WorldWideScience

Sample records for subsecond multicolor four-dimensional

  1. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA.

    Science.gov (United States)

    Hadizadeh, Dariusch R; von Falkenhausen, Marcus; Gieseke, Jürgen; Meyer, Bernhard; Urbach, Horst; Hoogeveen, Romhild; Schild, Hans H; Willinek, Winfried A

    2008-01-01

    To prospectively test the hypothesis that subsecond-temporal-resolution four-dimensional (4D) contrast material-enhanced magnetic resonance (MR) angiography at 3.0 T enables the same Spetzler-Martin classification (nidus size, venous drainage, eloquence) of cerebral arteriovenous malformation (AVM) as that at digital subtraction angiography (DSA). Institutional ethics committee approval and written informed consent were obtained. In a prospective intraindividual comparative study, 18 consecutive patients with cerebral AVM (nine men, nine women; mean age, 41.9 years +/- 14.0 [standard deviation]; range, 23-69 years) were examined with 4D contrast-enhanced MR angiography and DSA. Four-dimensional contrast-enhanced MR angiography combined randomly segmented central k-space ordering, keyhole imaging, sensitivity encoding, and half-Fourier imaging, which yielded a total acceleration factor of 60. Fifty dynamic scans were obtained every 608 msec at an acquired spatial resolution of 1.1 x 1.4 x 1.1 mm. Four-dimensional contrast-enhanced MR angiograms were independently reviewed by one neuroradiologist and one neurosurgeon according to Spetzler-Martin classification, overall diagnostic quality, and level of confidence. Kendall W coefficients of concordance (K) were computed to compare reader assessment of image quality, level of confidence, and Spetzler-Martin classification by using 4D contrast-enhanced MR angiography and to compare Spetzler-Martin classification as determined with DSA with that at 4D contrast-enhanced MR angiography. Spetzler-Martin classification of cerebral AVM at 4D contrast-enhanced MR angiography and at DSA matched in 18 of 18 patients for both readers, which yielded 100% interobserver agreement (K = 1). Image quality of 4D contrast-enhanced MR angiography was judged to be at least adequate for diagnosis in all patients by both readers. In three of 18 patients, DSA depicted additional arterial feeders of cerebral AVM. Subsecond-temporal-resolution 4

  2. Four Dimensional Cardiac Imaging

    Science.gov (United States)

    Smith, L. D. R.; Quarendon, P.

    1986-05-01

    A system for the production of a four dimensional (moving three dimensional) human epicardial left ventriculogram, modelled and highlighted to show regional wall motion changes, is described. The moving image is derived by fitting a surface to the three dimensional coordinates of coronary artery bifurcations. These are determined by analysis of digitised biplane coronary cineangiograms. This image system not only provides a unique 3-D view of left ventricular activity but might also provide measures of cardiac dynamics such as, stroke volume and velocity of wall movement. The system is not fully automated although operator interaction may be minimised. Further work on vessel tracking systems is required before full automation is possible.

  3. On four dimensional mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Losev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Nekrasov, N.; Shatashvili, S.

    2000-07-01

    A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C{sup 2r} invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)

  4. Four Dimensional Trace Space Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.

    2005-02-10

    Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.

  5. Matrix model formulation of four dimensional gravity

    Energy Technology Data Exchange (ETDEWEB)

    De Pietri, Roberto

    2001-03-01

    The attempt of extending to higher dimensions the matrix model formulation of two-dimensional quantum gravity leads to the consideration of higher rank tensor models. We discuss how these models relate to four dimensional quantum gravity and the precise conditions allowing to associate a four-dimensional simplicial manifold to Feynman diagrams of a rank-four tensor model.

  6. Spinors in Four-Dimensional Spaces

    CERN Document Server

    Torres del Castillo, Gerardo F

    2010-01-01

    Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang–Mills theory, are derived in detail using illustrative examples. Key topics and features: • Uniform treatment of the spinor formalism for four-dimensional spaces of any signature, not only the usual signature (+ + + −) employed in relativity • Examples taken from Riemannian geometry and special or general relativity are discussed in detail, emphasizing the usefulness of the two-component spinor formalism • Exercises in each chapter • The relationship of Clifford algebras and Dirac four-component spinors is established • Applications of the two-component formalism, focusing mainly on general relativity, are presented in the context of actual computations Spinors in Four-Dim...

  7. Adding Four- Dimensional Data Assimilation (aka grid ...

    Science.gov (United States)

    Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mode in much the same manner as the current meteorological driver, the Weather Research and Forecasting (WRF) model. The WRF operates in diagnostic mode using Four-Dimensional Data Assimilation, also known as "grid nudging". MPAS version 4.0 has been modified with the addition of an FDDA routine to the standard physics drivers to nudge the state variables for wind, temperature and water vapor towards MPAS initialization fields defined at 6-hour intervals from GFS-derived data. The results to be shown demonstrate the ability to constrain MPAS simulations to known historical conditions and thus provide the U.S. EPA with a practical meteorological driver for global-scale air quality simulations. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use bo

  8. Four-dimensional coherent electronic Raman spectroscopy

    Science.gov (United States)

    Harel, Elad

    2017-04-01

    The correlations between different quantum-mechanical degrees of freedom of molecular species dictate their chemical and physical properties. Generally, these correlations are reflected in the optical response of the system but in low-order or low-dimensionality measurement the signals are highly averaged. Here, we describe a novel four-dimensional coherent spectroscopic method that directly correlates within and between the manifold of electronic and vibrational states. The optical response theory is developed in terms of both resonant and non-resonant field-matter interactions. Using resonance to select coherences on specific electronic states creates opportunities to directly distinguish coherent dynamics on the ground and electronically excited potentials. Critically, this method is free from lower-order signals that have plagued other electronically non-resonant vibrational spectroscopies. The theory presented here compliments recent work on the experimental demonstration of the 4D spectroscopic method described. We highlight specific means by which non-trivial effects such as anharmonicity (diagonal and off-diagonal), mode-specific vibronic coupling, and curvature of the excited states manifest in different projections of the 4D spectrum.

  9. Multicolor-FICTION

    Science.gov (United States)

    Martín-Subero, José Ignacio; Chudoba, Ilse; Harder, Lana; Gesk, Stefan; Grote, Werner; Novo, Francisco Javier; Calasanz, María José; Siebert, Reiner

    2002-01-01

    Phenotypic and genotypic analyses of cells are increasingly essential for understanding pathogenetic mechanisms as well as for diagnosing and classifying malignancies and other diseases. We report a novel multicolor approach based on the FICTION (fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms) technique, which enables the simultaneous detection of morphological, immunophenotypic, and genetic characteristics of single cells. As prerequisite, multicolor interphase fluorescence in situ hybridization assays for B-cell non-Hodgkin’s lymphoma and anaplastic large-cell lymphoma have been developed. These assays allow the simultaneous detection of the most frequent primary chromosomal aberrations in these neoplasms, such as t(8;14), t(11;14), t(14;18), and t(3;14), and the various rearrangements of the ALK gene, respectively. To establish the multicolor FICTION technique, these assays were combined with the immunophenotypic detection of lineage- or tumor-specific antigens, namely CD20 and ALK, respectively. For evaluation of multicolor FICTION experiments, image acquisition was performed by automatic sequential capturing of multiple focal planes. Thus, three-dimensional information was obtained. The multicolor FICTION assays were applied to well-characterized lymphoma samples, proving the performance, validity, and diagnostic power of the technique. Future multicolor FICTION applications include the detection of preneoplastic lesions, early stage and minimal residual diseases, or micrometastases. PMID:12163366

  10. Sub-Second Parallel State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yousu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rice, Mark J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glaesemann, Kurt R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shaobu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-31

    This report describes the performance of Pacific Northwest National Laboratory (PNNL) sub-second parallel state estimation (PSE) tool using the utility data from the Bonneville Power Administrative (BPA) and discusses the benefits of the fast computational speed for power system applications. The test data were provided by BPA. They are two-days’ worth of hourly snapshots that include power system data and measurement sets in a commercial tool format. These data are extracted out from the commercial tool box and fed into the PSE tool. With the help of advanced solvers, the PSE tool is able to solve each BPA hourly state estimation problem within one second, which is more than 10 times faster than today’s commercial tool. This improved computational performance can help increase the reliability value of state estimation in many aspects: (1) the shorter the time required for execution of state estimation, the more time remains for operators to take appropriate actions, and/or to apply automatic or manual corrective control actions. This increases the chances of arresting or mitigating the impact of cascading failures; (2) the SE can be executed multiple times within time allowance. Therefore, the robustness of SE can be enhanced by repeating the execution of the SE with adaptive adjustments, including removing bad data and/or adjusting different initial conditions to compute a better estimate within the same time as a traditional state estimator’s single estimate. There are other benefits with the sub-second SE, such as that the PSE results can potentially be used in local and/or wide-area automatic corrective control actions that are currently dependent on raw measurements to minimize the impact of bad measurements, and provides opportunities to enhance the power grid reliability and efficiency. PSE also can enable other advanced tools that rely on SE outputs and could be used to further improve operators’ actions and automated controls to mitigate effects

  11. Four-dimensional hilbert curves for R-trees

    DEFF Research Database (Denmark)

    Haverkort, Herman; Walderveen, Freek van

    2011-01-01

    Two-dimensional R-trees are a class of spatial index structures in which objects are arranged to enable fast window queries: report all objects that intersect a given query window. One of the most successful methods of arranging the objects in the index structure is based on sorting the objects...... according to the positions of their centers along a two-dimensional Hilbert space-filling curve. Alternatively, one may use the coordinates of the objects' bounding boxes to represent each object by a four-dimensional point, and sort these points along a four-dimensional Hilbert-type curve. In experiments...

  12. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, P.J.; Daria, V.R.; Glückstad, J.

    2005-01-01

    We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method...

  13. Four-dimensional conversion for spiritual leadership development: A ...

    African Journals Online (AJOL)

    The real challenge is how to develop such leadership. This article provides intentional and practical ways that may lead to the development of the needed leadership. Four-dimensional transformation of people can be planned and carried out both in the church arena and in the surrounding communities. Skills development ...

  14. Manual control displays for a four-dimensional landing approach

    Science.gov (United States)

    Silverthorn, J. T.; Swaim, R. L.

    1975-01-01

    Six instrument rated pilots flew a STOL fixed base simulator to study the effectiveness of three displays for a four dimensional approach. The three examined displays were a digital readout of forward position error, a digital speed command, and an analog display showing forward position error and error prediction. A flight director was used in all conditions. All test runs were for a typical four dimensional approach in moderate turbulence that included a change in commanded ground speed, a change in flight path angle, and two standard rate sixty degree turns. Use of the digital forward position error display resulted in large overshoot in the forward position error. Some type of lead (rate or prediction information) was shown to be needed. The best overall performance was obtained using the speed command display. It was demonstrated that curved approaches can be flown with relative ease.

  15. (Compactified black branes in four dimensional f(R-gravity

    Directory of Open Access Journals (Sweden)

    N. Dimakis

    2018-02-01

    Full Text Available A new family of analytical solutions in a four dimensional static spacetime is presented for f(R-gravity. In contrast to General Relativity, we find that a non trivial black brane/string solution is supported in vacuum power law f(R-gravity for appropriate values of the parameters characterizing the model and when axisymmetry is introduced in the line element. For the aforementioned solution, we perform a brief investigation over its basic thermodynamic quantities.

  16. (Compactified) black branes in four dimensional f(R)-gravity

    Science.gov (United States)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2018-02-01

    A new family of analytical solutions in a four dimensional static spacetime is presented for f (R) -gravity. In contrast to General Relativity, we find that a non trivial black brane/string solution is supported in vacuum power law f (R) -gravity for appropriate values of the parameters characterizing the model and when axisymmetry is introduced in the line element. For the aforementioned solution, we perform a brief investigation over its basic thermodynamic quantities.

  17. Multicolor LED sensor

    Science.gov (United States)

    Lange, Volker; Ribeiro, Felipe; Tews, Walter; Kühlke, Dietrich

    2008-04-01

    We present a compact and cheap sensor device based on the combination of a standard RGB-LED with a luminescence material. The multicolor LED acts as the exciting light source, the luminescence light detector and simultaneously as an optical filter. As luminescence material various phosphor materials or crystals can be used, depending on the physical property to be sensed. Possible applications will be discussed.

  18. Four-dimensional avatars of two-dimensional RCFT

    Energy Technology Data Exchange (ETDEWEB)

    Losev, A. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation)]|[Yale Univ., New Haven, CT (United States). Dept. of Physics; Moore, G. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Nekrasov, N. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation)]|[Princeton Univ., NJ (United States). Dept. of Physics; Shatashvili, S. [Yale Univ., New Haven, CT (United States). Dept. of Physics

    1996-03-01

    We investigate a 4D analog of 2D WZW theory. The theory turns out to have surprising finiteness properties and an infinite-dimensional current algebra symmetry. Some correlation functions are determined by this symmetry. One way to define the theory systematically proceeds by the quantization of moduli spaces of holomorphic vector bundles over algebraic surfaces. We outline how one can define vertex operators in the theories. Finally, we define four-dimensional ``conformal blocks`` and present an analog of the Verlinde formula. (orig.).

  19. Four-dimensional black holes in Einsteinian cubic gravity

    Science.gov (United States)

    Bueno, Pablo; Cano, Pablo A.

    2016-12-01

    We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.

  20. Low-energy structure of four-dimensional superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Zwirner, F.

    1988-05-01

    The N = 1, d = 4 supergravity theories derived as the low-energy limit of four-dimensional superstrings are discussed, focusing on the properties of their effective potentials. Gauge symmetry breaking is possible along several flat directions. A class of superpotential modifications is introduced, which describes supersymmetry breaking with vanishing cosmological constant and Str M{sup 2} = 0 at any minimum of the tree level potential. Under more restrictive assumptions, there are minima with broken supersymmetry at which also Str f(M{sup 2}) = 0 for any function f, so that the whole one-loop cosmological constant vanishes. This result is interpreted in terms of a new discrete boson-fermion symmetry, relating particles whose helicities differ by 3/2, e.g., the graviton and the dilatino.' 21 refs.

  1. Four-dimensional unsubtraction from the loop-tree duality

    Energy Technology Data Exchange (ETDEWEB)

    Sborlini, Germán F.R. [Instituto de Física Corpuscular,Universitat de València - Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain); Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Driencourt-Mangin, Félix [Instituto de Física Corpuscular,Universitat de València - Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain); Hernández-Pinto, Roger J. [Instituto de Física Corpuscular,Universitat de València - Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain); Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, CP 80000, Culiacán, Sinaloa (Mexico); Rodrigo, Germán [Instituto de Física Corpuscular,Universitat de València - Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)

    2016-08-29

    We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes, and the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for γ{sup ∗}→qq̄(g), and its generalisation to multi-leg processes. The extension to next-to-next-to-leading order (NNLO) is briefly commented.

  2. Four-dimensional positron age-momentum correlation

    Science.gov (United States)

    Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther

    2016-11-01

    We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.

  3. Motion artifact detection in four-dimensional computed tomography images

    Science.gov (United States)

    Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.

    2014-03-01

    Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.

  4. Filter-Dense Multicolor Microscopy

    National Research Council Canada - National Science Library

    Kijani, Siavash; Yrlid, Ulf; Heyden, Maria; Levin, Malin; Borén, Jan; Fogelstrand, Per

    2015-01-01

    .... However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining...

  5. Four dimensional variational inversion of atmospheric chemical sources in WRFDA

    Science.gov (United States)

    Guerrette, J. J.

    Atmospheric aerosols are known to affect health, weather, and climate, but their impacts on regional scales are uncertain due to heterogeneous source, transport, and transformation mechanisms. The Weather Research and Forecasting model with chemistry (WRF-Chem) can account for aerosol-meteorology feedbacks as it simultaneously integrates equations of dynamical and chemical processes. Here we develop and apply incremental four dimensional variational (4D-Var) data assimilation (DA) capabilities in WRF-Chem to constrain chemical emissions (WRFDA-Chem). We develop adjoint (ADM) and tangent linear (TLM) model descriptions of boundary layer mixing, emission, aging, dry deposition, and advection of black carbon (BC) aerosol. ADM and TLM model performance is verified against finite difference derivative approximations. A second order checkpointing scheme is used to reduce memory costs and enable simulations longer than six hours. We apply WRFDA-Chem to constraining anthropogenic and biomass burning sources of BC throughout California during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. Manual corrections to the prior emissions and subsequent inverse modeling reduce the spread in total emitted BC mass between two biomass burning inventories from a factor of x10 to only x2 across three days of measurements. We quantify posterior emission variance using an eigendecomposition of the cost function Hessian matrix. We also address the limited scalability of 4D-Var, which traditionally uses a sequential optimization algorithm (e.g., conjugate gradient) to approximate these Hessian eigenmodes. The Randomized Incremental Optimal Technique (RIOT) uses an ensemble of TLM and ADM instances to perform a Hessian singular value decomposition. While RIOT requires more ensemble members than Lanczos requires iterations to converge to a comparable posterior control vector, the wall-time of RIOT is x10 shorter since the

  6. Neuroplasticity of language in left-hemisphere stroke: Evidence linking subsecond electrophysiology and structural connections

    NARCIS (Netherlands)

    Piai, V.; Meyer, L.; Dronkers, N.F.; Knight, R.T.

    2017-01-01

    The understanding of neuroplasticity following stroke is predominantly based on neuroimaging measures that cannot address the subsecond neurodynamics of impaired language processing. We combined behavioral and electrophysiological measures and structural-connectivity estimates to characterize

  7. Four-dimensional x-ray attenuation model of the human heart and the coronary vasculature for assessment of CT system capability

    Science.gov (United States)

    Edic, Peter M.; Iatrou, Maria; Cline, Harvey E.; Ishaque, A. N.; Cesmeli, Erdogan; Pfoh, Armin H.

    2001-06-01

    With the introduction of helical, multi-detector computed tomography (CT) scanners having sub-second scanning speeds, clinicians are currently investigating the role of CT in cardiac imaging. In this paper, we describe a four-dimensional (4D) x-ray attenuation model of a human heart and the use of this model to assess the capabilities of both hardware and software algorithms for cardiac imaging. We developed a model of the human thorax, composed of several analytical structures, and a model of the human heart, constructed from several elliptical surfaces. A model for each coronary vessel consists of a torus placed at a suitable location on the heart's surface. The motion of the heart during the cardiac cycle was implemented by applying transformational operators to each surface composing the heart. We used the 4D model of the heart to generate forward projection data, which then became input into a model of a CT imaging system. The use of the model to predict image quality is demonstrated by varying both the reconstruction algorithm (sector-based, half-scan) and CT system parameters (gantry speed, spatial resolution). The mathematical model of the human heart, while having limitations, provides a means to rapidly evaluate new reconstruction algorithms and CT system designs for cardiac imaging.

  8. Improving the Horizontal Transport in the Lower Troposphere with Four Dimensional Data Assimilation

    Science.gov (United States)

    The physical processes involved in air quality modeling are governed by dynamically-generated meteorological model fields. This research focuses on reducing the uncertainty in the horizontal transport in the lower troposphere by improving the four dimensional data assimilation (F...

  9. Achieving Sub-Second Search in the CMR

    Science.gov (United States)

    Gilman, J.; Baynes, K.; Pilone, D.; Mitchell, A. E.; Murphy, K. J.

    2014-12-01

    The Common Metadata Repository (CMR) is the next generation Earth Science Metadata catalog for NASA's Earth Observing data. It joins together the holdings from the EOS Clearing House (ECHO) and the Global Change Master Directory (GCMD), creating a unified, authoritative source for EOSDIS metadata. The CMR allows ingest in many different formats while providing consistent search behavior and retrieval in any supported format. Performance is a critical component of the CMR, ensuring improved data discovery and client interactivity. The CMR delivers sub-second search performance for any of the common query conditions (including spatial) across hundreds of millions of metadata granules. It also allows the addition of new metadata concepts such as visualizations, parameter metadata, and documentation. The CMR's goals presented many challenges. This talk will describe the CMR architecture, design, and innovations that were made to achieve its goals. This includes: * Architectural features like immutability and backpressure. * Data management techniques such as caching and parallel loading that give big performance gains. * Open Source and COTS tools like Elasticsearch search engine. * Adoption of Clojure, a functional programming language for the Java Virtual Machine. * Development of a custom spatial search plugin for Elasticsearch and why it was necessary. * Introduction of a unified model for metadata that maps every supported metadata format to a consistent domain model.

  10. Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted

    2010-09-13

    We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).

  11. Filter-Dense Multicolor Microscopy.

    Directory of Open Access Journals (Sweden)

    Siavash Kijani

    Full Text Available Immunofluorescence microscopy is a unique method to reveal the spatial location of proteins in tissues and cells. By combining antibodies that are labeled with different fluorochromes, the location of several proteins can simultaneously be visualized in one sample. However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining. This is not always enough to address common scientific questions. In particular, the use of a rapidly increasing number of marker proteins to classify functionally distinct cell populations and diseased tissues emphasizes the need for more complex multistainings. Hence, multicolor microscopy should ideally offer more channels to meet the current needs in biomedical science. Here we present an enhanced multi-fluorescence setup, which we call Filter-Dense Multicolor Microscopy (FDMM. FDMM is based on condensed filter sets that are more specific for each fluorochrome and allow a more economic use of the light spectrum. FDMM allows at least six independent fluorescence channels and can be applied to any standard fluorescence microscope without changing any operative procedures for the user. In the present study, we demonstrate an FDMM setup of six channels that includes the most commonly used fluorochromes for histology. We show that the FDMM setup is specific and robust, and we apply the technique on typical biological questions that require more than four fluorescence microscope channels.

  12. Subsecond Tsunamis and Delays in Decentralized Electronic Systems

    Directory of Open Access Journals (Sweden)

    Pedro D. Manrique

    2017-10-01

    Full Text Available Driven by technological advances and economic gain, society’s electronic systems are becoming larger, faster, more decentralized and autonomous, and yet with increasing global reach. A prime example are the networks of financial markets which—in contrast to popular perception—are largely all-electronic and decentralized with no top-down real-time controller. This prototypical system generates complex subsecond dynamics that emerge from a decentralized network comprising heterogeneous hardware and software components, communications links, and a diverse ecology of trading algorithms that operate and compete within this all-electronics environment. Indeed, these same technological and economic drivers are likely to generate a similarly competitive all-electronic ecology in a variety of future cyberphysical domains such as e-commerce, defense and the transportation system, including the likely appearance of large numbers of autonomous vehicles on the streets of many cities. Hence there is an urgent need to deepen our understanding of stability, safety and security across a wide range of ultrafast, large, decentralized all-electronic systems—in short, society will eventually need to understand what extreme behaviors can occur, why, and what might be the impact of both intentional and unintentional system perturbations. Here we set out a framework for addressing this issue, using a generic model of heterogeneous, adaptive, autonomous components where each has a realistic limit on the amount of information and processing power available to it. We focus on the specific impact of delayed information, possibly through an accidental shift in the latency of information transmission, or an intentional attack from the outside. While much remains to be done in terms of developing formal mathematical results for this system, our preliminary results indicate the type of impact that can occur and the structure of a mathematical theory which may

  13. Four-dimensional gravitational backgrounds based on N = 4, $\\widehat{c}$ = 4, superconformal systems

    CERN Document Server

    Kounnas, Costas

    1994-01-01

    We propose two new realizations of the N=4, $\\hat{c}=4$ superconformal system based on the compact and non-compact versions of parafermionic algebras. The target space interpretation of these systems is given in terms of four-dimensional target spaces with non-trivial metric and topology different from the previously known four-dimensional semi-wormhole realization. The proposed $\\hat{c}=4$ systems can be used as a building block to construct perturbatively stable superstring solutions with covariantized target space supersymmetry around non-trivial gravitational and dilaton backgrounds.

  14. Representations of the rotation reflection symmetry group of the four-dimensional cubic lattice

    Science.gov (United States)

    Mandula, Jeffrey E.; Zweig, George; Govaerts, Jan

    1983-11-01

    The structure and representations of the rotation reflection symmetry group of the four-dimensional cubic lattice are described. Their connections with the representations of the three-dimensional lattice rotation reflection group, and with the representations of the continuous O(3) and O(4) groups are given.

  15. Representations of the rotation reflection symmetry group of the four-dimensional cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, J.E. (Washington Univ., St. Louis, MO (USA). Dept. of Physics); Zweig, G. (Los Alamos National Lab., NM (USA)); Govaerts, J. (Louvain Univ. (Belgium). Inst. for Theoretical Physics)

    1983-11-15

    The structure and representations of the rotation reflection symmetry group of the four-dimensional cubic lattice are described. Their connections with the representations of the three-dimensional lattice rotation reflection group, and with the representations of the continuous O(3) and O(4) groups are given.

  16. Double-valued representations of the four-dimensional cubic lattice rotation group

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, J.E.; Shpiz, E. (Washington Univ., St. Louis, MO (USA). Dept. of Physics)

    1984-01-23

    The double-valued representations of the rotation symmetry group of the four-dimensional cubic lattice are described. Their connections with double-valued representations of the three-dimensional cubic lattice rotation group and of the continuous O(3) and O(4) groups are given in detail.

  17. Double-valued representations of the four-dimensional cubic lattice rotation group

    Science.gov (United States)

    Mandula, Jeffrey E.; Shpiz, Edward

    1984-01-01

    The double-valued representations of the rotation symmetry group of the four-dimensional cubic lattice are described. Their connections with double-valued representations of the three-dimensional cubic lattice rotation group and of the continuous O(3) and O(4) groups are given in detail.

  18. The solution to Slavnov--Taylor identities in a general four dimensional supersymmetric theory

    OpenAIRE

    Kondrashuk, Igor

    2001-01-01

    A solution to Slavnov-Taylor identities in a general four dimensional N=1 supersymmetric Yang-Mills theory containing arbitrary matter superfields is proposed. The solution proposed appears just a simple generalization of an analogous solution in the pure supersymmetric Yang-Mills theory.

  19. Adding Four- Dimensional Data Assimilation (a.k.a. grid nudging) to MPAS

    Science.gov (United States)

    Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mod...

  20. Four-dimensional Osserman-Ivanov-Petrova metrics of neutral signature

    Energy Technology Data Exchange (ETDEWEB)

    Calvino-Louzao, Esteban; GarcIa-RIo, Eduardo; Vazquez-Lorenzo, Ramon [Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2007-05-07

    Algebraic curvature tensors which are Osserman-IP in the (- - + +)-signature setting are completely determined. As a consequence, it is shown that a four-dimensional pointwise Osserman-IP manifold is a space of constant sectional curvature or, otherwise, at each point the Jacobi operators either vanish or they are two-step nilpotent.

  1. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  2. Four-dimensional optical coherence tomography imaging of total liquid ventilated rats

    Science.gov (United States)

    Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

    2013-06-01

    Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.

  3. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  4. Filter-Dense Multicolor Microscopy: e0119499

    National Research Council Canada - National Science Library

    Siavash Kijani; Ulf Yrlid; Maria Heyden; Malin Levin; Jan Borén; Per Fogelstrand

    2015-01-01

    .... However, because of the risk of bleed-through signals between fluorochromes, standard multicolor microscopy is restricted to a maximum of four fluorescence channels, including one for nuclei staining...

  5. Multicolor FISH probe sets and their applications

    OpenAIRE

    Liehr, T; Starke, H.; Weise, A.; Lehrer, H.; Claussen, U

    2004-01-01

    Multicolor fluorescence in situ hybridization (FISH) assays are nowadays indispensable for a precise description of complex chromosomal rearrangements. Routine application of such techniques on human chromosomes started in 1996 with the simultaneous use of all 24 human whole chromosome painting probes in multiplex-FISH (M-FISH) and spectral karyotyping (SKY). Since then different approaches for chromosomal differentiation based on multicolor-FISH (mFISH) as...

  6. Holomorphic classification of four-dimensional surfaces in C{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Beloshapka, V K [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation); Ezhov, V V [University of Adelaide (Australia); Schmalz, G [University of New England, Armidale (Australia)

    2008-06-30

    We use the method of model surfaces to study real four-dimensional submanifolds of C{sup 3}. We prove that the dimension of the holomorphic symmetry group of any germ of an analytic four-dimensional manifold does not exceed 5 if this dimension is finite. (There are only two exceptional cases of infinite dimension.) The envelope of holomorphy of the model surface is calculated. We construct a normal form for arbitrary germs and use it to give a holomorphic classification of completely non-degenerate germs. It is shown that the existence of a completely non-degenerate CR-structure imposes strong restrictions on the topological structure of the manifold. In particular, the four-sphere S{sup 4} admits no completely non-degenerate embedding into a three-dimensional complex manifold.

  7. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery.

    Science.gov (United States)

    Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N

    2017-02-14

    The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.

  8. Comparative study on four dimensional GLV method and ISD method in elliptic scalar multiplication

    Science.gov (United States)

    Antony, Siti Noor Farwina Mohamad Anwar; Kamarulhaili, Hailiza

    2017-08-01

    In this paper, we reviewed and revisited two integer decomposition methods, namely the four dimensional GLV method and the ISD method. In 2001, Gallant, Lambert and Vanstone (GLV) introduced the GLV method. Number of variants of GLV methods were developed since then mainly focusing on the extension of the GLV method to higher dimension. Starting with two dimensional GLV up to eight dimensional GLV method was proposed until the year 2014. All these variants adopted single layer decomposition. However, in 2014 the ISD method was proposed where this method employed a two layers decomposition technique. The ISD method is similar to the four dimensional GLV method in terms of number of decompositions performed, but it involved sub-decomposition process. Both methods used similar approaches to compute the decomposed scalars, namely the lattice method, shortest vector problem and efficiently computable endomorphism. In the four dimensional GLV method, two endomorphism were used, Frobenius endomorphism and GLV endomorphism while in the ISD method three GLV endomorphism were used to compute the decomposed scalars.

  9. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Troisi, Antonio [Universita degli Studi di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Salerno (Italy)

    2017-03-15

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f(R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R) = f{sub 0}R{sup n} the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions. (orig.)

  10. Fiberless multicolor neural optoelectrode for in vivo circuit analysis

    National Research Council Canada - National Science Library

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik

    2016-01-01

    ... recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor...

  11. Wide and Fast: Monitoring the Sky in Subsecond Domain with the FAVOR and TORTORA Cameras

    Directory of Open Access Journals (Sweden)

    Sergey Karpov

    2010-01-01

    natural and artificial, it is necessary to perform the systematic monitoring of large regions of the sky with high temporal resolution. Here we discuss the criteria for a system that is able to perform such a task and describe two cameras we created for wide-field monitoring with high temporal resolution—FAVOR and TORTORA. Also, we describe basic principles of real-time data processing for the high frame rates needed to achieve subsecond temporal resolution on a typical hardware.

  12. Breast cancer cells form primary tumors on ex vivo four-dimensional lung model.

    Science.gov (United States)

    Pence, Kristi A; Mishra, Dhruva K; Thrall, Michael; Dave, Bhuvanesh; Kim, Min P

    2017-04-01

    Breast cancer mortality is most common in cancer in women, and there are no ex vivo models that can capture the primary growth of tumor with fidelity to the in vivo tumor growth. In this study, we grew human breast cancer cell lines in an acellular lung matrix of the ex vivo four-dimensional lung model to determine if they form primary tumor and the extent to which they mimic the histology and characteristics of the human tumors. Rat lungs were harvested, decellularized, and placed in a bioreactor. To study the primary tumor growth, we seeded the lung via the trachea with human breast cancer cells SUM159, MCF7, or MDMB231 and perfused the pulmonary artery with oxygenated media. Lobectomies were performed and processed for hematoxylin and eosin, Ki-67, caspase-3, estrogen receptor, and progesterone receptor antibodies. All three cell lines grew in the ex vivo four-dimensional model and formed perfusable tumor nodules with similar histology and morphology as the primary tumors. SUM159 and MDAMB231 showed higher proliferation and apoptotic indices than MCF7. In addition, MCF7 retained its estrogen receptor and progesterone receptor positivity, whereas SUM159 and MDAMB 231 did not have any staining. Overall, our study showed that human breast cancer cells can be grown on the ex vivo four-dimensional lung model, which then form primary tumor nodules that mimic the morphology and histology of the original tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Quantitative Fluorescence Measurements with Multicolor Flow Cytometry.

    Science.gov (United States)

    Wang, Lili; Gaigalas, Adolfas K; Wood, James

    2018-01-01

    Multicolor flow cytometer assays are routinely used in clinical laboratories for immunophenotyping, monitoring disease and treatment, and determining prognostic factors. However, existing methods for quantitative measurements have not yet produced satisfactory results independent of flow cytometers used. This chapter details a procedure for quantifying surface and intracellular protein biomarkers by calibrating the output of a multicolor flow cytometer in units of antibodies bound per cell (ABC). The procedure includes the following critical steps: (a) quality control (QC) and performance characterization of the multicolor flow cytometer, (b) fluorescence calibration using hard dyed microspheres assigned with fluorescence intensity values in equivalent number of reference fluorophores (ERF), (c) compensation for correction of fluorescence spillover, and (d) application of a biological reference standard for translating the ERF scale to the ABC scale. The chapter also points out current efforts for implementing quantification of biomarkers in a manner which is independent of instrument platforms and reagent differences.

  14. Automated four-dimensional Monte Carlo workflow using log files and real-time motion monitoring

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Cronholm, R.O.; Heath, E.

    2017-01-01

    With emerging techniques for tracking and gating methods in radiotherapy of lung cancer patients, there is an increasing need for efficient four-dimensional Monte Carlo (4DMC) based quality assurance (QA). An automated and flexible workflow for 4DMC QA, based on the 4DdefDOSXYZnrc user code, has...... been developed in python. The workflow has been tested and verified using an in-house developed dosimetry system comprised of a dynamic thorax phantom constructed for plastic scintillator dosimetry. The workflow is directly compatible with any treatment planning system and can also be triggered...

  15. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung; Cho, Byungchul; Won Park, Jae; Jung, Jinhong; Park, Jin-hong; Hoon Kim, Jong; Do Ahn, Seung [Departments of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2013-01-15

    Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.

  16. New black hole, string and membrane solutions of the four-dimensional heterotic string

    CERN Document Server

    Duff, Michael J; Minasian, R; Rahmfeld, J; Khuri, Ramzi R.; Minasian, Ruben; Rahmfeld, Joachim

    1994-01-01

    We present solutions of the low-energy four-dimensional heterotic string corresponding to $p$-branes with $p=0,1,2$, which are characterized by a mass per unit $p$-volume, ${\\cal M}_{p+1}$, and topological ``magnetic'' charge, $g_{p+1}$. In the extremal limit, $\\sqrt{2} \\kappa {\\cal M}_{p+1} = g_{p+1}$, they reduce to the recently discovered non-singular supersymmetric monopole, string and domain wall solutions. A novel feature is that the solutions involve both the dilaton and the modulus fields. In particular, the effective scalar coupling to the Maxwell field, $e^{-\\alpha \\phi} F_{\\mu\

  17. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    Science.gov (United States)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  18. Four-dimensional (4D) tracking of high-temperature microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov; Liu, Q.; Waganaar, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fontanese, J.; James, D.; Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2016-11-15

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  19. A four-dimensional model with the fermionic determinant exactly evaluated

    Science.gov (United States)

    Mignaco, J. A.; Rego Monteiro, M. A.

    1986-07-01

    A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.

  20. Four-dimensional quantum oscillator and magnetic monopole with U(1) dynamical group

    Science.gov (United States)

    Bakhshi, Z.; Panahi, H.; Golchehre, S. G.

    2017-09-01

    By using an appropriate transformation, it was shown that the quantum system of four-dimensional (4D) simple harmonic oscillator can describe the motion of a charged particle in the presence of a magnetic monopole field. It was shown that the Dirac magnetic monopole has the hidden algebra of U(1) symmetry and by reducing the dimensions of space, the U(1) × U(1) dynamical group for 4D harmonic oscillator quantum system was obtained. Using the group representation and based on explicit solution of the obtained differential equation, the spectrum of system was calculated.

  1. Choice of evolutional parameter within a framework of four-dimensional symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, T.

    1988-06-01

    Within the context of the variational principle, there is the freedom to choose specific evolutional parameters. Different parameters can be associated with physical time, while allowing the physical laws to preserve the property of four-dimensional symmetry. In this sense, the concept of time has flexibility. Besides proper time and relativistic time, another natural choice emerges, which is called the generalized Galilean time. We study the impact of this choice here. This approach provides a deeper understanding of the theory of special relativity, and it also provides a new basis to study other space-time theories.

  2. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    Science.gov (United States)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  3. Quasinormal modes of four-dimensional topological nonlinear charged Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Cato lica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2016-02-15

    We study scalar perturbations of four- dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum, and the mass of the scalar field in the modes. It is found that the modes are overdamped, depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In contrast, for plane transverse sections the modes are always overdamped. (orig.)

  4. Multicolor imaging in optic disc swelling

    Science.gov (United States)

    Thomas, Nicey Roy; Ghosh, Prachi Subhedar; Chowdhury, Maitreyi; Saurabh, Kumar; Roy, Rupak

    2017-01-01

    Differentiating optic disc edema (ODE) from pseudo optic disc edema (PODE) continues to pose a diagnostic dilemma. Current report highlights the role of multicolor imaging (MC) in differentiating ODE from PODE. Composite multicolor images of the disc in ODE show greenish hyperreflectance that extends beyond the optic disc margins with irregular blurry margins and obscured disc vasculature whereas PODE shows a greenish hyperreflectance with clear and distinct margins and well delineated disc vasculature. MC imaging adds to the present armamentarium of imaging modalities obviating needless neurological evaluation mandatory in a case of true disc edema. PMID:29133670

  5. Multicolor imaging in optic disc swelling

    Directory of Open Access Journals (Sweden)

    Nicey Roy Thomas

    2017-01-01

    Full Text Available Differentiating optic disc edema (ODE from pseudo optic disc edema (PODE continues to pose a diagnostic dilemma. Current report highlights the role of multicolor imaging (MC in differentiating ODE from PODE. Composite multicolor images of the disc in ODE show greenish hyperreflectance that extends beyond the optic disc margins with irregular blurry margins and obscured disc vasculature whereas PODE shows a greenish hyperreflectance with clear and distinct margins and well delineated disc vasculature. MC imaging adds to the present armamentarium of imaging modalities obviating needless neurological evaluation mandatory in a case of true disc edema.

  6. Four-dimensional conversion for spiritual leadership development: A missiological approach for African churches

    Directory of Open Access Journals (Sweden)

    Kalemba Mwambazambi

    2014-02-01

    Full Text Available The process of a four-dimensional conversion and/or transformation strives in helping the leadership of an organisation, especially such as the church, with practical ways that may lead to the development of an effective leadership by observing the four important aspects of human spirituality as elaborated on in the article. The spiritual, intellectual, moral and socio-political dimensions of the transformation can be catered for so that the complete inner being of humans, as well as their social and political attitudes and behaviours, can equally be transformed to maximum spiritual, personal and socio-political profitability. Mutombo-Mukendi demonstrates that the need for a spiritual leadership that can contribute to an effective transformation of Africa is dire, both for the church and the larger community. The real challenge is how to develop such leadership. This article provides intentional and practical ways that may lead to the development of the needed leadership. Four-dimensional transformation of people can be planned and carried out both in the church arena and in the surrounding communities. Skills development and transfer can also take place when skilled people from the church work with unskilled people from the community.

  7. Extra-dimensional curvature suppression of the effective four-dimensional vacuum energy density

    Science.gov (United States)

    Guendelman, E. I.

    2012-05-01

    Considering a very large number of extra dimensions, N → ∞, we show that in the effective four-dimensional picture, to leading order in N, both the cosmological constant in N + 4 dimensions and the curvature of the extra dimensions (curved as spheres) give the same type of contributions. Furthermore, in this limit, the extra-dimensional curvature naturally suppresses the effect of a positive cosmological constant, so that the resulting effective potential governing the vacuum energy in the effective 4 - D picture has a leading 1/N dependence (i.e. vanishing in the large N limit). We can understand qualitatively this effect in a heuristic picture by thinking that both visible and extra dimensions have an equal sharing of the curvature caused by Λ. In this case when increasing the overall number of dimensions by adding N extra dimensions, then if N is large, the visible dimensions do not have to curve too much; hence, a small four-dimensional vacuum energy follows. In the large N picture, the potential can also be stabilized by a small (i.e. vanishing at large N) expectation value of a four-index field strength.

  8. Extra Dimensional Curvature Supression of the Effective Four Dimensional Vacuum Energy Density

    CERN Document Server

    Guendelman, E I

    2012-01-01

    Considering a very large number of extra dimensions, $N\\rightarrow \\infty$, we show that in the effective four dimensional picture, to leading order in $N$, both the cosmological constant in $N+4$ dimensions and the curvature of the extra dimensions (curved as spheres) give the same type of contributions. Furthermore in this limit, the extra dimensional curvature naturally supress the effect of a positive Cosmological Constant, so that the resulting effective potential governing the vacuum energy in the effective $4-D$ picture has a leading 1/N dependence (i.e. vanishing in the large $N$ limit). We can understand qualitatively this effect in a heuristic picture, by thinking that all dimensions, both visible and extra have an equal sharing of the curvature caused by $\\Lambda$, in this case when increasing the overall number of dimensions by adding $N$ extra dimensions, then if $N$ is large, the visible dimensions do not have to curve too much, hence a small four dimensional vacuum energy follows. In the large ...

  9. Validation of the four-dimensional symptom questionnaire (4DSQ) and prevalence of psychological symptoms in orthopedic shoulder patients

    NARCIS (Netherlands)

    Koorevaar, Rinco C. T.; Terluin, Berend; van't Riet, Esther; Madden, Kim; Bulstra, Sjoerd K.

    Psychological problems are common in shoulder patients. A validated psychological questionnaire measuring clinically relevant psychological symptoms (including distress, depression, anxiety, and somatization) in shoulder patients is lacking. The Four-Dimensional Symptom Questionnaire (4DSQ) is a

  10. Automated four-dimensional Monte Carlo workflow using log files and real-time motion monitoring

    Science.gov (United States)

    Sibolt, P.; Cronholm, R. O.; Heath, E.; Andersen, C. E.; Behrens, C. F.

    2017-05-01

    With emerging techniques for tracking and gating methods in radiotherapy of lung cancer patients, there is an increasing need for efficient four-dimensional Monte Carlo (4DMC) based quality assurance (QA). An automated and flexible workflow for 4DMC QA, based on the 4DdefDOSXYZnrc user code, has been developed in python. The workflow has been tested and verified using an in-house developed dosimetry system comprised of a dynamic thorax phantom constructed for plastic scintillator dosimetry. The workflow is directly compatible with any treatment planning system and can also be triggered by the appearance of linac log files. It has minimum user interaction and, with the use of linac log files, it provides a method for verification of the actually delivered dose in the patient geometry.

  11. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  12. The dissociative adsorption of hydrogen: Two-, three-, and four-dimensional quantum simulations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Halstead, David; Holloway, Stephen

    1990-01-01

    and diffraction on an equal footing. By including a rotational degree of freedom, it is seen that strong orientational effects occur near to the transition state and result in an anisotropic selectivity in the dissociation. By examining the state-to-state scattering probabilities, it is possible to use......A quantum wave packet calculation for the activated dissociative adsorption of H2 is presented. Restricting the motion of the molecule to lie within a plane normal to the surface we have treated all four molecular degrees of freedom exactly. We compare results obtained using two-, three-, and four......-dimensional simulations on the same potential and show that by restricting the molecular orientation, important dynamical effects are lost. The potential employed in the calculations has been obtained using the effective medium approximation. In the simulations it has been possible to treat dissociation, rotations...

  13. Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy

    Science.gov (United States)

    van der Veen, Renske M.; Kwon, Oh-Hoon; Tissot, Antoine; Hauser, Andreas; Zewail, Ahmed H.

    2013-05-01

    The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution, four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing the spin crossover dynamics of single, isolated metal-organic framework nanocrystals. By introducing a small aperture in the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo (bio)chemical transformations.

  14. Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy.

    Science.gov (United States)

    van der Veen, Renske M; Kwon, Oh-Hoon; Tissot, Antoine; Hauser, Andreas; Zewail, Ahmed H

    2013-05-01

    The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution, four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing the spin crossover dynamics of single, isolated metal-organic framework nanocrystals. By introducing a small aperture in the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo (bio)chemical transformations.

  15. Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations.

    Directory of Open Access Journals (Sweden)

    Michelle J Iandiorio

    Full Text Available Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D method that captures the complexity and dynamics of infectious diseases.Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral infections, with: (i a non-structured approach, which measures leukocytes or microbes in isolation; and (ii a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i a noise-reduction oriented version, which generates a single (one data point-wide line of observations; (ii a version that measures complex, three-dimensional (3D data interactions; (iii a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations; and (iv a full 4D (single line-, complexity-, directionality-based version.In all studies, the non-structured approach revealed non-interpretable (ambiguous data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed.Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and personalized information that facilitates both

  16. Power Doppler flow mapping and four-dimensional ultrasound for evaluating tubal patency compared with laparoscopy.

    Science.gov (United States)

    Soliman, Amr A; Shaalan, Waleed; Abdel-Dayem, Tamer; Awad, Elsayed Elbadawy; Elkassar, Yasser; Lüdders, Dörte; Malik, Eduard; Sallam, Hassan N

    2015-12-01

    To study the accuracy of four-dimensional (4D) ultrasound and power Doppler flow mapping in detecting tubal patency in women with sub-/infertility, and compare it with laparoscopy and chromopertubation. A prospective study. The study was performed in the outpatient clinic and infertility unit of a university hospital. The sonographic team and laparoscopic team were blinded to the results of each other. Women aged younger than 43 years seeking medical advice due to primary or secondary infertility and who planned to have a diagnostic laparoscopy performed, were recruited to the study after signing an informed consent. All of the recruited patients had power Doppler flow mapping and 4D hysterosalpingo-sonography by injecting sterile saline into the fallopian tubes 1 day before surgery. Registering Doppler signals, while using power Doppler, both at the tubal ostia and fimbrial end and the ability to demonstrate the course of the tube especially the isthmus and fimbrial end, while using 4D mode, was considered a patent tube. Out of 50 recruited patients, 33 women had bilateral patent tubes and five had unilateral patent tubes as shown by chromopertubation during diagnostic laparoscopy. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for two-dimensional power Doppler hysterosalpingography were 94.4%, 100%, 100%, 89.2%, and 96.2%, respectively and for 4D ultrasound were 70.4%, 100%, 100%, 70.4%, and 82.6%, respectively. Four-dimensional saline hysterosalpingography has acceptable accuracy in detecting tubal patency, but is surpassed by power Doppler saline hysterosalpingography. Power Doppler saline hysterosalpingography could be incorporated into the routine sub-/infertility workup. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Subsecond magnetic resonance angiography and the evaluation of abnormal arteriovasuclar communications

    Science.gov (United States)

    Zachariah, Anish B.; Pereles, F. S.; Kaliney, Ryan; Carr, James C.; Collins, Jeremy D.; Wood, Cecil; Finn, John P.

    2003-05-01

    Magnetic resonance (MR) angiography is becoming widely accepted in the diagnosis of vascular diseases. When used for evaluation of arterial stenoses, aneurysm, thrombosis, or occlusion, MR angiography is a robust and accurate technique. Traditional techniques for contrast-enhanced magnetic resonance angiography (MRA) offer the benefit of high spatial resolution in characterizing vascular malformations, but have lacked the temporal resolution to describe dynamic flow events. The purpose of this project is to demonstrate the potential role of a novel technique, sub-second MRA, in the evaluation of abdominal arteriovenous malformation.

  18. Toward four-dimensional image-guided adaptive brachytherapy in locally recurrent endometrial cancer.

    Science.gov (United States)

    Fokdal, Lars; Ørtoft, Gitte; Hansen, Estrid S; Røhl, Lisbeth; Pedersen, Erik Morre; Tanderup, Kari; Lindegaard, Jacob Christian

    2014-01-01

    To evaluate clinical outcome and feasibility of a four-dimensional image-guided adaptive brachytherapy concept in patients with locally recurrent endometrial cancer. Forty-three patients with locally recurrent endometrial cancer were included. Treatment consisted of conformal external beam radiotherapy followed by a boost using pulsed-dose-rate brachytherapy (BT). Large tumors were treated with MRI-guided interstitial BT. Small tumors were treated with CT-guided intracavitary BT. The planning aim (total external beam radiotherapy and BT) for high-risk clinical target volume was D90 > 80 Gy, whereas constraints for organs at risk were D2cc ≤ 90 Gy for bladder and D2cc ≤ 70 Gy for rectum, sigmoid, and bowel in terms of equivalent dose in 2 Gy fractions. Median high-risk clinical target volume was 18 cm(3) (range, 0-91). D90 was 82 Gy (range, 77-88). D2cc to bladder, rectum, and sigmoid were 67 Gy (range, 50-81), 67 Gy (range, 51-77), and 55 Gy (range, 44-68), respectively. Median followup was 30 months (6-88). Two-year local control rate was 92% (standard error [SE], 5). Disease-free survival rate and overall survival rate was 59% (SE, 8) and 78% (SE, 7), respectively. Patients with low- to intermediate-risk for recurrence had a 2-year disease-free survival rate of 72% (SE, 9) compared with 42% (SE, 12) in patients with high risk for recurrence (p = 0.04). Late morbidity Grade 3 was recorded in 5 (12%) patients. Four-dimensional image-guided adaptive brachytherapy is feasible in locally recurrent endometrial cancer. Local control rate is good. Systemic control remains a problem in patients with high risk for recurrence. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Serial correlations in single-subject fMRI with sub-second TR.

    Science.gov (United States)

    Bollmann, Saskia; Puckett, Alexander M; Cunnington, Ross; Barth, Markus

    2017-10-21

    When performing statistical analysis of single-subject fMRI data, serial correlations need to be taken into account to allow for valid inference. Otherwise, the variability in the parameter estimates might be under-estimated resulting in increased false-positive rates. Serial correlations in fMRI data are commonly characterized in terms of a first-order autoregressive (AR) process and then removed via pre-whitening. The required noise model for the pre-whitening depends on a number of parameters, particularly the repetition time (TR). Here we investigate how the sub-second temporal resolution provided by simultaneous multislice (SMS) imaging changes the noise structure in fMRI time series. We fit a higher-order AR model and then estimate the optimal AR model order for a sequence with a TR of less than 600 ms providing whole brain coverage. We show that physiological noise modelling successfully reduces the required AR model order, but remaining serial correlations necessitate an advanced noise model. We conclude that commonly used noise models, such as the AR(1) model, are inadequate for modelling serial correlations in fMRI using sub-second TRs. Rather, physiological noise modelling in combination with advanced pre-whitening schemes enable valid inference in single-subject analysis using fast fMRI sequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  1. Real-time four-dimensional imaging of the heart with multi-detector row CT.

    Science.gov (United States)

    Saito, Kimiaki; Saito, Motoaki; Komatu, Shuhei; Ohtomo, Kuni

    2003-01-01

    An interactive four-dimensional (4D) visualizing system for the heart was developed by the authors. The system realizes high-resolution three-dimensional (3D) imaging with temporal resolution in a beating heart by using eight or more data sets reconstructed from multi-detector row computed tomography (MDCT) with a retrospective electrocardiograph-gated reconstruction algorithm. The motion of heart walls, papillary muscles, septa, and valves can now be observed in 4D multiplanar reformations (MPRs), as with sonography, while coronary arteries, coronary sinuses, and cardiac veins can be analyzed during the optimal phase in 4D volume-rendering images, as with angiography. All parameters such as window width, window level, field of view, panning, tilt, thresholds, opacity, color, and segmentation function are completely interactive in 4D imaging. Two longitudinal views and one latitudinal view of a heart can be simultaneously visualized in the three relative 4D MPR views. These newly developed capabilities in viewing both 3D volume and temporal resolution data, functional data, and even multiphase data with registration add considerable diagnostic potential. The advent of this real-time 4D visualizing system has enhanced the capabilities of MDCT.

  2. Quantum Mechanics and Black Holes in Four-Dimensional String Theory

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1992-01-01

    In previous papers we have shown how strings in a two-dimensional target space reconcile quantum mechanics with general relativity, thanks to an infinite set of conserved quantum numbers, ``W-hair'', associated with topological soliton-like states. In this paper we extend these arguments to four dimensions, by considering explicitly the case of string black holes with radial symmetry. The key infinite-dimensional W-symmetry is associated with the $\\frac{SU(1,1)}{U(1)}$ coset structure of the dilaton-graviton sector that is a model-independent feature of spherically symmetric four-dimensional strings. Arguments are also given that the enormous number of string {\\it discrete (topological)} states account for the maintenance of quantum coherence during the (non-thermal) stringy evaporation process, as well as quenching the large Hawking-Bekenstein entropy associated with the black hole. Defining the latter as the measure of the loss of information for an observer at infinity, who - ignoring the higher string qua...

  3. A novel four-dimensional radiotherapy method for lung cancer: imaging, treatment planning and delivery

    Energy Technology Data Exchange (ETDEWEB)

    Alasti, H [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Cho, Y B [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Vandermeer, A D [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Abbas, A [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Norrlinger, B [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Shubbar, S [Department of Radiation Oncology, Princess Margaret Hospital, Toronto, ON (Canada); Bezjak, A [Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada)

    2006-06-21

    We present treatment planning methods based on four-dimensional computed tomography (4D-CT) to incorporate tumour motion using (1) a static field and (2) a dynamic field. Static 4D fields are determined to include the target in all breathing phases, whereas dynamic 4D fields are determined to follow the shape of the tumour assessed from 4D-CT images with a dynamic weighting factor. The weighting factor selection depends on the reliability of patient breathing and limitations of the delivery system. The static 4D method is compared with our standard protocol for gross tumour volume (GTV) coverage, mean lung dose and V20. It was found that the GTV delineated on helical CT without incorporating breathing motion does not adequately represent the target compared to the GTV delineated from 4D-CT. Dosimetric analysis indicates that the static 4D-CT based technique results in a reduction of the mean lung dose compared with the standard protocol. Measurements on a moving phantom and simulations indicated that 4D radiotherapy (4D-RT) synchronized with respiration-induced motion further reduces mean lung dose and V20, and may allow safe application of dose escalation and CRT/IMRT. The motions of the chest cavity, tumour and thoracic structures of 24 lung cancer patients are also analysed.

  4. Real-Time Four-dimensional Imaging of the Heart with Multi-Detector Row CT.

    Science.gov (United States)

    Saito, Kimiaki; Saito, Motoaki; Komatu, Shuhei; Ohtomo, Kuni

    2003-01-01

    An interactive four-dimensional (4D) visualizing system for the heart was developed by the authors. The system realizes high-resolution three-dimensional (3D) imaging with temporal resolution in a beating heart by using eight or more data sets reconstructed from multi-detector row computed tomography (MDCT) with a retrospective electrocardiograph-gated reconstruction algorithm. The motion of heart walls, papillary muscles, septa, and valves can now be observed in 4D multiplanar reformations (MPRs), as with sonography, while coronary arteries, coronary sinuses, and cardiac veins can be analyzed during the optimal phase in 4D volume-rendering images, as with angiography. All parameters such as window width, window level, field of view, panning, tilt, thresholds, opacity, color, and segmentation function are completely interactive in 4D imaging. Two longitudinal views and one latitudinal view of a heart can be simultaneously visualized in the three relative 4D MPR views. These newly developed capabilities in viewing both 3D volume and temporal resolution data, functional data, and even multiphase data with registration add considerable diagnostic potential. The advent of this real-time 4D visualizing system has enhanced the capabilities of MDCT. Copyright RSNA, 2003

  5. Normal standards for fetal neurobehavioral developments--longitudinal quantification by four-dimensional sonography.

    Science.gov (United States)

    Kurjak, Asim; Andonotopo, Wiku; Hafner, Tomislav; Salihagic Kadic, Aida; Stanojevic, Milan; Azumendi, Guillermo; Ahmed, Badreldeen; Carrera, Jose M; Troyano, J M

    2006-01-01

    To construct normal standards for fetal neurobehavioral development using longitudinal observations through all trimesters by four-dimensional sonography. A group of 100 healthy normal singleton pregnancies were recruited for longitudinal 4D US examinations to evaluate fetal neurodevelopmental parameters between 7 to 40 weeks' gestation. Variables of maternal and fetal characteristics including gestational age, eight fetal movements patterns in the first trimester and 14 parameters of fetal movement and fetal facial expression patterns recorded thereafter for the construction of fetal neurological charts. Measurement of 7 parameters in the first trimester and 11 parameters in the second and third trimesters correlated with gestational age (P<0.05). Those parameters have been followed longitudinally through all trimesters and showed increasing frequency of fetal movements during the first trimester. A tendency towards decreased frequency of facial expressions and movement patterns with increasing gestational age from second to third trimesters has been noticed. With 4D sonography, it is possible to quantitatively assess normal neurobehavioral development. There is urgent need for further multicentric studies until a sufficient degree of normative data is available and the predictive validity of the specific relationship between fetal neurobehavior and child developmental outcome is better established.

