WorldWideScience

Sample records for subseabed disposal project

  1. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  2. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  3. Subseabed Disposal Project chemical response studies. Annual report, October 1982-September 1983

    International Nuclear Information System (INIS)

    Brush, L.H.

    1985-10-01

    Studies of the chemical response of deep-sea sediments to a subseabed repository for high-level radioactive waste continued during Fiscal Year 1983. Chemical Response Studies comprise Waste Package, Near-Field, and Far-Field Studies. This year, as in the past, investigators in the US Subseabed Disposal Project (SDP) carried out most of these chemical response experiments with red clay from the MPG 1 study location 1500 km north of Hawaii. The results of all studies carried out to date imply that oxidized red clay would form a highly effective barrier to radionuclides that form cationic species, but that anionic radionuclides would begin to escape from the sediment to the overlying water column on the order of thousands of years after emplacement. In Fiscal Year 1984, investigators in the US SDP will initiate chemical response studies with mildly reduced Atlantic clay- and carbonate-rich sediments in cooperation with the Sediment Barrier Task Group of the Organization for Economic Cooperation and Development - Nuclear Energy Agency Coordinated Program on the Assessment of the Subseabed Disposal of Radioactive Waste (Seabed Working Group). The objective of these US studies will be to quantify the chemical response of Atlantic sediments to a subseabed repository with a level of confidence similar to that for Pacific red clay

  4. Subseabed Disposal Program Plan. Volume I. Overview

    International Nuclear Information System (INIS)

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations

  5. Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal

    International Nuclear Information System (INIS)

    Klett, R.D.

    1997-06-01

    The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs

  6. Program criteria for subseabed disposal of radioactive waste: research strategies and review processes

    International Nuclear Information System (INIS)

    1981-09-01

    The Subseabed Disposal Program follows the policies and criteria of the National Waste Terminal Storage program for the development of land-based repositories, except where the technical differences between land and ocean geologic disposal make different approaches or criteria necessary. This is the first of a series of documents describing the procedures and criteria for the Subseabed Disposal Program

  7. Subseabed Disposal Program Plan. Volume II. FY80 budget and subtask work plans

    International Nuclear Information System (INIS)

    1980-01-01

    This volume of the Subseabed Disposal Program Plan presents a breakdown of the master program structure by major activity. Each activity is described and accompanied by a specific cost plan schedule and a milestone plan. The costs have been compiled in the Cost Plan Schedules attached to each Subtask Work Plan. The FY 1980 budget for the Subseabed Disposal Program is summarized at the second level of the Work Breakdown Structure. The milestone plans for FY 80 are presented. The milestones can be changed only with the concurrence of the Sandia Subseabed Program Manager

  8. Performance assessment overview for subseabed disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Klett, R.D.

    1997-06-01

    The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed

  9. Subseabed-disposal program: systems-analysis program plan

    International Nuclear Information System (INIS)

    Klett, R.D.

    1981-03-01

    This report contains an overview of the Subseabed Nuclear Waste Disposal Program systems analysis program plan, and includes sensitivity, safety, optimization, and cost/benefit analyses. Details of the primary barrier sensitivity analysis and the data acquisition and modeling cost/benefit studies are given, as well as the schedule through the technical, environmental, and engineering feasibility phases of the program

  10. Nuclear power and radioactive waste: a sub-seabed disposal option

    International Nuclear Information System (INIS)

    Deese, D.A.

    1978-01-01

    The radioactive waste disposal programs of most countries are still focused on investigation of land-based geologic formations as possible containment media for radioactive wastes. Important discoveries in geological oceanography and amazing advances in ocean engineering over the past decade have, however, led several countries to investigate another promising possibility for geologic disposal of radioactive waste--isolation within the deep seabed or sub-seabed disposal. Beyond the various technical advantages and disadvantages involved, use of the international seabed for radioactive waste disposal raises a multitude of social, economic, political, legal, institutional, and ethical issues. These issues are analyzed in this volume

  11. Subseabed Disposal Program. Annual report, January-December 1978

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1980-02-01

    This is the fifth annual report describing the progress and evaluating the status of the Subseabed Disposal Program (SDP), which was begun in June 1973. The program was initiated by Sandia Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans

  12. Strategy for assessing the technical, environmental, and engineering feasibility of subseabed disposal

    International Nuclear Information System (INIS)

    Anderson, D.R.; Boyer, D.G.; Herrmann, H.; Kelly, J.; Talbert, D.M.

    1980-01-01

    This paper presents the strategy and management techniques used in the development of the US Subseabed Disposal Program (SDP) for possible disposal of both high-level waste and spent fuel. These have been developed through joint efforts of the Department of Energy (DOE), Division of Waste Isolation, the Sandia Technical Program Manager, the Technical Program Coordinators, the Advisory Group, and the Principal Investigators. Three subsections of this paper address the various components which make up the SDP strategy and management techniques. The first section will summarize the US DOE high-level waste and spent fuel disposal program and the position that the SDP occupies within that program. The second section, the Subseabed Program Plan, addresses the technical and administrative tools which are employed to facilitate the day-to-day operation of the SDP. The third section addresses the current studies and future plans for addressing the legal, political, and international uncertainties that must be resolved prior to the time the SDP reaches the final engineering phases

  13. Compilation of selected deep-sea biological data for the US subseabed disposal project

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Jackson, D.W.

    1987-03-01

    The US Subseabed Disposal Project (SDP) has compiled an extensive deep-sea biological data base to be used in calculating biological parameters of state and rate included in mathematical models of oceanographic transport of radionuclides. The data base is organized around a model deep-sea ecosystem which includes the following components: zooplankton, fish and other nekton, invertebrate benthic megafauna, benthic macrofauna, benthic meiofauna, heterotrophic microbiota, as well as suspended and sediment particulate organic carbon. Measurements of abundance and activity rates (e.g., respiration, production, sedimentation, etc.) reported in the international oceanographic literature are summarized in 23 tables. Included in these tables are the latitudinal position of the studies, as well as information describing sampling techniques and any special notes needed to better assess the data presented. This report has been prepared primarily as a resource document to be used in calculating parameter values for various modeling applications, and for preparing historical data reviews for other SDP reports. Depending on the intended use, these data will require further reduction and unit conversion

  14. Legal aspects of sub-seabed disposal of radioactive waste

    International Nuclear Information System (INIS)

    Reyners, P.

    1981-10-01

    In connection with methods for disposal of highly radioactive waste, that consisting of burying such waste in the sub-seabed arouses an increasingly marked interest among specialists. Apart from the technical difficulties still to be overcome and current safety assessments, this method gives rise to quite considerable legal and political problems. Their solution will undoubtedly have a bearing on its chances of being implemented. (NEA) [fr

  15. Biological ramifications of the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-01-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes, and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides

  16. Biological ramifications of the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hessler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.

    1980-05-01

    The primary goal of the US Subseabed Disposal Program (SDP) is to assess the technical and environmental feasibility of disposing of high-level nuclear waste in deep-sea sediments. The subseabed biology program is charged with assessing possible ecosystem effects of radionuclides as well as possible health effects to man from radionuclides which may be released in the deep sea and transported to the ocean surface. Current biological investigations are attempting to determine benthic community structure; benthic community metabolism; the biology of deep-sea mobile scavengers; the faunal composition of midwater nekton; rates of microbial processes; and the radiation sensitivity of deep-sea organisms. Existing models of the dispersal of radionuclides in the deep sea have not considered many of the possible biological mechanisms which may influence the movement of radionuclides. Therefore, a multi-compartment foodweb model is being developed which considers both biological and physical influences on radionuclide transport. This model will allow parametric studies to be made of the impact on the ocean environment and on man of potential releases of radionuclides

  17. Migration of radionuclide chains in subseabed disposal

    International Nuclear Information System (INIS)

    Ray, A.K.; Nuttall, H.E.

    1982-01-01

    In this study of subseabed disposal, the two dimensional (axial and radial) migration of radionuclide chains released from a canister located in a sedimentary layer bounded at the top by the ocean and at the bottom by an impermeable basalt zone is analyzed to determine the escape rate of radionuclides into the seawater. Analytical solutions have been derived to represent the transient concentration profiles within the sediment, flux and discharge rates to the water column of each member present in a decay chain. Using the properties of chain members present in actinide decay systems, the effects of half-life, adsorption equilibrium and other relevant parameters are elucidated. 4 figures, 1 table

  18. Performance assessment of geological isolation systems for radioactive waste. Disposal into the sub-seabed

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Charles, D.; Delow, C.E.; McColl, N.P.

    1988-01-01

    This report describes an assessment of the radiological impact of sub-seabed disposal of vitrified high level waste, carried out as part of the PAGIS project of the CEC Research Programme on radioactive waste. Where possible the data used in this study have been taken from those provided by the Nuclear Energy Agency Seabed Working Group. The waste was assumed to be placed into the sub-seabed sediments by means of the free fall penetrator technique. An alternative method, emplacement in a deep borehole, was also studied. Three disposal sites were considered: the reference site Great Meteor East, in the N.E. Atlantic, and two alternative sites: Southern Nares Abyssal Plain in the N.W. Atlantic and Cape Verde Rise in N.E. Atlantic. Models were used to describe the release of radionuclides from the waste, their migration through the sediments, their dispersion in the world oceans and the pathways to man. For the normal evolution scenario, best estimate peak individual dose rates for the penetrator option was evaluated at 2 x 10 -10 Sv y -1 arising 0.1 million years after emplacement. The collective dose commitment was 10,000 man Sv. The corresponding figures for the borehole option were 2 x 10 -14 Sv y -1 and 1 man Sv. The risks from seven altered evolution scenarios were also calculated and the risk was predicted to be always less than 10 -9 y -1 . Uncertainty and sensitivity analyses were also performed and showed that the peak dose was most sensitive to variations in Kd values, pore water velocity, pore water diffusivity and burial depth. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  19. Environmental studies data base: development and data synthesis activities of the US Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Hesssler, R.R.; Jackson, D.W.; Marietta, M.G.; Smith, K.L. Jr.; Yayanos, A.A.

    1980-01-01

    The US Subseabed Disposal Program is assessing the scientific feasibility of subseabed emplacement of high-level nuclear wastes. Studies of disposal methods and of the barriers to radionuclide migration (canister, waste form and sediment) suggest that environmental information will be needed to address the impact of accidental release of radionuclides in the deep sea. Biological, physical, and geochemical data are being collected from field and laboratory studies as well as from literature searches. These data are being analyzed using a multicompartmental radionuclide transport model and appropriate physical oceanographic models. The data integrated into this framework will help answer two questions: what are the environmental effects of radionuclides which may be released in the deep sea, and what are the effects of such a release upon man

  20. Environmental studies data base development and data synthesis activities of the US Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Yayanos, A.A.; Jackson, D.W.

    1981-05-01

    The US Subseabed Disposal Program is assessing the scientific feasibility of subseabed emplacement of high-level nuclear wastes. Studies of disposal methods and of the barriers to radionuclide migration (canister, waste form, and sediment) suggest that environmental information will be needed to address the impact of accidental release of radionuclides in the deep sea. Biological, physical, and geochemical data are being collected from field and laboratory studies as well as from literature searches. These data are being analyzed using a multicompartmental radionuclide transport model and appropriate physical oceanographic models. The data integrated into this framework will help answer two questions - what are the environmental effects of radionuclides that may be released in the deep sea, and what are the effects of such a release upon man

  1. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    Energy Technology Data Exchange (ETDEWEB)

    Kupferman, S.L. (ed.)

    1987-05-01

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.

  2. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    International Nuclear Information System (INIS)

    Kupferman, S.L.

    1987-05-01

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base

  3. Biological studies of the U.S. subseabed disposal program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.; Jackson, D.W.

    1980-01-01

    The Subseabed Disposal Program (SDP) of the U.S. is assessing the feasibility of emplacing high level radioactive wastes (HLW) within deep-sea sediments and is developing the means for assessing the feasibility of the disposal practices of other nations. This paper discusses the role and status of biological research in the SDP. Studies of the disposal methods and of the conceived barriers (canister, waste form and sediment) suggest that biological knowledge will be principally needed to address the impact of accidental releases of radionuclides. Current experimental work is focusing on the deep-sea ecosystem to determine: (1) the structure of benthic communities, including their microbial component; (2) the faunal composition of deep midwater nekton; (3) the biology of deep-sea amphipods; (4) benthic community metabolism; (5) the rates of bacterial processes; (6) the metabolism of deep-sea animals, and (7) the radiation sensitivity of deep-sea organisms. A multi-compartment model is being developed to assess quantitatively, the impact (on the environment and on man) of releases of radionuclides into the sea

  4. Proceedings of the 1981 subseabed disposal program. Annual workshop

    International Nuclear Information System (INIS)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal

  5. Proceedings of the 1981 subseabed disposal program. Annual workshop

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The 1981 Annual Workshop was the twelfth meeting of the principal investigators and program management personnel participating in the Subseabed Disposal Program (SDP). The first workshop was held in June 1973, to address the development of a program (initially known as Ocean Basin Floors Program) to assess the deep sea disposal of nuclear wastes. Workshops were held semi-annually until late 1977. Since November 1977, the workshops have been conducted following the end of each fiscal year so that the program participants could review and critique the total scope of work. This volume contains a synopsis, as given by each Technical Program Coordinator, abstracts of each of the talks, and copies of the visual materials, as presented by each of the principal investigators, for each of the technical elements of the SDP for the fiscal year 1981. The talks were grouped under the following categories; general topics; site studies; thermal response studies; emplacement studies; systems analysis; chemical response studies; biological oceanography studies; physical oceanographic studies; instrumentation development; transportation studies; social environment; and international seabed disposal.

  6. Why consider subseabed disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1983-01-01

    There exist large areas of the deep seabed that warrant assessment as potential disposal sites for high-level radioactive wastes because (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanoes; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the foreseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and have been remarkably insensitive to past oceanic and climatic changes; and (6) sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clayey sediments indicate that they can act as a primary barrier to the escape of buried radionuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political, and social issues raised by this new concept

  7. Why consider subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Heath, G.R.; Hollister, C.D.; Anderson, D.R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept

  8. Subseabed disposal program annual report, January-December 1979. Volume I. Summary and status

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-08-01

    This is the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program, which was begun in June 1973. The program was initiated by Sandia National Laboratories to explore the utility of stable, uniform, and relatively unproductive areas of the world's oceans as possible repositories for high-level nuclear wastes. The program, now international in scope, is currently focused on the stable submarine geologic formations under the deep oceans. Summaries are presented in the following areas: systems analysis; barrier system characterization and assessment; environmental studies; emplacement; sampling and instrumentation development; and transportation studies

  9. Subseabed radioactive waste disposal feasibility program: ocean engineering challenges for the 80's

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1980-11-01

    The objective of the Subseabed Disposal Program is to assess the feasibility of disposing of high-level radioactive wastes or spent fuel in suitable geologic formations beneath the deep ocean floor. The program is entering a phase which will address engineering feasibility. While the current phase of the program to determine the scientific and environmental feasibility of the concept is not yet complete, activities to assess the engineering aspects are being initiated in parallel to facilitate the development of the concept on a time scale commensurate with related programs both in the United States and abroad. It is anticipated that engineering aspects will become the central focus of the program during the early 80's and will continue so through the establishment of a pilot-plant level activity which could occur by the mid-90's

  10. Subseabed Radioactive Waste Disposal Feasibility Program: ocean engineering challenges for the 80's

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1980-01-01

    The objective of the Subseabed Disposal Program is to assess the feasibility of disposing of high-level radioactive wastes or spent fuel in suitable geologic formations beneath the deep ocean floor. The program is entering a phase which will address engineering feasibility. While the current phase of the program to determine the scientific and environmental feasibility of the concept is not yet complete, activities to assess the engineering aspects are being initiated in parallel to facilitate the development of the concept on a time scale commensurate with other related programs both in the United States and abroad. It is anticipated that engineering aspects will become the central focus of the program during the early 80's and will continue so through the establishment of a pilot-plant level activity which could occur by the mid-90's

  11. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    International Nuclear Information System (INIS)

    Hinga, K.R.

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  12. Subseabed disposal program annual report, January-December 1980. Volume II. Appendices (principal investigator progress reports). Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hinga, K.R. (ed.)

    1981-07-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base.

  13. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 1 of 2

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-04-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared of each Appendix for inclusion in the Energy Data Base

  14. Subseabed disposal program annual report, January-December 1979. Volume II. Appendices (principal investigator progress reports). Part 2 of 2

    International Nuclear Information System (INIS)

    Talbert, D.M.

    1981-04-01

    Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume II, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-O; Part 2 contains Appendices P-FF. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base

  15. Radionuclide disequilibria studies for investigating the integrity of potential nuclear waste disposal sites: subseabed studies

    International Nuclear Information System (INIS)

    Laul, J.C.; Thomas, C.W.; Petersen, M.R.; Perkins, R.W.

    1981-09-01

    This study of subseabed sediments indicates that natural radionuclides can be employed to define past long-term migration rates and thereby evaluate the integrity of potential disposal sites in ocean sediments. The study revealed the following conclusions: (1) the sedimentation rate of both the long and short cores collected in the North Pacific is 2.5 mm/1000 yr or 2.5 m/m.yr in the upper 3 meters; (2) the sedimentation rate has been rather constant over the last one million years; and (3) slow diffusive processes dominate within the sediment. Reworking of the sediment by physical processes or organisms is not observed

  16. Radiological assessment of the consequences of the disposal of high-level radioactive waste in subseabed sediments

    International Nuclear Information System (INIS)

    de Marsily, G.; Behrendt, V.; Ensminger, D.A.

    1987-01-01

    The radiological assessment of the seabed option consists in estimating the detriment to man and to the environment that could result from the disposal of high-level waste (HLW) within the seabed sediments in deep oceans. The assessment is made for the high-level waste (vitrified glass) produced by the reprocessing of 10 5 tons of heavy metal from spent fuel, which represents the amount of waste generated by 3333 reactor-yr of 900-MW(electric) reactors, i.e., 3000 GW(electric) x yr. The disposal option considered is to use 14,667 steel penetrators, each of them containing five canisters of HLW glass (0.15 m 3 each). These penetrators would reach a depth of 50 m in the sediments and would be placed at an average distance of 180 m from each other, requiring a disposal area on the order of 22 x 22 km. Two such potential disposal areas in the Atlantic Ocean were studied, Great Meteor East (GME) and South Nares Abyssal Plains (SNAP). A special ship design is proposed to minimize transportation accidents. Approximately 100 shipments would be necessary to dispose of the proposed amount of waste. The results of this radiological assessment seem to show that the disposal of HLW in subseabed sediments is radiologically a very acceptable option

  17. International program to study subseabed disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables

  18. Subseabed Disposal Program In-Situ Heat Transfer Experiment (ISHTE)

    International Nuclear Information System (INIS)

    Percival, C.M.

    1983-05-01

    A heat transfer experiment is being developed in support of the Subseabed Disposal Program. The primary objectives of this experiment are: to provide information on the in situ response of seabed sediment to localized heating; to provide an opportunity to evaluate theoretical models of the response and to observe any unanticipated phenomena which may occur; and to develop and demonstrate the technology necessary to perform waste isolation oriented experiments on the seafloor at depths up to 6000 m. As presently envisaged, the heat transfer experiment will be conducted at a location in the central North Pacific though it could be performed anywhere that the ocean bottom is of the type deemed suitable for the disposal of nuclear waste material. The experiment will be conducted of the seafloor from a recoverable space-frame platform at a depth of approximately 6000 m. A 400-W isotopic heat source will be implanted in the illite sediment and the subsequent response of the sediment to the induced thermal field evaluated. After remote initiation of the experiment, a permanent record of the data obtained will be recorded on board the platform, with selected information transmitted to a surface vessel by acoustic telemetry. The experiment will be operational for one year, after which the entire platform will be recovered. Current plans call for the deployment of the experiment in 1986. Specific activities which will be pursued during the course of the experiment include: measurement of the thermal field; determination of the effective thermal conductivity of the sediment; measurement of pore pressure; evaluation of radionuclide migration processes; pore water sampling; sediment chemistry studies; sediment shear strength measurements; and coring operations in the immediate vicinity of the experiment for postexperiment analysis

  19. Proceedings of a workshop on physical oceanography related to the subseabed disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Marietta, M.G.

    1981-04-01

    At this workshop a group of expert scientists: (1) assessed the current state of knowledge with regard to the physical oceanographic questions that must be answered generally if high level nuclear waste is to be disposed of on or under the seabed; (2) discussed physical oceanographic science necessarily related to the US Subseabed Disposal Program; (3) recommended necessary research; and (4) identified other ongoing programs with which important liaisons should be made and continued. This report is a collection of workshop presentations, and recommendations, and a synthesis of topical group recommendations into a unified statement of research needs. The US Seabed Disposal Program is described. The goal is to assess the technical, environmental and engineering feasibility of seabed disposal. The environmental studies program will assess possible ecosystem and health effects from radionuclides which may be released due to accidental leakage. Discussion on the following topics are also included: bottom boundary layer; mixing across isopycnal surfaces; circulation modeling; mesoscale dispersion; deep circulation of the Pacific Ocean; vertical transport at edges; instrumentation; chemical oceanography; plutonium distribution in the Pacific; biology report; chemical dumping report; and low-level waste report

  20. Legal, political, and institutional implications of the seabed assessment program for radioactive waste disposal

    International Nuclear Information System (INIS)

    Deese, D.A.

    1977-01-01

    Sub-seabed disposal of high-level radioactive waste is discussed. The following conclusions are drawn: The outcome will be determined largely by the national political stances taken toward a sub-seabed disposal program. Political and diplomatic responses from individual countries should be expected to be heavily influenced by the number, type, and timing of options available for high-level waste disposal. The budgetary and institutional support Washington gives to the sub-seabed program will have a crucial influence on the progress of sub-seabed science and technology over the next three to five years. Despite the growing need of nations, such as Japan and Britain, for a high-level waste disposal option, a sub-seabed program will probably not be employed if it is not strongly funded and supported by the United States. Clearly, there are enough level and political obstacles to destroy or delay a sub-seabed disposal program. The nontechnical hurdles to seabed disposal at least equal the scientific and technical ones. But, on the other hand, there are important potential social and political benefits to be gained from any serious attempt to mount a successful sub-seabed program. These lie principally in international cooperation on waste management, environmental protection, nonproliferation of nuclear weapons, and governing the deep seabed

  1. Site qualification plan for the Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Laine, E.P.; Anderson, D.R.; Hollister, C.D.

    1983-01-01

    In our evolving study to identify and examine sites in subseabed geological formations for use as repositories for high-level nuclear wastes, two primary criteria guide all phases of this work: the stability and barrier criteria of the site. The stability criterion defines areas of the seabed not likely to be disturbed by tectonic forces and oceanographic changes during the lifetime of a waste repository. The barrier criterion defines those subseabed geological formations most likely to form an effective barrier to the release of radionuclides. Because of the large area of the oceans, a phased approach has been adopted so that successively smaller areas of the seafloor can be studied in ever greater detail. The first phase, which is complete, has identified the abyssal clay deposits that are remote from tectonic boundaries and continental margins as being the regions (<10/sup 6/ km/sup 2/) on the seafloor within which acceptable sites might be most readily identified. The second phase involves downgrading less desirable areas within these regions using archived seismic reflection profiling, sediment cores, and oceanographic data. This winnowing process identifies locations about one degree square (≤10/sup 4/ km/sup 2/) for more detailed field studies during the first part of the third phase. From these locations candidate sites will be chosen, based on detailed geological and geophysical surveying. The second part of the third phase will involve detailed monitoring of the candidate sites to determine long-term baseline conditions. After monitoring is underway, a pilot repository will be established, using waste canisters

  2. Subseabed disposal: systematic application of the site qualification plan

    International Nuclear Information System (INIS)

    Shephard, L.E.; Damuth, J.E.; Hayes, D.B.; Heath, G.R.; Laine, E.P.; Leinen, M.; Tucholke, B.E.

    1982-01-01

    Two criteria, geologic stability and barrier effectiveness, form the basis of the Subseabed Disposal Program's site qualification plan to evaluate the ocean basins and identify those regions having characteristics most favorable for containment of radioactive waste. Stability criteria are used to define those regions least likely to be disturbed by tectonic forces or oceanographic changes during the lifetime of a waste repository. Barrier criteria define those lithologies most likely to form an effective barrier to the release of radionuclides. Two north Pacific regions and three north Atlantic regions (PAC I and II and ATL I, II, and III, respectively) have thus far been selected for further investigation based on the site qualification plan. The PAC I region, centered on the Shatsky Rise in the northwest Pacific, has been subdivided into areas and locations on the basis of an exhaustive review of data available in the archives of national and international agencies and institutions. Results from three locations surveyed and sampled within the PAC I region (VEMA cruise 36-12) suggest some variability in seismic reflector character and lithology, attributable partially to the effects of the North Pacific current. PAC II, located northeast of Hawaii, represents a generic study region characteristic of the Pacific pelagic, abyssal hill environment. Seismic reflection surveys and sampling indicate uniform sediment properties and processes, both laterally and vertically, within the PAC II region. Initial investigation of Regions ATL I, II, and III, located within the distal Nares abyssal plain, the distal Sohm abyssal plain, and the Cape Verde region, respectively, suggests certain smaller areas within these regions warrant more detailed study

  3. Subseabed radionuclide migration studies and preliminary repository design concepts

    International Nuclear Information System (INIS)

    Brush, L.H.

    1982-01-01

    Geochemical research carried out by the US Subseabed Disposal Program is described. Data from studies of high-temperature interactions between sediments and pore water (seawater) and from studies of sorption and diffusion of radionuclides in oxidized, deep-sea sediments are used, along with results from heat transfer studies, to predict migration rates of raionuclides in a subseabed repository. Preliminary results for most radionuclides in oxidized sediments are very encouraging. Fission products with moderate K/sub D/ values (10 2 to 10 5 ml/g) and actinides with high K/sub D/ values (10 3 to 10 6 ml/g) would not migrate significant distances before decaying to innocuous concentrations. Among this group are 137 Cs, 90 Sr, and 239 Pu. The results for anionic species in oxidized sediments are less encouraging. Planning for field verification of these laboratory and modeling studies is currently under way. Conceptual repository designs and emplacement options are also described. 33 references, 15 figures, 1 table

  4. Review of science and technology for disposal of low-level waste on the seabed and high-level waste in the subseabed

    International Nuclear Information System (INIS)

    Anderson, D.R.; Boyer, D.G.; Hollister, C.D.

    1983-01-01

    In 1980 it was recommended that an effort be made to increase the scientific data base relating to the oceanographic and biological characteristic of the Northeast Atlantic dumping area. The overall safety of sea dumping operations depends on a number of factors such as the characteristics of the dumping site, the amount, composition, conditioning, and packaging of waste, and the way in which operations are organized and controlled. An NEA research and environmental surveillance program related to sea disposal of low-level radioactive waste (LLW) is proceeding. Information from these studies will apply to disposal of LLW such as reactors from nuclear submarines and contaminated soil, as well as to packaged LLW. In Sweden, construction has begun on a repository located in the granitic rock beneath the seabed. The feasibility of a concept of burying high-level radioactive waste within the geologically stable formations of the deep ocean floor is being assessed. These subseabed options for a waste repository are being considered for several reasons. The granitic rock selected for the Swedish repository has a low hydraulic gradient, thereby reducing the amount of radioactivity tht will diffuse out of the repository. The sea water that covers the repository will dilute and disperse any radioisotopes that do escape from the repository. The other nations studying the feasibility of a subseabed repository are examining the fine-grained clay formations within the stable, predictable deep-sea regions, away from the boundaries of the lithospheric plates and productive surface waters. This clay has properties that may serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral uniformity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed

  5. Design and development of deep-water piezometer for the Sandia Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Bennett, R.H.; Burns, J.T.; Lambert, D.N.

