-micro electro mechanical systems, in particular energy harvesters. The largest value of the figure-of-merit for such devices was found for x = 0.6, FOM=24.0 GPa.

  6. Morphology and electronic transport of polycrystalline silicon films deposited by SiF sub 4 /H sub 2 at a substrate temperature of 200 deg. C

    CERN Document Server

    Hazra, S; Ray, S

    2002-01-01

    Undoped and phosphorous doped polycrystalline silicon (poly-Si) films were deposited using a SiF sub 4 /H sub 2 gas mixture at a substrate temperature of 200 deg. C by radio frequency plasma enhanced chemical vapor deposition (rf-PECVD). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) experiments reveal that the present poly-Si films are equivalent to the poly-Si films deposited at high temperature (>600 deg. C). XRD and scanning electron microscope observations show that the crystalline quality of slightly P-doped film is better compared to that of undoped poly-Si films. Phosphorus atom concentration in the slightly P-doped poly-Si film is 5.0x10 sup 1 sup 6 atoms/cm sup 3. Association of a few phosphorous atoms in the silicon matrix enhances crystallization as eutectic-forming metals do. Dark conductivity of slightly P-doped film is 4 orders of magnitude higher, although mobility-lifetime product (eta mu tau) is 2 orders of magnitude lower than that of undoped film. The presence o...

  7. Surface Enhanced Raman Spectroscopy detection of p-coumaric acid from cell supernatant using gold-capped silicon nanopillar substrates

    DEFF Research Database (Denmark)

    Morelli, Lidia; Jendresen, Christian Bille; Burger, Robert

    The purpose of the project is to use Surface Enhanced Raman Spectroscopy (SERS) to discriminate between two different bacterialpopulations, based on their p-coumaric acid (pHCA) production. The pHCA concentration is measured in a droplet of diluted supernatantdried on SERS substrates, using a Raman...

  8. Design of WLAN microstrip antenna for 5.17 - 5.835 GHz

    Science.gov (United States)

    Bugaj, Jarosław; Bugaj, Marek; Wnuk, Marian

    2017-04-01

    This paper presents the project of miniaturized WLAN Antenna made in microstrip technique working at a frequency of 5.17 - 5.835 GHz in 802.11ac IEEE standard. This dual layer antenna is designed on RT/duroid 5870 ROGERS CORPORATION substrate with dielectric constant 2.33 and thickness of 3.175 mm. The antenna parameters such as return loss, VSWR, gain and directivity are simulated and optimized using commercial computer simulation technology microwave studio (CST MWS). The paper presents the results of discussed numerical analysis.

  9. Analysis of Aperture-coupled Microstrip Antenna Using Method of Moments

    Directory of Open Access Journals (Sweden)

    P. Hajach

    2001-12-01

    Full Text Available A microstrip patch antenna that is coupled to a microstripline by anaperture in the intervening ground plane is analyzed by using themethod of moments. Integral equation is formulated by considering theexact dyadic Green's function in spectral domain for groundeddielectric slab so that the analysis includes all coupling effects andthe radiation and surface wave effects of both substrates. Thecombination of the reciprocity method analysis and a Galerkin momentmethod solution seems to be suitable for a number of planar antennaproblems, especially when coupling slots in the ground plane areincluded. Results for antenna input impedance are compared with otherauthors and verified by experimental results.

  10. Beam-Steerable Microstrip-Fed Bow-Tie Antenna Array for Fifth Generation Cellular Communications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert Frølund

    2016-01-01

    The design and performance of mm-wave phased array antenna for 5G mobile broadband communication systems has been provided in this manuscript. The antenna is designed on a N9000 PTFE substrate with 0.787 mm thickness and 2.2 dielectric constant and 65×130 mm2 overall dimension. Eight elements...... of bow-tie antennas have been used at the top-edge region of mobile phone PCB. The antenna elements fed by microstrip lines are designed to operate at 17 GHz. The simulated results give good performances in terms of different antenna parameters. In addition, an investigation on the distance between...

  11. Mechanically Reconfigurable Microstrip Lines Loaded with Stepped Impedance Resonators and Potential Applications

    Directory of Open Access Journals (Sweden)

    J. Naqui

    2014-01-01

    Full Text Available This paper is focused on exploring the possibilities and potential applications of microstrip transmission lines loaded with stepped impedance resonators (SIRs etched on top of the signal strip, in a separated substrate. It is shown that if the symmetry plane of the line (a magnetic wall is perfectly aligned with the electric wall of the SIR at the fundamental resonance, the line is transparent. However, if symmetry is somehow ruptured, a notch in the transmission coefficient appears. The notch frequency and depth can thus be mechanically controlled, and this property can be of interest for the implementation of sensors and barcodes, as it is discussed.

  12. Growth of gallium nitride based devices on silicon(001) substrates by metalorganic vapor phase epitaxy; Wachstum von Galliumnitrid-basierten Bauelementen auf Silizium(001)-Substraten mittels metallorganischer Gasphasenepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Reiher, Fabian

    2009-02-25

    The main topic of this thesis is to investigate GaN-based layer systems grown by metalorganic vapor phase epitaxy on Si(001) substrates. A temperature shift up to 45 K is measured for a complete device structure on a 2-inch silicon substrate. By using a 40 nm thin LT-AlN-seed layer (680 C), the GaN crystallites on Si(001) substrates are almost oriented with their GaN(10 anti 12)-planes parallel to the Si(001)-plane. A four-fold azimuthal symmetry occurs for these layers, with the GaN[10 anti 11]-direction is aligned parallel to one of the four equivalent left angle 110 right angle -directions, respectively. However, a mono-crystalline and fully coalesced GaN-layer with this crystallographic orientation could not yet been obtained. If a deposition temperature of more than 1100 C is used for the AlN-seed layer, solely the GaN[0001]- growth direction of crystallites occurs in the main GaN layer on Si(001) substrates. These c-axis oriented GaN columns feature two opposite azimuthal alignments that are rotated by 90 with respect to each other and with GaN[11 anti 20] parallel Si[110] and GaN[10 anti 10] parallel Si[110], respectively. By using 4 off-oriented substrates towards the Si[110]-direction, one certain azimuthal texture component can be selected. The critical value of the miscut angle corresponds to theoretical calculations predicting the occurrence of atomic double steps on the Si(001) surface. The achieved crystallographic quality of the GaN layers on Si(001) is characterized by having a tilt of FWHM=0.27 and a twist of FWHM=0.8 of the crystallites, determined by X-ray diffraction. A completely crack-free, up to 2.5 {mu}m thick, and mono-crystalline GaN-template can be realized on Si(001), integrating 4 or 5 LT-AlN-interlayers in the GaN buffer structure. Based on this structure, the first successful implementation of an (InGaN/GaN)-LED on Si(001) is achieved. Furthermore, the possible fabrication of GaN-based FET-structures is demonstrated with a fully

  13. Input Impedance of the Microstrip SQUID Amplifier

    Science.gov (United States)

    Kinion, Darin; Clarke, John

    2008-03-01

    We present measurements of the complex scattering parameters of microstrip SQUID amplifiers (MSA) cooled to 4.2 K. The input of the MSA is a microstrip transmission line in the shape of a square spiral coil surrounding the hole in the SQUID washer that serves as the ground plane. The input impedance is found by measuring the reverse scattering parameter (S11) and is described well by a low-loss transmission line model. We map the low-loss transmission line model into an equivalent parallel RLC circuit in which a resistance R, inductance L, and capacitance C are calculated from the resonant frequency, characteristic impedance and attenuation factor. Using this equivalent RLC circuit, we model the MSA and input network with a lumped circuit model that accurately predicts the observed gain given by the forward scattering parameter (S21). We will summarize results for different coil geometries and terminations as well as SQUID bias conditions. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 and by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.

  14. Impedance of the Microstrip SQUID Amplifier

    Science.gov (United States)

    Therrien, Roy; Kinion, Darin; Mueck, Michael; Clarke, John

    2003-03-01

    We present measurements of the input impedance of microstrip SQUID amplifiers cooled to 4.2 K. A low-loss transmission line model fits the real and imaginary parts of this impedance quite accurately. We map the low-loss transmission line model into an equivalent parallel RLC circuit in which a resistance R, inductance L, and capacitance C are calculated from the characteristic impedance and attenuation factor determined from fits to the input impedance data. Using this equivalent RLC circuit, we model the microstrip SQUID and input network with a lumped circuit model which accurately predicts the observed gain of the amplifier. We find that the gain is maximized when the input circuit is critically matched, with the imaginary part of the input impedance summing to zero and the real part equal to the 50 ohm resistance of the coaxial input line. Work in progress is aimed at expressing the equivalent circuit parameters in terms of the device parameters. This work was supported by DOE.

  15. Electrochemical growth of controlled tip shapes of ZnO nanorod arrays on silicon substrate and enhanced photoluminescence emission from nanopyramid arrays compared with flat-head nanorods

    Science.gov (United States)

    Alimanesh, Mahmoud; Hassan, Z.; Zainal, Norzaini

    2017-10-01

    Zinc oxide (ZnO) nanorod arrays (NRAs) with different morphologies such as; perfect hexagon flat-head, pyramidal, compact pencil, nail-shaped, and high-compact ZnO nanorod thin films, were successfully grown on silicon substrates. These NRAs were formed on substrates using a simple low-temperature electrochemical method without adding any catalyst or template via the precursors of zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and hexamethylenetetramine [HMT; C6H12N4] with an equal molar concentration of 0.025 mol/l. The morphologies of the ZnO nanorods (NRs) could be controlled and transformed successfully in to other morphologies by changing the growth conditions, such as; growth temperature and applied current density. Detailed structural investigations reveal that the synthesized various NRs are single crystalline with wurtzite hexagonal phase and preferentially grow along the c-axis direction. The room temperature photoluminescence spectra show that each spectrum consists of an ultraviolet (UV) band and a relative broad visible light emission and infrared emission peak. The enhanced light emission intensity at UV peak (∼375 nm) is observed significantly from ZnO nanopyramid (NP) arrays because of the conical shape of NP. The photoluminescence intensity of the UV peak from the NPs is found to be 1.5-17 times larger than those from the other various NRs.

  16. Investigation of a Hybrid Wafer Scale Integration Technique that Mounts Discrete Integrated Circuit Die in a Silicon Substrate.

    Science.gov (United States)

    1988-03-01

    preparation of wafers for the etching study: 1. Chemicals for Standard Clean #1: Sulphuric acid (H 2SO4) Hydrogen Peroxide (H20 2 ) Hydrofluoric Acid (HF) 2...between the die and the substrate, applying a conformal dielectric smoothing layer, and then interconnecting the circuit die using a patterned thin...continued processing. A dielectric polvimide coating is spun-on and cured. Multilevel electrical a- interconnect ions are now possible (3:845-851

  17. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste and INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2014-11-21

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R and D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  18. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    Calderini, G; Bomben, M; Boscardin, M; Bosisio, L; Chauveau, J; Giacomini, G; La Rosa, A; Marchiori, G; Zorzi, N

    2014-01-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  19. The development of p-type silicon detectors for the high radiation regions of the LHC

    CERN Document Server

    Hanlon, M D L

    1998-01-01

    This thesis describes the production and characterisation of silicon microstrip detectors and test structures on p-type substrates. An account is given of the production and full parameterisation of a p-type microstrip detector, incorporating the ATLAS-A geometry in a beam test. This detector is an AC coupled device incorporating a continuous p-stop isolation frame and polysilicon biasing and is typical of n-strip devices proposed for operation at the LHC. It was successfully read out using the FELix-128 analogue pipeline chip and a signal to noise (s/n) of 17+-1 is reported, along with a spatial resolution of 14.6+-0.2 mu m. Diode test structures were fabricated on both high resistivity float zone material and on epitaxial material and subsequently irradiated with 24 GeV protons at the CERN PS up to a dose of (8.22+-0.23) x 10 sup 1 sup 4 per cm sup 2. An account of the measurement program is presented along with results on the changes in the effective doping concentration (N sub e sub f sub f) with irradiat...

  20. Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hongsingthong, Aswin, E-mail: aswin.hongsingthong@nectec.or.th [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Krajangsang, Taweewat; Limmanee, Amornrat; Sriprapha, Kobsak; Sritharathikhun, Jaran [Solar Energy Technology Laboratory, National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120 (Thailand); Konagai, Makoto [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, NE-15, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2013-06-30

    Zinc oxide (ZnO) films with a very high haze ratio and low resistivity were developed on soda–lime glass substrate by using reactive ion etching (RIE) treatment with carbon tetrafluoride (CF{sub 4}) to modify the substrate surface morphology before the deposition of ZnO films. We found that the surface morphology of the ZnO films deposited by metal organic chemical vapor deposition (MOCVD) technique could be modified by varying the glass treatment conditions and the gas pressure was a key parameter. With increasing glass-etching pressure, the surface morphology of the ZnO films changed from conventional pyramid-like single texture to greater cauliflower-like double texture, leading to significant increases in root mean square roughness and haze ratio of the films. By employing the developed high-haze ZnO films as a front transparent conductive oxide (TCO) layer in microcrystalline silicon solar cells, an enhancement in the quantum efficiency in the long-wavelength region has been achieved. Experimental results have verified that our unique and original glass etching treatment is a simple and effective technique to improve the light-scattering properties of the ZnO films while preserving their good transparency and electrical properties. Thus, the ZnO films deposited on etched soda–lime glass have a high potential for the use as a front TCO layer in thin-film Si solar cells. - Highlights: • High-haze zinc oxide (ZnO) grown on low cost soda–lime glass has been developed. • Surface of the ZnO can be modified by varying glass-substrate etching conditions. • Glass-etching pressure is a key to increase haze ratio of the ZnO films. • Higher cell efficiency has been achieved from cell using etched glass. • High-haze ZnO coated glass is a promising transparent conductive oxide coated glass.

  1. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    Science.gov (United States)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  2. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  3. The effects of precursor concentration and thermal annealing on the growth of zinc oxide nanostructures grown on silicon substrate

    Science.gov (United States)

    Paculba, H. M. D.; Alguno, A. C.; Vequizo, R. M.

    2015-06-01

    This study focuses on the growth of Zinc Oxide (ZnO) nanostructures on SiO2/Si(100) substrate via chemical bath deposition (CBD) with varying NH4OH concentration and annealing temperature. The grown ZnOnanostructures were characterized via SEM-EDS for the surface morphology and elemental composition and UV-Vis spectroscopy for the reflectance measurement. Increasing the concentration of NH4OH produced denser ZnOnanostructures composed of rods having smaller diameter. It is believed that at higher concentration of NH4OH, more Zn(OH)2 seed will act as nucleation site for ZnOformation which suggests higher probability of ZnOgrowth. Thermal annealing increased the average diameter of ZnOnanorods. Annealing provided enough energy for unstable atoms to rearrange into a more suitable position. This would result to larger rods that have been formed in expense of the smaller rods. Furthermore, it is confirmed in the UV-Vis spectroscopy results that ZnOnanostructures were successfully grown on SiO2/Si(100) substrate. This successful growth of ZnOnanostructures is a promising material for solar cell technology.