  6. Preoperative vascular mapping for facial allotransplantation: four-dimensional computed tomographic angiography versus magnetic resonance angiography.

    Science.gov (United States)

    Soga, Shigeyoshi; Pomahac, Bohdan; Mitsouras, Dimitrios; Kumamaru, Kanako; Powers, Sara L; Prior, Richard F; Signorelli, Jason; Bueno, Ericka M; Steigner, Michael L; Rybicki, Frank J

    2011-10-01

    Facial allotransplantation requires a detailed arterial and venous assessment for surgical planning. Target vessels are often depleted by multiple reconstructive attempts or the severe facial injury itself. The purpose of this study was to retrospectively compare the diagnostic performance of computed tomography and magnetic resonance angiography in the preoperative assessment. Four-dimensional (three spatial planes plus time) computed tomographic and magnetic resonance images including 126 potential vessels (76 arteries and 50 veins) from five candidates were analyzed independently by two radiologists using a four-point image quality scale. Computed tomographic versus magnetic resonance image quality was compared directly, using a computed tomographic angiography consensus read as reference standard. Vessels with metal artifact on magnetic resonance imaging, computed tomography, or both underwent separate analyses to determine the impact of metal implants on image quality. Considering all 126 vessels, the mean computed tomographic image quality was superior to that of magnetic resonance angiography. When considering individual vessels, all except for major neck vessels were better visualized by computed tomography. Images of 26 vessels were degraded by metal artifact; magnetic resonance image quality was inferior for those vessels. Considering images of major vessels with no metal artifact, there was no significant mean image quality difference between computed tomography and magnetic resonance imaging. Computed tomographic angiography should be used as the first-choice modality for preoperative imaging of facial transplant patients because, when compared with magnetic resonance imaging, the visualization of small vessels is far superior and images have fewer artifacts. Diagnostic, II.

  7. Chiral Four-Dimensional N=1 Supersymmetric Type IIA Orientifolds from Intersecting D6-Branes

    CERN Document Server

    Cvetic, M; Uranga, Angel M; Cvetic, Mirjam; Shiu, Gary; Uranga, Angel M.

    2001-01-01

    We construct N=1 supersymmetric four-dimensional orientifolds of type IIA on T^6/(Z_2 x Z_2) with D6-branes intersecting at angles. The use of D6-branes not fully aligned with the O6-planes in the model allows for a construction of many supersymmetric models with chiral matter, including those with the Standard Model and grand unified gauge groups. We perform a search for realistic gauge sectors, and construct the first example of a supersymmetric type II orientifold with SU(3)_C x SU(2)_L x U(1)_Y gauge group and three quark-lepton families. In addition to the supersymmetric Standard Model content, the model contains right-handed neutrinos, a (chiral but anomaly-free) set of exotic multiplets, and diverse vector-like multiplets. The general class of these constructions are related to familiar type II orientifolds by small instanton transitions, which in some cases change the number of generations, as discussed in specific models. These constructions are supersymmetric only for special choices of untwisted mo...

  8. A technique for quantifying wrist motion using four-dimensional computed tomography: approach and validation.

    Science.gov (United States)

    Zhao, Kristin; Breighner, Ryan; Holmes, David; Leng, Shuai; McCollough, Cynthia; An, Kai-Nan

    2015-07-01

    Accurate quantification of subtle wrist motion changes resulting from ligament injuries is crucial for diagnosis and prescription of the most effective interventions for preventing progression to osteoarthritis. Current imaging techniques are unable to detect injuries reliably and are static in nature, thereby capturing bone position information rather than motion which is indicative of ligament injury. A recently developed technique, 4D (three dimensions + time) computed tomography (CT) enables three-dimensional volume sequences to be obtained during wrist motion. The next step in successful clinical implementation of the tool is quantification and validation of imaging biomarkers obtained from the four-dimensional computed tomography (4DCT) image sequences. Measures of bone motion and joint proximities are obtained by: segmenting bone volumes in each frame of the dynamic sequence, registering their positions relative to a known static posture, and generating surface polygonal meshes from which minimum distance (proximity) measures can be quantified. Method accuracy was assessed during in vitro simulated wrist movement by comparing a fiducial bead-based determination of bone orientation to a bone-based approach. The reported errors for the 4DCT technique were: 0.00-0.68 deg in rotation; 0.02-0.30 mm in translation. Results are on the order of the reported accuracy of other image-based kinematic techniques.

  9. Four-dimensional reconstruction of cultural heritage sites based on photogrammetry and clustering

    Science.gov (United States)

    Voulodimos, Athanasios; Doulamis, Nikolaos; Fritsch, Dieter; Makantasis, Konstantinos; Doulamis, Anastasios; Klein, Michael

    2017-01-01

    A system designed and developed for the three-dimensional (3-D) reconstruction of cultural heritage (CH) assets is presented. Two basic approaches are presented. The first one, resulting in an "approximate" 3-D model, uses images retrieved in online multimedia collections; it employs a clustering-based technique to perform content-based filtering and eliminate outliers that significantly reduce the performance of 3-D reconstruction frameworks. The second one is based on input image data acquired through terrestrial laser scanning, as well as close range and airborne photogrammetry; it follows a sophisticated multistep strategy, which leads to a "precise" 3-D model. Furthermore, the concept of change history maps is proposed to address the computational limitations involved in four-dimensional (4-D) modeling, i.e., capturing 3-D models of a CH landmark or site at different time instances. The system also comprises a presentation viewer, which manages the display of the multifaceted CH content collected and created. The described methods have been successfully applied and evaluated in challenging real-world scenarios, including the 4-D reconstruction of the historic Market Square of the German city of Calw in the context of the 4-D-CH-World EU project.

  10. Four-dimensional CT analysis of vocal cords mobility for highly focused single vocal cord irradiation.

    Science.gov (United States)

    Osman, Sarah O S; de Boer, Hans C J; Heijmen, Ben J M; Levendag, Peter C

    2008-10-01

    To quantify respiratory motion of the vocal cords during normal respiration using 4D-CT. The final goal is to develop a technique for single vocal cord irradiation (SVCI) in early glottic carcinoma. Sparing the non-involved cord and surrounding structures has the potential to preserve voice quality and allow re-irradiation of recurrent and second primary tumors. Four-dimensional CTs of 1mm slice thickness from 10 early glottic carcinoma patients were acquired. The lateral dimensions of the air gap separating the vocal cords were measured anteriorly, at mid-level and posteriorly at each phase of the 4D-CTs. The corresponding anterior-posterior gaps were similarly measured. Cranio-caudal vocal cords movements during breathing were derived from the shifts of the arythenoids. The population-averaged mean gap size+/-the corresponding standard deviation due to breathing (SD(B)) for the lateral gaps was 5.8+/-0.7mm anteriorly, 8.7+/-0.9mm at mid-level, and 11.0+/-1.3mm posteriorly. Anterior-posterior gap values were 21.7+/-0.7mm, while cranio-caudal shift SD(B) was 0.8mm. Vocal cords breathing motions were found to be small relative to their separation. Hence, breathing motion does not seem to be a limiting factor for SVCI.

  11. A four-dimensional virtual hand brain-machine interface using active dimension selection

    Science.gov (United States)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  12. Four-dimensional microscope- integrated optical coherence tomography to enhance visualization in glaucoma surgeries.

    Science.gov (United States)

    Pasricha, Neel Dave; Bhullar, Paramjit Kaur; Shieh, Christine; Viehland, Christian; Carrasco-Zevallos, Oscar Mijail; Keller, Brenton; Izatt, Joseph Adam; Toth, Cynthia Ann; Challa, Pratap; Kuo, Anthony Nanlin

    2017-01-01

    We report the first use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT) capable of live four-dimensional (4D) (three-dimensional across time) imaging intraoperatively to directly visualize tube shunt placement and trabeculectomy surgeries in two patients with severe open-angle glaucoma and elevated intraocular pressure (IOP) that was not adequately managed by medical intervention or prior surgery. We performed tube shunt placement and trabeculectomy surgery and used SS-MIOCT to visualize and record surgical steps that benefitted from the enhanced visualization. In the case of tube shunt placement, SS-MIOCT successfully visualized the scleral tunneling, tube shunt positioning in the anterior chamber, and tube shunt suturing. For the trabeculectomy, SS-MIOCT successfully visualized the scleral flap creation, sclerotomy, and iridectomy. Postoperatively, both patients did well, with IOPs decreasing to the target goal. We found the benefit of SS-MIOCT was greatest in surgical steps requiring depth-based assessments. This technology has the potential to improve clinical outcomes.

  13. Four-Dimensional Coded Modulation with Bit-wise Decoders for Future Optical Communications

    CERN Document Server

    Alvarado, Alex

    2014-01-01

    Coded modulation (CM) is the combination of forward error correction (FEC) and multilevel constellations. Coherent optical communication systems result in a four-dimensional (4D) signal space, which naturally leads to 4D-CM transceivers. A practically attractive design paradigm is to use a bit-wise decoder, where the detection process is (suboptimally) separated into two steps: soft-decision demapping followed by binary decoding. In this paper, bit-wise decoders are studied from an information-theoretic viewpoint. 4D constellations with up to 4096 constellation points are considered. Metrics to predict the post-FEC bit-error rate (BER) of bit-wise decoders are analyzed. The mutual information is shown to fail at predicting the post-FEC BER of bit-wise decoders and the so-called generalized mutual information is shown to be a much more robust metric. It is also shown that constellations that transmit and receive information in each polarization and quadrature independently (e.g., PM-QPSK, PM-16QAM, and PM-64QA...

  14. Solutions to Yang-Mills Equations on Four-Dimensional de Sitter Space

    Science.gov (United States)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2017-08-01

    We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter space dS4 and construct a smooth and spatially homogeneous magnetic solution to the Yang-Mills equations. Slicing dS4 as R ×S3, via an SU(2)-equivariant ansatz, we reduce the Yang-Mills equations to ordinary matrix differential equations and further to Newtonian dynamics in a double-well potential. Its local maximum yields a Yang-Mills solution whose color-magnetic field at time τ ∈R is given by B˜a=-1/2 Ia/(R2cosh2τ ), where Ia for a =1 , 2, 3 are the SU(2) generators and R is the de Sitter radius. At any moment, this spatially homogeneous configuration has finite energy, but its action is also finite and of the value -1/2 j (j +1 )(2 j +1 )π3 in a spin-j representation. Similarly, the double-well bounce produces a family of homogeneous finite-action electric-magnetic solutions with the same energy. There is a continuum of other solutions whose energy and action extend down to zero.

  15. Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation

    Energy Technology Data Exchange (ETDEWEB)

    Agishtein, M.E.; Migdal, A.A. (Program in Applied and Computational Mathematics, Fine Hall, Princeton Univ., Princeton, NJ (US))

    1992-04-20

    In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 {times} 10{sup 4} simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths.

  16. The Estimation of Regional Crop Yield Using Ensemble-Based Four-Dimensional Variational Data Assimilation

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2014-03-01

    Full Text Available To improve crop model performance for regional crop yield estimates, a new four-dimensional variational algorithm (POD4DVar merging the Monte Carlo and proper orthogonal decomposition techniques was introduced to develop a data assimilation strategy using the Crop Environment Resource Synthesis (CERES-Wheat model. Two winter wheat yield estimation procedures were conducted on a field plot and regional scale to test the feasibility and potential of the POD4DVar-based strategy. Winter wheat yield forecasts for the field plots showed a coefficient of determination (R2 of 0.73, a root mean square error (RMSE of 319 kg/ha, and a relative error (RE of 3.49%. An acceptable yield at the regional scale was estimated with an R2 of 0.997, RMSE of 7346 tons, and RE of 3.81%. The POD4DVar-based strategy was more accurate and efficient than the EnKF-based strategy. In addition to crop yield, other critical crop variables such as the biomass, harvest index, evapotranspiration, and soil organic carbon may also be estimated. The present study thus introduces a promising approach for operationally monitoring regional crop growth and predicting yield. Successful application of this assimilation model at regional scales must focus on uncertainties derived from the crop model, model inputs, data assimilation algorithm, and assimilated observations.

  17. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique

    KAUST Repository

    Adhikari, Aniruddha

    2016-12-15

    Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.

  18. Muon borehole detector development for use in four-dimensional tomographic density monitoring

    Science.gov (United States)

    Flygare, Joshua

    The increase of CO2 concentrations in the atmosphere and the correlated temperature rise has initiated research into methods of carbon sequestration. One promising possibility is to store CO2 in subsurface reservoirs of porous rock. After injection, the monitoring of the injected CO2 is of paramount importance because the CO2 plume, if escaped, poses health and environmental risks. Traditionally, seismic reflection methods are the chosen method of determining changes in the reservoir density due to CO2 injection, but this is expensive and not continuous. A potential and promising alternative is to use cosmic muon tomography to determine density changes in the reservoir over a period of time. The work I have completed was the development of a muon detector that will be capable of being deployed in boreholes and perform long-term tomography of the reservoir of interest. The detector has the required dimensions, an angular resolution of approximately 2 degrees, and is robust enough to survive the caustic nature of the fluids in boreholes, as well as temperature and pressure fluctuations. The detector design is based on polystyrene scintillating rods arrayed in alternating layers. The layers, as arranged, can provide four-dimensional (4D) tomographic data to detect small changes in density at depths up to approximately 2 kilometers. Geant4, a Monte Carlo simulation code, was used to develop and optimize the detector design. Additionally, I developed a method of determining the muon flux at depth, including CO2 saturation changes in subsurface reservoirs. Preliminary experiments were performed at Pacific Northwest National Laboratory. This thesis will show the simulations I performed to determine the angular resolution and background discrimination required of the detector, the experiments to determine light transport through the polystyrene scintillating rods and fibers, and the method developed to predict muon flux changes at depth expected after injection.

  19. Four dimensional data assimilation of dual doppler lidar observations of the urban boundary layer

    Science.gov (United States)

    Xia, Quanxin

    A better understanding of transport processes in the atmospheric boundary layer (ABL) is essential for emergency action in cases of chemical and biological agent dispersion. However, our current knowledge of ABL processes is limited, due in large part to frequently changing large-scale forcings and the lack of measurements of nearly any atmospheric variable at higher altitudes. To gain new insights into the ABL transport processes and the dispersion of contaminants in cities to address some concerns of homeland security, an atmospheric dispersion study was held in Oklahoma City, Oklahoma in 2003. Two Doppler Light-Detection-And-Ranging (lidar) systems were deployed to collect hours of radial velocity and aerosol concentration data in both the daytime and nighttime boundary layers. These lidar data permit the study of ABL flow characteristics and the atmospheric dispersion of particles in an urban setting. The four dimensional variational data assimilation method (4DVAR) is adopted to merge limited lidar observations with a computational fluid dynamics model to derive detailed three-dimensional (3D) wind and temperature data. The accuracy of the 4DVAR method is assessed by comparing the single lidar retrieval with both the second lidar measurement and the dual lidar retrieval. The single lidar 4DVAR has proven to retrieve accurate flow fields even without the cross-beam information. The turbulent flow characteristics of the retrieved 3D wind and temperature field are studied. A number of coherent structures have been identified by the proper orthogonal decomposition method. The representation of instantaneous snapshots by high-ranking eigenmodes is examined by the reconstruction of reduced-order flow fields. The Lagrangian particle dispersion model has been successfully applied to predict turbulent dispersion in the convective and stable urban ABL. The effects of different source locations and heights have been examined. The vertical mixing is slower in the stable

  20. Dynamic four-dimensional computed tomography for preoperative assessment of lung cancer invasion into adjacent structures†.

    Science.gov (United States)

    Choong, Cliff K C; Pasricha, Sundeep S; Li, Xun; Briggs, Peter; Ramdave, Shakher; Crossett, Marcus; Troupis, John M

    2015-02-01

    The 320-slice computed tomography (CT) provides three-dimensional and dynamic imaging resulting in the ability to assess motion analysis between two adjacent structures (the fourth dimension). Differential movements between two adjacent structures would indicate that there is no fixation between the two structures. Eight patients with non-small-cell lung cancers located adjacent to vital structures (e.g. the great vessels) (n = 4), mediastinum (n = 1) or chest wall (n = 3) where conventional CT was unable to exclude local invasion underwent dynamic four-dimensional (4D) CT assessment. In 3 patients, the lung tumour was abutting the chest wall and 1 patient had tumour abutting the mediastinum. The remaining patients included a patient with a large 14-cm left lower lobe cancer abutting the descending thoracic aorta who had previous pleurodesis; a patient with an apical right upper lobe 6-cm cancer with static imaging appearances suggestive of tumour invasion into the apex, the mediastinal surface and superior vena cava (SVC); a patient with a 3.5-cm cancer which had a broad 2.5-cm base abutting the distal aortic arch and a patient with a 14-cm left upper lobe cancer abutting the aortic arch, descending thoracic aorta and chest wall. Differential movements between the tumour and adjacent structure on 4D CT were considered indicative of the absence of frank invasion. Dynamic 4D imaging revealed differential movements between the tumour and the adjacent structures in 7 cases, suggesting the absence of overt malignant invasion. Intraoperative assessments confirmed the findings. In 1 case, a small area of fixation seen on dynamic CT corresponded intraoperatively to superficial invasion of the adventitia of the SVC. Dynamic 4D 320-slice CT is useful in the preoperative assessment of the direct invasion of lung cancer into adjacent structures and hence its resectability. © The Author 2014. Published by Oxford University Press on behalf of the European Association for

  1. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    Science.gov (United States)

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Optimizing global CO emission estimates using a four-dimensional variational data assimilation system and surface network observations

    NARCIS (Netherlands)

    Hooghiemstra, P.B.; Krol, M.C.; Meirink, J.F.; Bergamaschi, P.; van der Werf, G.R.; Novelli, P.C.; Aben, I.; Rockmann, T.

    2011-01-01

    We apply a four-dimensional variational (4D-VAR) data assimilation system to optimize carbon monoxide (CO) emissions for 2003 and 2004 and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. The system is designed to assimilate large

  3. GPU-based four-dimensional general-relativistic ray tracing

    Science.gov (United States)

    Kuchelmeister, Daniel; Müller, Thomas; Ament, Marco; Wunner, Günter; Weiskopf, Daniel

    2012-10-01

    This paper presents a new general-relativistic ray tracer that enables image synthesis on an interactive basis by exploiting the performance of graphics processing units (GPUs). The application is capable of visualizing the distortion of the stellar background as well as trajectories of moving astronomical objects orbiting a compact mass. Its source code includes metric definitions for the Schwarzschild and Kerr spacetimes that can be easily extended to other metric definitions, relying on its object-oriented design. The basic functionality features a scene description interface based on the scripting language Lua, real-time image output, and the ability to edit almost every parameter at runtime. The ray tracing code itself is implemented for parallel execution on the GPU using NVidia's Compute Unified Device Architecture (CUDA), which leads to performance improvement of an order of magnitude compared to a single CPU and makes the application competitive with small CPU cluster architectures. Program summary Program title: GpuRay4D Catalog identifier: AEMV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73649 No. of bytes in distributed program, including test data, etc.: 1334251 Distribution format: tar.gz Programming language: C++, CUDA. Computer: Linux platforms with a NVidia CUDA enabled GPU (Compute Capability 1.3 or higher), C++ compiler, NVCC (The CUDA Compiler Driver). Operating system: Linux. RAM: 2 GB Classification: 1.5. External routines: OpenGL Utility Toolkit development files, NVidia CUDA Toolkit 3.2, Lua5.2 Nature of problem: Ray tracing in four-dimensional Lorentzian spacetimes. Solution method: Numerical integration of light rays, GPU-based parallel programming using CUDA, 3D

  4. Dose and Position Measurements using a Novel Four-Dimensional In Vivo Dosimetry System

    Science.gov (United States)

    Cherpak, Amanda

    This work presents a comprehensive characterization of the dosimetric and position measurement characteristics as well as clinical implementation of a novel four-dimensional in vivo dosimetry system, RADPOS. Preliminary dose and position measurements were first conducted to evaluate any deviation from known characteristics of metal-oxide semiconductor field-effect transistors, MOSFETs, and electromagnetic positioning systems when they are used alone. The system was then combined with a deformable tissue equivalent lung phantom to simulate respiratory-induced tumour motion and lung deformation and to evaluate the potential use of the system as an effective quality assurance tool for 4D conformal radiotherapy. The final phase of testing involved using the RADPOS 4D in vivo dosimetry system in two different clinical trials. The first involved characterizing the breathing patterns of lung cancer patients throughout the course of treatment and measuring inter-fraction variations in skin dose. Within this framework, the feasibility of general use of the RADPOS system on patients during daily treatment fractions was also assessed. The second trial involved a modified RADPOS detector that contained a MOSFET array, allowing for dose measurements at five different points. This detector was used to measure dose and position in the prostatic urethra throughout seed implantation for transperineal interstitial permanent prostate brachytherapy. It has been found that the dosimetric response is similar to that of a microMOSFET, when used alone, aside from a slightly higher variation in angular response. Position measurements can be obtained with an uncertainty of +/- 2 mm when the detector remains within a specific optimal volume with respect to the magnetic field transmitter and when interfering metal objects are kept at least 200 mm away. Combining the RADPOS system with a deformable lung equivalent phantom allowed for efficient quality assurance of 4D radiation therapy, as

  5. Alloy metal nanoparticles for multicolor cancer diagnostics

    Science.gov (United States)

    Baptista, Pedro V.; Doria, Gonçalo; Conde, João

    2011-03-01

    Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.

  6. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States)

    2012-09-15

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on

  7. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2015-08-15

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundant images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved

  8. Development of an MM5-Based Four Dimensional Variational Analysis System for Distributed Memory Multiprocessor Computers

    Science.gov (United States)

    Nehrkorn, T.; Modica, G. D.; Cerniglia, M.; Ruggiero, F. H.; Michalakes, J. G.; Zou, X.

    2001-05-01

    The MM5 four-dimensional variational analysis system (4DVAR) is being updated to allow its efficient execution on parallel distributed memory computers. The previous version of the MM5 4DVAR system (Zou et al. 1998 [3]) is coded for single processor computer architectures and its nonlinear, tangent-linear, and adjoint components are based on version 1 of the MM5. In order to take advantage of the parallelization mechanisms (Michalakes 2000 [2]) already in place for the latest release (Version 3.4) of the MM5 nonlinear model (NLM), the existing (Version 1) tangent linear (TLM) and adjoint model codes are also being updated to Version 3.4. We are using the Tangent Linear and Adjoint Model Compiler (TAMC; Giering and Kaminski 1988 [1]) in this process. The TAMC is a source-to-source translator that generates Fortran code for the TLM or adjoint from the Fortran code of the NLM. While it would be possible to incorporate the TAMC as part of a pre-compilation process--thus requiring the maintenance of the NLM code only--this would require that the NLM code first be modified as needed to result in the correct TLM and adjoint code output by TAMC. For the development of the MM5 adjoint, we have chosen instead to use TAMC as a development tool only, and separately maintain the TLM and adjoint versions of the model code. This approach makes it possible to minimize changes to the MM5 code as supported by NCAR. The TLM and adjoint are tested for correctness, using the standard comparison of the TLM and finite difference gradients to check for correctness of the former, and the definition of the adjoint to check for consistency of the TLM and adjoint. This testing is performed for individual subroutines (unit testing) as well as the complete model integration (unit integration testing), with objective functions designed to test different parts of the model state vector. Testing can be done for the entire model domain, or for selected model grid points. Finally, the TLM and

  9. A construction of a large family of commuting pairs of integrable symplectic birational four-dimensional maps.

    Science.gov (United States)

    Petrera, Matteo; Suris, Yuri B

    2017-02-01

    We give a construction of completely integrable four-dimensional Hamiltonian systems with cubic Hamilton functions. Applying to the corresponding pairs of commuting quadratic Hamiltonian vector fields the so called Kahan-Hirota-Kimura discretization scheme, we arrive at pairs of birational four-dimensional maps. We show that these maps are symplectic with respect to a symplectic structure that is a perturbation of the standard symplectic structure on [Formula: see text], and possess two independent integrals of motion, which are perturbations of the original Hamilton functions and which are in involution with respect to the perturbed symplectic structure. Thus, these maps are completely integrable in the Liouville-Arnold sense. Moreover, under a suitable normalization of the original pairs of vector fields, the pairs of maps commute and share the invariant symplectic structure and the two integrals of motion.

  10. Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan; Batshon, Hussam G; Xu, Lei; Wang, Ting

    2011-01-17

    We propose a four-dimensional (4D) coded multiband-OFDM scheme suitable for beyond 1.4 Tb/s serial optical transport. The proposed scheme organizes the N-dimensional (ND) signal constellation points in the form of signal matrix; employs 2D-inverse FFT and 2D-FFT to perform modulation and demodulation, respectively; and exploits both orthogonal polarizations. This scheme can fully exploit advantages of OFDM to deal with chromatic dispersion, PMD and PDL effects; and multidimensional signal constellations to improve OSNR sensitivity of conventional optical OFDM. The improvement of 4D-OFDM over corresponding polarization-multiplexed QAM (with the same number of constellation points) ranges from 1.79 dB for 16 signal constellation point-four-dimensional-OFDM (16-4D-OFDM) up to 4.53 dB for 128-4D-OFDM.

  11. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images

    OpenAIRE

    Mihalef, Viorel; Ionasec, Razvan Ioan; Sharma, Puneet; Georgescu, Bogdan; Voigt, Ingmar; Suehling, Michael; Comaniciu, Dorin

    2011-01-01

    There is a growing need for patient-specific and holistic modelling of the heart to support comprehensive disease assessment and intervention planning as well as prediction of therapeutic outcomes. We propose a patient-specific model of the whole human heart, which integrates morphology, dynamics and haemodynamic parameters at the organ level. The modelled cardiac structures are robustly estimated from four-dimensional cardiac computed tomography (CT), including all four chambers and valves a...

  12. The Abelian projection versus the Hitchin fibration of K(D) pairs in four-dimensional QCD

    OpenAIRE

    Bochicchio, Marco

    1999-01-01

    We point out that the concept of Abelian projection gives us a physical interpretation of the role that the Hitchin fibration of parabolic K(D) pairs plays in the large-N limit of four-dimensional QCD. This physical interpretation furnishes also a simple criterium for the confinement of electric fluxes in the large-N limit of QCD. There is also an alternative, compatible interpretation, based on the QCD string.

  13. High-Performance Computing and Four-Dimensional Data Assimilation: The Impact on Future and Current Problems

    Science.gov (United States)

    Makivic, Miloje S.

    1996-01-01

    This is the final technical report for the project entitled: "High-Performance Computing and Four-Dimensional Data Assimilation: The Impact on Future and Current Problems", funded at NPAC by the DAO at NASA/GSFC. First, the motivation for the project is given in the introductory section, followed by the executive summary of major accomplishments and the list of project-related publications. Detailed analysis and description of research results is given in subsequent chapters and in the Appendix.

  14. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    OpenAIRE

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Cooper, Benjamin J.; Kuncic, Zdenka; Keall, Paul J

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating...

  15. Four-dimensional visualization of subpleural alveolar dynamics in vivo during uninterrupted mechanical ventilation of living swine.

    Science.gov (United States)

    Namati, Eman; Warger, William C; Unglert, Carolin I; Eckert, Jocelyn E; Hostens, Jeroen; Bouma, Brett E; Tearney, Guillermo J

    2013-01-01

    Pulmonary alveoli have been studied for many years, yet no unifying hypothesis exists for their dynamic mechanics during respiration due to their miniature size (100-300 μm dimater in humans) and constant motion, which prevent standard imaging techniques from visualizing four-dimensional dynamics of individual alveoli in vivo. Here we report a new platform to image the first layer of air-filled subpleural alveoli through the use of a lightweight optical frequency domain imaging (OFDI) probe that can be placed upon the pleura to move with the lung over the complete range of respiratory motion. This device enables in-vivo acquisition of four-dimensional microscopic images of alveolar airspaces (alveoli and ducts), within the same field of view, during continuous ventilation without restricting the motion or modifying the structure of the alveoli. Results from an exploratory study including three live swine suggest that subpleural alveolar air spaces are best fit with a uniform expansion (r (2) = 0.98) over a recruitment model (r (2) = 0.72). Simultaneously, however, the percentage change in volume shows heterogeneous alveolar expansion within just a 1 mm x 1 mm field of view. These results signify the importance of four-dimensional imaging tools, such as the device presented here. Quantification of the dynamic response of the lung during ventilation may help create more accurate modeling techniques and move toward a more complete understanding of alveolar mechanics.

  16. Standardized Multi-Color Flow Cytometry and Computational Biomarker Discovery.

    Science.gov (United States)

    Schlickeiser, Stephan; Streitz, Mathias; Sawitzki, Birgit

    2016-01-01

    Multi-color flow cytometry has become a valuable and highly informative tool for diagnosis and therapeutic monitoring of patients with immune deficiencies or inflammatory disorders. However, the method complexity and error-prone conventional manual data analysis often result in a high variability between different analysts and research laboratories. Here, we provide strategies and guidelines aiming at a more standardized multi-color flow cytometric staining and unsupervised data analysis for whole blood patient samples.

  17. A review of thermal processing in the subsecond range: semiconductors and beyond

    Science.gov (United States)

    Rebohle, Lars; Prucnal, Slawomir; Skorupa, Wolfgang

    2016-10-01

    Thermal processing in the subsecond range comprises modern, non-equilibrium annealing techniques which allow various material modifications at the surface without affecting the bulk. Flash lamp annealing (FLA) is one of the most diverse methods for short-time annealing with applications ranging from the classical field of semiconductor doping to the treatment of polymers and flexible substrates. It still continues to extend its use to other material classes and applications, and is becoming of interest for an increasing number of users. In this review we present a short, but comprehensive and consistent picture of the current state-of-the-art of FLA, sometimes also called pulsed light sintering. In the first part we take a closer look at the physical and technological background, namely the electrical and optical specifications of flash lamps, the resulting temperature profiles, and the corresponding implications for process-relevant parameters such as reproducibility and homogeneity. The second part briefly considers the various applications of FLA, starting with the classical task of defect minimization and ultra-shallow junction formation in Si, followed by further applications in Si technology, namely in the fields of hyperdoping, crystallization of thin amorphous films, and photovoltaics. Subsequent chapters cover the topics of doping and crystallization in Ge and silicon carbide, doping of III-V semiconductors, diluted magnetic semiconductors, III-V nanocluster synthesis in Si, annealing of transparent conductive oxides and high-k materials, nanoclusters in dielectric matrices, and the use of FLA for flexible substrates.

  18. Rats Synchronize Locomotion with Ultrasonic Vocalizations at the Subsecond Time Scale

    Science.gov (United States)

    Laplagne, Diego A.; Elías Costa, Martín

    2016-01-01

    Acoustic signals have the potential for transmitting information fast across distances. Rats emit ultrasonic vocalizations of two distinct classes: “22-kHz” or “alarm” calls and “50-kHz” calls. The latter comprises brief sounds in the 30–80-kHz range, whose ethological role is not fully understood. We recorded ultrasonic vocalizations from pairs of rats freely behaving in neighboring but separated arenas. 50-kHz vocalizations in this condition were tightly linked to the locomotion of the emitter at the subsecond time scale, their rate sharply increasing and decreasing prior to the onset and offset of movement respectively. This locomotion-linked vocalization behavior showed a clear “audience effect,” as rats recorded alone displayed lower vocal production than rats in social settings for equivalent speeds of locomotion. Furthermore, calls from different categories across the 50 and 22-kHz families displayed markedly different correlations with locomotor activity. Our results show that rat vocalizations in the high ultrasonic range are social signals carrying spatial information about the emitter and highlight the possibility that they may play a role in the social coordination of spatial behaviors. PMID:27746726

  19. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ho Jin; Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Guk Bae; Kweon, Ji Hoon; Kim, Young Hak; Lee, Deok Hee; Yang, Dong Hyun; KIm, Nam Kug [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  20. The Partition Function in the Four-Dimensional Schwarz-Type Topological Half-Flat Two-Form Gravity

    Science.gov (United States)

    Abe, Mitsuko

    We derive the partition functions of the Schwarz-type four-dimensional topological half-flat two-form gravity model on K3-surface or T4 up to on-shell one-loop corrections. In this model the bosonic moduli spaces describe an equivalent class of a trio of the Einstein-Kähler forms (the hyper-Kähler forms). The integrand of the partition function is represented by the product of some bar ∂ -torsions. bar ∂ -torsion is the extension of R-torsion for the de Rham complex to that for the bar ∂ -complex of a complex analytic manifold.

  1. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Hojin [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Guk Bae [Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kweon, Jihoon [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Young-Hak [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Deok Hee; Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kim, Namkug [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  2. Motion of particles on a Four-Dimensional Asymptotically AdS Black Hole with Scalar Hair

    CERN Document Server

    Gonzalez, P A; Vasquez, Yerko

    2015-01-01

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields in the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss about the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar h...

  3. Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-10-15

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)

  4. Multicolor photoluminescence in ITQ-16 zeolite film

    KAUST Repository

    Chen, Yanli

    2016-09-07

    Exploring the native defects of zeolites is highly important for understanding the properties of zeolites, such as catalysis and optics. Here, ITQ-16 films were prepared via the secondary growth method in the presence of Ge atoms. Various intrinsic defects of ITQ-16 films were fully studied through photoluminescence and FTIR characterizations. It was found that both the as-synthesized and calcined ITQ-16 films displayed multicolor photoluminescence including ultraviolet, blue, green and red emissions by exciting upon appropriate wavelengths. The results indicate that Si―OH and non-bridging oxygen hole centers(NBOHCs) are responsible for the origin of green and red emissions at 540―800 nm, while according to a variety of emission bands of calcined ITQ-16 film, blue emission bands at around 446 and 462 nm are attributed to peroxy free radicals(≡SiO2), ultraviolet emissions ranging from 250 nm to 450 nm are suggested originating from a singlet-to-triplet transition of two-fold-coordinated Si and Ge, respectively. © 2016, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH.

  5. Single-fiber multi-color pyrometry

    Science.gov (United States)

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  6. Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes

    National Research Council Canada - National Science Library

    Mark Bates; Bo Huang; Graham T. Dempsey; Xiaowei Zhuang

    2007-01-01

    .... Multicolor super-resolution imaging, however, remains a challenging task. Here, we introduce a family of photo-switchable fluorescent probes and demostrate multicolor stochastic optical reconstruction microscopy (STORM...

  7. Investigating the Impact on Modeled Ozone Concentrations Using Meteorological Fields From WRF With and Updated Four-Dimensional Data Assimilation Approach”

    Science.gov (United States)

    The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...

  8. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    Science.gov (United States)

    Mészárosová, H.; Rybák, J.; Kashapova, L.; Gömöry, P.; Tokhchukova, S.; Myshyakov, I.

    2016-09-01

    Aims: We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. Methods: The complex microwave dynamic spectrum and the expanding loop images were analyzed with the help of SDO/AIA/HMI, RHESSI, and the STEREO/SECCHI-EUVI data processing software, wavelet analysis methods, the GX Simulator tool, and the NAFE method. Results: We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz s-1. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal loop with twisted sub-structures observed in the 131, 94, and 193 Å SDO/AIA channels. Their slit-time diagrams were compared with the location of the radio source at 5.7 GHz to realize that the EUV intensity of the expanding loop increased just before the radio source triggering. We reveal two EUV bidirectional flows that are linked with the start time of the loop expansion. Their positions were close to the radio source and propagated with velocities within a range of 30-117 km s-1. Conclusions: We demonstrate that periodic regime of the electron acceleration in a model of the quasi-periodic magnetic reconnection might be able to explain physical properties and behavior of the sub-second

  9. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images.

    Science.gov (United States)

    Mihalef, Viorel; Ionasec, Razvan Ioan; Sharma, Puneet; Georgescu, Bogdan; Voigt, Ingmar; Suehling, Michael; Comaniciu, Dorin

    2011-06-06

    There is a growing need for patient-specific and holistic modelling of the heart to support comprehensive disease assessment and intervention planning as well as prediction of therapeutic outcomes. We propose a patient-specific model of the whole human heart, which integrates morphology, dynamics and haemodynamic parameters at the organ level. The modelled cardiac structures are robustly estimated from four-dimensional cardiac computed tomography (CT), including all four chambers and valves as well as the ascending aorta and pulmonary artery. The patient-specific geometry serves as an input to a three-dimensional Navier-Stokes solver that derives realistic haemodynamics, constrained by the local anatomy, along the entire heart cycle. We evaluated our framework with various heart pathologies and the results correlate with relevant literature reports.

  10. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation

    Science.gov (United States)

    Shaw, Jeremy A.; Daescu, Dacian N.

    2017-08-01

    This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.

  11. Self-produced Time Intervals Are Perceived as More Variable and/or Shorter Depending on Temporal Context in Subsecond and Suprasecond Ranges

    Directory of Open Access Journals (Sweden)

    Keita eMitani

    2016-06-01

    Full Text Available The processing of time intervals is fundamental for sensorimotor and cognitive functions. Perceptual and motor timing are often performed concurrently (e.g., playing a musical instrument. Although previous studies have shown the influence of body movements on time perception, how we perceive self-produced time intervals has remained unclear. Furthermore, it has been suggested that the timing mechanisms are distinct for the sub- and suprasecond ranges. Here, we compared perceptual performances for self-produced and passively presented time intervals in random contexts (i.e., multiple target intervals presented in a session across the sub- and suprasecond ranges (Experiment 1 and within the sub- (Experiment 2 and suprasecond (Experiment 3 ranges, and in a constant context (i.e., a single target interval presented in a session in the sub- and suprasecond ranges (Experiment 4. We show that self-produced time intervals were perceived as shorter and more variable across the sub- and suprasecond ranges and within the suprasecond range but not within the subsecond range in a random context. In a constant context, the self-produced time intervals were perceived as more variable in the suprasecond range but not in the subsecond range. The impairing effects indicate that motor timing interferes with perceptual timing. The dependence of impairment on temporal contexts suggests multiple timing mechanisms for the subsecond and suprasecond ranges. In addition, violation of the scalar property (i.e., a constant variability to target interval ratio was observed between the sub- and suprasecond ranges. The violation was clearer for motor timing than for perceptual timing. This suggests that the multiple timing mechanisms for the sub- and suprasecond ranges overlap more for perception than for motor. Moreover, the central tendency effect (i.e., where shorter base intervals are overestimated and longer base intervals are underestimated disappeared with subsecond

  12. An all-fiber coupled multicolor microspherical light source

    NARCIS (Netherlands)

    O'Shea, Danny G.; Ward, Jonathan M.; Shortt, Brian J.; Chormaic, Sile Nic

    2007-01-01

    We present results on the realization of an all-taper coupled, multicolor microspherical light source fabricated,from the erbium-doped fluoride glass ZBLALiP. Whispering gallery mode lasing at 1555 nm and fluorescent emissions from the ultraviolet to the infrared (IR) have been observed. A tapered

  13. Multicolor bleach-rate imaging enlightens in vivo sterol transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sage, Daniel

    2011-01-01

    position, which can be used as a fingerprint to distinguish rapidly bleaching DHE from slowly bleaching autofluorescence in the animals. Here, we introduce multicolor bleach-rate sterol imaging. By this method, we demonstrate that some DHE is targeted to a population of basolateral recycling endosomes (RE...

  14. Chromosome painting by GISH and multi-color FISH

    Science.gov (United States)

    Fluorescent in situ hybridization (FISH) is a powerful cytogenetic technique for identifying chromosomes and mapping specific genes and DNA sequences on individual chromosomes. Genomic in situ hybridization (GISH) and multi-color FISH (mc-FISH) represent two special types of FISH techniques. Both ...

  15. Intra- and interobserver repeatability of fetal cardiac examination using four-dimensional spatiotemporal image correlation in each trimester of pregnancy.

    Science.gov (United States)

    Bennasar, M; Martínez, J M; Gómez, O; Figueras, F; Olivella, A; Puerto, B; Gratacós, E

    2010-03-01

    To assess the intra- and interobserver repeatability of the evaluation of fetal cardiac structures and measurements using spatiotemporal image correlation (STIC) technology in each trimester of pregnancy. Four-dimensional (4D)-STIC volumes from 150 low-risk pregnancies were acquired at first-, second- or third-trimester scan for later analysis by two different reviewers. A total of 19 items, including the evaluation of 14 structures as well as five measurements of the fetal heart, were evaluated. The reliability of qualitative variables was evaluated using Cohen's kappa and absolute agreement analysis while that of quantitative parameters was assessed using the intraclass correlation coefficient (ICC). Forty-five, 47 and 47 STIC volumes were included in the final analysis from the first, second and third trimesters, respectively. For the evaluation of cardiac structures, good or excellent intra- and interobserver agreement (kappa > 0.6) was obtained in 12/14 and 9/14, respectively, while absolute agreement was > 90% for most structures evaluated. Regarding the quantitative cardiac measurements, ICC values were above 0.90 for all but cardiac axis (intraobserver ICC, 0.81 and interobserver ICC, 0.61). There were no significant differences in the repeatability values observed for qualitative or quantitative parameters among the trimesters of pregnancy. Cardiac examination from 4D-STIC volumes showed a high repeatability between and within observers in each trimester of pregnancy. (c) 2010 ISUOG. Published by John Wiley & Sons, Ltd.

  16. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery

    Science.gov (United States)

    Carrasco-Zevallos, Oscar M.; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I.; Izatt, Joseph A.; Toth, Cynthia A.

    2016-01-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions. PMID:27409495

  17. Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    CERN Document Server

    Jia, Xun; Lou, Yifei; Sonke, Jan-Jakob; Jiang, Steve B

    2012-01-01

    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A...

  18. Sin-quadratic model for chest tomosynthesis respiratory signal analysis and its application in four dimensional chest tomosynthesis reconstruction.

    Science.gov (United States)

    Tao, Xi; Zhang, Hua; Qin, Genggeng; Ma, Jianhua; Feng, Qianjin; Chen, Wufan

    2018-02-01

    Chest tomosynthesis (CTS) is a newly developed imaging technique which provides pseudo-3D volume anatomical information of thorax from limited-angle projections and contains much less of superimposed anatomy than the chest X-ray radiography. One of the relatively common problems in CTS is the patient respiratory motion during image acquisition, which negatively impacts the detectability. In this work, we propose a sin-quadratic model to analyze the respiratory motion during CTS scan, which is a real time method where the respiratory signal is generated by extracting the motion of diaphragm from projection radiographs. According to the estimated respiratory signal, the CTS projections were then amplitude-based sorted into four to eight phases, and an iterative reconstruction strategy with total variation regularization was adopted to reconstruct the CTS images at each phase. Simulated digital XCAT phantom data and three sets of patient data were adopted for the experiments to validate the performance of the sin-quadratic model and its application in four dimensional (4D) CTS reconstruction. Results of the XCAT phantom simulation study show that the correlation coefficient between the extracted respiratory signal and the originally designed respiratory signal is 0.9964, which suggests that the proposed model could exactly extract the respiratory signal from CTS projections. The 4D CTS reconstructions of both the phantom data and the patient data show clear reduction of motion-induced blur. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Gross tumor volume dependency on phase sorting methods of four-dimensional computed tomography images for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Yong; Lim, Sang Wook; Ma, Sun Young; Yu, Je Sang [Dept. of Radiation Oncology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of)

    2017-09-15

    To see the gross tumor volume (GTV) dependency according to the phase selection and reconstruction methods, we measured and analyzed the changes of tumor volume and motion at each phase in 20 cases with lung cancer patients who underwent image-guided radiotherapy. We retrospectively analyzed four-dimensional computed tomography (4D-CT) images in 20 cases of 19 patients who underwent image-guided radiotherapy. The 4D-CT images were reconstructed by the maximum intensity projection (MIP) and the minimum intensity projection (Min-IP) method after sorting phase as 40%–60%, 30%–70%, and 0%–90%. We analyzed the relationship between the range of motion and the change of GTV according to the reconstruction method. The motion ranges of GTVs are statistically significant only for the tumor motion in craniocaudal direction. The discrepancies of GTV volume and motion between MIP and Min-IP increased rapidly as the wider ranges of duty cycles are selected. As narrow as possible duty cycle such as 40%–60% and MIP reconstruction was suitable for lung cancer if the respiration was stable. Selecting the reconstruction methods and duty cycle is important for small size and for large motion range tumors.

  20. A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system

    Science.gov (United States)

    Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran

    2016-10-01

    Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).

  1. Four-dimensional, multiphase, steady-state imaging with contrast enhancement (MUSIC) in the heart: a feasibility study in children.

    Science.gov (United States)

    Han, Fei; Rapacchi, Stanislas; Khan, Sarah; Ayad, Ihab; Salusky, Isidro; Gabriel, Simon; Plotnik, Adam; Finn, J Paul; Hu, Peng

    2015-10-01

    To develop a technique for high resolution, four-dimensional (4D), multiphase, steady-state imaging with contrast enhancement (MUSIC) in children with complex congenital heart disease. Eight pediatric patients underwent cardiovascular MRI with controlled mechanical ventilation after ferumoxytol administration. Breath-held contrast-enhanced MRA (CE-MRA) was performed during the first-pass and delayed phases of ferumoxytol, followed by a respiratory gated, 4D MUSIC acquisition during the steady state distribution phase of ferumoxytol. The subjective image quality and image sharpness were evaluated. Assessment of ventricular volumes based on 4D MUSIC was compared with those based on multislice 2D cardiac cine MRI. The 4D MUSIC technique provided cardiac-phase-resolved (65-95 ms temporal resolution) and higher spatial resolution (0.6-0.9 mm isotropic) images than previously achievable using first-pass CE-MRA or 2D cardiac cine. When compared with Ferumoxytol-based first-pass CE-MRA, the 4D MUSIC provided sharper images and better definition of the coronary arteries, aortic root, myocardium, and pulmonary trunk (P 0.95). The 4D MUSIC technique may represent a new paradigm in MR evaluation of cardiovascular anatomy and function in children with complex congenital heart disease. © 2014 Wiley Periodicals, Inc.

  2. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    Science.gov (United States)

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  3. Testing Four Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction

    Science.gov (United States)

    Gao, C.; Zhang, R. H.

    2016-12-01

    A four dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. The ICM has ten baroclinic modes in the vertical, with horizonatally varying stratification taken into account; two empirical submodels are constructed from historical data, one for the subsurface entrainment temperature in the surface mixed layer (Te) in terms of sea level (SL) anomalies and another for the wind stress (τ) in terms of sea surface temperature (SST) anomalies. A twin experiment is established to evaluate the impact of the 4D-Var data assimilation algorithm on the El Niño and Southern Oscillation (ENSO) analysis and prediction. The model error is assumed to arise only from the parameter uncertainty. The "observation" of sea surface temperature (SST) anomaly is sampled from the "truth" model that takes default parameter values and added by a Gaussian noise, is directly assimilated into the assimilation model with its parameters being set erroneously. Results show that the 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events at 12-month lead time compared with the non-assimilation case. These provide a promising way for the ICM in its better real-time ENSO prediction.

  4. Four-Dimensional (4D) Printing: A New Evolution in Computed Tomography-Guided Stereolithographic Modeling. Principles and Application.

    Science.gov (United States)

    Chae, Michael P; Hunter-Smith, David J; De-Silva, Inoka; Tham, Stephen; Spychal, Robert T; Rozen, Warren Matthew

    2015-07-01

    Over the last decade, image-guided production of three-dimensional (3D) haptic biomodels, or rapid prototyping (RP), has transformed the way surgeons conduct preoperative planning. In contrast to earlier RP techniques such as stereolithography, 3D printing has introduced fast, affordable office-based manufacturing. We introduce the concept of 4D printing for the first time by introducing time as the fourth dimension to 3D printing. The bones of the thumb ray are 3D printed during various movements to demonstrate four-dimensional (4D) printing. Principles and validation studies are presented here. 4D computed tomography was performed using "single volume acquisition" technology to reduce the exposure to radiation. Three representative scans of each thumb movement (i.e., abduction, opposition, and key pinch) were selected and then models were fabricated using a 3D printer. For validation, the angle between the first and the second metacarpals from the 4D imaging data and the 4D-printed model was recorded and compared. We demonstrate how 4D printing accurately depicts the transition in the position of metacarpals during thumb movement. With a fourth dimension of time, 4D printing delivers complex spatiotemporal anatomical details effortlessly and may substantially improve preoperative planning. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Measurement of micro-scale soil deformation around roots using four-dimensional synchrotron tomography and image correlation.

    Science.gov (United States)

    Keyes, S D; Cooper, L; Duncan, S; Koebernick, N; McKay Fletcher, D M; Scotson, C P; van Veelen, A; Sinclair, I; Roose, T

    2017-11-01

    This study applied time lapse (four-dimensional) synchrotron X-ray computed tomography to observe micro-scale interactions between plant roots and soil. Functionally contrasting maize root tips were repeatedly imaged during ingress into soil columns of varying water content and compaction. This yielded sequences of three-dimensional densiometric data, representing time-resolved geometric soil and root configurations at the micronmetre scale. These data were used as inputs for two full-field kinematic quantification methods, which enabled the analysis of three-dimensional soil deformation around elongating roots. Discrete object tracking was used to track rigid mineral grains, while continuum digital volume correlation was used to track grey-level patterns within local sub-volumes. These techniques both allowed full-field soil displacements to be quantified at an intra-rhizosphere spatial sampling scale of less than 300 µm. Significant differences in deformation mechanisms were identified around different phenotypes under different soil conditions. A uniquely strong contrast was observed between intact and de-capped roots grown in dry, compacted soil. This provides evidence that functional traits of the root cap significantly reduce the amount of soil disturbance per unit of root elongation, with this effect being particularly significant in drier soil. © 2017 The Author(s).

  6. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Kazuya [Matto-Ishikawa Central Hospital, Department of Neurosurgery, Hakusan, Ishikawa (Japan); Nambu, Iku; Kitabayashi, Tomohiro; Sano, Hiroki; Misaki, Kouichi; Uchiyama, Naoyuki; Nakada, Mitsutoshi [Kanazawa University School of Medicine, Department of Neurosurgery, Kanazawa, Ishikawa (Japan)

    2017-04-15

    Prediction of the rupture risk is critical for the identification of unruptured cerebral aneurysms (UCAs) eligible for invasive treatments. The size ratio (SR) is a strong morphological predictor for rupture. We investigated the relationship between the inflow hemodynamics evaluated on four-dimensional (4D) flow magnetic resonance (MR) imaging and the SR to identify specific characteristics related to UCA rupture. We evaluated the inflow jet patterns and inflow hemodynamic parameters of 70 UCAs on 4D flow MR imaging and compared them among 23 aneurysms with an SR ≥2.1 and 47 aneurysms with an SR ≤2.0. Based on the shape of inflow streamline bundles with a velocity ≥75% of the maximum flow velocity in the parent artery, the inflow jet patterns were classified as concentrated (C), diffuse (D), neck-limited (N), and unvisualized (U). The incidence of patterns C and N was significantly higher in aneurysms with an SR ≥2.1. The rate of pattern U was significantly higher in aneurysms with an SR ≤2.0. The maximum inflow rate and the inflow rate ratio were significantly higher in aneurysms with an SR ≥2.1. The SR affected the inflow jet pattern, the maximum inflow rate, and the inflow rate ratio of UCAs. In conjunction with the SR, inflow hemodynamic analysis using 4D flow MR imaging may contribute to the risk stratification for aneurysmal rupture. (orig.)

  7. Curvature invariant characterization of event horizons of four-dimensional black holes conformal to stationary black holes

    Science.gov (United States)

    McNutt, David D.

    2017-11-01

    We introduce three approaches to generate curvature invariants that transform covariantly under a conformal transformation of a four-dimensional spacetime. For any black hole conformally related to a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-Tamburino-(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon along with a second invariant that detects the conformal stationary limit surface. In addition, we present necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are conformally related to stationary black holes for particular choices of the mass function. While two of the three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally covariant invariant that will detect the event horizon for any higher dimensional black hole conformally related to a stationary black hole which admits at least two conformally covariant invariants, including all vacuum spacetimes.

  8. Measurement of the transverse four-dimensional beam rms-emittance of an intense uranium beam at 11.4 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, C.; Groening, L.; Gerhard, P.; Maier, M.; Mickat, S.; Vormann, H.

    2016-06-01

    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Usually pepper-pots are used for measuring these beam parameters. However, for ions their application is limited to energies below 150 keV/u. This contribution is on measurements of the full transverse four-dimensional second-moments beam matrix of high intensity uranium ions at an energy of 11.4 MeV/u. The combination of skew quadrupoles with a slit/grid emittance measurement device has been successfully applied.

  9. Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow.

    Science.gov (United States)

    Armstrong, Ryan T; Ott, Holger; Georgiadis, Apostolos; Rücker, Maja; Schwing, Alex; Berg, Steffen

    2014-12-01

    With recent advances at X-ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan.

  10. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry.

    Science.gov (United States)

    Resetca, Diana; Wilson, Derek J

    2013-11-01

    This review outlines the application of time-resolved electrospray ionization mass spectrometry (TRESI-MS) and hydrogen-deuterium exchange (HDX) to study rapid, activity-linked conformational transitions in proteins. The method is implemented on a microfluidic chip which incorporates all sample-handling steps required for a 'bottom-up' HDX workflow: a capillary mixer for sub-second HDX labeling, a static mixer for HDX quenching, a microreactor for rapid protein digestion, and on-chip electrospray. By combining short HDX labeling pulses with rapid digestion, this approach provides a detailed characterization of the structural transitions that occur during protein folding, ligand binding, post-translational modification and catalytic turnover in enzymes. This broad spectrum of applications in areas largely inaccessible to conventional techniques means that microfluidics-enabled TRESI-MS/HDX is a unique and powerful approach for investigating the dynamic basis of protein function. © 2013 FEBS.

  11. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-Mega-TORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  12. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    Science.gov (United States)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  13. Near-infrared spectra and rovibrational dynamics on a four-dimensional ab initio potential energy surface of (HBr)2.

    Science.gov (United States)

    Castillo-Chará, J; McIntosh, A L; Wang, Z; Lucchese, R R; Bevan, J W

    2004-06-08

    Supersonic jet investigations of the (HBr)(2) dimer have been carried out using a tunable diode laser spectrometer to provide accurate data for comparison with results from a four-dimensional (4-D) ab initio potential energy surface (PES). The near-infrared nu(1) (+/-), nu(2) (+/-), and (nu(1)+nu(4))(-) bands of (H (79)Br)(2), (H (79)Br-H (81)Br), and (H (81)Br)(2) isotopomers have been recorded in the range 2500-2600 cm(-1) using a CW slit jet expansion with an upgraded near-infrared diode laser spectrometer. The 4-D PES has been calculated for (HBr)(2) using second-order Møller-Plesset perturbation theory with an augmented and polarized 6-311G basis set. The potential is characterized by a global minimum occurring at the H bond structure with the distance between the center of masses (CM) of the monomer being R(CM)=4.10 A with angles theta(A)=10 degrees, theta(B)=100 degrees and a well depth of 692.2 cm(-1), theta(A) is the angle the HBr bond of monomer A makes with the vector from the CM of A to the CM of B, and theta(B) is the corresponding angle monomer B makes with the same CM-CM vector. The barrier for the H interchange occurs at the closed C(2h) structure for which R(CM)=4.07 A, theta(A)=45 degrees, theta(B)=135 degrees, and the barrier height is 73.9 cm(-1). The PES was fitted using a linear-least squares method and the rovibrational energy levels of the complex were calculated by a split pseudospectral method. The spectroscopic data provide accurate molecular parameters for the dimer that are then compared with the results predicted on the basis of the 4-D ab initio PES. (c) 2004 American Institute of Physics.