    1981-01-01

    The National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratories (AOML), Marine Geology and Geophysics Laboratory (MGGL) contracted with Sandia Laboratories, Subseabed Disposal Program (SDP) to prepare initial design and to begin development of a piezometer for the In Situ Heat Transfer Experiment (ISHTE). General design specifications and material types were established by mutual agreement between AOML and Sandia during planning meetings. ISHTE experimental objectives were considered of paramount importance in arriving at the piezometer specifications and on the types of materials to be used. AOML's objectives for the design and development of the piezometer in 1980 included: (1) preliminary design of the mechanical components of the piezometer probe, (2) purchasing of basic materials for fabrication of the initial probe, (3) purchasing of a few selected pressure sensors for high-pressure testing, (4) installation of a high-pressure test facility at AOML for testing pressure sensors, and (5) initiating preliminary testing of pressure sensors. Each of the objectives (1 to 5) were completed successfully in 1980. In addition, AOML constructed a prototype piezometer probe which was tested for mechanical performance in situ in submarine sediments on the US Atlantic continental slope aboard the DSRV ALVIN in October 1980 during NOAA allocated ALVIN time. The mechanical performance test was successful

  6. US Subseabed Disposal Program radioecological data base: summaries of available radionuclide concentration factors and biological half-lives

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Jackson, D.W.

    1984-01-01

    The US Subseabed Disposal Program has compiled an extensive objective concentration factor and biological half-life data base from the international marine radioecological literature. A microcomputer-based data management system has been implemented to provide statistical and graphical summaries of these data. The data base is constructed in a manner which allows subsets to be sorted using a number of inter-study variables such as organism category, tissue/organ category, geographic location (for in situ studies), and several laboratory-related conditions (e.g., exposure time and exposure concentration). We discuss concentration factor data summaries for many elements. We also discuss summary material for biological half-life data. We discuss the results of our review with the estimates of mean concentration factors provided by the IAEA. It is proposed that this presentation scheme will enable those concerned with predictive assessment of radiation dose in the marine environment to make a more judicious selection of data for a given application. 7 references

  7. Program criteria for subseabed disposal of radioactive waste: site qualification plan

    International Nuclear Information System (INIS)

    Laine, E.P.; Anderson, D.R.; Hollister, C.D.

    1982-05-01

    This document describes the evolving methodology which is being used to identify, and study sites in subseabed geological formations which may be candidates for use as repositories for high-level nuclear waste. Two primary criteria guide all phases of this work: the stability and barrier criteria. The stability criterion defines areas of the seabed that are unlikely to be disturbed by tectonic forces and oceanographic changes durig the lifetime of a waste repository. The barrier criterion defines those subseabed geological formations most likely to form an effective barrier to the release of radionuclides. Because of the large area of the oceans, a phased approach has been adopted through which successively smaller areas of the sea floor are studied in ever greater detail. The first phase, which is complete, has identified abyssal clay deposits that are remote from tectonic boundaries and continental margins as being the regions (>10 5 km 2 ) on the sea floor within which acceptable sites might be most readily identified. The second phase involves downgrading less desirable areas (>10 4 km 2 ) within these regions, using archived seismic reflection profiling, sediment cores, and oceanographic data. This winnowing process identifies locations about one degree square (greater than or equal to 10 4 km 2 ) for more detailed field studies during the first part of the third phase. From these locations candidate sites (less than or equal to 10 4 km 2 ) will be chosen based on detailed geological and geophysical surveying. In the second part of the third phase, detailed monitoring of the candidate sites will begin to determine long-term baseline conditions. After monitoring is underway, a pilot repository will be established using waste canisters. Based on this work, a site selection/rejection report will be written. The fourth and last phase will involve extended monitoring of oceanographic conditions at each repository

  8. Subseabed disposal project experiment

    International Nuclear Information System (INIS)

    Valent, P.J.; Burns, J.T.; Walter, D.J.; Li, H.; Bennett, R.H.

    1990-01-01

    Induced excess pore water pressures resulting from the insertion of piezometer probes of 8-mm (0.31-in.) diameter and a simulated waste canister of 102-mm (4.0-in.) diameter and the dissipation of these excess pressures were measured during deep-ocean component tests of the In Situ Heat Transfer Experiment (ISHTE). The sediment at the Pacific test site 1100 km north of Oahu, Hawaii, is an illitic clay. Insertion-induced excess pore pressures were found to agree well with those predicted by models. Several aspects of the induced excess pressure dissipation were evaluated including the effects of probe and heater diameter, distal excess pore pressure response, and the synergistic excess pore pressure response from multiple insertions. The dissipation of induced excess pressures measured at each piezometer is predicted well by theory. The same analytical models predict the excess pore pressure history measured at the piezometers in response to the waste canister insertion. Present models were evaluated that predict insertion excess pressures and their dissipation rate at the probe surface and distal, far field, points

  9. Seabed disposal of high-level nuclear wastes: an alternative viewpoint

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1985-01-01

    Various comments on a published article on subseabed disposal of nuclear wastes are presented. These include the scale of the proposed operation, the technical problems of canister retrievability, the feasibility of the free-fall penetrometer disposal method, canister lifetime, the possible contravention of the 1972 London Dumping Convention and land-based geological repositories as an alternative method of disposal. (author)

  10. Technical and socio-political issues in radioactive waste disposal 1986. Vol. 2

    International Nuclear Information System (INIS)

    Parker, F.L.; Kasperson, R.E.; Andersson, T.L.; Parker, S.A.

    1987-11-01

    Subseabed disposal of high level radioactive waste and spent fuel, in contrast to land based mined geologic repositories, has not yet been judged by any nation or international bodies to be technologically acceptable, but it is presently considered to be the only available alternative to land based geologic disposal. The work under the scientific program for subseabed disposal the most truly international of all the radioactive waste program, was proceeding along a well defined route to proof or rejection of concept. This date will certainly be delayed because of the withdrawal of the USA from the program. The work under the aegis of the NEA will result in a report in 1987 that will be a status report. To date no scientific information has emerged that would negate the advantages of the subseabed disposal method. Validation of some of the models has not been completed. The option, if possible, would be very attractive for many reasons including no easy direct exposure to man, no contamination of potential drinking water supplies, no near neighbors, an international solution rather than a parochial solution, and location in a formation with highly desirable attributes (stability, exchange capacity, etc.) that may not be available in every nation with a nuclear energy program. Even if the scientific feasibility were proven, then there still remain enormous institutional obstacles to be overcome including the determined opposition of many countries on ecological and philosophical grounds, the existence of international treaties that appear to prohibit such disposal and the fact that it is not the first choice for disposal of spent nuclear fuel or high level radioactive waste. (orig./HP)

  11. Monitoring technologies for ocean disposal of radioactive waste

    Science.gov (United States)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  12. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  13. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    International Nuclear Information System (INIS)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States

  14. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  15. Subseabed Disposal Program plan. Volume I. Overview

    International Nuclear Information System (INIS)

    1980-01-01

    Some of the most stable geologic formations are underneath the deep oceans. Purpose of this program is to assess the technical, environmental, and engineering feasibility of disposing of packaged high-level waste and/or repackaged spent reactor fuel in these formations

  16. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  17. Sub-seabed burial of radioactive waste and liabilities

    International Nuclear Information System (INIS)

    Reyners, Patrick.

    1982-10-01

    The author of this report discusses the problems raised by application of the special third party liability system to damage which may result from embedding radioactive waste in the sub-seabed. The matter of general liability of the State for nuclear damage caused to the environment is also dealt with in this paper. (NEA) [fr

  18. Swedish subseabed store - phase 1 nears completion

    International Nuclear Information System (INIS)

    Daglish, James

    1987-01-01

    The paper concerns the storage of radioactive waste in the subseabed in Sweden. The wastes are low- and intermediate-level reactor wastes arising from the Swedish nuclear power programme. The repository is a cavern which has been excavated under the seabed in the Baltic Sea, about a kilometre out from shore. The specifications of the repository are given, along with the volume of the radioactive wastes to be stored in it. (UK)

  19. King's Trough Flank: geological and geophysical investigations of its suitability for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kidd, R.B.; Searle, R.C.; Weaver, P.P.E.; Jacobs, C.L.; Huggett, Q.J.; Noel, M.J.; Schultheiss, P.J.

    1983-01-01

    The King's Trough Flank study area in the Northeast Atlantic Ocean was chosen in 1979 as a location at which to examine the suitability of pelagic carbonate sequences for sub-seabed disposal of high-level radioactive waste. This report summarises investigations up to the end of 1982; following visits by four research ships to the area during which geophysical data and sediment samples were collected. The region is a characteristically rugged portion of the deep ocean floor with hills and scarps 10 to 30 km apart and slopes around the hills ranging from 18 deg to 30 deg. Areas of relatively smooth seafloor occur, however, up to 35 km across, where slopes no greater than 2 deg are recorded. At this stage an apparent discrepancy between the geophysical and sediment core data leaves some uncertainty regarding the stability of the sediment cover and the likelihood of current erosion in these areas. The general suitability of the area is discussed by comparing our present geological and geophysical data with the set of 'desirable characteristics' for a sub-seabed disposal site first outlined in 1979. The difficulties involved in extrapolating findings from presently-sampled depths of up to 10 metres to depths envisaged for shallow waste disposal are emphasised. (author)

  20. Projected costs for mined geologic repositories for dispoal of commercial nuclear wastes

    International Nuclear Information System (INIS)

    Waddell, J.D.; Dippold, D.G.; McSweeney, T.I.

    1982-12-01

    This documen reports cost estimates for: (1) the exploration and development activities preceding the final design of terminal isolation facilities for disposal of commercial high-level waste; and (2) the design, construction, operation, and decommissioning of such facilities. Exploration and evelopment costs also include a separate cost category for related programs such as subseabed research, activities of the Transportation Technology Center, and waste disposal impact mitigation activities

  1. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  2. Performance assessment of geological isolation systems for radioactive waste. Disposal in granite formations

    International Nuclear Information System (INIS)

    Van Kote, F.; Peres, J.M.; Olivier, M.; Lewi, J.; Assouline, M.; Mejon-Goula, M.J.

    1988-01-01

    In the framework of the PAGIS project of the CEC Research Programme on radioactive wastes, a performance assessment of a repository of vitrified HLW in granite was carried out. Three disposal sites were considered: the reference site Auriat and two alternative sites, Barfleur and a site in the U.K. The report describes the methodology adopted (a deterministic and a stochastic approach) with the corresponding data base and the models used. A parametric study of sub-systems (near field, far field and biosphere) was carried out by CEA-ANDRA using AQUARIUS, DIMITRIO and BIOS. A global evaluation of the performances was carried out by CEA-IPSN using MELODIE code. The results of deterministic calculations showed for Auriat a maximum dose equivalent evaluated at 6.10 -3 m Sv/a arising 3 millions years after disposal. Results of human intrusion scenario analyses, uncertainty analyses and global sensitivity analyses are presented. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  3. Economic analysis of radioactive waste storage and disposal projects

    International Nuclear Information System (INIS)

    Kleinen, P.J.; Starnes, R.B.

    1995-01-01

    Radioactive waste storage and disposal efforts present challenging issues for cost and economic analyses. In particular, legal requirements for states and compact areas to develop radioactive waste disposal sites, combined with closure of some sites, have placed urgency on planning, locating, and constructing storage and disposal sites. Cost analyses of potential projects are important to the decision processes. Principal objectives for cost analyses for projects are to identify all activities, covering the entire project life cycle, and to develop costs for those activities using methods that allow direct comparisons between competing project alternatives. For radioactive waste projects, long project lives ranging from tens of years to 100 or more years must be considered. Alternative, and competing, technologies, designs, and operating plans must be evaluated. Thorough base cost estimates must be made for all project phases: planning, development, licensing/permitting, construction, operations, and maintenance, closure, and post-closure/institutional care. Economic analysis procedures need to accommodate the specific features of each project alternative and facilitate cost comparisons between differing alternatives. Economic analysis assumptions must be developed to address the unusually long project lives involved in radioactive waste projects

  4. Subseabed disposal program annual report, January-December 1978. Volume II. Principal investigator progress reports

    International Nuclear Information System (INIS)

    1979-10-01

    The topics covered in this report include: geologic siting considerations for the disposal of radioactive wastes into submarine geologic formations; geologic assessment of the MPG-1 regions Central North Pacific; site mapping; geotechnical aspects of subsurface seabed disposal; heat transfer, thermal and fluid physics in the deep ocean sediments; mechanical response predictive capability; sediment-seawater interaction at 300 0 C, 500 bars; stability of actinides in chloride media; cannister corrosion studies; nuclide sorption and migration; development of apparatus and measurement of thermal conductivity of seabed illite and smectite at temperatures to 500 0 C at simulated depths to 15,000 ft (9000 psi); in-situ heat transfer experiments; preliminary seabed disposal transport modeling studies; radionuclide migration studies; radionuclide distributions in deep ocean cores; benthic biological studies; deep sea microbial studies; activity rates of abyssal communities; Deep-towed RUM III (Sandia Seabed working platform): a third-generation remote underwater manipulator; long coring facility program; transportation; legal, political, and institutional implications of the Seabed Program for radioactive waste disposal

  5. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  6. Reliability of sub-seabed disposal operations for high level waste

    International Nuclear Information System (INIS)

    Sarshar, M.M.

    1985-09-01

    This report describes a study carried out into the reliability of two methods of disposal of heat generating radioactive waste: by drilled emplacement in holes drilled into the ocean sediments, and by the use of penetrators to drive the waste below the ocean floor. The study has concentrated on the risk of events leading to the release of radioactivity to the environment, and also on the hazard to personnel involved in the operation. A Failure Mode, Effects and Criticality Analysis and a Fault Tree Analysis have been used in the assessment, and the relative importance of each contributory factor estimated. (author)

  7. Execution techniques and approach for high level radioactive waste disposal in Japan: Demonstration of geological disposal techniques and implementation approach of HLW project

    International Nuclear Information System (INIS)

    Kawanishi, M.; Komada, H.; Kitayama, K.; Akasaka, H.; Tsuchi, H.

    2001-01-01

    In Japan, the high-level radioactive waste (HLW) disposal project is expected to start fully after establishment of the implementing organization, which is planned around the year 2000 and to dispose the wastes in the 2030s to at latest in the middle of 2040s. Considering each step in the implementation of the HLW disposal project in Japan, this paper discusses the execution procedure for HLW disposal project, such as the selection of candidate/planned disposal sites, the construction and operation of the disposal facility, the closure and decommissioning of facilities, and the institutional control and monitoring after the closure of disposal facility, from a technical viewpoint for the rational execution of the project. Furthermore, we investigate and propose some ideas for the concept of the design of geological disposal facility, the validation and demonstration of the reliability on the disposal techniques and performance assessment methods at a candidate/planned site. Based on these investigation results, we made clear a milestone for the execution of the HLW disposal project in Japan. (author)

  8. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 3: Geoscience characterization studies

    International Nuclear Information System (INIS)

    Shephard, L.E.; Auffret, G.A.; Buckley, D.E.; Schuettenhelm, R.T.E.; Searle, R.C.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This report summarizes the results of a study performed to establish if, on the basis of available data, sites may be found that will satisfy the geoscience requirements for a potential subseabed high-level waste repository

  9. Analysis of heat and mass transfer in sub-seabed disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hickox, C.E.; Gartling, D.K.; McVey, D.F.; Russo, A.J.; Nuttall, H.E.

    1980-01-01

    A mathematical basis is developed for the prediction of thermal and radionuclide transport in marine sediments. The theory is applied to the study of radioactive waste disposal by emplacement, in specially designed containers, well below the sediment/water interface. Numerical results are obtained for a specified model problem through use of two computer programs designed primarily for the analysis of waste disposal problems. One program (MARIAH) provides descriptions of the temperature and velocity fields induced by the presence of a container of thermally active nuclear waste. A second program (IONMIG), which utilizes the results of the thermal analysis, is used to provide predictions for the migration of four representative radionuclides: 239 Pu, 137 Cs, 129 I, and 99 Tc

  10. Engineering risk assessment for emergency disposal projects of sudden water pollution incidents.

    Science.gov (United States)

    Shi, Bin; Jiang, Jiping; Liu, Rentao; Khan, Afed Ullah; Wang, Peng

    2017-06-01

    Without an engineering risk assessment for emergency disposal in response to sudden water pollution incidents, responders are prone to be challenged during emergency decision making. To address this gap, the concept and framework of emergency disposal engineering risks are reported in this paper. The proposed risk index system covers three stages consistent with the progress of an emergency disposal project. Fuzzy fault tree analysis (FFTA), a logical and diagrammatic method, was developed to evaluate the potential failure during the process of emergency disposal. The probability of basic events and their combination, which caused the failure of an emergency disposal project, were calculated based on the case of an emergency disposal project of an aniline pollution incident in the Zhuozhang River, Changzhi, China, in 2014. The critical events that can cause the occurrence of a top event (TE) were identified according to their contribution. Finally, advices on how to take measures using limited resources to prevent the failure of a TE are given according to the quantified results of risk magnitude. The proposed approach could be a potential useful safeguard for the implementation of an emergency disposal project during the process of emergency response.

  11. On ocean island geological repository - a second-generation option for disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1993-01-01

    The concept of an ocean subseabed geological high-level waste repository with access via an ocean island is discussed. The technical advantages include, in addition to geologic waste isolation, geographical isolation, near-zero groundwater flow through the disposal site, and near-infinite ocean dilution as a backup in the event of a failure of the repository geological waste isolation system. The institutional advantages may include reduced siting problems and the potential of creating an international waste repository. Establishment of a repository accepting wastes from many countries would allow cost sharing, aid international nonproliferation goals, and ensure proper disposal of spent fuel from developing countries. Major uncertainties that are identified in this concept are the uncertainties in rock conditions at waste disposal depths, costs, and ill-defined institutional issues

  12. Compilation of selected marine radioecological data for the US Subseabed Program: Summaries of available radioecological concentration factors and biological half-lives

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Jackson, D.W.

    1987-04-01

    The US Subseabed Disposal Program has compiled an extensive concentration factor and biological half-life data base from the international marine radioecological literature. A microcomputer-based data management system has been implemented to provide statistical and graphic summaries of these data. The data base is constructed in a manner which allows subsets to be sorted using a number of interstudy variables such as organism category, tissue/organ category, geographic location (for in situ studies), and several laboratory-related conditions (e.g., exposure time and exposure concentration). This report updates earlier reviews and provides summaries of the tabulated data. In addition to the concentration factor/biological half-life data base, we provide an outline of other published marine radioecological works. Our goal is to present these data in a form that enables those concerned with predictive assessment of radiation dose in the marine environment to make a more judicious selection of data for a given application. 555 refs., 19 figs., 7 tabs

  13. Compilation of selected marine radioecological data for the US Subseabed Program: Summaries of available radioecological concentration factors and biological half-lives

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, L.S.; Marietta, M.G.; Jackson, D.W.

    1987-04-01

    The US Subseabed Disposal Program has compiled an extensive concentration factor and biological half-life data base from the international marine radioecological literature. A microcomputer-based data management system has been implemented to provide statistical and graphic summaries of these data. The data base is constructed in a manner which allows subsets to be sorted using a number of interstudy variables such as organism category, tissue/organ category, geographic location (for in situ studies), and several laboratory-related conditions (e.g., exposure time and exposure concentration). This report updates earlier reviews and provides summaries of the tabulated data. In addition to the concentration factor/biological half-life data base, we provide an outline of other published marine radioecological works. Our goal is to present these data in a form that enables those concerned with predictive assessment of radiation dose in the marine environment to make a more judicious selection of data for a given application. 555 refs., 19 figs., 7 tabs.

  14. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    International Nuclear Information System (INIS)

    Sutton, M.; Blink, J.A.; Halsey, W.G.

    2011-01-01

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  15. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  16. UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1

    International Nuclear Information System (INIS)

    1995-10-01

    This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system's designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy

  17. The French geological disposal project CIGEO

    Energy Technology Data Exchange (ETDEWEB)

    Ouzounian, G. [ANDRA, Chatenay-Malabry cedex (France)

    2015-07-01

    This paper discusses the major management options for high level waste in France. Safety of the population and protection of the environment is the first priority. Reprocessing of used fuel and reuse of valuable material is considered. Reversible geological disposal (Cigéo Project) is the reference solution for the high-level waste.

  18. Accounting for socio-economic effects in nuclear waste disposal projects

    International Nuclear Information System (INIS)

    Van Hove, E.

    1996-01-01

    The disposal of nuclear waste has become highly controversial. This paper presents the approach taken by NIRAS, the Belgian agency for the disposal of nuclear waste, to come to a decision on the establishment of a site for the permanent disposal of low level nuclear waste. A formal model is elaborated to take social effects of such a project into account, allowing for a balanced discussion of positive and negative effects at the local level. It is too early to tell it the model described in detail in this paper con solve the problems encountered by disposal agencies. The approach discussed, does however, respond to need experienced on a international scale. The paper emphasises the need for openness in the fact of assertive and articulate citizens who no longer accept the paternalistic approach. The public must not feel that there is any lack of clarity about waste projects or they will quickly voice their opinions and any opposition they feel. As far as siting is concerned, most of the controversies are fuelled ba a basic notion of 'unfairness'. Somehow the burdens seem to be imposed on parties other than those who reap the benefits. An approach to decision making through local negotiation on all aspects of a disposal projects should allow the problem of fairness to be treated in a more constructive way. (author)

  19. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  20. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  1. Remote-Handled Low-Level Waste Disposal Project Code of Record

    Energy Technology Data Exchange (ETDEWEB)

    Austad, S. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Guillen, L. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKnight, C. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ferguson, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  2. Underground disposal of hazardous waste - state of the art and R and D projects

    International Nuclear Information System (INIS)

    Pitterich, H.; Brueckner, C.

    1998-01-01

    The project management group Entsorgung (PTE) coordinates R and D activities on deep geological disposal of hazardous waste besides other activities in the field of nuclear disposal. R and D projects aim at the improvement of tools used to predict the long-term behaviour of underground disposal facilities and the threat for man and environment associated with these facilities. The current German situation on deep geological disposal of hazardous waste is described and some results from the fields waste-anaylsis, geochemical modelling and geotechnical barriers for the sealing of waste disposal sites are presented. (orig.)

  3. The residuals analysis project: Evaluating disposal options for treated mixed low-level waste

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Case, J.T.; Letourneau, M.J.

    1997-01-01

    For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors' offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ''performance evaluations'' for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE's MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues

  4. Remedial Action and Waste Disposal Project Manager's Implementing Instructions

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-01-01

    These Project Manager's Implementing Instructions provide the performance standards required of all Environmental Restoration Contractor personnel in their work during operation and administration of the Remedial Action and Waste Disposal Project. The instructions emphasize technical competency, workplace discipline, and personal accountability to ensure a high level of safety and performance during operations activities

  5. Licensing plan for UMTRA project disposal sites

    International Nuclear Information System (INIS)

    1993-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC's acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information

  6. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  7. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  8. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  9. Performance assessment of geological isolation systems for radioactive waste. Disposal in clay formations

    International Nuclear Information System (INIS)

    Marivoet, J.; Bonne, A.

    1988-01-01

    In the framework of the PAGIS project of the CEC Research Programme on radioactive waste, performance assessment studies have been undertaken on the geological disposal of vitrified high-level waste in clay layers at a reference site at Mol (B) and a variant site at Harwell (UK). The calculations performed for the reference site shown that most radionuclides decay to negligible levels within the first meters of the clay barrier. The maximum dose rates arising from the geological disposal of HLW, as evaluated by the deterministic approach are about 10 -11 Sv/y for river pathways. If the sinking of a water well into the 150 m deep aquifer layer in the vicinity of the repository is considered together with a climatic change, the maximum calculated dose rate rises to a value of 3.10 -7 Sv/y. The calculated maxima arise between 1 million and 15 million years after disposal. The maximum dose rates evaluated by stochastic calculations are about one order of magnitude higher due to the considerable uncertainties in the model parameters. In the case of the Boom clay the estimated consequences of a fault scenario are of the same order of magnitude as the results obtained for the normal evolution scenario. The maximum risk is estimated from stochastic calculations to be about 4.10 -8 per year. For the variant site the case of the normal evolution scenario has been evaluated. The maximum dose rates calculated deterministically are about 1.10 -6 Sv/y for river pathways and 6.10 -5 Sv/y for a water well pathways; these doses would occur after about 1 million years. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  10. Swiss projects for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    At present, the major part of the discussion does not focus on technical assessment methodology and data, but rather on interpretation of the available geologic data for high-level waste disposal planning. Meanwhile, plans for the implementation of repositories have to be developed. Accordingly, the longer-term studies on high-level waste disposal are proceeding at a pace appropriate for their relatively far-future timescales, and intensified efforts are being put into projects for design, siting, safety assessment and construction of the more urgently required repository for low and intermediate level waste. (orig./PW) [de

  11. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  12. The opalinus clay project - disposal of medium and highly-active nuclear wastes

    International Nuclear Information System (INIS)

    Mueller, U.

    2003-01-01

    This article describes the project to demonstrate the feasibility of disposing of long-living medium-active and highly-radioactive nuclear wastes in sedimentary rock in Switzerland. The disposal tasks to be carried out are reviewed and the solutions proposed are described, including short-term handling, intermediate storage and final disposal of low, medium and highly-active wastes. The present state of affairs is described and, in particular, the feasibility of implementing a final storage facility in the opalinus clay beds to be found in northern Switzerland. The project for such a facility in the wine-growing area of the canton of Zurich is described in detail, including the storage concept, the technology to be used and operational aspects as well as questions of safety

  13. Transient compartment model for the transfer of radioactivity from sub-seabed repositories

    International Nuclear Information System (INIS)

    Karpf, A.D.

    1993-01-01

    Pollution in the deep ocean can originate not only from the disposal of radioactive or chemotoxic waste but also by sea transport accidents or by deep ocean mining processes. The numerical compartment model IMPONADOR albeit developed for the assessment of a subseabed repository of radioactive vitrified waste can be applied to all these cases because of its modular character. The condition for excellent repository properties is the burial of the waste deep into the abyssal sediment. In the case of vitrified radioactive waste this had been ensured by dropping torpedo-like penetrators from the ocean surface which reached sediment depths of up to 35 m at a final speed of some 200 km/h. After intrusion the plasticity of the sediment closes the canal again tightly. The corrosion of the containers is slow at 4 C and the migration of nuclides is even slower since it can take place only by diffusion owing to the absence of any pressure heads and hence currents in the groundwater of this depth. The sediment therefore constitutes the best barrier, enhanced still by sorption. Mixing in the oceans is a complicated process but proceeds within about 500 a, the dilution of the nuclides being the actual 'barrier'. However, before reaching the marine biospere and human beings via seafood the nuclides are scavenged very effectively by sinking particles, remainders of tiny animals, and buried forever on the ocean floor. The code IMPONADOR does not only describe the time dependent equivalent doses but also displays the partition of the whole inventory into the various compartments at different times. This represents a very helpful and intuitive mean for studying the sensitivity of the individual barriers on the total results. IMPONADOR uses BASIC and runs on a PC while being able to implicate complicated informations about sediment properties and ocean currents. (orig.) [de

  14. Quality control of radioactive waste disposal container for borehole project

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Azhar Azmi; Ilham Mukhriz Zainal Abidin

    2014-01-01

    This paper explained quality control of radioactive disposal container for the borehole project. Non-destructive Testing (NDT) is one of the quality tool used for evaluating the product. The disposal container is made of 316L stainless steel. The suitable NDT method for this object is radiography, ultrasonic, penetrant and eddy current testing. This container will be filled with radioactive capsules and cement mortar is grouted to fill the gap. The results of NDT measurements are explained and discussed. (author)

  15. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  16. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  17. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  18. Performance assessment of geological isolation systems for radioactive waste. Summary

    International Nuclear Information System (INIS)

    Cadelli, N.; Cottone, G.; Orlowski, S.; Bertozzi, G.; Girardi, F.; Saltelli, A.