  4. Silicon-carbon composite dispersed in a carbon paper substrate for solid polymer lithium-ion batteries

    Science.gov (United States)

    Si, Q.; Kawakubo, M.; Matsui, M.; Horiba, T.; Yamamoto, O.; Takeda, Y.; Seki, N.; Imanishi, N.

    2014-02-01

    Carbon coated silicon (Si/C) dispersed in a carbon paper (CP) was examined as the anode for solid polymer lithium-ion batteries. The CP was prepared by pyrolysis of poly(acrylonitrile) fiber and Manila hemp non-woven cloth at 2600 °C under an inert atmosphere. The Si/C composite was formed by pyrolysis of a slurry consisting of Si power and a solution of polyvinyl chloride in tetrahydrofuran as the carbon source. Si/C:CP with a weight ratio of 20:100 had a high initial capacity of 980 mAh g-1 of Si/C and a high initial columbic efficiency of 77%, and also exhibited excellent capacity retention with a reversible capacity of 710 mAh g-1 of Si/C even after 250 cycles at a charge and discharge rate of 0.1 A g-1. The carbon fiber framework in the carbon paper could adsorb the volume change of Si during the lithium insertion and stripping processes.

  5. Silicon on insulator with active buried regions

    Science.gov (United States)

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  6. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Singh Ashish

    2017-11-01

    Full Text Available In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  7. A Stacked Microstrip Antenna Array with Fractal Patches

    National Research Council Canada - National Science Library

    Xueyao Ren; Xing Chen; Yufeng Liu; Wei Jin; Kama Huang

    2014-01-01

      A novel microstrip antenna array, which utilizes Giuseppe Peano fractal shaped patches as its radiation elements and adopts a two-layer stacked structure for achieving both wideband and high-gain...

  8. Geometrical optimization of microstripe arrays for microbead magnetophoresis.

    Science.gov (United States)

    Henriksen, Anders Dahl; Rozlosnik, Noemi; Hansen, Mikkel Fougt

    2015-09-01

    Manipulation of magnetic beads plays an increasingly important role in molecular diagnostics. Magnetophoresis is a promising technique for selective transportation of magnetic beads in lab-on-a-chip systems. We investigate periodic arrays of exchange-biased permalloy microstripes fabricated using a single lithography step. Magnetic beads can be continuously moved across such arrays by combining the spatially periodic magnetic field from microstripes with a rotating external magnetic field. By measuring and modeling the magnetophoresis properties of thirteen different stripe designs, we study the effect of the stripe geometry on the magnetophoretic transport properties of the magnetic microbeads between the stripes. We show that a symmetric geometry with equal width of and spacing between the microstripes facilitates faster transportation and that the optimal period of the periodic stripe array is approximately three times the height of the bead center over the microstripes.

  9. Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications

    Science.gov (United States)

    Singh, Ashish; Aneesh, Mohammad; Kamakshi; Ansari, J. A.

    2017-11-01

    In this paper, theoretical analysis of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator is presented. The proposed antenna shows that the dualband operation depends on gap between parasitic element, split-ring resonator, length and width of microstrip line. It is found that antenna resonates at two distinct resonating modes i.e., 0.9 GHz and 1.8 GHz for lower and upper resonance frequencies respectively. The antenna shows dual frequency nature with frequency ratio 2.0. The characteristics of microstrip line fed rectangular patch antenna loaded with parasitic element and split-ring resonator antenna is compared with other prototype microstrip line fed antennas. Further, the theoretical results are compared with simulated and reported experimental results, they are in close agreement.

  10. PERFORMANCE ANALYSIS OF RECTANGULAR MPA USING DIFFERENT SUBSTRATE MATERIALS FOR WLAN APPLICATION

    Directory of Open Access Journals (Sweden)

    E Aravindraj

    2017-03-01

    Full Text Available In this paper, a rectangular microstrip patch antenna (MPA is designed using different substrate materials for analyzing the performance of the MPA. Alumina (Al2O3, Bakelite, Beryllium oxide (BeO, Gallium Arsenide (GaAs, RT-Duroid and Flame Retardant 4 (FR-4 are the six different substrate used in the design. The size of the rectangular microstrip patch antenna varies according to the dielectric constant of substrate materials used. The operating frequency taken for this analysis is 5.8 GHz. The proposed design provides the study on the performance of rectangular microstrip patch antenna for different substrate materials using the same frequency. This study conveys that which substrate material provides better performance. Moreover, this comparative study conveys that which substrate material provides better performance. The simulation parameters are investigated using HFSS.

  11. High quality relaxed germanium layers grown on (110) and (111) silicon substrates with reduced stacking fault formation

    Science.gov (United States)

    Huy Nguyen, Van; Dobbie, A.; Myronov, M.; Leadley, D. R.

    2013-10-01

    Epitaxial growth of Ge on Si has been investigated in order to produce high quality Ge layers on (110)- and (111)-orientated Si substrates, which are of considerable interest for their predicted superior electronic properties compared to (100) orientation. Using the low temperature/high temperature growth technique in reduced pressure chemical vapour deposition, high quality (111) Ge layers have been demonstrated almost entirely suppressing the formation of stacking faults (relaxed Ge seed layer, where the residual compressive strain promotes an intermediate islanding step between the low temperature and high temperature growth phases. (110)-oriented layers were also examined and found to have similar low rms roughness (1.6 nm) and TDD below 108 cm-2, although use of a thin seed layer did not offer the same relative improvement seen for (111).

  12. Raman studies on nanocomposite silicon carbonitride thin film deposited by r.f. magnetron sputtering at different substrate temperatures

    Science.gov (United States)

    Bhattacharyya, Arnab Sankar; Mishra, Suman Kumari

    2010-10-01

    Raman studies of nanocomposite SiCN thin film by sputtering showed that with an increase of substrate temperature from room temperature to 500oC, a transition from mostly sp2 graphitic phase to sp3 carbon took place which was observed from the variation of ID/IG ratio and the peak shifts. This process resulted in the growth of C3N4 and Si3N4 crystallites in the amorphous matrix which led to an increase in hardness and modulus obtained through nanoindentation. However, at a further higher temperature of 600oC, again an increase of sp2 C concentration in the film was observed and the H and E values showed a decrease due to increased growth of graphitic carbon phase. The whole process got reflected in a modified four stage Ferrari Robertson model of Raman spectroscopy.

  13. Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region

    Science.gov (United States)

    Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.

    2017-10-01

    Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1-x Fe2O4 (x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient (S 11) and transmission coefficient (S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity (ɛ'), permeability (μ'), dielectric loss tangent (tanδ e) and magnetic loss tangent (tanδ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.

  14. Performance of a Wideband Cadmium Ferrite Microstrip Patch Antenna in the X-Band Region

    Science.gov (United States)

    Bhongale, S. R.; Ingavale, H. R.; Shinde, T. J.; Vasambekar, P. N.

    2018-01-01

    Magnesium-substituted cadmium ferrites with the chemical composition Mg x Cd1- x Fe2O4 ( x = 0, 0.4 and 0.8) were prepared by an oxalate co-precipitation method under microwave sintering technique. The structural properties of ferrites were studied by x-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope techniques. The scattering parameters such as reflection coefficient ( S 11) and transmission coefficient ( S 21) at microwave frequencies of palletized ferrites were measured by using a vector network analyzer. The software module 85071E followed by scattering parameters was used to determine the electromagnetic properties of the ferrites. The values determined for electromagnetic parameters such as the real part of permittivity ( ɛ'), permeability ( μ'), dielectric loss tangent (tan δ e) and magnetic loss tangent (tan δ m) of synthesized ferrites were used to design rectangular microstrip patch antennas. The performance of magnesium-substituted Cd ferrites as substrate for microstrip patch antennas was investigated. The antenna parameters such as return loss, bandwidth, voltage standing wave ratio, Smith chart and radiation pattern were studied. It is found that the Cd ferrite has applicability as a substrate for wideband antennas in the X-band region.

  15. A Novel Performance Analysis of the Microstrip Antenna Printed on a Cylindrical Body

    Directory of Open Access Journals (Sweden)

    Amr M. Mahros

    2014-01-01

    Full Text Available Performance of a circular patch microstrip antenna is highly affected by the effective dielectric constant of a used substrate material. When the circular patch is conformed on a cylindrical body, the effective dielectric constant is changing with curvature due to the changing in the fringing field. Consequently, some of antenna parameters such as resonance frequency, input impedance, voltage standing wave ratio, return loss, quality factor, and antenna bandwidth are functions of curvature. In this work, we study the effect of curvature on the performance of circular patch microstrip antenna. A mathematical model for the antenna parameters as functions of curvature is also introduced. The model is applied in case of using two substrates of different refractive index values. By extension, the antenna performance was studied through simulation by using method of moments (MoM which is reliable in solving Maxwell’s integral equations in the frequency domain. The results from simulation compare very favorably with the described analytical results.

  16. Rectenna composed of a circular microstrip antenna

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Ohgane, T.; Ogawa, Y.

    1986-01-01

    One of the big problems in the SPS system is reradiation of the harmonic waves generated by the rectifying diode. The authors proposed the use of a circular microstrip antenna (CMSA), since the CMSA has no higher resonance-harmonic of integer multiple of the dominant resonance frequency. However, characteristics of a large rectenna array of CMSA's have not been clarified. This paper is concerned with the absorption efficiency of the rectenna composed of the CMSA. The efficiency is estimated explicitly using an infinite array model. The results show that the absorption efficiency of the infinite rectenna array composed of the CMSA is 100%. Also, this paper considers the effect of the losses of the composed of the CMSA is 100%. Also, this paper considers the effect of the losses of the CMSA. 4 references, 4 figures.

  17. Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1.

    Science.gov (United States)

    Myndrul, Valerii; Viter, Roman; Savchuk, Maryna; Koval, Maryna; Starodub, Nikolay; Silamiķelis, Viesturs; Smyntyna, Valentyn; Ramanavicius, Arunas; Iatsunskyi, Igor

    2017-12-01

    A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Aflatoxin B1 (AFB1) has been developed. This immunosensor was based on porous silicon (PSi) covered by thin gold layer (Au) and modified by antibodies against AFB1 (anti-AFB1). PSi layer was formed on silicon substrate, then the surface of PSi was covered by 30nm layer of gold (PSi/Au) using electrochemical and chemical deposition methods and in such ways PSi/Au(El.) and PSi/Au(Chem.) structures were formed, respectively. In order to find PSi/Au the most efficiently suitable for PL-based sensor design, structure several different PSi/Au(El.) and PSi/Au(Chem.) structures were designed while using different conditions for electrochemical or chemical deposition of gold layer. It was shown that during the formation of PSi/Au structure crystalline Au nanoparticles uniformly coated the surface of the PSi pores. PL spectroscopy of PSi/Au nanocomposites was performed at room temperature and it showed a wide emission band centered at 700nm. Protein A was covalently immobilized on the surface of PSi/Au(El.) and PSi/Au(Chem.) forming PSi/Au(El.)/Protein-A and PSi/Au(Chem.)/Protein-A structures, respectively. In the next step PSi/Au(El.)/Protein-A and PSi/Au(Chem.)/Protein-A structures were modified by anti-AFB1 and in such way a structures (PSi/Au(El.)/Protein-A/anti-AFB1 and PSi/Au(Chem.)/Protein-A/anti-AFB1) sensitive towards AFB1 were designed. The PSi/Au(El.)/Protein-A/anti-AFB1- and PSi/Au(Chem.)/Protein-A/anti-AFB1-based immunosensors were tested in a wide range of AFB1 concentrations from 0.001 upon 100ng/ml. Interaction of AFB1 with PSi/Au(El.)/Protein-A/anti-AFB1- and PSi/Au(Chem.)/Protein-A/anti-AFB1-based structures resulted PL quenching. The highest sensitivity towards AFB1 was determined for PSi/Au(El.)/Protein-A/anti-AFB1-based immunosensor and it was in the range of 0.01-10ng/ml. The applicability of PSi/Au-based structures as new substrates suitable for PL

  18. Fabrication and characterization of multi-layer InAs/InGaAs quantum dot p-i-n GaAs solar cells grown on silicon substrates

    Science.gov (United States)

    Omri, M.; Sayari, A.; Sfaxi, L.

    2018-01-01

    This paper reports on InAs/InGaAs quantum dot solar cells (QDSCs) deposited by molecular beam epitaxy (MBE) on (001) n-type silicon ( n-Si) substrates. In-situ RHEED measurements show that InAs/InGaAs QDs SC has a high crystalline structure. The dislocation density in the active layer of the InAs/InGaAs QDSC and the lattice mismatch in the GaAs layer can be reduced by using an Si rough surface buffer layer (RSi). To show the effect of the QD layers, a reference SC with the same p-i-n structure as the InAs/InGaAs QDSC, but without InAs QDs, is also grown. The two SCs were studied by sepectroscopic ellipsometry (SE), in the 1-6 eV photon energy range, photoluminescence and photocurrent measurements. The optical constants of the two devices are determined in the photon energy range 1-6 eV from the SE data. The dominant features in the dielectric function spectra at 3 and 4.5 eV are attributed, respectively, to the E 1 and E 2 critical point structures of GaAs and InAs. The low-temperature photoluminescence spectrum of the InAs/InGaAs QDSC shows ground-state emissions, respectively, from the relatively small QDs near 1081 nm and from the large QDs near 1126 nm. Photocurrent measurements confirm the improved absorption performance (up to 1200 nm) of the InAs QDs SC which is ascribed to the optical absorption from the InAs/InGaAs QDs and the Si substrate as demonstrated by SE and photoluminescence measurements.

  19. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu

    2013-12-18

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low temperature (120 °C). The size of the resulting NPs can be readily controlled through the concentration of the gold precursor and oleylamine ink. The pure gold composition of the synthesized NPs was confirmed by energy-dispersive X-ray spectroscopy (EDXS) analysis. High-resolution SEM (HRSEM) and TEM (HRTEM), and X-ray diffraction revealed their size and face-centered cubic (fcc) crystal structure, respectively. Owing to the high density of the NP film, UV/Vis spectroscopy showed a red shift in the intrinsic plasmonic resonance peak. We envision the extension of this approach to the synthesis of other nanomaterials and the production of tailored functional nanomaterials and devices. Midas touch: The use of low-cost manufacturing approaches in the synthesis of nanoparticles is critical for many applications. Reactive inkjet printing, along with a judicious choice of precursor/solvent system, was used to synthesize a relatively uniform assembly of crystalline gold nanoparticles, with diameters as small as (8±2)nm, over a given substrate surface. © 2014 WILEY-VCH Verlag GmbH.