  14. A four-dimensional motion field atlas of the tongue from tagged and cine magnetic resonance imaging

    Science.gov (United States)

    Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye

    2017-02-01

    Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.

  15. Scapholunate kinematics of asymptomatic wrists in comparison with symptomatic contralateral wrists using four-dimensional CT examinations: initial clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Demehri, Shadpour; Hafezi-Nejad, Nima; Morelli, John N.; Thakur, Uma; Eng, John [Johns Hopkins University, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Lifchez, Scott D.; Shores, Jaimie T. [Johns Hopkins University, Department of Plastic and Reconstructive Surgery, Baltimore, MD (United States); Means, Kenneth R. [MedStar Union Memorial Hospital, The Curtis National Hand Center, Baltimore, MD (United States)

    2016-04-15

    Using four-dimensional CT scan (4DCT), we aimed at showing the kinematics of scapholunate (SL) interval in asymptomatic wrists in comparison with symptomatic contralateral wrists with inconclusive radiographic findings. This is an IRB approved, HIPPA compliant, retrospective study. Patients suspected of SL interosseous ligament (SLIL) injuries were referred for further evaluation of chronic wrist pain (>3 months). Twelve wrists (11 subjects) with chronic symptoms and inconclusive plain radiographs and 10 asymptomatic wrists (in 10 different subjects) were scanned using 4DCT. The minimum SL interval was measured during three wrist motions: relaxed-to-clenched fist, flexion-to-extension, and radial-to-ulnar-deviation. Changes were recorded using double-oblique multiplanar reformation technique. We extracted the normal limits of the SL interval as measured by dynamic CT scanning during active motion in asymptomatic wrists. In asymptomatic wrists, the average SL interval was observed to be smaller than 1 mm during all motions. In symptomatic wrists, during exams performed with clenched fist (SL interval (mean ± SD) = 2.53 ± 1.19 mm), extension (2.54 ± 1.48 mm) or ulnar deviation (2.06 ± 1.12 mm), the average SL interval was more than 2 mm. In contrast to symptomatic wrists, no significant change in SL interval measurements was detected during wrist motions in asymptomatic wrists. There was a mild to moderate correlation between SL interval change and presence/absence of symptoms (point-biserial correlation coefficients: 0.29-0.55). In patients with wrist pain suspicious for SLIL injury and inconclusive radiographs, SL interval increase can be detected with 4DCT in the symptomatic wrist compared to the asymptomatic wrist. (orig.)

  16. MKID multicolor array status and results from DemoCam

    Science.gov (United States)

    Schlaerth, James A.; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matthew I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    We present the results of the latest multicolor Microwave Kinetic Inductance Detector (MKID) focal plane arrays in the submillimeter. The new detectors on the arrays are superconducting resonators which combine a coplanar waveguide section with an interdigitated capacitor, or IDC. To avoid out-of-band pickup by the capacitor, a stepped-impedance filter is used to prevent radiation from reaching the absorptive aluminum section of the resonator. These arrays are tested in the preliminary demonstration instrument, DemoCam, a precursor to the Multicolor Submillimeter Inductance Camera, MUSIC. We present laboratory results of the responsivity to light both in the laboratory and at the Caltech Submillimeter Observatory. We assess the performance of the detectors in filtering out-of-band radiation, and find the level of excess load and its effect on detector performance. We also look at the array design characteristics, and the implications for the optimization of sensitivities expected by MUSIC.

  17. Multicolor Digital Flow Cytometry in Human Translational Immunology.

    Science.gov (United States)

    Joshi, Samit R; Mohanty, Subhasis; Shaw, Albert C

    2015-01-01

    By facilitating the simultaneous analysis of parameters from diverse cell lineages and biological pathways, multicolor flow cytometry is integral to many studies in human immunology-particularly those in older individuals-where sample amounts may be limiting. Studies in human cohorts require particular attention to fluorochrome panel design and procedures to standardize instrument performance; reproducible instrument conditions (over time and between centers) are crucial to accurate comparisons and conclusions in the analysis of heterogeneous groups of human subjects. Here, we describe procedures for multicolor digital flow cytometry, our experience in flow cytometry panel design and our approach in standardizing instrument performance using BD Biosciences hardware and software (BD Biosciences, San Jose, CA). These techniques allow for the generation of accurate and precise data in a variety of settings.

  18. Multi-colored layers for visualizing aerodynamic flow effects

    Science.gov (United States)

    Jensen, Ronald N. (Inventor)

    1991-01-01

    A method is provided for visualizing aerodynamic flow effects on a test surface. First, discrete quantities of a sublimating chemical such as naphthalene are distinctively colored via appropriate dyes or paints. Next, a uniform layer of the sublimating chemical having a particular color is applied to the test surface. This layer is covered with a second uniform layer of a different colored sublimating chemical, and so on until a composite of multi-colored layers is formed having a discrete thickness. Friction caused by an airflow results in the distinctly colored layers being removed in proportion to such aerodynamic flow characteristics as velocity and temperature, resulting in a multi-colored portrait which approximates the air flow on the underlying test surface.

  19. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients

    NARCIS (Netherlands)

    Wolthaus, Jochem W. H.; Schneider, Christoph; Sonke, Jan-Jakob; van Herk, Marcel; Belderbos, José S. A.; Rossi, Maddalena M. G.; Lebesque, Joos V.; Damen, Eugène M. F.

    2006-01-01

    PURPOSE: Four-dimensional (4D) respiration-correlated imaging techniques can be used to obtain (respiration) artifact-free computed tomography (CT) images of the thorax. Current radiotherapy planning systems, however, do not accommodate 4D-CT data. The purpose of this study was to develop a simple,

  20. Assessing psychological health in midwifery practice: A validation study of the Four-Dimensional Symptom Questionnaire (4DSQ), a Dutch primary care instrument

    NARCIS (Netherlands)

    Tebbe, B.B.M.; Terluin, B.; Koelewijn, J.M.

    2013-01-01

    Objective: the Four-Dimensional Symptom Questionnaire (4DSQ) is a validated self-report questionnaire, developed for general practice to assess the level of distress, somatization, depression and anxiety among patients. This study evaluated the validity of this instrument for midwifery practice by

  1. To what extent does the anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) detect specific types of anxiety disorder in primary care? A psychometric study

    NARCIS (Netherlands)

    Terluin, B.; Oosterbaan, D.B.; Brouwers, E.P.; Straten, A. van; Ven, P.M. van de; Langerak, W.; Marwijk, H.W.J. van

    2014-01-01

    BACKGROUND: Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety

  2. To what extent does the anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) detect specific types of anxiety disorder in primary care?

    NARCIS (Netherlands)

    Terluin, B.; Oosterbaan, D.B.; Brouwers, E.P.; van Straten, A.; van de Ven, P.M.; Langerak, W.; van Marwijk, H.W.

    2014-01-01

    Background: Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety

  3. Characterization and analysis of a multicolor quantum well infrared photodetector

    OpenAIRE

    Hanson, Nathan A.

    2006-01-01

    This thesis presents analysis and characterization of performance of a newly designed, multicolor quantum well infrared photodetector (QWIP). Specifically, it focuses on a detector capable of detecting infrared emissions in the near infrared (NIR), mid-wavelength infrared (MWIR), and long-wavelength infrared (LWIR). Through photocurrent spectroscopy and performance analysis, this prototype detector can be classified and prepared for possible future use within the U.S. Armed Forces. Certai...

  4. STAQ: A route toward low power, multicolor nanoscopy.

    Science.gov (United States)

    Rosales, Tilman; Sackett, Dan L; Xu, Jianhua; Shi, Zhen-Dan; Xu, Biying; Li, Haitao; Kaur, Gurpreet; Frohart, Erin; Shenoy, Nalini; Cheal, Sarah M; Wu, Haitao; Dulcey, Andrés E; Hu, Yulin; Li, Changhui; Lane, Kelly; Griffiths, Gary L; Knutson, Jay R

    2015-05-01

    Nanoscopy has now become a real procedure in fluorescence microscopy of living cells. The STED/RESOLFT family of nanoscopy approaches has the best prospects for delivering high speed imaging, but the history of STED includes a continuing struggle to reduce the deactivation power applied, along with difficulties in achieving simultaneous multicolor images. In this manuscript, we present a concept for a similar real-time nanoscopy, using a new class of bipartite probes that separate the luminescent and quenching functions into two coupled molecules. In particular, the STAQ (Superresolution via Transiently Activated Quencher) example we show herein employs the excited state absorbance (not ground state) of the partner to accept energy from and quench the luminescent dye. The result is that much less deactivation power is needed for superresolved (∼50 nm) imaging. Moreover, the TAQ partner excited by the "donut" beam is shown to quench several different visible dyes via the same mechanism, opening the door to easier multicolor imaging. We demonstrate three dyes sharing the same deactivation and show examples of superresolved multicolor images. We suggest STAQ will facilitate the growth of real-time nanoscopy by reducing confounding photodamage within living cells while expanding the nanoscopist's palette. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy

    National Research Council Canada - National Science Library

    Sun, Yun; Cao, Weipeng; Li, Shengliang; Jin, Shubin; Hu, Kelei; Hu, Liming; Huang, Yuanyu; Gao, Xueyun; Wu, Yan; Liang, Xing-Jie

    2013-01-01

    .... The weak fluorescent polyethyleneimine (PEI) has been conjugated with hydrophobic polylactide as the amphiphilic PEI for construction of nanoparticles which showed bright and multicolor fluorescence...

  6. Analysis of environmental and general science efficacy among instructors with contrasting class ethnicity distributions: A four-dimensional assessment

    Science.gov (United States)

    Taylor, Bryan Keith

    Scope and method of study. The context and nature of self-efficacy beliefs provides a vector upon which to explore science instructors' perceptions of their own competence, self beliefs, and beliefs concerning their students as a function of ethnicity (Pajares, 1996). Currently, available cross-sectional data that concomitantly compares efficacy for environmental and general science curricula among instructors with contrasting class ethnicity distributions (CED) (minority vs. non-minority) is diminutive. Here, a modified research instrument that incorporates the Environmental Education Efficacy Belief Instrument (Sia, 1992), the Science Teaching Efficacy Beliefs Instrument (Riggs & Enochs, 1990), and factors 2 & 3 from the Ohio State Teacher Efficacy Scale (Tschannen-Moran & Hoy, 2001) is employed to create a bi-disciplinary four dimensional assessment that measures personal teacher efficacy (PTE), outcome expectancy (OE), classroom management (CM), and student engagement (SE). Instructors' willingness to, and utilization of, practical instruction to reinforce science learning is also assessed. Findings and conclusions. Overall, efficacy levels for environmental and general science curriculum among instructors with high minority CED (n=22) were consistently lower than that of instructors with high non-minority CED (n = 18); consistently diminished efficacy levels were evidenced upon analysis of CED and all independent variables analyzed. While all four dimensions of efficacy were consistently low for instructors with high minority CED, markedly low mean CM and SE responses were evidenced. A link exists between teacher self-efficacy and the conditions present that impinge on the successful completion of work goals (Metz, 1978). Many studies have examined the lowered-level of minority involvement in environmental careers, issues, and concerns (Taylor, 1989). While all science instructors were willing to utilize outdoor classrooms, markedly lower outdoor classroom

  7. Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Directory of Open Access Journals (Sweden)

    G. Pappalardo

    2013-04-01

    Full Text Available The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET. Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010. All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL. After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May, material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on

  8. Effect of tumor volume on the enhancement pattern of parathyroid adenoma on parathyroid four-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyoung [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Dongguk University Ilsan Hospital, Department of Radiology, Goyang-si (Korea, Republic of); Yun, Tae Jin; Kim, Ji-hoon; Kang, Koung Mi; Choi, Seung Hong; Sohn, Chul-Ho [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Lee, Kyu Eun; Kim, Su-jin [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Won, Jae-Kyung [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of)

    2016-05-15

    The purpose of this study is to assess the effect of tumor volume on the enhancement pattern of parathyroid adenoma (PTA) on four-dimensional computed tomography (4D-CT). We analyzed the enhancement patterns of PTA on four-phase 4D-CT in 44 patients. Dependency of the changes of Hounsfield unit values (ΔHU) on the tumor volumes and clinical characteristics was evaluated using linear regression analyses. In addition, an unpaired t test was used to compare ΔHU of PTAs between PTA volume ≥1 cm{sup 3} and <1 cm{sup 3}, thyroid gland, and lymph node. PTA volume based on CT was the strongest factor on the ΔHU{sub Pre} {sub to} {sub Arterial} and ΔHU{sub Arterial} {sub to} {sub Venous} and ΔHU{sub Arterial} {sub to} {sub Delayed} (R {sup 2} = 0.34, 0.25, and 0.32, respectively, P < 0.001 for both). PTA ≥1 cm {sup 3} had statistically significant greater enhancement between the unenhanced phase and the arterial phase than PTA <1 cm {sup 3} (mean values ± standard deviations (SDs) of ΔHU{sub Pre} {sub to} {sub Arterial}, 102.7 ± 33.7 and 57.5 ± 28.8, respectively, P < 0.001). PTA ≥1 cm {sup 3} showed an early washout pattern on the venous phase, whereas PTA <1 cm {sup 3} showed a progressive enhancement pattern on the venous phase (mean values ± SDs of ΔHU{sub Arterial} {sub to} {sub Venous}, -13.2 ± 31.6 and 14.4 ± 32.7, respectively; P = 0.009). The enhancement pattern of PTA on 4D-CT is variable with respect to PTA volume based on CT. Therefore, the enhancement pattern of PTA on 4D-CT requires careful interpretation concerning the tumor volume, especially in cases of PTA <1 cm {sup 3}. (orig.)

  9. Correlation of primary middle and distal esophageal cancers motion with surrounding tissues using four-dimensional computed tomography

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-06-01

    Full Text Available Wei Wang,1 Jianbin Li,1 Yingjie Zhang,1 Qian Shao,1 Min Xu,1 Bing Guo,1 Dongping Shang2 1Department of Radiation Oncology, 2Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China Purpose: To investigate the correlation of gross tumor volume (GTV motion with the structure of interest (SOI motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT.Patients and methods: Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson’s correlation test.Results: The mean peak-to-peak displacement of all primary tumors in the lateral (LR, anteroposterior (AP, and superoinferior (SI directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (rleft=0.918 and rright=0.928. A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (rLR=–0.530, rAP=–0.531, and rSI=–0.588 during respiratory cycle.Conclusion: For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung. Keywords

  10. Four-dimensional variational inversion of black carbon emissions during ARCTAS-CARB with WRFDA-Chem

    Directory of Open Access Journals (Sweden)

    J. J. Guerrette

    2017-06-01

    Full Text Available Biomass burning emissions of atmospheric aerosols, including black carbon, are growing due to increased global drought, and comprise a large source of uncertainty in regional climate and air quality studies. We develop and apply new incremental four-dimensional variational (4D-Var capabilities in WRFDA-Chem to find optimal spatially and temporally distributed biomass burning (BB and anthropogenic black carbon (BC aerosol emissions. The constraints are provided by aircraft BC concentrations from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites in collaboration with the California Air Resources Board (ARCTAS-CARB field campaign and surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network on 22, 23, and 24 June 2008. We consider three BB inventories, including Fire INventory from NCAR (FINN v1.0 and v1.5 and Quick Fire Emissions Database (QFED v2.4r8. On 22 June, aircraft observations are able to reduce the spread between a customized QFED inventory and FINNv1.0 from a factor of 3. 5 ( × 3. 5 to only × 2. 1. On 23 and 24 June, the spread is reduced from × 3. 4 to × 1. 4. The posterior corrections to emissions are heterogeneous in time and space, and exhibit similar spatial patterns of sign for both inventories. The posterior diurnal BB patterns indicate that multiple daily emission peaks might be warranted in specific regions of California. The US EPA's 2005 National Emissions Inventory (NEI05 is used as the anthropogenic prior. On 23 and 24 June, the coastal California posterior is reduced by × 2, where highway sources dominate, while inland sources are increased near Barstow by × 5. Relative BB emission variances are reduced from the prior by up to 35 % in grid cells close to aircraft flight paths and by up to 60 % for fires near surface measurements. Anthropogenic variance reduction is as high as 40 % and is similarly

  11. SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K; Kim, D; Kim, T; Kang, S; Cho, M; Shin, D; Suh, T [The Catholic University of Korea, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array which have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A

  12. Four-dimensional variational inversion of black carbon emissions during ARCTAS-CARB with WRFDA-Chem

    Science.gov (United States)

    Guerrette, Jonathan J.; Henze, Daven K.

    2017-06-01

    Biomass burning emissions of atmospheric aerosols, including black carbon, are growing due to increased global drought, and comprise a large source of uncertainty in regional climate and air quality studies. We develop and apply new incremental four-dimensional variational (4D-Var) capabilities in WRFDA-Chem to find optimal spatially and temporally distributed biomass burning (BB) and anthropogenic black carbon (BC) aerosol emissions. The constraints are provided by aircraft BC concentrations from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites in collaboration with the California Air Resources Board (ARCTAS-CARB) field campaign and surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network on 22, 23, and 24 June 2008. We consider three BB inventories, including Fire INventory from NCAR (FINN) v1.0 and v1.5 and Quick Fire Emissions Database (QFED) v2.4r8. On 22 June, aircraft observations are able to reduce the spread between a customized QFED inventory and FINNv1.0 from a factor of 3. 5 ( × 3. 5) to only × 2. 1. On 23 and 24 June, the spread is reduced from × 3. 4 to × 1. 4. The posterior corrections to emissions are heterogeneous in time and space, and exhibit similar spatial patterns of sign for both inventories. The posterior diurnal BB patterns indicate that multiple daily emission peaks might be warranted in specific regions of California. The US EPA's 2005 National Emissions Inventory (NEI05) is used as the anthropogenic prior. On 23 and 24 June, the coastal California posterior is reduced by × 2, where highway sources dominate, while inland sources are increased near Barstow by × 5. Relative BB emission variances are reduced from the prior by up to 35 % in grid cells close to aircraft flight paths and by up to 60 % for fires near surface measurements. Anthropogenic variance reduction is as high as 40 % and is similarly limited to sources close to observations. We

  13. Monte Carlo as a four-dimensional radiotherapy treatment-planning tool to account for respiratory motion

    Science.gov (United States)

    Keall, P. J.; Siebers, J. V.; Joshi, S.; Mohan, R.

    2004-08-01

    Four-dimensional (4D) radiotherapy is the explicit inclusion of the temporal changes in anatomy during the imaging, planning and delivery of radiotherapy. Temporal anatomic changes can occur for many reasons, though the focus of the current investigation was respiration motion for lung tumours. The aims of the current research were first to develop a 4D Monte Carlo methodology and second to apply this technique to an existing 4D treatment plan. A 4D CT scan consisting of a series of 3D CT image sets acquired at different respiratory phases was used. Deformable image registration was performed to map each CT set from the end-inhale respiration phase to the CT image sets corresponding with subsequent respiration phases. This deformable registration allowed the contours drawn on the end-inhale CT to be automatically drawn on the other respiratory phase CT image sets. A treatment plan was created on the end-inhale CT image set and then automatically created on each of the 3D CT image sets corresponding with subsequent respiration phases, based on the beam arrangement and dose prescription in the end-inhale plan. Dose calculation using Monte Carlo was simultaneously performed on each of the N (=8) 3D image sets with 1/N fewer particles per calculation than for a 3D plan. The dose distribution from each respiratory phase CT image set was mapped back to the end-inhale CT image set for analysis. This use of deformable image registration to merge all the statistically noisy dose distributions back onto one CT image set effectively yielded a 4D Monte Carlo calculation with a statistical uncertainty equivalent to a 3D calculation, with a similar calculation time for the 3D and 4D methods. Monte Carlo as a dose calculation tool for 4D radiotherapy planning has two advantages: (1) higher accuracy for calculation in electronic disequilibrium conditions, such as those encountered during lung radiotherapy, and (2) if deformable image registration is used, the calculation time for

  14. Comparison of planning target volumes based on three-dimensional and four-dimensional CT imaging of thoracic esophageal cancer.

    Science.gov (United States)

    Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Fan, Tingyong; Wang, Jinzhi

    2016-01-01

    To investigate the definition of planning target volumes (PTVs) based on four-dimensional computed tomography (4DCT) compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A), middle (group B), and distal (group C) thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv) was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ (2)=-3.18, -2.98, and -3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ (2) =-3.18, -2.98, and -3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was groups. Compared with PTVconv, the amount of irradiated normal tissue for PTV3D was decreased by 11.81% and 11.86% in groups A and B, respectively, but was increased by 2.93% in group C. For proximal and middle esophageal cancer, 3DCT-based PTV using asymmetrical margins provides good coverage of PTV4D; however, for distal esophageal cancer, 3DCT-based PTV using conventional margins provides ideal conformity with PTV4D.

  15. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    Science.gov (United States)

    Shieh, Chun-Chien; Kipritidis, John; O'Brien, Ricky T.; Cooper, Benjamin J.; Kuncic, Zdenka; Keall, Paul J.

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and did

  16. Frequency division multiplexed multi-color fluorescence microscope system

    Science.gov (United States)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame

  17. Comparison of planning target volumes based on three-dimensional and four-dimensional CT imaging of thoracic esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-08-01

    Full Text Available Wei Wang, Jianbin Li, Yingjie Zhang, Qian Shao, Min Xu, Tingyong Fan, Jinzhi Wang Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong, People’s Republic of China Background and purpose: To investigate the definition of planning target volumes (PTVs based on four-dimensional computed tomography (4DCT compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Materials and methods: Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A, middle (group B, and distal (group C thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. Results: The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue

  18. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    Science.gov (United States)

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was

  19. Synchronization and Electronic Circuit Application of Hidden Hyperchaos in a Four-Dimensional Self-Exciting Homopolar Disc Dynamo without Equilibria

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2017-01-01

    Full Text Available We introduce and investigate a four-dimensional hidden hyperchaotic system without equilibria, which is obtained by augmenting the three-dimensional self-exciting homopolar disc dynamo due to Moffatt with an additional control variable. Synchronization of two such coupled disc dynamo models is investigated by active control and sliding mode control methods. Numerical integrations show that sliding mode control provides a better synchronization in time but causes chattering. The solution is obtained by switching to active control when the synchronization errors become very small. In addition, the electronic circuit of the four-dimensional hyperchaotic system has been realized in ORCAD-PSpice and on the oscilloscope by amplitude values, verifying the results from the numerical experiments.

  20. Measuring dynamics in weakly structured regions of proteins using microfluidics-enabled subsecond H/D exchange mass spectrometry.

    Science.gov (United States)

    Rob, Tamanna; Liuni, Peter; Gill, Preet Kamal; Zhu, Shaolong; Balachandran, Naresh; Berti, Paul J; Wilson, Derek J

    2012-04-17

    This work introduces an integrated microfluidic device for measuring rapid H/D exchange (HDX) in proteins. By monitoring backbone amide HDX on the millisecond to low second time scale, we are able to characterize conformational dynamics in weakly structured regions, such as loops and molten globule-like domains that are inaccessible in conventional HDX experiments. The device accommodates the entire MS-based HDX workflow on a single chip with residence times sufficiently small (ca. 8 s) that back-exchange is negligible (≤5%), even without cooling. Components include an adjustable position capillary mixer providing a variable-time labeling pulse, a static mixer for HDX quenching, a proteolytic microreactor for rapid protein digestion, and on-chip electrospray ionization (ESI). In the present work, we characterize device performance using three model systems, each illustrating a different application of 'time-resolved' HDX. Ubiquitin is used to illustrate a crude, high throughput structural analysis based on a single subsecond HDX time-point. In experiments using cytochrome c, we distinguish dynamic behavior in loops, establishing a link between flexibility and interactions with the heme prosthetic group. Finally, we localize an unusually high 'burst-phase' of HDX in the large tetrameric enzyme DAHP synthase to a 'molten globule-like' region surrounding the active site.

  1. Resonant plasmonic nanoparticles for multicolor second harmonic imaging

    Science.gov (United States)

    Accanto, Nicolò; Piatkowski, Lukasz; Hancu, Ion M.; Renger, Jan; van Hulst, Niek F.

    2016-02-01

    Nanoparticles capable of efficiently generating nonlinear optical signals, like second harmonic generation, are attracting a lot of attention as potential background-free and stable nano-probes for biological imaging. However, second harmonic nanoparticles of different species do not produce readily distinguishable optical signals, as the excitation laser mainly defines their second harmonic spectrum. This is in marked contrast to other fluorescent nano-probes like quantum dots that emit light at different colors depending on their sizes and materials. Here, we present the use of resonant plasmonic nanoparticles, combined with broadband phase-controlled laser pulses, as tunable sources of multicolor second harmonic generation. The resonant plasmonic nanoparticles strongly interact with the electromagnetic field of the incident light, enhancing the efficiency of nonlinear optical processes. Because the plasmon resonance in these structures is spectrally narrower than the laser bandwidth, the plasmonic nanoparticles imprint their fingerprints on the second harmonic spectrum. We show how nanoparticles of different sizes produce different colors in the second harmonic spectra even when excited with the same laser pulse. Using these resonant plasmonic nanoparticles as nano-probes is promising for multicolor second harmonic imaging while keeping all the advantages of nonlinear optical microscopy.

  2. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    Science.gov (United States)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; hide

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  3. Temperature measurements using multicolor pyrometry in thermal radiation heating environments.

    Science.gov (United States)

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-01

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100-2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700-1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  4. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2014-04-15

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  5. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    Science.gov (United States)

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-01

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100-2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700-1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  6. CMOS tunable-wavelength multi-color photogate sensor.

    Science.gov (United States)

    Ho, Derek; Noor, M Omair; Krull, Ulrich J; Gulak, Glenn; Genov, Roman

    2013-12-01

    A CMOS tunable-wavelength multi-color photogate (CPG) sensor is presented. Sensing of a small set of well-separated wavelengths (e.g., > 50 nm apart) is achieved by tuning the spectral response of the device with a bias voltage. The CPG employs the polysilicon gate as an optical filter, which eliminates the need for an external color filter. A prototype has been fabricated in a standard 0.35 μm digital CMOS technology and demonstrates intensity measurements of blue (450 nm), green (520 nm), and red (620 nm) illumination with peak signal-to-noise ratios (SNRs) of 34.7 dB , 29.2 dB, and 34.8 dB, respectively. The prototype is applied to fluorescence detection of green-emitting quantum dots (gQDs) and red-emitting quantum dots (rQDs). It spectrally differentiates among multiple emission bands, effectively implementing on-chip emission filtering. The prototype demonstrates single-color measurements of gQD and rQD concentrations to a detection limit of 24 nM, and multi-color measurements of solutions containing both colors of QDs to a detection limit of 90 nM and 120 nM of gQD and rQD, respectively.

  7. VISUALIZATION OF MACULAR PUCKER BY MULTICOLOR SCANNING LASER IMAGING.

    Science.gov (United States)

    Kilic Muftuoglu, Ilkay; Bartsch, Dirk-Uwe; Barteselli, Giulio; Gaber, Raouf; Nezgoda, Joseph; Freeman, William R

    2018-02-01

    To compare the visualization of the epiretinal membrane (ERM) using multicolor imaging (MCI) (Heidelberg Engineering, Carlsbad, CA) and conventional white light flood color fundus photography (FP) (Topcon). The paired images of patients with ERM who underwent same-day MCI and FP examinations were reviewed. Visibility of the ERM was graded using a scale (0: not visible, 1: barely visible, and 2: clearly visible) by masked readers, and surface folds were counted to quantify the membrane visibility for each method. Images from individual color channels in MCI (green, blue, and infrared) were also graded using the same method to further investigate MCI images. Forty-eight eyes of 42 patients were included. The average ERM visibility score was 1.8 ± 0.37 for MCI and 1.01 ± 0.63 for FP (P provided better detection of surface folds (5.54 ± 2.12) compared to blue reflectance (4.2 ± 2.34) and infrared reflectance (1.2 ± 0.9). Multicolor scanning laser imaging provides superior ERM detection and delineation of surface folds than conventional FP, primarily due to the green channel present in the combination-pseudocolor image in MCI.

  8. Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow.

    Science.gov (United States)

    Dumas, Laura; Heitz-Marchaland, Céline; Fouquet, Stephane; Suter, Ueli; Livet, Jean; Moreau-Fauvarque, Caroline; Chédotal, Alain

    2015-04-01

    Oligodendrocytes are the myelinating cells of the central nervous system. Multiple markers are available to analyze the populations of oligodendroglial cells and their precursors during development and in pathological conditions. However, the behavior of oligodendrocytes remains poorly characterized in vivo, especially at the level of individual cells. Studying this aspect has been impaired so far by the lack of suitable methods for visualizing single oligodendrocytes, their processes, and their interactions during myelination. Here, we have used multicolor labeling technology to single-out simultaneously many individual oligodendrocytes in the postnatal mouse optic nerve. This method is based on Brainbow, a transgenic system for stochastic expression of multiple fluorescent protein genes through Cre-lox recombination, previously used for visualizing axons and neurons. We used tamoxifen-inducible recombination in myelinating cells of Brainbow transgenic mice to obtain multicolor labeling of oligodendrocytes. We show that the palette of colors expressed by labeled oligodendrocytes is tamoxifen dependent, with the highest doses producing the densest and most colorful labeling. At low doses of tamoxifen, the morphology of single or small clusters of fluorescent oligodendrocytes can be studied during postnatal development and in adult. Internodes are labeled to their extremities, revealing nodes of Ranvier. The new mouse model presented here opens new possibilities to explore the organization and development of the oligodendrocyte network with single-cell resolution. © 2014 Wiley Periodicals, Inc.

  9. Classification of H2O2 as a Neuromodulator that Regulates Striatal Dopamine Release on a Subsecond Time Scale

    Science.gov (United States)

    2012-01-01

    Here we review evidence that the reactive oxygen species, hydrogen peroxide (H2O2), meets the criteria for classification as a neuromodulator through its effects on striatal dopamine (DA) release. This evidence was obtained using fast-scan cyclic voltammetry to detect evoked DA release in striatal slices, along with whole-cell and fluorescence imaging to monitor cellular activity and H2O2 generation in striatal medium spiny neurons (MSNs). The data show that (1) exogenous H2O2 suppresses DA release in dorsal striatum and nucleus accumbens shell and the same effect is seen with elevation of endogenous H2O2 levels; (2) H2O2 is generated downstream from glutamatergic AMPA receptor activation in MSNs, but not DA axons; (3) generation of modulatory H2O2 is activity dependent; (4) H2O2 generated in MSNs diffuses to DA axons to cause transient DA release suppression by activating ATP-sensitive K+ (KATP) channels on DA axons; and (5) the amplitude of H2O2-dependent inhibition of DA release is attenuated by enzymatic degradation of H2O2, but the subsecond time course is determined by H2O2 diffusion rate and/or KATP-channel kinetics. In the dorsal striatum, neuromodulatory H2O2 is an intermediate in the regulation of DA release by the classical neurotransmitters glutamate and GABA, as well as other neuromodulators, including cannabinoids. However, modulatory actions of H2O2 occur in other regions and cell types, as well, consistent with the widespread expression of KATP and other H2O2-sensitive channels throughout the CNS. PMID:23259034

  10. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating

    DEFF Research Database (Denmark)

    Uribe, Sergio; Beerbaum, Philipp; Sørensen, Thomas Sangild

    2009-01-01

    Four-dimensional (4D) flow imaging has been used to study flow patterns and pathophysiology, usually focused on specific thoracic vessels and cardiac chambers. Whole-heart 4D flow at high measurement accuracy covering the entire thoracic cardiovascular system would be desirable to simplify...... and improve hemodynamic assessment. This has been a challenge because compensation of respiratory motion is difficult to achieve, but it is paramount to limit artifacts and improve accuracy. In this work we propose a self-gating technique for respiratory motion-compensation integrated into a whole-heart 4D...

  11. Exactly solvable quantum few-body systems associated with the symmetries of the three-dimensional and four-dimensional icosahedra

    Directory of Open Access Journals (Sweden)

    T. Scoquart, J. J. Seaward, S. G. Jackson, M. Olshanii

    2016-10-01

    Full Text Available The purpose of this article is to demonstrate that non-crystallographic reflection groups can be used to build new solvable quantum particle systems. We explicitly construct a one-parametric family of solvable four-body systems on a line, related to the symmetry of a regular icosahedron: in two distinct limiting cases the system is constrained to a half-line. We repeat the program for a 600-cell, a four-dimensional generalization of the regular three-dimensional icosahedron.

  12. A Real-Time Apple Grading System Using Multicolor Space

    Directory of Open Access Journals (Sweden)

    Hayrettin Toylan

    2014-01-01

    Full Text Available This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identification success for the yellow fields was obtained depending on the values of the parameter y of CIE XYZ color space. With the designed system, three kinds of apples (Golden, Starking, and Jonagold were investigated by classifying them into four groups with respect to two parameters, color and size. Finally, 99% success rate was achieved in the analyses conducted for 595 apples.

  13. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyu-Tae Lee

    2016-04-01

    Full Text Available In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite “islands” and transparent electrodes—the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency—are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  14. Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications

    Directory of Open Access Journals (Sweden)

    Nagaprasad Puvvada, B N Prashanth Kumar, Suraj Konar, Himani Kalita, Mahitosh Mandal and Amita Pathak

    2012-01-01

    Full Text Available Water-soluble carbon dots (C-dots were prepared through microwave-assisted pyrolysis of an aqueous solution of dextrin in the presence of sulfuric acid. The C-dots produced showed multicolor luminescence in the entire visible range, without adding any surface-passivating agent. X-ray diffraction and Fourier transform infrared spectroscopy studies revealed the graphitic nature of the carbon and the presence of hydrophilic groups on the surface, respectively. The formation of uniformly distributed C-dots and their luminescent properties were, respectively, revealed from transmission electron microscopy and confocal laser scanning microscopy. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on MDA-MB-468 cells and their cellular uptake was assessed through a localization study.

  15. Multi-Color Single Particle Tracking with Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.

    2012-01-01

    Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g....... multiplex single molecule sensitivity applications such as single particle tracking (SPT). In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations...... further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC)-SPT with QDs is possible at an image...

  16. A Real-Time Apple Grading System Using Multicolor Space

    Science.gov (United States)

    2014-01-01

    This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identification success for the yellow fields was obtained depending on the values of the parameter y of CIE XYZ color space. With the designed system, three kinds of apples (Golden, Starking, and Jonagold) were investigated by classifying them into four groups with respect to two parameters, color and size. Finally, 99% success rate was achieved in the analyses conducted for 595 apples. PMID:24574880

  17. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  18. Single-photon counting multicolor multiphoton fluorescence microscope.

    Science.gov (United States)

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  19. Nonlinear spatio-temporal filtering of dynamic PET data using a four-dimensional Gaussian filter and expectation-maximization deconvolution.

    Science.gov (United States)

    Floberg, J M; Holden, J E

    2013-02-21

    We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering withEMdeconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.

  20. Mathematical conversations multicolor problems, problems in the theory of numbers, and random walks

    CERN Document Server

    Dynkin, E B

    2006-01-01

    Comprises Multicolor Problems, dealing with map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; Random Walks, addressing basic problems in probability theory. 1963 edition.

  1. Multicolor Karyotyping and Fluorescence In Situ Hybridization-Banding (MCB/mBAND).

    Science.gov (United States)

    Liehr, Thomas; Othman, Moneeb A K; Rittscher, Katharina

    2017-01-01

    Multicolor fluorescence in situ hybridization (mFISH) approaches are routine applications in tumor as well as clinical cytogenetics nowadays. The first approach when thinking about mFISH is multicolor karyotyping using human whole chromosome paints as probes; this can be achieved by narrow-band filter-based multiplex-FISH (M-FISH) or interferometer/spectroscopy-based spectral karyotyping (SKY). Besides, various FISH-based banding approaches were reported in the literature, including multicolor banding (MCB/mBAND) the latter being evaluated by narrow-band filters, and using specific software. Here, we describe the combined application of multicolor karyotyping and MCB/mBAND for the characterization of simple and complex acquired chromosomal changes in cancer cytogenetics.

  2. Dielectric coating and surface plasmon enhancement of multi-color quantum-well structures

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Iida, Daisuke; Ou, Yiyu

    We fabricate a multi-colored quantum-well structure as a prototype towards monolithic white light-emitting diodes, and modify the emission intensities of different colors by introducing dielectric and Ag nanoparticle coating.......We fabricate a multi-colored quantum-well structure as a prototype towards monolithic white light-emitting diodes, and modify the emission intensities of different colors by introducing dielectric and Ag nanoparticle coating....

  3. Construction of response solutions for two classes of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrium point under small perturbations

    Science.gov (United States)

    Si, Wen; Si, Jianguo

    2017-05-01

    By developing two KAM theorems, in this paper, we show that two classes of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrium point, a reversible system and a non-conservative system, admit a response solution under small perturbations. For the degenerate reversible system, applying special structure of unperturbed nonlinear term and Herman method, we successfully control the shift of equilibrium point, which is difficult in view of the degenerate linear term. For the degenerate non-conservative system, KAM method is brought into force even in completely degenerate case because of the restrictions on the smallness and average of perturbation. Moreover, arithmetic condition on the frequency is assumed to satisfy the Brjuno-Rüssmann's non-resonant condition. By the Pöschel-Rüssmann KAM method, we prove that these two kinds of perturbed systems can be reduced to a suitable normal form with zero as equilibrium point by a quasi-periodic transformation.

  4. Development of Four Dimensional Human Model that Enables Deformation of Skin, Organs and Blood Vessel System During Body Movement - Visualizing Movements of the Musculoskeletal System.

    Science.gov (United States)

    Suzuki, Naoki; Hattori, Asaki; Hashizume, Makoto

    2016-01-01

    We constructed a four dimensional human model that is able to visualize the structure of a whole human body, including the inner structures, in real-time to allow us to analyze human dynamic changes in the temporal, spatial and quantitative domains. To verify whether our model was generating changes according to real human body dynamics, we measured a participant's skin expansion and compared it to that of the model conducted under the same body movement. We also made a contribution to the field of orthopedics, as we were able to devise a display method that enables the observer to more easily observe the changes made in the complex skeletal muscle system during body movements, which in the past were difficult to visualize.

  5. Rotationally acquired four-dimensional optical coherence tomography of embryonic chick hearts using retrospective gating on the common central A-scan

    DEFF Research Database (Denmark)

    Happel, Christoph M.; Thommes, Jan; Thrane, Lars

    2011-01-01

    We introduce a new method of rotational image acquisition for four-dimensional (4D) optical coherence tomography (OCT) of beating embryonic chick hearts. The rotational axis and the central A-scan of the OCT are identical. An out-of-phase image sequence covering multiple heartbeats is acquired...... at every angle of an incremental rotation of the deflection mirrors of the OCT system. Image acquisition is accomplished after a rotation of 180◦. Comparison of a displayed live M-mode of the central A-scan with a reference M-mode allows instant detection of translational movements of the embryo....... For calculation of 4D data sets, we apply an imagebased retrospective gating algorithm using the phase information of the common central A-scan present in all acquired images. This leads to cylindrical three-dimensional data sets for every time step of the cardiac cycle that can be used for 4D visualization...

  6. Four-Dimensional Golden Search

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-25

    The Golden search technique is a method to search a multiple-dimension space to find the minimum. It basically subdivides the possible ranges of parameters until it brackets, to within an arbitrarily small distance, the minimum. It has the advantages that (1) the function to be minimized can be non-linear, (2) it does not require derivatives of the function, (3) the convergence criterion does not depend on the magnitude of the function. Thus, if the function is a goodness of fit parameter such as chi-square, the convergence does not depend on the noise being correctly estimated or the function correctly following the chi-square statistic. And, (4) the convergence criterion does not depend on the shape of the function. Thus, long shallow surfaces can be searched without the problem of premature convergence. As with many methods, the Golden search technique can be confused by surfaces with multiple minima.

  7. Multicolor combinatorial probe coding for real-time PCR.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    Full Text Available The target volume of multiplex real-time PCR assays is limited by the number of fluorescent dyes available and the number of fluorescence acquisition channels present in the PCR instrument. We hereby explored a probe labeling strategy that significantly increased the target volume of real-time PCR detection in one reaction. The labeling paradigm, termed "Multicolor Combinatorial Probe Coding" (MCPC, uses a limited number (n of differently colored fluorophores in various combinations to label each probe, enabling one of 2(n-1 genetic targets to be detected in one reaction. The proof-of-principle of MCPC was validated by identification of one of each possible 15 human papillomavirus types, which is the maximum target number theoretically detectable by MCPC with a 4-color channel instrument, in one reaction. MCPC was then improved from a one-primer-pair setting to a multiple-primer-pair format through Homo-Tag Assisted Non-Dimer (HAND system to allow multiple primer pairs to be included in one reaction. This improvement was demonstrated via identification of one of the possible 10 foodborne pathogen candidates with 10 pairs of primers included in one reaction, which had limit of detection equivalent to the uniplex PCR. MCPC was further explored in detecting combined genotypes of five β-globin gene mutations where multiple targets were co-amplified. MCPC strategy could expand the scope of real-time PCR assays in applications which are unachievable by current labeling strategy.

  8. Correcting chromatic offset in multicolor super-resolution localization microscopy.

    Science.gov (United States)

    Erdelyi, Miklos; Rees, Eric; Metcalf, Daniel; Schierle, Gabriele S Kaminski; Dudas, Laszlo; Sinko, Jozsef; Knight, Alex E; Kaminski, Clemens F

    2013-05-06

    Localization based super-resolution microscopy techniques require precise drift correction methods because the achieved spatial resolution is close to both the mechanical and optical performance limits of modern light microscopes. Multi-color imaging methods require corrections in addition to those dealing with drift due to the static, but spatially-dependent, chromatic offset between images. We present computer simulations to quantify this effect, which is primarily caused by the high-NA objectives used in super-resolution microscopy. Although the chromatic offset in well corrected systems is only a fraction of an optical wavelength in magnitude (super-resolution methods is impossible without appropriate image correction. The simulated data are in excellent agreement with experiments using fluorescent beads excited and localized at multiple wavelengths. Finally we present a rigorous and practical calibration protocol to correct for chromatic optical offset, and demonstrate its efficacy for the imaging of transferrin receptor protein colocalization in HeLa cells using two-color direct stochastic optical reconstruction microscopy (dSTORM).

  9. Generation of multicolor banding probes for chromosomes of different species

    Directory of Open Access Journals (Sweden)

    Kosyakova Nadezda

    2013-02-01

    Full Text Available Abstract Background The multicolor banding (MCB/mBAND technique provides a unique opportunity to characterize intrachromosomal rearrangements and to determine chromosomal breakpoints. Until recently, MCB probes have only been available for human and some murine chromosomes. Generation of MCB probes for chromosomes of other species, useful and required in many cytogenetics research fields, was limited by technical difficulties. MCB probes are established by chromosome microdissection followed by whole genomic DNA amplification. However, unambiguous identification of the target chromosome is required for MCB-probe establishment. Previously proposed protocols suggested G-banding staining or preliminary FISH with whole chromosome paints (WCP as methods to identify the chromosome of interest. Results Here we present a complete workflow for MCB probe generation for those cases and species where chromosome morphology is too challenging to recognize target chromosomes by conventional methods and where WCP probes are not available. The workflow was successfully applied for murine chromosomes that are difficult to identify unambiguously. Additionally, we showed that glass-needle based microdissection enables establishment of a whole set of WCP paints by microdissection of individual chromosomes of a single metaphase Conclusions The present method can be applied for generation of whole or region-specific DNA probes for species, where karyotyping of G-banded chromosomes is challenging due to similar chromosome morphology and/or chromosome banding patterns.

  10. Generation of multicolor banding probes for chromosomes of different species.

    Science.gov (United States)

    Kosyakova, Nadezda; Hamid, Ahmed Basheer; Chaveerach, Arunrat; Pinthong, Krit; Siripiyasing, Pornnarong; Supiwong, Weerayuth; Romanenko, Svetlana; Trifonov, Vladimir; Fan, Xiaobo

    2013-02-04

    The multicolor banding (MCB/mBAND) technique provides a unique opportunity to characterize intrachromosomal rearrangements and to determine chromosomal breakpoints. Until recently, MCB probes have only been available for human and some murine chromosomes. Generation of MCB probes for chromosomes of other species, useful and required in many cytogenetics research fields, was limited by technical difficulties. MCB probes are established by chromosome microdissection followed by whole genomic DNA amplification. However, unambiguous identification of the target chromosome is required for MCB-probe establishment. Previously proposed protocols suggested G-banding staining or preliminary FISH with whole chromosome paints (WCP) as methods to identify the chromosome of interest. Here we present a complete workflow for MCB probe generation for those cases and species where chromosome morphology is too challenging to recognize target chromosomes by conventional methods and where WCP probes are not available. The workflow was successfully applied for murine chromosomes that are difficult to identify unambiguously. Additionally, we showed that glass-needle based microdissection enables establishment of a whole set of WCP paints by microdissection of individual chromosomes of a single metaphase The present method can be applied for generation of whole or region-specific DNA probes for species, where karyotyping of G-banded chromosomes is challenging due to similar chromosome morphology and/or chromosome banding patterns.

  11. High-order harmonic generation via multicolor beam superposition

    Science.gov (United States)

    Sarikhani, S.; Batebi, S.

    2017-09-01

    In this article, femtosecond pulses, especially designed by multicolor beam superposition are used for high-order harmonic generation. To achieve this purpose, the spectral difference between the beams, and their width are taken to be small values, i.e., less than 1 nm. Applying a Gaussian distribution to the beam intensities leads to a more distinct pulses. Also, it is seen that these pulses have an intrinsic linear chirp. By changing the width of the Gaussian distributions, we can have several pulses with different bandwidths and hence various pulse duration. Thus, the study of these broadband pulse influences, in contrast with monochromatic pulses, on the atomic or molecular targets was achievable. So, we studied numerically the effect of these femtosecond pulses on behavior of the high-order harmonics generated after interaction between the pulse and the atomic hydrogen. For this study, we adjusted the beam intensities so that the produced pulse intensity be in the over-barrier ionization region. This makes the power spectrum of high-order harmonics more extensive. Cutoff frequency of the power spectrum along with the first harmonic intensity and its shift from the incident pulse are investigated. Additionally, maximum ionization probability with respect to the pulse bandwidth was also studied.

  12. New multicolor illumination system for automatic optical inspection

    Science.gov (United States)

    Xiong, Guangjie; Ma, Shuyuan; Nie, Xuejun; Tang, Xiaohua

    2010-10-01

    In automatic optical inspection (AOI), the illumination system affects the quality of input images and the result of image processing in the AOI. This paper developed a new multi-color illumination system specially used in the printed circuit board (PCB) inspection to detect a variety of defects in automated optical inspection system. The new illumination system consists of four kinds of colors of light emitting diode (LED) arrays composed of high-density LED surface light source. In order to detect a variety of defects, the radiation angle of the each LED array is different. The system uses a micro-controller to control the four sets of LED arrays, after acquisition of the image, which can self-adjust the light intensity of the illumination system based on the reference and comparison of histogram of the image in real time and can control different color LED array respectively according to the quality of the tested image. This paper analyzed the structural model of the illumination system and designed the control system. The experimental results show that the new illumination system has important performances such as uniform illumination, adjustable light intensity, fast response, lower heat and etc. The system can provide highly stable illumination for the AOI to obtain high-quality images effectively for detect the defects of PCB, and improve the defect detection rate and reduce the defects of the false alarm rate of AOI.

  13. Photometric Identification of Population III Core-Collapse Supernovae: Multicolor Light Curve Simulations

    Science.gov (United States)

    Tolstov, Alexey; Nomoto, Ken'ichi; Tominaga, Nozomu; Ishigaki, Miho N.; Blinnikov, Sergey; Suzuki, Tomoharu

    We study the multicolor light curves for a number of metal-free core-collapse supernova (SN) models (25-100 ⊙ ) to determine the indicators for the detection and identification of first generation SNe. We use mixing-fallback supernova explosion models that explain the observed abundance patterns of metal-poor stars. Numerical calculations of the multicolor light curves are performed using the multigroup radiation hydrodynamic code STELLA. The calculated light curves of metal-free SNe are compared with solar-metallicity models and observed SNe. We conclude that the multicolor light curves could be used to identify first-generation SNe in current (Subaru/HSC) and future transient surveys (LSST, James Webb Space Telescope). They are also suitable for identifying low-metallicity SNe in the nearby universe (PTF, Pan-STARRS, Gaia).

  14. Multi-color pyrometry imaging system and method of operating the same

    Science.gov (United States)

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  15. Diffractive optical element with same diffraction pattern for multicolor light-emitting diodes.

    Science.gov (United States)

    Chen, Mengzhu; Wang, Qixia; Gu, Huarong; Tan, Qiaofeng

    2016-01-01

    The wavelength-division multiplexing technique can be utilized in visible light communication to increase the channel capacity when a multicolor mixed white LED is used as light source. In such an application, the illumination area of LEDs should be invariant to the incident wavelength, so as to decrease interference within the adjacent regions. Diffractive optical elements (DOEs) can be used in the optical transmitter system to shape the diffraction patterns into polygons. However, traditional DOEs illuminated by a multicolor mixed white LED would result into diffraction patterns with unequal sizes. In this paper, a hybrid algorithm which combines particle swarm optimization with a genetic algorithm is proposed for multicolor oriented DOEs design. A DOE is designed and fabricated for blue and red LEDs, and experimental results show that diffraction patterns with rather good uniformity as well as quasi-equal size for red and blue LEDs are obtained.

  16. Effects of varying light bias on an optically-addressed two-terminal multicolor photodetector

    Science.gov (United States)

    Steenbergen, E. H.; DiNezza, M. J.; Dettlaff, W. H. G.; Lim, S. H.; Zhang, Y.-H.

    2011-05-01

    Multicolor photodetectors often require more than two terminals, making it very difficult to construct multicolor FPAs, due to the increased processing complexity. A novel approach is proposed to overcome this problem: an optically-addressed two-terminal multicolor photodetector. This two-terminal detector design is important for FPAs because it maximizes the fill factor and simplifies the necessary ROICs. This novel device concept is demonstrated using LEDs as the optical bias sources and a three-color detector. Varying light bias levels expose the effects of, luminescence coupling, optical leakage, and shunt leakage currents on the detector performance. The measured dark current, responsivity, and linear dynamic range of the detector reveal a tradeoff between low optical bias for minimal dark current and maximum responsivity and high optical bias for maximum dynamic range for optimal detector performance.

  17. Multicolor white light-emitting diodes for illumination applications

    Science.gov (United States)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  18. Four-dimensional CT angiography (4D-CTA) in the evaluation of juvenile nasopharyngeal angiofibromas: comparison with digital subtraction angiography (DSA) and surgical findings.

    Science.gov (United States)

    Xiao, Zebin; Zheng, Yingyan; Li, Jian; Chen, Dehua; Liu, Fang; Cao, Dairong

    2017-10-10

    To explore the value of four-dimensional CT angiography (4D-CTA) in the preoperative evaluation of juvenile nasopharyngeal angiofibromas (JNAs) using 320-row volume CT. 4D-CTA and DSA data of 18 patients with histopathologically proven JNAs were retrospectively reviewed. The location, extent, feeding vessels and stage of JNAs were assessed by two radiologists independently and blindly. The agreements between both reviewers and between 4D-CTA and surgical findings for assessing the above indicators were analysed, respectively. The radiation dose and the number of feeding arteries between 4D-CTA and digital subtraction angiography (DSA) were also compared. 4D-CTA showed high diagnostic consistency with surgical pathology for JNAs with consistent rates of 96.2 and 100% in both reviewers, respectively. The effective dose of 4D-CTA was significantly less than that of DSA (p 0.05). 4D-CTA can provide a reliable preoperative diagnosis and assessment of JNAs, which is useful for determining the surgical strategy and management of this condition.

  19. A novel application of four-dimensional magnetic resonance angiography using an arterial spin labeling technique for noninvasive diagnosis of Moyamoya disease.

    Science.gov (United States)

    Uchino, Haruto; Ito, Masaki; Fujima, Noriyuki; Kazumata, Ken; Yamazaki, Kazuyoshi; Nakayama, Naoki; Kuroda, Satoshi; Houkin, Kiyohiro

    2015-10-01

    Noncontrast-enhanced time-resolved four-dimensional magnetic resonance angiography using an arterial spin labeling technique (ASL-4D MRA) is emerging as a next generation angiography for the management of neurovascular diseases. This study evaluated the feasibility of ASL-4D MRA for the diagnosis of Moyamoya disease (MMD) and MMD staging by using digital subtraction angiography (DSA) and time-of-flight MRA (TOF MRA) as current standards. Eleven consecutive non-operated patients who underwent DSA for the diagnosis of MMD were recruited. Two independent observers evaluated the three tests. The data were analyzed for inter-observer and inter-modality agreements on MMD stage. Nine of 22 hemispheres underwent surgical revascularization and ASL-4D MRA was repeated postoperatively. Time-resolved inflow of blood through the cerebral vessels, including moyamoya vessels, was visualized in all the 22 non-operated hemispheres. MMD stages assessed by DSA and ASL-4D MRA were completely matched in 18 hemispheres, with a significant positive correlation between these modalities (r=0.93, Pangiography may be useful for monitoring disease evolution and treatment response in cerebral arteries after revascularization surgery in MMD. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis.

    Science.gov (United States)

    Marshall, W F; Marko, J F; Agard, D A; Sedat, J W

    2001-04-17

    Mitosis involves the interaction of many different components, including chromatin, microtubules, and motor proteins. Dissecting the mechanics of mitosis requires methods of studying not just each component in isolation, but also the entire ensemble of components in its full complexity in genetically tractable model organisms. We have developed a mathematical framework for analyzing motion in four-dimensional microscopy data sets that allows us to measure elasticity, viscosity, and forces by tracking the conformational movements of mitotic chromosomes. We have used this approach to measure, for the first time, the basic biophysical parameters of mitosis in wild-type Drosophila melanogaster embryos. We found that Drosophila embryo chromosomes are significantly less rigid than the much larger chromosomes of vertebrates. Anaphase kinetochore force and nucleoplasmic viscosity were comparable with previous estimates in other species. Motion analysis also allowed us to measure the magnitude of the polar ejection force exerted on chromosome arms during metaphase by individual microtubules. We find the magnitude of this force to be approximately 1 pN, a number consistent with force generation either by collision of growing microtubules with chromosomes or by single kinesin motors. Motion analysis allows noninvasive mechanical measurements to be made in complex systems. This approach should allow the functional effects of Drosophila mitotic mutants on chromosome condensation, kinetochore forces, and the polar ejection force to be determined.

  1. Dimensional Reduction of N=1, E_8 SYM over SU(3)/U(1) x U(1) x Z_3 and its four-dimensional effective action

    CERN Document Server

    Irges, Nikos; Zoupanos, George

    2011-01-01

    We present an extension of the Standard Model inspired by the E_8 x E_8 Heterotic String. In order that a reasonable effective Lagrangian is presented we neglect everything else other than the ten-dimensional N=1 supersymmetric Yang-Mills sector associated with one of the gauge factors and certain couplings necessary for anomaly cancellation. We consider a compactified space-time M_4 x B_0 / Z_3, where B_0 is the nearly-Kaehler manifold SU(3)/U(1) x U(1) and Z_3 is a freely acting discrete group on B_0. Then we reduce dimensionally the E_8 on this manifold and we employ the Wilson flux mechanism leading in four dimensions to an SU(3)^3 gauge theory with the spectrum of a N=1 supersymmetric theory. We compute the effective four-dimensional Lagrangian and demonstrate that an extension of the Standard Model is obtained with interesting features including a conserved baryon number and fixed tree level Yukawa couplings and scalar potential. The spectrum contains new states such as right handed neutrinos and heavy ...