    1988-01-01

    The report summarizes the studies undertaken in the framework of the project PAGIS of the CEC Research Programme on radioactive waste. It concerns the analysis of the safety performances on the deep disposal of vitrified high level waste in four geological options: clay, granite, salt and the sub-seabed. The report describes the selection of sites and scenarios with the corresponding data base. It outlines the methodology adopted for determining the safety level which can be achieved with an underground disposal system for HLW. Two complementary approaches have been implemented: 1) a set of deterministic calculations for evaluating the dose rates as a function of time and for analysing local sensitivity on single parameters or components of the disposal system, 2) stochastic calculations for both uncertainty and global sensitivity analyses. For each option, the report presents the most significant results, obtained from the calculations at specific sites-from both the approaches. Apart the dose rates and their expectation values, the predominant radionuclides and pathways to man are identified as well as the most sensitive parameters and phenomena. The final chapter concludes stating the feasibility of safe disposal of HLW in underground repositories. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  19. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD. INTEGRATED DISPOSAL FACILITY (IDF)

    International Nuclear Information System (INIS)

    MCLELLAN, G.W.

    2007-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal issues as well as challenges with

  20. Subseabed disposal of nuclear wastes.

    Science.gov (United States)

    Hollister, C D; Anderson, D R; Health, G R

    1981-09-18

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral unifomity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red ciay)covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface.

  1. Subseabed disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Hollister, C.D.; Anderson, D.R.; Heath, G.R.

    1981-01-01

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral uniformity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red clay) covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface

  2. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  3. The international STRIPA project. Experimental research on the underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    1983-03-01

    The International Stripa Project is a joint undertaking by a number of countries, carried out under the sponsorship of the OECD Nuclear Energy Agency. It concerns research into the feasibility and safety of disposal of highly radioactive wastes from nuclear power generation, deep underground in crystalline rock. The Project is managed by the Division KBS of the Swedish Nuclear Fuel Supply Company (SKBF), under the direction of representatives from each participating country. This report summarizes the objectives and preliminary results of experimental work performed within the framework of the Stripa Project and that undertaken prior to the establishment of the Project at the Stripa Mine in Sweden. It also describes the part played by the Project in the development of national policies for the safe disposal of radioactive wastes

  4. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  5. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  6. Project report for the commercial disposal of mixed low-level waste debris

    International Nuclear Information System (INIS)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project

  7. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  8. Offsite source recovery project - ten years of sealed source recovery and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources

  9. Tumulus Disposal Demonstration Project assessment plan for potential worker exposure: Revision 1

    International Nuclear Information System (INIS)

    Styers, D.R.

    1989-03-01

    The purpose of the ''Assessment Plan for Potential Worker Exposure'' is to determine the potential radiological exposures to the workers as they dispose of low-level radioactive wastes (LLW) on the Tumulus Disposal Demonstration Project (TDDP). An evaluation of the work procedures and precautions will be made so as to maintain the exposure levels As Low As Reasonably Achievable (ALARA). 10 refs., 10 figs

  10. NOMINATION FOR THE PROJECT MANAGEMENT INSTITUTE (PMI) PROJECT OF THE YEAR AWARD INTEGRATED DISPOSAL FACILITY (IDF)

    Energy Technology Data Exchange (ETDEWEB)

    MCLELLAN, G.W.

    2007-02-07

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is pleased to nominate the Integrated Disposal Facility (IDF) project for the Project Management Institute's consideration as 2007 Project of the Year, Built for the U.S, Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site, the IDF is the site's first Resource Conservation and Recovery Act (RCRA)-compliant disposal facility. The IDF is important to DOE's waste management strategy for the site. Effective management of the IDF project contributed to the project's success. The project was carefully managed to meet three Tri-Party Agreement (TPA) milestones. The completed facility fully satisfied the needs and expectations of the client, regulators and stakeholders. Ultimately, the project, initially estimated to require 48 months and $33.9 million to build, was completed four months ahead of schedule and $11.1 million under budget. DOE directed construction of the IDF to provide additional capacity for disposing of low-level radioactive and mixed (i.e., radioactive and hazardous) solid waste. The facility needed to comply with federal and Washington State environmental laws and meet TPA milestones. The facility had to accommodate over one million cubic yards of the waste material, including immobilized low-activity waste packages from the Waste Treatment Plant (WTP), low-level and mixed low-level waste from WTP failed melters, and alternative immobilized low-activity waste forms, such as bulk-vitrified waste. CH2M HILL designed and constructed a disposal facility with a redundant system of containment barriers and a sophisticated leak-detection system. Built on a 168-area, the facility's construction met all regulatory requirements. The facility's containment system actually exceeds the state's environmental requirements for a hazardous waste landfill. Effective management of the IDF construction project required working through highly political and legal

  11. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  12. Public education and participation

    International Nuclear Information System (INIS)

    Kelly, J.E.

    1982-01-01

    As prescribed in Step 1 of the Public Education and Participation Process (attachment 1), industry, public interest groups, and decision-makers were briefed about the Subseabed Disposal Program. In regard to public interest groups, Drs. Hollister and Kelly were invited to present the technical and policy aspects of the Subseabed Program at a public forum in Hawaii sponsored by the Hawaii League of Women Voters, the Health Physics Society, and the East-West Center. The sponsors videotaped the forum for a film, entitled Slowly Dying Embers: Radioactive Waste and the Pacific, which will be shown on television in Hawaii. In response to requests for information about the Subseabed Program, Congressional Staff, Representatives, and Senators (attachment 2) were briefed about the Subseabed Program as legislation related to the Program moved through Congress (attachment 3). Science oriented publications also were contacted about the Program

  13. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  14. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  15. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  16. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  17. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  18. Remedial action and waste disposal project - ERDF readiness evaluation plan

    International Nuclear Information System (INIS)

    Casbon, M.A.

    1996-06-01

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the Environmental Restoration and Disposal Facility. The evaluation was conducted at the conclusion of a series of readiness activities that began in January 1996. These activities included completion of the physical plant; preparation, review, and approval of operating procedures; definition and assembly of the necessary project and operational organizations; and activities leading to regulatory approval of the plant and operating plans

  19. Modelling sequential Biosphere systems under Climate change for radioactive waste disposal. Project BIOCLIM

    International Nuclear Information System (INIS)

    Texier, D.; Degnan, P.; Loutre, M.F.; Lemaitre, G.; Paillard, D.; Thorne, M.

    2000-01-01

    The BIOCLIM project (Modelling Sequential Biosphere systems under Climate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that have national responsibilities for the safe disposal of radioactive wastes, and several highly experienced climate research teams. Waste management organisations involved are: NIREX (UK), GRS (Germany), ENRESA (Spain), NRI (Czech Republic) and ANDRA (France). Climate research teams involved are: LSCE (CEA/CNRS, France), CIEMAT (Spain), UPMETSIMM (Spain), UCL/ASTR (Belgium) and CRU (UEA, UK). The Environmental Agency for England and Wales provides a regulatory perspective. The consulting company Enviros Consulting (UK) assists ANDRA by contributing to both the administrative and scientific aspects of the project. This paper describes the project and progress to date. (authors)

  20. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  1. Radiological impact of a spent fuel disposal in a deep geological granite formation - results of the european spa project

    International Nuclear Information System (INIS)

    Baudoin, P.; Gay, D.; Certes, C.; Serres, C.

    2000-01-01

    The SPA project (Spent fuel disposal Performance Assessment) is the latest of four integrated performance assessment exercises on nuclear waste disposal in geological formations, carried out in the framework of the European Community 'Nuclear Fission' Research Programmes. The SPA project, which was undertaken by ENRESA, GRS, IPSN, NRG, SCK.CEN and VTT between May 1996 and April 1999, was devoted to the study of disposal of spent fuel in various host rock formations (clay, crystalline rocks and salt formation). This project is a direct continuation of the efforts made by the European Community since 1982 to build a common understanding of the methods applicable to deep disposal performance assessment. (authors)

  2. Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.

    Science.gov (United States)

    Ridgley, Susan M.; Galvin, David V.

    The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…

  3. Managing Uncertainties Associated With Radioactive Waste Disposal: Task Group 4 Of The IAEA PRISM Project

    International Nuclear Information System (INIS)

    Seitz, R.

    2011-01-01

    It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest in the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.

  4. North Sea focus on radwaste disposal

    International Nuclear Information System (INIS)

    Cope, D.

    1990-01-01

    At the recent North Sea Conference in the Netherlands possible future strategies for managing radioactive waste (radwaste) proved to be a contentious issue. Several of its North Sea littoral neighbours sought a categorical assurance that the UK would forego the option of constructing a subterranean radwaste repository which though accessed from land, extends under the coastline, or a sub-seabed facility reached from an offshore structure. It was pointed out that the UK has no present plans for such a radwaste repository. However, sub-seabed designs as a possibility for future repositories were not ruled out. NIREX has decided to concentrate its exploration work at two sites -Sellafield and Dounreay. Both sites are coastal locations and the government is aware that detailed geological exploration may favour extension of a radwaste repository beyond the shoreline, even if initially developed entirely on land. The design of such a radioactive waste repository is outlined. The position of NIREX and the Radioactive Waste Management Advisory Committee is discussed. (author)

  5. Final disposal of radioactive wastes in Switzerland: concept and overview of Project Guarantee 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The validity of the operational licences of the existing Swiss nuclear power plants (NPP) Beznau I and II, Muehleberg, Goesgen and Leibstadt after 31st. December 1985 is, because of official requirements, dependent on the demonstration of permanent, safe management and final disposal of radioactive waste. For this purpose, the NPP companies have to prepare a so-called guarantee project and present this to the Bundesrat for review. The appropriate investigations and research have been carried out by Nagra (National Cooperative for the Storage of Radioactive Waste). The 1985 Project Gewaehr (Guarantee) is described in an eight volume report NGB 85-01 to 85-08 and individual research projects are reported on in separate NTB-series reference reports. The present volume NGB 85-01 takes the form of a self-contained project overview in which the concepts for nuclear waste management are described, the contents of the remaining volumes NGB 85-02 to 85-08 are summarized and Project conclusions are drawn from Project Gewaehr 1985. Project Gewaehr 1985 covers two repository types: Type C repository for high-level and certain alpha-containing intermediate-level waste, and Type B repository for all remaining intermediate- and low-level waste. The Project shows in detail that technical feasibility of final disposal can be assumed given presently available methods, that the technical safety barriers show a high level of efficiency and that suitable geological options are available to ensure long-term safety in Switzerland as the concept is defined by official requirements. The Project safety analyses show that the chosen disposal concepts assure the protection of mankind and the environment under all realistically anticipated conditions

  6. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded

  7. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  8. River Protection Project (RPP) Immobilized Low- Ativity Waste (ILAW) Disposal Plan

    International Nuclear Information System (INIS)

    BRIGGS, M.G.

    2000-01-01

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures

  9. 2008 State-of-the-Art : High Level Radioactive Waste Disposal Facilities and Project Review of Proceding Countries

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Lee, Jong Youl; Jung, Jong Tae; Kim, Sung Ki; Lee, Min Soo; Cho, Dong Keun; Kook, Dong Hak

    2008-11-15

    High level radioactive waste disposal system project for advanced nuclear fuel cycle produced this report which are dealing with the repository status of proceding countries as of 2008. This report has brief review on disposal facilities which are operating and will be operating and on future plan of those nations. The other report 'Development of the Geological Disposal System for High Level Waste' which was produced like this report time and this report would help the readers grasp the current repository status. Because our country is a latecomer in the HLW disposal world, it is strongly recommended to catch up with advanced disposal system and concepts of developed nations and this report is expected to make it possible. There are several nations which were the main survey target; Finland, USA, Sweden, Germany, France, Switzerland, and Japan. Recent information was applied to this report and our project team will produce annual state-of-the-art report with continuous updates.

  10. Environmental impact statement on management of commercially generated radioactive wastes

    International Nuclear Information System (INIS)

    Shupe, M.W.; Kreiter, M.R.

    1979-01-01

    This report describes the generic environmental impact statement on the management of generated high-level and transuranic radioactive wastes. The contents of the statement are summarized. The alternatives considered include: geologic disposal; chemical resynthesis; very deep hole disposal; rock melting concept; island disposal; subseabed disposal; icesheet disposal; reverse well disposal; transmutation treatment; and space disposal concepts. The types and quantities of wastes considered are from 3 different fuel cycles for the LWR reactor: once through; uranium-only recycle; and uranium and platinum recycle

  11. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  12. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  13. Systems Engineering Plan and project record Configuration Management Plan for the Mixed Waste Disposal Initiative

    International Nuclear Information System (INIS)

    Bryan, W.E.; Oakley, L.B.

    1993-04-01

    This document summarizes the systems engineering assessment that was performed for the Mixed Waste Disposal Initiative (MWDI) Project to determine what types of documentation are required for the success of the project. The report also identifies the documents that will make up the MWDI Project Record and describes the Configuration Management Plan describes the responsibilities and process for making changes to project documentation

  14. Status of subseabed repository design concepts and radionuclide

    International Nuclear Information System (INIS)

    Brush, L.H.

    1980-01-01

    Various projects underway in support of the marine disposal of radioactive wastes are described. These include: geochemical studies on sediments; canister-related research and development activities; radionuclide transport studies through smectitic sediments; seawater-sediment interactions under near-field conditions; effects of a radiation field on high temperature, seawater-sediment interactions; sorption of fission products and actinides by deep-sea sediments under far-field (below 100 0 C) conditions; sorption experiments using column diffusion; development of a computer code, IONMIG, to model the migration of radionuclides through undisturbed deep-sea sediments; and planning for a field test of the laboratory measurements and computer models of radionuclide transport

  15. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment plan

    International Nuclear Information System (INIS)

    April, J.G.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Plastino, J.C.; Roeck, F.V.; Tuttle, B.G.

    1997-04-01

    This Readiness Assessment Plan presents the methodology used to assess the readiness of the 300-FF-1 Remedial Action Project. Remediation involves the excavation, treatment if applicable, and final disposal of contaminated soil and debris associated with the waste sites in the 300-FF-1 Operable Unit. The scope of the 300-FF-1 remediation is to excavate, transport, and dispose of contaminated solid from sites identified in the 300-FF-1 Operable Unit

  16. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  17. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  18. Centrifuge and laboratory tests, modelling the penetrator concept for the disposal of HGW in deep ocean sediments

    International Nuclear Information System (INIS)

    Savvidou, C.; Schofield, A.N.

    1986-12-01

    The report is a summary of the work carried out at Cambridge University Engineering Department to investigate the geotechnical aspects of the subseabed disposal of heat generating waste. The problem of heat transfer and coupled consolidation around a heat source was studied both experimentally and numerically. Calculations of the temperature and pore pressure changes in the soil around a cylindrical heat source were made and verified by both laboratory tests and by centrifuge modelling at 100 times earth's gravity. It was shown that conduction was the major heat transfer process. The high velocity penetration of soil by projectiles was modelled on the Cambridge Geotechnical Centrifuge and this was followed by centrifuge tests in which there was subsequent heating of the projectile after firing. These dynamic tests showed that the projectile produced high pore pressures within the soil, which were quickly dissipated. (author)

  19. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  20. Study on quality assurance for high-level radioactive waste disposal project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2005-01-01

    The U.S. Department of Energy (DOE) has developed comparatively detailed quality assurance requirements for the high-level radioactive waste disposal systems. Quality assurance is recognized as a key issue for confidence building and smooth implementation of the HLW program in Japan, and Japan is at an initial phase of repository development. Then the quality assurance requirements at site research and site selection, site characterization, and site suitability analysis used in the Yucca Mountain project were examined in detail and comprehensive descriptions were developed using flow charts. Additionally, the applicability to the Japan high-level radioactive waste disposal project was studied. The examination and study were performed for the following QA requirements: The requirements that have the relative importance at site research and site selection, site characterization, and site suitability analysis (such as planning and performing scientific investigations, sample control, data control, model development and use, technical report review, software control, and control of the electric management of data). The requirements that have the relative importance at the whole repository phases (such as quality assurance program, document control, and control of quality assurance records). (author)

  1. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  2. The HILW-LL (high- and intermediate-level waste, long-lived) disposal project: working toward building the Cigeo Industrial Centre for Geological Disposal

    International Nuclear Information System (INIS)

    Labalette, Th.

    2011-01-01

    The French Act of 28 June 2006 identifies reversible disposal in deep geological facilities as the benchmark solution for long-term management of high-level waste (HLW) and for intermediate-level long-lived waste (ILW-LL). The Act tasks ANDRA (national agency for the management of radioactive wastes) with the pursuit of studies and research on the choice of a site and the design of the repository, with a view to examining the licence application in 2015 and, provided that the licence is granted, to make the facility operational by 2025. At the end of 2009, ANDRA submitted to the Government its proposals regarding the site and the design of the Industrial Centre for Geological Disposal, known as CIGEO. With the definition of a possible area for the construction of underground disposal facilities, one of the key stages in the project has been achieved. The choice of a surface site will be validated following the public consultation scheduled for the end of 2012. The project is now on the point of entering the definition stage (preliminary design). CIGEO will be a nuclear facility unlike any other. It will be built and operated for a period of over 100 years. For it to be successful, the project must meet certain requirements related to its integration in the local area, industrial planning, safety and reversibility, while also controlling costs. Reversibility is a very important concept that will be defined by law. It is ANDRA's responsibility to ensure that a reasonable balance is found between these different concerns. (author)

  3. Application of systems analysis to the disposal of high level waste in deep ocean sediments

    International Nuclear Information System (INIS)

    De Marsily, G.; Dorp, F. van

    1982-01-01

    Emplacement in deep ocean sediments is one of the disposal options being considered for solidified high level radioactive waste. Task groups set up within the framework of the NEA Seabed Working Group have been studying many aspects of this option since 1976. The methods of systems analysis have been applied to enable the various parts of the problem to be assessed within an integrated framework. This paper describes the progress made by the Systems Analysis Task Group towards the development of an overall system model. The Task Group began by separating the problem into elements and defining the interfaces between these elements. A simple overall system model was then developed and used in both a preliminary assessment and a sensitivity analysis to identify the most important parameters. These preliminary analyses used a very simple model of the overall system and therefore the results cannot be used to draw any conclusions as to the acceptability of the sub-seabed disposal option. However they served to show the utility of the systems analysis method. The work of the other task groups will focus on the important parameters so that improved results can be fed back into an improved system model. Subsequent iterations will eventually provide an input to an acceptability decision. (Auth.)

  4. GEOSAF Part II. Demonstration of the operational and long-term safety of geological disposal facilities for radioactive waste. IAEA international intercomparison and harmonization project

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Yumiko; Bruno, Gerard [International Atomic Energy Agency, Vienna (Austria). Vienna International Centre; Tichauer, Michael [IRSN, Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Hedberg, Bengt [Swedish Radiation Safety Authority, Stockholm (Sweden)

    2015-07-01

    International intercomparison and harmonization projects are one of the mechanisms developed by the IAEA for examining the application and use of safety standards, with a view to ensuring their effectiveness and working towards harmonization of approaches to the safety of radioactive waste management. The IAEA has organized a number of international projects on the safety of radioactive waste management; in particular on the issues related to safety demonstration for radioactive waste management facilities. In 2008, GEOSAF, Demonstration of The Operational and Long-Term Safety of Geological Disposal Facilities for Radioactive Waste, project was initiated. This project was completed in 2011 by delivering a project report focusing on the safety case for geological disposal facilities, a concept that has gained in recent years considerable prominence in the waste management area and is addressed in several international safety standards. During the course of the project, it was recognized that little work was undertaken internationally to develop a common view on the safety approach related to the operational phase of a geological disposal although long-term safety of disposal facility has been discussed for several decades. Upon completion of the first part of the GEOSAF project, it was decided to commence a follow-up project aiming at harmonizing approaches on the safety of geological disposal facilities for radioactive waste through the development of an integrated safety case covering both operational and long-term safety. The new project was named as GEOSAF Part II, which was initiated in 2012 initially as 2-year project, involving regulators and operators. GEOSAF Part II provides a forum to exchange ideas and experience on the development and review of an integrated operational and post-closure safety case for geological disposal facilities. It also aims at providing a platform for knowledge transfer. The project is of particular interest to regulatory

  5. Geotechnical aspects of subseabed disposal of high level radioactive wastes

    International Nuclear Information System (INIS)

    Silva, A.J.; Calnan, D.I.

    1981-01-01

    Additional data on geotechnical properties of MPG-1 sediments are presented. New data on Distal Abyssal Plain sediments east of the North Bermuda Rise (MPG-3N) indicates that this region has characteristics which compare favorably with MPG-1. The new permeability results are consistent with previous reported results for MPG-1 with a coefficient of permeability of approximately 10 -7 cm/sec. Preliminary results from MPG-3N indicate permeabilities comparable with those of MPG-1. Results are presented for thirty-seven triaxial compression tests on both undisturbed and remolded illite and smectite clays from the North Central Pacific (MPG-1). A preliminary set of repeated loading triaxial compression tests were performed on illite and smectite remolded clays from MPD-1. A device for anisotropic consolidation and triaxial compression has been developed which will allow the study of stress-strain behavior after anisotropic consolidation with zero lateral deformation. The long-term stress-strain behavior of deep sea sediments is the focus of a two-part testing program: Phase 1; room temperature studies, will be completed in Spring, 1980 and Phase 2; temperature effect studies, is now in the equipment development stage and should be underway by June, 1980. The testing portion of the laboratory Hole Closure study has been completed and most of the results are reported. A final technical report will be completed in June, 1980. The involvement of URI/MGL in this project covers five areas: site characterization, geotechnical analysis for platform foundation configuration, laboratory analysis of sediment-structure interaction development of in-situ vane shear apparatus and post-test analysis of recovered data relating to geotechnical behavior

  6. The Cigeo project, Meuse/Haute-Marne reversible geological disposal facility for radioactive waste. Project Owner File, Public debate of 15 May to 15 October 2013

    International Nuclear Information System (INIS)

    Dupuis, Marie-Claude; Gonnot, Francois-Michel

    2013-07-01

    Andra is exploring several options for the disposal of low-level long-lived waste (LLW-LL). With the French Government's approval, in June 2008 Andra began looking around France for a site to build an LLW-LL repository. In late 2008 it provided the Government with a report analysing the geological, environmental and socio-economic aspects of the forty odd municipalities that expressed an interest in the project. After the withdrawal of the two municipalities chosen in 2009 to conduct geological investigations, the government asked Andra to re-explore the various management options for graphite and radium-bearing waste, focusing in particular on ways to manage these types of waste separately. The High Committee for Transparency and Information on Nuclear Safety (HCTISN) created a working group to provide feedback on the search for a site for LLW-LL. Andra submitted a report to the Government in late 2012. This report contains proposals for continuing the search and draw in particular on the HCTISN's recommendations. Contents: 1 - Radioactive waste (Sources, Types, Management, Waste to be disposed of at Cigeo, Cigeo's estimated disposal capacities, Where IS HLW and ILW-LL being stored until Cigeo is commissioned? 2 - Why deep geological disposal? (A 15-year research programme, Presentation and assessment of the research results, The public debate of 2005-2006, Deep geological disposal ratified by the 2006 Planning Act, The 2006 Planning Act: other areas of research complementary to deep geological disposal, The situation in other countries); 3 - Why the Meuse/Haute-Marne site? (Selection of the Meuse and Haute-Marne site to host an underground research laboratory, The geological formation in the Meuse and Haute-Marne site, Callovo-Oxfordian clay, Siting of Cigeo's installations); 4 - How will Cigeo operate? (The installations at Cigeo, Construction of Cigeo, Transport of waste packages, Operation of Cigeo, Closure of Cigeo); 5 - Safety at Cigeo

  7. Bure CLIS: role, operation, disposal project

    International Nuclear Information System (INIS)

    Jaquet, B.

    2011-01-01

    The Local Information and Oversight Committee (CLIS) is an independent body tasked by law to monitor studies carried out by the French National Radioactive Waste Management Agency (ANDRA) at the Bure laboratory and in the area surrounding Bure, within the framework of research on radioactive waste management and, in particular, on final disposal of such waste in deep geological formations. The role of the CLIS, whose members include representatives of the State, Parliament, local authorities, unions, associations and the medical profession, is to provide all population groups, beginning with the inhabitants of La Meuse and La Haute-Marne departments, with information regarding these studies and their results, as well as the underground repository project and the stakes involved: it is thus the chief contact for the inhabitants of the area. It also encourages discussion of a project that is subject to a long decision-making process, during which the CLIS is called upon to give its opinion at different stages. The objectives of the CLIS' actions are to provide information to as wide a public as possible (through public meetings, a regular newsletter and a web site) using its own data (appraisals and independent assessments), so that the public can effectively contribute to the debates held throughout the process, and also to be an independent player in the process, whenever its involvement is required and even when this is not specifically planned. (author)

  8. Iraq nuclear facility dismantlement and disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J R; Danneels, J [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W D [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C J; Chesser, R K [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  9. Spent fuel waste disposal: analyses of model uncertainty in the MICADO project

    International Nuclear Information System (INIS)

    Grambow, B.; Ferry, C.; Casas, I.; Bruno, J.; Quinones, J.; Johnson, L.

    2010-01-01

    The objective was to find out whether international research has now provided sufficiently reliable models to assess the corrosion behavior of spent fuel in groundwater and by this to contribute to answering the question whether the highly radioactive used fuel from nuclear reactors can be disposed of safely in a geological repository. Principal project results are described in the paper

  10. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  11. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  12. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  13. 25 CFR 171.420 - Can I dispose of sewage, trash, or other refuse on a BIA irrigation project?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can I dispose of sewage, trash, or other refuse on a BIA... AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Facilities § 171.420 Can I dispose of sewage, trash, or other refuse on a BIA irrigation project? No. Sewage, trash, or other refuse are considered...

  14. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  15. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Harvego, Lisa

    2009-01-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory's recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy's ability to meet obligations with the State of Idaho

  16. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  17. Low-level radioactive waste in the northeast: disposal volume projections

    International Nuclear Information System (INIS)

    1982-10-01

    The northeastern states, with support of the Coalition of Northeastern Governors (CONEG), are developing compact(s) for the disposal and management of low-level radioactive waste (LLRW) generated in the eleven northeastern states (Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont). The Technical Subcommittee has made a projection of future low-level radioactive waste to the year 2000 based on existing waste volume data and anticipated growth in the Northeast states. Aware of the difficulties involved with any long range projection - unforeseen events can drastically change projections based on current assumptions - the Technical Subcommittee believes that waste volume projections should be reviewed annually as updated information becomes available. The Technical Subcommittee made the following findings based upon a conservative projection methodology: volumes of low-level waste produced annually in the eleven states individually and collectively are expected to grow continually through the year 2000 with the rate of increase varying by state; by the year 2000, the Northeast is projected to generate 58,000 m 3 of low-level waste annually, about 1.9 times the current average; and based on current estimates, 47% of the total projected waste volume in the year 2000 will be produced by nuclear power plants, compared to the current average of 54%. Non-reactor wastes will equal 53% of the total in the year 2000 compared to the current 46%

  18. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  19. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  20. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  1. Review of models for use in probabilistic assessments of the disposal of high level radioactive wastes on or beneath the seabed: appendix III

    International Nuclear Information System (INIS)

    Hooper, A.G.; Gibson, A.E.

    1985-08-01

    MARINRAD (MARINe RADionuclide Transport and Dose) is a system of computer programs designed to evaluate the consequences from release of radioactive waste into the ocean. It is presently being used in safety assessment studies for the Subseabed Disposal Program by Sandia National Laboratories. MARINRAD calculates doses to humans and biota and health effects to humans. The MARINRAD software system is composed of three computer programs: ORIGEN, MARRAD and MAROUT. The use of the ORIGEN program to generate a nuclide inventory file is optional. The MARRAD program incorporates an ocean transport box model that calculates radionuclide concentrations as a function of time, and a steady-state food-chain model that calculates the biota concentration factors. Program MAROUT evaluates a pathways-to-man model which is used to calculate dose and health effects to man for up to seven different exposure pathways. (author)

  2. Red-impact project: First results of the evaluations of the impact of P and T on geological disposal

    International Nuclear Information System (INIS)

    Marivoet, Jan; Vokal, Antonin; Gudowski, Waclaw

    2006-01-01

    The Red-Impact project (Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal) is a research project in the 6. Framework Programme of the European Commission. The main objective of the project is to assess the impact of partitioning and transmutation (P and T) on geological disposal and waste management. The project started with the identification of a number of representative fuel cycle scenarios. Five basis scenarios are considered for the evaluations: 2 industrial scenarios and 3 innovative scenarios. Mass flow schemes have been prepared for each basis fuel cycle scenario and the corresponding neutronic calculations have been made. A first list of performance indicators that will be calculated or estimated in the project has been prepared. As a first step the impact of 2 fuel cycle scenarios, the reference 'open cycle' scenario and of the innovative 'fast neutron Gen IV' scenario, on geological repositories in granite and clay formations have been evaluated. The results obtained show that the introduction of innovative fuel cycle scenarios can result in a considerable reduction of the needed size of the geological repository. However, the impact on the radiological consequences is rather limited. Indeed, the maximum dose, which is expected to occur a few tens of thousands year after the disposal of the waste, is essentially due to fission products and their amount is about proportional to the heat generated by nuclear fissions. (authors)

  3. Perspectives on past and Present Waste Disposal Practices: A community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    OpenAIRE

    Rebecca Zagozewski; Ian Judd-Henrey; Suzie Nilson; Lalita Bharadwaj

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatche...