  20. Thermal analysis of silicon carbide coating on a nickel based superalloy substrate and thickness measurement of top layers by lock-in infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2017-04-15

    In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

  1. "Diamond" over-coated Microstrip Gas Chambers for high rate operation

    CERN Document Server

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Hoch, M; Manzin, G; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe the recent developments on the diamond-like carbon (DLC) over-coated Microstrip Gas Chambers made on drawn glass substrates. MSGC surface coating with thin DLC layer of stable and controlled resistivity was proposed to overcome the limitation of detector operation due to surface charging-up under avalanches. This brings also advantages for the detector manufacturing technology. The thin layer, deposited on top of a manufactured MSGC (over-coating), demonstrates excellent mechanical properties and very good stability. We report on recent measurements with DLC over-coated MSGCs of various surface resistivities (ranging from 1013W/r to 1016W/r) on D-263 and AF45 glass substrates. Over-coated MSGCs exhibit good rate capability for the resistivity of the surface around 1015W/r. Stable operation up to 50 mC/cm of accumulated charge from avalanches has been demonstrated.

  2. Design and Development of Compact Microstrip Patch Antenna for Wireless Applications

    Directory of Open Access Journals (Sweden)

    R. Nagendra

    2017-09-01

    Full Text Available In this paper, a novel dual band microstrip patch antenna based on composite patch antenna and radiating part. By selecting a suitable offset feed position, it is feasible to provide 50Ω characteristic impedance and thus making better impedance matching. The proposed antenna has been improved broader bandwidth by using RT Duroid substrate. The radiating part is plays a important role in creating a lower operating band (2.45 GHz in addition to achieve miniaturization. The proposed antenna has to be fabricated with RT / Duroid substrate and dimensions of 19 × 22 × 0.8 mm. The measured -10 dB bandwidth of 200 MHz at 2.45 GHz and 990 MHz at 5.45 GHz, which is quite useful for Industrial, Scientific and Medical (ISM and WLAN applications.

  3. 3D, Flash, Induced Current Readout for Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Sherwood I. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  4. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  5. Large area lateral epitaxial overgrowth (LEO) of gallium nitride (GaN) thin films on silicon substrates and their characterization. Annual report, 1 March 1998--28 February 1999

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.; Carlson, E.P.; Gehrke, T.; Linthicum, K.; Smith, T.P.

    1999-03-01

    Gallium nitride films have been grown on 6H-SiC substrates employing a new form of selective lateral epitaxy, namely pendeo-epitaxy. This technique forces regrowth to start exclusively on sidewalls of GaN seed structures. Both discrete pendeo-epitaxial microstructures and coalesced single crystal layers of GaN have been achieved. Analysis by SEM and TEM are used to evaluate the morphology of the resulting GaN films. Process routes leading to GaN pendeo- epitaxial growth using silicon substrates have also been achieved and the preliminary results are discussed.

  6. Status of the CDF silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  7. Microstrip coupling techniques applied to thin-film Josephson junctions at microwave frequencies

    DEFF Research Database (Denmark)

    Sørensen, O H; Pedersen, Niels Falsig; Mygind, Jesper

    1981-01-01

    Three different schemes for coupling to low impedance Josephson devices have been investigated. They all employ superconducting thin-film microstrip circuit techniques. The schemes are: (i) a quarterwave stepped impedance transformer, (ii) a microstrip resonator, (iii) an adjustable impedance...... transformer in inverted microstrip. Using single microbridges to probe the performance we found that the most primising scheme in terms of coupling efficiency and useful bandwidth was the adjustable inverted microstrip transformer....

  8. A New Defected Ground Structure for Different Microstrip Circuit Applications

    Directory of Open Access Journals (Sweden)

    S. Das

    2007-04-01

    Full Text Available In this paper, a microstrip transmission line combined with a new U-headed dumb-bell defected ground structure (DGS is investigated. The proposed DGS of two U-shape slots connected by a thin transverse slot is placed in the ground plane of a microstrip line. A finite cutoff frequency and attenuation pole is observed and thus, the equivalent circuit of the DGS unit can be represented by a parallel LC resonant circuit in series with the transmission line. A two-cell DGS microstrip line yields a better lowpass filtering characteristics. The simulation is carried out by the MoM based IE3D software and in the experimental measurements a vector network analyzer is used. The effects of the transverse slot width and the distance between arms of the U-slot on the filter response curve are studied. This DGS is utilized for different microstrip circuit applications. The DGS is placed in the ground of a capacitive loaded microstrip line and a very low cutoff frequency is obtained. The DGS is adopted under the coupled lines of a parallel line coupler and an improvement in coupling coefficient is noticed. The proposed DGS is also incorporated in the ground plane under the feed lines and the coupled lines of a bandpass filter to improve separately the stopband and passband performances.

  9. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  10. Operation of high rate microstrip gas chambers

    CERN Document Server

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Manzin, G; Million, Gilbert; Hoch, M; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1996-01-01

    We describe recent measurements carried out in well controlled and reproducible conditions to help understanding the factors affecting the short and long term behaviour of Microstrip Gas Chambers. Special care has been taken concerning the gas purity and choice of materials used in the system and for the detectors construction. Detectors built on glasses with surface resistivity in the range $10^{13}-10^{15} \\Omega/\\Box$ have shown satisfactory performance as they do not show charging-up process at high rate and stand the large doses required for the future high luminosity experiments (~10 mC·cm-1·yr-1). Concerning the lifetime measurements, it has been observed that chambers manufactured on high-resistivity glass are far more susceptible of suffering ageing than detectors made on low resistivity, electron-conducting supports, independently of the metal used for the artwork (chromium or gold) at least in clean gas conditions. The successfully operation in the laboratory of detectors manufactured on diamond-...

  11. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    Directory of Open Access Journals (Sweden)

    Yaqeen S Mezaal

    Full Text Available A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d. Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  12. A Multiband Proximity-Coupled-Fed Flexible Microstrip Antenna for Wireless Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Andrea Casula

    2016-01-01

    Full Text Available A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computer-aided design software (CAD, CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45 GHz and C-band (5.2 GHz, and the Wi-Max 3.5 GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°.

  13. Breakdown Features of Various Microstrip-Type Gas Counter Designs and Their Improvements

    Science.gov (United States)

    Peskov, V.; Ramsey, B. D.; Fonte, P.

    1998-01-01

    Breakdown mechanisms and spurious pulses, the precursors to some breakdowns, were studied experimentally for both uncoated and coated Microstrip Gas Counters (MSGCs) of different geometries, as well as for MicroGap Counters (MGCs) and for the "Compteur A Trou" (CAT). It was found that in all cases the breakdowns occurred through surface streamers, although the exact mechanism of streamer formation depended on the particular detector design. Based on these studies, new designs of microstrip detectors, in which the role of the substrate was minimized, were elaborated and tested. In some of these detectors, especially with large pitches (greater than 2mm), gains up to 2-3 x 10(exp 5) were achieved together with good rate characteristics. The ultimate gain limit in all geometries was still set by spark-inducing streamers which appeared at some critical charge density in the avalanche. To avoid this, and particularly to enhance the performance of small-pitch MSGCs, preamplification structures can be used. Utilizing a parallel plate avalanche chamber as a front end to an MSGC resulted in an overall gain of approximately 10(exp 6), limited in this case only by charge saturation.

  14. Study of lead free ferroelectrics using overlay technique on thick film microstrip ring resonator

    Directory of Open Access Journals (Sweden)

    Shridhar N. Mathad

    2016-03-01

    Full Text Available The lead free ferroelectrics, strontium barium niobates, were synthesized via the low cost solid state reaction method and their fritless thick films were fabricated by screen printing technique on alumina substrate. The X band response (complex permittivity at very high frequencies of Ag thick film microstrip ring resonator perturbed with strontium barium niobates (SrxBa1-xNb2O6 in form of bulk and thick film was measured. A new approach for determination of complex permittivity (ε′ and ε′′ in the frequency range 8–12 GHz, using perturbation of Ag thick film microstrip ring resonator (MSRR, was applied for both bulk and thick film of strontium barium niobates (SrxBa1-xNb2O6. The microwave conductivity of the bulk and thick film lie in the range from 1.779 S/cm to 2.874 S/cm and 1.364 S/cm to 2.296 S/cm, respectively. The penetration depth of microwave in strontium barium niobates is also reported.

  15. Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding.

    Science.gov (United States)

    Ahsan, M R; Islam, M T; Habib Ullah, M; Misran, N

    2014-01-01

    A meandered-microstrip fed circular shaped monopole antenna loaded with vertical slots on a high dielectric material substrate (ε r = 15) is proposed in this paper. The performance criteria of the proposed antenna have been experimentally verified by fabricating a printed prototype. The experimental results show that the proposed antenna has achieved wider bandwidth with satisfactory gain by introducing meandered-microstrip feeding in assistant of partial ground plane. It is observed that, the -10 dB impedance bandwidth of the proposed antenna at lower band is 44.4% (600 MHz-1 GHz) and at upper band is 28% (2.25 GHz-2.95 GHz). The measured maximum gains of -1.18 dBi and 4.87 dBi with maximum radiation efficiencies have been observed at lower band and upper band, respectively. The antenna configuration and parametric study have been carried out with the help of commercially available computer-aided EM simulator, and a good accordance is perceived in between the simulated and measured results. The analysis of performance criteria and almost consistent radiation pattern make the proposed antenna a suitable candidate for UHF RFID, WiMAX, and WLAN applications.

  16. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  17. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    Science.gov (United States)

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.

  18. Nonuniformly coupled microstrip transversal filters for analog signal processing

    Science.gov (United States)

    Hayden, Leonard A.; Tripathi, Vijai K.

    1991-01-01

    The Fourier transform relationship between frequency response and impedance profile for single nonuniform transmission lines is used to derive the time-domain step response of single and coupled nonuniform lines. The expression for the step response of a characteristically terminated nonuniformly coupled transmission line structure is shown to correspond to the characteristic impedance profile. By using this relationship, any arbitrary step response can be realized by utilizing nonuniformly coupled strip or microstrip lines for possible applications as waveform-shaping networks and chirp filters. A numerical procedure to compute the step response of the nonuniform coupled line four-port is also formulated in terms of frequency-domain parameters of an equivalent cascaded uniform coupled line model with a large number of sections. Sinusoidal and chirp responses are presented as examples that are readily implemented using coupled microstrip structures. The step response of an experimental nonuniformly coupled microstrip structure is presented to validate the theoretical results.

  19. Reconfigurable Wideband Circularly Polarized Microstrip Patch Antenna for Wireless Applications

    Science.gov (United States)

    Khidre, Ahmed

    In this thesis, developments of rectangular microstrip patch antenna to have circular polarization agility with wideband performance, for wireless applications are presented. First, a new technique to achieve circularly polarized (CP) probe feed single-layer microstrip patch antenna with wideband characteristics is proposed. The antenna is a modified form of the popular E-shaped patch, used to broaden the impedance bandwidth of a basic rectangular patch antenna. This is established by letting the two parallel slots of the E-patch unequal. Thus, by introducing asymmetry two orthogonal currents on the patch are excited and circularly polarized fields are realized. The proposed technique exhibits the advantage of the simplicity inherent in the E-shaped patch design. It requires only slot lengths, widths, and position parameters to be determined. Also, it is suitable for later adding the reconfigurable capability. With the aid of full-wave simulator Ansoft HFSS, investigations on the effect of various dimensions of the antenna have been carried out via parametric analysis. Based on these investigations, a design procedure for a CP E-shaped patch is summarized. Various design examples with different substrate thicknesses and material types are presented and compared, with CP U-slot patch antennas, recently proposed in the literature. A prototype has been constructed following the suggested design procedure to cover the IEEE 802.11b/g WLAN band. The performance of the fabricated antenna was measured and compared with the simulation results for the reflection coefficient, axial ratio, radiation pattern, and antenna gain. Good agreement is achieved between simulation and measured results demonstrating a high gain and wideband performance. Second, a polarization reconfigurable single feed E-shaped patch antenna with wideband performance is proposed. The antenna is capable of switching from right-hand circular polarization (RHCP) to left-hand circular polarization (LHCP) and

  20. Analysis of superconducting microstrip resonator at various microwave power levels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, G.P.; Jacob, M.V.; Jayakumar, M.; Bhatnagar, P.K. [Department of Electronic Science, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110021 (India); Kataria, N.D. [National Physical Laboratory, K. S. Krishnan Road, New Delhi 110 012 (India)

    1997-05-01

    The real and imaginary parts of the surface impedance of YBCO superconductors have been studied at different microwave power levels. Using the relations for the critical current density and the grain boundary resistance, a relation for calculating the power dependence of the surface resistance has been obtained. Also, a relation to find the resonant frequency of a superconducting microstrip resonator at various input power levels has been derived. Measurements have been carried out on various microstrip resonators to study the variation of surface resistance and resonant frequency at different rf power levels. The experimental results are in good agreement with theoretical results. {copyright} {ital 1997 American Institute of Physics.}

  1. Microstrip antenna for polarimetric C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim; Dich, Mikael

    1994-01-01

    The paper outlines the design and the measured performance of a 224-element dual-linearly polarized microstrip array antenna with low cross-polarization. The array is currently being flown on the Danish high-resolution polarimetric C-band synthetic aperture radar (SAR)......The paper outlines the design and the measured performance of a 224-element dual-linearly polarized microstrip array antenna with low cross-polarization. The array is currently being flown on the Danish high-resolution polarimetric C-band synthetic aperture radar (SAR)...

  2. Performances of keystone geometry micro-strip gas chambers

    CERN Document Server

    Chiari, M; Tonetto, F; Travaglini, L

    2002-01-01

    The performances of micro-strip gas chamber detectors with CF sub 4 counting gas have been tested with a sup 2 sup 4 sup 1 Am alpha source. The behaviour of the gain as a function of gas pressure, the dependence of the energy resolution on gas pressure and anode voltage, and the gain variation along the strip length due to the keystone geometry of the micro-strip pads are reported. An empirical response function to describe such a position dependence of the gain is proposed.

  3. Enhanced electrical and magnetic properties in La0.7Sr0.3MnO3 thin films deposited on CaTiO3-buffered silicon substrates

    Directory of Open Access Journals (Sweden)

    C. Adamo

    2015-06-01

    Full Text Available We investigate the suitability of an epitaxial CaTiO3 buffer layer deposited onto (100 Si by reactive molecular-beam epitaxy (MBE for the epitaxial integration of the colossal magnetoresistive material La0.7Sr0.3MnO3 with silicon. The magnetic and electrical properties of La0.7Sr0.3MnO3 films deposited by MBE on CaTiO3-buffered silicon (CaTiO3/Si are compared with those deposited on SrTiO3-buffered silicon (SrTiO3/Si. In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO3 buffer layer. These results are relevant to device applications of La0.7Sr0.3MnO3 thin films on silicon substrates.