  2. Four-dimensional real-time cine images of wrist joint kinematics using dual source CT with minimal time increment scanning.

    Science.gov (United States)

    Choi, Yoon Seong; Lee, Young Han; Kim, Sungjun; Cho, Hee Woo; Song, Ho-Taek; Suh, Jin-Suck

    2013-07-01

    To validate the feasibility of real time kinematography with four-dimensional (4D) dynamic functional wrist joint imaging using dual source CT. Two healthy volunteers performed radioulnar deviation and pronation- supination wrist motions for 10 s and 4 s per cycle in a dual source CT scanner. Scan and reconstruction protocols were set to optimize temporal resolution. Cine images of the reconstructed carpal bone of the moving wrist were recorded. The quality of the images and radiation dosage were evaluated. The 4D cine images obtained during 4 s and 10 s of radioulnar motion showed a smooth stream of movement with good quality and little noise or artifact. Images from the pronation-supination motion showed noise with a masked surface contour. The temporal resolution was optimized at 0.28 s. Using dual source CT, 4D cine images of in vivo kinematics of wrist joint movement were obtained and found to have a shorter scan time, improved temporal resolution and lower radiation dosages compared with those previously reported.

  3. Evaluating the cross-cultural validity of the Polish version of the Four-Dimensional Symptom Questionnaire (4DSQ) using differential item functioning (DIF) analysis.

    Science.gov (United States)

    Czachowski, Sławomir; Terluin, Berend; Izdebski, Adam; Izdebski, Paweł

    2012-10-01

    The original Dutch Four-Dimensional Symptom Questionnaire (4DSQ), which measures distress, depression, anxiety and somatization, has been translated into Polish with the aim of providing primary health care with a good screening instrument for the detection of the most prevalent mental health problems (anxiety, somatization, depression and distress). To check if the Polish version is cross-culturally valid so that the scores of Polish subjects can be compared with the scores of Dutch subjects and the Dutch cut-off points can be used in Polish subjects. 4DSQ data were collected from a mixed sample of students and primary care attendees. The Polish data were compared with the 4DSQ data of a matched sample of Dutch students and primary care attendees. Two methods of differential item functioning (DIF) analysis, ordinal logistic regression and generalized Mantel-Haenszel, were used to detect items with DIF, and linear regression analysis was used to estimate the scale-level impact of DIF. Four items showing DIF were detected in the distress scale, one in the somatization scale and one in the anxiety scale. The DIF in distress caused Polish subjects with moderate scores to score circa 1 point less than their Dutch counterparts. The results of the DIF analyses suggest that the Polish 4DSQ measures the same constructs as the Dutch 4DSQ and that the Dutch norms can be used for the Polish subjects, except for distress: the first cut-off point should be one point lower.

  4. Four-dimensional magnetic resonance imaging for the determination of tumour movement and its evaluation using a dynamic porcine lung phantom

    Energy Technology Data Exchange (ETDEWEB)

    Remmert, G [Department of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Biederer, J [Department of Radiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Lohberger, F [Department of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Fabel, M [Department of Radiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany); Hartmann, G H [Department of Medical Physics in Radiation Oncology, German Cancer Research Centre (DKFZ), 69120 Heidelberg (Germany)

    2007-09-21

    A method of four-dimensional (4D) magnetic resonance imaging (MRI) has been implemented and evaluated. It consists of retrospective sorting and slice stacking of two-dimensional (2D) images using an external signal for motion monitoring of the object to be imaged. The presented method aims to determine the tumour trajectories based on a signal that is appropriate for monitoring the movement of the target volume during radiotherapy such that the radiation delivery can be adapted to the movement. For evaluation of the 4D-MRI method, it has been applied to a dynamic lung phantom, which exhibits periodic respiratory movement of a porcine heart-lung explant with artificial pulmonary nodules. Anatomic changes of the lung phantom caused by respiratory motion have been quantified, revealing hysteresis. The results demonstrate the feasibility of the presented method of 4D-MRI. In particular, it enables the determination of trajectories of periodically moving objects with an uncertainty in the order of 1 mm. (note)

  5. Four-Dimensional Thermal Analysis of 888 nm Pumped Nd:YVO4 Dual-Rod Acousto-Optic Q-Switched Laser

    Directory of Open Access Journals (Sweden)

    Yijie Shen

    2017-05-01

    Full Text Available A theoretical analysis upon the four-dimensional (4D spatio-temporal temperature dependent dynamics of 888 nm pumped Nd:YVO 4 dual-rod laser is established, which is valid in both continuous-wave (CW and acousto-optic (AO Q-switched pulse lasers conditions. Our model can accurately solve the 4D thermal generation and temperature evolution not only in the steady Q-switched state, but also in the first few unstable giant or dwarf pulses region. Factors including ground state depletion (GSD, energy transfer upconversion (ETU, fluorescence branching ratios, temperature-dependent cross sections and nonradiative relaxations processes are comprehensively considered for precisely estimating thermal effects, valid in both the steady pulse region and the unstable region at the beginning. Moreover, temporal and spatial temperature profiles and their coupling effect on output properties at different repetition-rates are discussed. Experiments of high-power high-repetition-rate 888 nm end-pumped Nd:YVO 4 dual-rod CW and AO Q-switched lasers are also firstly presented and the experimental results enjoy good consistency with our theory.

  6. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  7. Single-Molecule Multicolor FRET Assay for Studying Structural Dynamics of Biomolecules.

    Science.gov (United States)

    Lee, S; Jang, Y; Lee, S-J; Hohng, S

    2016-01-01

    Over the last 2 decades, single-molecule Forster resonance energy transfer (FRET) has been widely used to address important questions in molecular biology. However, a conventional approach based on a single donor-acceptor pair is not powerful enough to study complex biological systems. To address this challenge, single-molecule multicolor FRET techniques have been developed. In this chapter, we present practical considerations required for the successful implementation of single-molecule multicolor FRET in the laboratory. © 2016 Elsevier Inc. All rights reserved.

  8. Four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction (4D PC-VIPR) MR evaluation of the renal arteries in transplant recipients: Preliminary results.

    Science.gov (United States)

    Motoyama, Daisuke; Ishii, Yasuo; Takehara, Yasuo; Sugiyama, Masataka; Yang, Wang; Nasu, Hatsuko; Ushio, Takasuke; Hirose, Yuko; Ohishi, Naoki; Wakayama, Tetsuya; Kabasawa, Hiroyuki; Johnson, Kevin; Wieben, Oliver; Sakahara, Harumi; Ozono, Seiichiro

    2017-08-01

    To assess the performance of four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction (4D PC-VIPR) at 3.0T in depicting intrarenal arteries compared with computed tomography angiography (CTA), and its correlation with arterial flowmetry in comparison with Doppler ultrasonography (DUS). In our prospective single-arm study, subjects were 25 patients who underwent renal transplant-related surgery at our hospital between July 2011 and June 2015. In the morphological study, depictions of renal artery branches delineated by magnetic resonance angiography (MRA)/4D PC-VIPR without gadolinium contrast agent were compared in seven living transplant recipients with the same kidney delineated by CTA in seven living transplant donors. In the flowmetric study, flow velocities in the renal (main stem), segmental, and interlobar arteries during systole and diastole were measured in 12 recipients using noncontrast MRA/4D PC-VIPR, and were compared with those obtained from DUS. Concerning MRA, average confidence levels of delineation rated by six observers for secondary to third level renal artery branches were 82.9-100% and for the fourth to fifth branches were 60.8-89.7% (average kappa value of 0.588 [95% confidence interval: 0.522-0.653]). Total flow velocities measured using 4D PC-VIPR and DUS demonstrated significant correlations during both systole and diastole with acceptable bias (r = 0.902; P < 0.001 in systole and r = 0.734; P < 0.001 in diastole). 4D PC-VIPR was useful in generating both morphological and hemodynamic information for evaluation of transplant intrarenal arteries without the need for contrast media. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:595-603. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients.

    Science.gov (United States)

    Wolthaus, Jochem W H; Schneider, Christoph; Sonke, Jan-Jakob; van Herk, Marcel; Belderbos, José S A; Rossi, Maddalena M G; Lebesque, Joos V; Damen, Eugène M F

    2006-08-01

    Four-dimensional (4D) respiration-correlated imaging techniques can be used to obtain (respiration) artifact-free computed tomography (CT) images of the thorax. Current radiotherapy planning systems, however, do not accommodate 4D-CT data. The purpose of this study was to develop a simple, new concept to incorporate patient-specific motion information, using 4D-CT scans, in the radiotherapy planning process of lung cancer patients to enable smaller error margins. A single CT scan was selected from the 4D-CT data set. This scan represented the tumor in its time-averaged position over the respiratory cycle (the mid-ventilation CT scan). To select the appropriate CT scan, two methods were used. First, the three-dimensional tumor motion was analyzed semiautomatically to calculate the mean tumor position and the corresponding respiration phase. An alternative automated method was developed to select the correct CT scan using the diaphragm motion. Owing to hysteresis, mid-ventilation selection using the three-dimensional tumor motion had a tumor position accuracy (with respect to the mean tumor position) better than 1.1 +/- 1.1 mm for all three directions (inhalation and exhalation). The accuracy in the diaphragm motion method was better than 1.1 +/- 1.1 mm. Conventional free-breathing CT scanning had an accuracy better than 0 +/- 3.9 mm. The mid-ventilation concept can result in an average irradiated volume reduction of 20% for tumors with a diameter of 40 mm. Tumor motion and the diaphragm motion method can be used to select the (artifact-free) mid-ventilation CT scan, enabling a significant reduction of the irradiated volume.

  10. Correlations of third-trimester hiatal biometry obtained using four-dimensional translabial ultrasonography with the delivery route in nulliparous pregnant women

    Directory of Open Access Journals (Sweden)

    Teerayut Temtanakitpaisan

    2016-01-01

    Full Text Available Purpose: The goal of this study was to evaluate normal hiatal dimensions in the third trimester in nulliparous Thai pregnant women and to establish which biometric factors were associated with various pregnancy outcomes. Methods: Fifty-seven consecutive nulliparous pregnant Thai women in their third trimester were recruited on a voluntary basis from April to October 2014. All subjects underwent four-dimensional (4D translabial ultrasonography. Hiatal biometric parameters were measured at rest, while performing a Valsalva maneuver, and during contraction. Information about the patients’ eventual deliveries was obtained from their medical records. Results: The mean values of the patients’ age, body mass index, and gestational age at the time of examination were 27.4±5.47 years, 26.7±3.48 kg/m2, and 36.6±1.49 weeks, respectively. No subjects had vaginal lumps or experienced prolapse greater than stage 1 of the Pelvic Organ Prolapse Quantification system. Ultrasonography showed that the mean values of the hiatal area at rest, while performing a Valsalva maneuver, and during contraction were 13.10±2.92 cm2, 17.50±4.81 cm2, and 9.69±2.09 cm2, respectively. The hiatal area at rest, the axial measurement at rest, and the axial measurement while performing a Valsalva maneuver were significantly associated with the route of delivery (P=0.02, P=0.04, and P=0.03, respectively. Conclusion: The route of delivery was associated with hiatal biometric values measured using 4D translabial ultrasonography, based on the results of nulliparous Thai women in the third trimester.

  11. Dosimetric study of a respiratory gating technique based on four-dimensional computed tomography in non-small-cell lung cancer

    Science.gov (United States)

    Lin, Hui; Lu, Heming; Shu, Liuyang; Huang, Huixian; Chen, Huasheng; Chen, Jiaxin; Cheng, Jinjian; Pang, Qiang; Peng, Luxing; Gu, Junzhao; Lu, Zhiping

    2014-01-01

    This study sought to compare the differences in target volumes and dose distributions to the targets and organs at risk (OARs) between a four-dimensional computed tomography (4DCT)-based respiratory-gated intensity-modulated radiation therapy (IMRT) plan (PlanEOE) and a three-dimensional CT (3DCT)-based IMRT plan (Plan3D) in patients with non-small-cell lung cancer (NSCLC). For 17 patients with Stages I–III NSCLC, both 4DCT data and conventional 3DCT data were obtained. The Plan3D and PlanEOE were designed based on 3DCT data and 4DCT data, respectively. The displacements of the gross tumor volume (GTV) centroid were 0.13 ± 0.09 cm, 0.15 ± 0.1 cm, and 0.27 ± 0.27 cm in the right–left, anterior–posterior, and superior–inferior directions, respectively. The volume of the GTVEOE was 3.05 ± 5.17 cm3 larger than that of the GTV3D. The volume of the PTV3D was 72.82 ± 48.65 cm3 larger than that of the PTVEOE. There was no significant difference between the PTV3D and PTVEOE for V55.8, V60, V66 and the homogeneity index. The PTV3D had a lower target conformity index than the PTVEOE (P = 0.036). PlanEOE had a significantly lower lung V10, V20, V30, V40 and mean lung dose (MLD) than Plan3D. For the heart, PlanEOE had a significantly lower V30 and mean dose. In conclusion, 4DCT is an appropriate method for assessing the displacement of the GTV centroid in three dimensions. PlanEOE has smaller PTVs and a decreased dose and volume for the normal lung and heart, as compared with Plan3D. PMID:24453355

  12. MR selective flow-tracking cartography: a postprocessing procedure applied to four-dimensional flow MR imaging for complete characterization of cranial dural arteriovenous fistulas.

    Science.gov (United States)

    Edjlali, Myriam; Roca, Pauline; Rabrait, Cécile; Trystram, Denis; Rodriguez-Régent, Christine; Johnson, Kevin M; Wieben, Oliver; Turski, Patrick; Meder, Jean-François; Naggara, Olivier; Oppenheim, Catherine

    2014-01-01

    To assess the feasibility of a selective flow-tracking cartographic procedure applied to four-dimensional (4D) flow imaging and to demonstrate its usefulness in the characterization of dural arteriovenous fistulas (DAVFs). Institutional review board approval was obtained, and all patients provided written informed consent. Eight patients (nine DAVFs) underwent 3.0-T magnetic resonance (MR) imaging and digital subtraction angiography (DSA). Imaging examinations were performed within 24 hours of each other. 4D flow MR imaging was performed by using a 4D radial phase-contrast vastly undersampled isotropic projection reconstruction pulse sequence with an isotropic spatial resolution of 0.86 mm (5 minutes 35 seconds). Two radiologists independently reviewed images from MR flow-tracking cartography and reported the location of arterial feeder vessels and the venous drainage type and classified DAVFs according to the risk of rupture (Cognard classification). These results were compared with those at DSA. Quadratic weighted κ statistics with their 95% confidence intervals (CIs) were used to test intermodality agreement in the identification of arterial feeder vessels, draining veins, and Cognard classification. Interreader agreement for shunt location on MR images was perfect (κ = 1), with good-to-excellent interreader agreement for arterial feeder vessel identification (κ = 0.97; 95% CI = 0.92, 1.0), and matched in all cases with shunt location defined at DSA. There was good-to-excellent agreement between MR cartography and DSA in the definition of the main feeding arteries (κ = 0.92; 95% CI = 0.83, 1.0), presence of retrograde flow in dural sinuses (κ = 1), presence of retrograde cortical venous drainage (κ = 1), presence of venous ectasia (κ = 1), and final Cognard classification of DAVFs (κ = 1, standard error = 0.35). MR selective flow-tracking cartography enabled the noninvasive characterization of cranial DAVFs. © RSNA, 2013.

  13. Optimization of acquisition parameters and accuracy of target motion trajectory for four-dimensional cone-beam computed tomography with a dynamic thorax phantom.

    Science.gov (United States)

    Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Nakato, Kengo; Nagasue, Nozomu; Kai, Yudai

    2015-01-01

    Our purpose in this study was to evaluate the performance of four-dimensional computed tomography (4D-CBCT) and to optimize the acquisition parameters. We evaluated the relationship between the acquisition parameters of 4D-CBCT and the accuracy of the target motion trajectory using a dynamic thorax phantom. The target motion was created three dimensionally using target sizes of 2 and 3 cm, respiratory cycles of 4 and 8 s, and amplitudes of 1 and 2 cm. The 4D-CBCT data were acquired under two detector configurations: "small mode" and "medium mode". The projection data acquired with scan times ranging from 1 to 4 min were sorted into 2, 5, 10, and 15 phase bins. The accuracy of the measured target motion trajectories was evaluated by means of the root mean square error (RMSE) from the setup values. For the respiratory cycle of 4 s, the measured trajectories were within 2 mm of the setup values for all acquisition times and target sizes. Similarly, the errors for the respiratory cycle of 8 s were <4 mm. When we used 10 or more phase bins, the measured trajectory errors were within 2 mm of the setup values. The trajectory errors for the two detector configurations showed similar trends. The acquisition times for achieving an RMSE of 1 mm for target sizes of 2 and 3 cm were 2 and 1 min, respectively, for respiratory cycles of 4 s. The results obtained in this study enable optimization of the acquisition parameters for target size, respiratory cycle, and desired measurement accuracy.

  14. To what extent does the anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) detect specific types of anxiety disorder in primary care? A psychometric study

    Science.gov (United States)

    2014-01-01

    Background Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety disorders. The research questions were: (1) Is the anxiety scale unidimensional or multidimensional? (2) To what extent does the anxiety scale detect specific DSM-IV anxiety disorders? (3) Which cut-off points are suitable to rule out or to rule in (which) anxiety disorders? Methods We analyzed 5 primary care datasets with standardized psychiatric diagnoses and 4DSQ scores. Unidimensionality was assessed through confirmatory factor analysis (CFA). We examined mean scores and anxiety score distributions per disorder. Receiver operating characteristic (ROC) analysis was used to determine optimal cut-off points. Results Total n was 969. CFA supported unidimensionality. The anxiety scale performed slightly better in detecting patients with panic disorder, agoraphobia, social phobia, obsessive compulsive disorder (OCD) and post traumatic stress disorder (PTSD) than patients with generalized anxiety disorder (GAD) and specific phobia. ROC-analysis suggested that ≥4 was the optimal cut-off point to rule out and ≥10 the cut-off point to rule in anxiety disorders. Conclusions The 4DSQ anxiety scale measures a common trait of pathological anxiety that is characteristic of anxiety disorders, in particular panic disorder, agoraphobia, social phobia, OCD and PTSD. The anxiety score detects the latter anxiety disorders to a slightly greater extent than GAD and specific phobia, without being able to distinguish between the different anxiety disorder types. The cut-off points ≥4 and ≥10 can be used to separate distressed patients in three groups with a relatively low, moderate and high probability of having one or more anxiety disorders. PMID:24761829

  15. Three- and Four-Dimensional Spheroid and FiSS Tumoroid Cultures: Platforms for Drug Discovery and Development and Translational Research.

    Science.gov (United States)

    Nair, R R; Padhee, S; Das, T; Green, R; Howell, M; Mohapatra, S S; Mohapatra, Subhra

    2017-01-01

    There have been remarkable improvements in our understanding of cancer biology. However, therapeutic improvements, with a few exceptions, have been minimal. Also, significant challenges remain in translating fundamental discoveries in cancer biology and genetics into effective drugs and cures. Traditional two-dimensional monolayer cell cultures lack predictive value, resulting in a >90% failure rate of compounds in clinical trials. A developing cancer is a symbiotic tissue consisting of cancer cells, including cancer stem cells (CSCs), and cohabitating with the components of its environment to form a tumor microenvironment (TME) niche. Throughout the process of tumorigenesis, ubiquitous autocrine and paracrine signaling between the cellular and noncellular components of the TME dictates the milieu and structure of this niche. Arising out of such interactions are the cancer cell's phenotypic characteristics, such as stemness, epithelial mesenchymal transformation (EMT), and drug resistance which in turn greatly affect the response of these cells to drug therapy. For these reasons, in order to delineate the mechanism of tumorigenesis and in the process discover drugs that will have greatest impact on tumor growth, it becomes imperative to study the cancer cell in context of its microenvironment. In the present review, we enumerate the advantages of three- and four-dimensional (3D and 4D) cell cultures and describe the various cell culture platforms that are being used to study tumorigenesis in vitro. These culture systems will not only aid in the study of tumor progression complexities in a cost-effective and rapid manner; they also are expected to facilitate the discovery and delivery of therapeutic regimens that will have more success making it to the clinic.

  16. The linguistic validation of Russian version of Dutch four-dimensional symptoms questionnaire (4DSQ) for assessing distress, depression, anxiety and somatization in patients with borderline psychosomatic disorders.

    Science.gov (United States)

    Arnautov, V S; Reyhart, D V; Smulevich, A B; Yakhno, N N; Terluin, B; Zakharova, E K; Andryushchenko, A V; Parfenov, V A; Zamergrad, M V; Romanov, D V

    2015-12-12

    The four-dimensional symptom questionnaire (4DSQ) is an originally Dutch self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. In order to produce the appropriate translated Russian version the process of linguistic validation has been initiated. This process has been done according to the "Linguistic Validation Manual for Health Outcome Assessments" developed by MAPI institute. To produce the appropriate Russian version of the 4DSQ that is conceptually and linguistically equivalent to the original questionnaire. The original Dutch version of the 4DSQ was translated by one translator into Russian. The validated English version of the 4DSQ was translated by another translator into Russian without mutual consultation. The consensus version was created based on two translated versions. After that the back translation was performed to Dutch, some changes were implemented to the consensus Russian version and the second target version was developed based on these results. The second target version was sent to an appropriate group of reviewers. Based on their comments, the second target version was updated. After wards this version was tested in patients during cognitive interview. The study protocol was approved by the Independent Interdisciplinary Ethics Committee on Ethical Review for Clinical Studies, and in compliance with the Helsinki Declaration and ICH-GCP guidelines and local regulations. Enrolled patients provided written informed consent. After the process of forward and backward translation, consultant and developer's comments, clinicians and cognitive review the final version of Russian 4DSQ was developed for assessment of distress, depression, anxiety and somatization. The Russian 4DSQ as a result of translation procedures and cognitive interviews linguistically corresponds to the original Dutch 4DSQ and could be assessed in psychometric validation for the

  17. Four-dimensional Transcatheter Intra-arterial Perfusion MR Imaging Before and After Uterine Artery Embolization in the Rabbit VX2 Tumor Model

    Science.gov (United States)

    Chung, Johnathan C.; Wang, Dingxin; Lewandowski, Robert J.; Tang, Richard; Chrisman, Howard B.; Vogelzang, Robert L.; Woloschak, Gayle E.; Larson, Andrew C.; Omary, Reed A.; Ryu, Robert K.

    2010-01-01

    Purpose To test the hypothesis that four-dimensional (4D) transcatheter intra-arterial perfusion (TRIP) MR imaging can measure uterine fibroid perfusion changes immediately before and after uterine artery embolization (UAE) in the rabbit VX2 tumor model. Materials and Methods Eight VX2 uterine tumors were grown in 6 rabbits. After positioning a catheter within the uterine artery, we performed 4D TRIP-MRI measurements with 3 mL injections of 2.5% gadopentetate dimeglumine. We used a dynamic 3D spoiled-GRE sequence with in vivo B1-field correction for improved accuracy during perfusion quantification. We performed UAE using 1 mL of gelatin microspheres (2×106 particles; diameter 40-120 μm). Two regions-of-interest were drawn within each tumor upon perfusion maps. Functional embolic endpoints were reported as the mean percent reduction in fibroid tumor perfusion. Measurements before and after UAE were compared using paired t-tests (α = 0.05). Results VX2 uterine tumor perfusion decreased significantly from 27.1 at baseline to 7.09 after UAE (mL/min/100 mL tissue, p < 0.0001). Overall perfusion reduction was 76.3% (95% CI: 66.3%-86.3%). Conclusion 4D TRIP MRI can objectively quantify uterine fibroid perfusion reductions during UAE in VX2 rabbits. This technique could be used clinically to potentially determine an optimal embolic endpoint with the long-term goals of improving UAE success rates and minimizing procedure-related ischemic pain. PMID:20432349

  18. Cross-cultural validation of the Turkish Four-Dimensional Symptom Questionnaire (4DSQ) using differential item and test functioning (DIF and DTF) analysis.

    Science.gov (United States)

    Terluin, Berend; Unalan, Pemra C; Turfaner Sipahioğlu, Nurver; Arslan Özkul, Seda; van Marwijk, Harm W J

    2016-05-11

    The Four-Dimensional Symptom Questionnaire (4DSQ) is originally a Dutch 50 item questionnaire developed in primary care to assess distress, depression, anxiety and somatization. We aimed to develop and validate a Turkish translation of the 4DSQ. The questionnaire was translated using forward and backward translation, and pilot testing. Turkish 4DSQ-data were collected in 352 consecutive adult primary care patients. For comparison, gender and age matched Dutch reference data were drawn from a larger existing dataset. We used differential item and test functioning (DIF and DTF) analysis to validate the Turkish translation to the original Dutch questionnaire. Through additional inquiry we tried to obtain more insight in the background of DIF in some items. Twenty-one items displayed DIF but this impacted only the distress and depression scores. Inquiry among Turkish people revealed that the reason for DTF in the distress scale was probably related to unfavourable socio-economic circumstances. On the other hand, the likely explanation for DTF in the depression scale appeared to be grounded in culturally and religiously determined optimistic beliefs. Raising the distress cut-offs by 2 points and lowering the depression cut-offs by 1 point ensures that individual Turkish 4DSQ scores be correctly interpreted. The Turkish translation of the 4DSQ (named: "Dört-Boyutlu Yakınma Listesi", 4BYL) measures the same constructs as the original Dutch questionnaire. Turkish anxiety and somatization scores can be interpreted in the same way as Dutch scores. However, when interpreting Turkish distress and depression scores, DTF should be taken into account.

  19. Central limit theorems for a class of irreducible multicolor urn models

    Indian Academy of Sciences (India)

    We take a unified approach to central limit theorems for a class of irreducible multicolor urn models with constant replacement matrix. Depending on the eigenvalue, we consider appropriate linear combinations of the number of balls of different colors. Then under appropriate norming the multivariate distribution of the weak ...

  20. Multicolor tunability and upconversion enhancement of fluoride nanoparticles by oxygen dopant.

    Science.gov (United States)

    Niu, Wenbin; Wu, Suli; Zhang, Shufen; Su, Liap Tat; Tok, Alfred Iing Yoong

    2013-09-07

    The ability to manipulate the upconversion luminescence of lanthanide-ion doped fluoride upconversion nanoparticles (UCNPs) is particularly important and highly desired due to their wide applications in color displays, multiplexing bioassays and multicolor imaging. Here, we developed a strategy for simultaneously tuning color output and enhancing upconversion emission of Yb/Er doped fluoride UCNPs, based on adjusting the oxygen doping level. The synthesis of multicolored multifunctional NaGdF4:Yb,Er UCNPs was used as the model host system to demonstrate this protocol. Ammonium nitrate (NH4NO3) was used as the oxygen source and added into the reaction system at the beginning stage of nucleation and growth process of fluoride UCNPs, which facilitates the formation of enough oxygen atoms and the diffusion of these into the fluoride host matrix. The results revealed that multicolour output and upconversion enhancement mainly resulted from the variation of phonon energy and crystal field symmetry of the host lattice, respectively. This strategy can be further expanded to other fluoride host matrices. As an example of an application, multicolored UCNPs were used as a color converter in light emitting diodes, which can effectively convert near-infrared light into visible light. It is expected that these multicolored UCNPs will be promising for applications in multiplexing biodetection, bioimaging (optical and magnetic resonance imaging) and other optical technologies, and the present method for the control of O(2-) doping may also be used in other functional nanomaterials.

  1. Multi-color light-emitting transistors composed of organic single crystals

    NARCIS (Netherlands)

    Yomogida, Yohei; Sakai, Hayato; Sawabe, Kosuke; Gocho, Shota; Bisri, Satria Zulkarnaen; Nakanotani, Hajime; Adachi, Chihaya; Hasobe, Taku; Iwasa, Yoshihiro; Takenobu, Taishi

    2013-01-01

    We report a novel concept for multi-color light emission from an ambipolar organic single-crystal transistor using natural optical waveguides, the self-absorption effect, Davydov splitting and the unique alignment of the transition dipole moments. We used 9,10-bis(2,2-diphenylvinyl)-anthracene

  2. Investigation of MINACE composite filter capabilities for multicolor images correlation recognition purposes

    Science.gov (United States)

    Evtikhiev, N. N.; Zlokazov, E. Yu; Petrova, E. K.; Starikov, R. S.; Shaulskiy, D. V.

    2016-08-01

    Article represents the results of investigations in the area of distortion invariant images recognition using composite correlation filters. One of the most successive for application is a filter known as MINACE (minimum noise and average correlation energy). The capabilities of MINACE filter synthesis for multicolor image recognition problem are discussed.

  3. Spectral imaging of multi-color chromogenic dyes in pathological specimens.

    NARCIS (Netherlands)

    Macville, M.V.E.; Laak, J.A.W.M. van der; Speel, E.J.; Katzir, N.; Garini, Y.; Soenksen, D.; McNamara, G.; Wilde, P.C.M. de; Hanselaar, A.G.J.M.; Hopman, A.H.N.; Ried, T.

    2001-01-01

    We have investigated the use of spectral imaging for multi-color analysis of permanent cytochemical dyes and enzyme precipitates on cytopathological specimens. Spectral imaging is based on Fourier-transform spectroscopy and digital imaging. A pixel-by-pixel spectrum-based color classification is

  4. Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles.

    Science.gov (United States)

    Niu, Wenbin; Wu, Suli; Zhang, Shufen; Li, Jie; Li, Lian

    2011-04-07

    A general and facile approach for tailoring the multicolor output and shapes of lanthanide-ion doped fluoride upconversion nanoparticles (UCNPs) within a given composition is presented. By adjusting the temperature and time in the thermolysis procedure, the color output and shapes of NaYF(4):20%Yb, 2%Er UCNPs can be readily manipulated. The nanoparticles were characterized through the use of transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and upconversion luminescence spectroscopy. It is shown that the relative intensities of green emissions gradually increased with the rise of temperature and prolongation of growth time under excitation of 980 nm, which resulted in multicolor output of NaYF(4):20%Yb, 2%Er UCNPs. Simultaneously, the shapes for UCNPs can also be controlled. TEM images, estimated micro-stress by Williamson-Hall methodology and a series of control experiments and analyses reveal that crystallinity is mainly responsible for the multicolor output of UCNPs. Based on the above method, the tailoring of color output is also successfully realized in Ho(3+) and Tm(3+) ions. It is expected that this method may be used to tune the physical properties of other nanoparticles, and these multicolored UCNPs are promising for applications in multiplexed bioimaging, biodetection, display, other optical technologies, etc. © The Royal Society of Chemistry 2011

  5. Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology.

    Science.gov (United States)

    Pang, Claudine E; Freund, K Bailey

    2014-07-01

    To describe the features of an artifact on near-infrared reflectance and MultiColor imaging, termed "ghost maculopathy," and to illustrate how it may masquerade as true chorioretinal pathology. This was a retrospective, observational case series. The authors studied 144 eyes of 72 consecutive patients in a vitreoretinal clinical practice, reviewing multimodal imaging including color and red-free fundus photography, fundus autofluorescence (FAF), near-infrared reflectance, MultiColor imaging, and spectral-domain optical coherence tomography (SD OCT). In 36 of 144 eyes (25%), there was an appearance of a hyper-reflective spot on near-infrared reflectance and MultiColor imaging, located at the macula, nasal or superonasal to the fovea, which did not correspond to any apparent lesion on color and red-free fundus photography, FAF, or SD OCT. This spot was termed the "ghost image" in this phenomenon of "ghost maculopathy." The ghost image was present consistently on near-infrared reflectance and MultiColor imaging in all 36 eyes at every imaging encounter, showing minimal and subtle variability in its shape and location within each eye; however, it showed large interindividual variability in size, shape, location, and reflectivity between different eyes. Nine eyes were found to have a similar hyper-reflective spot resembling that in ghost maculopathy, but corresponding SD OCT images were consistent with diagnoses of choroidal nevus, age-related macular degeneration, and multifocal choroiditis. All eyes with ghost maculopathy were found to be pseudophakic with a posterior chamber intraocular lens. Ghost maculopathy is the phenomenon of an imaging artifact appearing at the macula on near-infrared reflectance and MultiColor imaging that occurs predominantly in pseudophakic patients and may be mistaken for true chorioretinal pathology. Awareness of this artifact is prudent to avoid misinterpretation of clinical findings and possible unnecessary over-investigation. Copyright

  6. Ground-based multi-color photometry of the γ Doradus-δ Scuti hybrid star KIC 6761539

    Science.gov (United States)

    Herzberg, W.; Uytterhoeven, K.; Roth, M.

    2012-12-01

    We present a preliminary analysis of the first three nights of multi-color photometric data for a γ Doradus-δ Scuti hybrid star (KIC 6761539) that is also being observed with the Kepler space telescope. We find that up to four (depending on the filter) of the highest amplitude modes, whose frequencies could be determined from Kepler data, are visible from the ground. Our goal is to use the multi-color information for mode identification, but this will only be possible with a longer time series. A multi-color photometric multi-site campaign is currently ongoing for this purpose.

  7. To study tumor motion and planning target volume margins using four dimensional computed tomography for cancer of the thorax and abdomen regions

    Directory of Open Access Journals (Sweden)

    Deshpande Sudesh

    2011-01-01

    Full Text Available In this study, four dimensional computed tomography (4DCT scanning was performed during free breathing on a 16-slice Positron emission tomography PET /computed tomography (CT for abdomen and thoracic patients. Images were sorted into 10 phases based on the temporal correlation between surface motion and data acquisition with an Advantage Workstation. Gross tumor volume gross tumor volume (GTV s were manually contoured on all 10 phases of the 4DCT scan. GTVs in the multiple CT phases were called GTV4D. GTV4D plus an isotropic margin of 1.0 cm was called CTV4D. Two sets of planning target volume (PTV 4D (PTV4D were derived from the CTV4D, i.e. PTV4D 2cm = CTV4D plus 1 cm setup margin (SM and 1 cm internal margin (IM and PTV4D 1.5cm = CTV4D plus 1 cm SM and 0.5cm IM. PTV3D was derived from a CTV3D of the helical CT scan plus conventional margins of 2 cm. PTV gated was generated only selecting three CT phases, with a total margin of 1.5 cm. All four volumes were compared. To quantify the extent of the motion, we selected the two phases where the tumor exhibited the greatest range of motion. We also studied the effect of different PTV volumes on dose to the surrounding critical structures. Volume of CTV4D was greater than that of CTV3D. We found, on an average, a reduction of 14% volume of PTV4D 1.5cm as compared with PTV3D and reduction of 10% volume of PTV gated as compared with PTV4D 1.5cm . We found that 2 cm of margin was inadequate if true motion of tumor was not known. We observed greater sparing of critical structures for PTVs drawn taking into account the tumor motion.

  8. The Four-Dimensional Symptom Questionnaire (4DSQ): a validation study of a multidimensional self-report questionnaire to assess distress, depression, anxiety and somatization

    Science.gov (United States)

    Terluin, Berend; van Marwijk, Harm WJ; Adèr, Herman J; de Vet, Henrica CW; Penninx, Brenda WJH; Hermens, Marleen LM; van Boeijen, Christine A; van Balkom, Anton JLM; van der Klink, Jac JL; Stalman, Wim AB

    2006-01-01

    Background The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. The purpose of this paper is to evaluate its criterion and construct validity. Methods Data from 10 different primary care studies have been used. Criterion validity was assessed by comparing the 4DSQ scores with clinical diagnoses, the GPs' diagnosis of any psychosocial problem for Distress, standardised psychiatric diagnoses for Depression and Anxiety, and GPs' suspicion of somatization for Somatization. ROC analyses and logistic regression analyses were used to examine the associations. Construct validity was evaluated by investigating the inter-correlations between the scales, the factorial structure, the associations with other symptom questionnaires, and the associations with stress, personality and social functioning. The factorial structure of the 4DSQ was assessed through confirmatory factor analysis (CFA). The associations with other questionnaires were assessed with Pearson correlations and regression analyses. Results Regarding criterion validity, the Distress scale was associated with any psychosocial diagnosis (area under the ROC curve [AUC] 0.79), the Depression scale was associated with major depression (AUC = 0.83), the Anxiety scale was associated with anxiety disorder (AUC = 0.66), and the Somatization scale was associated with the GPs' suspicion of somatization (AUC = 0.65). Regarding the construct validity, the 4DSQ scales appeared to have considerable inter-correlations (r = 0.35-0.71). However, 30–40% of the variance of each scale was unique for that scale. CFA confirmed the 4-factor structure with a comparative fit index (CFI) of 0.92. The 4DSQ scales correlated with most other questionnaires measuring corresponding constructs. However, the 4DSQ Distress scale appeared to correlate with some other depression scales more

  9. SU-E-J-110: Dosimetric Analysis of Respiratory Motion Based On Four-Dimensional Dose Accumulation in Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States); Park, S [Uijeongbu St.Mary’s Hospital, GyeongGi-Do (Korea, Republic of)

    2015-06-15

    Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the

  10. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    Science.gov (United States)

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  11. In vivo application of sub-second spiral chemical shift imaging (CSI) to hyperpolarized 13C metabolic imaging: comparison with phase-encoded CSI.

    Science.gov (United States)

    Mayer, Dirk; Yen, Yi-Fen; Levin, Yakir S; Tropp, James; Pfefferbaum, Adolf; Hurd, Ralph E; Spielman, Daniel M

    2010-06-01

    A fast spiral chemical shift imaging (CSI) has been developed to address the challenge of the limited acquisition window in hyperpolarized (13)C metabolic imaging. The sequence exploits the sparsity of the spectra and prior knowledge of resonance frequencies to reduce the measurement time by undersampling the data in the spectral domain. As a consequence, multiple reconstructions are necessary for any given data set as only frequency components within a selected bandwidth are reconstructed "in-focus" while components outside that band are severely blurred ("spectral tomosynthesis"). A variable-flip-angle scheme was used for optimal use of the longitudinal magnetization. The sequence was applied to sub-second metabolic imaging of the rat in vivo after injection of hyperpolarized [1-(13)C]-pyruvate on a clinical 3T MR scanner. The comparison with conventional CSI based on phase encoding showed similar signal-to-noise ratio (SNR) and spatial resolution in metabolic maps for the substrate and its metabolic products lactate, alanine, and bicarbonate, despite a 50-fold reduction in scan time for the spiral CSI acquisition. The presented results demonstrate that dramatic reductions in scan time are feasible in hyperpolarized (13)C metabolic imaging without a penalty in SNR or spatial resolution. (c) 2010 Elsevier Inc. All rights reserved.

  12. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting

    OpenAIRE

    Long Wen; Qin Chen; Fuhe Sun; Shichao Song; Lin Jin; Yan Yu

    2014-01-01

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colo...

  13. Cerebral Hemodynamics in Patients with Hemolytic Uremic Syndrome Assessed by Susceptibility Weighted Imaging and Four-Dimensional Non-Contrast MR Angiography.

    Directory of Open Access Journals (Sweden)

    Ulrike Löbel

    Full Text Available Conventional magnetic resonance imaging (MRI of patients with hemolytic uremic syndrome (HUS and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF and aimed to identify a plausible cause.Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved magnetic resonance angiography (4D MRA assessed cerebral hemodynamics by global time-to-peak (TTP, as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2.SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4. Hemoglobin at the time of MRI (n = 35 was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4; hematocrit (n = 33 was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2. Creatinine was abnormally high in 30 of 36 patients (83% (range, 0.8 to 9.7; mean, 3.7 ± 2.2. SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015, hematocrit (r = 0.65, P < 0.001, and TTP (r = 0.35, P = 0.036. No correlation of SWI with blood pressure, heart rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss of venous contrast is related to an increase in CBF secondary to severe anemia related to HUS. SWI contrast of patients with pathological conventional MRI findings was significantly lower compared to patients with normal MRI (mean SWI score, 1

  14. Single-Step Multicolor Fluorescence In Situ Hybridization Using Semiconductor Quantum Dot–DNA Conjugates

    Science.gov (United States)

    Bentolila, Laurent A.; Weiss, Shimon

    2011-01-01

    We report a rapid method for the direct multicolor imaging of multiple subnuclear genetic sequences using novel quantum dot-based fluorescence in situ hybridization (FISH) probes (QD–FISH). Short DNA oligonucleotides were attached on QDs and used in a single hybridization/detection step of target sites in situ. QD–FISH probes penetrate both intact interphase nuclei and metaphase chromosomes and showed good targeting of dense chromatin domains with minimal steric hindrances. We further demonstrated that QD’s broad absorption spectra allowed different colored probes specific for distinct subnuclear genetic sequences to be simultaneously excited with a single excitation wavelength and imaged free of chromatic aberrations in a single exposure. Thus, these results demonstrate that QD–FISH probes are very effective in multicolor FISH applications. This work also documents new possibilities of using QD–FISH probes detection down to the single molecule level. PMID:16679564

  15. Two-laser, large-field hyperspectral microarray scanner for the analysis of multicolor microarrays.

    Science.gov (United States)

    Erfurth, Florian; Tretyakov, Alexander; Nyuyki, Berla; Mrotzek, Grit; Schmidt, Wolf-Dieter; Fassler, Dieter; Saluz, Hans Peter

    2008-10-15

    We describe the development and operation of a two-laser, large-field hyperspectral scanner for analysis of multicolor genotyping microarrays. In contrast to confocal microarray scanners, in which wavelength selectivity is obtained by positioning band-pass filters in front of a photomultiplier detector, hyperspectral microarray scanners collect the complete visible emission spectrum from the labeled microarrays. Hyperspectral scanning permits discrimination of multiple spectrally overlapping fluorescent labels with minimal use of optical filters, thus offering important advantages over standard filter-based multicolor microarray scanners. The scanner uses two-sided oblique line illumination of microarrays. Two lasers are used for the excitation of dyes in the visible and near-infrared spectral regions. The hyperspectral scanner was evaluated with commercially available two-color calibration slides and with in-house-printed four-color microarrays containing dyes with spectral properties similar to their commercial genotyping array counterparts.

  16. Typification and Characterization of Trametes multicolor (Agaricomycetes), a Perspective Species of Medicinal Mushrooms.

    Science.gov (United States)

    Zmitrovich, Ivan V; Bondartseva, Margarita A; Psurtseva, Nadezhda V; Wasser, Solomon P

    2017-01-01

    Nomenclature revision and enlarged taxonomical descriptions are still needed for some well-known species whose interpretation is complicated by many nomenclature or taxonomical problems. The polyporoid fungus widely known as Trametes ochracea (= Coriolus zonatus) belongs to such a problematic group. At the same time, recent data show that this species, like its sister species T. versicolor, seems to be a perspective subject for fungal biotechnology and pharmacology. This article is devoted to stabilizing the nomenclature of the species in question via lectotypification and epitypification of Boletus multicolor. It will clarify the name T. multicolor as applied to this species is nomenclaturally correct and useful, free of further problems. An expanded species description and cultural characterization of epitype materials are presented.

  17. Multi-color image compression-encryption algorithm based on chaotic system and fuzzy transform

    OpenAIRE

    Zarebnia, M.; Kianfar, R.; Parvaz, R.

    2017-01-01

    In this paper an algorithm for multi-color image compression-encryption is introduced. For compression step fuzzy transform based on exponential b-spline function is used. In encryption step, a novel combination chaotic system based on Sine and Tent systems is proposed. Also in the encryption algorithm, 3D shift based on chaotic system is introduced. The simulation results and security analysis show that the proposed algorithm is secure and efficient.

  18. MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets

    Science.gov (United States)

    Narita, Norio; Fukui, Akihiko; Kusakabe, Nobuhiko; Onitsuka, Masahiro; Ryu, Tsuguru; Yanagisawa, Kenshi; Izumiura, Hideyuki; Tamura, Motohide; Yamamuro, Tomoyasu

    2015-10-01

    We report a development of a multicolor simultaneous camera for the 188-cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT (Multicolor Simultaneous Camera for studying Atmospheres of Transiting exoplanets), has a capability of three-color simultaneous imaging in optical wavelengths where CCDs are sensitive. MuSCAT is equipped with three 1024 × 1024 pixel CCDs which can be controlled independently. The three CCDs detect lights in g2‧ (400 to 550 nm), r2‧ (550 to 700 nm), and z (820 to 920 nm) bands using Astrodon Photometrics Generation 2 Sloan filters. The field of view of MuSCAT is 6.1×6.1 arc min2 with the pixel scale of 0.358 arc sec/pixel. The principal purpose of MuSCAT is to perform high-precision multicolor transit photometry. For this purpose, MuSCAT has the capability of self-autoguiding which enables it to fix the positions of stellar images within ˜1 pixel. We demonstrate relative photometric precisions of 0.101%, 0.074%, and 0.076% in g2‧, r2‧, and z bands, respectively, for GJ 436 (magnitudes in g‧=11.81, r‧=10.08, and z‧=8.66) with 30-s exposures. The achieved precisions meet our objective, and the instrument is ready for operation.

  19. QWIP chip dual-color and multicolor FPAs for military applications

    Science.gov (United States)

    McQuiston, Barbara K.; Cho, Eric; Lim, Wah; Rafol, B., , Sir; Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.

    2004-12-01

    Quantum Well Infrared Photodetectors (QWIPs) based infrared focal plane arrays (FPAs) are commercially available in the single color. QWIP Technologies, Inc. provides a number of QWIPCHIPTM FPAs available in the single-color, dual-color and even multiple-color, as well as varieties of physical formats in the infrared range. In this paper, we discuss the research and development efforts currently ongoing at QWIP Technologies on dual-color, visible-NIR/LWIR FPAs, and the development of a four-color QWIP-based FPA. These multicolor systems are being developed to meet the needs of a number of military applications including land mine detection. Land mines inhibit the safe movement of troops and produce chaos in countries struggling for socio-economic stability long after the cessation of hostilities. This paper will describe the efforts to develop a near multi-color QWIP sensor for mine detection. The core of the discussion will include highlights of a two-color LWIR QWIP sensor system designed to provide uniform, high spatial resolution, multi-color co-registered imagery and possess negligible spectral cross-talk. Through these efforts, The Defense Advanced Research Projects Agency (DARPA) is completing the development of a visible/infrared mine detection system, which when deployed on an airborne platform, would increase the war fighting effectiveness has sponsored the current developments.

  20. Mitigation Technique for Receiver Performance Variation of Multi-Color Channels in Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Yeong Min Jang

    2011-06-01

    Full Text Available “Green” and energy-efficient wireless communication schemes have recently experienced rapid development and garnered much interest. One such scheme is visible light communication (VLC which is being touted as one of the next generation wireless communication systems. VLC allows communication using multi-color channels that provide high data rates and illumination simultaneously. Even though VLC has many advantageous features compared with RF technologies, including visibility, ubiquitousness, high speed, high security, harmlessness for the human body and freedom of RF interference, it suffers from some problems on the receiver side, one of them being photo sensitivity dissimilarity of the receiver. The photo sensitivity characteristics of a VLC receiver such as Si photo-detector depend on the wavelength variation. The performance of the VLC receiver is not uniform towards all channel colors, but it is desirable for receivers to have the same performance on each color channel. In this paper, we propose a mitigation technique for reducing the performance variation of the receiver on multi-color channels. We show received power, SNR, BER, output current, and outage probability in our simulation for different color channels. Simulation results show that, the proposed scheme can reduce the performance variation of the VLC receiver on multi-color channels.

  1. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  2. Digitally synchronized LCD projector for multi-color fluorescence excitation in parallel capillary electrophoresis detection.

    Science.gov (United States)

    Lin, Shi-Wei; Chang, Chih-Hang; Wu, Dai-Yang; Lin, Che-Hsin

    2010-10-15

    A simple method is proposed for modulating the excitation light used for multi-color fluorescence detection in a single capillary electrophoresis (CE) channel. In the proposed approach, a low-cost commercial liquid crystal device (LCD) projector with digitally-modulated LCD switches is used to provide the illumination light source and the fluorescence emitted from the CE chip is synchronously detected using an ultraviolet-visible-near infrared (UV-vis-NIR) spectrometer. The modulated light source enables the detection of multiple fluorescence signals within a single CE channel without the need of mechanically switching optical components. In order to enhance the sensing performance of the proposed system, two short-pass filters and one band-pass filter are inserted into the LCD projector to modify the wavelength spectra for fluorescence excitation. With this simple approach, the signal-to-noise (SN) ratio of the fluorescence detection signals is greatly improved by a factor of approximately 22 when detecting Atto647N fluorescent dye. The feasibility of the proposed multi-color CE detection approach is demonstrated by detecting two different samples including a mixed sample comprising FITC, Rhodamine B and Atto647N fluorescent dyes and a bio-sample composed of two ssDNAs labeled with FITC and Cy3, respectively. Results confirm that the digitally-modulated excitation system proposed in this study has significant potential for the parallel analysis of fluorescently-labeled bio-samples using a multi-color detection scheme. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2010-04-01

    Full Text Available We have reviewed the generation and amplification of wavelength-tunable multicolored femtosecond laser pulses using cascaded four-wave mixing (CFWM in transparent bulk media, mainly concentrating on our recent work. Theoretical analysis and calculations based on the phase-matching condition could explain well the process semi-quantitatively. The experimental studies showed: (1 as many as fifteen spectral up-shifted and two spectral down-shifted sidebands were obtained simultaneously with spectral bandwidth broader than 1.8 octaves from near ultraviolet (360 nm to near infrared (1.2 μm; (2 the obtained sidebands were spatially separated well and had extremely high beam quality with M2 factor better than 1.1; (3 the wavelengths of the generated multicolor sidebands could be conveniently tuned by changing the crossing angle or simply replacing with different media; (4 as short as 15-fs negatively chirped or nearly transform limited 20-fs multicolored femtosecond pulses were obtained when one of the two input beams was negatively chirped and the other was positively chirped; (5 the pulse energy of the sideband can reach a μJ level with power stability better than 1% RMS; (6 broadband two-dimensional (2-D multicolored arrays with more than ten periodic columns and more than ten rows were generated in a sapphire plate; (7 the obtained sidebands could be simultaneously spectra broadened and power amplified in another bulk medium by using cross-phase modulation (XPM in conjunction with four-wave optical parametric amplification (FOPA. The characterization showed that this is interesting and the CFWM sidebands generated by this novel method have good enough qualities in terms of power stability, beam quality, and temporal features suited to various experiments such as ultrafast multicolor time-resolved spectroscopy and multicolor-excitation nonlinear microscopy.

  4. MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets

    OpenAIRE

    Narita, Norio; Fukui, Akihiko; Kusakabe, Nobuhiko; Onitsuka, Masahiro; Ryu, Tsuguru; Yanagisawa, Kenshi; Izumiura, Hideyuki; Tamura, Motohide; Yamamuro, Tomoyasu

    2015-01-01

    We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are sensitive. MuSCAT is equipped with three 1024x1024 pixel CCDs, which can be controlled independently. The three CCDs detect lights in $g'_2$ (400--550 nm), $r'_2$ (550--700 nm), and $z_{s,2}$ (820--920 nm) bands using Astrodon Photometrics Generatio...

  5. Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source.

    Science.gov (United States)

    Rankin, Brian R; Kellner, Robert R; Hell, Stefan W

    2008-11-01

    We describe a subdiffraction-resolution far-field fluorescence microscope employing stimulated emission depletion (STED) with a light source consisting of a microchip laser coupled into a standard single-mode fiber, which, via stimulated Raman scattering (SRS), yields a comb-like spectrum of seven discrete peaks extending from the fundamental wavelength at 532 nm to 620 nm. Each of the spectral peaks can be used as STED light for overcoming the diffraction barrier. This SRS light source enables the simple implementation of multicolor STED and provides a spectral output with multiple available wavelengths from green to red with potential for further expansion.

  6. Photoluminescent Ti3 C2 MXene Quantum Dots for Multicolor Cellular Imaging.

    Science.gov (United States)

    Xue, Qi; Zhang, Huijie; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Huang, Yang; Huang, Yan; Deng, Qihuang; Zhou, Jie; Du, Shiyu; Huang, Qing; Zhi, Chunyi

    2017-04-01

    The fabrication of photoluminescent Ti3 C2 MXene quantum dots (MQDs) by a facile hydrothermal method is reported, which may greatly extend the applications of MXene-based materials. Interestingly, the as-prepared MQDs show excitation-dependent photoluminescence spectra with quantum yields of up to ≈10% due to strong quantum confinement. The applications of MQDs as biocompatible multicolor cellular imaging probes and zinc ion sensors are demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Secure information display with limited viewing zone by use of multi-color visual cryptography.

    Science.gov (United States)

    Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo

    2004-04-05

    We propose a display technique that ensures security of visual information by use of visual cryptography. A displayed image appears as a completely random pattern unless viewed through a decoding mask. The display has a limited viewing zone with the decoding mask. We have developed a multi-color encryption code set. Eight colors are represented in combinations of a displayed image composed of red, green, blue, and black subpixels and a decoding mask composed of transparent and opaque subpixels. Furthermore, we have demonstrated secure information display by use of an LCD panel.

  8. Noniterative algorithm for improving the accuracy of a multicolor-light-emitting-diode-based colorimeter

    Science.gov (United States)

    Yang, Pao-Keng

    2012-05-01

    We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.

  9. Color uniformity of the light distribution from several cluster configurations of multicolor LEDs

    Science.gov (United States)

    Moreno, Ivan; Molinar, Luis M.

    2005-09-01

    We analyze the effects on color uniformity of the near-field light distribution due to different cluster configurations (at optimum packaging density for uniform irradiance) of light sources using mixed red, green and blue (RGB) light emitting diodes (LEDs). A photometric analysis and experimental results that show the near-field performance that can be achieved with several cluster configurations of multicolor LEDs is presented. Contour maps for the color variation (in reference to illuminant D65) in function of spatial coordinates of light distribution are given.

  10. Molecular cytogenetic analysis of human blastocysts andcytotrophoblasts by multi-color FISH and Spectra Imaging analyses

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf; Jung,Christine J.; Nguyen, Ha-Nam; Chu, Lisa W.; Pedersen, Roger A.; Fisher,Susan J.; Weier, Heinz-Ulrich G.

    2006-02-08

    Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.

  11. Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues.

    Science.gov (United States)

    Collot, Mayeul; Fam, Tkhe-Kyong; Ashokkumar, Pichandi; Faklaris, Orestis; Galli, Thierry; Danglot, Lydia; Klymchenko, Andrey S

    2018-02-15

    Lipid droplets (LDs) are intracellular lipid-rich organelles that regulate the storage of neutral lipids and were recently found to be involved in many physiological processes, metabolic disorders as well as diseases including obesity, diabetes and cancers. Herein we present a family of new fluorogenic merocyanine fluorophores based on an indolenine moiety and a dioxaborine barbiturate derivative. These so-called StatoMerocyanines (SMCy) span their fluorescence from yellow to the near infrared (NIR) in oil with an impressive fluorescence enhancement compared to aqueous media. Additionally, SMCy display remarkably high molar extinction coefficients (up to 390,000 M-1.cm-1) and high quantum yield values (up to 100%). All the members of this new family specifically stain the LDs in live cells with very low background noise. Unlike Nile Red, a well-known lipid droplet marker, SMCy dyes possess narrow absorption and emission bands in the visible thus allowing multicolor imaging. SMCy proved to be compatible with fixation and led to high quality 3D-images of lipid droplets in cells and tissues. Their high brightness allowed efficient tissue imaging of adipocytes and circulating LDs. Moreover their remarkably high two-photon absorption cross-section, especially SMCy5.5 (up to 13,300 GM) as well as their capacity to efficiently fluoresce in the NIR region led to two-photon multicolor tissue imaging (liver). Taking advantage of the available color palette, lipid droplets exchange between cells was tracked and imaged thus demonstrating intercellular communication.