  4. Perspectives on Past and Present Waste Disposal Practices: A Community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    OpenAIRE

    Rebecca Zagozewski; Ian Judd-Henrey; Suzie Nilson; Lalita Bharadwaj

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatche...

  5. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  6. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  7. Compas project stress analysis of HLW containers: behaviour under realistic disposal conditions

    International Nuclear Information System (INIS)

    Ove Arup and Partners, London

    1990-01-01

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste (HLW) forms before disposal in deep geological repositories. In this final stage of the project, analysis of an HLW overpack of realistic design is performed to predict its behaviour when subjected to likely repository loads. This analysis work is undertaken with the benefit of experience gained in previous phases of the project in which the ability to accurately predict overpack behaviour, when subjected to a uniform external pressure, was demonstrated. Burial in clay, granite and salt environments has been considered and two distinct loading arrangements identified, in an attempt to represent the worst conditions that could be imposed by such media. The analysis successfully demonstrates the ability of the containers to withstand extreme, yet credible, repository loads

  8. Remedial action and waste disposal project: 100-DR-1 remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Calverley, C.

    1996-08-01

    This plan presents the method used to assess the readiness of the 100- DR-1 Remedial Action Project. Remediation of the 100-D sites (located on the Hanford Site) involves the excavation (treatment if applicable) and final disposal of contaminated soil and debris associated with the high-priority waste sites in the 100 Areas

  9. Site characterization quality assurance for the California LLRW Disposal Site Project

    International Nuclear Information System (INIS)

    Hanrahan, T.P.; Ench, J.E.; Serlin, C.L.; Bennett, C.B.

    1988-01-01

    In December of 1985 US Ecology was chosen as the license designee for the State of California's low-level radioactive waste disposal facility. In early 1987, three candidate sites were selected for characterization studies in preparation for identifying the preferred site. The geotechnical characterization activities along with studies of the ecological and archaeological attributes, as well as assessments of the socio-economic impacts and cultural resources all provide input towards selection of the proposed site. These technical studies in conjunction with comments from local citizen committees and other interested parties are used as a basis for determining the proposed site for which full site characterization as required by California licensing requirements are undertaken. The purpose of this paper is to present an overview of the program for Quality Assurance and Quality Control for the site characterization activities on the California LLRW Disposal Site Project. The focus is on three major perspectives: The composite QA Program and two of the primary characterization activities, the geotechnical and the meteorological investigations

  10. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    International Nuclear Information System (INIS)

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers ''will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of ''vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells

  11. NUMO-RMS: a practical requirements management system for the long-term management of the deep geological disposal project - 16304

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Suzuki, Satoru; Ishiguro, Katsuhiko; Oyamada, Kiyoshi; Yashio, Shoko; White, Matt; Wilmot, Roger

    2009-01-01

    NUMO (Nuclear Waste Management Organization of Japan) has the responsibility for implementing deep geological disposal of high-level (HLW) and transuranic (TRU) radioactive waste from the Japanese nuclear programme. A formal Requirements Management System (RMS) is planned to efficiently and effectively support the computerised implementation of the management strategy and the methodology required to drive the step-wise siting processes, and the following repository operational phase,. The RMS will help in the comprehensive management of the decision-making processes in the geological disposal project, in change management as the disposal system is optimised, in driving projects such as the R and D programme efficiently, and in maintaining structured records regarding past decisions, all of which lead to soundness of the project in terms of long-term continuity. The system is planned to have information handling and management functions using a database that includes the decisions/requirements in the programme under consideration, the way in which these are structured in terms of the decision-making process and other associated information. A two-year development programme is underway to develop and enhance an existing trial RMS to a practical system. Functions for change management, history management and association with the external timeline management system are being implemented in the system development work. The database format is being improved to accommodate the requirements management data relating to the facility design and to safety assessment of the deep geological repository. This paper will present an outline of the development work with examples to demonstrate the system's practicality. In parallel with the system/database developments, a case research of the use of requirements management in radioactive waste disposal projects was undertaken to identify key issues in the development of an RMS for radioactive waste disposal and specify a number of

  12. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  13. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment report

    International Nuclear Information System (INIS)

    Carson, J.W.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Remsen, W.E.; Tuttle, B.G.; Wilson, R.C.

    1997-09-01

    This report documents the readiness assessment for initial startup of the 300-FF-1 Remedial Action Task. A readiness assessment verifies and documents that field activities are ready to start (or restart) safely. The 300-FF-1 assessment was initiated in April 1997. Readiness assessment activities included confirming the completion of project-specific procedures and permits, training staff, obtaining support equipment, receipt and approval of subcontractor submittals, and mobilization and construction of site support systems. The scope of the 300-FF-1 Remedial Action Task includes excavation and disposal of contaminated soils at liquid waste disposal facilities and of waste in the 618-4 Burial Ground and the 300-FF-1 landfills. The scope also includes excavation of test pits and test trenches

  14. EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

    2012-07-01

    Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise

  15. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  16. Perspectives and benefits of the non-proliferating fuel cycle

    International Nuclear Information System (INIS)

    Parker, F.

    2012-01-01

    The world community has faced the issues of nuclear non-proliferation for decades. Frank Parker, Emeritus Distinguished Professor at Vanderbilt University, has proposed a non-proliferating fuel cycle, which greatly reduces the risk of use of nuclear materials for military purpose. A simplified fuel cycle with reduced opportunities for proliferation of nuclear weapons and permanent disposal of radioactive wastes as well as a reference sub-seabed HLW disposal system are described [ru

  17. Physical and biological transport

    International Nuclear Information System (INIS)

    Marietta, M.G.

    1979-01-01

    In order to evaluate the feasibility of sub-seabed waste disposal, it is necessary to consider the results of leakage or accidental failure to emplace the canister within the deep-sea sediments. Such accidental release is possible for any waste disposal option, and the associated risks must be evaluated so that comparisons between options can be made. Therefore, one must be able to trace the migration of escaped radionuclides from the canister site within the sediments (or possibly elsewhere for various accident events), through the sediments, water column, and ecosystem to man. Only in this way can the environmental impact of sub-seabed nuclear waste disposal be quantitatively evaluated. A mathematical model which describes this migration of radionuclides through the various transport mechanisms of the sea must be written in order to quantify the release of a given amount of waste material. This model is directed towards answering two questions. What is the effect upon the marine environment, and what is the effect upon man. These questions require a predictive capability for the levels of radioactivity in the marine biota and for the dose to man

  18. Processing of Irradiated Graphite to Meet Acceptance Criteria for Waste Disposal. Results of a Coordinated Research Project. Companion CD-ROM

    International Nuclear Information System (INIS)

    2016-05-01

    Graphite is widely used in the nuclear industry and in research facilities and this has led to increasing amounts of irradiated graphite residing in temporary storage facilities pending disposal. This publication arises from a coordinated research project (CRP) on the processing of irradiated graphite to meet acceptance criteria for waste disposal. It presents the findings of the CRP, the general conclusions and recommendations. The topics covered include, graphite management issues, characterization of irradiated graphite, processing and treatment, immobilization and disposal. Included on the attached CD-ROM are formal reports from the participants

  19. Predictions of local, regional and global radiation doses from iodine-129 for four different disposal methods and an all-nuclear future

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Barnard, J.W.; O'Connor, P.A.; Johnson, J.R.

    1985-01-01

    The radioactive isotope 129 I produced by nuclear fission becomes globally distributed if released to the environment. The consequences of several options for management of 129 I are discussed. Estimates are presented of radiation doses from the 129 I produced in generating 1000 GW(e).a of nuclear electricity, the total production expected in Canada up to about 2040. Individual thyroid dose rates from 129 I, and accumulated collective effective dose equivalents to three groups are compared for four 129 I management strategies. These groups are: local persons living in the immediate vicinity of a discharge zone from a fuel reprocessing facility or waste disposal vault in the Canadian Shield, regional persons living in the lower Great Lakes basin, and average global persons. The four management strategies studied were: atmospheric discharge from a reprocessing facility, ocean dumping, subseabed disposal, and isolation in a deep vault in plutonic rock in the Canadian Shield. Doses associated with each of these options are compared with each other and with proposed Canadian regulatory limits. Estimates are also presented of doses to the same groups from fission-product 129 I, if fission supplied all future world energy needs. The two management options considered were geological disposal in vaults that would each eventually discharge 129 I at the rate estimated for a disposal vault in the Canadian Shield, and ocean dumping. Again, doses arising from these options are compared with each other and with proposed regulatory limits. The second comparison allows estimates to be made of the time at which such intensive use of fission could produce unacceptable levels of 129 I in the environment

  20. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  1. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  2. The TIMODAZ project: Thermal impact on the damaged zone around a radioactive waste disposal in clay host rocks

    International Nuclear Information System (INIS)

    XiangLing, L.

    2009-01-01

    The management of spent nuclear fuel and other long-lived radio active waste is an important environmental issue today. Disposal in deep clay geological formations is one of the promising options to dispose of these wastes. In this context, the related research activities in the Euratom Framework Programme of European Commission are continually taking on an enhanced significance. The TIMODAZ is one of the STREP projects (Specific Targeted Research Project) in the Sixth EURATOM Framework Programme and contributes to the research related to the geological disposal of radioactive waste. The consortium is composed of a strong multidisciplinary team involving both European radioactive waste management organizations and nuclear research institutes, universities, industrial partners as well as consultancy companies (SME's). Totally, 15 partners coming from 8 countries are involved with a total budget of about 4000k EURO. Being the coordinator (through the EURIDICE expertise group), SCK-CEN plays the leading role in the project. Meanwhile, SCK-CEN participates the research in different work packages covering the laboratory tests, in-situ tests as well as the integration of TIMODAZ results within the safety case. An important item for the long-term safety of underground disposal is the proper evaluation of the DZ (damaged zone) in the clay host rock. The DZ is defined here as the zone of host rock that experiences THMC (Thermo-Hydro-Mechanical-Chemical) modifications induced by the repository, with potential major changes in the transport properties for radionuclides. The DZ is first initiated during the repository construction. Its behaviour is dynamic, dependent on changing conditions that vary from the open-drift period, to initial closure period and to the entire heating-cooling cycle of the decaying waste. The early THMC disturbances created by the excavation, the operational phase and the thermal load might be the most severe transient that the repository will undergo

  3. Review to give the public clear information on near surface disposal project of low-level radioactive wastes generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Amazawa, Hiroya; Koibuchi, Hiroto; Nakata, Hisakazu; Kato, Masatoshi; Takao, Tomoe; Terashima, Daisuke; Tanaka, Yoshie; Shirasu, Hisanori

    2013-12-01

    Japan Atomic Energy Agency (hereafter abbreviated as “JAEA”) has promoted near surface disposal project for low-level radioactive wastes generated from research, industrial and medical facilities after receiving project approval from the government in November 2009. JAEA has carried out public information about low-level radioactive wastes disposal project on the web site. When some town meetings are held toward mutual understanding with the public, more detailed and clear explanations for safety management of near surface disposal are needed especially. Therefore, the information provision method to make the public understand should be reviewed. Moreover, a web-based survey should be carried out in order to get a sense of what the public knows, what it values and where it stands on nuclear energy and radiation issues, because the social environment surrounding nuclear energy and radiation issues has drastically changed as a result of the accident at the Fukushima Daiichi Nuclear Power Station on March 11, 2011. This review clarified the points to keep in mind about public information on near surface disposal project for low-level radioactive wastes generated from research, industrial and medical facilities, and that public awareness and understanding toward nuclear energy and radiation was changed before and after the accident at Fukushima Daiichi Nuclear Power Plant. (author)

  4. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This publication is the interim report 1988-89 of the international HAW project performed in the 800 m level of the Asse salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radiactivos S.A. (ENRESA) and the Netherlands Energy Research Foundation (ECN). After some delays in the licensing procedure the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 20 refs.; 92 figs.; 14 tabs

  5. Evaluation of dredged material proposed for ocean disposal from Westchester Creek project area, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Gardiner, W.W.; Barrows, E.S.; Borde, A.B.

    1996-11-01

    The objective of the Westchester Creek project was to evaluate proposed dredged material from this area to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Westchester Creek was one of five waterways that the US Army Corps of Engineers- New York District (USACE-NYD) requested the Battelle/Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in May 1995. The evaluation of proposed dredged material from the Westchester Creek project area consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, benthic acute and water-column toxicity tests, and bioaccumulation studies. Thirteen individual sediment core samples were collected from this area and analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample representing the Westchester Creek area to be dredged, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended- particulate phase (SPP) of the Westchester Creek sediment composite, was analyzed for metals, pesticides, and PCBS.

  6. Role of National Academies in radioactive waste disposal projects. Implications from the comparison of the science council of Japan with the U.S. National Academies

    International Nuclear Information System (INIS)

    Yamashita, Yuji; Tanaka, Satoru

    2012-01-01

    We made a descriptive inference about the role of the U.S. National Academies in the U.S. radioactive waste disposal projects on the basis of literature-based information and compared the U.S. National Academies with the Science Council of Japan to determine their implications on the progress of social acceptability of radioactive waste disposal projects in Japan. The descriptive inference was made as follows. We described the organizational characteristics of the U.S. National Academies and the U.S. federal governments related to the projects. We outlined the related bills and demonstrated chronologically the activities related to the projects by the U.S. National Academies and the U.S. Government. As a consequence, we identified some specific roles that the U.S. National Academies played in the U.S. radioactive waste disposal projects. The U.S. National Academies have acted not only as a scientific and engineering adviser for the governments but also as an anchor for some political decision making or judicial actions. Furthermore, we analyzed the credibility of the Science Council of Japan and the U.S. National Academies from the viewpoint that a reliable third party must exhibit fairness, expertise and continuity. From the results of the comparison, it was found that the Science Council of Japan has the possibility to become a reliable third party that can help the radioactive waste disposal projects in Japan. (author)

  7. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  8. The EVEREST project: sensitivity analysis of geological disposal systems

    International Nuclear Information System (INIS)

    Marivoet, Jan; Wemaere, Isabelle; Escalier des Orres, Pierre; Baudoin, Patrick; Certes, Catherine; Levassor, Andre; Prij, Jan; Martens, Karl-Heinz; Roehlig, Klaus

    1997-01-01

    The main objective of the EVEREST project is the evaluation of the sensitivity of the radiological consequences associated with the geological disposal of radioactive waste to the different elements in the performance assessment. Three types of geological host formations are considered: clay, granite and salt. The sensitivity studies that have been carried out can be partitioned into three categories according to the type of uncertainty taken into account: uncertainty in the model parameters, uncertainty in the conceptual models and uncertainty in the considered scenarios. Deterministic as well as stochastic calculational approaches have been applied for the sensitivity analyses. For the analysis of the sensitivity to parameter values, the reference technique, which has been applied in many evaluations, is stochastic and consists of a Monte Carlo simulation followed by a linear regression. For the analysis of conceptual model uncertainty, deterministic and stochastic approaches have been used. For the analysis of uncertainty in the considered scenarios, mainly deterministic approaches have been applied

  9. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  10. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2002-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  11. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  12. Perspectives on past and present waste disposal practices: a community-based participatory research project in three Saskatchewan first nations communities.

    Science.gov (United States)

    Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita

    2011-04-28

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities.

  13. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  14. The project for national disposal facility for low and intermediate level radioactive waste in Bulgaria

    International Nuclear Information System (INIS)

    Alexandrov, A.; Boyanov, S.; Christoskova, M.; Ivanov, A.

    2006-01-01

    The State Enterprise Radioactive Waste is the responsible organisation in Bulgaria for the radioactive waste management and, in particular, for the establishment of the national disposal facility (NDF) for low and intermediate level short-lived radioactive waste (LIL RAW SL). According to the national strategy for the safe management of spent fuel and radioactive waste the NDF should be commissioned in 2015. NDF will accept two main waste streams - for disposal and for storage if the waste is not disposable. The major part of disposable waste is generated by Kozloduy NPP. The disposal facility will be a near surface module type engineered facility. Consecutive erection of new modules will be available in order to increase the capacity of the facility. The corrective measures are previewed to be applied if needed - upgrading of engineered barriers and/or retrieval of the waste. The active control after the facility is closed should be not more than 300 years. The safety of the facility is supposed to be based on the passive measures based on defense in deep consisting of physical barriers and administrative measures. A multi barrier approach will be applied. Presently the NDF project is at the first stage of the facility life cycle - the site selection. The siting process itself consists of four stages - elaboration of a concept for waste disposal and site selection planning, data collection and region analyses, characterization of the preferred sites-candidates and site confirmation. Up till now the work on the first two stages of the siting process had been done by the SE RAW. Geological site investigations have been carried out for more than two decades all over the territory of the country. The results of the investigations have been summarized and analysed thoroughly. More than 40 potential sites have been considered, after the preselection 12 sites have been selected as favourable and among them 5 are pointed out as acceptable. The ultimate decision for a site

  15. The HAW project: demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1991-01-01

    This report is the so-called Synthesis report 1985-1989 of the international HAW project performed in the 800 m level of the ASSE salt mine in the Federal Republic of Germany. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste in geological salt-deposits. The HAW-project is carried out by the GSF-Institut fuer Tieflagerung (IFT) in cooperation with the French Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA); the Spanish Empresa Nacional de Residuos Radioactivos S.A (ENRESA) and the Netherlands Energy Research Foundation (ECN). During the years 1985 to 1989 the underground test field was excavated and after some delays in the licensing procedure, the emplacement of 30 vitrified highly radioactive canisters (containers) is now envisaged for early 1991. 32 refs; 76 figs., 11 tabs

  16. Long-term surveillance plan for the Lowman, Idaho, disposal site

    International Nuclear Information System (INIS)

    1993-09-01

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992)

  17. The UK contribution to the CEC PACOMA Project: far-field modelling of radioactive waste disposal in clay

    International Nuclear Information System (INIS)

    Winters, K.H.; Jackson, C.P.; Clark, C.M.

    1990-06-01

    This document describes a study of groundwater flow and radionuclide migration in the far field of a hypothetical repository located in the clay beneath Harwell Laboratory. The work forms part of the assessment of the radiological impact of disposal in a clay formation, carried out as the UK contribution to the CEC PACOMA project. (Author)

  18. Perspectives on past and Present Waste Disposal Practices: A community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    Directory of Open Access Journals (Sweden)

    Rebecca Zagozewski

    2011-01-01

    Full Text Available The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities.

  19. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  20. The feasibility of heat generating waste disposal into deep ocean sedimentary formations

    International Nuclear Information System (INIS)

    Murray, C.N.

    1986-01-01

    The paper briefly reviews the work undertaken to date by the Commission of European Communities ''Sub-Seabed Program'' in collaboration with national programmes of member countries. Special emphasis has been placed on the studies of the characteristics of deep ocean sediments to act as a barrier to the dispersion of radionuclides and the technical investigations carried out to demonstrate engineering feasibility of the option. (author)

  1. The International Stripa Project: Technology transfer from cooperation in scientific and technological research on nuclear waste disposal

    International Nuclear Information System (INIS)

    Levich, R.A.; Ferrigan, P.M.; Wilkey, P.L.

    1990-01-01

    The Nuclear Energy Agency of the organization for Economic Cooperation and Development (OECD/NEA) sponsors the International Stripa Project. The objectives of the Stripa Project are to develop techniques for characterizing sites located deep in rock formations that are potentially suitable for the geologic disposal of high-level radioactive wastes and to evaluate particular engineering design considerations that could enhance the long-term safety of a high-level radioactive waste repository in a geologic medium. The purpose of this paper is to briefly summarize the research conducted at Stripa and discuss the ways in which the technology developed for the Stripa Project has been and will be transfered to the United States Civilian Radioactive Waste Management Program's Yucca Mountain Project. 3 refs., 2 figs

  2. The international hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    The international co-operation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organizations from ten countries and two international organizations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarizes the results from the second phase of HYDROCOIN, Level 2, which has addressed the issue of validation by testing the capabilities of groundwater flow models to describe five field and laboratory experiments: . Thermal convection and conduction around a field heat transfer experiment in a quarry, . A laboratory experiment with thermal convection as a model for variable density flow, . A small groundwater flow system in fractured monzonitic gneiss, . Three-dimensional regional groundwater flow in low permeability rocks, and . Soil water redistribution near the surface at a field site. The five test cases cover various media of interest for final disposal such as low permeability saturated rock, unsaturated rock, and salt formations. They also represent a variety of spatial and temporal scales. From model simulations on the five test cases conclusions are drawn regarding the applicability of the models to the experimental and field situations and the usefulness of the available data bases. The results are evaluated with regard to the steps in an ideal validation process. The data bases showed certain limitations for validation purposes with respect to independent data sets for calibration and validation. In spite of this, the HYDROCOIN Level 2 efforts have significantly contributed to an increased confidence in the applicability of groundwater flow models to different situations relevant to final disposal. Furthermore, the work has given much insight into the validation process and specific recommendations for further validation efforts are made

  3. Long-term surveillance plan for the Gunnison, Colorado disposal site

    International Nuclear Information System (INIS)

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  4. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  5. Long-term surveillance plan for the Gunnison, Colorado disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  6. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  7. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  8. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  9. Environmental monitoring annual report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Craig, P.M.

    1989-01-01

    The Fiscal Year 1988 Annual Report is the third in a series of semi-annual Tumulus Development Disposal Project data summary reports. The reporting schedule has been modified to correspond to the fiscal years and the subcontractor contract periods. This data summary spans the time from start of operations in June 1987 through the end of September 1988. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. This data is being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment for the TDDP. Approximately one year of pre-operational data were collected prior to operations beginning on April 11, 1988. Comparisons are made between pre- and post-operational data. No significant environmental impacts have been found since operations have begun. 10 refs., 21 figs., 22 tabs

  10. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  11. The HAW-project: Demonstration facility for the disposal of high-level waste in salt

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.A.

    1990-04-01

    The HAW-project plants the testwise emplacement of 30 vitrified highly radioactive canisters containing Cs-137 and Sr-90 at the 800 m level of the Asse salt mine for a testing period of approximately five years. The major objective of this project is the pilot testing and demonstration of safe methods for the final disposal of high-level radioactive waste (HAW) in geological salt formations. During the years 1985 to 1989 the underground test field was excavated, the measuring equipment installed, and two preceedings inactive electrical tests taken into operation. Furthermore, the components of a system for transportation and emplacement of highly radioactive canisters was fabricated, installed, and preliminarily tested. After some delays in the licensing procedure the emplacement of the 30 radioactive canisters is now envisaged for early 1991. For handling of the radioactive canisters and their emplacement into the boreholes a system consisting of a transport cask, a transport vehicle, a disposal machine, and of a borehole slider has been developed and will be tested. The actual scientific investigation programme is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This programme includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. (orig./HP)

  12. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  13. Session 1984-85. Radioactive waste. Minutes of evidence, Monday 20 May 1985. Greenpeace

    International Nuclear Information System (INIS)

    1985-01-01

    The Environment Select Committee of the House of Commons received a memorandum from Greenpeace on radioactive waste, including the following aspects: UK nuclear power programme; Government policies; origins and inventories of waste; fuel reprocessing plants; waste storage, processing and disposal; classification of active wastes; transport; functions of some organisations concerned with radioactive wastes in UK; relevant international law; ICRP safety standards; London Dumping Convention; dispersal of radioactive wastes from Windscale - radiological impacts; discussion of particular proposals for disposal sites; sea dumping; deep sub-seabed disposal. Representatives of Greenpeace were examined on the subject of the memorandum and the Minutes of Evidence are recorded. (U.K.)

  14. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  15. Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2

    International Nuclear Information System (INIS)

    1997-02-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance

  16. HAW project. Demonstrative disposal of high-level radioactive wastes in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Duijves, K.; Stippler, R.

    1988-01-01

    Since 1968 the GSF has been carrying out research and development programs for the final disposal of high-level radioactive waste (HAW) in salt formations. The heat producing waste has been simulated so far by means of electrical heaters and also cobalt-60-sources. In order to improve the final concept for HAW disposal in salt formations the complete technical system of an underground repository is to be tested in an one-to-one scale test facility. To satisfy the test objectives thirty high radioactive canisters containing the radionuclides Cs-137 and Sr-90 will be emplaced in six boreholes located in two test galleries at the 800 m-level in the Asse salt mine. The duration of testing will be approximately five years. For the handling of the radioactive canisters and their emplacement into the boreholes a system consisting of transportation casks, transportation vehicle, disposal machine, and borehole slider will be developed and tested. The actual scientific investigation program is based on the estimation and observation of the interaction between the radioactive canisters and the rock salt. This program includes measurement of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. Also the thermally induced stress and deformation fields in the surrounding rock mass will be investigated carefully. The project is funded by the BMFT and the CEC and carrier out in close co-operation with the Netherlands Energy Research Foundation (ECN)

  17. HLW disposal in Germany - R and D achievements and outlook

    International Nuclear Information System (INIS)

    Steininger, W.

    2006-01-01

    The paper gives a brief overview of the status of R and D on HLW disposal. Shortly addressed is the current nuclear policy. After describing the responsibilities regarding R and D for disposing of heat-generating high-level (HLW) waste (vitrified waste and spent fuel), selected projects are mentioned to illustrate the state of knowledge in disposing of waste in rock salt. Participation in international projects and programs is described to illustrate the value for the German concepts and ideas for HLW disposal in different rock types. Finally, a condensed outlook on future activities is given. (author)

  18. Application of biosphere models in the Biomosa project: a comparative assessment of five European radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Kowe, R.; Mobbs, S.; Proehl, G.; Bergstrom, U.; Kanyar, B.; Olyslaegers, G.; Zeevaert, T.; Simon, I.

    2004-01-01

    The BIOMOSA (Biosphere Models for Safety Assessment of Radioactive Waste Disposal) project is a part of the EC fifth framework research programme. The main goal of this project is the improvement of the scientific basis for the application of biosphere models in the framework of long-term safety studies of radioactive waste disposal facilities. Furthermore, the outcome of the project will provide operators and regulatory bodies with guidelines for performance assessments of repository systems. The study focuses on the development and application of site-specific models and a generic biosphere tool BIOGEM (Biosphere Generic Model), using the experience from the national programmes and the IAEA BIOMASS reference biosphere methodology. The models were applied to 5 typical locations in the EU, resulting in estimates of the annual individual doses to the critical groups and the ranking of the importance of the pathways for each of the sites. The results of the site-specific and generic models were then compared. In all cases the doses calculated by the generic model were less than the doses obtained from the site-specific models. Uncertainty in the results was estimated by means of stochastic calculations which allow a comparison of the overall model uncertainty with the variability across the different sites considered. (author)

  19. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP

  20. SLEUTH (Strategies and Lessons to Eliminate Unused Toxicants: Help!). Educational Activities on the Disposal of Household Hazardous Waste. Household Hazardous Waste Disposal Project. Metro Toxicant Program Report No. 1D.