  4. Enhanced electrical and magnetic properties in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films deposited on CaTiO{sub 3}-buffered silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, C. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Méchin, L.; Guillet, B.; Wu, S.; Routoure, J.-M. [Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, (GREYC-UMR 6072), CNRS-ENSICAEN—Université de Caen Basse-Normandie, 6 Boulevard Maréchal Juin, 14050 Caen Cedex (France); Heeg, T. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Katz, M.; Pan, X. Q. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Mercone, S. [Laboratoire de Sciences des Procédés et des Matériaux, UPR3407, CNRS, Institut Galilee, Universite Paris-Nord, Villetaneuse (France); Schubert, J.; Zander, W. [Peter Grünberg Institute (PGI9-IT), JARA-Fundamentals of Future Information Technology, Research Centre Jülich, Jülich D-52425 (Germany); Misra, R. [Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Schiffer, P. [Department of Physics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); and others

    2015-06-01

    We investigate the suitability of an epitaxial CaTiO{sub 3} buffer layer deposited onto (100) Si by reactive molecular-beam epitaxy (MBE) for the epitaxial integration of the colossal magnetoresistive material La{sub 0.7}Sr{sub 0.3}MnO{sub 3} with silicon. The magnetic and electrical properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films deposited by MBE on CaTiO{sub 3}-buffered silicon (CaTiO{sub 3}/Si) are compared with those deposited on SrTiO{sub 3}-buffered silicon (SrTiO{sub 3}/Si). In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO{sub 3} buffer layer. These results are relevant to device applications of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films on silicon substrates.

  5. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  6. 2×1 Microstrip Patch Array Antenna with Harmonic Suppression Capability for Rectenna

    Directory of Open Access Journals (Sweden)

    Nur Aisyah Amir

    2017-12-01

    Full Text Available This paper is an extension of work originally presented in 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE. A 2×1 microstrip patch array antenna integrated with photonic bandgap (PBG and stubs is designed and analyzed. The performance of the PBG and stubs structure are explained and analyzed in terms of the elimination of the resonance at the harmonic frequencies of the antenna. The proposed antenna is designed on FR-4 substrate with thickness of 1.6 mm and operated at 2.45 GHz frequency suitable for rectenna design application. From the simulated result, the first harmonic frequency (5.4 GHz, the second harmonic frequency (6.6 GHz and the third harmonic frequency (7.8 GHz are successfully suppressed. For instance, the radiation to the forward of the stubs-PBG antenna is suppressed at more than 15 dB at the second and third harmonic frequencies.

  7. In-situ studies of multicrystalline silicon nucleation and growth on α- and β-Si3N4 coated substrates

    Science.gov (United States)

    Undheim, Espen; Maeda, Kensaku; Arnberg, Lars; Holmestad, Randi; Fujiwara, Kozo; Di Sabatino, Marisa

    2018-01-01

    The growth of silicon on various nitride coated quartz substrates were studied using in-situ observation of the solidification process. Three different coating types were used: One consisting entirely of α-Si3N4 particles, one of only β-Si3N4 particles, and a third of a 50/50 mixture of the above mentioned coating powders. The mean particle size of the α- and β-particles was about 0.3 μm and 5.7 μm, respectively. Three different cooling rates were used for each coating type: 2, 5 and 10 K/min. It was observed that the samples were similar at the lowest cooling rate, but at 5 K/min and higher the samples differed significantly. The biggest difference was seen in the α-particle coating, which showed significant dendritic growth, compared to the more faceted growth observed from the other coatings. All coatings containing the β-particles showed similar growth characteristics. These samples were also analyzed by electron-backscattered diffraction (EBSD) on both the vertical and horizontal planes. No clear trend in preferred crystal orientations was observed; however, it was seen that the density of Σ3 boundaries, especially parallel twins, increased with cooling rate. A gradual increase in the Σ3 grain boundary density was seen for the coatings containing β-Si3N4 particles, while the α-particle coating showed a faster increase. The grain sizes were also analyzed from the horizontal EBSD maps. Again there was a clear difference between the samples containing β-particles and the sample with α-particle coating. The ones containing β-particles showed a decrease in grain size with increasing cooling rate, while the opposite was true for the other α-particle coated samples. This was attributed to the rapid dendritic growth, which caused the grain structure to be dominated by one single grain. The difference in growth for the three coating types was explained using the athermal nucleation theory, which states that there is a correlation between particle sizes

  8. Development of a microstrip-based neutron detector

    Indian Academy of Sciences (India)

    A gas-filled microstrip detector for thermal neutrons has been built and successfully tested in our laboratory. The detector has an active area of 20 mm × 15 mm and consists of alternate anodes and cathodes of widths 12 m and 300 m respectively. The anode to cathode gap is 150 m and the pitch is 612 m. A high ...

  9. A bounds on the resonant frequency of rectangular microstrip antennas

    Science.gov (United States)

    Bailey, M. C.

    1980-01-01

    The calculation of currents induced by a transverse electric plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer a lower bound on the resonant frequency (or resonant-E-plane dimension) for rectangular microstrip antennas. An upper bound is provided by the frequency for which the E-plane dimension is a half-wavelength.

  10. Use of microstrip patch antennas in grain permittivity measurement

    Science.gov (United States)

    El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.

    2003-01-01

    In this paper, a compact size free-space setup is proposed for the measurement of complex permittivity of granular materials. The horn antennas in the conventional setup are replaced by microstrip patch antennas which is a step toward system miniaturization. The experimental results obtained are in good agreement with those obtained with horn antennas.

  11. Stable Delay of Microstrip Line with Side Grounded Conductors

    OpenAIRE

    Gazizov, T. R.; Salov, V. K.; Kuksenko, S. P.

    2017-01-01

    Characteristics of transmission lines are addressed. Wave impedance and per-unit-length delay of the microstrip structure with grounded side conductors on three layers are calculated under different parameters of the structure. A line which provides the desired value of wave impedance and constant per-unit-length delay, at the expense of correction of the gaps on different layers, is proposed.

  12. Microstrip-Transmission-Line Shock-Front Sensor

    Science.gov (United States)

    Leiweke, Robert J.; Smith, William C.

    1993-01-01

    Microstrip-transmission-line sensor measures velocities of low-overpressure shock fronts and offers dynamic range needed for measurements both far from and near explosions. Fabricated easily, relatively inexpensive, and repaired in field. In addition, basic geometry modified easily, as needed.

  13. Microstrip Patch Antenna Bandwidth Enhancement Using AMC/EBG Structures

    Directory of Open Access Journals (Sweden)

    R. C. Hadarig

    2012-01-01

    Full Text Available A microstrip patch antenna with bandwidth enhancement by means of artificial magnetic conductor (AMC/electromagnetic band-gap structure (EGB is presented. The electrical characteristics of the embedded structure are evaluated using MoM simulations. The manufactured prototypes are characterized in terms of return loss, gain, and radiation pattern measurements in an anechoic chamber.

  14. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...

  15. Geometrical optimization of microstripe arrays for microbead magnetophoresis

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rozlosnik, Noemi; Hansen, Mikkel Fougt

    2015-01-01

    Manipulation of magnetic beads plays an increasingly important role in molecular diagnostics. Magnetophoresis is a promising technique for selective transportation of magnetic beads in lab-on-a-chip systems. We investigate periodic arrays of exchange-biased permalloy microstripes fabricated using...

  16. Characterisation of an inhomogeneously irradiated microstrip detector using a fine spot infrared laser

    CERN Document Server

    Casse, G; Bowcock, T J V; Greenall, A; Phillips, JP; Turner, PR; Wright, V

    2001-01-01

    A prototype silicon microstrip detector for the LHCb vertex locator (VELO) has been partially irradiated using a 24 GeV/c proton beam at the CERN-PS accelerator. The detector possesses a radial strip geometry designed to measure the azimuthal coordinate (Phi) of tracks within the VELO. The peak fluence received by the detector was measured to be 4.6×10 14 p/cm 2 though the non-uniform nature of the exposure left part of the detector unirradiated. The inhomogeneous irradiation introduced a damage profile in the detector approximating to that expected in the VELO. High irradiation gradients are important to study as they can modify the electric field within the silicon. Of special interest are changes in the component of the electric field parallel to the strip plane but perpendicular to the strips which lead to systematic shifts in the reconstructed cluster position. If these (flux and position dependent) shifts are sufficiently large they could contribute to a degraded spatial resolution of the detector. In ...

  17. Tracking and Alignment Performance of the LHCb silicon detectors

    CERN Document Server

    Borghi, Silvia

    2011-01-01

    The LHCb experiment is primarily dedicated to the study of new physics through the heavy flavour decays. The tracking system of LHCb is composed of a silicon micro-strip vertex detector, two silicon strip tracker detectors and straw-tube drift chambers in front of and behind a dipole generating a magnetic field. This system provides precise measure of the vertex position and high momentum resolution. The performances of the silicon tracking subdetectors in terms of hit resolution and detector efficiencies, as well as on the overall track reconstruction performance and the alignment status, are reported.

  18. Silicon photonics beyond silicon-on-insulator

    Science.gov (United States)

    Chiles, Jeff; Fathpour, Sasan

    2017-05-01

    The standard platform for silicon photonics has been ridge or channel waveguides fabricated on silicon-on-insulator (SOI) wafers. SOI waveguides are so versatile and the technology built around it is so mature and popular that silicon photonics is almost regarded as synonymous with SOI photonics. However, due to several shortcomings of SOI photonics, novel platforms have been recently emerging. The shortcomings could be categorized into two sets: (a) those due to using silicon as the waveguide core material; and (b) those due to using silicon dioxide as the bottom cladding layer. Several heterogeneous platforms have been developed to address the first set of shortcomings. In such important heterogeneous integrated photonic platforms, the top silicon layer of SOI is typically replaced by a thin film of another optical material with a refractive index higher than the buried oxide (BOX) bottom cladding layer. Silicon is still usually preferred as the substrate of choice, but silicon has no optical functionality. In contrast, the second category of solutions aim at using silicon as the core waveguide material, while resolving issues related to the BOX layer. Particularly, one of the main drawbacks of SOI is that the BOX layer induces high optical loss in the mid-wavelength infrared (mid-IR) range. Accordingly, a host of platforms have been proposed, and some have been demonstrated, in which the BOX is replaced with insulating materials that have low intrinsic loss in the mid-IR. Examples are sapphire, lithium niobate, silicon nitride and air (suspended Si membrane waveguides). Although silicon is still the preferred substrate, sometimes a thin film of silicon, on which the optical waveguide is formed, is directly placed on top of another substrate (e.g., sapphire or lithium niobate). These alternative substrates act as both mechanical support and the lower cladding layer. In addition to the demands of mid-IR photonics, the non-SOI platforms can potentially offer other

  19. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Science.gov (United States)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  20. Silicon Processors Using Organically Reconfigurable Techniques (SPORT)

    Science.gov (United States)

    2014-05-19

    of devices including modulators[4], ring resonators [5], etc. which have broad application in telecommunications and imaging. Despite these promising...The device is depicted in Figure 25. A CPW electrode on top of a Liquid Crystalline Polymer (LCP) substrate will be contacted with a commercially...available SMA to CPW converter. The signal conductor of the CPW can be wirebonded to a microstrip transmission line which is patterned on top of an

  1. Design of a Front– End Amplifier for the Maximum Power Delivery and Required Noise by HBMO with Support Vector Microstrip Model

    Directory of Open Access Journals (Sweden)

    F. Guneş

    2014-04-01

    Full Text Available Honey Bee Mating Optimization (HBMO is a recent swarm-based optimization algorithm to solve highly nonlinear problems, whose based approach combines the powers of simulated annealing, genetic algorithms, and an effective local search heuristic to search for the best possible solution to the problem under investigation within a reasonable computing time. In this work, the HBMO- based design is carried out for a front-end amplifier subject to be a subunit of a radar system in conjunction with a cost effective 3-D SONNET-based Support Vector Regression Machine (SVRM microstrip model. All the matching microstrip widths, lengths are obtained on a chosen substrate to satisfy the maximum power delivery and the required noise over the required bandwidth of a selected transistor. The proposed HBMO- based design is applied to the design of a typical ultra-wide-band low noise amplifier with NE3512S02 on a substrate of Rogers 4350 for the maximum output power and the noise figure F(f=1dB within the 5-12 GHz using the T- type of microstrip matching circuits. Furthermore, the effectiveness and efficiency of the proposed HBMO based design are manifested by comparing it with the Genetic Algorithm (GA, Particle Swarm Optimization (PSO and the simple HBMO based designs.

  2. Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates

    KAUST Repository

    Janjua, Bilal

    2017-01-18

    Currently the AlGaN-based ultraviolet (UV) solid-state lighting research suffers from numerous challenges. In particular, low internal quantum efficiency, low extraction efficiency, inefficient doping, large polarization fields, and high dislocation density epitaxy constitute bottlenecks in realizing high power devices. Despite the clear advantage of quantum-confinement nanostructure, it has not been widely utilized in AlGaN-based nanowires. Here we utilize the self-assembled nanowires (NWs) with embedding quantum-disks (Qdisks) to mitigate these issues, and achieve UV emission of 337 nm at 32 A/cm (80 mA in 0.5 × 0.5 mm device), a turn-on voltage of ∼5.5 V and droop-free behavior up to 120 A/cm of injection current. The device was grown on a titanium-coated n-type silicon substrate, to improve current injection and heat dissipation. A narrow linewidth of 11.7 nm in the electroluminescence spectrum and a strong wavefunctions overlap factor of 42% confirm strong quantum confinement within uniformly formed AlGaN/AlGaN Qdisks, verified using transmission electron microscopy (TEM). The nitride-based UV nanowires light-emitting diodes (NWs-LEDs) grown on low cost and scalable metal/silicon template substrate, offers a scalable, environment friendly and low cost solution for numerous applications, such as solid-state lighting, spectroscopy, medical science and security.

  3. Resonance of Superconducting Microstrip Antenna with Aperture in the Ground Plane

    Directory of Open Access Journals (Sweden)

    S. Benkouda

    2013-08-01

    Full Text Available This paper presents a rigorous full-wave analysis of a high Tc superconducting rectangular microstrip antenna with a rectangular aperture in the ground plane. To include the effect of the superconductivity of the microstrip patch in the full-wave analysis, a complex surface impedance is considered. The proposed approach is validated by comparing the computed results with previously published data. Results showing the effect of the aperture on the resonance of the superconducting microstrip antenna are given.