  12. Multicolor upconversion emissions in Tm 3+/Er3+ codoped tellurite photonic microwire between silica fiber tapers.

    Science.gov (United States)

    Chen, Nan-Kuang; Kuan, Pei-Wen; Zhang, Junjie; Zhang, Liyan; Hu, Lili; Lin, Chinlon; Tong, Limin

    2010-12-06

    We report multicolor upconversion emissions including the blue-violet, green, and red lights in a Tm 3+/Er3+codoped tellurite glass photonic microwire between two silica fiber tapers. A silica fiber is tapered until its evanescent field is exposed and then angled-cleaved at the tapered center to divide the tapered fibers into two parts. A tellurite glass is melted by a gas flame to cluster into a sphere at the tip of one tapered fiber. The other angled-cleaved tapered fiber is blended into the melted tellurite glass. When the tellurite glass is melted, the two silica fiber tapers are simultaneously moving outwards to draw the tellurite glass into a microwire in between. The advantage of angled-cleaving on fiber tapers is to avoid cavity resonances in high index photonic microwire. Thus, the broadband white light can be transmitted between silica fibers and a special optical property like high intensity upconversion emission can be achieved. A cw 1064 nm Nd:YAG laser light is launched into the Tm 3+/Er3+ codoped tellurite microwire through a silica fiber taper to generate the multicolor upconversion emissions, including the blue-violet, green, and red lights, simultaneously.

  13. Development Of A Multicolor Sub/millimeter Camera Using Microwave Kinetic Inductance Detectors

    Science.gov (United States)

    Schlaerth, James A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Noroozian, O.; Sayers, J.; Siegel, S.; Vayonakis, A.; Zmuidzinas, J.

    2011-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting resonators useful for detecting light from the millimeter-wave to the X-ray. These detectors are easily multiplexed, as the resonances can be tuned to slightly different frequencies, allowing hundreds of detectors to be read out simultaneously using a single feedline. The Multicolor Submillimeter Inductance Camera, MUSIC, will use 2304 antenna-coupled MKIDs in multicolor operation, with bands centered at wavelengths of 0.85, 1.1, 1.3 and 2.0 mm, beginning in 2011. Here we present the results of our demonstration instrument, DemoCam, containing a single 3-color array with 72 detectors and optics similar to MUSIC. We present sensitivities achieved at the telescope, and compare to those expected based upon laboratory tests. We explore the factors that limit the sensitivity, in particular electronics noise, antenna efficiency, and excess loading. We discuss mitigation of these factors, and how we plan to improve sensitivity to the level of background-limited performance for the scientific operation of MUSIC. Finally, we note the expected mapping speed and contributions of MUSIC to astrophysics, and in particular to the study of submillimeter galaxies. This research has been funded by grants from the National Science Foundation, the Gordon and Betty Moore Foundation, and the NASA Graduate Student Researchers Program.

  14. Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging

    Directory of Open Access Journals (Sweden)

    Da Hye Shin

    2015-03-01

    Full Text Available In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid(γ-PGA formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine(PLL and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N and double bonds (C=C were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells. These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells.

  15. Detection of cone dysfunction induced by digoxin in dogs by multicolor electroretinography.

    Science.gov (United States)

    Maehara, Seiya; Osawa, Akiko; Itoh, Norihiko; Wakaiki, Shinsuke; Tsuzuki, Keiko; Seno, Takahiro; Kushiro, Tokiko; Yamashita, Kazuto; Izumisawa, Yasuharu; Kotani, Tadao

    2005-01-01

    It is difficult to detect discrete cone function with the present conventional electroretinography (ERG) examination. In this study, we developed contact electrodes with a built-in color (red (644 nm), green (525 nm), or blue (470 nm)) light source (color LED-electrode), and evaluated an experimental model of digoxin in the dog. First, 17 normal Beagle dogs were used to determine which electrode works well for color ERG measurement on dogs. Then, color ERG was performed on seven normal Beagle dogs at various points during a 14-day period of digoxin administration. A single daily dose of 0.0125 mg/kg/day, which is within the recommended oral maintenance dosage range for dogs, was administered orally for 2 weeks. Ophthalmic examination, measurement of plasma concentration of digoxin, and color ERG examination were performed. On first examination, amplitudes of all responses were significantly (P multicolor ERG using blue and green LED-electrodes. Multi-color ERG was useful for detecting cone type-specific dysfunction in the dog.

  16. Optimization of multi-color laser waveform for high-order harmonic generation

    Science.gov (United States)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  17. Green Printing: Colorimetric and Densitometric Analysis of Solvent-Based and Vegetable Oil-Based Inks of Multicolor Offset Printing

    Science.gov (United States)

    Dharavath, H. Naik; Hahn, Kim

    2009-01-01

    The purpose of this study was to determine the differences in the measurable print attributes (Print Contrast and Dot Gain) and color gamut of solvent-based (SB) inks vs. vegetable oil-based (VO) inks of multicolor offset printing. The literature review revealed a lack of published research on this subject. VO inks tend to perform (color…

  18. Use of Multicolor Flow Cytometry for Isolation of Specific Cell Populations Deriving from Differentiated Human Embryonic Stem Cells

    NARCIS (Netherlands)

    Mengarelli, Isabella; Fryga, Andrew; Barberi, Tiziano

    2016-01-01

    Flow Cytometry-Sorting (FCM-Sorting) is a technique commonly used to identify and isolate specific types of cells from a heterogeneous population of live cells. Here we describe a multicolor flow cytometry technique that uses five distinct cell surface antigens to isolate four live populations with

  19. Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity.

    Science.gov (United States)

    Iourov, Ivan Y; Liehr, Thomas; Vorsanova, Svetlana G; Yurov, Yuri B

    2007-10-01

    Biomedical research of interphase chromosomes in their integrity is hindered by technical limitations. We introduce a technology using microdissection-based engineering of DNA probes and fluorescence multicolor chromosome banding that allows studying interphase chromosome organization, numbers and rearrangements in somatic cells.

  20. Four-dimensional CDT with toroidal topology

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    2017-09-01

    Full Text Available 3+1 dimensional Causal Dynamical Triangulations (CDT describe a quantum theory of fluctuating geometries without the introduction of a background geometry. If the topology of space is constrained to be that of a three-dimensional torus we show that the system will fluctuate around a dynamically formed background geometry which can be understood from a simple minisuperspace action which contains both a classical part and a quantum part. We determine this action by integrating out degrees of freedom in the full model, as well as by transfer matrix methods.

  1. A Four-Dimensional Product Innovativeness Typology

    DEFF Research Database (Denmark)

    Rosenø, Axel

    2005-01-01

    Product innovativeness is a key moderating variable for the study of innovationmanagement (Song & Montoya-Weiss 1998, p. 124). For this reason, some empiricalstudies of innovation management examine new product processes, critical successfactors, and market learning practices for incremental versus......) typology with four newproduct types; Leonard-Barton's (1995) five product types; and Veryzer's (1998a)four types in a two-by-two matrix.Interestingly, these two meta-perspectives on product innovativeness (i.e. 1. new tothe market and/or new to the company and 2. technological and/or marketnewness...... discontinuous newproduct projects (Song & Montoya-Weiss 1998; Atuahene-Gima 1995; Veryzer 1998a;Lynn et al. 1996; O'Connor 1998; Rice et al. 1998). By looking at both these types ofnew product development projects, empirical observations are likely to be morerealistic than those of studies that do...

  2. Chromosome distribution in human sperm – a 3D multicolor banding-study

    Directory of Open Access Journals (Sweden)

    Mrasek Kristin

    2008-11-01

    Full Text Available Abstract Background Nuclear architecture studies in human sperm are sparse. By now performed ones were practically all done on flattened nuclei. Thus, studies close at the in vivo state of sperm, i.e. on three-dimensionally conserved interphase cells, are lacking by now. Only the position of 14 chromosomes in human sperm was studied. Results Here for the first time a combination of multicolor banding (MCB and three-dimensional analysis of interphase cells was used to characterize the position and orientation of all human chromosomes in sperm cells of a healthy donor. The interphase nuclei of human sperm are organized in a non-random way, driven by the gene density and chromosome size. Conclusion Here we present the first comprehensive results on the nuclear architecture of normal human sperm. Future studies in this tissue type, e.g. also in male patients with unexplained fertility problems, may characterize yet unknown mechanisms of infertility.

  3. Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB).

    Science.gov (United States)

    Mrasek, K; Heller, A; Rubtsov, N; Trifonov, V; Starke, H; Rocchi, M; Claussen, U; Liehr, T

    2001-01-01

    The origin of the human and great ape chromosomes has been studied by comparative chromosome banding analysis and, more recently, by fluorescence in situ hybridization (FISH), using human whole-chromosome painting probes. It is not always possible, however, to determine the exact breakpoints and distribution or orientation of specific DNA regions using these techniques. To overcome this problem, the recently developed multicolor banding (MCB) probe set for all human chromosomes was applied in the present study to reanalyze the chromosomes of Gorilla gorilla (GGO). While the results agree with those of most previous banding and FISH studies, the breakpoints for the pericentric inversion on GGO 3 were defined more precisely. Moreover, no paracentric inversion was found on GGO 14, and no pericentric inversions could be demonstrated on GGO 16 or 17. Copyright 2001 S. Karger AG, Basel

  4. The Status of MUSIC: A Multicolor Sub/millimeter MKID Instrument

    Science.gov (United States)

    Schlaerth, J. A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Nguyen, H. T.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.

    2012-05-01

    We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation.

  5. M-GCF: Multicolor-Green Conflict Free Scheduling Algorithm for WSN

    DEFF Research Database (Denmark)

    Pawar, Pranav M.; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    division multiple access (TDMA) scheduling algorithm, Multicolor-Green Conflict Free (M-GCF), for WSNs. The proposed algorithm finds multiple conflict free slots across a three-hop neighbor view. The algorithm shows better slot sharing with fewer conflicts along with good energy efficiency, throughput......Applications for wireless sensor networks (WSNs) are increasing in numbers and are penetrating in areas of increasing importance. The requirements of these applications can only be fulfilled with efficient medium access control (MAC) layer protocols and this paper presents a cluster-based time...... and delay as compared with state-of-the-art solutions. The results also include the performance of M-GCF with varying traffic rates, which also shows good energy efficiency, throughput and delay. The contribution of this paper and the main reason for the improved performance with varying number of nodes...

  6. Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs.

    Science.gov (United States)

    Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Ahmad, Azeem; Mehta, Dalip Singh

    2016-04-01

    We report multispectral phase-shifting interference microscopy for quantitative phase imaging of human red blood cells (RBCs). A wide range of wavelengths are covered by means of using multiple color light emitting diodes (LEDs) with narrow spectral bandwidth ranging from violet to deep red color. The multicolor LED light source was designed and operated sequentially, which works as a multispectral scanning light source. Corresponding to each color LED source, five phase-shifted interferograms were recorded sequentially for the measurement of phase maps, as well as the refractive index of RBCs within the entire visible region. The proposed technique provides information about the effect of wavelengths on the morphology and refractive index of human RBCs. The system does not require expensive multiple color filters or any wavelength scanning mechanism along with broadband light source.

  7. Multi-Color Luminescence and Sensing of Rare Earth Hybrids by Ionic Exchange Modification.

    Science.gov (United States)

    Weng, Han; Yan, Bing

    2016-07-01

    Luminescent rare earth coordination polymers [H2NMe2]3[Y(DPA)3] ([H2NMe2](+) = dimethyl amino cation; H2DPA = 2,6-dipicolinic acid) are synthesized and is further modified by the ionic exchange reaction of [H2NMe2](+) cation with rare earth ions, which is named as RE(3+) ⊂ [Y(DPA)3] (RE = Eu, Tb, Sm, Dy) hybrid systems. The multi-color can be tuned for these functionalized hybrid systems and even white color luminescence can be integrated for Sm(3+) ⊂ [Y(DPA)3]. Besides, the fluorescent sensing property of Tb(3+) ⊂ [Y(DPA)3] system is checked, which shows high selectivity towards Cr(3+) with the concentration of 10(-5) mol⋅L(-1).

  8. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  9. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    Science.gov (United States)

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, M.; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-11-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  10. The color enhancement and collimation features of the multi-colored LEDs with different periodic microstructure on the top surface of TIR lens

    Science.gov (United States)

    Ying, Shang-Ping; Fu, Han-Kuei

    2017-09-01

    Due to the advantages, such as high efficiency, power consumption reduction, no mercury, pure saturated color, high reliability and long lifetime, the solid-state lighting based on light-emitting diodes (LEDs) has become very popular at this stage. In the lighting applications such as spot lighting, downlighting, architectural and show lighting, the colortunable properties with collimating beam of LEDs are highly demanded. The color-tunable lighting is easily achieved using multi-colored LEDs instead of inefficient color filters. However, the applications of multi-colored LEDs usually appear the undesirable light patterns such as color separation or color fringes. At the meantime, the use of TIR (total internal reflection) lens for multi-colored LEDs to collimate the light from the LEDs with different color will introduce seriously undesirable artifacts. Thus, a periodic microstructure surface on the top surface of the TIR lens would be used to reshape the light from the different colored LED chips in the multi-colored LEDs, and then decrease the color separation and color nonuniformity. In this study, the TIR lens with periodic microstructure surface on the top surface would be used to collimate the light from multi-colored LEDs with low color separation or color fringes. The analysis of color enhancement and collimation features of the multi-colored LEDs with different periodic microstructure on the top surface of the TIR lens is presented.

  11. Photo- and pH-tunable multicolor fluorescent nanoparticle-based spiropyran- and BODIPY-conjugated polymer with graphene oxide.

    Science.gov (United States)

    Sharker, Shazid Md; Jeong, Chan Jin; Kim, Sung Min; Lee, Jung-Eun; Jeong, Ji Hoon; In, Insik; Lee, Haeshin; Park, Sung Young

    2014-10-01

    We report a stimuli-responsive fluorescent nanomaterial, based on graphene oxide coupled with a polymer conjugated with photochromic spiropyran (SP) dye and hydrophobic boron dipyrromethane (BODIPY) dye, for application in triggered target multicolor bioimaging. Graphene oxide (GO) was reduced by catechol-conjugated polymers under mildly alkaline conditions, which enabled to formation of functionalized multicolor graphene nanoparticles that can be induced by irradiation with UV light and by changing the pH from acidic to neutral. Investigation of these nanoparticles by using AFM, fluorescence emission, and in vitro cell and in vivo imaging revealed that they show different tunable colors in bioimaging applications and, more specifically, in cancer-cell detection. The stability, biocompatibility, and quenching efficacy of this nanocomposite open a different perspective for cell imaging in different independent colors, sequentially and simultaneously. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multicolor Emission from Poly(p-Phenylene)/Nanoporous ZnMnO Organic-Inorganic Hybrid Light-Emitting Diode.

    Science.gov (United States)

    Lee, Sejoon; Lee, Youngmin; Kim, Deuk Young; Panin, Gennady N

    2016-12-28

    The voltage-tunable multicolor emission was realized in a poly(p-phenylene)/nanoporous ZnMnO organic-inorganic hybrid light-emitting diode. Red, green, and blue (RGB) colors sequentially appeared with increasing magnitude of the bias voltage (i.e., R → RG → RGB with V↑). At a higher voltage (>2.4 V), eventually, the device emitted the visible light with a mixture of colors including RGB. These unique features may move us a step closer to the application of organic-inorganic hybrid solid-state lighting devices for the full-color display and/or the electrical-to-optical data converter for multivalue electronic signal processes. In-depth analyses on electrical and optical properties are presented, and voltage-controllable multicolor-emission mechanisms are discussed.

  13. Numerical Simulation on Light Output of UV-based White Light-Emitting Diodes with Multicolor Phosphor Blends

    Science.gov (United States)

    Ishida, Kunio; Mitsuishi, Iwao; Hattori, Yasushi; Nunoue, Shinya

    2008-08-01

    We developed a new simulation method for designing the luminescence profiles of phophor-based white light-emitting diodes (LEDs). By combining the rate equations for absorption/emission processes by phosphors with a differential equation for spatial distribution of light intensity, we take into account the cascade process of phosphor emission due to the reabsorption of photons. We found that our model is suitable for a systematic design method of white light sources with multicolor phosphor blends.

  14. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting

    Science.gov (United States)

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-11-01

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization.

  15. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting.

    Science.gov (United States)

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-11-13

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization.

  16. Synthesis of Multicolor Core/Shell NaLuF₄:Yb(3+)/Ln(3+)@CaF₂ Upconversion Nanocrystals.

    Science.gov (United States)

    Li, Hui; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2017-02-07

    The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF₄:Yb(3+)/Ln(3+)@CaF₂ (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host lattice of sodium lutetium fluoride (NaLuF₄). We exploited the liquid-solid-solution method to synthesize the NaLuF₄ core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF₂) shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm). We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  17. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

    Directory of Open Access Journals (Sweden)

    Shinpei Ogawa

    2017-05-01

    Full Text Available Wavelength- or polarization-selective thermal infrared (IR detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  18. Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope.

    Science.gov (United States)

    Cutler, Patrick J; Malik, Michael D; Liu, Sheng; Byars, Jason M; Lidke, Diane S; Lidke, Keith A

    2013-01-01

    Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping.

  19. Multi-color photometric investigation of the totally eclipsing binary NO Camelopardalis

    Science.gov (United States)

    Zhou, Xiao; Qian, Shengbang; Zhang, Bin

    2017-04-01

    Multi-color photometric light curves of NO Camelopardalis in V, RC, and IC bands are obtained and analyzed simultaneously using the Wilson-Devinney program. The solutions suggest that NO Cam is an A-subtype overcontact binary with a mass ratio of q = 0.439 and a contact degree of f = 55.5%. The small temperature difference (ΔT = 44 K) between its two components indicates that the system is under thermal contact. The high orbital inclination (i = 84.5°) strengthens our confidence in the parameters determined from the light curves. All available times of minimum light are collected and period variations are analyzed for the first time. The O - C curve reveals that its period is increasing continuously at a rate of dP/dt = +1.46 × 10-9, which can be explained by mass transfer from the less massive component to the more massive one. After the upward parabolic variation is subtracted, the residuals suggest that there may be a cyclic variation with a period of 2.23 yr and an amplitude of A3 = 0.00153 d, which may due to the light-travel-time effect arising from the gravitational influence of a close-in tertiary component. The close-in companion reveals that early dynamic interaction among a triple system may have played a very important role in the formation of the W UMa-type binaries.

  20. High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots.

    Science.gov (United States)

    Genc, Rukan; Alas, Melis Ozge; Harputlu, Ersan; Repp, Sergej; Kremer, Nora; Castellano, Mike; Colak, Suleyman Gokhan; Ocakoglu, Kasim; Erdem, Emre

    2017-09-11

    Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 μF/cm2) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.

  1. Simultaneous Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral Imaging.

    Science.gov (United States)

    Huang, Tao; Phelps, Carey; Wang, Jing; Lin, Li-Jung; Bittel, Amy; Scott, Zubenelgenubi; Jacques, Steven; Gibbs, Summer L; Gray, Joe W; Nan, Xiaolin

    2018-01-23

    Single-molecule tracking (SMT) offers rich information on the dynamics of underlying biological processes, but multicolor SMT has been challenging due to spectral cross talk and a need for multiple laser excitations. Here, we describe a single-molecule spectral imaging approach for live-cell tracking of multiple fluorescent species at once using a single-laser excitation. Fluorescence signals from all the molecules in the field of view are collected using a single objective and split between positional and spectral channels. Images of the same molecule in the two channels are then combined to determine both the location and the identity of the molecule. The single-objective configuration of our approach allows for flexible sample geometry and the use of a live-cell incubation chamber required for live-cell SMT. Despite a lower photon yield, we achieve excellent spatial (20-40 nm) and spectral (10-15 nm) resolutions comparable to those obtained with dual-objective, spectrally resolved Stochastic Optical Reconstruction Microscopy. Furthermore, motions of the fluorescent molecules did not cause loss of spectral resolution owing to the dual-channel spectral calibration. We demonstrate SMT in three (and potentially more) colors using spectrally proximal fluorophores and single-laser excitation, and show that trajectories of each species can be reliably extracted with minimal cross talk. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.

    Science.gov (United States)

    Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu

    2014-01-07

    The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Revealing the Jet Structure of Grb 030329 With High Resolution Multicolor Photometry

    Energy Technology Data Exchange (ETDEWEB)

    Gorosabel, Javier; Castro-Tirado, A.J.; Ramirez-Ruiz, E.; Granot, J.; Caon, N.; Cairos, L.M.; Rubio-Herrera, E.; Guziy, S.; de Ugarte Postigo, A.; Jelinek, M.; /IAA,

    2006-03-15

    We present multicolor optical observations of the nearby (z = 0.1685) GRB030329 obtained with the same instrumentation over a time period of 6 hours for a total of an unprecedented 475 quasi-simultaneous B V R observations. The achromatic steepening in the optical, which occurs at t {approx} 0.7 days, provides evidence for a dynamic transition of the source, and can be most readily explained by models in which the GRB ejecta are collimated into a jet. Since the current state-of-the-art modeling of GRB jets is still flawed with uncertainties, we use these data to critically assess some classes of models that have been proposed in the literature. The data, especially the smooth decline rate seen in the optical afterglow, are consistent with a model in which GRB030329 was a homogeneous, sharp-edged jet, viewed near its edge interacting with a uniform external medium, or viewed near its symmetry axis with a stratified wind-like external environment. The lack of short timescale fluctuations in the optical afterglow flux down to the 0.5 per cent level puts stringent constraints on possible small scale angular inhomogeneities within the jet or fluctuations in the external density.

  4. Voltage Tunable Multicolor GaAs/AlGaAs Coupled Quantum Well Infrared Photodetector

    Science.gov (United States)

    Choi, Jae Kyu; Eason, David; Strasser, Gottfried; Vagidov, Nizami; Mitin, Vladimir

    2011-03-01

    Tunable quantum well infrared photodetectors (QWIP) has attracted attention because of the mature growth technique of GaAs/AlGaAs quantum wells and their diverse applications such as remote temperature sensing, chemical analysis, military applications, and so on. We have designed, grown, and characterized a voltage tunable multicolor QWIP for the long wavelength infrared detection (7.5 -- 12.4 μ m). The QWIP structure was grown by MBE, and the device is designed to have bound to bound and bound to quasi-continuum transitions in an asymmetrically doped double quantum well. At zero bias we observed several distinctive spectral lines in photoresponse. The device demonstrates strong dependence on a magnitude and a polarity of the bias that is confirmed by the shift of energy levels in the electric field calculated by nextnano 3 software. In particular, switching bias from +3V to -5V we change the photoresponse of our detector from 8.39 μ m to 10.21 μ m.

  5. Characterization of chromosomal rearrangements using multicolor-banding (MCB/m-band).

    Science.gov (United States)

    Liehr, Thomas; Weise, Anja; Hinreiner, Sophie; Mkrtchyan, Hasmik; Mrasek, Kristin; Kosyakova, Nadezda

    2010-01-01

    Molecular cytogenetics and especially fluorescence in situ hybridization (FISH) banding approaches are nowadays standard for the exact characterization of simple, complex, and cryptic chromosomal aberrations within the human genome. FISH-banding techniques are any kind of FISH techniques, which provide the possibility to characterize simultaneously several chromosomal subregions smaller than a chromosome arm. FISH banding methods fitting that definition may have quite different characteristics, but share the ability to produce a DNA-specific chromosomal banding. While the standard techniques such as G-bands by Trypsin using Giemsa banding lead to a protein-related black and white banding pattern, FISH-banding techniques are DNA-specific, more colorful, and thus, more informative. At present, the most frequently applied FISH banding technique is the multicolor banding (MCB/m-band) approach. MCB/m-band is based on region-specific microdissection libraries, producing changing fluorescence intensity ratios along the chromosomes. Here we describe the FISH-banding technique MCB/m-band and illustrate how to apply it for characterization of chromosomal breakpoints with a minimal number of FISH experiments.

  6. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  7. Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs

    Science.gov (United States)

    Kurata, Tomohiro; Oda, Shigeto; Kawahira, Hiroshi; Haneishi, Hideaki

    2016-12-01

    We have previously proposed an estimation method of intravascular oxygen saturation (SO_2) from the images obtained by sidestream dark-field (SDF) imaging (we call it SDF oximetry) and we investigated its fundamental characteristics by Monte Carlo simulation. In this paper, we propose a correction method for scattering by the tissue and performed experiments with turbid phantoms as well as Monte Carlo simulation experiments to investigate the influence of the tissue scattering in the SDF imaging. In the estimation method, we used modified extinction coefficients of hemoglobin called average extinction coefficients (AECs) to correct the influence from the bandwidth of the illumination sources, the imaging camera characteristics, and the tissue scattering. We estimate the scattering coefficient of the tissue from the maximum slope of pixel value profile along a line perpendicular to the blood vessel running direction in an SDF image and correct AECs using the scattering coefficient. To evaluate the proposed method, we developed a trial SDF probe to obtain three-band images by switching multicolor light-emitting diodes and obtained the image of turbid phantoms comprised of agar powder, fat emulsion, and bovine blood-filled glass tubes. As a result, we found that the increase of scattering by the phantom body brought about the decrease of the AECs. The experimental results showed that the use of suitable values for AECs led to more accurate SO_2 estimation. We also confirmed the validity of the proposed correction method to improve the accuracy of the SO_2 estimation.

  8. Multicolor fluorescence microscopic imaging of cancer cells on the plasmonic chip (Presentation Recording)

    Science.gov (United States)

    Tawa, Keiko; Sasakawa, Chisato; Yamamura, Shohei; Shibata, Izumi; Kataoka, Masatoshi

    2015-09-01

    A plasmonic chip which is a metal coated substrate with grating structure can provide the enhanced fluorescence by the grating-coupled surface plasmon field. In our previous studies, bright epi-fluorescence microscopic imaging of neuron cells and sensitive immunosesnsing have been reported. In this study, two kinds of breast cancer cells, MCF-7 and MDA-MB231, were observed with epi-fluorescence microscope on the plasmonic chip with 2D hole-arrays . They were multicolor stained with 4', 6-diamidino-2-phenylindole (DAPI) and allophycocyanin (APC)-labeled anti-epithelial cell adhesion molecule (EpCAM) antibody. Our plasmonic chip provided the brighter fluorescence images of these cells compared with the glass slide. Even in the cells including few EpCAM, the distribution of EpCAM was clearly observed in the cell membrane. It was found that the plasmonic chip can be one of the powerful tools to detect the marker protein existing around the chip surface even at low concentration.

  9. Multi-focus microscopy for aberration-corrected multi-color three-dimensional imaging

    Science.gov (United States)

    Abrahamsson, Sara

    Due to the classical conflict between spatial and temporal resolution, microscopy studies of fast events in living samples are often performed in 2D even when 3D imaging would be desirable and could provide new insights to biological function. This dissertation describes an instant 3D imaging system - a multi-focus microscope (MFM) - which provides high- resolution, aberration-corrected, multi-color fluorescence images of multiple focal planes simultaneously. Forming an instant focal series eliminates the need for multiple camera exposures and mechanical refocusing, allowing 3D imaging limited only by sample signal strength and the camera read-out rate for a single frame. A module containing the MFM optical components can easily be appended to the camera port of a commercial wide-field microscope. The excellent resolution and sensitivity of MFM is demonstrated on two different 3D biological imaging problems; neuronal imaging in the entire C.elegans embryo and mRNA imaging in cultured mammalian cells.

  10. Quantum control and enhancement of multi-color emissions in upconversion nanoparticles

    Science.gov (United States)

    Hao, Ye; Li, Aihua; Yang, Jun; Gao, Wentao; Sun, Zhijun

    2017-05-01

    Upconversion luminescence (UCL) of lanthanide-doped nanomaterials is usually a low-efficiency nonlinear process, involving multi-step, multi-channel transitions in a multi-level system. Here, we demonstrate quantum control and enhancement of multi-color (e.g., red and green) UCLs of NaYF4:Yb3+/Er3+ nanoparticles with metallic Fabry-Perot micro-cavities. Besides realization of controlled single-color UCLs, their internal quantum efficiencies are strongly enhanced, up to 3-4 orders of times. Experimental results indicate that the controlled single-color UCLs and enhancements are caused not only by modifications of the spontaneous radiation rates for the red- and green-color transitions but also by influencing the intermediate transitions to result in modified distributions of electrons in each of the multiple Er3+ levels, facilitating emission of either red- or green-color light. This work suggests a way to control photon emissions in systems with multi-channel transitions and/or multi-step excitations.

  11. Hydrothermal Synthesis and Tunable Multicolor Upconversion Emission of Cubic Phase Y2O3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    2013-01-01

    Full Text Available Highly crystalline body-centered cubic structure Y2O3 with lanthanide (Ln codopants (Ln = Yb3+/Er3+ and Yb3+/Ho3+ has been synthesized via a moderate hydrothermal method in combination with a subsequent calcination. The structure and morphology of Y(OH3 precursors and Y2O3 nanoparticles were characterized by X-ray diffraction and transmission electron microscopy. The results reveal that the Y2O3 nanoparticles possess cubic phase and form the quasispherical structure. The upconversion luminescence properties of Y2O3 nanoparticles doped with different Ln3+ (Yb3+/ Er3+ and Yb3+/ Ho3+ ions were well investigated under the 980 nm excitation. The results show that the Yb3+/Er3+ and Yb3+/Ho3+ codoped Y2O3 nanoparticles exhibit strong red and light yellow upconversion emissions, respectively. It is expected that these Y2O3 nanoparticles with tunable multicolor output and intense red upconversion emission may have potential application in color displays and biolabels.

  12. Multicolored Asian lady beetle (Coleoptera: Coccinellidae) activity and wine grape phenology: implications for pest management.

    Science.gov (United States)

    Galvan, T L; Burkness, E C; Koch, R L; Hutchison, W D

    2009-12-01

    We determined the phenology of the multicolored Asian lady beetle, Harmonia axyridis (Pallas), adults in relation to the phenology of wine grapes (Frontenac and Marechal Foch) in Minnesota and Wisconsin vineyards to establish a management window for H. axyridis infestations in wine grapes. In addition, we also assessed the flight activity of H. axyridis in an agricultural landscape. The phenology of berry development and ripening was determined by recording berry size and sugar content of randomly selected berries. The phenology of H. axyridis was determined by tracking its flight activity with yellow sticky cards in vineyards and with a blacklight trap in an agricultural landscape. Berry development and ripening showed three distinct growth periods or phases. The end of growth period I averaged 9 July (Frontenac) and 11 July (Marechal Foch). Veraison, which marks the end of growth period II, averaged 25 July (Frontenac) and 3 August (Marechal Foch). Harvest, the third growth period averaged 18 September for Frontenac and 17 September for Marechal Foch. A major peak of H. axyridis captures occurred between veraison and harvest (i.e., the grape susceptible stage). A similar peak in the summer was observed in the agricultural landscape approximately 10 d before the major peak in the vineyards.

  13. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis pallas, to sesquiterpene semiochemicals.

    Science.gov (United States)

    Verheggen, François J; Fagel, Quentin; Heuskin, Stéphanie; Lognay, Georges; Francis, Frédéric; Haubruge, Eric

    2007-11-01

    The role of two volatile sesquiterpenes, (E)-beta-farnesene and (-)-beta-caryophyllene, in the chemical ecology of the multicolored Asian lady beetle, Harmonia axyridis Pallas, was investigated by using both electrophysiological and behavioral techniques. (E)-beta-Farnesene is the major component of the alarm pheromone of most aphid species, which are preyed on by H. axyridis. (-)-beta-Caryophyllene was previously isolated from the headspace volatiles above overwintering and aggregated H. axyridis females. These sesquiterpenes elicited significant electroantennogram (EAG) activity from both H. axyridis male and female antennae. In a four-arm olfactometer, male and female H. axyridis were highly attracted toward (E)-beta-farnesene, whereas only males were attracted to (-)-beta-caryophyllene. In a bioassay technique that used a passively ventilated plastic box, both male and female H. axyridis aggregated in the (-)-beta-caryophyllene-treated side of the box. These results support the potential usefulness of (E)-beta-farnesene and (-)-beta-caryophyllene in push-pull strategies that use H. axyridis as a biological control agent in aphid-infested sites or to control this new urban pest in residential structures.

  14. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    Science.gov (United States)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  15. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction.

    Directory of Open Access Journals (Sweden)

    Martin Lehmann

    2011-12-01

    Full Text Available Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24 inhibits the release of human immunodeficiency virus 1 (HIV-1 through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions.

  16. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    Science.gov (United States)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  17. Is the Multicolored Asian Ladybeetle, Harmonia axyridis, the Most Abundant Natural Enemy to Aphids in Agroecosystems?

    Science.gov (United States)

    Vandereycken, Axel; Durieux, Delphine; Joie, Emilie; Sloggett, John J.; Haubruge, Eric; Verheggen, François J.

    2013-01-01

    The multicolored Asian ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), was introduced into Western Europe in the late 1990s. Since the late 2000s, this species has been commonly considered one of the most abundant aphid predators in most Western European countries. In spite of the large amount of research on H. axyridis, information concerning its relative abundance in agroecosystems is lacking. This study aims to evaluate the abundance of H. axyridis within the aphidophage community in four crops situated in southern Belgium: wheat, Triticum aestivum L. (Poales: Poaceae), corn, Zea mays, potato, Solanum tuberosum (Solanales: Solanaceae), and broad bean Vicia faba (Fabales: Fabaceae). In order to assess the species diversity, the collected data were analyzed by considering (1) the species richness and (2) the evenness according to the Shannon diversity index. Eleven aphidophages were observed in every inventoried agroecosystem, including five abundant species: three coccinellids, the seven-spotted ladybug, Coccinella septempunctata L. (Coleoptera: Coccinellidae), the 14-spotted Ladybird, Propylea quatuordecimpunctata, and H. axyridis; one hoverfly, the marmalade hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae); and one lacewing, the common green lacewing, Chrysoperla carnea Stephens sensu lato (= s.l.) (Neuroptera: Chrysopidae). Harmonia axyridis has been observed to thrive, breed, and reproduce on the four studied crops. Harmonia axyridis is the most abundant predator of aphids in corn followed by C. septempunctata, which is the main aphid predator observed in the three other inventoried crops. In wheat and potato fields, H. axyridis occurs in low numbers compared to other aphidophage. These observations suggest that H. axyridis could be considered an invasive species of agrosystems, and that potato and wheat may intermittently act as refuges for other aphidophages vulnerable to intraguild predation by this invader. Harmonia axyridis

  18. The effect of multicolored machinable ceramics on the esthetics of all-ceramic crowns.

    Science.gov (United States)

    Reich, Sven; Hornberger, Helga

    2002-07-01

    Computer-aided design/computer-assisted machining systems offer the possibility of fabricating restorations from one machinable ceramic block. Whether multishaded blocks improve esthetic results and are a viable alternative to individually stained ceramics has not been fully determined. The aim of this investigation was to examine the effect of multishaded blocks on the esthetic appearance of all-ceramic CEREC crowns and compare these crowns with single-shade and stained restorations. Ten subjects were included in this study. For each subject, 6 different crowns were milled with the use of a CEREC machine. One crown was milled from each of the following machinable ceramic materials: CEREC Vitablocs Mark II in classic colors; Vitablocs Mark II in 3D-Master colors; Vitablocs Mark II in either classic or 3D-Master colors, with additional staining; Megadenta Bloxx multishaded; Mark II experimental multilayer; and an experimental multilayer leucite ceramic. Three independent examiners assessed the esthetic appearance of crowns fabricated to match each subject's anterior tooth shade. A scale of 1 to 6 was used to score the shade match and esthetic adaptation of each crown, with 1 representing excellent characteristics and 3.5 serving as the threshold for clinical acceptability. The examiners' scores were averaged, and the mean values were analyzed with the Wilcoxon signed rank test (P3D-Master blocks: 6 out of 10 restorations were scored below 3.5. Two of the layered materials (Mark II experimental and Bloxx) followed with 5 acceptable restorations out of 10. Within the limitations of this study, the results provide no evidence that multicolored machinable ceramics improve the esthetics of all-ceramic crowns.

  19. Further delineation of complex chromosomal rearrangements in fertile male using multicolor banding

    Directory of Open Access Journals (Sweden)

    Weise Anja

    2008-08-01

    Full Text Available Abstract Background Complex chromosomal rearrangements (CCRs are defined as structural chromosomal rearrangements with at least three breakpoints and exchange of genetic material between two or more chromosomes. Complex chromosomal translocations are rarely seen in the general population but the frequency of occurrence is anticipated to be much higher due balanced states with no phenotypic presentation. Here, we report a severely mentally retarded fertile male patient in whom further delineation of CCR involving chromosomes 1, 4 and 2 was carried out by using high resolution multicolor banding (MCB technique. As a FISH based novel chromosome banding approach, high resolution MCB allows for the differentiation of chromosome region specific areas at band and subband levels. Results Cytogenetic studies using high resolution banding of the proband necessitated further delineation of the breakpoints because of their uncertainty: 46,XY,t(1;4;2(p21~31;q31.3;q31. After using high resolution MCB based on microdissection derived region-specific libraries, the exact nature of chromosomal rearrangements for chromosomes 1, 2 and 4 were revealed and these breakpoints were located on 1p31.1, 1q24.3 and 4q31.3 giving rise to a balanced situation. Conclusion Further delineations are certainly required to provide detailed information about the relationship between balanced CCRs and their phenotypes in order to offer proper counseling to the families concerned. Carriers must be investigated with high resolution banding and molecular cytogenetic techniques to determine the exact locations of the breakpoints. High resolution MCB is an alternative and an efficient method to other FISH based chromosome banding techniques and can serve in clarifying the nature of CCR.

  20. Multicolor banding remains an important adjunct to array CGH and conventional karyotyping.

    Science.gov (United States)

    Bint, Susan M; Davies, Angela F; Ogilvie, Caroline Mackie

    2013-12-05

    Array comparative genomic hybridization (CGH) for high resolution detection of chromosome imbalance, and karyotype analysis using G-banded chromosomes for detection of chromosome rearrangements, provide a powerful diagnostic armoury for clinical cytogenetics. However, abnormalities detected by karyotype analysis cannot always be characterised by scrutinising the G-banded pattern alone, and imbalance detected by array CGH cannot always be visualised in the context of metaphase chromosomes. In some cases further techniques are needed for detailed characterisation of chromosomal abnormalities. We investigated seven cases involving structural chromosome rearrangements detected by karyotype analysis, and one case where imbalance was primarily detected by array CGH. Multicolor banding (MCB) was used in all cases and proved invaluable in understanding the detailed structure of the abnormalities. Karyotype analysis detected structural chromosome rearrangements in 7 cases and MCB was used to help refine the karyotype for each case. Array CGH detected imbalance in an eighth case, where previously, G-banded chromosome analysis had reported a normal karyotype. Karyotype analysis of a second tissue type revealed this abnormality in mosaic form; however, MCB was needed in order to characterise this rearrangement. MCB provided information for the delineation of small deletions, duplications, insertions and inversions and helped to assign breakpoints which were difficult to identify from G-banded preparations due to ambiguous banding patterns. Despite the recent advance of array CGH in molecular cytogenetics we conclude that fluorescence in situ hybridization, including MCB, is still required for the elucidation of structural chromosome rearrangements, and remains an essential adjunct in modern diagnostic laboratories.

  1. Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa.

    Science.gov (United States)

    Dangol, Sarmina; Singh, Raksha; Chen, Yafei; Jwa, Nam-Soo

    2017-11-06

    Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organellespecific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on wellestablished targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.

  2. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; hide

    2011-01-01

    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  3. Impact of Multicolored Asian Lady Beetles on the sensory properties of Concord and Niagara grape juice.

    Science.gov (United States)

    Weekes, Luan N; Walsh, Douglas; Ferguson, Holly; Ross, Carolyn F

    2010-01-01

    The presence of Multicolored Asian Lady Beetles (MALB) in grape juice is increasingly problematic. The overall objective of this study was to determine the specific sensory impacts of MALB on Concord and Niagara grape juice. The aroma threshold for MALB-taint in both juices was determined and expressed as the best estimate threshold (BET). The aroma BET for MALB-taint in Concord grape juice was 1.8 and 0.65 MALB/L Niagara grape juice. The specific sensory attributes of the grape juices influenced by the presence of MALB were then described. In Concord grape juice, trained panelists (n = 9) found significant increases in vegetal aroma and earthy flavor as MALB concentration increased from 0.45 to 7.2 MALB/L. In Niagara grape juice, with increasing MALB concentration, trained panelists (n = 8) indicated significant decreases in honey and sweetness with corresponding increases in sourness, astringency, and vegetal and earthy aromas and flavors (P Lady Beetle (MALB), initially used for biocontrol, has been shown in previous literature to impact the sensory properties of wines. The presence of MALB in grape juice is now becoming problematic; however, there is little research describing the specific sensory impacts of MALB on grape juice. This study examined the sensory impact of MALB on both Concord and Niagara grape juice. While the threshold and trained panel evaluations from this study provide valuable sensory profile information, grape juice processors may be particularly interested in the consumer rejection of MALB-tainted grape juice as they can use this research for quality control measures and for establishing tolerance limits.

  4. Multicolored Asian lady beetle hypersensitivity: a case series and allergist survey.

    Science.gov (United States)

    Albright, Deborah D; Jordan-Wagner, Diane; Napoli, Diane C; Parker, Amy L; Quance-Fitch, Fonzie; Whisman, Bonnie; Collins, Jacob W; Hagan, Larry L

    2006-10-01

    Multicolored Asian lady beetles (Harmonia axyridis) have been used as a biological control agent against crop-destroying aphids in the United States. Outside their natural habitat, H. axyridis seeks refuge in homes during fall and winter, leading to patient complaints and symptoms of rhinitis, wheezing, and urticaria on exposure to the beetles. To gain a better understanding of the character and spectrum of allergic disease provoked by exposure to home-infesting lady beetles. Eight patients with allergic symptoms suspected of being caused by H. axyridis and consistent with an IgE-mediated process were identified and interviewed. A whole-body extract from H. axyridis was prepared. Western blots using the patients' serum identified specific IgE antibodies in the extract. Through a novel technique, immunohistochemical analysis using beetle sections overlayed with patient serum was performed. A random survey of allergists from across the United States was also performed to evaluate experience with cases of lady beetle allergy. Western blots revealed IgE binding to 5 proteins with molecular weights of approximately 8.6, 21, 28, 31, and 75 kDa. Specific IgE bound to proteins localized in the beetle's mouth and leg areas. The allergist survey revealed positive responses in North Central, Mid-Atlantic and New England states. In 8 patients with allergic symptoms on exposure to high levels of lady beetles, specific IgE bound to proteins from H. axyridis. There was also an increased frequency of suspected cases of lady beetle allergy in endemic areas.

  5. Stabilization of pre-optimized multicolor antibody cocktails for flow cytometry applications.

    Science.gov (United States)

    Chan, Ray Chun-Fai; Kotner, Joshua S; Chuang, Christine Ming-Hui; Gaur, Amitabh

    2017-11-01

    Flow cytometry has a multitude of applications in nearly all fields of biology. Newly described biological markers enable the creation of novel reagents which then aid in the elucidation of unique subsets of cells and their potential role in health and disease. In order to enable the simultaneous detection of an even greater number of parameters, the future progress of flow cytometry relies on advances in instrument engineering and the parallel development of new fluorophores. In order to address the issues of reagent reliability, reproducibility, and work-flow optimization, we have used the freeze-dry technique to stabilize pre-mixed, pre-optimized, multicolor 'cocktails' of antibodies within 12 × 75 mm flow cytometry tubes (Lyotube). In this study we describe several lyophilized stabilized reagent combinations that are functional for extended periods of time (18 months and beyond), and can be stored at ambient temperature, eliminating cold-chain requirements during transportation and storage. This improves precision and reduces the redundant labor and error-potential associated with mixing antibodies to create "home-brew" cocktails. We have stained different types of samples including normal and leukemic whole blood, bone marrow, and PBMCs, as well as cell lines, directly with BD Lyotube reagents: The data show comparable and consistent performance of multiple batches of dehydrated, stabilized mixtures of antibodies and their liquid counterparts. The approach we describe here, the Lyotube, facilitates the improvement and implementation of standardization measures in clinical settings and in multi-site studies, a useful tool which can also be applied to determining the efficacy and safety of candidate therapeutics and vaccines. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  6. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source.

    Science.gov (United States)

    Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun

    2013-10-15

    Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. VizieR Online Data Catalog: Multicolor photometry of 135 star clusters in M31 (Wang+, 2012)

    Science.gov (United States)

    Wang, S.; Ma, J.; Fan, Z.; Wu, Z.; Zhang, T.; Zou, H.; Zhou, X.

    2014-01-01

    The sample of star clusters in this paper is selected from Caldwell et al. (2009, cat. J/AJ/137/94; 2011, cat. J/AJ/141/61). Our multicolor photometric data are from the GALEX FUV and NUV, broadband UBVRI, SDSS ugriz, 15 intermediate-band filters of Beijing-Arizona-Taipei-Connecticut (BATC) Multicolor Sky Survey, and 2MASS JHKs, which constitute the Spectral Energy Distributions (SEDs) covering 1538-20000Å. The M31 field is part of a galaxy calibration program of Beijing-Arizona-Taipei-Connecticut (BATC) Multicolor Sky Survey (Zhou et al., 1995-2005, cat. II/262). The BATC program uses the 60/90cm Schmidt Telescope at the Xinglong Station of the National Astronomical Observatories, Chinese Academy of Sciences (NAOC). This system includes 15 intermediate-band filters, covering a range of wavelength from 3000 to 10000Å (see Fan et al., 1996, cat. J/AJ/112/628, for details). Before 2006 February, a Ford Aerospace 2k*2k thick CCD camera was applied, which has a pixel size of 15μm and a field of view of 58'*58', resulting in a resolution of 1.67"/pixel. After 2006 February, a new 4k*4k CCD with a pixel size of 12μm was used, with a resolution of 1.36"/pixel (Fan et al., 2009RAA.....9..993F). We obtained 143.9hr of imaging of the M31 field covering about 6deg2, consisting of 447 images, through the set of 15 filters in five observing runs from 1995 to 2008, spanning 13 years (see Fan et al., 2009RAA.....9..993F; Wang et al., 2010, cat. J/AJ/139/1438, for details). (3 data files).

  8. Detecting depressive and anxiety disorders in distressed patients in primary care; comparative diagnostic accuracy of the Four-Dimensional Symptom Questionnaire (4DSQ and the Hospital Anxiety and Depression Scale (HADS

    Directory of Open Access Journals (Sweden)

    Verhaak Peter FM

    2009-08-01

    Full Text Available Abstract Background Depressive and anxiety disorders often go unrecognized in distressed primary care patients, despite the overtly psychosocial nature of their demand for help. This is especially problematic in more severe disorders needing specific treatment (e.g. antidepressant pharmacotherapy or specialized cognitive behavioural therapy. The use of a screening tool to detect (more severe depressive and anxiety disorders may be useful not to overlook such disorders. We examined the accuracy with which the Four-Dimensional Symptom Questionnaire (4DSQ and the Hospital Anxiety and Depression Scale (HADS are able to detect (more severe depressive and anxiety disorders in distressed patients, and which cut-off points should be used. Methods Seventy general practitioners (GPs included 295 patients on sick leave due to psychological problems. They excluded patients with recognized depressive or anxiety disorders. Patients completed the 4DSQ and HADS. Standardized diagnoses of DSM-IV defined depressive and anxiety disorders were established with the Composite International Diagnostic Interview (CIDI. Receiver Operating Characteristic (ROC analyses were performed to obtain sensitivity and specificity values for a range of scores, and area under the curve (AUC values as a measure of diagnostic accuracy. Results With respect to the detection of any depressive or anxiety disorder (180 patients, 61%, the 4DSQ and HADS scales yielded comparable results with AUC values between 0.745 and 0.815. Also with respect to the detection of moderate or severe depressive disorder, the 4DSQ and HADS depression scales performed comparably (AUC 0.780 and 0.739, p 0.165. With respect to the detection of panic disorder, agoraphobia and social phobia, the 4DSQ anxiety scale performed significantly better than the HADS anxiety scale (AUC 0.852 versus 0.757, p 0.001. The recommended cut-off points of both HADS scales appeared to be too low while those of the 4DSQ anxiety

  9. Monodansylpentane as a blue-fluorescent lipid-droplet marker for multi-color live-cell imaging.

    Directory of Open Access Journals (Sweden)

    Huei-Jiun Yang

    Full Text Available Lipid droplets (LDs are dynamic cellular organelles responsible for the storage of neutral lipids, and are associated with a multitude of metabolic syndromes. Here we report monodansylpentane (MDH as a high contrast blue-fluorescent marker for LDs. The unique spectral properties make MDH easily combinable with other green and red fluorescent reporters for multicolor fluorescence imaging. MDH staining does not apparently affect LD trafficking, and the dye is extraordinarily photo-stable. Taken together MDH represents a reliable tool to use for the investigation of dynamic LD regulation within living cells using fluorescence microscopy.

  10. A fast Huygens sweeping method for capturing paraxial multi-color optical self-focusing in nematic liquid crystals

    Science.gov (United States)

    Kwan, Wingfai; Leung, Shingyu; Wang, Xiao-Ping; Qian, Jianliang

    2017-11-01

    We propose a numerically efficient algorithm for simulating the multi-color optical self-focusing phenomena in nematic liquid crystals. The propagation of the nematicon is modeled by a parabolic wave equation coupled with a nonlinear elliptic partial differential equation governing the angle between the crystal and the direction of propagation. Numerically, the paraxial parabolic wave equation is solved by a fast Huygens sweeping method, while the nonlinear elliptic PDE is handled by the alternating direction explicit (ADE) method. The overall algorithm is shown to be numerically efficient for computing high frequency beam propagations.

  11. Multicolor tunable yellow-red emission in Eu/Er:LiNbO3 under ultraviolet and blue excitation

    Science.gov (United States)

    Zhang, Zhengyu; Tang, Xunze; Qian, Yannan; Zhang, Haiyan; Wang, Wenguang; Wang, Rui

    2017-12-01

    The ability to manipulate the multicolor luminescence will greatly enhance the scope of their applications, ranging from infrared solar cells to volumetric multiplexed bioimaging. Tuning from yellow to red emission was successfully achieved in Eu/Er:LiNbO3 under ultraviolet (UV) and blue excitation. The excitation spectra of Eu/Er:LiNbO3 monitored at 590 nm/618 nm/626 nm were studied. The CIE 1931 color coordinates showed that the emissions fell within the yellow and red region, respectively, under 376 nm and 397 nm excitation. The color coordinates shifted from yellow toward red region upon diode laser excitation of 476 nm.

  12. Achieving Multicolor Long-Lived Luminescence in Dye-Encapsulated Metal-Organic Frameworks and Its Application to Anticounterfeiting Stamps.

    Science.gov (United States)

    Liu, Jianbin; Zhuang, Yixi; Wang, Le; Zhou, Tianliang; Hirosaki, Naoto; Xie, Rong-Jun

    2018-01-17

    Long-lived luminescent metal-organic frameworks (MOFs) have attracted much attention due to their structural tunability and potential applications in sensing, biological imaging, security systems, and logical gates. Currently, the long-lived luminescence emission of such inorganic-organic hybrids is dominantly confined to short-wavelength regions. The long-wavelength long-lived luminescence emission, however, has been rarely reported for MOFs. In this work, a series of structurally stable long-wavelength long-lived luminescent MOFs have been successfully synthesized by encapsulating different dyes into the green phosphorescent MOFs Cd(m-BDC)(BIM). The multicolor long-wavelength long-lived luminescence emissions (ranging from green to red) in dye-encapsulated MOFs are achieved by the MOF-to-dye phosphorescence energy transfer. Furthermore, the promising optical properties of these novel long-lived luminescent MOFs allow them to be used as ink pads for advanced anticounterfeiting stamps. Therefore, this work not only offers a facile way to develop new types of multicolor long-lived luminescent materials but also provides a reference for the development of advanced long-lived luminescent anticounterfeiting materials.

  13. Characterization of Angle Dependent Color Travel of Printed Multi-Color Effect Pigment on Different Color Substrates

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2015-03-01

    Full Text Available Color-travel pigments, which exhibit much more extensive color change as well provide angle-dependent optical effect can be used in many industrial products. In present paper the multi-color effect pigment printed on three different foils with different background color (black, silver and transparent was investigated. The pigment was based on synthetically produced transparent silicon dioxide platelets coated with titanium dioxide. CIEL*a*b* values and reflection of prints were measured by multi-angle spectrophotometer at constant illumination at an angle of 45º and different viewing angles (-15º, 15°, 25º, 45º, 75º and 110º were used. The measurements of printed multi-color pigment showed that CIEL*a*b* color coordinates varied to great extents, depending on detection angles as well on color of the printing substrate. The study revealed that pigmnet printed on black background obtained significant change in color. The study has also shown that when viewing angle increases, the reflection curves decreases.

  14. Simultaneous Measurement of Human Hematopoietic Stem and Progenitor Cells In Blood Using Multi-color Flow Cytometry

    Science.gov (United States)

    Cimato, Thomas R.; Furlage, Rosemary L.; Conway, Alexis; Wallace, Paul K.

    2016-01-01

    Hematopoietic stem cells are the source of all inflammatory cell types. Discovery of specific cell surface markers unique to human hematopoietic stem (HSC) and progenitor (HSPC) cell populations has facilitated studies of their development from stem cells to mature cells. The specific marker profiles of HSCs and HSPCs can be used to understand their role in human inflammatory diseases. The goal of this study is to simultaneously measure HSCs and HSPCs in normal human venous blood using multi-color flow cytometry. Our secondary aim is to determine how G-CSF mobilization alters the quantity of each HSC and HSPC population. Here we show that cells within the CD34+ fraction of human venous blood contains cells with the same cell surface markers found in human bone marrow samples. Mobilization with G-CSF significantly increases the quantity of total CD34+ cells, blood borne HSCs, multipotent progenitors, common myeloid progenitors, and megakaryocyte erythroid progenitors as a percentage of total MNCs analyzed. The increase in blood borne common lymphoid and granulocyte macrophage progenitors with G-CSF treatment did not reach significance. G-CSF treatment predominantly increased the numbers of HSCs and multipotent progenitors in the total CD34+ cell population; common myeloid progenitors and megakaryocyte erythroid progenitors were enriched relative to total MNCs analyzed, but not relative to total CD34+ cells. Our findings illustrate the utility of multi-color flow cytometry to quantify circulating HSCs and HSPCs in venous blood samples from human subjects. PMID:26663713

  15. Interactive Magnetic Catheter Steering With 3-D Real-Time Feedback Using Multi-Color Magnetic Particle Imaging.

    Science.gov (United States)

    Rahmer, Jurgen; Wirtz, Daniel; Bontus, Claas; Borgert, Jorn; Gleich, Bernhard

    2017-07-01

    Magnetic particle imaging (MPI) is an emerging tomographic method that enables sensitive and fast imaging. It does not require ionizing radiation and thus may be a safe alternative for tracking of devices in the catheterization laboratory. The 3-D real-time imaging capabilities of MPI have been demonstrated in vivo and recent improvements in fast online image reconstruction enable almost real-time data reconstruction and visualization. Moreover, based on the use of different magnetic particle types for catheter visualization and blood pool imaging, multi-color MPI enables reconstruction of separate images for the catheter and the vessels from simultaneously measured data. While these are important assets for interventional imaging, MPI field generators can furthermore apply strong forces on a magnetic catheter tip. It is the aim of this paper to give a first demonstration of the combination of real-time multi-color MPI with online reconstruction and interactive field control for the application of forces on a magnetic catheter model in a phantom experiment.

  16. Numerical and structural chromosomal abnormalities detected in human sperm with a combination of multicolor FISH assays.