    Science.gov (United States)

    Dyckman, Claire; And Others

    This teaching unit is part of the final report of the Household Hazardous Waste Disposal Project. It consists of activities presented in an introduction and three sections. The introduction contains an activity for students in grades 4-12 which defines terms and concepts for understanding household hazardous wastes. Section I provides activities…

  1. International Socio-Technical Challenges for Geological Disposal (InSOTEC): Project Aims and Preliminary Results - 12236

    Energy Technology Data Exchange (ETDEWEB)

    Bergmans, Anne; Schroeder, Jantine [University of Antwerp, Faculty of Political and Social Sciences, 2000 Antwerp (Belgium); Simmons, Peter [University of East Anglia, School of Environmental Sciences, NR4 7TJ Norwich (United Kingdom); Barthe, Yannick; Meyer, Morgan [CNRS, Ecole des Mines, 75272 Paris (France); Sundqvist, Goeran [Universitetet i Oslo, Centre for Studies of Technology, Innovation and Culture, 0851 Oslo (Norway); Martell, Merixell [MERIENCE Strategic Thinking, 08734 Olerdola (Spain); Kallenbach-Herbert, Beate [Oeko Institut, 64295 Darmstadt (Germany)

    2012-07-01

    InSOTEC is a social sciences research project which aims to generate a better understanding of the complex interplay between the technical and the social in radioactive waste management and, in particular, in the design and implementation of geological disposal. It currently investigates and analyses the most striking socio-technical challenges to implementing geological disposal of radioactive waste in 14 national programs. A focus is put on situations and issues where the relationship between the technical and social components is still unstable, ambiguous and controversial, and where negotiations are taking place in terms of problem definitions and preferred solutions. Such negotiations can vary from relatively minor contestation, over mild commotion, to strong and open conflicts. Concrete examples of socio-technical challenges are: the question of siting, introducing the notion of reversibility / retrievability into the concept of geological disposal, or monitoring for confidence building. In a second stage the InSOTEC partners aim to develop a fine-grained understanding of how the technical and the social influence, shape, build upon each other in the case of radioactive waste management and the design and implementation of geological disposal. How are socio-technical combinations in this field translated and materialized into the solutions finally adopted? With what kinds of tools and instruments are they being integrated? Complementary to providing better theoretical insight into these socio-technical challenges/combinations, InSOTEC aims to provide concrete suggestions on how to address these within national and international contexts. To this end, InSOTEC will deliver insights into how mechanisms for interaction between the technical community and a broad range of socio-political actors could be developed. (authors)

  2. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  3. The diversity of waste disposal planning in Switzerland

    International Nuclear Information System (INIS)

    McCombie, C.

    1989-01-01

    In this overview of radioactive waste disposal planning in Switzerland, emphasis is placed upon describing the diversity of the planning and explaining the strategic thinking which has resulted in this diversity. Although Switzerland is a small country and has only a modest nuclear programme in absolute terms, planning and preparation for final disposal projects has been progressing for the last 10 or more years on a very broad front. The reasons for this breadth of approach are partly technical and partly determined by political and public pressures. Following a summary of the requirements for disposal and of the relevant boundary conditions, the resulting concepts are described and the controversial issue of repository siting is discussed. The current status of projects for disposal of low and intermediate-level wastes (L/ILW) and of high-level wastes (HLW) is noted; we conclude with some remarks on the advantages and disadvantages from the side of the organization responsible for implementation of repository projects of proceeding on such a broad technical front. (aughor). 2 figs.; 1 tab

  4. Environmental monitoring six month report for the Tumulus Disposal Demonstration Project

    International Nuclear Information System (INIS)

    Yager, R.E.; Furnari, J.A.; Craig, P.M.

    1989-05-01

    The Fiscal Year 1989 Six Month Report is the fourth in a series of semi-annual Tumulus Disposal Demonstration Project (TDDP) data summary reports. This data summary spans the time from start of operations in June 1987 through the end of March 1989 with particular emphasis on the last six months: October 1988 through March 1989. The environmental data collected include run-off water quality and quantity, groundwater quality and levels, soil sampling and hydrometeorological data. These data are being used and analyzed here to demonstrate the environmental performance objectives for the TDDP as part of the overall performance assessment. Comparisons are made between pre- and post-operational data and data collected during size month period ending March 31, 1989. No significant environmental impacts have been found since operations have begun. 13 refs., 28 figs., 12 tabs

  5. 40 CFR 35.6345 - Equipment disposal options.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Equipment disposal options. 35.6345 Section 35.6345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL... options. The following disposal options are available: (a) Use the equipment on another CERCLA project and...

  6. The international intraval project to study validation of geosphere transport models for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    INTRAVAL is an international project concerned with the use of mathematical models for predicting the potential transport of radioactive substances in the geosphere. Such models are used to help assess the longterm safety of radioactive waste disposal systems. The INTRAVAL project was established to evaluate the validity of these models. Results from a set of selected laboratory and field experiments as well as studies of occurrences of radioactive substances in nature (natural analogues) are compared in a systematic way with model predictions. Discrepancies between observations and predictions are discussed and analyzed

  7. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  8. Major results and lessons learned for performance assessments of spent fuel geological disposal: the SPA project

    International Nuclear Information System (INIS)

    Baudoin, P.; Serres, C.; Certes, C.; Gay, D.

    2001-01-01

    This paper presents a summary of the results obtained in the framework of the SPA (spent fuel disposal performance assessment) project. The project was undertaken by ENRESA, E; GRS, D; IPSN, F; NRG, NL; SCK.CEN, B and VTT, FIN between May 1996 and April 1999. Devoted to the study of spent fuel disposal in various host rock formations (clay, crystalline rocks and salt formation), it notably had the objective to evaluate the long-term performance of different repository systems and to identify the most influential elements. The variety of concepts, sites and scenarios considered in the framework of this project provides a wide range of information from which some general conclusions can be drawn. Focusing on the work done in the case of granite host rock formations, this paper describes the various approaches adopted and states the main sources of differences. It particularly stresses the differences related to the geosphere and biosphere modelling. For the geosphere modelling, ENRESA, GRS and VTT use one dimensional discrete approaches to model the migration of contaminants through the geosphere taking into account for matrix diffusion, whereas IPSN uses a three dimensional continuum approach based on a single porosity model. The comparison of the biosphere conversion factors shows the high influence on the calculated radionuclide dose contributions that can results from biosphere modelling assumptions. It notably points out the differences existing between a simplified ''water drinking'' approach as implemented by VTT and a more classical one in which a wider range of exposure pathways are taken into account. (orig.)

  9. Safety cases for the co-ordinated research project on improvement of safety assessment methodologies for near surface radioactive waste disposal facilities (ISAM)

    International Nuclear Information System (INIS)

    Kozak, M.W.; Torres-Vidal, C.; Kelly, E.; Guskov, A.; Blerk, J. van

    2002-01-01

    A Co-ordinated Research Project (CRP) has recently been completed on the Improvement of Safety Assessment Methodologies for Near-Surface Radioactive Waste Disposal Facilities (ISAM). A major aspect of the project was the use of safety cases for the practical application of safety assessment. An overview of the ISAM safety cases is given in this paper. (author)

  10. Safety cases for radioactive waste disposal facilities: guidance on confidence building and regulatory review IAEA-ASAM co-ordinated research project

    International Nuclear Information System (INIS)

    Ben Belfadhel, M.; Bennett, D.G.; Metcalf, P.; Nys, V.; Goldammer, W.

    2008-01-01

    The IAEA has been conducting two co-ordinated research programmes (CRPs) projects to develop and apply improved safety assessment methodologies for near-surface radioactive waste disposal facilities. The more recent of these projects, ASAM (application of safety assessment methodologies), included a Regulatory Review Working Group (RRWG) which has been working to develop guidance on how to gain confidence in safety assessments and safety cases, and on how to conduct regulatory reviews of safety assessments. This paper provides an overview of the ASAM project, focusing on the safety case and regulatory review. (authors)

  11. 7 CFR 3015.168 - Disposal of equipment.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Property § 3015.168 Disposal of equipment. When original or replacement equipment is no longer to be used in projects or programs currently or... 7 Agriculture 15 2010-01-01 2010-01-01 false Disposal of equipment. 3015.168 Section 3015.168...

  12. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  13. The HAW-Project. Test disposal of highly radioactive radiation sources in the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Cuevas, C. de las; Donker, H.; Feddersen, H.K.; Garcia-Celma, A.; Gies, H.; Goreychi, M.; Graefe, V.; Heijdra, J.; Hente, B.; Jockwer, N.; LeMeur, R.; Moenig, J.; Mueller, K.; Prij, J.; Regulla, D.; Smailos, E.; Staupendahl, G.; Till, E.; Zankl, M.

    1995-01-01

    In order to improve the final concept for the disposal of high-level radioactive waste (HAW) in boreholes drilled into salt formation plans were developed a couple of years ago for a full scale testing of the complete technical system of an underground repository. To satisfy the test objectives, thirty highly radioactive radiation sources were planned to be emplaced in six boreholes located in two test galleries at the 800-m-level in the Asse salt mine. A duration of testing of approximately five years was envisaged. Because of licensing uncertainties the German Federal Government decided on December 3rd, 1992 to stop all activities for the preparation of the test disposal immediately. In the course of the preparation of the test disposal, however, a system, necessary for handling of the radiation sources was developed and installed in the Asse salt mine and two non-radioactive reference tests with electrical heaters were started in November 1988. These tests served for the investigation of thermal effects in comparison to the planned radioactive tests. An accompanying scientific investigation programme performed in situ and in the laboratory comprises the estimation and observation of the thermal, radiation-induced, and mechanical interaction between the rock salt and the electrical heaters and the radiation sources, respectively. The laboratory investigations are carried out at Braunschweig (FRG), Petten (NL), Saclay (F) and Barcelona (E). As a consequence of the premature termination of the project the working programme was revised. The new programme agreed to by the project partners included a controlled shutdown of the heater tests in 1993 and a continuation of the laboratory activities until the end of 1994. (orig.)

  14. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  15. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    International Nuclear Information System (INIS)

    1996-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP

  16. Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf

    Science.gov (United States)

    Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo

    2016-05-01

    Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.

  17. Disposal Site Information Management System

    International Nuclear Information System (INIS)

    Larson, R.A.; Jouse, C.A.; Esparza, V.

    1986-01-01

    An information management system for low-level waste shipped for disposal has been developed for the Nuclear Regulatory Commission (NRC). The Disposal Site Information Management System (DSIMS) was developed to provide a user friendly computerized system, accessible through NRC on a nationwide network, for persons needing information to facilitate management decisions. This system has been developed on NOMAD VP/CSS, and the data obtained from the operators of commercial disposal sites are transferred to DSIMS semiannually. Capabilities are provided in DSIMS to allow the user to select and sort data for use in analysis and reporting low-level waste. The system also provides means for describing sources and quantities of low-level waste exceeding the limits of NRC 10 CFR Part 61 Class C. Information contained in DSIMS is intended to aid in future waste projections and economic analysis for new disposal sites

  18. Performance of engineered barrier materials in near surface disposal facilities for radioactive waste. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    2001-11-01

    The primary objectives of the CRP were to: promote the sharing of experiences of the Member States in their application of engineered barrier materials for near surface disposal facilities; help enhance their use of engineered barriers by improving techniques and methods for selecting, planning and testing performance of various types of barrier materials for near surface disposal facilities. The objective of this publication is to provide and overview of technical issues related to the engineered barrier systems and a summary of the major findings of each individual research project that was carried out within the framework of the CRP. This publication deals with a general overview of engineered barriers in near surface disposal facilities, key technical information obtained within the CRP and overall conclusions and recommendations for future research and development activities. Appendices presenting individual research accomplishments are also provided. Each of the 13 appendices was indexed separately

  19. The Remote Handled Immobilization Low-Activity Waste Disposal Facility Environmental Permits and Approval Plan

    International Nuclear Information System (INIS)

    DEFFENBAUGH, M.L.

    2000-01-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  20. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    Energy Technology Data Exchange (ETDEWEB)

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement

  1. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  2. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    International Nuclear Information System (INIS)

    1996-03-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program's primary activity is site inspections to identify threats to disposal cell integrity

  3. Waste disposal into the ground

    Energy Technology Data Exchange (ETDEWEB)

    Mawson, C A

    1955-07-01

    The establishment of an atomic energy project is soon followed by the production of a variety of radioactive wastes which must be disposed of safely, quickly and cheaply. Experience has shown that much more thought has been devoted to the design of plant and laboratories than to the apparently dull problem of what to do with the wastes, but the nature of the wastes which will arise from nuclear power production calls for a change in this situation. We shall not be concerned here with power pile wastes, but disposal problems which have occurred in operation of experimental reactors have been serious enough to show that waste disposal should be considered during the early planning stages. (author)

  4. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    1991-06-01

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  5. Public Perspectives in the Japanese HLW Disposal Program

    International Nuclear Information System (INIS)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki

    2006-01-01

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue

  6. Public Perspectives in the Japanese HLW Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Inatsugu, Shigefumi; Takeuchi, Mitsuo; Kato, Toshiaki [Nuclear Waste Management Organization of Japan (NUNIO), Tokyo (Japan)

    2006-09-15

    Following legislation entitled the 'Specified Radioactive Waste Final Disposal Act', the Nuclear Waste Management Organization of Japan (NUMO) was established in October 2000 as the implementing organization for geological disposal of vitrified high-level waste (HLW). Implementation of NUMO's disposal project will be based on three principles: 1) respecting public initiative and opinion, 2) adopting a stepwise approach and 3) ensuring transparency in information disclosure. NUMO has decided to adopt an open solicitation approach to finding volunteer municipalities for Preliminary Investigation Areas (PIAs). The official announcement of the start of the open solicitation program was made in 2002. Although no official applications had been received from volunteer municipalities by the end of 2005, NUMO has been continuing to carry out various activities aimed specifically at public communication and encouraging dialogue about the deep geological disposal project This paper summarizes the results obtained and lessons learned so far and identifies the issues that NUMO must tackle immediately in the areas of communication and dialogue.

  7. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  8. UK surplus source disposal programme - 16097

    International Nuclear Information System (INIS)

    John, Gordon H.; Reeves, Nigel; Nisbet, Amy C.; Garnett, Andrew; Williams, Clive R.

    2009-01-01

    The UK Surplus Source Disposal Programme (SSDP), managed by the Environment Agency, was designed to remove redundant radioactive sources from the public domain. The UK Government Department for Environment, Food and Rural Affairs (Defra) was concerned that disused sources were being retained by hospitals, universities and businesses, posing a risk to public health and the environment. AMEC provided a range of technical and administrative services to support the SSDP. A questionnaire was issued to registered source holders and the submitted returns compiled to assess the scale of the project. A member of AMEC staff was seconded to the Environment Agency to provide technical support and liaise directly with source holders during funding applications, which would cover disposal costs. Funding for disposal of different sources was partially based on a sliding scale of risk as determined by the IAEA hazard categorisation system. This funding was also sector dependent. The SSDP was subsequently expanded to include the disposal of luminised aircraft instruments from aviation museums across the UK. These museums often hold significant radiological inventories, with many items being unused and in a poor state of repair. These instruments were fully characterised on site by assessing surface dose rate, dimensions, source integrity and potential contamination issues. Calculations using the Microshield computer code allowed gamma radiation measurements to be converted into total activity estimates for each source. More than 11,000 sources were disposed of under the programme from across the medical, industrial, museum and academic sectors. The total activity disposed of was more than 8.5 E+14 Bq, and the project was delivered under budget. (authors)

  9. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  10. Research on the disposal of radioactive wastes; Forschung zur Entsorgung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-02-15

    The report covers the following issues: Challenges of the nuclear disposal; actual state of knowledge: research and development on final disposal in salt rocks, clays, granite, general topics; research and development strategy: goals of the governmental project funding, strategic research objectives, research and development needs; research and development projects.

  11. Design concept of a knowledge management system of geological disposal technology

    International Nuclear Information System (INIS)

    Osawa, Hideaki; Umeki, Hiroyuki; Makino, Hitoshi; Takase, H.; Mckinley, I.G.; Okubo, H.

    2008-01-01

    JAEA is developing a 'Knowledge Management System' for vast quantities of data or information arising from various sources relevant to the geological disposal programs in Japan. The geological disposal project is taking a stepwise approach to selecting a disposal site and, to the approval and licensing, construction, operation and closure of a repository. It is a long-term project required approximately 100 years. In this paper, in order to structuralize, as knowledge, the results of R and D on geological disposal technologies of high-level radioactive wastes, the knowledge management approach was first reviewed. The paper is followed by descriptions of the technical characteristics, procedure to carry out a plan, and education of geological disposal technologies such as knowledge management etc. The structuring of the knowledge base and the knowledge management system including the construction of safety case were described. (S. Ohno)

  12. The HILW-LL (high- and intermediate-level waste, long-lived) disposal project: working toward building the Cigeo Industrial Centre for Geological Disposal; Le projet HA-MAVL: vers la realisation du centre industriel de stockage geologique Cigeo

    Energy Technology Data Exchange (ETDEWEB)

    Labalette, Th. [Agence Nationale pour la Gestion des Dechets Radioactifs - ANDRA, Dir. des Projets, 92 - Chatenay Malabry (France)

    2011-02-15

    The French Act of 28 June 2006 identifies reversible disposal in deep geological facilities as the benchmark solution for long-term management of high-level waste (HLW) and for intermediate-level long-lived waste (ILW-LL). The Act tasks ANDRA (national agency for the management of radioactive wastes) with the pursuit of studies and research on the choice of a site and the design of the repository, with a view to examining the licence application in 2015 and, provided that the licence is granted, to make the facility operational by 2025. At the end of 2009, ANDRA submitted to the Government its proposals regarding the site and the design of the Industrial Centre for Geological Disposal, known as CIGEO. With the definition of a possible area for the construction of underground disposal facilities, one of the key stages in the project has been achieved. The choice of a surface site will be validated following the public consultation scheduled for the end of 2012. The project is now on the point of entering the definition stage (preliminary design). CIGEO will be a nuclear facility unlike any other. It will be built and operated for a period of over 100 years. For it to be successful, the project must meet certain requirements related to its integration in the local area, industrial planning, safety and reversibility, while also controlling costs. Reversibility is a very important concept that will be defined by law. It is ANDRA's responsibility to ensure that a reasonable balance is found between these different concerns. (author)

  13. The final disposal of radioactive wastes as social, political and scientific project - an introduction

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2015-01-01

    The nuclear power production that was productive for two generations produces radioactive wastes that will be a hazardous and financial burden for many future generations. Science, politics, industry and the society are responsible to find a successful solution for the project of final disposal of radioactive wastes. With the fast development of renewable energies with the perspectives of sustainability and other advantages nuclear power will not have a remarkable future. The search for a final repository site is a tremendous governmental, economic and public challenge but can also be seen as a social chance. Democracy could be enforced by this process, public commitment, transparency, co-determination, confidence in political processes are indispensible premises.

  14. Estimating the cost of disposal for Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Ates, Y.

    1996-07-01

    Atomic Energy of Canada Ltd (AECL) prepared an Environmental Impact Statement and nine supporting Primary Reference Documents on the concept for disposal of Canada's nuclear fuel waste. This report summarizes the basis of the cost estimate which is provided in the primary reference document on engineering for a disposal facility. The scope of the cost estimate is explained by describing the key features of the disposal facility design, by noting the major assumptions made in preparing the estimates, and by listing the included and excluded cost components. An activity-based project planning and control method is explained whereby the project schedule, costs, and personnel requirements are interlinked; forming an integrated perspective on the total project life cycle. The summary and distribution of costs in each project stage by major facility or activity are presented. The results of studies which reviewed the overall cost estimate are also described. These studies indicate that, within the scope, the estimate is reasonable and compares well with similar international studies. (author)

  15. Disposal of high active nuclear fuel waste. A critical review of the Nuclear Fuel Safety (KBS) project on final disposal of vitrified high active nuclear fuel waste

    International Nuclear Information System (INIS)

    1978-01-01

    This report has been prepared by the Swedish Energy Commission's working group for Safety and Environment. The main contributions are by profs. Jan Rydberg of Chalmers University of Technology, Sweden and John W Winchester of Florida State University, USA. The aim of the report is to discuss weather the KBS-project fullfills the Swedish ''Stipulations Act'', that a absolutely safe way of disposing of the nuclear waste must have been demonstrated before any new reactors are allowed to be taken inot use. Rydberg and Winchester do not arrive at similar conclusions. (L.E.)

  16. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1997-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03. 18 refs., 6 figs., 1 tab

  17. Organizational Challenge of Posiva’s Final Disposal Programme: From an R&D Organization to a Project Organization, and Further Towards an Operational Organization

    International Nuclear Information System (INIS)

    Mokka, J.

    2016-01-01

    Full text: Posiva Oy is an expert organization established in 1995 and responsible for the final disposal of the spent nuclear fuel of its owners. Posiva currently employs around 100 people and has a turnover of some 63 million (2015). The company headquarters are located in Olkiluoto in the municipality of Eurajoki, Finland. Posiva is owned by two Finnish NPP operators Teollisuuden Voima Oyj (60%) (TVO) and Fortum Power & Heat Oy (40%), both of which are responsible for their costs of nuclear waste management. The Finnish final disposal programme has a long history. When NPP unit Olkiluoto 1 renewed its operating licence for the first time in 1983, TVO presented a programme showing final disposal to commence in the 2020s. In the 1980s and 1990s, the programme concentrated on concept development and site selection activities. After 2003, when Posiva received the decision in principle from the Finnish Government, a new phase began in the programme. Since 2004, Posiva Oy has constructed an underground rock characterization facility on the repository site in Olkiluoto, in western Finland. This facility, called ONKALO, has provided an opportunity to carry out further site investigations, develop construction techniques, and test and demonstrate the engineered barrier system in an actual repository environment. As a result of these investigations and development efforts, the application for a licence to construct the encapsulation plant and the geological repository was submitted in 2012. The Radiation and Nuclear Safety Authority in Finland (STUK) first gave a positive review on the safety of the facility, and consequently the Finnish Government granted the construction licence in November 2015. After receiving the construction licence as the first disposal programme in the world, the next phase in the program will be the construction project of the final disposal facilities required for the disposal operations. A significant first-of-a-kind construction project like

  18. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  19. Study on quality assurance for high-level radioactive waste disposal project (2). Quality assurance system for the site characterization phase in the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Takada, Susumu

    2006-01-01

    The objective of this report is to assist related organizations in the development of quality assurance systems for a high-level radioactive waste disposal system. This report presents detail information with which related organizations can begin the development of quality assurance systems at an initial phase of repository development for a high-level radioactive waste disposal program, including data qualification, model validation, systems and facilities for quality assurance (e.g., technical data management system, sample management facility, etc.), and QA program applicability (items and activities). These descriptions are based on information in QA program for the Yucca Mountain Project (YMP), such as the U.S. Department of Energy (DOE) Quality Assurance Requirements and Description (QARD), DOE/RW-0333P, quality implementing procedures, and reports implemented by the procedures. Additionally, this report includes some brief recommendations for developing of quality assurance systems, such as establishment of quality assurance requirements, measures for establishment of QA system. (author)

  20. Recent progress of the waste processing and disposal projects within the Underground Storage Tank-Integrated Demonstration

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Cruse, J.M.

    1994-01-01

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Remediation has created the Office of Technology Development (OTD) to provide new and improved remediation technologies for the 1 x 10 8 gal of radioactive waste in the underground storage tanks (USTs) at five DOE sites. The OTD established and the Underground Storage Tank-Integrated Demonstration (UST-ID) to perform demonstrations, tests, and evaluations on these new technologies before these processes are transferred to the tank sites for use in full-scale remediation of the USTs. The UST-ID projects are performed by the Characterization and Waste Retrieval Program or the Waste Processing and Disposal Program (WPDP). During FY 1994, the WPDP is funding 12 projects in the areas of supernate processing, sludge processing, nitrate destruction, and final waste forms. The supernate projects are primarily concerned with cesium removal. A mobile evaporator and concentrator for cesium-free supernate is also being demonstrated. The sludge projects are emphasizing sludge dissolution and the evaluation of the TRUEX and diamide solvent extraction processes for transuranic waste streams. One WPDP project is examining both supernate and sludge processes in an effort to develop a system-level plan for handling all UST waste. The other WPDP studies are concerned with nitrate and organic destruction as well as subsequent waste forms. The current status of these WPDP projects is presented

  1. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1998-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer

  2. When is a medicine unwanted, how is it disposed, and how might safe disposal be promoted? Insights from the Australian population.

    Science.gov (United States)

    Bettington, Emilie; Spinks, Jean; Kelly, Fiona; Gallardo-Godoy, Alejandra; Nghiem, Son; Wheeler, Amanda J

    2017-12-19

    Objective The aim of the present study was to explore disposal practices of unwanted medicines in a representative sample of Australian adults, compare this with previous household waste surveys and explore awareness of the National Return and Disposal of Unwanted Medicines (RUM) Project. Methods A 10-min online survey was developed, piloted and conducted with an existing research panel of adult individuals. Survey questions recorded demographics, the presence of unwanted medicines in the home, medicine disposal practices and concerns about unwanted medicines. Descriptive statistical analyses and rank-ordered logit regression were conducted. Results Sixty per cent of 4302 respondents reported having unwanted medicines in their household. Medicines were primarily kept just in case they were needed again and one-third of these medicines were expired. Two-thirds of respondents disposed of medicines with the household garbage and approximately one-quarter poured medicines down the drain. Only 17.6% of respondents had heard of the RUM Project, although, once informed, 91.7% stated that they would use it. Respondents ranked the risk of unintended ingestion as the most important public health message for future social marketing campaigns. Conclusions Respondents were largely unaware of the RUM Project, yet were willing to use it once informed. Limited awareness could lead to environmental or public health risks, and targeted information campaigns are needed. What is known about the topic? There is a growing international evidence base on how people dispose of unwanted medicines and the negative consequences, particularly the environmental effects of inappropriate disposal. Although insight into variation in disposal methods is increasing, knowledge of how people perceive risks and awareness of inappropriate disposal methods is more limited. What does this paper add? This study provides evidence of inappropriate medicines disposal and potential stockpiling of medicines in

  3. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  4. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    1999-11-01

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  5. Evaluation of Dredged Material Proposed for Ocean Disposal from Federal Projects in New York and New Jersey and the Military Ocean Terminal (MOTBY)

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, E.S.; Antrim, L.D.; Pinza, M.R.; Gardiner, W.W.; Kohn, N.P.; Gruendell, B.D.; Mayhew, H.L.; Word, J.Q.; Rosman, L.B. [Battelle Marine Sciences Laboratory, Sequim, Washington (United States)

    1996-08-01

    The U.S. Army Corps of Engineers (USACE) is authorized by Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972 (MPRSA), Public Law 92-532, and by the Clean Water Act of 1972 (CWA) and Amendments of 1977 to permit, evaluate, and regulate the disposal of dredged material in ocean waters to minimize adverse environmental effects. Compliance with the regulations of the MPRSA calls for physical and biological testing of sediment proposed for dredging prior to its disposal in ocean waters. The testing required by the MPRSA criteria is conducted under a testing manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the `Green Book.` Testing protocols in the Green Book include bulk sediment analysis, grain size analysis, elutriate testing, and biological testing. The biological testing includes bioassays for acute toxicity as well as analysis to determine bioaccumulation of certain contaminants by marine organisms. The objective of the USACE-NYD Federal Projects Program was to evaluate sediment proposed for dredging and unconfined ocean disposal at the Mud Dump Site. The results of analytical measurements and bioassays performed on the test sediments were compared with analyses of sediment from the Mud Dump Reference Site to determine whether the test sediments were acutely toxic to marine organisms or resulted in statistically significantly greater bioaccumulation of contaminants in marine organisms, relative to the reference sediment. Testing for the federal project areas was performed according to the requirements.

  6. The waste bin: nuclear waste dumping and storage in the Pacific

    International Nuclear Information System (INIS)

    Branch, J.B.

    1984-01-01

    Relatively small amounts of nuclear waste have been stored on Pacific islands and dumped into the Pacific Ocean since 1945. Governments of Pacific countries possessing nuclear power plants are presently seeking permanent waste storage and disposal solutions at Pacific sites including subseabed emplacement of high-level nuclear wastes and ocean dumping of low-level wastes. This article examines these plans and the response of Pacific islanders in their development of policies and international strategies to ban the proposed dumping on a regional basis. Island governments are preparing for a Regional Convention during which a treaty concerned with radioactive waste storage and disposal will be signed. (Author)

  7. Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1993-12-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office

  8. Strategy for future seabed investigations

    International Nuclear Information System (INIS)

    Richards, A.F.; Murray, C.N.