  4. The BaBar silicon vertex tracker, performance and running experience

    CERN Document Server

    Re, V; Bozzi, C; Carassiti, V; Cotta-Ramusino, A; Piemontese, L; Breon, A B; Brown, D; Clark, A R; Goozen, F; Hernikl, C; Kerth, L T; Gritsan, A; Lynch, G; Perazzo, A; Roe, N A; Zizka, G; Roberts, D; Schieck, J; Brenna, E; Citterio, M; Lanni, F; Palombo, F; Ratti, L; Manfredi, P F; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Forti, F; Gagliardi, D J; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T I; Roat, C; Bóna, M; Bianchi, F; Gamba, D; Trapani, P; Bosisio, L; Della Ricca, G; Dittongo, S; Lanceri, L; Pompili, A; Poropat, P; Rashevskaia, I; Vuagnin, G; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Hale, D; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Mazur, M; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Johnson, R P; Kröger, W; Lockman, W S; Pulliam, T; Rowe, W; Schmitz, R E; Seiden, A; Spencer, E N; Turri, M; Walkowiak, W; Wilder, M; Wilson, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Zobernig, H

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is described, with emphasis on hit resolutions and efficiencies.

  5. Compensation of decreased ion energy by increased hydrogen dilution in plasma deposition of thin film silicon solar cells at low substrate temperatures

    NARCIS (Netherlands)

    Verkerk, A.D.; de Jong, M.M.; Rath, J.K.; Brinza, M.; Schropp, R.E.I.; Goedheer, W.J.; Krzhizhanovskaya, V.V.; Gorbachev, Y.E.; Orlov, K.E.; Khilkevitch, E.M.; Smirnov, A.S.

    2009-01-01

    In order to deposit thin film silicon solar cells on plastics and papers, the deposition process needs to be adapted for low deposition temperatures. In a very high frequency plasma-enhanced chemical vapor deposition (VHF PECVD) process, both the gas phase and the surface processes are affected by

  6. DESIGN OF MICROSTRIP RADIATOR USING PARTICLE SWARM OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Choukiker

    2011-09-01

    Full Text Available An inset feed Microstrip radiator has been designed and developed for operation at 2.4GHz frequency. The Microstrip patch antenna (MPA parameters were designed using IE3D®TM EM simulator (version 14.0 and optimized with an evolutionary stochastic optimizer i.e. Particle Swarm Optimization (PSO technique. Optimized results show that the antenna has a bandwidth of 33.54 MHz (<-10dB in the range 2.38355 GHz to 2.41709 GHz and a maximum return loss of -43.87dB at the resonant frequency of 2.4 GHz. The patch antenna is fabricated and the important parameters like return loss, VSWR etc were measured. The measured parameters match with the simulated results well within the tolerable limits.

  7. Slotted Circularly Polarized Microstrip Antenna for RFID Application

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2017-12-01

    Full Text Available A single layer coaxial fed rectangular microstrip slotted antenna for circular polarization (CP is proposed for radio frequency identification (RFID application. Two triangular shaped slots and one rectangular slot along the diagonal axis of a square patch have been embedded. Due to slotted structure along the diagonal axis and less surface area, good quality of circular polarization has been obtained with the reduction in the size of microstrip antenna by 4.04 %. Circular polarization radiation performance has been studied by size and angle variation of diagonally slotted structures. The experimental result found for 10-dB return loss is 44 MHz with 10MHz of 3dB Axial Ratio (AR bandwidth respectively at the resonant frequency 910 MHz. The overall proposed antenna size including the ground plane is 80 mm x 80 mm x 4.572 mm.

  8. Development and preliminary tests of resistive microdot and microstrip detectors

    CERN Document Server

    Peskov, V; Nappi, E; Martinengo, P; Oliveira, R; Pietropaolo, F; Picchi, P

    2012-01-01

    In the last few years our group have focused on developing various designs of spark-protected micropattern gaseous detectors featuring resistive electrodes instead of the traditional metallic ones: resistive microstrip counters, resistive GEM, resistive MICROMEGAS. These detectors combine in one design the best features of RPCs (spark-protection) and micropattern detectors (a high position resolution). In this paper we report the progress so far made in developing other types of resistive micropattern detectors: a microdot-microhole detector and a microgap-microstrip detector. The former detector is an optimal electron amplifier for some special designs of dual phase noble liquid TPCs, for example with a CsI photocathode immersed inside the noble liquid. Preliminary tests of such a detector, for the first time built and investigated, are reported in this paper. The latter detector is mainly orientated towards medical imaging applications such as X-ray scanners. However, we believe that after a proper gas opti...

  9. National solar technology roadmap: Film-silicon PV

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  10. Thermal imaging of hot spots in nanostructured microstripes

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, E; Lesueur, J; Aigouy, L [LPEM, CNRS UPR5, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 5 (France); Labeguerie-Egea, J; Mortier, M, E-mail: lionel.aigouy@espci.f [LCMCP, CNRS UMR 7574, ENSCP, 11 rue P. et M. Curie, 75005 Paris (France)

    2010-03-01

    By scanning thermal microscopy, we study the behavior of nanostructured metallic microstripes heated by Joule effect. Regularly spaced indentations have been made along the thin film stripe in order to create hot spots. For the designed stripe geometry, we observe that heat remains confined in the wire and in particular at shrinkage points within {approx}1{mu}m{sup 2}. Thermal maps have been obtained with a good lateral resolution (< 300nm) and a good temperature sensitivity ({approx}1K).

  11. Practical Aspects of the Transmission Line Stub Matching in Microstrip

    Directory of Open Access Journals (Sweden)

    S. Novak

    1997-06-01

    Full Text Available While designing microwave circuits with microstrip lines using open or shorted stubs for matching or realization of filters, the actual circuit can be substantially mismatched when the length of the open stub is below 30 degrees of electrical length, or shorted stub is over 60 degrees of electrical length. Realization of such stubs could lead to practical difficulties because the normal etching accuracy does not support the exact lengths required for such stubs.

  12. Stable Delay of Microstrip Line with Side Grounded Conductors

    Directory of Open Access Journals (Sweden)

    T. R. Gazizov

    2017-01-01

    Full Text Available Characteristics of transmission lines are addressed. Wave impedance and per-unit-length delay of the microstrip structure with grounded side conductors on three layers are calculated under different parameters of the structure. A line which provides the desired value of wave impedance and constant per-unit-length delay, at the expense of correction of the gaps on different layers, is proposed.

  13. Design of Tunable Edge Coupled Microstrip Bandpass Filters

    OpenAIRE

    Kaveri, Srinidhi V

    2008-01-01

    This thesis is a study of tunability of edge-coupled filters. Microstrip edge-coupled bandpass filters are planar structures and have advantages such as easy design procedures and simple integration into circuits. Three tuning techniques were implemented. The first technique involved the loading of one open end of each coupled into tunable capacitors. The second technique used a tunable resonator in series with the edge-coupled blocks. The final design made use of tunable feedback sections. A...

  14. Radiation damage status of the ATLAS silicon strip detectors (SCT)

    CERN Document Server

    Kondo, Takahiko; The ATLAS collaboration

    2017-01-01

    The Silicon microstrip detector system (SCT) of the ATLAS experiment at LHC has been working well for about 7 years since 2010. The innermost layer has already received a few times of 10**13 1-MeV neutron-equivalent fluences/cm2. The evolutions of the radiation damage effects on strip sensors such as leakage current and full depletion voltages will be presented.

  15. Scattering properties of textured TCO substrates in thin-film silicon solar cells; Streuverhalten von texturierten TCO-Substraten in Silizium-Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Melanie

    2009-04-27

    In this PhD thesis the scattering properties of textured transparent conducting oxides (TCO) for the application in thin-film silicon solar cells are investigated. The main focus is the correlation between the nanotextured surface and its scattering behaviour. Therefore a ray tracing model based on geometric optics and atomic force microscopy data is developed. Simulation results are compared and discussed with measurements of angle resolved scattering in the far field and experimentally determined scanning near field microscopy data in the near field. Besides, simulation results obtained by applying geometric optics and solutions of the Maxwell equation in the near field are compared and discussed. The scattering properties of TCO-air and TCO-silicon interfaces are considered. (orig.)

  16. Upconversion photoluminescence of epitaxial Yb{sup 3+}/Er{sup 3+} codoped ferroelectric Pb(Zr,Ti)O{sub 3} films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang, E-mail: zhangy_acd@hotmail.com [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kämpfe, Thomas [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Bai, Gongxun [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Mietschke, Michael; Yuan, Feifei; Zopf, Michael [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Abel, Stefan [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Eng, Lukas M. [Institut für Angewandte Physik, TU Dresden, 01062 Dresden (Germany); Hühne, Ruben [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Fompeyrine, Jean [IBM Research GmbH, Saümerstrasse 4, 8803 Rüschlikon (Switzerland); Ding, Fei, E-mail: f.ding@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Schmidt, Oliver G. [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer strasse 70, 09107 Chemnitz (Germany)

    2016-05-31

    Thin films of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} (PZT:Yb/Er) have been epitaxially grown on the SrTiO{sub 3} buffered Si wafer by pulsed laser deposition. Strong upconversion photoluminescence was observed in the PZT:Yb/Er thin film. Using piezoresponse force microscopy, polar domains in the PZT:Yb/Er film can be reversibly switched with a phase change of 180°. Ferroelectric hysteresis loop shape with a well-saturated response was observed. The epitaxially grown lanthanide-doped PZT on silicon opens up a promising route to the integration of luminescent functional oxides on the silicon platform. - Highlights: • Epitaxial growth of Yb{sup 3+}/Er{sup 3+} codoped Pb(Zr,Ti)O{sub 3} films on SrTiO{sub 3} buffered silicon • Upconversion emissions were obtained from the lanthanide ion doped thin films. • Saturated ferroelectric hysteresis loops were observed. • Polar domains were switched by PFM with a phase change of 180°.

  17. Metamaterial Inspired Microstrip Antenna Investigations Using Metascreens

    Directory of Open Access Journals (Sweden)

    Muhammad Tauseef Asim

    2015-01-01

    Full Text Available A dual layer periodically patterned metamaterial inspired antenna on a low cost FR4 substrate is designed, simulated, fabricated, and tested. The eigenmode dispersion simulations are performed indicating the left handed metamaterial characteristics and are tunable with substrate permittivity. The same metamaterial unit cell structure is utilized to fabricate a metascreen. This metascreen is applied below the proposed metamaterial antenna and next used as superstrate above a simple patch to study the effects on impedance bandwidth, gain, and radiation patterns. The experimental results of these antennas are very good and closely match with the simulations. More importantly, the resonance for the proposed metamaterial antenna with metascreen occurs at the left handed (LH eigenfrequency of the metamaterial unit cell structure. The measured −10 dB bandwidths are 14.56% and 22.86% for the metamaterial antenna with single and double metascreens, respectively. The metascreens over the simple patch show adjacent dual band response. The first and second bands have measured −10 dB bandwidths of 9.6% and 16.66%. The simulated peak gain and radiation efficiency are 1.83 dBi and 74%, respectively. The radiation patterns are also very good and could be useful in the UWB wireless applications.

  18. Design Studies of Ultra-Wideband Microstrip Antennas with a Small Capacitive Feed

    Directory of Open Access Journals (Sweden)

    Veeresh G. Kasabegoudar

    2007-01-01

    Full Text Available The design of an ultra-wideband microstrip patch antenna with a small coplanar capacitive feed strip is presented. The proposed rectangular patch antenna provides an impedance bandwidth of nearly 50%, and has stable radiation patterns for almost all frequencies in the operational band. Results presented here show that such wide bandwidths are also possible for triangular and semiellipse geometries with a similar feed arrangement. The proposed feed is a very small strip placed very close to the radiator on a substrate above the ground plane. Shape of the feed strip can also be different, so long as the area is not changed. Experimental results agree with the simulated results. Effects of key design parameters such as the air gap between the substrate and the ground plane, the distance between radiator patch and feed strip, and the dimensions of the feed strip on the input characteristics of the antenna have been investigated and discussed. As demonstrated here, the proposed antenna can be redesigned for any frequency in the L-, S-, C-, or X-band. A design criterion for the air gap has been empirically obtained to enable maximum antenna bandwidth for all these operational frequencies.

  19. The DELPHI Silicon Tracker at LEP2

    CERN Document Server

    Chochula, P; Andreazza, A; Barker, G; Chabaud, V; Collins, P; Dijkstra, H; Dufour, Y; Elsing, M; Jalocha, P; Mariotti, C; Mönig, K; Treille, D; Zalewska-Bak, A; Ledroit, F; Eklund, C; Orava, Risto; Österberg, K; Saarikko, H; Vuopionperä, R; de Boer, Wim; Hartmann, F; Heising, S; Kaiser, M; Knoblauch, D; Maehlum, G; Wielers, M; Brückman, P; Galuszka, K; Gdanski, T; Kucewicz, W; Michalowski, J; Palka, H; Cindro, V; Kriznic, E; Zontar, D; Clemens, J C; Cohen-Solal, M; Delpierre, P A; Mouthuy, T; Raymond, M; Sauvage, D; Bravin, Enrico; Caccia, M; Campagnolo, R; Chignoli, F; Leoni, R; Meroni, C; Pindo, M; Troncon, C; Vegni, G; Couchot, F; D'Almagne, B; Fulda, F; Trombini, A; Bibby, J H; Demaria, N; Pattison, P; Vassilopoulos, N; Mazzucato, M; Nomerotski, A; Stavitski, I; Brunet, J M; Courty, B; Guglielmi, G; Jaeger, J J; Tristram, G; Turlot, J P; Baubillier, M; Roos, L; Rossel, F; Leitner, R; Masik, J; Rídky, J; Vrba, V; Bates, M J; Bizzell, J P; Denton, Lynn; Phillips, P; Gandelman, M; Polycarpo, E; Bosio, C; Rykalin, V I; Martínez-Rivero, C; Brenner, R A; Bystrom, O; Adam, W; Frischauf, N; Krammer, Manfred; Leder, Gerhard; Pernegger, H; Pernicka, Manfred; Rakoczy, D; Becks, K H; Drees, J; Gerlach, P; Glitza, K W; Heuser, J M; Kersten, S; Überschär, B

    1998-01-01

    The DELPHI Silicon Tracker, an ensemble of microstrips, ministrips and pixels, was completed in 1997 and has accumulated over $70~{\\rm pb^{-1}}$ of high energy data. The Tracker is optimised for the LEP2 physics programme. It consists of a silicon microstrip barrel and endcaps with layers of silicon pixel and ministrip detectors. In the barrel part, three dimensional $b$ tagging information is available down to a polar angle of $25^\\circ$. Impact parameter resolutions have been measured of $28~\\mu {\\rm m} \\oplus 71/(p~{\\rm sin} ^{\\frac{3}{2}} \\theta)~\\mu {\\rm m} $ in $R \\phi$ and $34~\\mu {\\rm m} \\oplus 69/p~\\mu {\\rm m}$ in $Rz$, where $p$ is the track momentum in $\\rm {GeV/c}$. The amount of material has been kept low with the use of double-sided detectors, double-metal readout, and light mechanics. The pixels have dimensions of 330~$\\times$~330~$\\m u${\\rm m}$^2$ and the ministrips have a readout pitch of 200~$\\mu {\\rm m}$. The forward part of the detector shows average efficiencies of more than 96\\%, has sig...