    Science.gov (United States)

    Baumgartner, A; Van Hummelen, P; Lowe, X R; Adler, I D; Wyrobek, A J

    1999-01-01

    A pair of multicolor FISH assays (X-Y-21 and A-M-16) was developed for human sperm to simultaneously measure sex ratios; aneuploidies involving chromosomes 1, 16, 21, X, and Y; meiotic diploidies; and structural aberrations involving chromosome 1p. Sex ratios in sperm were not significantly different from unity among healthy men. Baseline frequencies of disomic sperm for chromosomes 1, 8, and 21 were similar (6.7 per 10(4) sperm, 95% CI of 5.6-8.1), suggesting that among these three chromosomes, chromosome 21 was not especially prone to nondisjunction. Frequencies of disomy 16 sperm were significantly lower, however (3.5 per 10(4) sperm, 95% CI of 2.0-6.2; P chromosomes 16 and 21 were validated against aneuploidy data obtained by the hamster-egg technique for human sperm cytogenetics. The frequencies of X-X, Y-Y, X-Y ("Klinefelter") sperm and sex-null ("Turner") sperm were 5.5, 5.1, 5.5, and 7.8 per 10(4) sperm, respectively. For chromosomes 16 and 21, the frequencies of nullisomic and disomic sperm were similar, suggesting that gain and loss events occurred symmetrically. However, more gain than loss was reported for chromosomes 1, X, and Y. The frequency of MI and MII diploid sperm (with flagella) was approximately 12 per 10(4) (range 8.3-16.7 per 10(4) sperm). Based on flagella data, the frequency of somatic cells in the semen was estimated to be approximately 1.8 per 10(4) sperm. Loss or gain of a portion of chromosome-arm 1p occurred in 5.5 per 10(4) sperm, and the percentage of sperm carrying structural aberrations within the haploid genome as calculated from FISH (1.4%), was similar to that obtained with the hamster-egg technique. These complementary sperm FISH assays have promising applications in studies of chromosomally abnormal sperm after exposure to occupational, medical, and environmental toxicants.

  17. Multicolor imaging and the anticancer effect of a bifunctional silica nanosystem based on the complex of graphene quantum dots and hypocrellin A.

    Science.gov (United States)

    Zhou, Lin; Zhou, Lin; Ge, Xuefeng; Zhou, Jiahong; Wei, Shaohua; Shen, Jian

    2015-01-01

    An effective theranostic platform based on porous silica nanoparticles encapsulated with the complex of a photodynamic anticancer drug and graphene quantum dots (GQDs), with the bifunction of multicolor imaging and satisfactory photo-induced anticancer activity, was successfully designed and prepared for in vitro photodynamic therapy (PDT) of superficial cancer.

  18. Binocular perception of an abstract multicolored display through one red-filtered eye and one green-filtered eye.

    Science.gov (United States)

    Kunzendorf, Robert G

    2009-12-01

    When 17 participants identified the colors in Moutoussis and Zeki's 2000 "Mondrian" display through monocular red and green filters of narrow bandwidth, 98.4% of the colors were identified as the same hue when viewed by both eyes and by one of the two eyes, and the other 1.6% were identified as adjacent hues. Notably, for 11 participants, some reddish patches observed through the red-filtered eye and some greenish patches observed through the green-filtered eye were binocularly experienced as belonging to the "Mondrian" display as a multicolored whole. Such findings call into question Moutoussis and Zeki's conclusion that the binocularly experienced colors of the "Mondrian" display are cortically generated following the synthesis of monocular information. These findings suggest, instead, that the binocularly experienced patches of color are pieced together from some patches of color generated by the red-filtered eye and other patches of color generated by the green-filtered eye.

  19. Multicolor optical Nyquist pulse generation based on self-phase modulation without line-by-line control

    Science.gov (United States)

    Wang, Dong; Huo, Li; Jiang, Xiangyu; Lou, Caiyun

    2016-12-01

    Multicolor optical Nyquist pulse generation based on self-phase modulation without line-by-line control is proposed and experimental demonstrated. By 1.4-ps nearly chirp-free optical Gaussian pulse pumping of a high nonlinearity fiber, a 25-GHz spacing, flat-topped supercontinuum (SC) over 17.8 nm within 3.6 dB power variation at a modest pump power of 21.8 dBm is performed. As the phase of the central 90 tones is almost linear to the wavelength after dispersion compensation, spatial light modulator placed after SC for precise line-by-line control both of amplitude and phase can be replaced by conventional optical band-pass filter (OBPF). With an array of quasi-rectangular OBPFs, nearly transform-limited optical Nyquist pulses with a duty cycle of 5.5% on 4 wavelengths are achieved simultaneously.

  20. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances

    Science.gov (United States)

    Nima, Zeid A.; Mahmood, Meena; Xu, Yang; Mustafa, Thikra; Watanabe, Fumiya; Nedosekin, Dmitry A.; Juratli, Mazen A.; Fahmi, Tariq; Galanzha, Ekaterina I.; Nolan, John P.; Basnakian, Alexei G.; Zharov, Vladimir P.; Biris, Alexandru S.

    2014-05-01

    Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface-enhanced Raman scattering (SERS) and high photothermal contrast. The silver-gold nanorods were functionalized with four Raman-active molecules and four antibodies specific to breast cancer markers and with leukocyte-specific CD45 marker. More than two orders of magnitude of SERS signal enhancement was observed from these hybrid nanosystems compared to conventional gold nanorods. Using an antibody rainbow cocktail, we demonstrated highly specific detection of single breast cancer cells in unprocessed human blood. By integrating multiplex targeting, multicolor coding, and multimodal detection, our approach has the potential to improve multispectral imaging of individual tumor cells in complex biological environments.

  1. Synthesis, Tunable Multicolor Output, and High Pure Red Upconversion Emission of Lanthanide-Doped Lu2O3 Nanosheets

    Directory of Open Access Journals (Sweden)

    Lingzhen Yin

    2013-01-01

    Full Text Available Yb3+ and Ln3+ (Ln = Er, Ho codoped Lu2O3 square nanocubic sheets were successfully synthesized via a facile hydrothermal method followed by a subsequent dehydration process. The crystal phase, morphology, and composition of hydroxide precursors and target oxides were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, and energy-dispersive X-ray spectroscope (EDS. Results present the as-prepared Lu2O3 crystallized in cubic phase, and the monodispersed square nanosheets were maintained both in hydroxide and oxides. Moreover, under 980 nm laser diode (LD excitation, multicolor output from red to yellow was realized by codoped different lanthanide ions in Lu2O3. It is noteworthy that high pure strong red upconversion emission with red to green ratio of 443.3 of Er-containing nanocrystals was obtained, which is beneficial for in vivo optical bioimaging.

  2. Multi-color femtosecond source for simultaneous excitation of multiple fluorescent proteins in two-photon fluorescence microscopy

    Science.gov (United States)

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G.; Lin, Charles P.; Xu, Chris

    2013-02-01

    Simultaneous imaging of cells expressing multiple fluorescent proteins (FPs) is of particular interest in applications such as mapping neural circuits, tracking multiple immune cell populations, etc. To visualize both in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissues, two-photon fluorescence microscopy (2PM) is a powerful tool that has found wide applications. However, simultaneous imaging of multiple FPs with 2PM is greatly hampered by the lack of proper ultrafast lasers offering multi-color femtosecond pulses, each targeting the two-photon absorption peak of a different FP. Here we demonstrate simultaneous two-photon fluorescence excitation of RFP, YFP, and CFP in human melanoma cells engineered to express a "rainbow" pallet of colors, using a novel fiber-based source with energetic, three-color femtosecond pulses. The three-color pulses, centered at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation of the 1550 nm pump laser and SHG of the solitons at 1728 nm and 1900 nm generated through soliton self-frequency shift (SSFS) of the pump laser in a large-mode-area (LMA) fiber. The resulting wavelengths are well matched to the two-photon absorption peaks of the three FPs for efficient excitation. Our results demonstrate that multi-color femtosecond pulse generation using SSFS and a turn-key, fiber-based femtosecond laser can fulfill the requirements for simultaneous imaging of multiple FPs in 2PM, opening new opportunities for a wide range of biological applications where non-invasive, high-resolution imaging of multiple fluorescent indicators is required.

  3. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  4. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands. PMID:24389590

  5. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    Science.gov (United States)

    Li, Hui; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2017-01-01

    The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host lattice of sodium lutetium fluoride (NaLuF4). We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2) shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm). We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals. PMID:28336867

  6. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range

    Science.gov (United States)

    Yuan, Fanglong; Ding, Ling; Li, Yunchao; Li, Xiaohong; Fan, Louzhen; Zhou, Shixin; Fang, Decai; Yang, Shihe

    2015-07-01

    Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed from the lactone structures under strong alkaline conditions. The fluorescence of the resulting graphene quantum dots was also found to be responsive to the temperature changes, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media.Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed

  7. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

    Directory of Open Access Journals (Sweden)

    Hauptmann Giselbert

    2011-04-01

    Full Text Available Abstract Background In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. Results We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA. Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts

  8. Pd nanoparticles encapsulated in magnetic carbon nanocages: an efficient nanoenzyme for the selective detection and multicolor imaging of cancer cells

    Science.gov (United States)

    Chen, Gaosong; Song, Jingjing; Zhang, Haoli; Jiang, Yuntian; Liu, Weisheng; Zhang, Wei; Wang, Baodui

    2015-08-01

    Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH as a fluorescent and color change reporter molecule for the multicolor imaging and colorimetric detection of cancer cells was developed. We envision that this nanomaterial can be used as a power tool for a wide range of potential applications in biotechnology and medicine.Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH

  9. Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells

    Directory of Open Access Journals (Sweden)

    Kuang Lin-Yun

    2008-10-01

    Full Text Available Abstract Background The investigation of protein-protein interactions is important for characterizing protein function. Bimolecular fluorescence complementation (BiFC has recently gained interest as a relatively easy and inexpensive method to visualize protein-protein interactions in living cells. BiFC uses "split YFP" tags on proteins to detect interactions: If the tagged proteins interact, they may bring the two split fluorophore components together such that they can fold and reconstitute fluorescence. The sites of interaction can be monitored using epifluorescence or confocal microscopy. However, "conventional" BiFC can investigate interactions only between two proteins at a time. There are instances when one may wish to offer a particular "bait" protein to several "prey" proteins simultaneously. Preferential interaction of the bait protein with one of the prey proteins, or different sites of interaction between the bait protein and multiple prey proteins, may thus be observed. Results We have constructed a series of gene expression vectors, based upon the pSAT series of vectors, to facilitate the practice of multi-color BiFC. The bait protein is tagged with the C-terminal portion of CFP (cCFP, and prey proteins are tagged with the N-terminal portions of either Venus (nVenus or Cerulean (nCerulean. Interaction of cCFP-tagged proteins with nVenus-tagged proteins generates yellow fluorescence, whereas interaction of cCFP-tagged proteins with nCerulean-tagged proteins generates blue fluorescence. Additional expression of mCherry indicates transfected cells and sub-cellular structures. Using this system, we have determined in both tobacco BY-2 protoplasts and in onion epidermal cells that Agrobacterium VirE2 protein interacts with the Arabidopsis nuclear transport adapter protein importin α-1 in the cytoplasm, whereas interaction of VirE2 with a different importin α isoform, importin α-4, occurs predominantly in the nucleus. Conclusion Multi-color

  10. Influence of bilayer resist processing on p-i-n OLEDs: towards multicolor photolithographic structuring of organic displays

    Science.gov (United States)

    Krotkus, Simonas; Nehm, Frederik; Janneck, Robby; Kalkura, Shrujan; Zakhidov, Alex A.; Schober, Matthias; Hild, Olaf R.; Kasemann, Daniel; Hofmann, Simone; Leo, Karl; Reineke, Sebastian

    2015-03-01

    Recently, bilayer resist processing combined with development in hydrofluoroether (HFE) solvents has been shown to enable single color structuring of vacuum-deposited state-of-the-art organic light-emitting diodes (OLED). In this work, we focus on further steps required to achieve multicolor structuring of p-i-n OLEDs using a bilayer resist approach. We show that the green phosphorescent OLED stack is undamaged after lift-off in HFEs, which is a necessary step in order to achieve RGB pixel array structured by means of photolithography. Furthermore, we investigate the influence of both, double resist processing on red OLEDs and exposure of the devices to ambient conditions, on the basis of the electrical, optical and lifetime parameters of the devices. Additionally, water vapor transmission rates of single and bilayer system are evaluated with thin Ca film conductance test. We conclude that diffusion of propylene glycol methyl ether acetate (PGMEA) through the fluoropolymer film is the main mechanism behind OLED degradation observed after bilayer processing.

  11. [Diagnosis of numerical chromosomal aberrations in the cells of spontaneous abortions by multicolor fluorescence in situ hybridization (MFISH)].

    Science.gov (United States)

    Vorsanova, S G; Kolotiĭ, A D; Iurov, I Iu; Kirillova, E A; Monakhov, V V; Beresheva, A K; Solov'ev, I V; Iurov, Iu B

    2005-11-01

    According to different estimates, as high as 15-20% of all the pregnancies result in spontaneous abortions (SA) at different gestational periods. Identification of abnormalities leading to SA is of great importance for practical medicine, mainly for medical genetic counseling of married couples with impaired reproductive function. The diagnosis of chromosomal aberrations on the basis of SA materials is known to have a number of methodological difficulties. The present paper deals with the identification of numerical anomalies in the SA material by multicolor fluorescence in situ hybridization (MFISH). This technique using an original collection of DNA probes for chromosomes 1, 9, 13/21, 14/22, 15, 16, 18, X, and Y was applied to the study of chromosomal aberrations in 224 spontaneous abortion specimens. Numerical chromosomal aberrations were found in 122 (54.5%) cases. The cells of all the studied specimens exhibited aneuploidy of chromosome X in 17% cases; chromosome 16 in 12%, chromosomes 13/21 in 5.8%, chromosomes 14/22 in 4.9%, chromosomes 9 and 18 in 1.3% (each), chromosome 15 in 0.9%, chromosome 1 in 0.45%. Polyploidy was detected in 13.3% of cases; concomitant abnormalities were found in 7 cases. Analysis of the findings has led to the conclusion that MFISH can be successfully used in the diagnosis of numerical chromosomal aberrations of CA cells.

  12. Nonlinear Fourier-transform spectroscopy revealing wave-packet dynamics of D+2 with multicolor harmonic field

    Science.gov (United States)

    Nabekawa, Yasuo; Furukawa, Yusuke; Okino, Tomoya; Amani Eilanlou, A.; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2014-04-01

    We report on a series of studies concerning D2 molecules irradiated by high-harmonic pulses generated from intense femtosecond laser pulses. The kinetic energy (KE) spectrum of dissociated D+ ion fragments with a scanning delay between two replica harmonic pulses exhibits specific characteristics that are completely different from a conventional interferometric autocorrelation signal. We have successfully determined and separated three distinct ionization/dissociation processes by analyzing KE-resolved interferometric fringes by Fourier transform. We call this method for analyzing the KE spectrum of ion fragments "nonlinear Fourier-transform spectroscopy (NFTS)." NFTS provides us molecular information in stationary states because it is intrinsically a frequency domain analysis. Nevertheless, we have resolved the real-time evolution of the vibrational wavepacket of D+ ions with a period of 22 fs by shortening the pulse duration of the fundamental laser pulse to 12 fs and extending the scanning delay range of two harmonic pulses to 150 fs. The probing process of the wavepacket can be described as a model with one-photon absorption of a multicolor harmonic field. We discuss a possible method of reconstructing the phase and magnitude of the wavepacket from the measured delay-KE spectrogram.

  13. Habitat diversity of the Multicolored Asian ladybeetle Harmonia axyridis Pallas (Coleoptera: Coccinellidae in agricultural and arboreal ecosystems: a review

    Directory of Open Access Journals (Sweden)

    Vandereycken, A.

    2012-01-01

    Full Text Available The Multicolored Asian ladybeetle, Harmonia axyridis (Pallas, native to Asia, is an invasive species in many European and American countries. Initially introduced as a biological control agent against aphids and coccids in greenhouses, this alien species rapidly invaded many habitats such as forests, meadows, wetlands, and agricultural crops. This paper reviews the habitats (forests, crops, herbs, gardens and orchards where H. axyridis has been observed, either during insect samplings or as part of Integrated Pest Management (IPM programs. Studies have referenced H. axyridis on 106 plant taxa (35 arboreal species, 21 crop species, 27 herbaceous species, 11 ornamental species, and 12 orchard species and have identified 89 plant-prey relationships (34 arboreal species, 16 crop species, 13 herbaceous species, 10 ornamental species, and 16 orchard species in different countries. Harmonia axyridis is more abundant in forest areas, principally on Acer, Salix, Tilia and Quercus, than in agroecosystems. Some plant species, such as Urtica dioica L., which surround crops, contain large numbers of H. axyridis and could constitute important reserves of this alien species in advance of aphid invasions into crops. This review highlights the polyphagy and eurytopic aspect of H. axyridis.

  14. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system.

    Science.gov (United States)

    Huang, Wei; Deng, Yuequan; He, Yi

    2017-05-15

    Here we report a unique visual colorimetric sensor array for discrimination of antioxidants in serum based on MnO2 nanosheets-3,3',5,5'-tetramethylbenzidine (TMB) multicolor chromogenic system. The absorbance values of the system at 370, 450, and 650nm provide three cross-reactive sensing elements. The presence of antioxidant will inhibit the reaction between TMB and MnO2 nanosheets due to the presence of the competitive reaction of MnO2 nanosheets and antioxidants. Different antioxidants containing uric acid, glutathione, ascorbic acid, cysteine, and melatonin have distinct reducing ability, producing a differential inhibition of MnO2 nanosheets-TMB system, and therefore generating distinct colorimetric response patterns at 370, 450, and 650nm. The obtained patterns for each antioxidant at a concentration of 20μM were successfully discriminated using principal component analysis both in buffer and when spiked into fetal bovine serum (FBS). The identification accuracy of 45 unknown samples was found to be 100%. Remarkably, this sensor assay can visually discriminate antioxidants in diluted FBS with the naked eye. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Toxicity of indoxacarb and spinosad to the multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), via three routes of exposure.

    Science.gov (United States)

    Galvan, Tederson L; Koch, Robert L; Hutchison, William D

    2006-09-01

    The use of selective insecticides may improve conservation of natural enemies and therefore contribute to the success of integrated pest management (IPM) programs. In this study, the toxicity of two commonly used selective insecticides, indoxacarb and spinosad, to the multicolored Asian lady beetle, Harmonia axyridis (Pallas), was evaluated. Third instars and adults of H. axyridis were exposed to indoxacarb at 50 and 100% of the field rate (FR), to spinosad at 100% FR and to water (untreated check) under laboratory conditions via three routes of exposure. Treatments were applied directly on insects (i.e., topical application), on Petri dishes (i.e., residues), or on soybean aphids, Aphis glycines Matsumara (i.e., treated prey). Mortality of exposed individuals in each life stage was recorded 2 and 7 days after treatment. Logistic regression indicated that indoxacarb at 100% FR, followed by indoxacarb at 50% FR, was more insecticidal than spinosad to third instars. Mortality was higher when H. axyridis were exposed to both insecticides via residues followed by treated prey. Indoxacarb at 100 or 50% FR was insecticidal to adults. Adults were tolerant to spinosad via all routes of exposure. The present results suggest that indoxacarb may decrease H. axyridis field populations by causing mortality to larvae and adults via all routes of exposure. Implications of the toxicity of indoxacarb to H. axyridis within an IPM context and possible reasons for the differences in susceptibility of H. axyridis for each route of exposure are discussed. Copyright 2006 Society of Chemical Industry.

  16. Toxicity of commonly used insecticides in sweet corn and soybean to multicolored Asian lady beetle (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Galvan, T L; Koch, R L; Hutchison, W D

    2005-06-01

    Use of insecticides with low toxicity to natural enemies is an important component of conservation biological control. In this study, we evaluated the toxicity of insecticides used in sweet corn, Zea mays L., and soybean, Glycine max (L.) Merr., to the multicolored Asian lady beetle, Harmonia axyridis (Pallas), under laboratory and field conditions. Field experiments conducted in sweet corn in 2003 and 2004 and in soybean in 2003, showed that H. axyridis was the most abundant predator. In sweet corn, densities of H. axyridis larvae in plots treated with spinosad or indoxacarb were generally higher than in plots treated with chlorpyrifos, carbaryl, bifenthrin, and A-cyhalothrin. In soybean, densities of H. axyridis larvae in plots treated with chlorpyrifos were higher than in plots treated with lambda-cyhalothrin. Laboratory experiments were conducted to evaluate the acute toxicity of insecticides to eggs, first and third instars, pupae, and adults. Spinosad, followed by indoxacarb, were the least toxic insecticides for all life stages of H. axyridis. Conventional insecticides showed high toxicity to H. axyridis when applied at field rates under laboratory conditions. Overall, first instars were most susceptible to the insecticides tested, followed by third instars and adults, eggs, and pupae. Our results suggest that spinosad, and to a lesser extent indoxacarb, offer reduced toxicity to H. axyridis and would be beneficial for conservation biological control in agricultural systems where H. axyridis is abundant.

  17. Identification of (-)-beta-caryophyllene as a gender-specific terpene produced by the multicolored Asian lady beetle.

    Science.gov (United States)

    Brown, Ashli E; Riddick, Eric W; Aldrich, Jeffrey R; Holmes, William E

    2006-11-01

    This work reports the development and use of techniques for characterizing volatile chemicals emitted by the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in an effort to identify the semiochemicals involved in establishment and persistence of overwintering beetle aggregations. Volatiles emitted from live beetles were detected by using whole-air sampling and solid-phase microextraction (SPME). Adsorbed volatiles were thermally desorbed and identified with gas chromatography-mass spectrometry (GC/MS). By comparing the chromatograms of volatiles emitted from live male and female beetles, a sesquiterpene, (-)-beta-caryophyllene, was found only in the females. The identity of (-)-beta-caryophyllene was confirmed by using NIST Library searches, comparing retention times with those of known standards, and by using higher-resolution GC/MS above bench top capability. Although SPME trapping detected a wider array of compounds compared to whole-air sampling, the latter method is better suited for automation. Unattended automated sampling is required for the continuous measurement of targeted compounds under dynamically changing incubation conditions. These conditions, mimicking natural overwintering conditions, are essential to our long-term goal of using this technology to detect and identify the aggregation pheromone of H. axyridis.

  18. A simple method for in-field sex determination of the multicolored Asian lady beetle Harmonia axyridis.

    Science.gov (United States)

    McCornack, B P; Koch, R L; Ragsdale, D W

    2007-01-01

    The multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), has become a popular study organism due to its promise as a biological control agent and its potential adverse, non-target impacts. Behavioral and ecological research on H. axyridis, including examinations of its impacts, could benefit from non-destructive or non-disruptive sexing techniques for this coccinellid. External morphological characters were evaluated for H. axyridis (succinea color form) sex determination in laboratory and field studies. The shape of the distal margin of the fifth visible abdominal sternite accurately predicted H. axyridis sex for all beetles examined. Males consistently had a concave distal margin, while females had a convex distal margin. In addition, pigmentation of the labrum and prosternum were both significantly associated with H. axyridis sex; males had light pigmentation and females had dark pigmentation. Labrum and prosternum pigmentation increased from light to dark with decreasing rearing temperature and increasing time after adult eclosion for females. Male pigmentation was only affected by a decrease in rearing temperature. Validation through in-field collections indicated that these predictors were accurate. However, labrum pigmentation is a more desirable character to use to determine sex, because it is more accurate and easily accessible. Therefore, we recommend using labrum pigmentation for in-field sex determination of H. axyridis. Implications of this diagnostic technique for applied and basic research on this natural enemy are discussed.

  19. STUDY OF MINIMAL RESIDUAL DISEASE BY MULTICOLOR FLOW CYTOMETRY IN MULTIPLE MYELOMA AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    I. V. Galtseva

    2017-01-01

    Full Text Available The frequency of achieving complete remission, as well as overall and disease-free survival, in multiple myeloma (MM had increased due to introduction in MM treatment regimens of high-dose chemotherapy with following autologous hematopoietic stem cell transplantation (ASCT. However the number of relapses remains high, caused by persistence of residual tumor cells, i.e., the presence of minimal residual disease (MRD. One of the methods for MRD study is multicolor flow cytometry (MFC where abnormal expression of surface antigens on myeloma plasma cells (PC is determined. The aim of our study was to investigate the MRD by MFC before and after ASCT, the frequency of MRD-negative status achievement in complete remission (CR patients at +100 days after ASCT and the frequency of abnormal expressed antigens on myeloma plasma cells. The study included40 MMpatients in CR at +100 days after ASCT and showed that the most common aberrations of PC were: abnormal absence of CD19 and/or CD27, decreased expression of CD38 and abnormal presence of CD56. The proportion of myeloma PCs from all bone marrow cells decreased significantly after ASCT: 20 % of patients acquired MRD-negative status, 10 % had a decrease in the number of abnormal PCs by one fold. Analysis of probability of immunochemical relapse showed that the worst prognosis was in patients with MRD-positive status before and after ASCT. During the MRD monitoring within 3-18 months, MRD-relapses were detected with the subsequent development of immunochemical relapse. The detection MRD in the dynamics is more informative than the study at only one step of therapy. It may help to select more adequate treatment for patient with multiple myeloma in each specific case. 

  20. Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries.

    Science.gov (United States)

    Liehr, T; Weise, A; Heller, A; Starke, H; Mrasek, K; Kuechler, A; Weier, H-U G; Claussen, U

    2002-01-01

    Multicolor chromosome banding (MCB) allows the delineation of chromosomal regions with a resolution of a few megabasepairs, i.e., slightly below the size of most visible chromosome bands. Based on the hybridization of overlapping region-specific probe libraries, chromosomal subregions are hybridized with probes that fluoresce in distinct wavelength intervals, so they can be assigned predefined pseudo-colors during the digital imaging and visualization process. The present study demonstrates how MCB patterns can be produced by region-specific microdissection derived (mcd) libraries as well as collections of yeast or bacterial artificial chromosomes (YACs and BACs, respectively). We compared the efficiency of an mcd library based approach with the hybridization of collections of locus-specific probes (LSP) for fluorescent banding of three rather differently sized human chromosomes, i.e., chromosomes 2, 13, and 22. The LSP sets were comprised of 107 probes specific for chromosome 2, 82 probes for chromosome 13, and 31 probes for chromosome 22. The results demonstrated a more homogeneous coverage of chromosomes and thus, more desirable banding patterns using the microdissection library-based MCB. This may be related to the observation that chromosomes are difficult to cover completely with YAC and/or BAC clones as single-color fluorescence in situ hybridization (FISH) experiments showed. Mcd libraries, on the other hand, provide high complexity probes that work well as region-specific paints, but do not readily allow positioning of breakpoints on genetic or physical maps as required for the positional cloning of genes. Thus, combinations of mcd libraries and locus-specific large insert DNA probes appear to be the most efficient tools for high-resolution cytogenetic analyses. Copyright 2002 S. Karger AG, Basel

  1. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk.

    Science.gov (United States)

    Song, Erqun; Yu, Mengqun; Wang, Yunyun; Hu, Weihua; Cheng, Dan; Swihart, Mark T; Song, Yang

    2015-10-15

    Antibiotic residues, which are among the most common contaminants in animal-based food products such as milk, have become a significant public health concern. Here, we combine a multicolor quantum dot (QD)-based immunofluorescence assay and an array analysis method to achieve simultaneous, sensitive and visual detection of streptomycin (SM), tetracycline (TC), and penicillin G (PC-G) in milk. Antibodies (Abs) for SM, TC and PC-G were conjugated to QDs with different emission wavelengths (QD 520 nm, QD 565 nm and QD 610 nm) to serve as detection probes (QD-Ab). Then a direct competitive fluorescent immunoassay was performed in antigen-coated microtiter plate wells for simultaneous qualitative and quantitative detection of SM, TC, and PC-G residues, based on fluorescence of the QD-Ab probes. The linear ranges for SM, TC and PC-G were 0.01-25 ng/mL, 0.01-25 ng/mL and 0.01-10 ng/mL, respectively, with detection limit of 5 pg/mL for each of them. Based on fluorescence of the QD-Ab probes, residues of the three antibiotics were determined visually and simultaneously. Compared with a commercial enzyme-linked immunosorbent assay kit, our method could achieve simultaneous analysis of multiple target antibiotics in multiple samples in a single run (high-throughput analysis) and improved accuracy and sensitivity for analysis of residues of the three antibiotics in authentic milk samples. This new analytical tool can play an important role in ameliorating the negative impact of the residual antibiotics on human health and the ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sensitive Detection of Cell Surface Membrane Proteins in Living Breast Cancer Cells Using Multicolor Fluorescence Microscopy with a Plasmonic Chip.

    Science.gov (United States)

    Tawa, Keiko; Yamamura, Shohei; Sasakawa, Chisato; Shibata, Izumi; Kataoka, Masatoshi

    2016-11-09

    A plasmonic chip was applied to live cancer cell imaging. The epithelial cell adhesion molecule (EpCAM) is a surface marker that can be used to classify breast cancer cell lines into distinct differentiation states. EpCAM and the nuclei of two kinds of living breast cancer cells, MDA-MB231 and MCF-7, were stained with allophycocyanin (APC)-labeled anti-EpCAM antibody and 4',6-diamidino-2-phenylindole (DAPI), respectively, and the cells were scattered on either a plasmonic chip (metal-coated wavelength-scale grating substrate) or a control glass slide. Multicolor fluorescence microscopic imaging allowed fluorescence images of APC-EpCAM to be obtained on the plasmonic chip that were more than 10 times brighter compared with those on the glass slide. In contrast, in the fluorescence images of DAPI-stained nuclei, no difference in brightness was observed between substrates. The fluorescence enhancement of APC-EpCAM in the cell membrane in contact with the plasmonic chip is thought to be due to the excitation of APC molecules localized within the surface plasmon field. Analysis of the cross section of a fluorescence image revealed a distribution of EpCAM at a higher level of fluorescence in the center of the cell image because of contact between the cell membrane and the plasmonic chip. In contrast, fluorescence images of APC-EpCAM taken on a glass slide were so dark that only the outline of the cell was characterized. The plasmonic chip thus constitutes a simple and powerful tool for analyzing the distribution and kinetics of surface marker proteins in cell membranes contacting the chip.

  3. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis.

    Directory of Open Access Journals (Sweden)

    Darin Bloemberg

    Full Text Available Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA, succinate dehydrogenase (SDH activity, and α-glycerophosphate dehydrogenase (GPD activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.

  4. Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles.

    Science.gov (United States)

    Lai, Jinping; Shah, Birju P; Zhang, Yixiao; Yang, Letao; Lee, Ki-Bum

    2015-05-26

    Stimuli-responsive drug delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with integrated real-time monitoring capabilities is still in its nascent stage because of the limitations of imaging modalities. In this paper, we describe the development of a polypeptide-wrapped mesoporous-silica-coated multicolor upconversion nanoparticle (UCNP@MSN) as an adenosine triphosphate (ATP)-responsive drug delivery system (DDS) for long-term tracking and real-time monitoring of drug release. Our UCNP@MSN with multiple emission peaks in UV-NIR wavelength range was functionalized with zinc-dipicolylamine analogue (TDPA-Zn(2+)) on its exterior surface and loaded with small-molecule drugs like chemotherapeutics in interior mesopores. The drugs remained entrapped within the UCNP-MSNs when the nanoparticles were wrapped with a compact branched polypeptide, poly(Asp-Lys)-b-Asp, because of multivalent interactions between Asp moieties present in the polypeptide and the TDPA-Zn(2+) complex present on the surface of UCNP-MSNs. This led to luminescence resonance energy transfer (LRET) from the UCNPs to the entrapped drugs, which typically have absorption in UV-visible range, ultimately resulting in quenching of UCNP emission in UV-visible range while retaining their strong NIR emission. Addition of ATP led to a competitive displacement of the surface bound polypeptide by ATP due to its higher affinity to TDPA-Zn(2+), which led to the release of the entrapped drugs and subsequent elimination of LRET. Monitoring of such ATP-triggered ratiometric changes in LRET allowed us to monitor the release of the entrapped drugs in real-time. Given these results, we envision that our proposed UCNP@MSN-polypeptide hybrid nanoparticle has great potential for stimuli-responsive drug delivery as well as for monitoring biochemical changes taking place in live cancer

  5. Enumerative and binomial sequential sampling plans for the multicolored Asian lady beetle (Coleoptera: Coccinellidae) in wine grapes.

    Science.gov (United States)

    Galvan, T L; Burkness, E C; Hutchison, W D

    2007-06-01

    To develop a practical integrated pest management (IPM) system for the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in wine grapes, we assessed the spatial distribution of H. axyridis and developed eight sampling plans to estimate adult density or infestation level in grape clusters. We used 49 data sets collected from commercial vineyards in 2004 and 2005, in Minnesota and Wisconsin. Enumerative plans were developed using two precision levels (0.10 and 0.25); the six binomial plans reflected six unique action thresholds (3, 7, 12, 18, 22, and 31% of cluster samples infested with at least one H. axyridis). The spatial distribution of H. axyridis in wine grapes was aggregated, independent of cultivar and year, but it was more randomly distributed as mean density declined. The average sample number (ASN) for each sampling plan was determined using resampling software. For research purposes, an enumerative plan with a precision level of 0.10 (SE/X) resulted in a mean ASN of 546 clusters. For IPM applications, the enumerative plan with a precision level of 0.25 resulted in a mean ASN of 180 clusters. In contrast, the binomial plans resulted in much lower ASNs and provided high probabilities of arriving at correct "treat or no-treat" decisions, making these plans more efficient for IPM applications. For a tally threshold of one adult per cluster, the operating characteristic curves for the six action thresholds provided binomial sequential sampling plans with mean ASNs of only 19-26 clusters, and probabilities of making correct decisions between 83 and 96%. The benefits of the binomial sampling plans are discussed within the context of improving IPM programs for wine grapes.

  6. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH.

    Science.gov (United States)

    Sepsi, A; Molnár, I; Szalay, D; Molnár-Láng, M

    2008-04-01

    In situ hybridization (multicolor GISH and FISH) was used to characterize the genomic composition of the wheat-Thinopyrum ponticum partial amphiploid BE-1. The amphiploid is a high-protein line having resistance to leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) and has in total 56 chromosomes per cell. Multicolor GISH using J, A and D genomic probes showed 16 chromosomes originating from Thinopyrum ponticum and 14 A genome, 14 B genome and 12 D genome chromosomes. Six of the Th. ponticum chromosomes carried segments different from the J genome in their centromeric regions. It was demonstrated that these alien chromosome segments did not originate from the A, B or D genomes of wheat, so the translocation chromosomes were considered to be J(s) type chromosomes carrying segments similar to the S genome near the centromeres. Rearrangements between the A and D genomes of wheat were detected. FISH using Afa family, pSc119.2 and pTa71 probes allowed the identification of all the wheat chromosomes present and the determination of the chromosomes involved in the translocations. The 4A and 7A chromosomes were identified as being involved in intergenomic translocations. The replaced wheat chromosome was identified as 7D. The localization of these repetitive DNA clones on the Th. ponticum chromosomes of the amphiploid was described in the present study. On the basis of their multicolor FISH patterns, the alien chromosomes could be arranged in eight pairs and could also be differentiated unequivocally from each other.

  7. A combined experimental and simulation study on thickness dependence of the emission characteristics in multicolor single layer organic light-emitting diodes

    Science.gov (United States)

    Stathopoulos, N. A.; Vasilopoulou, M.; Palilis, L. C.; Georgiadou, D. G.; Argitis, P.

    2008-08-01

    The impact of the active layer thickness on the emission characteristics of multicolor single layer organic light-emitting diodes based on poly(9-vinylcarbazole) is examined by combining experimental results with model simulations. We compare experimental electroluminescence spectra with simulations using photon-emitting point dipoles and find a very good agreement. We also simulate the location of the recombination zone, considering that the emission probability distribution has a peak located 25 nm from the cathode, which decays exponentially above and below that point. Simulated radiation patterns show that microcavity effects dominate the thickness dependent emitting properties of these devices.

  8. Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors

    Science.gov (United States)

    2015-08-27

    infrared multi-color photodetector based on II-VI and III-V semiconductors. This photodetector consists of a newly-proposed CdTe /ZnTe/ CdTe nBn sub...perfectly conductive n- CdTe /p-InSb tunnel junction. 15. SUBJECT TERMS optical biasing; multi-junction photodetectors; triple-junction solar cell...Figure from Ref. [7].  Large-signal characteristics are measured with a single 780 nm laser diode at 100% modulation factor and 50% duty cycle [7

  9. Four-dimensional imaging in radiotherapy for lung cancer patients

    NARCIS (Netherlands)

    Wolthaus, J.W.H.

    2009-01-01

    Lung cancer is the most common cause of cancer related death. Overall survival is often poor after treatment with conventional radiotherapy. Improvements may be obtained by increasing the radiation dose; however, this can lead to unacceptable complications of healthy organs in or near the

  10. Four-dimensional N=1F[R] supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Hitoshi, E-mail: hnishino@csulb.ed [Department of Physics and Astronomy, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840 (United States); Rajpoot, Subhash, E-mail: rajpoot@csulb.ed [Department of Physics and Astronomy, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840 (United States)

    2010-04-19

    We propose a supersymmetric generalization of f[R] gravity, calling it F[R] supergravity. We adopt the so-called unimodular supergravity (UMSG). We first give an explicitly invariant Lagrangian L{sub inv}ident toL{sub SG}+L{sub H} in dimensions 2<={sup forall} D<=11, where L{sub H} is linear in the D-form field strength H=dC, while L{sub SG} is the ordinary supergravity Lagrangian. We then establish the total Lagrangian L{sub tot}ident toeF[e{sup -1}L{sub inv}]+L{sub C}, with the constraint term L{sub C} for the UMSG formulation. As an explicit example, we study N=1 supergravity in four dimensions (4D). We show that the solutions to the field equations for conventional L{sub SG} satisfy the field equation of the new system with L{sub tot}. Since the function F[e{sup -1}L{sub inv}] is an arbitrary (non)polynomial function of e{sup -1}L{sub inv}, there can be many other solutions, including those for non-supersymmetric f[R] gravity.

  11. Generalized conifolds and four dimensional $N=1$ superconformal theories

    CERN Document Server

    Gubser, Steven; Shatashvili, Samson; Gubser, Steven; Nekrasov, Nikita; Shatashvili, Samson

    1999-01-01

    We consider D3-branes placed at singularities of Calabi-Yau threefolds which generalize the conifold singularity and have an ADE classification. The $\\CN=1$ superconformal theories dictating their low-energy dynamics are infrared fixed points arising from deforming the corresponding ADE $\\CN=2$ superconformal field theories by mass terms for adjoint chiral fields. We probe the geometry by a single $D3$-brane and discuss the near-horizon supergravity solution for a large number $N$ of coincident $D3$-branes.

  12. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Daria, Vincent Ricardo Mancao; Glückstad, Jesper

    2010-01-01

    The technical development of optical tweezers, along with their application in the biological and physical sciences, has progressed significantly since the demonstration of an optical trap for micron-sized particles based on a single, tightly focused laser beam was first reported more than twenty...... of the best in the field, this compendium presents important historical and current developments of optical tweezers in a range of scientific areas, from the manipulation of bacteria to the treatment of DNA....

  13. New four-dimensional integrals by Mellin-Barnes transform

    Science.gov (United States)

    Allendes, Pedro; Guerrero, Natanael; Kondrashuk, Igor; Notte Cuello, Eduardo A.

    2010-05-01

    This paper is devoted to the calculation of a special class of integrals by Mellin-Barnes transform. It contains double integrals in the position space in d =4-2ɛ dimensions, where ɛ is parameter of dimensional regularization. These integrals contribute to the effective action of the N =4 supersymmetric Yang-Mills theory. The integrand is a fraction in which the numerator is the logarithm of the ratio of space-time intervals, and the denominator is the product of powers of space-time intervals. According to the method developed in the previous papers, in order to make use of the uniqueness technique for one of two integrations, we shift exponents in powers in the denominator of integrands by some multiples of ɛ. As the next step, the second integration in the position space is done by Mellin-Barnes transform. For normalizing procedure, we reproduce first the known result obtained earlier by Gegenbauer polynomial technique. Then, we make another shift of exponents in powers in the denominator to create the logarithm in the numerator as the derivative with respect to the shift parameter δ. We show that the technique of work with the contour of the integral modified in this way by using Mellin-Barnes transform repeats the technique of work with the contour of the integral without such a modification. In particular, all the operations with a shift of contour of integration over complex variables of twofold Mellin-Barnes transform are the same as before the δ modification of indices, and even the poles of residues coincide. This confirms the observation made in the previous papers that in the position space all the Green's function of N =4 supersymmetric Yang-Mills theory can be expressed in terms of Usyukina-Davydychev functions.

  14. Four-dimensional conversion for spiritual leadership development: A ...

    African Journals Online (AJOL)

    2014-04-14

    dimensional transformation of people can be planned and carried out both in the church arena and in the surrounding communities. Skills development and transfer can also take place when skilled people from the church work ...

  15. Affine group representation formalism for four dimensional, Lorentzian, quantum gravity

    CERN Document Server

    Ching-Yi, Chou; Soo, Chopin

    2012-01-01

    The Hamiltonian constraint of 4-dimensional General Relativity is recast explicitly in terms of the Chern--Simons functional and the local volume operator. In conjunction with the algebraic quantization program, application of the affine quantization concept due to Klauder facilitates the construction of solutions to all of the the quantum constraints in the Ashtekar variables and their associated Hilbert space. A physical Hilbert space is constructed for Lorentzian signature gravity with nonzero cosmological constant in the form of unitary, irreducible representations of the affine group.

  16. The transfer matrix in four-dimensional CDT

    OpenAIRE

    Ambjorn, Jan; Gizbert-Studnicki, Jakub; Görlich, Andrzej; Jurkiewicz, Jerzy

    2012-01-01

    The Causal Dynamical Triangulation model of quantum gravity (CDT) has a transfer matrix, relating spatial geometries at adjacent (discrete lattice) times. The transfer matrix uniquely determines the theory. We show that the measurements of the scale factor of the (CDT) universe are well described by an effective transfer matrix where the matrix elements are labeled only by the scale factor. Using computer simulations we determine the effective transfer matrix elements and show how they relate...

  17. Four dimensional characterisation of creep cavity growth in copper

    OpenAIRE

    Dzieciol, Krzysztof Piotr

    2010-01-01

    Kontinuumsmodelle der Kriechschädigung basieren auf verschiedenen mikroskopischen Größen wie zum Beispiel das mittlere Volumen oder der Flächenanteil der Hohlräume. Ermittlung dieser Parameter mit Hilfe von früheren experimentellen Methoden konnte aufgrund ihrer destruktiven Natur nur schwierig erfolgen. Diese Arbeit präsentiert ein neues Konzept der Schädigungscharakterisierung, die mit Hilfe von "in situ" Mikrotomographie erfolgt. Es wurde zum ersten Mal möglich die Überprüfung ...

  18. Geometrical frustration: A study of four-dimensional hard spheres

    NARCIS (Netherlands)

    van Meel, J.A.; Frenkel, D.; Charbonneau, P.

    2009-01-01

    The smallest maximum-kissing-number Voronoi polyhedron of three-dimensional (3D) Euclidean spheres is the icosahedron, and the tetrahedron is the smallest volume that can show up in Delaunay tessellation. No periodic lattice is consistent with either, and hence these dense packings are geometrically

  19. Unmanned Aerial System Four-Dimensional Gunnery Training Device Development

    Science.gov (United States)

    2017-10-01

    hand puppets” and white board drawings as a means to inform the students. As to the second, possible training solutions, we identified that...with two different colors illustrated the missile flyout and terminal guidance time. To this end, we elected to depict the missile flyout by...Combat Aviation Gunnery: TOF is based on the range to target from the firing platform. The change in color to a darker shade illustrated the

  20. Determining intrafractional prostate motion using four dimensional ultrasound system

    DEFF Research Database (Denmark)

    Baker, Mariwan; Behrens, Claus F.

    2016-01-01

    Background: In prostate radiotherapy, it is essential that the prostate position is within the planned volume during the treatment delivery. The aim of this study is to investigate whether intrafractional motion of the prostate is of clinical consequence, using a novel 4D autoscan ultrasound prob...

  1. Conformal Killing Vectors Of Plane Symmetric Four Dimensional Lorentzian Manifolds

    CERN Document Server

    Khan, Suhail; Bokhari, Ashfaque H; Khan, Gulzar Ali; Mathematics, Department of; Peshawar, University of; Pakhtoonkhwa, Peshawar Khyber; Pakistan.,; Petroleum, King Fahd University of; Minerals,; 31261, Dhahran; Arabia, Saudi

    2015-01-01

    In this paper, we investigate conformal Killing's vectors (CKVs) admitted by some plane symmetric spacetimes. Ten conformal Killing's equations and their general forms of CKVs are derived along with their conformal factor. The existence of conformal Killing's symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. Considering the cases of time-like and inheriting CKVs, we obtain spacetimes admitting plane conformal symmetry. Integrability conditions are solved completely for some known non-conformally flat and conformally flat classes of plane symmetric spacetimes. A special vacuum plane symmetric spacetime is obtained, and it is shown that for such a metric CKVs are just the homothetic vectors (HVs). Among all the examples considered, there exists only one case with a six dimensional algebra of special CKVs admitting one proper CKV. In all other examples of non-conformally flat metrics, no proper ...

  2. Dynamic four-dimensional microscope system with automated background leveling

    Science.gov (United States)

    Goldstein, Goldie; Creath, Katherine

    2012-09-01

    This paper describes recent advances in developing an automatic background leveling algorithm for a new, novel interference microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. "Label-free" measurements of biological objects in reflection using harmless light levels are possible without the need for scanning and vibration isolation. This instrument utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns taking advantage of the polarization properties of light enabling phase image movies in real time at video rates to track dynamic motions and volumetric changes. Optical thickness data are derived from phase images. This data is processed with an automatic background leveling routine which separates the objects from the background by thresholding the calculated gradient magnitude of the optical thickness data. Low-order Zernike surfaces are fit to the unmasked background pixels and the resulting background shape is removed. This method effectively eliminates background shape for datasets containing both large and small objects. By applying this method to many sequential frames, it results in all the frames having the same mean background value across all frames which is essential for quantitatively montoring time-dependent processes.

  3. Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer.

    Science.gov (United States)

    Longmire, Michelle; Kosaka, Nobuyuki; Ogawa, Mikako; Choyke, Peter L; Kobayashi, Hisataka

    2009-06-01

    One of the primary goals of oncological molecular imaging is to accurately identify and characterize malignant tissues in vivo. Currently, molecular imaging relies on targeting a single molecule that while overexpressed in malignancy, is often also expressed at lower levels in normal tissue, resulting in reduced tumor to background ratios. One approach to increasing the specificity of molecular imaging in cancer is to use multiple probes each with distinct fluorescence to target several surface antigens simultaneously, in order to identify tissue expression profiles, rather than relying on the expression of a single target. This next step forward in molecular imaging will rely on characterization of tissue based on fluorescence and therefore will require the ability to simultaneously identify several optical probes each attached to different targeting ligands. We created a novel 'coincident' ovarian cancer mouse model by coinjecting each animal with two distinct cell lines, HER2+/red fluorescent protein (RFP)- SKOV3 and HER2-/RFP+ SHIN3-RFP, in order to establish a model of disease in which animals simultaneously bore tumors with two distinct phenotypes (HER2+/RFP-, HER2-/RFP+), which could be utilized for multicolor imaging. The HER2 receptor of the SKOV3 cell line was targeted with a trastuzumab-rhodamine green conjugate to create green tumor implants, whereas the RFP plasmid of the SHIN3 cells created red tumor implants. We demonstrate that real-time in vivo multicolor imaging is feasible and that fluorescence characteristics can then serve to guide the surgical removal of disease.

  4. Multicolor Emission Tuning and Red/Green Ratio Enhancement of Yb3+/Er3+ Codoped KGdF4 Upconversion Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xionger Qiu

    2015-01-01

    Full Text Available Herein, a series of KGdF4:Yb3+/Er3+ upconversion nanoparticles (UCNPs were synthesized through a one-pot hydrothermal method using polyethylene glycol (PEG as capping ligands. The phase and microstructure studies show all these as-prepared UCNPs are pure cubic phase and uniformed nanoparticle shape by changing the doped Yb3+ concentration from 18% to 98%. The as-prepared UCNPs can realize the multicolor emissions from yellow to red and the red-to-green (R/G ratio can be enhanced from 2.05 to 8.35 when Yb3+ varies from 18% to 98%. In addition, the proposed upconversion (UC mechanisms of these PEGylated UCNPs are investigated in detail. The realization of multicolor tuning and enhanced R/G ratio by only increasing the doping concentration of Yb3+ ions in KGdF4 host indicates that the PEGylated KGdF4:Yb3+/Er3+ UCNPs can find their application on lighting devices, anticounterfeit technology, and even bioimaging field.

  5. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    Science.gov (United States)

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  6. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

    Directory of Open Access Journals (Sweden)

    Tien Chye Tan

    Full Text Available Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D

  7. Multicolor, Fluorescent Supercapacitor Fiber.

    Science.gov (United States)

    Liao, Meng; Sun, Hao; Zhang, Jing; Wu, Jingxia; Xie, Songlin; Fu, Xuemei; Sun, Xuemei; Wang, Bingjie; Peng, Huisheng

    2017-10-05

    Fiber-shaped supercapacitors have attracted broad attentions from both academic and industrial communities due to the demonstrated potentials as next-generation power modules. However, it is important while remains challenging to develop dark-environment identifiable supercapacitor fibers for enhancement on operation convenience and security in nighttime applications. Herein, a novel family of colorful fluorescent supercapacitor fibers has been produced from aligned multi-walled carbon nanotube sheets. Fluorescent dye particles are introduced and stably anchored on the surfaces of aligned multi-walled carbon nanotubes to prepare hybrid fiber electrodes with a broad range of colors from red to purple. The fluorescent component in the dye introduces fluorescent indication capability to the fiber, which is particularly promising for flexible and wearable devices applied in dark environment. In addition, the colorful fluorescent supercapacitor fibers also maintain high electrochemical performance under cyclic bending and charge-discharge processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multicolor detection of every chromosome as a means of detecting mosaicism and nuclear organization in human embryonic nuclei.

    Science.gov (United States)

    Turner, Kara; Fowler, Katie; Fonseka, Gothami; Griffin, Darren; Ioannou, Dimitrios

    2016-06-01

    Fluorescence in-situ hybridization (FISH) revolutionized cytogenetics using fluorescently labelled probes with high affinity with target (nuclear) DNA. By the early 1990s FISH was adopted as a means of preimplantation genetic diagnosis (PGD) sexing for couples at risk of transmitting X-linked disorders and later for detection of unbalanced translocations. Following a rise in popularity of PGD by FISH for sexing and the availability of multicolor probes (5-8 colors), the use of FISH was expanded to the detection of aneuploidy and selective implantation of embryos more likely to be euploid, the rationale being to increase pregnancy rates (referral categories were typically advanced maternal age, repeated IVF failure, repeated miscarriage or severe male factor infertility). Despite initial reports of an increase in implantation rates, reduction in trisomic offspring and spontaneous abortions criticism centered around experimental design (including lack of randomization), inadequate control groups and lack of report on live births. Eleven randomized control trials (RCTs) (2004-2010) showed that preimplantation genetic screening (PGS) with FISH did not increase delivery rates with some demonstrating adverse outcomes. These RCTs, parallel improvements in culturing and cryopreservation and a shift to blastocyst biopsy essentially outdated FISH as a tool for PGS and it has now been replaced by newer technologies (array CGH, SNP arrays, qRT-PCR and NGS). Cell-by-cell follow up analysis of individual blastomeres in non-transferred embryos is however usually prohibitively expensive by these new approaches and thus FISH remains an invaluable resource for the study of mosaicism and nuclear organization. We thus developed the approach described herein for the FISH detection of chromosome copy number of all 24 human chromosomes. This approach involves 4 sequential layers of hybridization, each with 6 spectrally distinct fluorochromes and a bespoke capturing system. Here we report

  9. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); Su, Cheng-Yong [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou (China)

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Diseño de un panel multicolor para evaluar moléculas intracelulares y de superficie mediante citometría de flujo

    Directory of Open Access Journals (Sweden)

    Jose Mateus

    2013-12-01

    vivo en individuos sanos. Resultados. La evaluación de las moléculas con los conjugados no mostró interferencia en las señales de fluorescencia. Las frecuencias de las subpoblaciones de LT CD8+ evaluadas fueron cercanas a los valores reportados en otros estudios. Además, se observó que la frecuencia de LT CD8+ productores de IFNγ, IL-2 y TNFα fue mayor a las seis horas de cultivo con SEB y con el antígeno crudo de T. cruzi. Conclusiones. El método aplicado para la construcción del panel multicolor permite obtener frecuencias de las subpoblaciones de LT CD8+ que corresponden a lo reportado en la literatura científica.   doi: http://dx.doi.org/10.7705/biomedica.v33i4.1709

  11. Multicolor light emitters based on energy exchange between Tb and Eu ions co-doped into ultrasmall β-NaYF 4 nanocrystals

    KAUST Repository

    Podhorodecki, Artur P.

    2012-01-01

    Multicolor emission is reported from ultrasmall (<10 nm) β-NaYF4:Eu,Tb nanocrystals depending on the excitation wavelengths or emission detection delay time. Detailed optical investigations of three samples (NaYF4:Eu, NaYF4:Tb and NaYF4:Eu,Tb) obtained by a co-thermolysis method have been carried out. Photoluminescence, photoluminescence excitation and emission decay time obtained at different excitation wavelengths have been measured. Excitation mechanisms of Eu and Tb ions have been explained based on the experimental results and calculations using Judd-Ofelt theory. It has been shown that efficient energy transfer from Tb to Eu ions accounts for the efficient red emission of NaYF4:Tb,Eu nanocrystals. © The Royal Society of Chemistry 2012.

  12. Tuning shades of white light with multi-color quantum-dot quantum-well emitters based on onion-like CdSe ZnS heteronanocrystals

    Science.gov (United States)

    Demir, Hilmi Volkan; Nizamoglu, Sedat; Mutlugun, Evren; Ozel, Tuncay; Sapra, Sameer; Gaponik, Nikolai; Eychmüller, Alexander

    2008-08-01

    We present white light generation controlled and tuned by multi-color quantum-dot-quantum-well emitters made of onion-like CdSe/ZnS/CdSe core/shell/shell heteronanocrystals integrated on InGaN/GaN light-emitting diodes (LEDs). We demonstrate hybrid white LEDs with (x, y) tristimulus coordinates tuned from (0.26, 0.33) to (0.37, 0.36) and correlated color temperatures from 27 413 to 4192 K by controlling the number of their integrated red-green-emitting heteronanocrystals. We investigate the modification of in-film emission from these multi-layered heteronanocrystals with respect to their in-solution emission, which plays a significant role in hybrid LED applications. Our proof-of-principle experiments indicate that these complex heteronanocrystals hold promise for use as nanoluminophors in future hybrid white LEDs.

  13. Bone marrow injury in lithographers exposed to glycol ethers and organic solvents used in multicolor offset and ultraviolet curing printing processes

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, M.R.; Rado, T.; Waldron, J.A.; Sparer, J.; Welch, L.S.

    Prompted by referral of a printer with aplastic anemia, a study of possible marrow toxicity of workplace substances was undertaken. Dermal and respiratory exposures to dipropylene glycol monomethyl ether, ethylene glycol monoethyl ether, and a range of aliphatic, aromatic and halogenated hydrocarbons used for offset and ultraviolet cured multicolor printing were documented. Evaluation of seven co-workers revealed normal peripheral blood pictures, but bone marrow specimens demonstrated clear patterns of injury in three while the others had nonspecific signs of a marrow effect. These changes could not be explained by known risk factors. The authors conclude that further evaluation of possible bone marrow toxicity resulting from exposure to glycol ethers and ultraviolet curing printing processes is warranted. More generally, they have provided data demonstrating that peripheral blood counts may be an insensitive tool for the study of hematologic toxins acting at the bone marrow level. 12 references, 3 figures, 4 tables.

  14. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    Science.gov (United States)

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  15. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education.