    1989-01-01

    The status of seabed disposal studies and possible strategies for future development are reviewed. Background information for strategy development includes presentation of selected recommendations for future studies identified by the NEA/OECD Seabed Working Group, the Engineering Studies Task Group of the Seabed Working Group and the Subseabed Consortium. Inferences from these recommendations, and how sound scientifically based research, significant political perception and technological proof of concept may be related to strategies are considered as a prelude to strategy design. A proposed European strategy, complementary to the 1988 Subseabed Consortium strategy developed in the US, is to proceed to the technological proof of concept by emplacing one or more full-sized waste canisters containing non-radioactive, simulated heat-producing waste by a chosen deployment system. The latter could include the drilled, the penetrator or the pushed-in option. Emplaced canisters would be monitored for an extended period of time, and eventually retrieved for examination. International co-operation and co-ordination of all aspects is recommended. (author)

  9. Session II-A. Site characterization

    International Nuclear Information System (INIS)

    McIntosh, W.

    1981-01-01

    Section II-A on Site Characterization consists of the following papers which describe the progress made during the past fiscal year toward identifying sites for high-level radioactive waste repositories in deep geologic formations: (1) progress in expanded studies for repository sites; (2) evaluation of geologic and hydrologic characteristics in the Basin and Range Province relative to high-level nuclear waste disposal; (3) siting progress: Permian region; (4) Paradox Basin site exploration: a progress report; (5) progress toward recommending a salt site for an exploratory shaft; (6) status of geologic investigations for nuclear waste disposal at the Nevada Test Site; (7) geohydrologic investigation of the Hanford Site, Washington: basalt waste isolation project. Highlights include: expanding studies in crystalline rocks, both in the Appalachian and Lake Superior regions; laying the ground work with the states in the Basin and Range Province to kick off a joint USGS-state province study; narrowing areas of the Permian and Paradox bedded salt regions to a few promising locations; issuing a Gulf Coast Salt Dome Evaluation report (ONWI-109) for public review and comment; narrowing the Nevada Test Site area and Hanford Site area to locations for detailed site investigations and exploratory shafts; progress in developing the subseabed and space disposals alternatives

  10. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  11. The International Intraval project: to study validation of geosphere transport models for performance assessment of nuclear waste disposal. Phase 1, summary report

    International Nuclear Information System (INIS)

    1993-12-01

    Intraval is an international project that addresses the validation of models of transport of radionuclides through groundwater in the geosphere. Such models are used in assessment of the long-term safety of nuclear waste disposal systems. The present report summarises the results for the test cases and presents some additional remarks

  12. The international hydrocoin project - Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    1991-01-01

    The international cooperation project HYDROCOIN for studying groundwater flow modelling in the context of radioactive waste disposal was initiated in 1984. Thirteen organisations from ten countries and two international organisations have participated in the project which has been managed by the Swedish Nuclear Power Inspectorate, SKI. This report summarises the results from the third phase of HYDROCOIN, Level 3, which has addressed the issues of uncertainty and sensitivity analysis of groundwater flow problems and how uncertainties affect the modelling results. Seven test cases were selected for the project, representing a variety of flow situations in different media, as well as variety of temporal and spatial scales. These test cases were tackled by the participating organisations (Project Teams) using a number of different codes. An overview of the methodologies used in uncertainty and sensitivity analysis is given. Results from the various Teams attempting the Test Cases are presented and conclusions are drawn as to the applicability of the results obtained to the test cases being analysed as well as the general applicability of the results. The importance of making uncertainty and sensitivity analysis as part of a performance analysis of the safety of a nuclear waste repository is stressed. The conclusion is drawn that the HYDROCOIN Level 3 study has greatly contributed to the understanding of these issues. 42 refs., 159 figs., 61 tabs

  13. Long-term surveillance plan for the Shiprock Disposal site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-09-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents the land ownership interests and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  14. Technical responsibilities in low-level waste disposal

    International Nuclear Information System (INIS)

    Murray, R.L.; Walker, C.K.

    1989-01-01

    North Carolina will be the host state for a low-level radioactive waste (LLRW) disposal facility serving the Southeast Compact for 20 yr beginning in 1993. Primary responsibility for the project rests with the North Carolina Low-Level Radioactive Waste Management Authority, a citizen board. The North Carolina project embodies a unique combination of factors that places the authority in a position to exercise technical leadership in the LLRW disposal field. First, the Southeast Compact is the largest in the United States in terms of area, population, and waste generation. second, it is in a humid rather than an arid region. Third, the citizens of the state are intensely interested in preserving life style, environment, and attractiveness of the region to tourists and are especially sensitive to the presence of waste facilities of any kind. Finally, disposal rules set by the Radiation Protection Commission and enforced by the Radiation Protection Section are stricter than the U.S. Nuclear Regulatory Commission's 10CFR61. These four factors support the authority's belief that development of the facility cannot be based solely on engineering and economics, but that social factors, including perceptions of human risk, concerns for the environment, and opinions about the desirability of hosting a facility, should be integral to the project. This philosophy guides the project's many technical aspects, including site selection, site characterization, technology selection and facility design, performance assessment modeling, and waste reduction policies. Each aspect presents its own unique problems

  15. Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1993-12-01

    This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  16. Evaluation of salt and mine rock disposal. Project No. 76-283

    International Nuclear Information System (INIS)

    1976-11-01

    Studies are being performed on the isolation of nuclear waste in geological formations; this would entail constructing an underground mine in selected rock strata for waste storage. Rocks removed from the mine during construction must be either disposed of permanently or temporarily stored for later backfill into the mine. Several methods of storing or disposing of the mined rock are discussed in this report. The technical feasibility, cost, advantages and disadvantages of each method are presented and the ranking of methods based on currently available data is discussed. Salt, shale, granite, and limestone are covered

  17. Long-term surveillance plan for the Green River, Utah, disposal site

    International Nuclear Information System (INIS)

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  18. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  19. Overview of low level waste disposal facility costs

    International Nuclear Information System (INIS)

    Saverot, P.M.

    1995-01-01

    Economics and uncertainty go hand-in-hand and it is too soon to have conclusive data on the life cycle costs of a disposal facility. While LLW volumes from are decreasing year after year, the effect of the projected LLW volumes from decommissioning may have a significant impact on the final unit costs. This overview recognizes that countries see LLW disposal costs differently depending on the scale of their programs and on the geographical, political and economic frameworks within which they operate. The reasons for the cost differences arise from a number of factors: differences in designs and in technologies (near surface engineered vault, enhanced shallow land burial, silo type caverns,...), disposal capacities, programmatic and regulatory requirements, organizational, managerial and institutional frameworks, contractual arrangements, etc. Comparison of actual project costs, if done incorrectly, can lead to invalid conclusions and little purpose would be served by so doing since cost variations reflect the reality faced by each country

  20. Engineering for a disposal facility using the in-room emplacement method

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, P; Bilinsky, D M; Ates, Y; Read, R S; Crosthwaite, J L; Dixon, D A

    1996-06-01

    This report describes three nuclear fuel waste disposal vaults using the in-room emplacement method. First, a generic disposal vault design is provided which is suitable for a depth range of 500 m to 1000 m in highly stressed, sparsely fractured rock. The design process is described for all components of the system. The generic design is then applied to two different disposal vaults, one at a depth of 750 m in a low hydraulically conductive, sparsely fractured rock mass and another at a depth of 500 m in a higher conductivity, moderately fractured rock mass. In the in-room emplacement method, the disposal containers with used-fuel bundles are emplaced within the confines of the excavated rooms of a disposal vault. The discussion of the disposal-facility design process begins with a detailed description of a copper-shell, packed-particulate disposal container and the factors that influenced its design. The disposal-room generic design is presented including the detailed specifications, the scoping and numerical thermal and thermal mechanical analyses, the backfilling and sealing materials, and the operational processes. One room design is provided that meets all the requirements for a vault depth range of 500 to 1000 m. A disposal-vault layout and the factors that influenced its design are also presented, including materials handling, general logistics, and separation of radiological and nonradiological operations. Modifications to the used-fuel packaging plant for the filling and sealing of the copper-shell, packed-particulate disposal containers and a brief description of the common surface facilities needed by the disposal vault and the packaging plant are provided. The implementation of the disposal facility is outlined, describing the project stages and activities and itemizing a specific plan for each of the project stages: siting, construction, operation; decommissioning; and closure. (author). 72 refs., 15 tabs., 63 figs.

  1. Engineering for a disposal facility using the in-room emplacement method

    International Nuclear Information System (INIS)

    Baumgartner, P.; Bilinsky, D.M.; Ates, Y.; Read, R.S.; Crosthwaite, J.L.; Dixon, D.A.

    1996-06-01

    This report describes three nuclear fuel waste disposal vaults using the in-room emplacement method. First, a generic disposal vault design is provided which is suitable for a depth range of 500 m to 1000 m in highly stressed, sparsely fractured rock. The design process is described for all components of the system. The generic design is then applied to two different disposal vaults, one at a depth of 750 m in a low hydraulically conductive, sparsely fractured rock mass and another at a depth of 500 m in a higher conductivity, moderately fractured rock mass. In the in-room emplacement method, the disposal containers with used-fuel bundles are emplaced within the confines of the excavated rooms of a disposal vault. The discussion of the disposal-facility design process begins with a detailed description of a copper-shell, packed-particulate disposal container and the factors that influenced its design. The disposal-room generic design is presented including the detailed specifications, the scoping and numerical thermal and thermal mechanical analyses, the backfilling and sealing materials, and the operational processes. One room design is provided that meets all the requirements for a vault depth range of 500 to 1000 m. A disposal-vault layout and the factors that influenced its design are also presented, including materials handling, general logistics, and separation of radiological and nonradiological operations. Modifications to the used-fuel packaging plant for the filling and sealing of the copper-shell, packed-particulate disposal containers and a brief description of the common surface facilities needed by the disposal vault and the packaging plant are provided. The implementation of the disposal facility is outlined, describing the project stages and activities and itemizing a specific plan for each of the project stages: siting, construction, operation; decommissioning; and closure. (author)

  2. Stability of disposal rooms during waste retrieval

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ''fair to good'' using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs

  3. Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  4. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

  5. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    International Nuclear Information System (INIS)

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992)

  6. Small-scale modelling of the physiochemical impacts of CO2 leaked from sub-seabed reservoirs or pipelines within the North Sea and surrounding waters.

    Science.gov (United States)

    Dewar, Marius; Wei, Wei; McNeil, David; Chen, Baixin

    2013-08-30

    A two-fluid, small scale numerical ocean model was developed to simulate plume dynamics and increases in water acidity due to leakages of CO2 from potential sub-seabed reservoirs erupting, or pipeline breaching into the North Sea. The location of a leak of such magnitude is unpredictable; therefore, multiple scenarios are modelled with the physiochemical impact measured in terms of the movement and dissolution of the leaked CO2. A correlation for the drag coefficient of bubbles/droplets free rising in seawater is presented and a sub-model to predict the initial bubble/droplet size forming on the seafloor is proposed. With the case studies investigated, the leaked bubbles/droplets fully dissolve before reaching the water surface, where the solution will be dispersed into the larger scale ocean waters. The tools developed can be extended to various locations to model the sudden eruption, which is vital in determining the fate of the CO2 within the local waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Important issues in disposal of L/ILW

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    Today waste disposal is a challenging technical and political issue. In many countries the acceptance of nuclear power has been tied formally or informally to the convincing demonstration that we can dispose of all radioactive wastes with a very high degree of safety exceeding the expected for other toxic or hazardous wastes. The importance of the public acceptance aspects and the more obviously striking characteristics of high-level wastes (HLW) - in particular their high initial radiation, their heat emission and their long decay times - led to an early concentration of effort on planning and analyzing HLW disposal. On the other hand, the problems of disposing of low- and inter-mediate-level wastes (L/ILW) are in many ways more immediate. These wastes are arising today in quantities which can make continued storge troublesome; accordingly increased effort is being expended in many countries on organizing the safe, final disposal of L/ILW. Some of the technical issues of importance which arise in the corresponding planning and analysis of repository projects for L/ILW are discussed in this paper

  8. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements.

  9. Project quality assurance plan for research and development services provided by Oak Ridge National Laboratory in support of the Hanford Grout Disposal Program

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.

    1991-11-01

    This Project Quality Assurance Plan (PQAP) is being published to provide the sponsor with referenceable documentation for work conducted in support of the Hanford WHC Grout Disposal Program. This plan, which meets NQA-1 requirements, is being applied to work performed at Oak Ridge National Laboratory (ORNL) during FY 1991 in support of this program. It should also be noted that with minor revisions, this plan should be applicable to other projects involving research and development that must comply with NQA-1 requirements

  10. Northeast Regional environmental impact study: Waste disposal technical report

    Science.gov (United States)

    Saguinsin, J. L. S.

    1981-04-01

    The potential for cumulative and interactive environmental impacts associated with the conversion of multiple generating stations in the Northeast is assessed. The estimated quantities and composition of wastes resulting from coal conversion, including ash and SO2 scrubber sludge, are presented. Regulations governing the use of ash and scrubber sludge are identified. Currently available waste disposal schemes are described. The location, capacity, and projected life of present and potential disposal sites in the region are identified. Waste disposal problems, both hazardous and nonhazardous, are evaluated. Environmental regulations within the region as they pertain to coal conversion and as they affect the choice of conversion alternatives are discussed. A regional waste management strategy for solid waste disposal is developed.

  11. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas

    International Nuclear Information System (INIS)

    1995-06-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  12. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-09

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.

  13. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    International Nuclear Information System (INIS)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-01

    The principal approaches for management of radioactive waste are commonly termed ''delay and decay'', ''concentrate and contain'' and ''dilute and disperse''. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case

  14. Project of the century. Nuclear waste disposal; Jahrhundertprojekt Endlagerung

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim [Freie Univ. Berlin (Germany). Forschungszentrum fuer Umweltpolitik (FFU)

    2017-09-01

    In Germany - as worldwide - no final repository for radioactive wastes from nuclear power plants exists. The interdisciplinary contribution is focused on the question how the new political developments based on the work of the final repository commission will proceed with respect to the site selection. Possible challenges arising on the way to final waste disposal are discussed.

  15. Projected transuranic waste loads requiring treatment, storage, and disposal

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.

    1996-01-01

    This paper provides information on the volume of TRU waste loads requiring treatment, storage, and disposal at DOE facilities for three siting configurations. Input consisted of updated inventory and generation data from. Waste Isolation Pilot plant Transuranic Waste Baseline Inventory report. Results indicate that WIPP's design capacity is sufficient for the CH TRU waste found throughout the DOE Complex

  16. DOE's performance evaluation project for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Waters, R.D.; Chu, M.S.Y.; Gruebel, M.M.; Lee, D.W.

    1995-01-01

    A performance evaluation (PE) is an analysis that estimates radionuclide concentration limits for 16 potential Department of Energy (DOE) mixed low-level waste (ULLW) disposal sites based on the analysis of two environmental exposure pathways (air and water) to an off-site individual and an inadvertent-intruder exposure pathway. Sites are analyzed for their ability to attenuate concentrations of specific radionuclides that could be released from wastes in a hypothetical ULLW disposal facility. Site-specific data and knowledge are used within a generic framework that is consistent across all sites being evaluated. After estimates of waste concentrations for the three pathways are calculated, the minimum of the waste concentration values is selected as the permissible waste concentration for each radionuclide. The PE results will be used as input to the process for DOE's ULLW disposal configuration. Preliminary comparisons of results from the PE and site-specific performance assessments indicate that the simple PE results generally agree with results of the performance assessments, even when site conditions are complex. This agreement with performance-assessment results increases confidence that similar results can be obtained at other sites that have good characterization data. In addition, the simple analyses contained in the PE illustrate a potential method to satisfy the needs of many regulators and the general public for a simple, conservative, defensible, and easily understandable analysis that provides results similar to those of more complex analyses

  17. Development of geological disposal system for spent fuels and high-level radioactive wastes in Korea

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won

    2013-01-01

    Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  18. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  19. The trends of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nomi, Mitsuhiko

    1977-01-01

    The disposal of radioactive wastes instead of their treatment has come to be important problem. The future development of nuclear fuel can not be expected unless the final disposal of nuclear fuel cycle is determined. Research and development have been made on the basis of the development project on the treatment of radioactive wastes published by Japan Atomic Energy Commission in 1976. The high level wastes produced by the reprocessing installations for used nuclear fuel are accompanied by strong radioactivity and heat generation. The most promising method for their disposal is to keep them in holes dug at the sea bottom after they are solidified. Middle or low level wastes are divided into two groups; one contains transuranium elements and the other does not. These wastes are preserved on the ground or in shallow strata, while the safe abandonment into the ground or the sea has been discussed about the latter. The co-operations among nations are necessary not only for peaceful utilization of atomic energy but also for radioactive waste disposal. (Kobatake, H.)

  20. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  1. Analysis of infiltration through a clay radon barrier at an UMTRA disposal cell

    International Nuclear Information System (INIS)

    1991-01-01

    An infiltration study was initiated in January 1988 to assess the percent saturation in, and infiltration through, clay radon barriers of typical Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. Predicting infiltration through the radon barrier is necessary to evaluate whether the disposal cell will comply with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (40 CFR 192). The groundwater standards require demonstrating that tailings seepage will not cause background concentrations or maximum concentration limits (MCLs) to be exceeded at the downgradient edge of the disposal facility (the point of compliance, or POC). This demonstration generally consists of incorporating the predicted seepage flux and the concentration of the specific hazardous constituents into a contaminant transport model, and predicting the resultant concentrations at the POC. The infiltration study consisted of a field investigation to evaluate moisture conditions in the radon barrier of the completed Shiprock, New Mexico, UMTRA Project disposal cell and previously completed UMTRA Project disposal cells at Clive, Utah, and Burrell, Pennsylvania. Coring was conducted to measure percent saturation profiles in the radon barriers at these disposal cells. In addition, a detailed investigation of the Shiprock radon barrier was conducted to establish the effects of meteorological stresses on moisture conditions in the filter layer and radon barrier. The Shiprock infiltration study was also intended to characterize hydraulic gradients and operational unsaturated hydraulic conductivities in the radon barrier

  2. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems

  3. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage.

    Science.gov (United States)

    Rodríguez-Romero, Araceli; Jiménez-Tenorio, Natalia; Riba, Inmaculada; Blasco, Julián

    2016-01-01

    The capture and storage of CO2 in sub-seabed geological formations has been proposed as one of the potential options to decrease atmospheric CO2 concentrations in order to mitigate the abrupt and irreversible consequences of climate change. However, it is possible that CO2 leakages could occur during the injection and sequestration procedure, with significant repercussions for the marine environment. We investigate the effects of acidification derived from possible CO2 leakage events on the European green crab, Carcinus maenas. To this end, a lab-scale experiment involving direct release of CO2 was conducted at pH values between 7.7 and 6.15. Female crabs were exposed for 10 days to sediment collected from two different coastal areas, one with relatively uncontaminated sediment (RSP) and the other with known contaminated sediment (MZ and ML), under the pre-established seawater pH conditions. Survival rate, histopathological damage and metal (Fe, Mn, Cu, Zn, Cr, Cd and Pb) and As accumulation in gills and hepatopancreas tissue were employed as endpoints. In addition, the obtained results were compared with the results of the physico-chemical characterization of the sediments, which included the determination of the metals Fe, Mn, Cu, Zn, Cr, Pb and Cd, the metalloid As, certain polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), as well as nonchemical sediment properties (grain size, organic carbon and total organic matter). Significant associations were observed between pH and the histological damage. Concentrations of Fe, Mn, Cr, Pb, Cd and PAHs in sediment, presented significant negative correlations with the damage to gills and hepatopancreas, and positive correlations with metal accumulation in both tissues. The results obtained in this study reveal the importance of sediment properties in the biological effects caused by possible CO2 leakage. However, a clear pattern was not observed between metal accumulation in tissues and p

  4. Ethical aspects of final disposal. Final report

    International Nuclear Information System (INIS)

    Baltes, B.; Leder, W.; Achenbach, G.B.; Spaemann, R.; Gerhardt, V.

    2003-01-01

    In fulfilment of this task the Federal Environmental Ministry has commissioned GRS to summarise the current national and international status of ethical aspects of the final disposal of radioactive wastes as part of the project titled ''Final disposal of radioactive wastes as seen from the viewpoint of ethical objectives''. The questions arising from the opinions, positions and publications presented in the report by GRS were to serve as a basis for an expert discussion or an interdisciplinary discussion forum for all concerned with the ethical aspects of an answerable approach to the final disposal of radioactive wastes. In April 2001 GRS held a one-day seminar at which leading ethicists and philosophers offered statements on the questions referred to above and joined in a discussion with experts on issues of final disposal. This report documents the questions that arose ahead of the workshop, the specialist lectures held there and a summary of the discussion results [de

  5. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  6. Achievements of research and development of Kajima on radioactive waste disposal

    International Nuclear Information System (INIS)

    Hironaka, Yoshikazu; Morikawa, Seiji; Okutsu, Kazuo; Furuichi, Mitsuaki; Toida, Masaru; Yamamoto, Takuji

    2004-01-01

    Kajima Corporation has been committed to the construction of nuclear power plant for a long time as a construction company. In 1957 Kajima made its first construction of the main building for the JRR-1 (Japan Research Reactor No.1) of JAERI, which was the first and historical one in Japan. Since then the company has been involved in many projects related to nuclear power generation. In addition to the construction, Kajima has been playing an important role in the technology development of decommissioning system as well as radioactive waste waste disposal facilities, both of which are now having an increasing importance. In a sense of technology development, the technology of civil engineering is commonly applicable to the construction of radioactive waste disposal facilities, however, some other technology developments have to be made due to the unique characteristics of radioactive waste disposal. Kajima has promoted many research and development projects related to radioactive waste disposal in order to improve the reliability and the feasibility of the nuclear recycling process. This report introduces some of the achievements as follows made by Kajima: Construction of radioactive waste disposal facilities, Natural barrier, Engineering barrier, Monitoring. (author)

  7. Borehole disposal of spent radiation sources: 1. Principles

    International Nuclear Information System (INIS)

    Blerk, J.J. van; Kozak, M.W.

    2000-01-01

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226 Ra and 241 Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept - an acronym for Borehole disposal Of Spent Sources - as part of an International Atomic Energy Agency (IAEA) AFRA I-14 Technical Corporation (TC) project. In this paper, the principles of this disposal concept, which is still under development, will be discussed. (author)

  8. DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

    Directory of Open Access Journals (Sweden)

    HEUI-JOO CHOI

    2013-02-01

    Full Text Available Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

  9. Establishment of new disposal capacity for the Savannah River Plant

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Wilhite, E.L.

    1987-01-01

    Two new low-level waste (LLW) disposal sites for decontaminated salt solidified with cement and fly ash (saltstone) and for conventional solid LLW are planned for SRP in the next several years. An above-ground vault disposal system for saltstone was designed to minimize impact on the environment by controlling permeability and diffusivity of the waste form and concrete liner. The experimental program leading to the engineered disposal system included formulation studies, multiple approaches to measurement of permeability and diffusivity, extensive mathematical modeling, and large-scale lysimeter tests to validate model projections. The overall study is an example of the systems approach to disposal site design to achieve a predetermined performance objective. The same systems approach is being used to develop alternative designs for disposal of conventional LLW at the Savannah River Plant. 14 figures

  10. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  11. Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1996-09-01

    The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

  12. Non-technical issues in safety assessments for nuclear disposal facilities

    International Nuclear Information System (INIS)

    Kallenbach-Herbert, Beate; Brohmann, Bettina

    2010-09-01

    The paper highlights that a comprehensive approach to safety affords the consideration of technology, organisation, personnel and social environment. In several safety relevant contexts of nuclear waste disposal these fields are closely interrelated. The approach for the consideration of socio-scientific aspects which is sketched in this paper supports the systematic treatment of safety relevant non-technical issues in the safety case or in safety assessments for a disposal project. Furthermore it may foster the dialogue among specialists from the technical, the natural- and the socio-scientific field on questions of disposal safety. In this way it may contribute to a better understanding among the affected scientific disciplines in nuclear waste disposal.

  13. Financing of radioactive waste disposal. Finanzierung der nuklearen Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP).

  14. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  15. Long-term surveillance plan for the Green River, Utah disposal site. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  16. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  17. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  18. Cost estimates and economic evaluations for conceptual LLRW disposal facility designs

    Energy Technology Data Exchange (ETDEWEB)

    Baird, R.D.; Chau, N. [Rogers & Associates Engineering Corp., Salt Lake City, UT (United States); Breeds, C.D. [SubTerra, Inc., Redmond, WA (United States)

    1995-12-31

    Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes). Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).

  19. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  20. Safety evaluation of geological disposal concepts for low and medium-level wastes in rock-salt (Pacoma project)

    International Nuclear Information System (INIS)

    Prij, J.; Van Dalen, A.; Roodbergen, H.A.; Slagter, W.; Van Weers, A.W.; Zanstra, D.A.; Glasbergen, P.; Koester, H.W.; Lembrechts, J.F.; Nijhof-Pan, I.; Slot, A.F.M.

    1991-01-01

    In the framework of the Performance Assessment of Confinements for MLW and Alpha Waste (PACOMA) the disposal options dealing with rock-salt are studied by GSF and ECN (with subcontract to RIVM). The overall objectives of these studies are to develop and demonstrate procedures for the radiological safety assessment of a deep repository in salt formations. An essential objective is to show how far appropriate choices of the repository design parameters can improve the performances of the whole system. The research covers two waste inventories (the Dutch OPLA and the PACOMA reference inventory), two disposal techniques (conventional and solution mining) and three types of formations (salt dome, pillow and bedded salt). An important part of the research has been carried out in the socalled VEOS project within the framework of the Dutch OPLA study. The methodology used in the consequence analysis is a deterministic one. The models and calculation tools used to perform the consequence analysis are the codes: EMOS, METROPOL and BIOS. The results are expressed in terms of dose rates and doses to individuals as well as to groups. Detailed information with respect to the input data and the results obtained with the three codes is given in three annexes to this final report

  1. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  2. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  3. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-02-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  4. Acceptance test procedure: RMW Land Disposal Facility Project W-025

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting

  5. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Manning, Mark R.; Gardner, Frederick W.