  20. Computer-Aided Design of Microstrip GaAs Mesfet Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Niels Ole

    1976-01-01

    Results on computer-aided design of broadband GaAs MESFET amplifiers in microstrip is presented. The analysis of an amplifier is based on measured scattering parameters and a model of the microstrip structure, which includes parasitics and junction effects. The optimized performance of one stage...

  1. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  2. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  3. Hybrid Microstrip/Slotline Ultra-Wideband Bandpass Filter with a Controllable Notch Band

    Directory of Open Access Journals (Sweden)

    Xuehui Guan

    2017-01-01

    Full Text Available An ultra-wideband (UWB bandpass filter (BPF with a controllable notch band is presented by using hybrid microstrip/slotline structure. Firstly, a slotline resonator with symmetrically loaded stubs is fed by two microstrip lines to produce a UWB bandpass filtering response. Secondly, a microstrip triangular loop resonator is externally loaded over the slotline, and a notch band is introduced in the UWB passband. The notch band is determined by the perimeter of the loop resonator. Thirdly, two patches are added as the perturbation element to the corners of the microstrip resonator to excite a pair of degenerate modes. Bandwidth of the notch band can be tuned by properly selecting the patch size. Circuit model for the microstrip resonator loaded slotline is given and studied. Finally, the filter is designed, simulated, and measured. Measured results have agreed well with the simulated ones, demonstrating that a UWB filter with a controllable notch band has been realized.

  4. Growth and Device Performance of AlGaN/GaN Heterostructure with AlSiC Precoverage on Silicon Substrate

    OpenAIRE

    Jae-Hoon Lee; Jung-Hee Lee

    2014-01-01

    A crack-free AlGaN/GaN heterostructure was grown on 4-inch Si (111) substrate with initial dot-like AlSiC precoverage layer. It is believed that introducing the AlSiC layer between AlN wetting layer and Si substrate is more effective in obtaining a compressively stressed film growth than conventional Al precoverage on Si surface. The metal semiconductor field effect transistor (MESFET), fabricated on the AlGaN/GaN heterostructure grown with the AlSiC layer, exhibited normally on characteristi...

  5. Achievement Report for fiscal 1997 on developing a silicon manufacturing process with reduced energy consumption. Development of technology to manufacture high quality solar cell silicon substrates; 1997 nendo energy shiyo gorika silicon seizo process kaihatsu. Kohinshitsu taiyo denchiyo silicon kiban seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to establish an energy saving type mass production technology to manufacture solar cell substrates by using the electromagnetic casting process. This paper describes the achievements in fiscal 1997. Preliminary experiments were performed for high-performance slicing processing and post-slicing rinsing to reduce the cost by enhancing productivity in the slicing process. Since there is a problem of mixing of contaminating raw materials due to diversification in raw materials, resistance and impurity concentration must be determined on each raw material as the materials for the Czochralski method. Then, the raw materials are sorted out referring to the determination results, and they can be used for the electromagnetic casting process upon optimizing them. As a result of having sliced an ingot of 15-cm square with a length of 40 cm by using a mass-production wire saw, an accuracy of 22.8 {mu}m was attained as intra-face variance when the required cutting time was 476 minutes and the substrate thickness is 348 {mu}, thus having obtained prospect for achieving the standard. Development was made on a water jetting rough cleaning machine to separate and remove slurries (oil and grinding particles) from the substrates after slicing, and an arm robot to accommodate substrates into cassettes, which provided processing velocity of 9 second per substrate. A problem of raising the speed remains to be solved. (NEDO)

  6. Methods of repairing a substrate

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  7. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Cirlin, G E; Reznik, R R; Shtrom, I V

    2017-01-01

    The data on growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on different (1 1 1) substrates by Au-assisted molecular beam epitaxy are presented. The influence of nanowires growth conditions on structural and optical properties is studied in detail...

  8. Design of Dual Band Microstrip Patch Antenna using Metamaterial

    Science.gov (United States)

    Rafiqul Islam, Md; Alsaleh Adel, A. A.; Mimi, Aminah W. N.; Yasmin, M. Sarah; Norun, Farihah A. M.

    2017-11-01

    Metamaterial has received great attention due to their novel electromagnetic properties. It consists of artificial metallic structures with negative permittivity (ɛ) and permeability (µ). The average cell size of metamaterial must be less than a quarter of wavelength, hence, size reduction for the metamaterial antenna is possible. In addition, metamaterial can be used to enhance the low gain and efficiency in conventional patch antenna, which is important in wireless communication. In this paper, dual band microstrip patch antenna design using metamaterial for mobile GSM and WiMax application is introduced. The antenna structure consists of microstrip feed line connected to a rectangular patch. An array of five split ring resonators (SRRs) unit cells is inserted under the patch. The presented antenna resonates at 1.8 GHz for mobile GSM and 2.4 GHz for WIMAX applications. The return loss in the FR4 antenna at 1.8 GHz is -22.5 dB. Using metamaterial the return loss has improved to -25 dB at 2.4 GHz and -23.5 dB at 1.8 GHz. A conventional microstrip patch antenna using pair of slots is also designed which resonates at 1.8 GHz and 2.4 GHz. The return loss at 1.8 GHz and 2.4 GHz were -12.1 dB and -21.8 dB respectively. The metamaterial antenna achieved results with major size reduction of 45%, better bandwidth and better returns loss if it is compared to the pair of slots antenna. The software used to design, simulate and optimize is CST microwave studio.

  9. High-Performance Radio Frequency Passive Devices on Plastic Substrates for Radio Frequency Integrated Circuit Application

    Science.gov (United States)

    Hung, Bing-Fang; Chen, Chia-Chung; Kao, Hsuan-Ling; Chin, Albert

    2007-04-01

    High-performance passive RF devices were fabricated on insulating plastic substrates. These passive devices included inductors, low-loss coplanar waveguide (CPW) and microstrip transmission lines, 30 GHz narrow-band filters, and 25 GHz CPW ring resonators. The characteristics of these devices agreed well with those of ideal devices, as predicted by electro-magnetic simulations.

  10. Gas microstrip detectors for X-ray tomographic flow imaging

    CERN Document Server

    Key, M J; Luggar, R D; Kundu, A

    2003-01-01

    A investigation into the suitability of gas microstrip detector technology for a high-speed industrial X-ray tomography system is reported. X-ray energies in the region 20-30 keV are well suited to the application, which involves imaging two-dimensional slices through gas/liquid multiphase pipeline flows for quantitative component fraction measurement. Stable operation over a period representing several hundred individual tomographic scans at gas gains of 500 is demonstrated using a Penning gas mixture of krypton/propylene.

  11. Snaps to Connect Coaxial and Microstrip Lines in Wearable Systems

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available Commercial snaps (clothing fasteners can be used to connect a coaxial cable to a microstrip line. This is useful in the context of wearable antennas, especially in consumer applications and disposable connections. The measured S-parameters of the transition are presented, and an equivalent circuit and approximate equations are derived for system design purposes. The proposed connection is usable up to 1.5 GHz (10 dB return loss condition, and the frequency range can be extended to 2 GHz if a thinner, more flexible coaxial cable is used.

  12. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  13. Growth and Device Performance of AlGaN/GaN Heterostructure with AlSiC Precoverage on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Lee

    2014-01-01

    Full Text Available A crack-free AlGaN/GaN heterostructure was grown on 4-inch Si (111 substrate with initial dot-like AlSiC precoverage layer. It is believed that introducing the AlSiC layer between AlN wetting layer and Si substrate is more effective in obtaining a compressively stressed film growth than conventional Al precoverage on Si surface. The metal semiconductor field effect transistor (MESFET, fabricated on the AlGaN/GaN heterostructure grown with the AlSiC layer, exhibited normally on characteristics, such as threshold voltage of −2.3 V, maximum drain current of 370 mA/mm, and transconductance of 124 mS/mm.

  14. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS APPLIED TO MICROSTRIP ANTENNAS DESIGN ALGORITMOS EVOLUTIVOS MULTIOBJETIVO APLICADOS A LOS PROYECTOS DE ANTENAS MICROSTRIP

    Directory of Open Access Journals (Sweden)

    Juliano Rodrigues Brianeze

    2009-12-01

    Full Text Available This work presents three of the main evolutionary algorithms: Genetic Algorithm, Evolution Strategy and Evolutionary Programming, applied to microstrip antennas design. Efficiency tests were performed, considering the analysis of key physical and geometrical parameters, evolution type, numerical random generators effects, evolution operators and selection criteria. These algorithms were validated through design of microstrip antennas based on the Resonant Cavity Method, and allow multiobjective optimizations, considering bandwidth, standing wave ratio and relative material permittivity. The optimal results obtained with these optimization processes, were confirmed by CST Microwave Studio commercial package.Este trabajo presenta tres de los principales algoritmos evolutivos: Algoritmo Genético, Estrategia Evolutiva y Programación Evolutiva, aplicados al diseño de antenas de microlíneas (microstrip. Se realizaron pruebas de eficiencia de los algoritmos, considerando el análisis de los parámetros físicos y geométricos, tipo de evolución, efecto de generación de números aleatorios, operadores evolutivos y los criterios de selección. Estos algoritmos fueron validados a través del diseño de antenas de microlíneas basado en el Método de Cavidades Resonantes y permiten optimizaciones multiobjetivo, considerando ancho de banda, razón de onda estacionaria y permitividad relativa del dieléctrico. Los resultados óptimos obtenidos fueron confirmados a través del software comercial CST Microwave Studio.

  15. Analytical model for subthreshold current and subthreshold swing of short-channel double-material-gate MOSFETs with strained-silicon channel on silicon—germanium substrates

    Science.gov (United States)

    Tiwari, Pramod Kumar; Krishna Saramekala, Gopi; Dubey, Sarvesh; Mukhopadhyay, Anand Kumar

    2014-10-01

    The present work gives some insight into the subthreshold behaviour of short-channel double-material-gate strained-silicon on silicon—germanium MOSFETs in terms of subthreshold swing and off-current. The formulation of subthreshold current and, thereupon, the subthreshold swing have been done by exploiting the expression of potential distribution in the channel region of the device. The dependence of the subthreshold characteristics on the device parameters, such as Ge mole fraction, gate length ratio, work function of control gate metal and gate length, has been tested in detail. The analytical models have been validated by the numerical simulation results that were obtained from the device simulation software ATLAS™ by Silvaco Inc.

  16. A Printed LPDA Antenna Fed by a Microstrip Line to Double Sided Parallel Strip Line from Backside

    Directory of Open Access Journals (Sweden)

    Zhou Yang

    2017-01-01

    Full Text Available A novel planar printed log-periodic dipole array (LPDA antenna fed by tapered microstrip line (MSL to double sided parallel strip line (DSPSL is proposed in this paper. The proposed antenna adopts MSL feeding approach from backside. Using this feeding technique makes the printed LPDA antenna easier to be integrated into radio frequency (RF circuits. In this paper, four layers are used to construct the antenna. The four layers of the printed LPDA antenna are printed on three thin dielectric substrates which are integrated together. To validate this approach, a printed LPDA antenna is simulated and fabricated for operating in the S and C bands (2.5–6 GHz. The antenna showed a good result over the whole frequency range with 2 : 1 VSWR, an average gain of 6.5 dB, and stable radiation patterns. The measured results are in very good agreement with simulations.

  17. Silicon—a new substrate for GaN growth

    Indian Academy of Sciences (India)

    Generally, GaN-based devices are grown on silicon carbide or sapphire substrates. But these substrates are costly and insulating in nature and also are not available in large diameter. Silicon can meet the requirements for a low cost and conducting substrate and will enable integration of optoelectronic or high power ...

  18. Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System

    Directory of Open Access Journals (Sweden)

    Endra Wijaya

    2013-11-01

    Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.

  19. Investigation of Dual-Mode Microstrip Bandpass Filter Based on SIR Technique.

    Directory of Open Access Journals (Sweden)

    Yaqeen S Mezaal

    Full Text Available In this paper, a new bandpass filter design has been presented using simple topology of stepped impedance square loop resonator. The proposed bandpass filter has been simulated and fabricated using a substrate with an insulation constant of 10.8, thickness of 1.27mm and loss tangent of 0.0023 at center frequency of 5.8 GHz. The simulation results have been evaluated using Sonnet simulator that is extensively adopted in microwave analysis and implementation. The output frequency results demonstrated that the proposed filter has high-quality frequency responses in addition to isolated second harmonic frequency. Besides, this filter has very small surface area and perceptible narrow band response features that represent the conditions of recent wireless communication systems. Various filter specifications have been compared with different magnitudes of perturbation element dimension. Furthermore, phase scattering response and current intensity distribution of the proposed filter have been discussed. The simulated and experimental results are well-matched. Lastly, the features of the proposed filter have been compared with other designed microstrip filters in the literature.

  20. Investigation of Dual-Mode Microstrip Bandpass Filter Based on SIR Technique

    Science.gov (United States)

    Mezaal, Yaqeen S.; Ali, Jawad K.

    2016-01-01

    In this paper, a new bandpass filter design has been presented using simple topology of stepped impedance square loop resonator. The proposed bandpass filter has been simulated and fabricated using a substrate with an insulation constant of 10.8, thickness of 1.27mm and loss tangent of 0.0023 at center frequency of 5.8 GHz. The simulation results have been evaluated using Sonnet simulator that is extensively adopted in microwave analysis and implementation. The output frequency results demonstrated that the proposed filter has high-quality frequency responses in addition to isolated second harmonic frequency. Besides, this filter has very small surface area and perceptible narrow band response features that represent the conditions of recent wireless communication systems. Various filter specifications have been compared with different magnitudes of perturbation element dimension. Furthermore, phase scattering response and current intensity distribution of the proposed filter have been discussed. The simulated and experimental results are well-matched. Lastly, the features of the proposed filter have been compared with other designed microstrip filters in the literature. PMID:27798675

  1. Laminated NbTi-on-Kapton Microstrip Cables for Flexible Sub-Kelvin RF Electronics

    Science.gov (United States)

    Walter, Alex B.; Bockstiegel, Clinton; Mazin, Benjamin A.; Daal, Miguel

    2017-11-01

    Large arrays of superconducting devices such as microwave kinetic inductance detectors require high density interconnects from higher temperatures with minimal heat load, low loss, and negligible crosstalk capable of carrying large and overlapping bandwidth signals. We report the fabrication of superconducting 53 wt% Nb-47 wt% Ti (Nb-47Ti) microstrip transmission lines laminated onto flexible polyimide substrates with lengths up to 40 cm and up to ten traces. The 50 Ω traces terminate in G3PO coaxial push-on connectors. We found transmission losses of 2.5 dB and a nearest-neighbor forward crosstalk of -25 dB at 8 GHz on a typical 5 trace, 1.8-cm-wide, 0.198-mm-thick, 22-cm-long flex cable at 30 mK. A simple two-port analytical model and subsequent Sonnet simulations indicate that this loss is mainly due to a complex impedance mismatch from wirebonds at the end connector without which the insertion loss would be resistive losses in the copper adapter coaxes of our tested device. Heat flow calculations from literature data show that the 0.198-mm-thick flex cables tested have roughly equivalent thermal conductance per trace below 4 K compared to the 0.86 mm Nb-47Ti coaxial cables.