    Science.gov (United States)

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on-going. We hypothesize that three-dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi-colored and multi-material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ∼1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi-colored, multi-material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54-64. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  16. Emitting far-field multicolor patterns and characters through plastic diffractive micro-optics elements illuminated by common Gaussian lasers in the visible range.

    Science.gov (United States)

    Zhang, Xinyu; Li, Hui; Liu, Kan; Luo, Jun; Xie, Changsheng; Ji, An; Zhang, Tianxu

    2011-04-01

    Far-field multicolor patterns and characters are emitted effectively in a relatively wide and deep spatial region by plastic diffractive micro-optics elements (DMOEs), which are illuminated directly by common Gaussian lasers in the visible range. Phase-only DMOEs are composed of a large number of fine step-shaped phase microstructures distributed sequentially over the plastic wafer selected. The initial DMOEs in silicon wafer are fabricated by an innovative technique with a combination of a single-mask ultraviolet photolithography and low-cost and rapid wet KOH etching. The fabricated silicon DMOEs are further converted into a nickel mask by the conventional electrochemical method, and they are finally transferred onto the surface of the plastic wafer through mature hot embossing. Morphological measurements show that the surface roughness of the plastic DMOEs is in the nanometer range, and the feature height of the phase steps in diffractive elements is in the submicrometer scale, which can be designed and adjusted flexibly according to requirements. The dimensions of the DMOEs can be changed from the order of millimeters to centimeters. A large number of pixel phase microstructures with a square microappearance employed to construct the phase-only DMOEs are created by the Gerchberg-Saxton algorithm, according to the target patterns and characters and common Gaussian lasers manipulated by the DMOEs fabricated. © 2011 Optical Society of America

  17. A HaloTag-based multi-color fluorogenic sensor visualizes and quantifies proteome stress in live cells using solvatochromic and molecular rotor-based fluorophores.

    Science.gov (United States)

    Liu, Yu; Miao, Kun; Li, Yinghao; Fares, Matthew; Chen, Shuyuan; Zhang, Xin

    2018-02-23

    Protein homeostasis, or proteostasis, is essential for cellular fitness and viability. Many environmental factors compromise proteostasis, induce global proteome stress, and cause diseases. Proteome stress sensor is a powerful tool to dissect the mechanism of cellular stress and find therapeutics that ameliorate these diseases. In this work, we present a multi-color HaloTag-based sensor (named AgHalo) to visualize and quantify proteome stresses in live cells. The current AgHalo sensor is equipped with three fluorogenic probes that turn on fluorescence when the sensor forms either soluble oligomers or insoluble aggregates upon exposure to stress conditions, both in vitro and in cellulo. Further, AgHalo probes can be combined with commercially available always-fluorescent HaloTag ligands to enable two-color imaging, allowing for direct visualization of the AgHalo sensor both before and after subjecting cells to stress conditions. Finally, pulse-chase experiments can be carried out to discern changes in cellular proteome in live cells by first forming the AgHalo conjugate and then either applying or removing stress at any desired time point. In summary, the AgHalo sensor can be used to visualize and quantify proteome stress in live cells, a task that is difficult to accomplish using previous always-fluorescent methods. This sensor should be suited to evaluate cellular proteostasis under various exogenous stresses, including chemical toxins, drugs, and environmental factors.

  18. The fist homogeneous, multi-color photometric and spectroscopic sample of Stripped Envelope Super Novae and what it can tell us about their progenitors

    Science.gov (United States)

    Bianco, Federica; Modjaz, Maryam; Liu, Yuqian; CfA supernova Group

    2015-01-01

    Stripped envelope supernovae (stripped SN) arise from the spectacular death of massive stars which have lost their outer layers of Hydrogen and Helium in the late stages of their lives. They hold clues to study the final stages of the life of massive stars and the chemical enrichment of the Universe, and are intrinsically as common as SN type Ia. However, they have been observed and studied far less than SN Ia. The scarcity of data has thus far impaired the detailed study of their characteristics and a clear picture of the progenitor channels still eludes us.The CfA produced the first large stripped SN survey that includes multi-color photometry in the optical and NIR (Bianco et al. 2014) as well as spectroscopy (Modjaz et al. 2014) of over 50 stripped SN. This dataset allows us to accurately derive bolometric lightcurves, and measure ejecta velocities in a consistent fashion for the entire sample. We can set constraints on the ejecta masses of SN IIb, Ib, Ic and Ic-BL, and probe the diversity in the explosions and in the progenitor channels. The study of our sample allows a direct comparison of the ejecta characteristics with the outcome of recent stellar evolution studies, confirming that binary evolution plays an important role in the late stages of the life of high mass stars.

  19. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas).

    Science.gov (United States)

    Nawaz, Muhammad; Cai, Wanlun; Jing, Zhao; Zhou, Xingmiao; Mabubu, Juma Ibrahim; Hua, Hongxia

    2017-07-01

    In order to further develop integrated pest management (IPM) approaches for controlling insect pests, it is important to estimate the effects of pesticides. In this study, the toxicity and sublethal effects of the insecticide chlorantraniliprole on a non-specific predator, the multicolored Asian lady beetle Harmonia axyridis, were evaluated and life table parameter data were analyzed statistically using the age-stage, two-sex life table procedure. The results of this study show that the development time of second and fourth instar larvae as well as pupa was significantly prolonged in populations treated with LC10 (2.42 mg (a.i.) L -1 ) and LC30 (12.06 mg (a.i.) L -1 ), while adult longevity and fecundity were both significantly reduced and the preoviposition period (POP) was significantly prolonged following treatment compared to the control. In addition, the net reproductive rate (R 0 ), as well as the intrinsic (r) and finite rate of increase (λ) were significantly decreased in groups treated with the insecticide. These results reveal that because sublethal concentrations of chlorantraniliprole impair the population growth of H. axyridis, more attention should be paid to the use of this chemical as a component of IPM strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The mitochondrial genome of the multicolored Asian lady beetle Harmonia axyridis (Pallas) and a phylogenetic analysis of the Polyphaga (Insecta: Coleoptera).

    Science.gov (United States)

    Niu, Fang-Fang; Zhu, Liang; Wang, Su; Wei, Shu-Jun

    2016-07-01

    Here, we report the mitochondrial genome sequence of the multicolored Asian lady beetle Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) (GenBank accession No. KR108208). This is the first species with sequenced mitochondrial genome from the genus Harmonia. The current length with partitial A + T-rich region of this mitochondrial genome is 16,387 bp. All the typical genes were sequenced except the trnI and trnQ. As in most other sequenced mitochondrial genomes of Coleoptera, there is no re-arrangement in the sequenced region compared with the pupative ancestral arrangement of insects. All protein-coding genes start with ATN codons. Five, five and three protein-coding genes stop with termination codon TAA, TA and T, respectively. Phylogenetic analysis using Bayesian method based on the first and second codon positions of the protein-coding genes supported that the Scirtidae is a basal lineage of Polyphaga. The Harmonia and the Coccinella form a sister lineage. The monophyly of Staphyliniformia, Scarabaeiformia and Cucujiformia was supported. The Buprestidae was found to be a sister group to the Bostrichiformia.

  1. Multicolor Spectral Analyses of Mitotic and Meiotic Mouse Chromosomes Involved in Multiple Robertsonian Translocations. II. The NMRI/CD and CD/TA Hybrid Strains.

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus; Winking, Heinz

    2017-01-01

    Multicolor spectral analyses (spectral karyotyping) were performed on mitotic chromosomes of NMRI, CD, and TA mice and on male meiotic chromosomes (diakineses) of NMRI/CD and CD/TA hybrids. All chromosomes, including the various centric (robertsonian) fusions, could be unequivocally identified. Apart from the robertsonian translocations, which were previously detected by conventional banding analyses, no other interchromosomal rearrangements were found in these mice. In both the CD and TA mice, the autosomes 19 and the XY sex chromosomes are not involved in robertsonian translocations. In diakineses of male meiosis of the NMRI/CD hybrid, the 9 expected trivalents were present, whereas in those of the CD/TA hybrids a stable large meiotic multivalent, formed by 15 robertsonian fusion chromosomes and 2 terminally located normal chromosomes, was observed. The specific sequential order of the robertsonian fusion chromosomes found within this meiotic chain was as theoretically predicted. In the majority of diakineses of the NMRI/CD and CD/TA hybrids, the free autosomal bivalent 19 and the XY sex bivalent formed noticeable tight spatial associations. © 2017 S. Karger AG, Basel.

  2. One-pot synthesis of nitrogen and sulfur co-doped carbon dots and its application for sensor and multicolor cellular imaging.

    Science.gov (United States)

    Chen, Jiucun; Liu, Jianhua; Li, Junzhi; Xu, Liqun; Qiao, Yajuan

    2017-01-01

    Nitrogen and sulfur co-doped carbon dots (N, S/C-dots) were prepared via one-pot hydrothermal treatment of citric acid and cystamine dihydrochloride. The as-prepared N, S/C-dots exhibited excellent excitation-wavelength-independent photoluminescence property and higher fluorescence quantum yield (QY) of 39.7% compared to C,N-dots (QY=2.6%) prepared using citric acid and 1,6-diaminohexane dihydrochloride as the precursor. The N, S/C-dots were well-dispersed in aqueous solution and showed good photoluminescence stabilities in different pH and temperature without any surface modification. Additionally, the fluorescence of N, S/C-dots can be quenched based on inner filter effect (IFE) upon the addition of Cr(VI) and showed good selectivity and sensitivity to Cr(VI). The detection for Cr(VI) exhibited a good linear correlation ranging from 1 to 80μM with a detection limit of 0.86μM. What's more, in comparison with other quantum dots and organic dyes, these N, S/C-dots were much more eco-friendly and can be used for multicolor bioimaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The cyan fluorescent protein nude mouse as a host for multicolor-coded imaging models of primary and metastatic tumor microenvironments.

    Science.gov (United States)

    Suetsugu, Atsushi; Hassanein, Mohamed K; Reynoso, Jose; Osawa, Yosuke; Nagaki, Masahito; Moriwaki, Hisataka; Saji, Shigetoyo; Bouvet, Michael; Hoffman, Robert M

    2012-01-01

    The tumor microenvironment (TME) has an important influence on tumor progression. For example, we have discovered that passenger stromal cells are necessary for metastasis. In this report, we describe six different cyan fluorescent protein (CFP) multicolor TME nude mouse models. The six different implantation models were used to image the TME using multiple colors of fluorescent proteins: I) Red fluorescent protein (RFP)- or green fluorescent protein (GFP)-expressing HCT-116 human colon cancer cells were implanted subcutaneously in the CFP-expressing nude mice. CFP stromal elements from the subcutaneous TME were visualized interacting with the RFP- or GFP-expressing tumors. II) RFP-expressing HCT-116 cells were transplanted into the spleen of CFP nude mice, and experimental metastases were then formed in the liver. CFP stromal elements from the liver TME were visualized interacting with the RFP-expressing tumor. III) RFP-expressing HCT-116 cancer cells were transplanted in the tail vein of CFP-expressing nude mice, forming experimental metastases in the lung. CFP stromal elements from the lung were visualized interacting with the RFP-expressing tumor. IV) In order to visualize two different tumors in the TME, GFP-expressing and RFP-expressing HCT-116 cancer cells were co-implanted subcutaneously in CFP-expressing nude mice. A 3-color TME was formed subcutaneously in the CFP mouse, and CFP stromal elements were visualized interacting with the RFP- and GFP-expressing tumors. V) In order to have two different colors of stromal elements, GFP-expressing HCT-116 cells were initially injected subcutaneously in RFP-expressing nude mice. After 14 days, the tumor, which consisted of GFP cancer cells and RFP stromal cells derived from the RFP nude mouse, was harvested and transplanted into the CFP nude mouse. CFP stromal cells invaded the growing transplanted tumor containing GFP cancer cells and RFP stroma. VI) Mouse mammary tumor (MMT) cells expressing GFP in the nucleus

  4. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  5. The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT

    Science.gov (United States)

    Nicholl, Matt; Guillochon, James; Berger, Edo

    2017-11-01

    We use the new Modular Open Source Fitter for Transients to model 38 hydrogen-poor superluminous supernovae (SLSNe). We fit their multicolor light curves with a magnetar spin-down model and present posterior distributions of magnetar and ejecta parameters. The color evolution can be fit with a simple absorbed blackbody. The medians (1σ ranges) for key parameters are spin period 2.4 ms (1.2-4 ms), magnetic field 0.8× {10}14 G (0.2{--}1.8× {10}14 G), ejecta mass 4.8 {M}⊙ (2.2-12.9 {M}⊙ ), and kinetic energy 3.9× {10}51 erg (1.9{--}9.8× {10}51 erg). This significantly narrows the parameter space compared to our uninformed priors, showing that although the magnetar model is flexible, the parameter space relevant to SLSNe is well constrained by existing data. The requirement that the instantaneous engine power is ˜1044 erg at the light-curve peak necessitates either large rotational energy (P slow-declining SLSNe, which instead form a continuum in light-curve widths and inferred parameters. Variations in the spectra are explained through differences in spin-down power and photospheric radii at maximum light. We find no significant correlations between model parameters and host galaxy properties. Comparing our posteriors to stellar evolution models, we show that SLSNe require rapidly rotating (fastest 10%) massive stars (≳ 20 {M}⊙ ), which is consistent with their observed rate. High mass, low metallicity, and likely binary interaction all serve to maintain rapid rotation essential for magnetar formation. By reproducing the full set of light curves, our posteriors can inform photometric searches for SLSNe in future surveys.

  6. Establishment of a new human pleomorphic malignant fibrous histiocytoma cell line, FU-MFH-2: molecular cytogenetic characterization by multicolor fluorescence in situ hybridization and comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Isayama Teruto

    2010-11-01

    Full Text Available Abstract Background Pleomorphic malignant fibrous histiocytoma (MFH is one of the most frequent malignant soft tissue tumors in adults. Despite the considerable amount of research on MFH cell lines, their characterization at a molecular cytogenetic level has not been extensively analyzed. Methods and results We established a new permanent human cell line, FU-MFH-2, from a metastatic pleomorphic MFH of a 72-year-old Japanese man, and applied multicolor fluorescence in situ hybridization (M-FISH, Urovysion™ FISH, and comparative genomic hybridization (CGH for the characterization of chromosomal aberrations. FU-MFH-2 cells were spindle or polygonal in shape with oval nuclei, and were successfully maintained in vitro for over 80 passages. The histological features of heterotransplanted tumors in severe combined immunodeficiency mice were essentially the same as those of the original tumor. Cytogenetic and M-FISH analyses displayed a hypotriploid karyotype with numerous structural aberrations. Urovysion™ FISH revealed a homozygous deletion of the p16INK4A locus on chromosome band 9p21. CGH analysis showed a high-level amplification of 9q31-q34, gains of 1p12-p34.3, 2p21, 2q11.2-q21, 3p, 4p, 6q22-qter, 8p11.2, 8q11.2-q21.1, 9q21-qter, 11q13, 12q24, 15q21-qter, 16p13, 17, 20, and X, and losses of 1q43-qter, 4q32-qter, 5q14-q23, 7q32-qter, 8p21-pter, 8q23, 9p21-pter, 10p11.2-p13, and 10q11.2-q22. Conclusion The FU-MFH-2 cell line will be a particularly useful model for studying molecular pathogenesis of human pleomorphic MFH.

  7. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women.

    Science.gov (United States)

    Dragovic, Rebecca A; Southcombe, Jennifer H; Tannetta, Dionne S; Redman, Christopher W G; Sargent, Ian L

    2013-12-01

    Excessive release of syncytiotrophoblast extracellular vesicles (STBMs) from the placenta into the maternal circulation may contribute to the systemic inflammation that is characteristic of pre-eclampsia (PE). Other intravascular cells types (platelets, leukocytes, red blood cells [RBCs], and endothelium) may also be activated and release extracellular vesicles (EVs). We developed a multicolor flow cytometry antibody panel to enumerate and phenotype STBMs in relation to other EVs in plasma from nonpregnant (NonP) and normal pregnant (NormP) women, and women with late-onset PE. Nanoparticle tracking analysis (NTA) was used to determine EV size and concentration. In vitro-derived STBMs and EVs from platelets, leukocytes, RBCs, and endothelial cells were examined to select suitable antibodies to analyze the corresponding plasma EVs. Flow cytometry analysis of plasma from NonP, NormP, and PE showed that STBMs comprised the smallest group of circulating EVs, whereas most were derived from platelets. The next most abundant group comprised unidentified orphan EVs (which did not label with any of the antibodies in the panel), followed by EVs from RBCs and leukocytes. NTA showed that the total number of EVs in plasma was significantly elevated in NormP and late-onset PE women compared to NonP controls, and that EVs were smaller in size. In general, EVs were elevated in pregnancy plasma apart from platelet EVs, which were reduced. These studies did not show any differences in EVs between NormP and PE, probably because late-onset PE was studied.

  8. Characterization of alien chromosomes in backcross derivatives of Triticum aestivum × Elymus rectisetus hybrids by using molecular markers and sequential multicolor FISH/GISH.

    Science.gov (United States)

    Dou, Quan-Wen; Lei, Yunting; Li, Xiaomei; Mott, Ivan W; Wang, Richard R-C

    2012-05-01

    Wild Triticeae grasses serve as important gene pools for forage and cereal crops. Based on DNA sequences of genome-specific RAPD markers, sequence-tagged site (STS) markers specific for W and Y genomes have been obtained. Coupling with the use of genomic in situ hybridization, these STS markers enabled the identification of the W- and Y-genome chromosomes in backcross derivatives from hybrids of bread wheat Triticum aestivum L. (2n=42; AABBDD) and Elymus rectisetus (Nees in Lehm.) Á. Löve & Connor (2n=42; StStWWYY). The detection of six different alien chromosomes in five of these derivatives was ascertained by quantitative PCR of STS markers, simple sequence repeat markers, rDNA genes, and (or) multicolor florescence in situ hybridization. Disomic addition line 4687 (2n=44) has the full complement of 42 wheat chromosomes and a pair of 1Y chromosomes that carry genes for resistance to tan spot (caused by Pyrenophora tritici-repentis (Died.) Drechs.) and Stagonospora nodorum blotch (caused by Stagonospora nodorum (Berk.) Castellani and Germano). The disomic addition line 4162 has a pair of 1St chromosomes and 21 pairs of wheat chromosomes. Lines 4319 and 5899 are two triple substitution lines (2n=42) having the same chromosome composition, with 2A, 4B, and 6D of wheat substituted by one pair of W- and two pairs of St-genome chromosomes. Line 4434 is a substitution-addition line (2n=44) that has the same W- and St-genome chromosomes substituting 2A, 4B, and 6D of wheat as in lines 4319 and 5899 but differs by having an additional pair of Y-genome chromosome, which is not the 1Y as in line 4687. The production and identification of these alien cytogenetic stocks may help locate and isolate genes for useful agronomic traits.

  9. Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F₄:Ce,Tb,Eu/β-NaYF₄ core/shell nanocrystals.

    Science.gov (United States)

    Kim, Su Yeon; Woo, Kyoungja; Lim, Kipil; Lee, Kwangyeol; Jang, Ho Seong

    2013-10-07

    Herein, we report highly bright multicolor-emitting β-Na(Y,Gd)F₄:Ce,Tb,Eu/β-NaYF₄ nanoparticles (NPs) with precise color tunability. First, highly bright sub-20 nm β-Na(Y,Gd)F₄:Ce,Tb,Eu NPs were synthesized via a heating-up method. By controlling the ratio of Eu(3+) to Tb(3+), we generated green, yellow-green, greenish yellow, yellow, orange, reddish orange, and red emissions from the NP solutions via energy transfer of Ce(3+)→ Gd(3+)→ Tb(3+) (green) and Ce(3+)→ Gd(3+)→ Tb(3+)→ Eu(3+) (red) ions under ultraviolet light illumination (254 nm). Because of Ce(3+) and Gd(3+) sensitization, Tb(3+) ions exhibited strong green emission. The decay time of Tb(3+) emission decreased from 4.0 to 1.4 ms as the Eu(3+) concentration was increased, suggesting that energy was transferred from Tb(3+) to Eu(3+). As a result, Eu(3+) emission peaks were generated and the emission color was transformed from green to red. Monodisperse sub-6 nm β-Na(Y,Gd)F₄:Ce,Tb,Eu NPs were synthesized through a simple reduction of the reaction temperature. Although fine color tunability was retained, their brightness was considerably decreased owing to an increase in the surface-to-volume ratio. The formation of a β-NaYF₄ shell on top of the sub-6 nm NP core to produce β-Na(Y,Gd)F₄:Ce,Tb,Eu/β-NaYF₄ significantly increased the emission intensity, while maintaining the sub-10 nm sizes (8.7-9.5 nm). Quantum yields of the ultrasmall NPs increased from 1.1-6.9% for the core NPs to 6.7-44.4% for the core/shell NPs. Moreover, highly transparent core/shell NP-polydimethylsiloxane (PDMS) composites featuring a variety of colors, excellent color tunability, and high brightness were also prepared.

  10. The CD3 versus CD7 plot in multicolor flow cytometry reflects progression of disease stage in patients infected with HTLV-I.

    Directory of Open Access Journals (Sweden)

    Seiichiro Kobayashi

    Full Text Available PURPOSE: In a recent study to purify adult T-cell leukemia-lymphoma (ATL cells from acute-type patients by flow cytometry, three subpopulations were observed in a CD3 versus CD7 plot (H: CD3(highCD7(high; D: CD3(dimCD7(dim; L: CD3(dimCD7(low. The majority of leukemia cells were enriched in the L subpopulation and the same clone was included in the D and L subpopulations, suggesting clonal evolution. In this study, we analyzed patients with indolent-type ATL and human T-cell leukemia virus type I (HTLV-I asymptomatic carriers (ACs to see whether the CD3 versus CD7 profile reflected progression in the properties of HTLV-I-infected cells. EXPERIMENTAL DESIGN: Using peripheral blood mononuclear cells from patient samples, we performed multi-color flow cytometry. Cells that underwent fluorescence-activated cell sorting were subjected to molecular analyses, including inverse long PCR. RESULTS: In the D(% versus L(% plot, patient data could largely be categorized into three groups (Group 1: AC; Group 2: smoldering- and chronic-type ATL; and Group 3: acute-type ATL. Some exceptions, however, were noted (e.g., ACs in Group 2. In the follow-up of some patients, clinical disease progression correlated well with the CD3 versus CD7 profile. In clonality analysis, we clearly detected a major clone in the D and L subpopulations in ATL cases and, intriguingly, in some ACs in Group 2. CONCLUSION: We propose that the CD3 versus CD7 plot reflects progression of disease stage in patients infected with HTLV-I. The CD3 versus CD7 profile will be a new indicator, along with high proviral load, for HTLV-I ACs in forecasting disease progression.

  11. Electrochemical Techniques for Subsecond Neurotransmitter Detection in Live Rodents

    Science.gov (United States)

    Hascup, Kevin N; Hascup, Erin R

    2014-01-01

    Alterations in neurotransmission have been implicated in numerous neurodegenerative and neuropsychiatric disorders, including Alzheimer disease, Parkinson disease, epilepsy, and schizophrenia. Unfortunately, few techniques support the measurement of real-time changes in neurotransmitter levels over multiple days, as is essential for ethologic and pharmacodynamic testing. Microdialysis is commonly used for these research paradigms, but its poor temporal and spatial resolution make this technique inadequate for measuring the rapid dynamics (milliseconds to seconds) of fast signaling neurotransmitters, such as glutamate and acetylcholine. Enzymatic microelectrode arrays (biosensors) coupled with electrochemical recording techniques have demonstrated fast temporal resolution (less than 1 s), excellent spatial resolution (micron-scale), low detection limits (≤200 nM), and minimal damage (50 to 100 µm) to surrounding brain tissue. Here we discuss the benefits, methods, and animal welfare considerations of using platinum microelectrodes on a ceramic substrate for enzyme-based electrochemical recording techniques for real-time in vivo neurotransmitter recordings in both anesthetized and awake, freely moving rodents. PMID:25296011

  12. Instrumental Neutron Activation Analysis Technique using Subsecond Radionuclides

    DEFF Research Database (Denmark)

    Nielsen, H.K.; Schmidt, J.O.

    1987-01-01

    The fast irradiation facility Mach-1 installed at the Danish DR 3 reactor has been used in boron determinations by means of Instrumental Neutron Activation Analysis using12B with 20-ms half-life. The performance characteristics of the system are presented and boron determinations of NBS standard...

  13. On the role of subsecond dopamine release in conditioned avoidance

    Directory of Open Access Journals (Sweden)

    Erik B Oleson

    2013-06-01

    Full Text Available Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: 1 fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, 2 the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, 3 over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety 4 the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain’s incentive-motivational circuitry.

  14. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linlin; Wang, Xinyan; Ma, Qiang; Lin, Zihan; Chen, Shufan; Li, Yang [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Lu, Lehui [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); Qu, Hongping [Department of Biotechnology, College of Life Science, Jilin Normal University, Siping, 136000 (China); Su, Xingguang, E-mail: suxg@jlu.edu.cn [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2016-04-15

    In this work, a novel multiplex electrochemiluminescence (ECL) DNA sensor has been developed for determination of hepatitis B virus (HBV) and hepatitis C virus (HCV) based on multicolor CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs). The electrochemically synthesized graphene nanosheets (GNs) were selected as conducting bridge to anchor CdTe QDs{sub 551}-capture DNA{sub HBV} and CdTe QDs{sub 607}-capture DNA{sub HCV} on the glassy carbon electrode (GCE). Then, different concentrations of target DNA{sub HBV} and target DNA{sub HCV} were introduced to hybrid with complementary CdTe QDs-capture DNA. Au NPs-probe DNA{sub HBV} and Au NPs-probe DNA{sub HCV} were modified to the above composite film via hybrid with the unreacted complementary CdTe QDs-capture DNA. Au NPs could quench the electrochemiluminescence (ECL) intensity of CdTe QDs due to the inner filter effect. Therefore, the determination of target DNA{sub HBV} and target DNA{sub HCV} could be achieved by monitoring the ECL DNA sensor based on Au NPs-probe DNA/target DNA/CdTe QDs-capture DNA/GNs/GCE composite film. Under the optimum conditions, the ECL intensity of CdTe QDs{sub 551} and CdTe QDs{sub 607} and the concentration of target DNA{sub HBV} and target DNA{sub HCV} have good linear relationship in the range of 0.0005–0.5 nmol L{sup −1} and 0.001–1.0 nmol L{sup −1} respectively, and the limit of detection were 0.082 pmol L{sup −1} and 0.34 pmol L{sup −1} respectively (S/N = 3). The DNA sensor showed good sensitivity, selectivity, reproducibility and acceptable stability. The proposed DNA sensor has been employed for the determination of target DNA{sub HBV} and target DNA{sub HCV} in human serum samples with satisfactory results. - Highlights: • A novel electrochemiluminescence DNA sensor has been developed for the determination of target DNA{sub HBV} and target DNA{sub HCV}. • The DNA sensor shows good sensitivity, reproducibility and stability. • The ECL provided a

  15. Influence of host gender on infection rate, density and distribution of the parasitic fungus, Hesperomyces virescens, on the multicolored Asian lady beetle, Harmonia axyridis.

    Science.gov (United States)

    Riddick, E W

    2006-01-01

    Hesperomyces virescens Thaxter (Laboulbeniales: Laboulbeniaceae) is a parasitic fungus that infects lady beetles (Coleoptera: Coccinellidae) via horizontal transmission between adults at overwintering and feeding sites. The differential behavior of male and female hosts could have profound effects on intensity of infection and positioning of fungus on the host's integument. The influence of host gender on infection rate, density and distribution of this parasite on the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), was determined at a feeding site. Adult H. axyridis were sampled from pecan, Carya illinoinensis (Wangenh.) K. Koch, trees in northern Mississippi, USA, during summer and early fall 2003-2004. Results indicated that the behavior of male or female beetles on pecan trees had only a limited effect on the intensity of infection. When averaged over the entire season, the percentage of H. axyridis infected with H. virescens was not influenced by host gender. In 2003, a seasonal average of 54 and 39% of males and females, respectively, were infected; whereas in 2004, 36 and 41% of male and female beetles, respectively, were infected. The percentage of males infected with H. virescens was correlated with the number of males captured at the site in 2003; infection rate decreased as male abundance increased. Infection rate did not correlate with female abundance in 2003 or male or female abundance in 2004. Host gender had a considerable effect on the density and distribution of the fungus. Hesperomyces virescens mature thalli were denser on male rather than female beetles. Also, thallus density was often greatest on the elytra, meso- and metathorax, and abdomen of males and elytra of females, than on other body parts, in 2003. In 2003 and 2004, approximately 59 and 97% and 67 and 96% of males and females, respectively, had mature thalli distributed on the elytra. Prevalence of H. virescens thalli on the dorsum of H

  16. Multi-color tunable Ce{sup 3+}–Mn{sup 2+} cooperative Y{sub 7}O{sub 6}F{sub 9} vernier phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Kim, Sung-Hoon; Park, Sangmoon, E-mail: spark@silla.ac.kr

    2016-07-15

    Ce{sup 3+}–Mn{sup 2+}–doped Y{sub 7}O{sub 6}F{sub 9} vernier phosphors composed of Y{sub 7(1-p-2q/3)}Ce{sub 7p}Mn{sub 14q/3}O{sub 6}F{sub 9} (p = 0.005–0.1, q = 0–0.1) were prepared using a flux–assisted solid-state reaction. The X-ray diffraction patterns of the resultant phosphors were examined to index the peak positions. The photoluminescence (PL) excitation and emission spectra of the Ce{sup 3+}-activated yttrium–oxyfluoride phosphors were clearly monitored with critical emission quenching as a function of Ce{sup 3+} content in the Y{sub 7(1-p-2q/3)}Ce{sub 7p}Mn{sub 14q/3}O{sub 6}F{sub 9}. After doping the Y{sub 7}O{sub 6}F{sub 9} structure with Ce{sup 3+} and Mn{sup 2+} activators, intense blue and green/orange emission lights were observed in the PL spectra under near-ultraviolet (NUV) excitation. The dependence of the luminescent intensity of the Mn{sup 2+} co–doped (q = 0, 0.01, 0.05, 0.1) host lattices on Ce{sup 3+} content (p = 0.05, 0.1) was also studied. Co-doping Mn{sup 2+} into the Ce{sup 3+}–doped host structure enabled high energy transfer from Ce{sup 3+} to Mn{sup 2+}; this energy transfer mechanism is discussed. Multi-color tunable blue, white, yellow, and green emission lights due to the Ce{sup 3+} and Mn{sup 2+} emitters were observed at room temperature. With these phosphors, the desired CIE values including emissions throughout multi–color regions of the spectra were achieved. - Highlights: • Ce{sup 3+}–Mn{sup 2+}–doped Y{sub 7}O{sub 6}F{sub 9} vernier phosphors were prepared. • Effective PL spectra of the phosphors were clearly monitored. • High energy transfer from Ce{sup 3+} to Mn{sup 2+} was analyzed. • Tunable multi–color emissions of the spectra were achieved.

  17. Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F4:Ce,Tb,Eu/β-NaYF4 core/shell nanocrystals

    Science.gov (United States)

    Kim, Su Yeon; Woo, Kyoungja; Lim, Kipil; Lee, Kwangyeol; Jang, Ho Seong

    2013-09-01

    Herein, we report highly bright multicolor-emitting β-Na(Y,Gd)F4:Ce,Tb,Eu/β-NaYF4 nanoparticles (NPs) with precise color tunability. First, highly bright sub-20 nm β-Na(Y,Gd)F4:Ce,Tb,Eu NPs were synthesized via a heating-up method. By controlling the ratio of Eu3+ to Tb3+, we generated green, yellow-green, greenish yellow, yellow, orange, reddish orange, and red emissions from the NP solutions via energy transfer of Ce3+ --> Gd3+ --> Tb3+ (green) and Ce3+ --> Gd3+ --> Tb3+ --> Eu3+ (red) ions under ultraviolet light illumination (254 nm). Because of Ce3+ and Gd3+ sensitization, Tb3+ ions exhibited strong green emission. The decay time of Tb3+ emission decreased from 4.0 to 1.4 ms as the Eu3+ concentration was increased, suggesting that energy was transferred from Tb3+ to Eu3+. As a result, Eu3+ emission peaks were generated and the emission color was transformed from green to red. Monodisperse sub-6 nm β-Na(Y,Gd)F4:Ce,Tb,Eu NPs were synthesized through a simple reduction of the reaction temperature. Although fine color tunability was retained, their brightness was considerably decreased owing to an increase in the surface-to-volume ratio. The formation of a β-NaYF4 shell on top of the sub-6 nm NP core to produce β-Na(Y,Gd)F4:Ce,Tb,Eu/β-NaYF4 significantly increased the emission intensity, while maintaining the sub-10 nm sizes (8.7-9.5 nm). Quantum yields of the ultrasmall NPs increased from 1.1-6.9% for the core NPs to 6.7-44.4% for the core/shell NPs. Moreover, highly transparent core/shell NP-polydimethylsiloxane (PDMS) composites featuring a variety of colors, excellent color tunability, and high brightness were also prepared.Herein, we report highly bright multicolor-emitting β-Na(Y,Gd)F4:Ce,Tb,Eu/β-NaYF4 nanoparticles (NPs) with precise color tunability. First, highly bright sub-20 nm β-Na(Y,Gd)F4:Ce,Tb,Eu NPs were synthesized via a heating-up method. By controlling the ratio of Eu3+ to Tb3+, we generated green, yellow-green, greenish yellow, yellow

  18. Facile synthesis, structural and spectroscopic properties of GdF{sub 3}:Ce{sup 3+}, Ln{sup 3+} (Ln{sup 3+}=Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) nanocrystals with bright multicolor luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Grzyb, Tomasz; Runowski, Marcin; Lis, Stefan, E-mail: blis@amu.edu.pl

    2014-10-15

    Hexagonal gadolinium fluorides doped with Ce{sup 3+} ions and co-doped with Sm{sup 3+}, Eu{sup 3+}, Tb{sup 3+} or Dy{sup 3+} were successfully synthesized via a simple co-precipitation approach, in the presence of glycerin as a capping agent. These fluorides, as solids or in aqueous solutions, showed intense, multicolored luminescence depending on the lanthanide ions used. The structures of the products were confirmed by powder X-ray diffraction (XRD). The morphologies of the synthesized nanophosphors were examined using transmission electron microscopy (TEM). The TEM results showed that the crystallites had shapes that varied with the dopant ion used. The spectroscopic properties: excitation spectra, emission spectra and luminescence decays were recorded and studied in detail. Bright luminescences from all of the products were triggered by effective energy transfer between the ions embedded in their structures. The mechanism for this phenomenon was also proposed. All of the synthesized products formed stable aqueous colloids, exhibiting brightly multicolored luminescence under UV light irradiation. - Highlights: • Hexagonal GdF{sub 3}:Ce{sup 3+}, Ln{sup 3+} nanocrystals were synthesized by a co-precipitation method. • Nanocrystals formed stable water colloids. • Multicolor luminescence under UV light was observed. • Energy transfer mechanism between Gd{sup 3+}, Ce{sup 3+} and Ln{sup 3+} ions was proposed.

  19. arXiv $\\mathbb R^3$ Index for Four-Dimensional $N=2$ Field Theories

    CERN Document Server

    Alexandrov, Sergei; Neitzke, Andrew; Pioline, Boris

    2015-01-01

    In theories with $N=2$ supersymmetry on $R^{3,1}$, BPS bound states can decay across walls of marginal stability in the space of Coulomb branch parameters, leading to discontinuities in the BPS indices $\\Omega(\\gamma,u)$. We consider a supersymmetric index $I$ which receives contributions from 1/2-BPS states, generalizing the familiar Witten index $Tr (-1)^F e^{-\\beta H}$. We expect $I$ to be smooth away from loci where massless particles appear, thanks to contributions from the continuum of multi-particle states. Taking inspiration from a similar phenomenon in the hypermultiplet moduli space of $N=2$ string vacua, we conjecture a formula expressing $I$ in terms of the BPS indices $\\Omega(\\gamma,u)$, which is continuous across the walls and exhibits the expected contributions from single particle states at large $\\beta$. This gives a universal prediction for the contributions of multi-particle states to the index $I$. This index is naturally a function on the moduli space after reduction on a circle, closely ...

  20. Validation of four-dimensional ultrasound for targeting in minimally-invasive beating-heart surgery

    Science.gov (United States)

    Pace, Danielle F.; Wiles, Andrew D.; Moore, John; Wedlake, Chris; Gobbi, David G.; Peters, Terry M.

    2009-02-01

    Ultrasound is garnering significant interest as an imaging modality for surgical guidance, due to its affordability, real-time temporal resolution and ease of integration into the operating room. Minimally-invasive intracardiac surgery performed on the beating-heart prevents direct vision of the surgical target, and procedures such as mitral valve replacement and atrial septal defect closure would benefit from intraoperative ultrasound imaging. We propose that placing 4D ultrasound within an augmented reality environment, along with a patient-specific cardiac model and virtual representations of tracked surgical tools, will create a visually intuitive platform with sufficient image information to safely and accurately repair tissue within the beating heart. However, the quality of the imaging parameters, spatial calibration, temporal calibration and ECG-gating must be well characterized before any 4D ultrasound system can be used clinically to guide the treatment of moving structures. In this paper, we describe a comprehensive accuracy assessment framework that can be used to evaluate the performance of 4D ultrasound systems while imaging moving targets. We image a dynamic phantom that is comprised of a simple robot and a tracked phantom to which point-source, distance and spherical objects of known construction can be attached. We also follow our protocol to evaluate 4D ultrasound images generated in real-time by reconstructing ECG-gated 2D ultrasound images acquired from a tracked multiplanar transesophageal probe. Likewise, our evaluation framework allows any type of 4D ultrasound to be quantitatively assessed.

  1. A Four Dimensional Spatio-Temporal Analysis of an Agricultural Dataset.

    Science.gov (United States)

    Donald, Margaret R; Mengersen, Kerrie L; Young, Rick R

    2015-01-01

    While a variety of statistical models now exist for the spatio-temporal analysis of two-dimensional (surface) data collected over time, there are few published examples of analogous models for the spatial analysis of data taken over four dimensions: latitude, longitude, height or depth, and time. When taking account of the autocorrelation of data within and between dimensions, the notion of closeness often differs for each of the dimensions. Here, we consider a number of approaches to the analysis of such a dataset, which arises from an agricultural experiment exploring the impact of different cropping systems on soil moisture. The proposed models vary in their representation of the spatial correlation in the data, the assumed temporal pattern and choice of conditional autoregressive (CAR) and other priors. In terms of the substantive question, we find that response cropping is generally more effective than long fallow cropping in reducing soil moisture at the depths considered (100 cm to 220 cm). Thus, if we wish to reduce the possibility of deep drainage and increased groundwater salinity, the recommended cropping system is response cropping.

  2. Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space

    Science.gov (United States)

    Crisford, Toby; Santos, Jorge E.

    2017-05-01

    We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.

  3. A Multiscale Four-Dimensional Data Assimilation System Applied in the Mexico City Valley

    Science.gov (United States)

    Parra, D.; Hernandez, F.; Gonzalez, J. I.; Ortiz, E.; Hoyos, L. F.

    2007-05-01

    Several modeling studies have shown that four-dimension data assimilation (FDDA) has the ability to improve the simulations of wind, temperature, moisture and mixed layer depth. These works concluded that modeling with FDDA can produce spatially consistent solutions without degrading important dynamical processes. Additionally, it is widely recognized that MM5 with FDDA can be used to develop realistic three-dimensional fields that are completely suited as inputs to air quality or diagnostic meteorological models. In this work, MM5 and FDDA were used to model the weather conditions in the Mexico City Metropolitan Area (MCMA). The surface information was obtained from "Red Automática de Monitoreo Atmosférico (RAMA)" data bases. Sounding data were obtained from "Servicio Meteorológico Nacional". Four simulation domains were used with spatial resolutions of 27, 9, 3, and 1 Km2 respectively. In this work, 15 surface weather stations and 30 sounding points were employed. With this technique, weather predictions have correlation levels higher than 80%. Additionally, these predictions were used as input of the photochemical model MCCM and an important influence on pollutants concentration and dispersion predictions was observed.

  4. Virtual four-dimensional imaging of lung parenchyma by optical coherence tomography in mice

    Science.gov (United States)

    Meissner, Sven; Tabuchi, Arata; Mertens, Michael; Kuebler, Wolfgang M.; Koch, Edmund

    2010-05-01

    In this feasibility study, we present a method for virtual 4-D imaging of healthy and injured subpleural lung tissue in the ventilated mouse. We use triggered swept source optical coherence tomography (OCT) with an A-scan frequency of 20 kHz to image murine subpleural alveoli during the inspiratory phase. The data acquisition is gated to the ventilation pressure to take single B-scans in each respiration cycle for different pressure levels. The acquired B-scans are combined off-line into one volume scan for each pressure level. The air fraction in healthy lungs and injured lungs is measured using 2-D OCT en-face images. Upon lung inspiration from 2 to 12 cmH2O ventilation pressure, the air fraction increases in healthy lungs by up to 11% and in injured lungs by 8%. This expansion correlates well with results of previous studies, reporting increased alveolar area with increased ventilation pressures. We demonstrate that OCT is a useful tool to investigate alveolar dynamics in spatial dimensions.

  5. Four-dimensional black holes with scalar hair in nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos, Jose [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universidad Catolica del Norte, Departamento de Ensenanza de las Ciencias Basicas, Coquimbo (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)

    2016-12-15

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and a U(1) nonlinear electromagnetic field. Solving analytically and numerically the coupled system for both power-law and Born-Infeld type electrodynamics, we find charged hairy black hole solutions. Then we study the thermodynamics of these solutions and we find that at a low temperature the topological charged black hole with scalar hair is thermodynamically preferred, whereas the topological charged black hole without scalar hair is thermodynamically preferred at a high temperature for power-law electrodynamics. Interestingly enough, these phase transitions occur at a fixed critical temperature and do not depend on the exponent p of the nonlinear electrodynamics. (orig.)

  6. Emergence of four dimensional quantum mechanics from a deterministic theory in 11 dimensions

    Science.gov (United States)

    Doyen, G.; Drakova, D.

    2015-07-01

    We develop a deterministic theory which accounts for the coupling of a high dimensional continuum of environmental excitations (called gravonons) to massive particle in a very localized and very weak fashion. For the model presented Schrödinger's equation can be solved practically exactly in 11 spacetime dimensions and the result demonstrates that as a function of time an incoming matter wave incident on a screen extinguishes, except at a single interaction center on the detection screen. This transition is reminiscent of the wave - particle duality arising from the ’’collapse” (also called ’’process one”) postulated in the Copenhagen-von Neumann interpretation. In our theory it is replaced by a sticking process of the particle from the vacuum to the surface of the detection screen. This situation was verified in experiments by using massive molecules. In our theory this ”wave-particle transition” is connected to the different dimensionalities of the space for particle motion and the gravonon dynamics, the latter propagating in the hidden dimensions of 11 dimensional spacetime. The fact that the particle is detected at apparently statistically determined points on the screen is traced back to the weakness and locality of the interaction with the gravonons which allows coupling on the energy shell alone. Although the theory exhibits a completely deterministic ”chooser” mechanism for single site sticking, an apparent statistical character results, as it is found in the experiments, due to small heterogeneities in the atomic and gravonon structures.

  7. Tumor motion in lung cancers: An overview of four-dimensional radiotherapy treatment of lung cancers

    Directory of Open Access Journals (Sweden)

    Anusheel Munshi

    2017-01-01

    Full Text Available Most modern radiotherapy centers have adopted contouring based treatment. Sparing of the normal structures has been made more achievable than ever before by use of technologies such as Intensity Modulated Radiotherapy (IMRT and Image guided radiotherapy (IGRT. However, unlike, sites such as brain or head neck, thorax is a site in active motion, mostly contributed by patient's respiratory movement. 4 D radiotherapy, that addresses the issues of motion in thoracic tumours answers this critical question. The present article outlines the scope of need for 4 D radiotherapy and discusses the options available for 4 D treatments of cancer patients.

  8. Non-Schwarzschild black-hole metric in four dimensional higher derivative gravity: Analytical approximation

    Science.gov (United States)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.

  9. Utilizing Four Dimensional Lightning and Dual-Polarization Radar to Develop Lightning Initiation Forecast Guidance

    Science.gov (United States)

    2015-03-26

    0.20. That study utilized LDAR to detect lightning for several storms in the vicinity of KSC. The Buechler and Goodman (1990) results are very...2000) closely examined lightning -producing storms in the tropics and developed methods 27 to identify when cloud electrification was occurring based on Z... lightning based on size and composite Z alone. Since the focus was airmass thunderstorms, any days with complex areas or lines of thunder- storms

  10. Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system

    Science.gov (United States)

    Rech, Paulo C.

    2017-12-01

    This paper reports on numerically computed parameter plane plots for a dynamical system modeled by a set of five-parameter, four autonomous first-order nonlinear ordinary differential equations. The dynamical behavior of each point, in each parameter plane, is characterized by Lyapunov exponents spectra. Each of these diagrams indicates parameter values for which hyperchaos, chaos, quasiperiodicity, and periodicity may be found. In fact, each diagram shows delimited regions where each of these behaviors happens. Moreover, it is shown that some of these parameter planes display organized periodic structures embedded in quasiperiodic and chaotic regions.

  11. A four-dimensional compound-model morphed potential for the OC:HBr complex.

    Science.gov (United States)

    Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W

    2010-07-14

    A parameterized compound-model morphed intermolecular potential energy surface has been generated for the dimer OC:HBr. This morphed potential is determined by fitting experimentally available gas phase spectroscopic data and found to have a global minimum with a well depth of 564(5) cm(-1) and linear (16)O(12)C-H(79)Br geometry having center of mass to center of mass distance R = 4.525(7) A. The linear isomers (12)C(16)O-H(79)Br and (16)O(12)C-(79)BrH are determined with a corresponding well depth of 273(7) and 269(2) cm(-1) having R = 4.35(4) and 4.24(3) A, respectively. This results in a DeltaE of 293(9) cm(-1) between the global potential energy minimum and the minima in the two higher energy isomers. The generated potential is compared with the corresponding OC:HCl morphed potential. Differences in the morphing parameters are attributed to different contributions to the interaction energy. It is found that the counterpoise method successfully corrected the basis set superposition error in OC:HCl, but was under corrected by 16(7)% in OC:HBr.

  12. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Daniel [GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt (Germany); TU Darmstadt, Darmstadt (Germany); Saito, Nami [GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt (Germany); Chaudhri, Naved [Heidelberg Ion-Beam Therapy Center, Department of Medical Physics, Heidelberg (Germany); Härtig, Martin [University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Ellerbrock, Malte [Heidelberg Ion-Beam Therapy Center, Department of Medical Physics, Heidelberg (Germany); Jäkel, Oliver [Heidelberg Ion-Beam Therapy Center, Department of Medical Physics, Heidelberg (Germany); University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Combs, Stephanie E.; Habermehl, Daniel; Herfarth, Klaus [University Hospital of Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Durante, Marco [GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt (Germany); TU Darmstadt, Darmstadt (Germany); Bert, Christoph, E-mail: christoph.bert@uk-erlangen.de [GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt (Germany); University Clinic Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Department of Radiation Oncology, Erlangen (Germany)

    2014-05-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporal correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.

  13. Aspects of compactifications and black holes in four-dimensional supergravity

    NARCIS (Netherlands)

    Looijestijn, H.T.|info:eu-repo/dai/nl/304825603

    2010-01-01

    In the 20th century, theoretical physics has seen the development of General Relativity and the Standard Model of elementary particles. These theories describe, with great precision, gravity and all known matter, respectively. However, it is not possible to unite them into one, single theory. We

  14. Three- and four-dimensional mapping of speech and language in patients with epilepsy.

    Science.gov (United States)

    Nakai, Yasuo; Jeong, Jeong-Won; Brown, Erik C; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi

    2017-05-01

    We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  15. Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction

    Directory of Open Access Journals (Sweden)

    M. Buehner

    2013-09-01

    Full Text Available The goal of this study is to evaluate a version of the ensemble-variational data assimilation approach (EnVar for possible replacement of 4D-Var at Environment Canada for global deterministic weather prediction. This implementation of EnVar relies on 4-D ensemble covariances, obtained from an ensemble Kalman filter, that are combined in a vertically dependent weighted average with simple static covariances. Verification results are presented from a set of data assimilation experiments over two separate 6-week periods that used assimilated observations and model configuration very similar to the currently operational system. To help interpret the comparison of EnVar versus 4D-Var, additional experiments using 3D-Var and a version of EnVar with only 3-D ensemble covariances are also evaluated. To improve the rate of convergence for all approaches evaluated (including EnVar, an estimate of the cost function Hessian generated by the quasi-Newton minimization algorithm is cycled from one analysis to the next. Analyses from EnVar (with 4-D ensemble covariances nearly always produce improved, and never degraded, forecasts when compared with 3D-Var. Comparisons with 4D-Var show that forecasts from EnVar analyses have either similar or better scores in the troposphere of the tropics and the winter extra-tropical region. However, in the summer extra-tropical region the medium-range forecasts from EnVar have either similar or worse scores than 4D-Var in the troposphere. In contrast, the 6 h forecasts from EnVar are significantly better than 4D-Var relative to radiosonde observations for both periods and in all regions. The use of 4-D versus 3-D ensemble covariances only results in small improvements in forecast quality. By contrast, the improvements from using 4D-Var versus 3D-Var are much larger. Measurement of the fit of the background and analyzed states to the observations suggests that EnVar and 4D-Var can both make better use of observations distributed over time than 3D-Var. In summary, the results from this study suggest that the EnVar approach is a viable alternative to 4D-Var, especially when the simplicity and computational efficiency of EnVar are considered. Additional research is required to understand the seasonal dependence of the difference in forecast quality between EnVar and 4D-Var in the extra-tropics.

  16. Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Rua Hugo D' Antola, 95, Lapa, Sao Paulo (Brazil); Mariz, T. [Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil)

    2013-08-15

    In this paper, we consider the perturbative generation of the CPT-even aether-like Lorentz-breaking term in the extended Lorentz-breaking QED within different approaches and discuss its ambiguities. (orig.)

  17. Four-Dimensional Weather Functional Requirements for NextGen Air Traffic Management

    Science.gov (United States)

    2008-01-18

    121, 135) 10 Pilot or Airline Representatives (ATA, NBAA, AOPA , etc.) 6 Dispatch, AOC, Airline Meteorologists 11 Traffic Flow 3 Air Traffic...Navigation Service Provider AOC Air and Space Operations Center AOPA Aircraft Owners and Pilots Association APA Allied Pilots Association ASOS...Kenagy AOPA Senior Dir. of Advanced Technology randy.kenagy@aopa.com 301-695-2000 Pete.Lehmann AOPA Govt. Analyst, AT Services peter.lehmann@aopa.org

  18. On the Four Dimensional Holoraumy of the 4D, $\\cal N$ = 1 Complex Linear Supermultiplet

    OpenAIRE

    Caldwell, Wes; Diaz, Alejandro; Friend, Isaac; Gates, Jr., S. J.; Harmalkar, Siddhartha; Lambert-Brown, Tamar; Lay, Daniel; Martirosova, Karina; Meszaros, Victor; Omokanwaye, Mayowa; Rudman, Shaina; Shin, Daniel; Vershov, Anthony

    2017-01-01

    We present arguments to support the existence of weight spaces for supersymmetric field theories and identify the calculations of information about supermultiplets to define such spaces via the concept of "holoraumy." For the first time this is extended to the complex linear supermultiplet by a calculation of the commutator of supercovariant derivatives on all of its component fields.

  19. Geoarchaeology, the four dimensional (4D) fluvial matrix and climatic causality

    Science.gov (United States)

    Brown, A. G.

    2008-10-01

    Geoarchaeology is the application of geological and geomorphological techniques to archaeology and the study of the interactions of hominins with the natural environment at a variety of temporal and spatial scales. Geoarchaeology in the UK over the last twenty years has flourished largely because it has gone beyond technological and scientific applications. Over the same period our ability to reconstruct the 3-dimensional stratigraphy of fluvial deposits and the matrix of fluvial sites has increased dramatically because of a number of technological advances. These have included the use of LiDAR (laser imaging) and radar to produce high-resolution digital surface models, the use of geophysics, particularly ground penetrating radar and electrical resistivity, to produce sediment depth models, and the use of GIS and data visualisation techniques to manipulate and display the data. These techniques along with more systematic and detailed sedimentological recording of exposed sections have allowed the construction of more precise 3-dimensional (volumetric) models of the matrix of artefacts within fluvial deposits. Additionally a revolution in dating techniques, particularly direct sediment dating by luminescence methods, has enabled the creation of 4-dimensional models of the creation and preservation of these sites. These 4-dimensional models have the ability to provide far more information about the processes of site creation, preservation and even destruction, and also allow the integration of these processes with independent data sources concerning cultural evolution and climatic change. All improvements in the precision of dating fluvial deposits have archaeological importance in our need to translate events from a sequential or geological timeframe to human timescales. This allows geoarchaeology to make a more direct contribution to cultural history through the recognition of agency at the individual or group level. This data can then form a component of biocomplexity or agent-based modelling which is becoming increasingly used in the natural sciences, particularly ecology and geomorphology and which can be used to test scenarios including the impact on, and response of, hominins to abrupt or catastrophic environmental change. Whilst catastrophic events clearly represent the atypical they can be illuminating in revealing cognitive processes resulting in abandonment, coping, mitigation and innovation. These points are exemplified using two in-depth case studies: one from the Holocene geoarchaeological record of the River Trent in Central England and the other from the Palaeolithic record from rivers in South West Britain. In the former the interaction between climate change and human activity is illustrated at the year to century timescale whilst in the other the timescale is millennial. These case studies have deliberately been chosen to be as different as possible in temporal and spatial scale with the aim of examining the applicability of methodological and theoretical aspects of geoarchaeology. Lastly the paper considers the problem of scale in geoarchaeology and concludes it is process-dependency, which ultimately affects the questions we can ask, and that questions of human response to climate change are fundamentally a product of materiality and cognitive processes. This demands an in-depth contextual approach to such questions rather than database-driven assertions of causality.

  20. Multi-objective four-dimensional vehicle motion planning in large dynamic environments.

    Science.gov (United States)

    Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten

    2011-06-01

    This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.

  1. High Performance Input/Output Systems for High Performance Computing and Four-Dimensional Data Assimilation

    Science.gov (United States)

    Fox, Geoffrey C.; Ou, Chao-Wei

    1997-01-01

    The approach of this task was to apply leading parallel computing research to a number of existing techniques for assimilation, and extract parameters indicating where and how input/output limits computational performance. The following was used for detailed knowledge of the application problems: 1. Developing a parallel input/output system specifically for this application 2. Extracting the important input/output characteristics of data assimilation problems; and 3. Building these characteristics s parameters into our runtime library (Fortran D/High Performance Fortran) for parallel input/output support.

  2. Simulation-Based Validation for Four-Dimensional Multi-Channel Ultrasound Current Source Density Imaging

    Science.gov (United States)

    Wang, Zhaohui; Witte, Russell S.

    2015-01-01

    Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247

  3. Application of four dimensional matrix for thermal analysis of Slovak transit gas pipeline by program FENIX

    Science.gov (United States)

    Széplaky, Dávid; Varga, Augustín

    2016-06-01

    The contribution describes the principle of the FENIX program operation, which was designed to determine the temperature field of the transit pipeline for the transportation of natural gas. The program itself consists of several modules which are reciprocally linked. The basis of the program is the elementary balance method by means of which the unsteady heat transfer is assigned in several layers in different directions. The first step was to assess both the pressure and temperature of the natural gas mode, the second step is to determine the heat transfer through the walls of the pipes, and the last one is to determine the distribution of the temperature field in the surroundings of the pipeline.

  4. On the localization of four-dimensional brane-world black holes

    Science.gov (United States)

    Kanti, P.; Pappas, N.; Zuleta, K.