    1990-01-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  6. Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1

    International Nuclear Information System (INIS)

    1995-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  7. The surface disposal concept for LIL/SL waste

    International Nuclear Information System (INIS)

    2011-01-01

    Most low-level and intermediate-level short-lived (LIL/SL) waste result from the nuclear-power industry. Their specific activity level is sufficiently high to justify a protective conditioning and to ensure proper confinement until that level has decreased to harmless levels for human beings and the environment (a few centuries considering the half lives of the radionuclides contained in LIL/SL waste). The disposal concept for such residues relies on a multi-barrier protective system, each barrier being designed to fulfil different or redundant functions in order to delay or mitigate radionuclide transfers first into the environment and onwards to human beings. The originality of the concept pertains to its flexibility, since: it is adaptable to various geological environments and its overall performance may be guaranteed by modulating that of the engineered barriers, and it is suitable for the disposal of different types and sizes of waste packages, as long as their characteristics are consistent with acceptance criteria, which are de facto specific to each case. To provide its wide-ranging competences in the field of waste management and disposal, ANDRA offers multiple solutions, from consultancy and documents reviewing, to technology transfer and turnkey projects. The safety of the disposal facility is guaranteed by the combination of the package, the concrete structures, the filling materials between packages and the watertight clay cap that will be installed at the end of the operating lifetime of the facility. That layout also takes all natural risks into account. Lastly, all disposal structures are built away from any potential flood zones and from the highest possible level of the groundwater table. Concrete and metal packages are disposed of in slightly different structures. Once a structure is full, concrete packages are immobilised with gravel, whereas metal packages are blocked in place by pouring concrete between them. Once a disposal structure is

  8. The surface disposal concept for LIL/SL waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Most low-level and intermediate-level short-lived (LIL/SL) waste result from the nuclear-power industry. Their specific activity level is sufficiently high to justify a protective conditioning and to ensure proper confinement until that level has decreased to harmless levels for human beings and the environment (a few centuries considering the half lives of the radionuclides contained in LIL/SL waste). The disposal concept for such residues relies on a multi-barrier protective system, each barrier being designed to fulfil different or redundant functions in order to delay or mitigate radionuclide transfers first into the environment and onwards to human beings. The originality of the concept pertains to its flexibility, since: it is adaptable to various geological environments and its overall performance may be guaranteed by modulating that of the engineered barriers, and it is suitable for the disposal of different types and sizes of waste packages, as long as their characteristics are consistent with acceptance criteria, which are de facto specific to each case. To provide its wide-ranging competences in the field of waste management and disposal, ANDRA offers multiple solutions, from consultancy and documents reviewing, to technology transfer and turnkey projects. The safety of the disposal facility is guaranteed by the combination of the package, the concrete structures, the filling materials between packages and the watertight clay cap that will be installed at the end of the operating lifetime of the facility. That layout also takes all natural risks into account. Lastly, all disposal structures are built away from any potential flood zones and from the highest possible level of the groundwater table. Concrete and metal packages are disposed of in slightly different structures. Once a structure is full, concrete packages are immobilised with gravel, whereas metal packages are blocked in place by pouring concrete between them. Once a disposal structure is

  9. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  10. Preliminary study on the three-dimensional geoscience information system of high-level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Li Peinan; Zhu Hehua; Li Xiaojun; Wang Ju; Zhong Xia

    2010-01-01

    The 3D geosciences information system of high-level radioactive waste geological disposal is an important research direction in the current high-level radioactive waste disposal project and a platform of information integration and publishing can be used for the relevant research direction based on the provided data and models interface. Firstly, this paper introduces the basic features about the disposal project of HLW and the function and requirement of the system, which includes the input module, the database management module, the function module, the maintenance module and the output module. Then, the framework system of the high-level waste disposal project information system has been studied, and the overall system architecture has been proposed. Finally, based on the summary and analysis of the database management, the 3D modeling, spatial analysis, digital numerical integration and visualization of underground project, the implementations of key functional modules and the platform have been expounded completely, and the conclusion has been drawn that the component-based software development method should be utilized in system development. (authors)

  11. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  12. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... joint financing committed to the proposed project is: (i) Twenty percent or more private, local, or...) Colonia. (See definition in Sec. 1777.4). The proposed project will provide water and/or waste disposal... of obtaining federal financing, receive economic benefits that exceed any direct economic costs...

  13. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  14. Waste and Disposal: Concept and Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2001-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. Within this context, various aspects concerning design and operation are investigated.The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In 2000, efforts were focussed on the operation of the OPHELIE mock-up, which is a surface experiment designed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory

  15. Determining how much mixed waste will require disposal

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1990-01-01

    Estimating needed mixed-waste disposal capacity to 1995 and beyond is an essential element in the safe management of low-level radioactive waste disposal capacity. Information on the types and quantities of mixed waste generated is needed by industry to allow development of treatment facilities and by states and others responsible for disposal and storage of this type of low-level radioactive waste. The design of a mixed waste disposal facility hinges on a detailed assessment of the types and quantities of mixed waste that will ultimately require land disposal. Although traditional liquid scintillation counting fluids using toluene and xylene are clearly recognized as mixed waste, characterization of other types of mixed waste has, however, been difficult. Liquid scintillation counting fluids comprise most of the mixed waste generated and this type of mixed waste is generally incinerated under the supplemental fuel provisions of the Resource Conservation and Recovery Act (RCRA) Because there are no Currently operating mixed waste land disposal facilities, it is impossible to make projections of waste requiring land disposal based on a continuation of current waste disposal practices. Evidence indicates the volume of mixed waste requiring land disposal is not large, since generators are apparently storing these wastes. Surveys conducted to date confirm that relatively small volumes of commercially generated mixed waste volume have relied heavily oil generators' knowledge of their wastes. Evidence exists that many generators are confused by the differences between the Atomic Energy Act and the Resource Conservation and Recovery Act (RCRA) on the issue of when a material becomes a waste. In spite of uncertainties, estimates of waste volumes requiring disposal can be made. This paper proposes an eight-step process for such estimates

  16. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  17. The borehole disposal of spent sources (BOSS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2002-01-01

    During the International Atomic Energy Agency (IAEA) Regional Training Course on 'The Management of Low-Level Radioactive Waste from Hospitals and Other Nuclear Applications' hosted by the Atomic Energy Corporation of SA Ltd. (AEC), now NECSA, during July/August 1995, the African delegates reviewed their national radioactive waste programmes. Among the issues raised, which are common to most African countries, were the lack of adequate storage facilities, lack of disposal solutions and a lack of equipment to implement widely used disposal concepts to dispose of their spent sources. As a result of this meeting, a Technical Co-operation (TC) project was launched to look at the technical feasibility and economic viability of such a concept. Phase I and II of the project have been completed and the results can be seen in three reports produced by NECSA. The Safety Assessment methodology used in the evaluation of the concept was that developed during the ISAM programme and detailed in Van Blerk's PhD thesis. This methodology is specifically developed for shallow land repositories, but was used in this case as the borehole need not be more than 100m deep and could fit into the definition of a shallow land disposal system. The studies found that the BOSS concept would be suitable for implementation in African countries as the borehole has a large capacity for sources and it is possible that an entire country's disused sources can be placed in a single borehole. The costs are a lot lower than for a shallow land trench, and the concept was evaluated using radium (226) sources as the most limiting inventory. The conclusion of the initial safety assessment was that the BOSS concept is robust, and provides a viable alternative for the disposal of radium needles. The concept is expected to provide good assurance of safety at real sites. The extension of the safety assessment to other types of spent sources is expected to be relatively straightforward. Disposal of radium needles

  18. Scientific and social polemy about radioactive waste disposal

    International Nuclear Information System (INIS)

    Rosa, Geza

    1988-01-01

    Major requirements towards final disposal of low- and medium-active wastes according to the recommendations of the IAEA and the Hungarian authority regulations are summarized. After preliminary examinations technical project for the establishment of a radioactive waste facility in the vicinity of the village Ofalu, Hungary was prepared. According to an independent ad hoc board of experts the selected site is unsuitable forwaste disposal because of disadvantageous geological, hydrological and seismic conditions. Due to the disagreement between official and independent experts the final scientific and legal decision is postponed. (V.N.) 7 refs

  19. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  20. Argentina: Disposal aspects of RA-1 research reactor decommissioning waste

    Energy Technology Data Exchange (ETDEWEB)

    Harriague, S; Barberis, C; Cinat, E; Grizutti, C; Scolari, H [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2007-12-15

    The objective of the project is to analyze disposal aspects of waste from total dismantling of Argentinean research reactors, starting with the oldest one, 48 years old RA-1. In order to estimate decommissioning waste, data was collected from files, area monitoring, measurements, sampling to measure activity and composition, operational history and tracing of operational incidents. Measurements were complemented with neutron activation calculations. Decommissioning waste for RA-1 is estimated to be 71.5 metric tons, most of it concrete (57 tons), the rest being steels, lead and reflector graphite (4.8 tons). Due to their low specific activities, no disposal problems are foreseen in the case of metals and concrete. Disposal of aluminium, steel, lead and concrete is analyzed. On the contrary, as the country has no experience in managing graphite radioactive waste, work was concentrated on that material. Stored (Wigner) energy may exist in RA-1 graphite reflectors irradiated at room temperature. Evaluation of stored energy by calorimetric methods is proposed, and its annealing by inductive heating; HEPA filters should be used to deal with gaseous activity emissions, mainly Cl-36 and C-14. Galvanic corrosion, dust explosion, ignition and oxidation can be addressed and should not become disposal problems. Care must be taken with graphite dust generation and disposal, due to wetting and flotation problems. Lessons learned from the project are presented, and the benefits of sharing international experience are stressed. (author)

  1. A new procedure for implementing a geological disposal

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    The British government has launched a new procedure for selecting and implementing a geological disposal. This procedure is based on long-term cooperation with municipalities that wish to home this facility. In a preliminary 2 year long step, a national geological survey will be performed in order to determine regions that are suitable to home a geological disposal. Then discussions between municipalities that are voluntary and the enterprise in charge of developing the project will begin. Municipalities will receive an investment up to 1 million pounds a year in the first years of the selecting procedure and then 2.5 million pounds a year when discussions become more formal. British authorities consider that the procedure for selecting a site may last up to 20 years. A previous attempt to find a site failed in 2013 when 2 regions that had been interested in the project since 2008, were finally rebuffed by the regional council that opposed the project. Scotland and Wales have their own strategy for the management of radioactive waste. (A.C.)

  2. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  3. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-01

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  4. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    implementation of the management system at each phase of the repository life cycle will contribute towards meeting current repository project requirements and objectives and enhance flexible implementation of changes in the future. As mentioned in both the General Safety Requirements and the Safety Guide on waste disposal, a management system should support the development, implementation and continued enhancement of a pragmatic and strong safety culture, and should promote the adoption of best practices for all waste disposal activities. The design and development of a repository is truly an interdisciplinary activity, involving a range of technical and management issues. The life cycle of a repository extends from hundreds of years for a near surface facility to hundreds of thousands of years for a geological repository. Unlike other nuclear facilities, there are many issues that are unique to disposal facilities and which require special consideration in the development and application of an effective management system that is applicable to a repository development project. The design and development process starts with the compilation of design inputs and culminates with the production of design outputs, which are then transferred and used in subsequent stages of the repository development process. Both design input and output have to be verified, validated and approved before they can be used in subsequent stages of the design process. A project on construction/upgrading of a repository may be divided into interrelated and interdependent processes as a way of planning and managing the project. It is necessary to clearly define and link the project processes, and to integrate them and manage them as a system. The same principles and practices of a management system can be applied as they are relevant to a project's management system. Project management processes include planning, organizing, controlling, reporting and corrective actions.

  5. Dismantling and disposal of the Chisobox experimental irradiator

    International Nuclear Information System (INIS)

    Kriz, R.

    2005-01-01

    The Chisobox experimental irradiator was installed at the Faculty of Medicine in Hradec Kralove, Radioisotope Laboratories and Vivarium, for the purposes of the scientific research of ionizing radiation effects on the living organisms. The irradiator was put into operation in 1977. After 1989, its use has been - significantly reduced and it was only employed for the sterilization of medical materials and aids as well as for the radiation treatment of antique and museum things having wood-worm. In January 2001, its next operation was determined by the SUJB decision (i.e. The State Office for Nuclear Safety) in which the constancy tests for all individual ionizing radiation sources being part of the system were required. As the f constancy tests were not performed at that time, the Faculty Management decided for the -- decommissioning of the irradiator in June 2001. In 2003, the Faculty of Medicine announced a tender for the category III workplace disposal. Primarily, the VF, a.s. in cooperation with the SURAO Prague (i.e. the Radioactive Waste Repository Authority) were to have disposed this workplace, and a hot cell designed to be built in Litomerice by the SURAO was to have been used for this project. However, the Faculty of Medicine got a grant for the irradiator disposal in 2004 providing that the disposal had to be finished in the same year. For this reason, the complete project has been assigned to the VF, a.s. Company, which put its hot cell into operation in 2004. The VF, a.s. Company finished the disposal of the irradiator in October/November 2004. After the agreement with the SURAO in April 2005, the sealed sources placed in the storage baskets were put into a newly manufactured container -a non-standard storage unit -and transported to be stored in the URAO Richard in Litomerice. (authors)

  6. Safety assessment methodologies for near surface disposal facilities. Results of a co-ordinated research project (ISAM). Volume 1: Review and enhancement of safety assessment approaches and tools. Volume 2: Test cases

    International Nuclear Information System (INIS)

    2004-07-01

    For several decades, countries have made use of near surface facilities for the disposal of low and intermediate level radioactive waste. In line with the internationally agreed principles of radioactive waste management, the safety of these facilities needs to be ensured during all stages of their lifetimes, including the post-closure period. By the mid 1990s, formal methodologies for evaluating the long term safety of such facilities had been developed, but intercomparison of these methodologies had revealed a number of discrepancies between them. Consequently, in 1997, the International Atomic Energy Agency launched a Co-ordinated Research Project (CRP) on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM). The particular objectives of the CRP were to provide a critical evaluation of the approaches and tools used in post-closure safety assessment for proposed and existing near-surface radioactive waste disposal facilities, enhance the approaches and tools used and build confidence in the approaches and tools used. The CRP ran until 2000 and resulted in the development of a harmonized assessment methodology (the ISAM project methodology), which was applied to a number of test cases. Over seventy participants from twenty-two Member States played an active role in the project and it attracted interest from around seven hundred persons involved with safety assessment in seventy-two Member States. The results of the CRP have contributed to the Action Plan on the Safety of Radioactive Waste Management which was approved by the Board of Governors and endorsed by the General Conference in September 2001. Specifically, they contribute to Action 5, which requests the IAEA Secretariat to 'develop a structured and systematic programme to ensure adequate application of the Agency's waste safety standards', by elaborating on the Safety Requirements on 'Near Surface Disposal of Radioactive Waste' (Safety Standards Series No. WS-R-1) and

  7. Environmental impact statements: Nuclear-industry waste-disposal and isotope-separation projects. (Latest citations from the NTIS data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The bibliography contains citations concerning draft and final impact statements relating to environmental radiation hazards. Prepared by the Department of Energy (DOE), Nuclear Regulatory Commission, Oak Ridge National Laboratory, and others, these reports examine environmental data affecting DOE decisions on proposed construction and decommissioning of nuclear power plants, radioactive waste disposal facilities and sites, and isotope separation projects. The effects of Federal guidelines and atomic facility location on community awareness is briefly mentioned. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  8. Responding to change - The evolution of operator training for the PFR liquid metals disposal project

    International Nuclear Information System (INIS)

    Cashmore, Stephen

    2006-01-01

    environmental management practice, UKAEA decided to add a Caesium Removal Plant (CRP) on to the SDP. Neutralized effluent from the SDP would now be pumped through an ion exchange column prior to discharge to the site effluent treatment plant. In conclusion, commissioning and operating the PFR Liquid Metals Disposal Plant was a challenging task. Training and qualifying the operators was part of that challenge. Though lengthy and time intensive, the LMD training process had several positive benefits: 1. The process demonstrated that persons from a semi-skilled background with little or no previous experience, could be trained to operate a relatively complex process plant safely and efficiently; 2. The formally documented progress of each stage of training provided a clearly auditable record that was acceptable to all parties, including the regulators; 3. The cost of implementing the training was more than compensated for by the saving made in not having to employ shift engineers for the LMD project; 4. Once proved, the training methodology lent itself to adaptation for use with similar projects at Dounreay; 5. The range of skills and knowledge, acquired by the operators during their training, together with their experience of formal learning, should assist them with any similar role they may wish to apply themselves to in the future. To date (November 2005) the LMD plant has successfully processed over 1000 te of PFR's liquid metal inventory, improving safety by reducing a major potential hazard. It has also enabled UKAEA to meet the targets set by the Dounreay Near Term Work Plan for decommissioning the site. The operator team has had their SQEP status formally reviewed by the UKAEA ATO Holder, and extended for a further year, demonstrating the ongoing value of the rigorous training programme they undertook initially

  9. Obstacle factors and overcoming plans of public communication: With an emphasis on radioactive waste disposal facility siting

    International Nuclear Information System (INIS)

    Yoo, Hae-Woon; Oh, Chang-Taeg

    1996-01-01

    Korea is confronting a serious social conflict, which is phenomenon of local residents reaction to radioactive waste disposal facility. This phenomenon is traced back to the reason that the project sponsors and local residents do not communicate sufficiently each other. Accordingly, in order to overcome local residents' reaction to radioactive waste disposal facility siting effectively, it is absolutely necessary to consider the way of solutions and strategies with regard to obstacle factors for public communication. In this content, this study will review three cases (An-myon Island, Gul-up Island, Yang-yang) on local residents reaction to facility siting. As a result of analysis, authoritarian behavior of project sponsors, local stigma, risk, antinuclear activities of environmental group, failures in siting the radioactive waste disposal facility, etc. has negative impact on public communication of the radioactive waste disposal facility siting. In this study, 5 strategies (reform of project sponsor's authoritarianism, incentive offer, strengthening PA activities, more active talks with environmental groups, promoting credibility of project sponsors) arc suggested to cope with obstacle factors of public communication

  10. IX Disposition Project - project management plan

    International Nuclear Information System (INIS)

    Choi, I.G.

    1994-01-01

    This report presents plans for resolving saving and disposal concerns for ion exchange modules, cartridge filters and columns. This plan also documents the project baselines for schedules, cost, and technical information

  11. Outline of the radioactive waste management strategy at the national radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.F.; Tukhto, A.A.; Ivanov, V.B.

    2000-01-01

    The national Belarus radioactive waste disposal facility 'Ekores' was started in 1964 and was designed for radioactive waste coming from nuclear applications in industry, medicine and research. It is located in the neighbourhood of Minsk (2 Mil. people) and it is the only one in this country. In 1997 the Government initiated the project for the facility reconstruction. The main reconstruction goal is to upgrade radiological safety of the site by creating adequate safety conditions for managing radioactive waste at the Ekores disposal facility. This covers modernising technologies for new coming wastes and also that the wastes currently disposed in the pits are retrieved, sorted and treated in the same way as new coming wastes. The reconstruction project developed by Belarus specialists was reviewed by the IAEA experts. The main provisions of the revised project strategy are given in this paper. The paper's intention is to outline the technical measures which may be taken at standard 'old type Soviet Radon' disposal facility so as to ensure the radiological safety of the site. (author)

  12. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  13. A Portable Burn Pan for the Disposal of Excess Propellants

    Science.gov (United States)

    2016-06-01

    2013 - 06/01/2016 A Portable Burn Pan for the Disposal of Excess Propellants Michael Walsh USA CRREL USA CRREL 72 Lyme Road Hanover, NH 03755...Army Alaska XRF X-Ray Florescence vii ACKNOWLEDGEMENTS Project ER-201323, A Portable Burn Pan for the Disposal of Gun Propellants, was a very...contamination problem while allowing troops to train as they fight, we have developed a portable training device for burning excess gun propellants. 1.1

  14. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  15. Disposal project for LLW and VLLW generated from research facilities in Japan: A feasibility study for the near surface disposal of VLLW that includes uranium

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Hasegawa, M.; Sakamoto, Y.; Nakatani, T.

    2016-01-01

    Conclusion and future work: • JAEA plans trench disposal of U-bearing waste with less than 100 Bq/g. • Two safety measures of trench disposal of U-bearing waste have been discussed taking into account increasing radioactivity over a long period of time. 1. First is to carry out dose assessment of site use scenario by using a conservatively stylized condition. 2. Second is to control the average concentration of U in the trench facilities based on the concept of the existing exposure situation. • We are continuously developing the method for safety measures of near surface disposal of VLLW including U-bearing waste.

  16. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  17. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1996-11-01

    This long-term surveillance plant (LTSP) describes the US Department of energy's (DOE) long-term care program for the Uranium Mill Tailings Remediation Action (UMTRA) Project's burro Canyon disposal cell in San Miguel County, Colorado. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. No ground water monitoring will be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low-yield from the upper-most aquifer

  18. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  19. Waste Disposal: The PRACLAY Programme

    International Nuclear Information System (INIS)

    De Bruyn, D.

    2000-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation

  20. Investigation on waste disposal in big boreholes. Project 'Second phase of the assessment of the repository at Novaya Zemlya'. Final report - short version

    International Nuclear Information System (INIS)

    2003-12-01

    This report contains the independent view of experts from SKB (Sweden), DBE TECHNOLOGY (Germany) and Institute for Energy Technology (Norway) and is the result of a project performed under a contract funded by the Norwegian Royal Ministry of Foreign Affairs, Swedish International Projects, the Project Unit for radioactive waste disposal of the German Federal Ministry of Economics and Employment and the German Federal Ministry of Ecology, Nature Preservation and Reactor Safety. The work has been carried out in cooperation with VNIPI PT (Russian Federation). The authors of this report accept no liability that arises from the use of material in this report, relating either to nuclear or civil issues. Any publishing or copying of the report in whole or in part requires the explicit approval of the mentioned funding parties. This report has been approved for issue according to the requirements of the project QA procedure. (orig.)

  1. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    International Nuclear Information System (INIS)

    CAMPBELL, L.R.

    1999-01-01

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  2. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  3. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement

  4. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.

  5. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  6. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  7. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2001-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued.

  8. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2001-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued

  9. Preliminary evaluation of the use of the greater confinement disposal concept for the disposal of Fernald 11e(2) byproduct material at the Nevada Test Site

    International Nuclear Information System (INIS)

    Cochran, J.R.; Brown, T.J.; Stockman, H.W.; Gallegos, D.P.; Conrad, S.H.; Price, L.L.

    1997-09-01

    This report documents a preliminary evaluation of the ability of the greater confinement disposal boreholes at the Nevada Test Site to provide long-term isolation of radionuclides from the disposal of vitrified byproduct material. The byproduct material is essentially concentrated residue from processing uranium ore that contains a complex mixture of radionuclides, many of which are long-lived and present in concentrations greater than 100,000 picoCuries per gram. This material has been stored in three silos at the fernald Environmental Management Project since the early 1950s and will be vitrified into 6,000 yd 3 (4,580 m 3 ) of glass gems prior to disposal. This report documents Sandia National Laboratories' preliminary evaluation for disposal of the byproduct material and includes: the selection of quantitative performance objectives; a conceptual model of the disposal system and the waste; results of the modeling; identified issues, and activities necessary to complete a full performance assessment

  10. Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J

    2005-05-26

    New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

  11. Draft directive on the management of radioactive wastes based on deep geological disposal

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The European Commission works on a legal framework to assure that all the member states apply the same standards in all the stages of the management of spent fuels and radioactive wastes till their definitive disposal. The draft propositions are the following. The standards to follow are those proposed by the IAEA. First, each member state has to set a national program dedicated to the management of radioactive wastes. This program will have to detail: the chosen solution, the description of the project, a time schedule, costs and financing. Secondly, the exportation of nuclear wastes for definitive disposal is not allowed unless the 2 countries have agreed to build a common nuclear waste disposal center. Thirdly, the population will have to be informed on the project and will have to take part in the decision process. Fourthly, the standards set by IAEA will be enforced by law. There is a broad consensus between scientists and international organizations like IAEA to consider that the disposal in deep geological layers of high-level radioactive wastes is the most adequate solution. (A.C.)

  12. PFR liquid metals disposal at Dounreay

    International Nuclear Information System (INIS)

    McIntyre, A.W.

    1997-01-01

    When the Prototype Fast Reactor (PFR) at Dounreay was shut down in 1994, the UKAEA commissioned a series of studies to determine the least cost, lowest risk option for dealing with the liquid metal coolants, i.e. the sodium from the primary and secondary circuits and the NaK from the decay heat removal system. The studies concluded that leaving the liquid metals in situ was not a viable option. Removing the liquid metals had three options, provision of long term external storage facilities, re-use in other projects or treatment for final disposal. The UKAEA invited companies to bid for the challenging task of disposing of more than 1500 t of liquid metals. In 1995 UKAEA awarded NNC Ltd. one of the largest decommissioning projects ever to be let competitively in the UK. During the first year of the contract, the challenges have focused on solving design problems and a number of innovative solutions have been developed by NNC and its subcontractors. From January 1997 the focus has moved to construction on site at Dounreay, and the manufacturing and installation of the mechanical components of the plant

  13. Tank waste remediation system retrieval and disposal mission infrastructure plan

    International Nuclear Information System (INIS)

    Root, R.W.

    1998-01-01

    This system plan presents the objectives, organization, and management and technical approaches for the Infrastructure Program. This Infrastructure Plan focuses on the Tank Waste Remediation System (TWRS) Project's Retrieval and Disposal Mission

  14. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G; Olyslaegers, G; Zeevaert, T [SCK/CEN, Mol (Belgium); Kanyar, B [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P; Simon, I [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U; Hallberg, B [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S; Chen, Q; Kowe, R [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  15. Biosphere models for safety assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T.; Kanyar, B.; Bergstroem, U.; Hallberg, B.; Mobbs, S.; Chen, Q.; Kowe, R.

    2004-01-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  16. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  17. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  18. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  19. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    International Nuclear Information System (INIS)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document

  20. Geological aspects of a deep underground disposal facility in the Czech Republic

    International Nuclear Information System (INIS)

    Skopovy, J.; Woller, F.

    1997-01-01

    The basic requirements for the geological situation at a deep underground radioactive waste disposal site are highlighted, a survey of candidate host sites worldwide is presented, and the situation in the Czech Republic is analyzed. A 'General Project of Geological Activities Related to the Development of a Deep Underground Disposal Site for Radioactive Wastes and Spent Fuel in the Czech Republic' has been developed by the Nuclear Research Institute and approved and financed by the authorities. The Project encompasses the following stages: (i) preliminary study and research; (ii) examination of the seismicity, neotectonics, and geodynamics; (iii) search and critical assessment of archived geological information; (iv) non-destructive survey; and (v) destructive survey. The Project should take about 30 years and its scope will be updated from time to time. (P.A.)

  1. An overview of nuclear waste managment

    International Nuclear Information System (INIS)

    Shemilt, L.W.; Sheng, G.

    1982-01-01

    A very large amount of scientific and engineering work on nuclear waste managment is being done primarily, but not exclusively, in countries with a nuclear power program. There are basically no technical problems with regard to the safe, temporary storage of either used fuel or reprocessed high-level waste from civilian power programs. Deep terrestrial geologic disposal is the concept that has gained the widest acceptance and for which the technology is best known. Sub-seabed disposal has strong potential in the longer term, but further technological development is required. No clear evidence yet exists for the superiority of any type of host geologic medium over any other for a repository. Salt and granite have been studied most, and each has advantages and disadvantages with respect to the other

  2. Hazardous Waste Disposal Costs for The Defense Logistics Agency

    National Research Council Canada - National Science Library

    1999-01-01

    This audit is part of the overall audit, "DoD Hazardous Waste Disposal Costs," (Project No. 9CK-5021). The overall audit was jointly conducted by the Inspector General, DoD, and the Army, Navy, and Air Force audit agencies...

  3. How to dispose of the other radwaste

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    While the US Department of Energy searches for a repository for the highly radioactive spent fuel from nuclear power plants, federal law requires the states by January to have plans for establishing regional landfill sites for the disposal of so-called low-level radioactive waste. But a recent report from the Radioactive Waste Campaign in New York calls for ending the landfill approach to disposal of low-level waste in order to avoid the leakage and contamination of water supplies that have wracked existing landfills. According to physicist Marvin Resnikoff, author of the report, low-level waste is a misnomer for what often includes extremely long-lived radioactive waste requiring more careful disposal. Because 99% of the radioactivity and 70% of the volume of low-level waste comes from power reactors, Resnikoff advocates disposal on the plant site. He also advocates separation of wastes by their half-life and reclassification as high level of the long-lived radioactive waste from decommissioned plants. The much smaller volume of industrial and institutional waste should be supercompacted and also transferred to the plants for storage. The report further recommends a Manhattan Project-style effort to deal with the problem of radioactive waste as a whole

  4. Differing responses of the estuarine bivalve Limecola balthica to lowered water pH caused by potential CO2 leaks from a sub-seabed storage site in the Baltic Sea: An experimental study.