  2. Wearable Quarter-Wave Folded Microstrip Antenna for Passive UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Thomas Kaufmann

    2013-01-01

    Full Text Available A wearable low-profile inset-fed quarter-wave folded microstrip patch antenna for noninvasive activity monitoring of elderly is presented. The proposed antenna is embedded with a sensor-enabled passive radio-frequency identification (RFID tag operating in the ultra-high frequency (UHF industrial-scientific-medical (ISM band around 900 MHz. The device exhibits a low and narrow profile based on a planar folded quarter-wave length patch structure and is integrated on a flexible substrate to maximise comfort to the wearer. An extended ground plane made from silver fabric successfully minimises the impact of the human body on the antenna performance. Measurements on a prototype demonstrate a reflection coefficient (S11 of −30 dB at resonance and a −10 dB bandwidth from 920 MHz to 926 MHz. Simulation results predict a maximum gain of 2.8 dBi. This is confirmed by tag measurements where a 4-meter read range is achieved using a transmit power of 30 dBm, for the case where the passive wearable tag antenna is mounted on a body in a practical setting. This represents an almost 40% increase in read range over an existing dipole antenna placed over a 10 mm isolator layer on a human subject.

  3. Preventing phase separation in MOCVD-grown InAlAs compositionally graded buffer on silicon substrate using InGaAs interlayers

    Science.gov (United States)

    Kohen, David; Nguyen, Xuan Sang; Made, Riko I.; Heidelberger, Christopher; Lee, Kwang Hong; Lee, Kenneth Eng Kian; Fitzgerald, Eugene A.

    2017-11-01

    Compositionally graded InAlAs buffers grown by metal-organic chemical vapor deposition are impaired by phase separation occurring at In content higher than 35%. Phase separation results in rough epilayers with poor crystalline material quality. By introducing low temperature grown InGaAs interlayers in the compositionally graded InAlAs buffer, the surface roughness decreases, allowing a grading of up to In0.60Al0.40As without any phase separation occurring. This composite buffer is applied to fabricate a 200 mm diameter InP-on-Si virtual substrate with a threading dislocation density around 1 × 108 cm-2.

  4. Electromagnetic Radiation from Arbitrarily Shaped Microstrip Antenna Using the Equivalent Dipole-Moment Method

    Directory of Open Access Journals (Sweden)

    Jiade Yuan

    2012-01-01

    Full Text Available The equivalent dipole-moment method (EDM is extended and applied in the analysis of electromagnetic (EM radiation by arbitrarily shaped microstrip antenna in this paper. The method of moments (MoM is used to solve the volume-surface integral equation (VSIE. A strip model is applied in the treatment of the feeding probe of the microstrip antenna, in which the discretized triangular elements of the excitation source are equivalent as dipole models. The proposed approach is sufficiently versatile in handling arbitrarily shaped microstrip antenna and is easily constructed through a simple procedure. Numerical results are given to demonstrate the accuracy and efficiency of this method.

  5. The DAMPE silicon tungsten tracker

    CERN Document Server

    Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D

    2017-01-01

    The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...

  6. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  7. Voltage-induced strain control of the magnetic anisotropy in a Ni thin film on flexible substrate

    OpenAIRE

    Zighem, Fatih; Faurie, Damien; Mercone, Silvana; Belmeguenai, Mohamed; Haddadi, Halim

    2013-01-01

    Voltage-induced magnetic anisotropy has been quantitatively studied in polycrystalline Ni thin film deposited on flexible substrate using microstrip ferromagnetic resonance. This anisotropy is induced by a piezoelectric actuator on which the film/substrate system was glued. In our work, the control of the anisotropy through the applied elastic strains is facilitated by the compliant elastic behavior of the substrate. The in-plane strains in the film induced by the piezoelectric actuation have...

  8. ZnO-porous silicon nanocomposite for possible memristive device fabrication

    National Research Council Canada - National Science Library

    Martínez, Lizeth; Ocampo, Oscar; Kumar, Yogesh; Agarwal, Vivechana

    2014-01-01

    ...) over a mesoporous silicon substrate have been reported. Porous silicon (PS) substrate is employed as a template to increase the formation of oxygen vacancies in the ZnO layer and promote suitable grain size conditions for memristance...

  9. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  10. Transformational silicon electronics.

    Science.gov (United States)

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications.

  11. On-chip membrane-based GaInAs/InP waveguide-type p-i-n photodiode fabricated on silicon substrate.

    Science.gov (United States)

    Gu, Zhichen; Uryu, Tatsuya; Nakamura, Nagisa; Inoue, Daisuke; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2017-10-01

    Toward the realization of ultralow-power-consumption on-chip optical interconnection, two types of membrane-based GaInAs/InP p-i-n photodiodes were fabricated on Si host substrates by using benzocyclobutene bonding. A responsivity of 0.95 A/W was estimated with a conventional waveguide-type photodiode with an ∼30-μm-long absorption region. The fitting curves based on the experimental data indicated that an absorption efficiency above 90% could be achieved with a length of 10 μm. In addition, increased absorption per length of a photonic crystal waveguide-type photodiode was obtained because of the enhanced lateral optical confinement or the slow-light effect, enabling a further reduction in the device length.

  12. Wave Concept Iterative Procedure Analysis of Patch Antennas on Nanostructured Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    V. Silva Neto

    2014-02-01

    Full Text Available The wave concept iterative procedure (WCIP is proposed to analyze rectangular and circular patch antennas on nanostructured ceramic substrates. Principles of WCIP are described and advantages are emphasized. The analysis of microstrip antennas on double layered substrates is performed in space and spectral domains. In addition, Fast Fourier Transformation (FFT is used to improve the efficiency of the method. WCIP simulated results are compared to HFSS software ones. A good agreement is observed.

  13. Lateral epitaxial growth techniques for gallium nitride thin films on 6H-silicon carbide(0001) substrates via metalorganic vapor phase epitaxy

    Science.gov (United States)

    Thomson, Darren Brent

    Pendeo-epitaxy (PE) was developed as an alternative method to lateral epitaxial overgrowth (LEO) for the growth of GaN films with lower dislocation densities than that of conventionally grown films. In the PE technique, GaN is grown laterally from the sidewalls of etched stripes in previously deposited GaN seed layers grown on 6H-SiC(0001). The resulting GaN structure is suspended above the substrate and thereby avoids the formation of threading dislocations that arise from the lattice mismatch between the GAN film, buffer layer and substrate. The dislocation density in the laterally grown material is reduced by approximately five orders of magnitude. Uncoalesced and coalesced PE GaN structures have been successfully grown in this research. The growth mechanism for GaN via lateral epitaxy (LE) is described using a model of interpenetrating hexagonal pyramids. In contrast to the moderate rates of lateral growth of this compound from seed stripes oriented along [112¯0], analogous growth from stripes oriented parallel to [11¯00] can have high lateral growth rates due to the competition between adjacent (101¯1) and (011¯1) facets. When appropriate growth conditions are employed, the competing facets yield to the fast growing metastable (112¯0) vertical facet. In the absence of competing facets, which occurs at the ends of the stripes, the morphology of the lateral growth reverts to the stable {11¯01} facets. The formation of voids during the coalescence of GaN grown via lateral epitaxy is a common occurrence. These voids weaken the film and make it more susceptible to cracking. The interpenetrating hexagonal pyramid model is used to describe the growth mechanism leading to the formation of voids and their elimination. Experimental observations consistent with this model are presented. A novel method for the elimination of coalescence voids using an unconventional seed stripe orientation is also presented.

  14. Single-Crystalline InGaAs/InP Dense Micro-Pillar Forest on Poly-Silicon Substrates for Low-Cost High-Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Hasnain, Constance

    2015-05-04

    The ultimate goal of this project is to develop a photovoltaic system high conversion efficiency (>20%) using high quality III-V compound-based three-dimensional micro-structures on silicon and poly-silicon. Such a PV-system could be of very low cost due to minimum usages of III-V materials. This project will address the barriers that currently hamper the performance of solar cells based on three-dimensional micro-structures. To accomplish this goal the project is divided into 4 tasks, each dealing with a different aspect of the project: materials quality, micropillar growth control, light management, and pillar based solar cells. Materials Quality: the internal quantum efficiency (IQE) - by which is meant here the internal fluorescence yield - of the micro-pillars has to be increased. We aim at achieving an IQE of 45% by the end of the first year. By the end of the second year there will be a go-no-go milestone of 65% IQE. By the end of year 3 and 4 we aim to achieve 75% and 90% IQE, respectively. Micropillar growth control: dense forests of micropillars with high fill ratios need to be grown. Pillars within forests should show minimum variations in size. We aim at achieving fill ratios of 2%, 10%, >15%, >20% in years 1, 2, 3, and 4, respectively. Variations in dimension should be minimized by site-controlled growth of pillars. By the end of year 1 we will aim at achieving site-controlled growth with > 15% yield. By end of year 2 the variation of critical pillar dimensions should be less than 25%. Light management: high light absorption in the spectral range of the sun has been to be demonstrated for the micropillar forests. By the end of year 1 we will employ FDTD simulation techniques to demonstrate that pillar forests with fill ratios <20% can achieve 99% light absorption. By end of year 2 our original goal was to demonstrate >85% absorption. By end of year 3 > 90% absorption should be demonstrated. Pillar based solar cells: devices will be studied to explore

  15. Curvature Control of Silicon Microlens for THz Dielectric Antenna

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran

    2012-01-01

    We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.

  16. DESIGN AND CHARACTERIZATION OF E-SHAPE MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION

    Directory of Open Access Journals (Sweden)

    R. Divya

    2013-03-01

    Full Text Available The area of microstrip antennas has seen some inventive work in recent years and is one of the most dynamic fields of antenna theory. The ever increasing need for mobile communication and the emergence of newer technologies require an efficient design of antenna of smaller size for wider frequency range applications such as Wi-Max. The main aim of this paper is increase the impedance bandwidth of the microstrip patch antenna. A low profile wideband unequal E-shaped microstrip patch antenna for Wi-Max application is proposed in this paper .This proposed antenna is made by using the microstrip feeding method. Its bandwidth is further increased by introducing composite effect of stacking of patches with partial grounding. The antenna is designed and simulated by three-dimensional electromagnetic field software HFSS’12.The properties of the antenna such as bandwidth, S parameter, VSWR have been investigated.

  17. A new micro-strip tracker for the new generation of experiments at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Dinardo, Mauro E. [Univ. of Milan (Italy)

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Zo's or W±'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  18. Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    OpenAIRE

    Fraga-Rosales Hector; Reyes-Ayala Mario; Hernandez-Valdez Genaro; Andrade-Gonzalez Edgar Alejandro; Miranda-Tello Jose Raul; Cruz-Perez Felipe Alejandro; Castellanos-Lopez Sandra Lirio

    2017-01-01

    In this paper, a microstrip bowtie patch antenna (MBPA) for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation e...

  19. Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band

    OpenAIRE

    Tajeswita Gupta; P.K. Singhal

    2013-01-01

    An ultra-wideband slotted microstrip patch antenna has been proposed in this paper for uplink and downlink satellite applications in c band of IEEE 802.11 standards. Various slots have been introduced in the patch to achieve wider bandwidth. Presented work provides a comparative result of the microstrip patch antenna with and without the slots. Fractional bandwidth of the basic antenna is 9% which is increased to 46% after introduction of the slots in the proposed patch antenna.

  20. Microstrip superconducting quantum interference device radio-frequency amplifier: Scattering parameters and input coupling

    Energy Technology Data Exchange (ETDEWEB)

    Kinion, D; Clarke, J

    2008-01-24

    The scattering parameters of an amplifier based on a dc Superconducting QUantum Interference Device (SQUID) are directly measured at 4.2 K. The results can be described using an equivalent circuit model of the fundamental resonance of the microstrip resonator which forms the input of the amplifier. The circuit model is used to determine the series capacitance required for critical coupling of the microstrip to the input circuit.

  1. Microstrip superconducting quantum interference device amplifier: Operation in higher-order modes

    Science.gov (United States)

    Mück, Michael; Schmidt, Bernd; Clarke, John

    2017-07-01

    DC Superconducting Quantum Interference Devices (SQUIDs) are widely used to amplify low-level, radio frequency (rf) electrical signals. SQUID amplifiers offer low noise, high gain, and low power dissipation. One method of implementing a SQUID rf amplifier for frequencies from a few hundred megahertz to several gigahertz is to operate the integrated input coil on top of the SQUID washer as a microstrip resonator. This is achieved by applying the input signal between one end of the coil and the SQUID washer, which acts as a groundplane; the other end of the coil is left open. Substantial levels of gain can be achieved from the microstrip SQUID amplifier for a signal frequency at the fundamental resonant frequency of the microstrip, at which the length of the microstrip is equal to one-half wavelength, λ/2. Since the length of the microstrip has to be made shorter for higher frequencies, however, the mutual inductance between a SQUID with a given geometry and the microstrip—and thus the gain—decreases with increasing frequency. We show that a significantly enhanced gain can be achieved by operating the microstrip resonator in higher-order modes, for example, with a microstrip length of 3λ/2 or 5λ/2, provided the winding sense of the microstrip for each consecutive λ/2 section is reversed. For a 4λ/2 resonator, we demonstrate a gain of 24 dB at 2.6 GHz, an increase in gain of about 10 dB compared to a λ/2 resonator on a SQUID of the same geometry and characteristics.