    2013-12-01

    In the context of brane-world models, we pursue the question of the existence of five-dimensional solutions describing regular black holes localized close to the brane. Employing a perturbed Vaidya-type line-element embedded in a warped fifth dimension, we attempt to localize the extended black-string singularity, and to restore the regularity of the AdS spacetime at a finite distance from the brane by introducing an appropriate bulk energy-momentum tensor. As a source for this bulk matter, we are considering a variety of non-ordinary field-theory models of scalar fields either minimally coupled to gravity, but including non-canonical kinetic terms, mixing terms, derivative interactions and ghosts, or non-minimally coupled to gravity through a general coupling to the Ricci scalar. In all models considered, even in those characterized by a high degree of flexibility, a negative result was reached. Our analysis demonstrates how difficult the analytic construction of a localized brane-world black hole may be in the context of a well-defined field-theory model. Finally, with regard to the question of the existence or not of a static classical black-hole solution on the brane, our analysis suggests that such solutions could in principle exist; however, the associated field configuration itself has to be dynamic.

  5. On the localisation of four-dimensional brane-world black holes: II. The general case

    Science.gov (United States)

    Kanti, P.; Pappas, N.; Pappas, T.

    2016-01-01

    We perform a comprehensive analysis of a number of scalar field theories in an attempt to find analytically five-dimensional, localised-on-the-brane, black-hole solutions. Extending a previous analysis, we assume a generalised Vaidya ansatz for the five-dimensional metric tensor that allows for a time-dependent, non-trivial profile of the mass function in terms of the bulk coordinate and a deviation from the over-restricting Schwarzschild-type solution on the brane. In order to support such a solution, we study a variety of theories including single or multiple scalar fields, with canonical or non-canonical kinetic terms, minimally or non-minimally coupled to gravity. We demonstrate that for such a metric ansatz and for a carefully chosen energy-momentum tensor which is non-isotropic in five dimensions, solutions that have the form of a Schwarzschild-(anti)de Sitter or Reissner-Nordstrom type of solution do emerge. However, the resulting profile of the mass function along the bulk coordinate, when allowed, is not the correct one for eliminating bulk singularities.

  6. Assessing organizational citizenship behavior in the French context: evidence for the four-dimensional model.

    Science.gov (United States)

    Paillé, Pascal

    2009-03-01

    Although researchers have extensively studied organizational citizenship behavior (OCB) in the U.S. context, OCB measurement has received relatively limited attention in other contexts, specifically in the French-language context. Using 2 samples (for Study 1, N=292; for Study 2, N=355), the author investigated OCB in a French-language context. Using an exploratory factorial analysis in Study 1, the author found a 4-factor model (altruism, civic virtue, sportsmanship, helping others). Using a confirmatory factor analysis in Study 2, the author confirmed a 4-factor model. Data provided results that show some differences and similarities between U.S. and French contexts.

  7. Understanding and managing three-dimensional/four-dimensional model implementations at the project team level

    NARCIS (Netherlands)

    Hartmann, Timo; Levitt, R.

    2010-01-01

    This paper introduces an extant, theoretical, social-psychological model that explains the sense-making processes of project managers confronted with a new technology to improve our understanding of project-based innovation processes. The model represents the interlinked processes through which

  8. Multicolor fate mapping of langerhans cell homeostasis

    NARCIS (Netherlands)

    E. Ghigo (Ezio); I. Mondor (Isabelle); A. Jorquera (Audrey); N. Nowak (NowakJonathan); S. Wienert (Stephan); S.P. Zahner (Sonja P.); B.E. Clausen (Bjorn); H. Luche (Hervé); B. Malissen (Bernard); F. Klauschen (Frederick); M. Bajénoff (Marc)

    2013-01-01

    textabstractLangerhans cells (LCs) constitute a network of immune sentinels in the skin epidermis that is seeded during embryogenesis. Whereas the development of LCs has been extensively studied, much less is known about the homeostatic renewal of adult LCs in "nonmanipulated" animals. Here, we

  9. Multicolor quantum metrology with entangled photons.

    Science.gov (United States)

    Bell, Bryn; Kannan, Srikanth; McMillan, Alex; Clark, Alex S; Wadsworth, William J; Rarity, John G

    2013-08-30

    Entangled photons can be used to make measurements with an accuracy beyond that possible with classical light. While most implementations of quantum metrology have used states made up of a single color of photons, we show that entangled states of two colors can show supersensitivity to optical phase and path length by using a photonic crystal fiber source of photon pairs inside an interferometer. This setup is relatively simple and robust to experimental imperfections. We demonstrate sensitivity beyond the standard quantum limit and show superresolved interference fringes using entangled states of two, four, and six photons.

  10. A Plenoptic Multi-Color Imaging Pyrometer

    Science.gov (United States)

    Danehy, Paul M.; Hutchins, William D.; Fahringer, Timothy; Thurow, Brian S.

    2017-01-01

    A three-color pyrometer has been developed based on plenoptic imaging technology. Three bandpass filters placed in front of a camera lens allow separate 2D images to be obtained on a single image sensor at three different and adjustable wavelengths selected by the user. Images were obtained of different black- or grey-bodies including a calibration furnace, a radiation heater, and a luminous sulfur match flame. The images obtained of the calibration furnace and radiation heater were processed to determine 2D temperature distributions. Calibration results in the furnace showed that the instrument can measure temperature with an accuracy and precision of 10 Kelvins between 1100 and 1350 K. Time-resolved 2D temperature measurements of the radiation heater are shown.

  11. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Kari, Jeppe; Borch, Kim

    2017-01-01

    the two enzymes. In particular, we found that endo-lytic Cel7B combined very quickly with the substrate and reached the maximal activity within the dead-time of the instrument. Conversely, exo-lytic Cel7A showed a much slower initiation with maximal activity after 5–8 s and a 10-fold lower turnover. We...

  12. Visual-auditory differences in duration discrimination of intervals in the subsecond and second range

    Directory of Open Access Journals (Sweden)

    Thomas eRammsayer

    2015-10-01

    Full Text Available A common finding in time psychophysics is that temporal acuity is much better for auditory than for visual stimuli. The present study aimed to examine modality-specific differences in duration discrimination within the conceptual framework of the Distinct Timing Hypothesis. This theoretical account proposes that durations in the lower milliseconds range are processed automatically while longer durations are processed by a cognitive mechanism. A sample of 46 participants performed two auditory and visual duration discrimination tasks with extremely brief (50-ms standard duration and longer (1000-ms standard duration intervals. Better discrimination performance for auditory compared to visual intervals could be established for extremely brief and longer intervals. However, when performance on duration discrimination of longer intervals in the one-second range was controlled for modality-specific input from the sensory-automatic timing mechanism, the visual-auditory difference disappeared completely as indicated by virtually identical Weber fractions for both sensory modalities. These findings support the idea of a sensory-automatic mechanism underlying the observed visual-auditory differences in duration discrimination of extremely brief intervals in the millisecond range and longer intervals in the one-second range. Our data are consistent with the notion of a gradual transition from a purely modality-specific, sensory-automatic to a more cognitive, amodal timing mechanism. Within this transition zone, both mechanisms appear to operate simultaneously but the influence of the sensory-automatic timing mechanism is expected to continuously decrease with increasing interval duration.

  13. Subsecond annealing of advanced materials annealing by lasers, flash lamps and swift heavy ions

    CERN Document Server

    Skorupa, Wolfgang

    2014-01-01

    This book examines thermal processing of elemental semiconductors and materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Covers compound semiconductors, dielectric composites and organic materials.

  14. Screening and Monitoring Response to Treatment Using Subsecond Molecular Imaging and Hyperpolarized Contrast Agents

    Science.gov (United States)

    2013-05-01

    no uniform approach to the early assessment of breast cancer response to NAT. Palpation , probably the most widely used technique in the clinical set...assessment for residual disease fundamentally seeks to depict anatomy , whereas response assessment seeks to evaluate changes in tumor biology and may do...NAT in patients with smaller tumors that are poorly assessed by palpation , MRI-based lesion size measurement may become more integrated into

  15. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution.

    Science.gov (United States)

    Olsen, Johan P; Kari, Jeppe; Borch, Kim; Westh, Peter

    2017-10-01

    Even though many enzyme processes occur at the interface of an insoluble substrate, these reactions are generally much less studied than homogenous enzyme reactions in the aqueous bulk. Interfacial (or heterogeneous) enzyme reactions involve several reaction steps, and the established experimental approach to elucidate multi-step reactions is transient (or pre steady-state) kinetics. A key requirement for pre steady-state measurements is good time resolution, and while this has been amply achieved in different commercial instruments, they are generally not applicable to precipitating suspensions of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100ms. The general performance was verified by alkali catalyzed hydrolysis of 2,4-dinitrophenyl acetate (DNPA), and the applicability to heterogeneous reactions was documented by two cellulases (Cel7A and Cel7B) acting on suspensions of microcrystalline cellulose (Avicel) at different loads up to 15g/l. The results showed distinctive differences between the two enzymes. In particular, we found that endo-lytic Cel7B combined very quickly with the substrate and reached the maximal activity within the dead-time of the instrument. Conversely, exo-lytic Cel7A showed a much slower initiation with maximal activity after 5-8s and a 10-fold lower turnover. We suggest that the instrument may provide an important tool in attempts to elucidate the mechanism of cellulases and other enzymes' action on insoluble substrate. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys.

    Science.gov (United States)

    Zarco, Wilbert; Merchant, Hugo; Prado, Luis; Mendez, Juan Carlos

    2009-12-01

    This study describes the psychometric similarities and differences in motor timing performance between 20 human subjects and three rhesus monkeys during two timing production tasks. These tasks involved tapping on a push-button to produce the same set of intervals (range of 450 to 1,000 ms), but they differed in the number of intervals produced (single vs. multiple) and the modality of the stimuli (auditory vs. visual) used to define the time intervals. The data showed that for both primate species, variability increased as a function of the length of the produced target interval across tasks, a result in accordance with the scalar property. Interestingly, the temporal performance of rhesus monkeys was equivalent to that of human subjects during both the production of single intervals and the tapping synchronization to a metronome. Overall, however, human subjects were more accurate than monkeys and showed less timing variability. This was especially true during the self-pacing phase of the multiple interval production task, a behavior that may be related to complex temporal cognition, such as speech and music execution. In addition, the well-known human bias toward auditory as opposed to visual cues for the accurate execution of time intervals was not evident in rhesus monkeys. These findings validate the rhesus monkey as an appropriate model for the study of the neural basis of time production, but also suggest that the exquisite temporal abilities of humans, which peak in speech and music performance, are not all shared with macaques.

  17. Use of TIRF to Monitor T-Lymphocyte Membrane Dynamics with Submicrometer and Subsecond Resolution.

    Science.gov (United States)

    Brodovitch, Alexandre; Limozin, Laurent; Bongrand, Pierre; Pierres, Anne

    A key step of adaptive immune responses is the T lymphocyte capacity to detect the presence of foreign antigens on specialized cells with high speed and specificity during contacts lasting a few minutes. Much evidence suggests that there is a deep link between the lifetime of molecular interactions between T cell receptors and ligands and T cell activation, but the precise mechanisms of bond formation and dissociation remain incompletely understood. Previous experiments done with interference reflection microscopy/reflection interference contrast microscopy disclosed transverse motions with several nanometer average amplitude of micrometer size membrane zones. More recently, total internal reflection fluorescence microscopy was used to show that the initial interaction between primary T lymphocytes and model surfaces involved the tip of microvilli (typically 0.2 µm2 area) generating apparent contacts of a few seconds that allowed cells to detect ligands of their membrane receptors. Here we show that these microvilli displayed minimal lateral displacements but quantitative fluorescence measurement suggested the occurrence of spontaneous transverse fluctuations of order of 67 nm amplitude during 1-s observation periods. This may play a major role in membrane receptor engagement and ensuing signal generation.

  18. At-sea Real-time Coupled Four-dimensional Oceanographic and Acoustic Forecasts during Battlespace Preparation 2007

    NARCIS (Netherlands)

    Lam, F.P.A.; Haley Jr., P.J.; Janmaat, J.; Lermusiaux, P.F.J.; Leslie, W.G.; Schouten, M.W.; Raa, L.A. te; Rixen, M.

    2009-01-01

    Systems capable of forecasting ocean properties and acoustic performance in the littoral ocean are becoming a useful capability for scientific and operational exercises. The coupling of a data-assimilative nested ocean modeling system with an acoustic propagation modeling syste was carried out at

  19. Four-dimensional modelling of the mitral valve by real-time 3D transoesophageal echocardiography: proof of concept.

    Science.gov (United States)

    Noack, Thilo; Mukherjee, Chirojit; Kiefer, Philipp; Emrich, Fabian; Vollroth, Marcel; Ionasec, Razvan Ioan; Voigt, Ingmar; Houle, Helene; Ender, Joerg; Misfeld, Martin; Mohr, Friedrich Wilhelm; Seeburger, Joerg

    2015-02-01

    The complexity of the mitral valve (MV) anatomy and function is not yet fully understood. Assessing the dynamic movement and interaction of MV components to define MV physiology during the complete cardiac cycle remains a challenge. We herein describe a novel semi-automated 4D MV model. The model applies quantitative analysis of the MV over a complete cardiac cycle based on real-time 3D transoesophageal echocardiography (RT3DE) data. RT3DE data of MVs were acquired for 18 patients. The MV annulus and leaflets were semi-automatically reconstructed. Dimensions of the mitral annulus (anteroposterior and anterolateral-posteromedial diameter, annular circumference, annular area) and leaflets (MV orifice area, intercommissural distance) were acquired. Variability and reproducibility (intraclass correlation coefficient, ICC) for interobserver and intraobserver comparison were quantified at 4 time points during the cardiac cycle (mid-systole, end-systole, mid-diastole and end-diastole). Mitral annular dimensions provided highly reliable and reproducible measurements throughout the cardiac cycle for interobserver (variability range, 0.5-1.5%; ICC range, 0.895-0.987) and intraobserver (variability range, 0.5-1.6%; ICC range, 0.827-0.980) comparison, respectively. MV leaflet parameters showed a high reliability in the diastolic phase (variability range, 0.6-9.1%; ICC range, 0.750-0.986), whereas MV leaflet dimensions showed a high variability and lower correlation in the systolic phase (variability range, 0.6-22.4%; ICC range, 0.446-0.915) compared with the diastolic phase. This 4D model provides detailed morphological reconstruction as well as sophisticated quantification of the complex MV structure and dynamics throughout the cardiac cycle with a precision not yet described. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Four-dimensional magnetic resonance imaging-derived ascending aortic flow eccentricity and flow compression are linked to aneurysm morphology†.

    Science.gov (United States)

    Kari, Fabian A; Kocher, Nadja; Beyersdorf, Friedhelm; Tscheuschler, Anke; Meffert, Philipp; Rylski, Bartosz; Siepe, Matthias; Russe, Maximilian F; Hope, Michael D

    2015-05-01

    The impact of specific blood flow patterns within ascending aortic and/or aortic root aneurysms on aortic morphology is unknown. We investigated the interrelation of ascending aortic flow compression/peripheralization and aneurysm morphology with respect to sinotubuar junction (STJ) definition. Thirty-one patients (aortic root/ascending aortic aneurysm >45 mm) underwent flow-sensitive 4D magnetic resonance thoracic aortic flow measurement at 3 Tesla (Siemens, Germany) at two different institutions (Freiburg, Germany, and San Francisco, CA, USA). Time-resolved image data post-processing and visualization of mid-systolic, mid-ascending aortic flow were performed using local vector fields. The Flow Compression Index (FCI) was calculated individually as a fraction of the area of high-velocity mid-systolic flow over the complete cross-sectional ascending aortic area. According to aortic aneurysm morphology, patients were grouped as (i) small root, eccentric ascending aortic aneurysm (STJ definition) and (ii) enlarged aortic root, non-eccentric ascending aortic aneurysm with diffuse root and tubular enlargement. The mean FCI over all patients was 0.47 ± 0.5 (0.37-0.99). High levels of flow compression/peripheralization (FCI aneurysm morphology (Group A, n = 11), while low levels or absence of aortic flow compression/peripheralization (FCI >0.8) occurred more often in Group B (n = 20). The FCI was 0.48 ± 0.05 in Group A and 0.78 ± 0.14 in Group B (P blood flow patterns are linked to distinct patterns of ascending aortic aneurysm morphology. Implementation of quantitative local blood flow analyses might help to improve aneurysm risk stratification in the future. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Prostate displacement during transabdominal ultrasound image-guided radiotherapy assessed by real-time four-dimensional transperineal monitoring

    DEFF Research Database (Denmark)

    Baker, Mariwan; Behrens, Claus F.

    2015-01-01

    Background. Transabdominal ultrasound (TAUS) imaging is currently available for localizing the prostate in daily image-guided radiotherapy (IGRT). The aim of this study was to determine the induced prostate displacement during such TAUS imaging. The prostate displacement was monitored using a nov...

  2. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

    Science.gov (United States)

    Gainetdinova, A A; Gazizov, R K

    2017-01-01

    We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

  3. Experience of International Education of East Asian Students in English-Speaking Countries: A Four-Dimensional Approach

    Science.gov (United States)

    Martinez, Maria L.; Colaner, Kevin T.

    2017-01-01

    Global participation in international education in the last two decades has increased exponentially. International students face difficulties in adjusting to the culture of their host country due to their unique needs (Bertram, Poulakis, Elsasser & Kumar, 2014). This article presents themes comprising the international education phenomenon…

  4. Is the Gambling Motives Questionnaire really three-dimensional? A proposition of a four-dimensional Gambling Motives Questionnaire - Revised.

    Science.gov (United States)

    Myrseth, Helga; Notelaers, Guy

    2017-02-01

    The aim of the present study was to improve the weaknesses of the three-dimensional Gambling Motives Questionnaire and to examine the psychometric properties and factor structure of the Gambling Motives Questionnaire-Revised. The Gambling Motives Questionnaire was administered to a sample of 418 gamblers (92% men, mean age 19.5years). Participants completed the Gambling Motives Questionnaire and an additional item tapping boredom, as well as a variety of measures of gambling behavior and gambling problems as criterion measures. Results showed that the Gambling Motives Questionnaire-Revised is better represented as a four-factor structure tapping the following four gambling motives factors; enhancement, coping, social, and self-gratification, Δχ2 Δ(df)=24.76 (3), pGambling Motives Questionnaire and adding an extra item tapping boredom also improved the fit of the Gambling Motives Questionnaire-Revised. The subscales enhancement, social, and coping were all significant predictors of variety of gambling behaviors (pgambling behaviors (pgambling problems (pGambling Motives Questionnaire - Revised, consisting of the four dimensions enhancement motives, social motives, coping motives and self-gratification motives, is a reliable and valid instrument to measuring gambling motives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo

    DEFF Research Database (Denmark)

    Wu, Xinlei; von Birgelen, Clemens; Muramatsu, Takashi

    2017-01-01

    it for the first time in two clinical cases to investigate the potential relationship between dynamic stress concentration at baseline and plaque rupture during acute coronary syndrome (ACS) several months later. METHODS AND RESULTS: Three-dimensional angiographic reconstructions of the interrogated arteries were...... performed at several phases of the cardiac cycle, followed by finite element analysis to obtain the dynamic SWS data. The peak stress at baseline was found at the distal and proximal lesion longitudinal shoulders, being 121.8kPa and 98.0kPa, respectively. Intriguingly, in both cases, the sites...

  6. Experience of International Education of East Asian Students in English-speaking Countries: A four-dimensional approach

    Directory of Open Access Journals (Sweden)

    Maria L Martinez

    2017-07-01

    Full Text Available Global participation in international education in the last two decades has increased exponentially. International students face difficulties in adjusting to the culture of their host country due to their unique needs (Bertram, Poulakis, Elsasser & Kumar, 2014. This article presents themes comprising the international education phenomenon involving the experiences of East Asian international students in English-speaking countries. The literature reviewed for this article pertains to many aspects of international education, covering the factors that influence the decision to embark on the international education journey to the adjustment experienced by students to the host culture. The authors suggest that the international education experience is comprised of four dimensions: structural, linguistic, internal, and external. We also posit that Confucianism, which many East Asian students follow, influences not only the psycho-social dimension of the international education experience but also their instructional preferences within the structural dimension. We further contend that students’ actual and perceived proficiency (or the lack thereof in the host country’s language greatly shapes all aspects of the student’s international education experience, which then determines the degree of acculturative stress involved and plays a key role in each of the three dimensions. Because of the anticipated continued growth in the number of international students from East Asia attending higher education institutions in English-speaking countries such as the United States, Australia, Canada, and parts of Africa, it is important to examine how each of the dimensions proposed impact each other. Approaching the study of the international education experience one dimension at a time, as many scholars have done, does not completely address all of the unique needs of international students. We suggest that research in this area be conducted holistically by exploring the ecology surrounding the international student. Taking this ecological approach will help clearly define the role that home and host countries and host higher education institutions must take in serving the international students well.

  7. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research.

    Science.gov (United States)

    Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K

    2017-06-01

    Light-sheet-based fluorescence microscopy features optical sectioning in the excitation process. This reduces phototoxicity and photobleaching by up to four orders of magnitude compared with that caused by confocal fluorescence microscopy, simplifies segmentation and quantification for three-dimensional cell biology, and supports the transition from on-demand to systematic data acquisition in developmental biology applications.

  8. Four-dimensional quantitative analysis of the gait of mutant mice using coarse-grained motion capture.

    Science.gov (United States)

    Oota, S; Mekada, K; Fujita, Y; Humphries, J; Fukami-Kobayashi, K; Obata, Y; Rowe, T; Yoshiki, A

    2009-01-01

    To analyze an abnormal gait pattern in mutant mice (Hugger), we conducted coarse-grained motion capture. Using a simple retroreflective marker-based approach, we could detect high-resolution mutant-specific gait patterns. The phenotypic gait patterns are caused by extreme vertical motion of limbs, revealing inefficient motor functions. To elucidate the inefficiency, we developed a musculoskeletal computer model of the mouse hindlimb based on X-ray CT data. By integrating motion data with the model, we determined mutant-specific musculotendon lengths, suggesting that three major muscles were involved in the abnormal gait. This approach worked well on laboratory mice, which were putatively too small to be motion capture subjects. Motion capture technology was originally developed for human study, and our approach may help fill neuroscience gaps between mouse and human behavioral phenotypes.

  9. Towards a Four-Dimensional Model of Burnout: A Multigroup Factor-Analytic Study Including Depersonalization and Cynicism

    Science.gov (United States)

    Salanova, Marisa; Llorens, Susana; Garcia-Renedo, Monica; Burriel, Raul; Breso, Edgar; Schaufeli, Wilmar B.

    2005-01-01

    This article investigated whether cynicism and depersonalization are two different dimensions of burnout or whether they may be collapsed into one construct of mental distance. Using confirmatory factor analyses in two samples of teachers (n = 483) and blue-collar workers (n = 474), a superior fit was found for the four-factor model that contained…

  10. Atmospheric and dispersion modeling in areas of highly complex terrain employing a four-dimensional data assimilation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J.D.; O`Steen, B.L.

    1994-12-31

    The results of this study indicate that the current data assimilation technique can have a positive impact on the mesoscale flow fields; however, care must be taken in its application to grids of relatively fine horizontal resolution. Continuous FDDA is a useful tool in producing high-resolution mesoscale analysis fields that can be used to (1) create a better initial conditions for mesoscale atmospheric models and (2) drive transport models for dispersion studies. While RAMS is capable of predicting the qualitative flow during this evening, additional experiments need to be performed to improve the prognostic forecasts made by RAMS and refine the FDDA procedure so that the overall errors are reduced even further. Despite the fact that a great deal of computational time is necessary in executing RAMS and LPDM in the configuration employed in this study, recent advances in workstations is making applications such as this more practical. As the speed of these machines increase in the next few years, it will become feasible to employ prognostic, three-dimensional mesoscale/transport models to routinely predict atmospheric dispersion of pollutants, even to highly complex terrain. For example, the version of RAMS in this study could be run in a ``nowcasting`` model that would continually assimilate local and regional observations as soon as they become available. The atmospheric physics in the model would be used to determine the wind field where no observations are available. The three-dimensional flow fields could be used as dynamic initial conditions for a model forecast. The output from this type of modeling system will have to be compared to existing diagnostic, mass-consistent models to determine whether the wind field and dispersion forecasts are significantly improved.

  11. Feasibility Study on Prenatal Cardiac Screening Using Four-Dimensional Ultrasound with Spatiotemporal Image Correlation: A Multicenter Study.

    Directory of Open Access Journals (Sweden)

    Liqing Zhao

    Full Text Available This study aimed at investigating the feasibility of using the spatiotemporal image correlation (STIC technology for prenatal cardiac screening, finding factors that influence the offline evaluation of reconstructed fetal heart, and establishing an optimal acquisition scheme.The study included 452 gravidae presenting for routine screening at 3 maternity centers at 20-38 gestational weeks. The factors influencing the quality of STIC volume data were evaluated using t test, chi-square test, and logistic regression analysis. The predictive power was evaluated using the receiver operating characteristic (ROC curve.Among the 452 fetuses enrolled, 353 (78.1% were identified as successful and 99 (21.9% as failure of evaluation of the reconstructed fetal heart. The total success rate of qualified STIC images was 78.1%. The display rates of reconstructed cardiac views were 86.5% (four-chamber view, 92.5% (left ventricular outflow tract view, 92.7% (right ventricular outflow tract view, 89.9% (three-vessel trachea view, 63.9% (aortic arch view, 81.4% (ductal arch view, 81% (short-axis view of great vessels, 80.1% (long-cava view, and 86.9% (abdominal view. A logistic regression analysis showed that more than 28 gestational weeks [OR = 0.39 (CI 95% 0.16, 0.19, P = 0.035], frequent fetal movements [OR = 0.37 (CI 95% 0.16, 0.87, P = 0.022], shadowing [OR = 0.36 (CI 95% 0.19, 0.72, P = 0.004], spine location at 10-2 o'clock [OR = 0.08 (CI 95% 0.02, 0.27, P = 0.0], and original cardiac view [OR = 0.51 (0.25, 0.89, P = 0.019] had a significant impact on the quality of STIC. The area under the ROC curve was 0.775.Fetal cardiac-STIC seems a feasible tool for prenatal screening of congenital heart diseases. The influence factors on the quality of STIC images included the intensity of training, gestational age, fetal conditions and parameter settings. The optimal acquisition scheme may improve the application and widespread use of cardiac STIC.

  12. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe

    Energy Technology Data Exchange (ETDEWEB)

    Fehm, Thomas Felix; Razansky, Daniel, E-mail: dr@tum.de [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany); Faculty of Medicine, Technische Universität München, Munich (Germany); Deán-Ben, Xosé Luís [Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg (Germany)

    2014-10-27

    Ultrasonography and optoacoustic imaging share powerful advantages related to the natural aptitude for real-time image rendering with high resolution, the hand-held operation, and lack of ionizing radiation. The two methods also possess very different yet highly complementary advantages of the mechanical and optical contrast in living tissues. Nonetheless, efficient integration of these modalities remains challenging owing to the fundamental differences in the underlying physical contrast, optimal signal acquisition, and image reconstruction approaches. We report on a method for hybrid acquisition and reconstruction of three-dimensional pulse-echo ultrasound and optoacoustic images in real time based on passive ultrasound generation with an optical absorber, thus avoiding the hardware complexity of active ultrasound generation. In this way, complete hybrid datasets are generated with a single laser interrogation pulse, resulting in simultaneous rendering of ultrasound and optoacoustic images at an unprecedented rate of 10 volumetric frames per second. Performance is subsequently showcased in phantom experiments and in-vivo measurements from a healthy human volunteer, confirming general clinical applicability of the method.

  13. Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

    Directory of Open Access Journals (Sweden)

    Alexander Burinskii

    2013-01-01

    Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.

  14. Performance of sparse graph codes on a four-dimensional CDMA System in AWGN and multipath fading

    CSIR Research Space (South Africa)

    Vlok, JD

    2007-09-01

    Full Text Available ) communication platform. The channel codes include a 3D block-turbo-code (BTC) with extended Reed-Muller (RM) constituent codes, low-density parity-check (LDPC) codes and repeat-accumulate (RA) codes. It is shown that the three channel codes have comparable error...

  15. Leadership as social identity management: Introducing the Identity Leadership Inventory (ILI) to assess and validate a four-dimensional model

    OpenAIRE

    Steffens, Niklas K.; Haslam, S. Alexander; Reicher, Stephen D.; Platow, Michael J.; Fransen, Katrien; Yang, Jie; Ryan, Michelle K.; Jetten, Jolanda; Peters, Kim; Boen, Filip

    2014-01-01

    Although nearly two decades of research has provided support for the social identity approach to leadership, most previous work has focused on leaders’ identity prototypicality while neglecting the assessment of other equally important dimensions of social identity management. However, recent theoretical developments have argued that in order to mobilize and direct followers’ energies, leaders need not only to ‘be one of us’ (identity prototypicality), but also to ‘do it for us’ (identity adv...

  16. Artifacts in conventional computed tomography (CT) and free breathing four-dimensional CT induce uncertainty in gross tumor volume determination

    DEFF Research Database (Denmark)

    Persson, Gitte Fredberg; Nygaard, Ditte Eklund; Af Rosenschöld, Per Munck

    2011-01-01

    PURPOSE: Artifacts impacting the imaged tumor volume can be seen in conventional three-dimensional CT (3DCT) scans for planning of lung cancer radiotherapy but can be reduced with the use of respiration-correlated imaging, i.e., 4DCT or breathhold CT (BHCT) scans. The aim of this study was to com...

  17. Four-dimensional quantum study on exothermic complex-forming reactions: Cl- + CH3Br-->ClCH3+Br-.

    Science.gov (United States)

    Hennig, Carsten; Schmatz, Stefan

    2005-06-15

    The exothermic gas-phase bimolecular nucleophilic substitution (S(N)2) reaction Cl(-)+CH(3)Br (upsilon1',upsilon2',upsilon3')-->ClCH(3) (upsilon1,upsilon2,upsilon3)+Br- and the corresponding endothermic reverse reaction have been studied by time-independent quantum scattering calculations in hyperspherical coordinates on a coupled-cluster potential-energy surface. The dimensionality-reduced model takes four degrees of freedom into account [Cl-C and C-Br stretching modes (quantum numbers upsilon3' and upsilon3); totally symmetric modes of the methyl group, i.e., C-H stretching (upsilon1' and upsilon1) and umbrella bending vibrations (upsilon2' and upsilon2)]. Diagonalization of the Hamiltonian was performed employing the Lanczos algorithm with a variation of partial reorthogonalization. A narrow grid in the total energy was employed so that long-living resonance states could be resolved and extracted. While excitation of the reactant umbrella bending mode already leads to a considerable enhancement of the reaction probability, its combination with vibrational excitation of the broken C-Br bond, (0, 1, 1), results in a strong synergic effect that can be rationalized by the similarity with the classical transitional normal mode. Exciting the C-H stretch has a non-negligible effect on the reaction probability, while for larger translational energies this mode follows the expected spectatorlike behavior. Combination of C-Br stretch and symmetric C-H, (1,0,1), stretch does not show a cooperative effect. Contrary to the spectator mode concept, energy originally stored in the C-H stretching mode is by no means conserved, but almost completely released in other modes of the reaction products. Products are most likely formed in states with a high degree of excitation in the new C-Cl bond, while the internal modes of the methyl group are less important. Reactants with combined umbrella/C-Br stretch excitation, (0, 1, 1), may yield products with two quanta in the umbrella mode.

  18. Direct Comparison of Respiration-Correlated Four-Dimensional Magnetic Resonance Imaging Reconstructed Using Concurrent Internal Navigator and External Bellows.

    Science.gov (United States)

    Li, Guang; Wei, Jie; Olek, Devin; Kadbi, Mo; Tyagi, Neelam; Zakian, Kristen; Mechalakos, James; Deasy, Joseph O; Hunt, Margie

    2017-03-01

    To compare the image quality of amplitude-binned 4-dimensional magnetic resonance imaging (4DMRI) reconstructed using 2 concurrent respiratory (navigator and bellows) waveforms. A prospective, respiratory-correlated 4DMRI scanning program was used to acquire T2-weighted single-breath 4DMRI images with internal navigator and external bellows. After a 10-second training waveform of a surrogate signal, 2-dimensional MRI acquisition was triggered at a level (bin) and anatomic location (slice) until the bin-slice table was completed for 4DMRI reconstruction. The bellows signal was always collected, even when the navigator trigger was used, to retrospectively reconstruct a bellows-rebinned 4DMRI. Ten volunteers participated in this institutional review board-approved 4DMRI study. Four scans were acquired for each subject, including coronal and sagittal scans triggered by either navigator or bellows, and 6 4DMRI images (navigator-triggered, bellows-rebinned, and bellows-triggered) were reconstructed. The simultaneously acquired waveforms and resulting 4DMRI quality were compared using signal correlation, bin/phase shift, and binning motion artifacts. The consecutive bellows-triggered 4DMRI scan was used for indirect comparison. Correlation coefficients between the navigator and bellows signals were found to be patient-specific and inhalation-/exhalation-dependent, ranging from 0.1 to 0.9 because of breathing irregularities (>50% scans) and commonly observed bin/phase shifts (-1.1 ± 0.6 bin) in both 1-dimensional waveforms and diaphragm motion extracted from 4D images. Navigator-triggered 4DMRI contained many fewer binning motion artifacts at the diaphragm than did the bellows-rebinned and bellows-triggered 4DMRI scans. Coronal scans were faster than sagittal scans because of the fewer slices and higher achievable acceleration factors. Navigator-triggered 4DMRI contains substantially fewer binning motion artifacts than bellows-rebinned and bellows-triggered 4DMRI, primarily owing to the deviation of the external from the internal surrogate. The present study compared 2 concurrent surrogates during the same 4DMRI scan and their resulting 4DMRI quality. The navigator-triggered 4DMRI scanning protocol should be preferred to the bellows-based, especially for coronal scans, for clinical respiratory motion simulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Four Dimensional Transcatheter Intraarterial Perfusion Magnetic Resonance Imaging (4D TRIP-MRI) for Monitoring Chemoembolization of Hepatocellular Carcinoma

    Science.gov (United States)

    Gaba, Ron C.; Wang, Dingxin; Lewandowski, Robert J.; Ryu, Robert K.; Sato, Kent T.; Kulik, Laura M.; Mulcahy, Mary F.; Salem, Riad; Larson, Andrew C.; Omary, Reed A.

    2008-01-01

    Purpose Angiographic endpoints for transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) are subjective, and optimal endpoints remain unknown. Transcatheter intraarterial perfusion magnetic resonance imaging (TRIP-MRI), when performed in a combined MR-interventional radiology (MR-IR) suite, offers an objective method to quantify intra-procedural tumor perfusion changes, but was previously limited to two spatial dimensions. We prospectively tested the hypothesis that a new volumetric acquisition over time, 4D TRIP-MRI, can measure HCC perfusion changes during TACE. Materials and Methods Seven men (mean age 53 years, range 42-65 years) with eight tumors (mean size 2.5×2.4 cm2, diameter range 1.5-5.2 cm) underwent TACE in an MR-IR suite between 2/2007-12/2007, with intra-procedural tumor perfusion reductions monitored using 4D TRIP-MRI. Microcatheter TACE was performed using 1:1 chemotherapy:emulsifying contrast mixture followed by gelatin microspheres. Pre- and post-TACE time-intensity curves were generated for each tumor. Semi-quantitative measures of tumor perfusion, including area under curve (AUC), peak signal intensity (SI), time to peak SI, and maximum upslope (MUS), were calculated, and mean differences pre- and post-TACE were compared using paired t-tests. Results 4D TRIP-MRI monitored TACE was successful in all cases. Calculated pre- and post-TACE AUC (439 versus 221, P=0.004, 50% reduction), peak SI (32 versus 19, P=0.012, 41% reduction), and MUS (11 versus 3, P=0.028, 73% reduction) showed statistically significant reductions after TACE. Time to peak SI did not significantly change (23 versus 36 seconds, P=0.235, 57% increase). Conclusions 4D TRIP-MRI can successfully measure semi-quantitative changes in HCC perfusion during MR-IR monitored TACE. Future studies may correlate changes in these objective functional parameters with tumor response. PMID:18818097

  20. Four-dimensional variational Ocean ReAnalysis for the Western North Pacific over 30 years (FORA-WNP30)

    Science.gov (United States)

    Hirose, N.; Takatsuki, Y.; Usui, N.; Wakamatsu, T.; Tanaka, Y.; Toyoda, T.; Nishikawa, S.; Fujii, Y.; Igarashi, H.; Nishikawa, H.; Ishikawa, Y.; Kuragano, T.; Kamachi, M.

    2016-12-01

    An ocean reanalysis, FORA-WNP30, was produced by the collaborative work of Meteorological Research Institute, Japan Meteorological Agency (JMA/MRI) and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). A state-of-the-art 4-dimensional variational ocean data assimilation system, MOVE-4DVAR (Usui et al., 2015) was used. The calculation for the reanalysis, with the horizontal resolution of 0.1 degree (about 10 km) and the period between 1 January 1982 and 31 December 2014, was carried out on the Earth Simulator with the support of JAMSTEC. The model forcing is derived from the JRA-55 atmospheric reanalysis product. In-situ temperature and salinity profiles above 1500m-depth, satellite-based sea surface temperature (SST) and sea surface height (SSH) data are assimilated in FORA-WNP30.Using the current observations obtained by the Acoustic Doppler Current Profiler (ADCP) installed in two JMA research vessels, we validate the current (velocity) field in FORA-WNP30 and MOVE-3DVAR system, the latter of which is an operational ocean data assimilation system in JMA. The ADCP current data are independent because they are not assimilated in both systems. The current fields at 100-m depth during 2001-2012, in both of FORA-WNP30 and MOVE-3DVAR show high correlation with ADCP observation in the south of Japan, the East China Sea and the Kuroshio extension region, and relatively low correlation in the Japan Sea and the Oyashio region. The correlation coefficients of current speed for FORA-WNP30 are higher than those for MOVE-3DVAR in all regions.FORA-WNP30 successfully reproduces not only the major ocean current such as the Kuroshio and Oyashio, but also the associated meso-scale phenomena such as eddies, fronts, and meanders. In addition, it replicates the Kuroshio large meander events and the strong intrusion event of the Oyashio in 1980s, in spite of no satellite altimeter data for this period. Therefore, FORA-WNP30 is a valuable dataset for use in a variety of oceanographic process study and related fields such as climate study, meteorology, and fisheries.

  1. Status and Perspectives of the Mini-MegaTORTORA Wide-field Monitoring System with High Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sergey Karpov

    2013-01-01

    Full Text Available Here we briefly summarize our long-term experience of constructing and operating wide-field monitoring cameras with sub-second temporal resolution to look for optical components of GRBs, fast-moving satellites and meteors. The general hardware requirements for these systems are discussed, along with algorithms for real-time detection and classification of various kinds of short optical transients. We also give a status report on the next generation, the MegaTORTORA multi-objective and transforming monitoring system, whose 6-channel (Mini-MegaTORTORA-Spain and 9-channel prototypes (Mini-MegaTORTORA-Kazan we have been building at SAO RAS. This system combines a wide field of view with subsecond temporal resolution in monitoring regime, and is able, within fractions of a second, to reconfigure itself to follow-up mode, which has better sensitivity and simultaneously provides multi-color and polarimetric information on detected transients.

  2. The role of an electron pool in algal photosynthesis during sub-second light-dark cycling

    NARCIS (Netherlands)

    Vejrazka, C.; Streefland, M.; Wijffels, R.H.; Janssen, M.

    2015-01-01

    A key element to maximize photobioreactor (PBR) efficiency is the ability to predict microalgal growth and productivity depending on environmental conditions, out of which light availability is the most important one. As a result of mixing and light attenuation in a PBR, microalgae experience

  3. Research in Multi-Color Thin Film Emitters.

    Science.gov (United States)

    1980-07-01

    9Rockwell International Electronics Research Center UNCLASSIFIED SE6CUMITY CLASSIFICATION OF TNIX PACE MWon Des Ented) -Progrs epr ,1_ RElSEARCH IN MULTI...8217/ 800 North Quincy Street 1S. NUMBER OFPAGES Arlington, VA 22217 25_____________ 14. MONITORING AGENCY NAME 6 AODRESS( ii -AUIAI gMM Caaoni Office) IS... manganese -activated zinc sulfide (5 lm/W).1 The Mn+2 ion is incorporated substitutionally for zinc in the zinc sulfide lattice. Concentrations of 1-2

  4. Ultrahigh resolution multicolor colocalization of single fluorescent nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Michalet, X.; Lacoste, T.D.; Pinaud, F.; Chemla, D.S.; Alivisatos, A.P.; Weiss, S.

    2000-12-20

    A new method for in vitro and possibly in vivo ultrahigh-resolution colocalization and distance measurement between biomolecules is described, based on semiconductor nanocrystal probes. This ruler bridges the gap between FRET and far-field (or near-field scanning optical microscope) imaging and has a dynamic range from few nanometers to tens of micrometers. The ruler is based on a stage-scanning confocal microscope that allows the simultaneous excitation and localization of the excitation point-spread-function (PSF) of various colors nanocrystals while maintaining perfect registry between the channels. Fit of the observed diffraction and photophysics-limited images of the PSFs with a two-dimensional Gaussian allows one to determine their position with nanometer accuracy. This new high-resolution tool opens new windows in various molecular, cell biology and biotechnology applications.

  5. Intracellular distribution of Tankyrases as detected by multicolor immunofluorescence techniques

    Directory of Open Access Journals (Sweden)

    M.G. Bottone

    2012-01-01

    Full Text Available Poly(ADP-ribose polymerases are a family of enzymes that catalyze the conversion of NAD+ into ADP-ribose. Among them, Tankyrases have been found to bind to centrosome, mitotic spindle and microsome proteins, in the cytoplasm, and to telomeres in the nucleus, where they play a relevant role in telomere metabolism. However, their precise intracellular localization during interphase has not been so far fully elucidated. We investigated this aspect in situ by double immunofluorescence experiments using antibodies recognizing Tankyrases 1-2 or other proteins residing in specific organelles (Golgi apparatus, mitochondria, lysosomes, endoplasmic reticulum. We used HeLa cells as a model system in vitro, before and after treatment with either actinomycin D or etoposide, to also investigate the possible relocation of Tankyrases during apoptosis. We observed that Tankyrases are distributed both in the nucleus and in the cytoplasm; in this latter compartment, they were found to colocate with the Golgi apparatus but never with the mitochondria; a pool of Tankyrases also colocates with the endoplasmic reticulum and lysosomes. Interestingly, in cells with clear signs of apoptosis, Tankyrases were detectable in the cytoplasmic blebs: this suggests that they are not massively cleaved during apoptosis and persist in the largely heterogeneous apoptotic remnants which are known to contain components of cytoplasmic and nuclear origin.

  6. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  7. Accuracy of stellar parameters determined from multicolor photometry

    Science.gov (United States)

    Sichevskij, S. G.; Mironov, A. V.; Malkov, O. Yu.

    2014-04-01

    The development and application of new methods for intelligent analysis and extraction of information from digital sky surveys carried out in various spectral domains have now become a popular field in astrophysical research and, in particular, in stellar studies. Modern large-scale photometric surveys provide data for 105-106 relatively faint objects, and the lack of spectroscopic data can be compensated by the cross identification of the objects followed by an analysis of all catalogued photometric data. In this paper we investigate the possibility of determining the effective temperature, surface gravity, total extinction, and the total-to-selective extinction ratio based on the photometry provided in the 2MASS, SDSS, and GALEX surveys, and estimate the accuracy of the inferred parameters. We use a library of theoretical spectra to compute the magnitudes of stars in the photometric bands of the above surveys for various sets of input parameters. We compare the differences between the computed magnitudes with the errors of the corresponding surveys. We find that stellar parameters can be computed over a sizable domain of the parameter space. We estimate the accuracy of the resulting parameters. We show that the presence of far-ultraviolet data in the available set of observed magnitudes increases the accuracy of the inferred parameters.

  8. Ultra-thin infrared metamaterial detector for multicolor imaging applications.

    Science.gov (United States)

    Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J

    2017-09-18

    The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.

  9. Multicolor Graphic Picture With Original Ring Raster Element

    Directory of Open Access Journals (Sweden)

    Jana Ziljak Vujic

    2006-12-01

    Full Text Available This paper deals with graphics and color rastering using new raster forms as well as raster combinations in vector anda pixel graphics, with combining both graphics in the same document. The unwanted increase or decrease of color coverage depends most of all on the fringe volume length bordering the raster element. The idea of this research work is to find a form alters in the least extent the raster element fringe volume in respect to its increase or decrease. The innovation in this research work is not only in the fact that the raster element's volume is altered in the minimal degree, but also that it does not change at all with the covering capacity increase or decrease. The solution led in the direction of creating such a raster element that has at least two independent shells where one increases in size together with the raster element increase, and the other one decreases when the raster element size increases. We have named this raster form as the ring form due to its similarity with a classical smooth ring.

  10. Novel Heterongineered Detectors for Multi-Color Infrared Sensing

    Science.gov (United States)

    2012-01-30

    beam lithography, ion-beam lithography, nano- imprinting and interferometric lithography (IL)14–17. For this study, we choose a 2D periodic hole...wavelength infrared focal plane arrays based on superlattice and BIRD detector structures. Infrared Phys. Tech. 52, 348–352 (2009). 4. Rogalski, A

  11. Multicolored words: Uncovering the relationship between reading mechanisms and synesthesia.

    Science.gov (United States)

    Blazej, Laura J; Cohen-Goldberg, Ariel M

    2016-02-01

    Grapheme-color and lexical-color synesthesia, the association of colors with letters and words, respectively, are some of the most commonly studied forms of synesthesia, yet relatively little is known about how synesthesia arises from and interfaces with the reading process. To date, synesthetic experiences in reading have only been reported in relation to a word's graphemes and meaning. We present a case study of WBL, a 21-year old male who experiences synesthetic colors for letters and words. Over 3 months, we obtained nearly 3000 color judgments for visually presented monomorphemic, prefixed, suffixed, and compound words as well as judgments for pseudocompound words (e.g., carpet), and nonwords. In Experiment 1, we show that word color is nearly always determined by the color of the first letter. Furthermore, WBL reported two separate colors for prefixed and compound words approximately 14% of the time, with the additional color determined by the first letter of the second morpheme. In Experiment 2, we further investigated how various morphological factors influenced WBL's percepts using the compound norms of Juhasz, Lai, and Woodcock (2014). In a logistic regression analysis of color judgments for nearly 400 compounds, we observed that the likelihood that WBL would perceive a compound as bearing 1 lexical color or 2 lexical colors was influenced by a variety of factors including stem frequency, compound frequency, and the relationship between the meaning of the compound and the meaning of its stems. This constitutes the first study reporting an effect of morphological structure in synesthesia and demonstrates that synesthetic colors result from a complex interaction of perceptual, graphemic, morphological, and semantic factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A color management system for multi-colored LED lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen

    2015-01-01

    A new color control system is described and implemented for a five–color LED light engine, covering a wide white gamut. The system combines a new way of using pre-calibrated look-up tables and a rule-based optimization of chromaticity distance from the Planckian locus with a calibrated color sensor....... The color sensor monitors the chromaticity of the mixed light providing the correction factor for the current driver by using the generated look-up table. The long term stability and accuracy of the system will be experimentally investigated with target tolerance within a circle radius 0.0011 in the uniform...

  13. Multicolor FISH mapping of the dioecious model plant, Silene latifolia

    Czech Academy of Sciences Publication Activity Database

    Lengerová, Martina; Kejnovský, Eduard; Hobza, Roman; Macas, Jiří; Grant, S. R.; Vyskot, Boris

    2004-01-01

    Roč. 108, č. 7 (2004), s. 1193-1199 ISSN 0040-5752 R&D Projects: GA ČR GA521/02/0427; GA ČR GA204/02/0417 Institutional research plan: CEZ:AV0Z5004920 Keywords : FISH * sex chromosomes * karyotype Subject RIV: BO - Biophysics Impact factor: 2.981, year: 2004

  14. Multicolor expressible ECD materials consisted of polyaniline and anionic quinone

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Jun [Department of Food Science, Faculty of Engineering, University of East Asia, Ichinomiya-Gakuencho 2-1, Shimonoseki, Yamaguchi 751 (Japan); Kitani, Akira [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashihiroshima, Hiroshima 724 (Japan)

    1995-03-01

    An anionic quinone, 1-amino-4-bromoanthraquinone-2-sulfonic acid, in 0.1 M (1M=1moldm{sup -3}) H{sub 2}SO{sub 4} looked bright red in the oxidized state and colorless in the reduced state. Polyaniline film on an ITO electrode not only electrocatalyzed the redox reaction of the quinone markedly but also incorporated the quinone inside. The polyaniline film incorporated the quinone showed colorless-green-bluish purple color change by applied potentials. (orig.)

  15. First trimester two- and four-dimensional cardiac scan: intra- and interobserver agreement, comparison between methods and benefits of color Doppler technique.

    Science.gov (United States)

    Tudorache, S; Cara, M; Iliescu, D G; Novac, L; Cernea, N

    2013-12-01

    To evaluate intra- and interobserver agreement for first-trimester fetal cardiac structural assessment, using two-dimensional (2D) ultrasound (2D-US) and 4D-US (4D spatiotemporal image correlation (STIC) technology), to compare the methods and to assess the advantages of adding color Doppler to each technique. Digital videoclips (B-mode and color Doppler) and 4D-STIC volumes (gray-scale and color Doppler) from 632 pregnancies with normal fetal hearts were acquired and stored at the time of detailed first-trimester ultrasound examination. Later analysis on a randomized sample of 100 cases was performed, targeting 11 cardiac structures and features. We compared visualization of fetal heart parameters using 2D-US vs 4D-US and gray-scale vs color Doppler imaging. STIC volumes were considered satisfactory (adequate visualization of at least 8/11 parameters) in 78% of cases and 2D-US acquisitions in 89% of cases. The intra- and interobserver agreement was good for both 2D and 4D methods (kappa > 0.6), and the percentage overall agreement was very high using both methods (95%). 2D- and 4D-US identification of the fetal cardiac parameters did not differ significantly. The differences between gray-scale and color Doppler imaging were statistically significant in identifying similar key cardiac parameters, for both 2D- and 4D-US (P parameters are feasible and repeatable within and between observers. Color Doppler adds valuable information to both methods. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  16. Markerless four-dimensional-cone beam computed tomography projection-phase sorting using prior knowledge and patient motion modeling: A feasibility study

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Conclusion: The study demonstrated the feasibility of using PCA coefficients for 4D-CBCT projection-phase sorting. High sorting accuracy in both digital phantoms and patient cases was achieved. This method provides an accurate and robust tool for automatic 4D-CBCT projection sorting using 3D motion modeling without the need of external surrogate or internal markers.

  17. Validation Test Report for the Navy Coastal Ocean Model Four-Dimensional Variational Assimilation (NCOM 4DVAR) System Version 1.0

    Science.gov (United States)

    2015-08-14

    the Gulf of  Mexico  with SSH and  surface  and subsurface  temperature  and  salinity observations.  Figure 4‐12 shows that the NCOM 4DVAR system fits all...54  Figure 4‐11. Mean SSH  (m)  for  the Gulf of  Mexico   free  run  (panel A);  the  temperature  and  salinity only...assimilation  system;  these  include,  but  are  not  limited  to:  satellite  sea  surface   temperature   (SST),  SSH/altimetry, satellite microwave‐derived

  18. Four-dimensional flow MRI for evaluation of post-stenotic turbulent flow in a phantom: comparison with flowmeter and computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Jihoon; Kim, Young-Hak [University of Ulsan College of Medicine, Department of Cardiology and Heart Institute, Asan Medical Center, Seoul (Korea, Republic of); Yang, Dong Hyun; Kim, Guk Bae; Kim, Namkug [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, Seoul (Korea, Republic of); Paek, MunYoung [Siemens Healthcare, Seoul (Korea, Republic of); Stalder, Aurelien F.; Greiser, Andreas [Siemens Healthcare, Erlangen (Germany)

    2016-10-15

    To validate 4D flow MRI in a flow phantom using a flowmeter and computational fluid dynamics (CFD) as reference. Validation of 4D flow MRI was performed using flow phantoms with 75 % and 90 % stenosis. The effect of spatial resolution on flow rate, peak velocity and flow patterns was investigated in coronal and axial scans. The accuracy of flow rate with 4D flow MRI was evaluated using a flowmeter as reference, and the peak velocity and flow patterns obtained were compared with CFD analysis results. 4D flow MRI accurately measured the flow rate in proximal and distal regions of the stenosis (percent error ≤3.6 % in axial scanning with 1.6-mm resolution). The peak velocity of 4D flow MRI was underestimated by more than 22.8 %, especially from the second half of the stenosis. With 1-mm isotropic resolution, the maximum thickness of the recirculating flow region was estimated within a 1-mm difference, but the turbulent velocity fluctuations mostly disappeared in the post-stenotic region. 4D flow MRI accurately measures the flow rates in the proximal and distal regions of a stenosis in axial scan but has limitations in its estimation of peak velocity and turbulent characteristics. (orig.)

  19. SU-E-T-555: Weighted Four-Dimensional IMRT Planning for Dynamic MLC Tracking Using a Practical and Simple Framework.

    Science.gov (United States)

    Tachibana, H; Cheung, Y; Jain, S; Sawant, A

    2012-06-01

    We present a simple, practical framework for truly 4D lung IMRT planning based on a weighted individual-phase optimization paradigm. This strategy is specifically developed for use in real-time tumor tracking delivery systems so as to utilize respiratory motion as an additional degree of freedom rather than a constraint. A 4D-CT scan from a lung SBRT patient was loaded into the Eclipse treatment planning system. The target and normal structures were manually contoured on each of the ten phases. For each phase, the total dose prescription was scaled by the number of phases and a seven-field plan was developed. An open-source deformable image and dose registration engine (DIRART) was used to deform the dose map at each phase to a reference phase. DVH data from the individually optimized phase plans were input into an in-house linear programming-based optimizer implemented in MATLAB, in order to determine dose-weighting factors for each phase. The objective function aimed to maintain PTV coverage while keeping normal structure dose as low as possible. This weighted-4D plan (W-4D) was compared to an ITV-based plan and a 4D plan with equal dose-weights to individual phases (E-4D). The W-4D dose fractions were determined to be 0.33, 0.01, 0.65 and 0.02 at phase 0%, 30%, 40%, and 90%, respectively (and zero elsewhere). PTV coverage (V95) was close to identical for all three strategies. The W-4D plan exhibited mean lung dose 18.8% and 8.5% lower and mean liver dose 23.3% and 5.7% lower than corresponding values from ITV-based and E-4D plans, respectively. By significantly improving normal structure sparing while maintaining PTV coverage, weighted 4D planning represents a more attractive solution than ITV-based planning for (currently investigational) real-time tumor tracking-based delivery systems. © 2012 American Association of Physicists in Medicine.

  20. Nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22A(3s) Rydberg state: A four-dimensional quantum study.

    Science.gov (United States)

    Xie, Changjian; Malbon, Christopher; Yarkony, David R; Guo, Hua

    2017-06-14

    The quantum mechanical nonadiabatic photodissociation dynamics of the hydroxymethyl (CH2OH) radical in its lowest absorption band is investigated for the first time on a set of coupled diabatic potential energy surfaces determined by accurately fitting a large set of ab initio data. In this two-state approximation, only the ground and first excited states of CH2OH, which are coupled by conical intersections, are included. The reduced-dimensional dynamical model includes the CO stretch, the COH bend, the HCOH torsion, and the O-H dissociation coordinate. The experimentally measured hydrogen atom kinetic energy distribution is satisfactorily reproduced. The calculated product state distribution of the H2CO(X) fragment indicates strong vibrational excitation in the CO stretching mode, resulting from the relatively large difference in the C-O bond length between the ground and excited electronic states of CH2OH due to the photo-induced promotion of an electron from the half-occupied π*CO antibonding orbital to a Rydberg orbital. In addition, the bimodal kinetic energy distribution is confirmed to originate from nonadiabatic transitions near the conical intersection along the O-H dissociation coordinate.