  2. A Compact Multiband Metamaterial based Microstrip Patch Antenna for Wireless communication Applications

    OpenAIRE

    Nikhil Kulkarni; G. B. Lohiya

    2017-01-01

    In this paper, a metamaterial based compact multiband microstrip antenna is proposed which can give high gain and directivity. Metamaterials are periodic structures and have been intensively investigated due to the particular features such as ultra-refraction phenomenon and negative permittivity and/or permeability. A metamaterialbased microstrip patch antenna with enhanced characteristics and multi band operation will be investigated in this work. The multiple frequency operation will be ach...

  3. Novel Compact Spider Microstrip Antenna with New Defected Ground Structure

    Science.gov (United States)

    Ghoname, R. S.; Mohamed, M. A.; Hennawy, A. El.

    2012-08-01

    Two novel Defected Ground Structures (DGS) were first proposed, which have better results than that of the dumbbell (published shape). Using the general model of DGS, its equivalent parameters were extracted. The two new proposed shapes of DGS were then used to design a novel compact spider microstrip antenna to minimize its area. The size of the developed antenna was reduced to about 90.5% of that of the conventional one. This antenna with two different novel shapes of DGS was designed and simulated by using the ready-made software package Zeland-IE3D. Finally, it was fabricated by using thin film and photolithographic technique and measured by using vector network analyzer. Good agreements were found between the simulated and measured results.

  4. Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

    Directory of Open Access Journals (Sweden)

    Guo Liu

    2013-01-01

    Full Text Available A novel miniaturized circularly polarized (CP microstrip antenna that can handle UHF band (920–925 MHz, corresponding to the assigned band for RFID in China has been designed, fabricated, and measured in this paper. The miniaturization of antenna is achieved by a special cross-shaped fractal metamaterial structure that is inserted between the patch and ground plane. The measured results show that the antenna possesses an impedance bandwidth of 8.7% with VSWR 1.5 : 1 and 3-dB axial bandwidth of 3.8%. Furthermore, the proposed antenna has 10.2% size reduction compared with traditional patch antenna. The tested results are in good agreement with that of the simulations.

  5. Modified Microstrip Aperture Coupled Patch Antenna with Sierpinski Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2014-01-01

    Full Text Available A two-layer modified microstrip aperture coupled patch antenna with Sierpinski fractal geometry is presented in this paper. The effects of the two coupling slots and the parasitic patch are discussed. The proposed antenna can work on 956 MHz to 968 MHz, 3.654 GHz to 3.78 GHz, and 8.81 GHz to 9.28 GHz three frequency bands, and the maximum gain in each band is 4.64 dBi, 8.46 dBi, and 7.85 dBi, respectively. The simulated result reveals that the Sierpinski patch antenna we proposed in this paper performs better on radiation properties.

  6. Composite metamaterial enabled excellent performance of microstrip antenna array

    Science.gov (United States)

    Tang, Ming-Chun; Xiao, Shao-Qiu; Guan, Jian; Bai, Yan-Ying; Gao, Shan-Shan; Wang, Bing-Zhong

    2010-07-01

    This paper reports that the split ring resonators and complementary split ring resonators are compounded to construct a novel compact composite metamaterial. The composite metamaterial exhibits a unique property of blocking electromagnetic wave propagating in two directions near the resonant frequency. An example of two-element microstrip antenna array demonstrates that the developed metamaterial enables array performance that is an improvement in comparison with the traditional one, including mutual coupling suppression of 9.07 dB, remarkable side lobe suppression and gain improvement of 2.14 dB. The mechanism of performance enhancement is analysed based on the electric field and Poynting vector distributions in array. The present work not only is a meaningful exploration of new type composite metamaterial design, but also opens up possibilities for extensive metamaterial applications to antenna engineer.

  7. Progress with diamond over-coated microstrip gas chambers

    CERN Document Server

    Boimska, B; Capéans-Garrido, M; Dominik, Wojciech; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A; Temmel-Ropelewski, T

    1998-01-01

    We describe recent observations and measurements with Micro-Strip Gas Chambers coated, after manufacturing, with a thin diamond-like layer in order to increase their rate capability. Compared to the more widely used solution consisting in coating the insulating support with a conductive layer before photo-lithography (the so-called undercoating), over-coating has the advantage of avoiding possible problems with adherence of metals to the layer, damages during the etching process and reduced quality of the artwork resulting from imperfections or dust inclusions in the layer. Early tests have however indicated that, possibly because of damages to the layer due to electron and ion bombardment during the avalanche process, irreversible structural modifications and fatal breakdown could be encountered at very high integral radiation fluxes. The present paper summarizes these results, and describes recent developments demonstrating that a better choice of the parameters of the over-coat may allow to withstand the r...

  8. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  9. Synthesis of an aperiodic antenna array - Application to microstrip antennas

    Science.gov (United States)

    Mekkioui, Zahera; Bendimerad, Fethi-Tarik

    1992-10-01

    Several methods for synthesizing aperiodic arrays are proposed with application to microstrip antennas. Their particular feature is to take into account the field pattern issued by the primary source. By stating the feed law and by acting solely on the position parameter we are able to make the radiation pattern of the antenna array conform to a number of given requirements. The duplication of the spatial distribution sets constraints linked to the criteria for nonoverlapping sources. Starting with two different formulations regarding the problem of synthesis we propose two solution techniques: minimax (top down based on subgradient) and relaxation under constraints. The various methods are compared and an extension to a plane array is derived.

  10. A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Samuel Á. Jaramillo-Flórez

    2013-11-01

    Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.

  11. FILTSoft: A computational tool for microstrip planar filter design

    Science.gov (United States)

    Elsayed, M. H.; Abidin, Z. Z.; Dahlan, S. H.; Cholan N., A.; Ngu, Xavier T. I.; Majid, H. A.

    2017-09-01

    Filters are key component of any communication system to control spectrum and suppress interferences. Designing a filter involves long process as well as good understanding of the basic hardware technology. Hence this paper introduces an automated design tool based on Matlab-GUI, called the FILTSoft (acronym for Filter Design Software) to ease the process. FILTSoft is a user friendly filter design tool to aid, guide and expedite calculations from lumped elements level to microstrip structure. Users just have to provide the required filter specifications as well as the material description. FILTSoft will calculate and display the lumped element details, the planar filter structure, and the expected filter's response. An example of a lowpass filter design was calculated using FILTSoft and the results were validated through prototype measurement for comparison purposes.

  12. Microstrip Cross-coupled Interdigital SIR Based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    R. K. Maharjan

    2012-09-01

    Full Text Available A simple and compact 4.9 GHz bandpass filter for C-band applications is proposed. This paper presents a novel microstrip cross-coupled interdigital half-wavelength stepped impedance resonator (SIR based bandpass filter (BPF.The designed structure is similar to that of a combination of two parallel interdigital capacitors. The scattering parameters of the structure are measured using vector network analyzer (VNA. The self generated capacitive and inductive reactances within the interdigital resonators exhibited in a resonance frequency of 4.9 GHz. The resonant frequency and bandwidth of the capacitive cross-coupled resonator is directly optimized from the physical arrangement of the resonators. The measured insertion loss (S21 and return loss (S11 were 0.3 dB and 28 dB, respectively, at resonance frequency which were almost close to the simulation results.

  13. Realization of Negative Group Delay Network Using Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    Girdhari Chaudhary

    2014-01-01

    Full Text Available A design of negative group delay (NGD networks using a U-shaped defected microstrip structure (DMS and lumped elements is presented in this paper. The signal attenuation characteristics of DMS were utilized to get NGD time. The group delay (GD time and signal attenuation of the proposed networks are controlled by an external resistor connected across the DMS slot. For experimental validation, a single-stage and cascaded two-stage NGD networks were designed and fabricated. From experimental results, the GD of -8.24±1.1 ns with the maximum insertion loss of 37.84 dB was obtained over bandwidth of 40 MHz.

  14. Computer Aided Design and Analysis of a 2-4 GHz Broadband Balanced Microstrip Amplifier

    Directory of Open Access Journals (Sweden)

    S. H. Ibrahim

    2012-07-01

    Full Text Available In this paper, a computer-aided design and analysis of a 2-4 GHz broadband balanced microstrip amplifier using a full computer simulation program developed by the author and others is presented. A short and efficient CAD procedure for broadband amplifier design is introduced. The first step is to design an initial narrow-band high gain microstrip amplifier at 3-GHz central frequency. The second step is to optimize the initial lengths and widths of the input and output microstrip-matching circuits to get the broadband amplifier over the range 2-4 GHz. The analysis of both narrow and broadband amplifiers is investigated. In addition, with the design and analysis of a low-pass microstrip filter, the paper introduces the design and analysis of a Lange coupler. The final AC schematic diagram of the designed amplifier with the lengths and widths of microstrip lines is presented.Key Words: Computer-Aided Design and Analysis, Microstrip Amplifier, Microwave Amplifier.

  15. Sputtering and crystalline structure modification of bismuth thin films deposited onto silicon substrates under the impact of 20-160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [CRNA/Division des Techniques Nucleaires, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S., E-mail: souichaoui@gmail.co [USTHB/Faculte de Physique, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [CRNA/Division des Techniques Nucleaires, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Zemih, R. [USTHB/Faculte de Physique, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria)

    2010-01-15

    The sputtering of bismuth thin films induced by 20-160 keV Ar{sup +} ions has been studied using Rutherford backscattering spectrometry, scanning electron microscopy and X-ray energy dispersive and diffraction spectroscopy. These techniques revealed increasing modifications of the Bi film surfaces with increasing both ion beam energy and fluence up to their complete deterioration under irradiation conditions E = 160 keV and phi = 1.5 x 10{sup 16} cm{sup -2}, leaving isolated islands of preferred (0 1 2) orientation on the Si substrate. The observed surface morphology and crystalline structure evolutions are likely due to a complex interplay of interaction mechanisms involving both elastic nuclear collisions and inelastic electronic ones. The measured Bi sputtering yields versus Ar{sup +} ion fluence for a fixed ion energy exhibit a significant depression at very low phi-values followed by a steady state regime above approx2.0 x 10{sup 14} cm{sup -2}. Measured sputtering yields versus Ar{sup +} ion energy with fixing ion fluence to 1.2 x 10{sup 16} cm{sup -2} in the upper part of the yield saturation regime are also reported. Their comparison to theoretical model and SRIM 2008 Monte Carlo simulation predictions is discussed.

  16. Solar cell with silicon oxynitride dielectric layer

    Science.gov (United States)

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0substrate. A semiconductor layer is disposed on the silicon oxynitride dielectric layer.

  17. Initial hafnium oxide growth on silicon(100) and gallium arsenide(100) substrates using TEMAH+water and TDMAH+water ALD processes

    Science.gov (United States)

    Hackley, Justin Cain

    Atomic layer deposition (ALD) is a cyclic growth process that is distinguished by a self-limiting, two-step surface reaction that results in precise growth control and high quality, conformal thin films. Due to the continuous downscaling of MOSFET devices, a large interest has recently developed in the ALD of high-kappa dielectric materials as gate oxide layers on Si and III-V substrates. The ALD of HfO2 is an established process; however, there is still controversy over the initial growth mechanisms on differently prepared Si surfaces. This motivated a comparison of the nucleation stage of HfO 2 films grown on OH-(Si-OH) and H-terminated (Si-H) Si(100) surfaces. Two different ALD chemistries are investigated, including tetrakis[ethylmethylamino]hafnium (Hf[N(CH3)(C2H5)]4), abbreviated as TEMAH, and tetrakis[dimethylamino]hafnium (Hf[N(CH3)2] 4, abbreviated as TDMAH. H2O is used as the oxidizing precursor. Deposition temperatures of 250-275°C result in a linear growth per cycle of 1 A/cycle. Techniques including Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), and transmission electron microscopy are used to examine the film interface and initial film growth. HfO2 films are also subjected to post-deposition anneals, and the film morphology is examined with X-ray diffraction, Fourier transform infrared spectroscopy and atomic force microscopy. GaAs MOSFET devices have long proven elusive due to the lack of a stable native oxide. Recent research into high-kappa dielectric materials for use in Si-based devices has presented many new options for insulating layers on GaAs. HfO2 growth on GaAs(100) from a TDMAH+H2O ALD process is studied here. Three different GaAs surface treatments are examined, including buffered oxide etch (BOE), NH4OH, and a simple acetone/methanol wash (to retain the native oxide surface). Initial HfO2 growth on these surfaces is characterized with RBS and SE. The interfacial

  18. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the ...

  19. Commissioning and Performance of the LHCb Silicon Tracker

    CERN Multimedia

    van Tilburg, J; Buechler, A; Bursche , A; Chiapolini, N; Elsaesser, C; Hangartner, V; Salzmann, C; Steiner, S; Steinkamp, O; Staumann, U; Tobin, M; Vollhardt, A; Bay, A; Bettler, M O; Blanc, F; Bressieux, J; Conti, G; Fave, V; Frei, R; Gauvin, N; Gonzalez, R; Haefeli, G; Hicheur, A; Keune, A; Luisier, J; Muresan, R; Nakada, T; Needham, M; Nicolas, L; Knecht, M; Perrin, A; Potterat, C; Schneider, O; Tran, M; Aquines Gutierrez, O; Bauer, C; Britsch, M; Hofmann, W; Maciuc, F; Schmelling, M; Voss, H; Adeva, B; Esperante, D; Fungueiriño Pazos, J; Gallas, A; Pazos-Alvarez, A; Pérez-Trigo, E; Pló Casasús, M; Rogríguez Pérez, P; Saborido, J; Vázquez, P; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2010-01-01

    The LHCb Silicon Tracker is a silicon micro-strip detector with a sensitive area of 12 m$^2$ and a total of 272k readout channels. The Silicon Tracker consists of two parts that use different detector modules. The detector installation was completed by early summer 2008 and the commissioning without beam has reached its finals stage, successfully overcoming most of the encountered problems. Currently, the detector has more than 99% of the channels fully functioning. Commissioning with particles has started using beam-induced events from the LHC injection tests in 2008 and 2009. These events allowed initial studies of the detector performance. Especially, the detector modules could be aligned with an accuracy of about 20 $\\mu$m. Furthermore, with the first beam collisions that took place end of 2009 we could further study the performance and improve the alignment of the detector.

  20. LHCb: Installation and operation of the LHCb Silicon Tracker detector

    CERN Multimedia

    Esperante Pereira, D

    2009-01-01

    The LHCb experiment has been designed to perform high-precision measurements of CP violation and rare decays of B hadrons. The construction and installation phases of the Silicon Tracker (ST) of the experiment were completed by early summer 2008. The LHCb Silicon Tracker sums up to a total sensitive area of about 12 m^2 using silicon micro-strip technology and withstands charged particle fluxes of up to 5 x 10^5cm^−2s^−1. We will report on the preparation of the detectors for the first LHC beams. Selected results from the commissioning in LHCb are shown, including the first beam-related events accumulated during LHC injection tests in September 2008. Lessons are drawn from the experience gathered during the installation and commissioning.