    Science.gov (United States)

    Sokołowski, Adam; Brulińska, Dominika; Mirny, Zuzanna; Burska, Dorota; Pryputniewicz-Flis, Dorota

    2018-02-01

    Sub-Seabed CCS is regarded as a key technology for the reduction of CO 2 emissions, but little is known about the mechanisms through which leakages from storage sites impact benthic species. In this study, the biological responses of the infaunal bivalve Limecola balthica to CO 2 -induced seawater acidification (pH7.7, 7.0, and 6.3) were quantified in 56-day mesocosm experiments. Increased water acidity caused changes in behavioral and physiological traits, but even the most acidic conditions did not prove to be fatal. In response to hypercapnia, the bivalves approached the sediment surface and increased respiration rates. Lower seawater pH reduced shell weight and growth, while it simultaneously increased soft tissue weight; this places L. balthica in a somewhat unique position among marine invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  6. Very Low Activity Waste Disposal Facility Recently Commissioned as an Extension of El Cabril LILW Disposal Facility in Spain

    International Nuclear Information System (INIS)

    Zuloaga, P.; Navarro, M.

    2009-01-01

    This paper describes the Very Low Activity Radioactive Waste (VLLW) disposal facility, designed, built and operated by ENRESA as a part of El Cabril LILW disposal facility. El Cabril facility was commissioned in 1992 and has 28 concrete vaults with an internal volume of 100,000 m 3 , as well as waste treatment systems and waste characterization laboratories. The total needs identified in Spain for LILW disposal are of some 176,000 m 3 , of which around 120,000 m3 might be classified as VLLW This project was launched in 2003 and the major licensing steps have been town planning license (2003), construction authorization (after Environmental Impact Statement and report from Nuclear Safety Council-CSN, 2006), and Operations Authorization (after report from CSN, July 2008). The new VLLW disposal facility has a capacity for 130,000 meters cube in four disposal cells of approximately the same size. Only the first cell has been built. The design of the barriers is based on the European Directive for elimination of dangerous waste and consists of a clay layer 1 m, 3 cm geo-bentonite films, and 4 mm HDPE film. In order to minimize leachate volumes collected and help a good monitoring of the site, each cell is divided into different sections, which are protected during operation -before placing a provisional HDPE capping- by a light shelter and where leachate collection is segregated from other sections. (authors)

  7. Long-term surveillance plan for the South Clive disposal site Clive, Utah

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  8. Design, construction, and operations experience with the SWSA 6 [Solid Waste Storage Area] Tumulus Disposal Demonstration

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Van Cleve, J.E.; Wylie, A.N.; Williams, L.C.; Bolinsky, J.

    1988-01-01

    Efforts are underway at the Department of Energy facilities in Oak Ridge to improve the performance of radioactive waste disposal facilities. An engineered disposal concept demonstration involving placement of concrete encased waste on a monitored concrete pad with an earthen cover is being conducted. The design, construction, and operations experience with this project, the SWSA 6 Tumulus Disposal Demonstration, is described. 1 fig., 1 tab

  9. Long-term surveillance plan for the Green River, Utah disposal site. Revision 2

    International Nuclear Information System (INIS)

    1998-07-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out

  10. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Burro Canyon disposal cell performs as designed and is cared for in a manner that protects the public health and safety and the environment. The program is based on site inspections to identify threats to disposal cell integrity. Before each disposal cell is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  11. Biosphere models for deep waste disposal

    International Nuclear Information System (INIS)

    Olyslaegers, G.

    2005-01-01

    The management of the radioactive waste requires the implementation of disposal systems that ensure an adequate degree of isolation of the radioactivity from man and the environment. Because there are still a lot of uncertainties and a lack of consensus with respect to the importance of the exposure pathways of man, a project BioMoSA (Biosphere Models for Safety Assessment) was elaborated in the Fifth Framework Programme of EURATOM). It aimed at improving the scientific basis for the application of biosphere models in the framework of long-term safety studies for radioactive waste disposal facilities. The section radiological evaluations of SCK-CEN took part in the BioMoSA project. n the BioMoSA project, the reference biosphere methodology developed in the IAEA programme BIOMASS (Biosphere Modelling and Assessment methods) is implemented). We used this methodology in order to increase the transparency of biosphere modelling; t evaluate the importance of the different radionuclides and pathways, and to enhance public confidence in the assessment of potential radiological dose to population groups far into the future. Five European locations, covering a wide range of environmental and agricultural conditions are described and characterised. Each participant developed a specific biosphere model for their site. In order to achieve a consistency in this model derivation, a staged approach has been followed. Successively the biosphere is described and conceptual, mathematical and numerical models are constructed. For each of the locations site-specific parameters are selected. In the project, we had the specific task to make a comparison between the model results generated by the different participants. Results from these studies are presented and discussed

  12. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  13. Low-level radioactive waste in the northeast: revised waste volume projections

    International Nuclear Information System (INIS)

    1984-06-01

    The volume of low-level radioactive waste generated in the eleven Northeast states has undergone significant change since the inital 1982 analysis and projection. These revised projections incorporate improved data reporting and evidence of sharp declines in certain categories of waste. Volumes in the 1982-1983 period reflect waste shipped for disposal as reported by disposal site operators. Projected waste volumes represent waste intended for disposal. The recent dramatic changes in source reduction and waste management practices underscore the need for annual review of waste volume projections. The volume of waste shipped for off-site disposal has declined approximately 12% in two years, from an average 1,092,500 ft 3 annually in 1979 to 1981 to an average annual 956,500 ft 3 in 1982 to 1983; reactor waste disposal volumes declined by about 39,000 ft 3 or 7% during this period. Non-reactor waste volumes shipped for disposal declined by over 70,000 ft 3 or 15% during this period. The data suggest that generators increased their use of such management practices as source reduction, compaction, or, for carbon-14 and tritium, temporary storage followed by disposal as non-radioactive waste under the NRC de minimus standard effective March 1981. Using the Technical Subcommittee projection methodology, the volume of low-level waste produced annually in the eleven states, individually and collectively, is expected to increase through the year 2000, but at a significantly lower rate of increase than initially projected. By the year 2000, the Northeast is projected to generate 1,137,600 ft 3 of waste annually, an increase of about 20% over 1982 to 1983 average volume

  14. Finnish HLW disposal programme : site selection in 2000

    International Nuclear Information System (INIS)

    Ryhsnen, Veijo

    1997-01-01

    This paper covers the technical concepts for final disposal in the Finnish geological conditions, the approach for site selection and implementation, the safety assessments and development of criteria, the environmental impact assessment, the licensing stages and acceptance, and the financial provisions, the project organization in 1997 - 2000. 2 refs., 9 figs

  15. Finnish HLW disposal programme : site selection in 2000

    Energy Technology Data Exchange (ETDEWEB)

    Ryhsnen, Veijo [Posiva Oy, Helsinki (Finland)

    1997-12-31

    This paper covers the technical concepts for final disposal in the Finnish geological conditions, the approach for site selection and implementation, the safety assessments and development of criteria, the environmental impact assessment, the licensing stages and acceptance, and the financial provisions, the project organization in 1997 - 2000. 2 refs., 9 figs.

  16. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    Doering, T.W.; Thomas, D.A.

    2001-01-01

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  17. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  18. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  19. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  20. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  1. Thermal convection at low Rayleigh number from concentrated sources in porous media

    International Nuclear Information System (INIS)

    Hickox, C.E.

    1980-01-01

    A simple mathematical theory is proposed for the analysis of natural convective motion, at low Rayleigh number, from a concentrated source of heat in a fluid-saturated porous medium. The theory consists of retaining only the leading terms of series expansions of the dependent variables in terms of the Rayleigh number, is thus linear, and is valid only in the limit of small Rayleigh number. Based on fundamental results for a variety of isolated sources, superposition is used to provide solutions for situations of practical interest. Special emphasis is given to the analysis of sub-seabed disposal of nuclear waste. 8 figures

  2. Elemental analysis of sediments and organisms from the Cape Verde abyssal plain (CV 1 and CV 2 sites)

    International Nuclear Information System (INIS)

    Germain, P.; Boust, D.; Sibuet, M.; Philippot, J.C.; Hemon, G.

    1984-08-01

    Some 20 stable elements were determined by neutron activation analysis in epibenthic organisms and sediments from the Cape Verde abyssal plain. The levels measured in two Plesiopenaeus sp. (shrimp) individuals and one Barathrites sp. (fish) individual are similar to those found in others crustaceans and fish from oceanic and coastal areas. Concentration factors were calculated for the elements whose radioactive isotopes should be considered in the case of subseabed waste disposal ( 90 Sr, 135 Cs, 79 Se). The sediments are biogenous marly oozes. The levels measured reflect the variations of terrigenous inputs since the last glacial maximum 18,000 B.P [fr

  3. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  4. Coastal circulation off Bombay in relation to waste water disposal

    Digital Repository Service at National Institute of Oceanography (India)

    Josanto, V.; Sarma, R.V.

    Flow patterns in the coastal waters of Bombay were studied using recording current meters, direct reading current meters, floats and dye in relation to the proposed waste water disposal project of the Municipal Corporation of Greater Bombay from...

  5. Acceptance test procedure for Project W-049H

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The Acceptance Test Procedure (ATP) program for Project W-049H (200 Area Treated Effluent Disposal Facility [TEDF]) covers three activities as follows: (1) Disposal System; (2) Collection System; and (3) Instrumentation and Control System. Each activity has its own ATP. The purpose of the ATPs is to reverify that the systems have been constructed in accordance with the construction documents and to demonstrate that the systems function as required by the Project criteria. The Disposal System ATP covers the testing of the following: disposal line flowmeters, room air temperatures in the Disposal Station Sampling Building, effluent valves and position indicators, disposal pond level monitors, automated sampler, pressure relief valves, and overflow diversion sluice gates. The Collection System ATP covers the testing of the two pump stations and all equipment installed therein. The Instrumentation and Control (I and C) ATP covers the testing of the entire TEDF I and C system. This includes 3 OCS units, modem, and GPLI cabinets in the ETC control room; 2 pump stations; disposal station sampling building; and all LCUs installed in the field

  6. Direct ultimate disposal of spent fuel DEAB. Systems analysis. Ultimate disposal concepts. Final report. Main volume

    International Nuclear Information System (INIS)

    Wahl, A.

    1995-10-01

    The results elaborated under the project, systems analysis of mixed radwaste disposal concepts and systems analysis of ultimate disposal concepts, provide a comprehensive description and assessment of a radwaste repository, for heat generating wastes and for wastes with negligible heat generation, and thus represent the knowledge basis for forthcoming planning work for a repository in an abandoned salt mine. A fact to be considered is that temperature field calculations have shown that there is room for further optimization with regard to the mine layout. The following aspects have been analysed: (1) safety of operation; (2) technical feasibility and realisation and licensability of the concepts; (3) operational aspects; (4) varieties of utilization of the salt dome for the intended purpose (boreholes for waste emplacement, emplacement in galleries, multi-horizon systems); (5) long-term structural stability of the mine; (6) economic efficiency; (7) nuclear materials safeguards. (orig./HP) [de

  7. Reference biospheres for the long term safety assessment of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Crossland, I.G.; Torres, C.

    2002-01-01

    Regulatory guidance on the safety assessment of radioactive waste disposals usually requires the consequences of any radionuclide releases to be considered in terms of their potential impact on human health. This requires consideration of the prevailing biosphere and the habits of the potentially exposed humans within it. However, it could take many thousands of years for migrating radionuclides to reach the surface environment. In these circumstances, an assessment model that was based on the present-day biosphere could be inappropriate while future biospheres would be unpredictable. These and other considerations suggest that a standardised, or reference biosphere, approach may be useful. Theme 1 of the IAEA BIOMASS project was established to develop the concept of reference biospheres into a practical system that can be applied to the assessment of the long term safety of geological disposal facilities for radioactive waste. The technical phase of the project lasted for four years until November 2000 and brought together disparate interests from many countries including waste disposal agencies, regulators and technical experts. Building on the experience from earlier BIOMOVS projects, a methodology was constructed for the logical and defensible construction of mathematical biosphere models that can be used in the total system performance assessment of radioactive waste disposal. The methodology was then further developed through the creation of a series of BIOMASS Example Reference Biospheres ('Examples'). These are stylised biosphere models that, in addition to illustrating the methodology, are intended to be useful assessment tools in their own right. (author)

  8. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    International Nuclear Information System (INIS)

    Radulesscu, G.; Tang, J.S.

    2000-01-01

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M andO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M andO 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M andQ 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M andO 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this

  9. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  10. Way of disposal of debris left after Great Tohoku Earthquake by using port

    International Nuclear Information System (INIS)

    Suzuki, Takeshi; Hayashi, Tomoya; Sugeno, Jinkatsu

    2012-01-01

    In order to dispose debris generated by the 2011 off the Pacific coast of Tohoku Earthquake Tsunami, we have thought to break pieces of wood and to use it as fuel. And, we have thought to construct waste repository for radioactive waste and dump radioactive waste into the repository. We estimated cost for the projects and CO2 emission associated with the projects. The results showed that to use pieces of wood using as fuel at cement factory cost and emitted CO2 less than incineration disposal as waste. And, sea repository case cost and emitted CO2 less than land repository case. (author)

  11. Development of the safety assessment technology for the radioactive waste disposal

    International Nuclear Information System (INIS)

    Kim, Chang Lak; Choi, Kwang Sub; Cho, Chan Hee; Lee, Myung Chan; Kim, Jhin Wung

    1992-03-01

    The major goal of this project is to develop a source-term model for the safety assessment of a low- and intermediate-level radioactive waste repository as follows: 1) estimation of the arising of low- and intermediate-level radioactive wastes, 2) development of inventory data base, 3) development of a source-term code for shallow-land disposal, and 4) improvement of the REPS source-term code for rock cavern type disposal developed already in 1990 and conservative safety assessment for an imaginary repository. In addition, the source of C-14 in the inventory is assessed by two methods: decontamination factor and scaling factor. The source-term code for shallow-land disposal include the following submodels: surface water penetration into the repository, concrete degradation, corrosion of container drums, leaching of radionuclides from waste forms, and migration of radionuclides from engineered disposal facility is estimated by this code. (Author)

  12. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  13. Nuclear Waste Disposal in Space: BEP's Best Hope?

    International Nuclear Information System (INIS)

    Coopersmith, Jonathan

    2006-01-01

    The best technology is worthless if it cannot find a market Beam energy propulsion (BEP) is a very promising technology, but faces major competition from less capable but fully developed conventional rockets. Rockets can easily handle projected markets for payloads into space. Without a new, huge demand for launch capability, BEP is unlikely to gain the resources it needs for development and application. Launching tens of thousands of tons of nuclear waste into space for safe and permanent disposal will provide that necessary demand while solving a major problem on earth. Several options exist to dispose of nuclear waste, including solar orbit, lunar orbit, soft lunar landing, launching outside the solar system, and launching into the sun

  14. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  15. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-01-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  16. Long-term surveillance plan for the Estes Gulch disposal site near Rifle, Colorado

    International Nuclear Information System (INIS)

    1997-07-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site near Rifle, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Estes Gulch disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  17. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-07-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  18. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  19. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  20. Support to other nuclear waste disposal programmes considering clay as a potential host rock

    International Nuclear Information System (INIS)

    Volckaert, G.

    2009-01-01

    SCK-CEN started to study the Boom Clay as potential host rock for nuclear waste disposal in 1974. Since then, SCK-CEN has been involved in other international projects studying clay as potential host rock in order to get a broader support for disposal in clay and to acquire broader insight in clay behaviour. Besides Belgium, France and Switzerland are currently investigating clay formations as potential host rock for the disposal of radioactive waste. In the Netherlands, clay formations have always been considered as an alternative to disposal in salt. The general interest in clays is increasing: in Germany and The United Kingdom, it was decided a few years ago that besides respectively salt and crystalline rock also clays need to be evaluated. In Eastern and Central Europe, the Slovak republic and Lithuania consider both clay and granite as possible host rocks for spent fuel while in Russia recently a project was started to study the possible disposal of low and medium level waste in a clay formation in the Leningrad area. Within the EC research and development framework programs and the OECD/NEA Clay Club, collaborations were developed between countries studying clay and with a strong involvement of SCK-CEN. The collaboration with the Eastern and Central European countries is supported through the support programme of the Belgian Ministry of Economic affairs. The objectives of these co-operations are to deliver expert services to other nuclear waste disposal programs considering clay as host rock; to to acquire broader international recognition of our expertise and support for the development of nuclear waste disposal in clay; to get a broader insight in the properties and behaviour of clays

  1. Development plan. High activity-long living wastes project. Abstract

    International Nuclear Information System (INIS)

    2007-01-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  2. Dungeness crab survey for the Southwest Ocean Disposal Site off Grays Harbor, Washington, June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, B.J.; Pearson, W.H. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1991-09-01

    As part of the Grays Harbor Navigation Improvement Project, the Seattle District of the US Army Corps of Engineers has begun active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. This survey was to verify that the location of the area of high crab density observed during site selection surveys has not shifted into the Southeast Ocean Disposal Site. In June 1990, mean densities of juvenile Dungeness crab were 146 crab/ha within the disposal site and 609 crab/ha outside ad north of the disposal site. At nearshore locations outside the disposal site, juvenile crab density was 3275 crab/ha. Despite the low overall abundance, the spatial distribution of crab was such that the high crab densities in 1990 have remained outside the Southwest Ocean Disposal Site. The survey data have confirmed the appropriateness of the initial selection of the disposal site boundaries and indicated no need to move to the second monitoring tier. 8 refs., 9 figs., 2 tabs.

  3. Implementing geological disposal. A long-term governance challenge

    Energy Technology Data Exchange (ETDEWEB)

    Bergmans, Anne [Antwerp Univ. (Belgium). Faculty of Political and Social Sciences and Faculty of Law

    2015-07-01

    Calling geological disposal (GD) a technical and societal challenge and arguing that democratic decision-making on GD requires public and stakeholder engagement (PSE), are statements that will not meet much opposition. A process of 'governance' consists of engaging stakeholder groups in decision making processes and contrasts with more traditional, often technocratic forms of government. As will be argued in other papers in this conference (e.g. Grunwald; Kallenbach-Herbert et al.; Roehlig et al.) it is of fairly recent date, that concerned actors increasingly recognize that PSE should relate to both the societal and technical questions concerning GD. While most people would agree in theory, putting 'technical democracy' (Callon et al. 2001) in practice, often proofs to be less obvious. Opening up the technical 'black box' remains a crucial challenge in discussing the implications of GD for society and for the environment. As findings from the InSOTEC project show, this can be explained because different types of problematization occur, often considered as sequential, rather than intertwined (Barthe et al. 2014). Social problematization of GD, i.e. considering the remaining obstacles for implementation to be in essence social in nature, is often associated with the siting stage, when the technological project meets its social environment (ibidem). Formal participatory processes are often aimed mainly at dealing with socio-economic impacts and adapting life on the surface to the underground technology project, rather than the other way around (Bergmans et al. forthcoming). Still such interactions can, and have indeed proven to, lead to technical problematization, i.e. putting into question the technical project or certain aspects of it (cf. Barthe et al. 2014), by concerned stakeholders. As can be observed in the case of Sweden - for GD of spent fuel, and Belgium - for surface disposal of low- and intermediate level waste, this does not

  4. Implementing geological disposal. A long-term governance challenge

    International Nuclear Information System (INIS)

    Bergmans, Anne

    2015-01-01

    Calling geological disposal (GD) a technical and societal challenge and arguing that democratic decision-making on GD requires public and stakeholder engagement (PSE), are statements that will not meet much opposition. A process of 'governance' consists of engaging stakeholder groups in decision making processes and contrasts with more traditional, often technocratic forms of government. As will be argued in other papers in this conference (e.g. Grunwald; Kallenbach-Herbert et al.; Roehlig et al.) it is of fairly recent date, that concerned actors increasingly recognize that PSE should relate to both the societal and technical questions concerning GD. While most people would agree in theory, putting 'technical democracy' (Callon et al. 2001) in practice, often proofs to be less obvious. Opening up the technical 'black box' remains a crucial challenge in discussing the implications of GD for society and for the environment. As findings from the InSOTEC project show, this can be explained because different types of problematization occur, often considered as sequential, rather than intertwined (Barthe et al. 2014). Social problematization of GD, i.e. considering the remaining obstacles for implementation to be in essence social in nature, is often associated with the siting stage, when the technological project meets its social environment (ibidem). Formal participatory processes are often aimed mainly at dealing with socio-economic impacts and adapting life on the surface to the underground technology project, rather than the other way around (Bergmans et al. forthcoming). Still such interactions can, and have indeed proven to, lead to technical problematization, i.e. putting into question the technical project or certain aspects of it (cf. Barthe et al. 2014), by concerned stakeholders. As can be observed in the case of Sweden - for GD of spent fuel, and Belgium - for surface disposal of low- and intermediate level waste, this does not

  5. Chemical hazard evaluation of material disposal area (MDA) B closure project

    Energy Technology Data Exchange (ETDEWEB)

    Laul, Jagdish C [Los Alamos National Laboratory

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  6. Requirements for drilling and disposal in deep boreholes; Foerutsaettningar foer borrning av och deponering i djupa borrhaal

    Energy Technology Data Exchange (ETDEWEB)

    Oden, Anders [QTOB, Haesselby (Sweden)

    2013-09-15

    In this report experience from drilling at great depth in crystalline rock is compiled based on project descriptions, articles and personal contacts. Rock mechanical effects have been analyzed. The report also describes proposals made by SKB and other agencies regarding the disposal of and closure of deep boreholes. The combination of drilling deep with large diameter in crystalline rocks have mainly occurred in various research projects, such as in the German KTB project. Through these projects and the increased interest in recent years for geothermal energy , today's equipment is expected to be used to drill 5000 m deep holes , with a hole diameter of 445 mm , in crystalline rock. Such holes could be used for the disposal of spent nuclear fuel. With the deposition technique recently described by Sandia National Laboratories in USA, SKB estimates that it might be possible to implement the disposal to 5000 m depth. Considering the actual implementation, drilling and disposal, and the far-reaching requirements on nuclear safety and radiation protection, it is considered an important risk getting stuck with the capsule-string, or part of it, above deposition zone without being able to get it loose. In conclusion, even if the drilling and the deposit would succeed there remains to verify that the drill holes with the deposited canisters meet the initial requirements and is long-term safe.

  7. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  8. Foreign experience in alpha-contaminated waste disposal

    International Nuclear Information System (INIS)

    Lakey, P.

    1982-01-01

    The European presentations provided some useful comparisons with the situation int he United States regarding the transuranic (TRU) waste limit. First, in Europe, there appears to be a more moderate view on intrusion compared to the preoccupation in United States with this issue. Second, and superficially, in the United Kingdom and France, the working limit for near-surface disposal is greater than 10 nCi/g and more like 100 nCi/g. Looking beneath the superficial, however, the important difference is that their limits are working limits; they are not cast in bronze like the 10 nCi/g US value is not perceived to be. Europeans seem to have a more flexible and practical view of the issue and have reserved for its solution a rather large middle ground that appears to be lacking in the US position. For example, the United Kingdom is moving actively toward a version of greater confinement disposal or engineered disposal at a greater depth (with plutonium numbers like 10 4 nCi/g projected) and then moving on to the modified mine with limits like 10 5 nCi/g. From the French presentations, limits like 10 3 nCi/g were discussed. As we debate the TRU limit issue, what we seem to hear is an argument between the advocates of a generic limit of perhaps 100 nCi/g and the arguments for site-specific limits. This debate clouds perhaps the more basic issue of the need for a middle ground disposal approach between the extremes of a room trash limit and geologic disposal

  9. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references

  10. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

  11. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  12. Public relations work in the field of disposal of radioactive wastes in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schmitt, R.

    1996-01-01

    Many institutions have participated in public relations work concerning the final disposal of radioactive wastes in Germany since preliminary research work in this field was started in the early 1960's. The large number of institutions involved necessitates a uniform phraseology, kept up to date by permanent exchanges of information. The Press and Public Information Section of the Bundesamt fur Strahlenschutz (BfS) is responsible for co-ordination, with the aim of presenting both the general disposal concept of the Federal Government, and the work done within the scope of individual projects in the field of final waste disposal. Public relations activities are supported by the Deutsche Gesellschaft zum Bau and Betrieb von Endlagern fur Abfallstoffe mbH (DBE) which conducts public relations work at site level. Since the early sixties radioactive waste disposal policy in Germany has been based on the decision that all kinds of radioactive wastes should be disposed of in deep geological formations. One operating repository and two different disposal projects are currently under was in Germany. The paper discusses these three sites and their public relations efforts. A lot of work has been done in the public relations field in Germany, for more than 15 years now. Open, comprehensive information and reporting are essential for transparent and credible representations of the activities necessary for the disposal of radioactive waste, as well as to create a climate of confidence in order to fashion a position identity for such large-scale projects. In addition to personal contacts, target-group oriented information meetings and scientifically understandable information material are important means to achieved this end. The permanent presence of contact persons at the sites supports this objective, especially with regard to information directed towards the general public. (author)

  13. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R B; Barnard, J W; Bird, G A [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  14. 41 CFR 102-75.730 - What happens if a Federal agency does not submit a transfer request to the disposal agency for...

    Science.gov (United States)

    2010-07-01

    ... Federal agency does not submit a transfer request to the disposal agency for property to be used for replacement housing for persons who will be displaced by Federal or Federally assisted projects? 102-75.730... will be displaced by Federal or Federally assisted projects? If the disposal agency does not receive a...

  15. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2013-09-01

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  16. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  17. Operational safety of geological disposal: IRSN project 'EXREV' for developing a safety assessment strategy for the operation and reversibility of a geological repository

    International Nuclear Information System (INIS)

    Tichauer, M.; Pellegrini, D.; Serres, C.; Besnus, F.

    2014-01-01

    A high-level waste geological disposal facility is envisioned by the legislator in the French Planning Act no. 2006-739 of 28 June 2006. This act sets major milestones for the operator (Andra) in 2013 (public debate), 2015 (licensing) and 2025 (operation). In the framework of the regulatory review process, IRSN's mission is to conduct an assessment of the safety case provided by Andra at every stage of the process for the French regulator, namely the Nuclear Safety Authority (ASN). In 2005, IRSN gathered more than twenty years of research and expertise in order to provide a comprehensive appraisal of the 'Dossier 2005' prepared by Andra, related to the feasibility of a geological disposal in the Callovo-Oxfordian clay formation. At this time, the description of the operational phase was only at a preliminary stage, but this step paved the way for developing an assessment strategy of the operational phase. In this perspective, IRSN set up the EXREV project in 2008 in order to build up a doctrine and to identify key safety issues to be dealt with. (authors)

  18. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    Haijtink, B.

    1992-01-01

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  19. Regulatory expectations concerning the geosphere characterisation for disposal in argillaceous formations

    International Nuclear Information System (INIS)

    Bruno, G.; Besnus, F.; Boisson, J.Y.

    2004-01-01

    Safety recommendations on geosphere stability depend on the phase considered in the development of a disposal project. As far as deep disposal is concerned, safety generally relies on a multiple safety functions or multiple barriers concept for which each component of the repository i.e. waste package, engineered barriers and geological barrier, play complementary roles with regard to global safety. Consequently, depending on the disposal design, different types of favourable geological media can be envisaged for siting a repository. Thus, requirements on geosphere stability may be diverse when selecting a site for disposal since different options can be considered, and regulatory expectations in this field are more based on implementing a global and sound safety approach than on conforming to quantitative criteria. It is however obvious that geological formations presenting good containment properties and evidences of very long term stability should preferably be selected since it facilitates the safety demonstration helping building confidence in it. It also offers flexibility in the choice of design options and on the performances required from the different components of the disposal facility. Such an approach was recommended in France and led, for the site selection phase, to focus on general requirements on the quality of the geological formations to select. Based on these requirements, an evaluation is made according to an incremental procedure, to state whether committing resources for further development of the project is appropriate. The French Basic Safety Rule III.2.f (BSR III.2.f) provides some qualitative requirements regarding preferred site properties. It recommends in particular that the geological barrier must provide in the long-term adequate radionuclide isolation capability and should play a key role over the long term. The BSR III.2.f defines technical criteria i.e. essential and important criteria to help selecting a potential site for

  20. Reversibility and switching options values in the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ionescu, Oana; Spaeter, Sandrine

    2011-07-01

    This article offers some economic insights for the debate on the reversible geological disposal of radioactive waste. Irreversibility due to large sunk costs, an important degree of flexibility and several sources of uncertainty are taken into account in the decision process relative to the radioactive waste disposal. We draw up a stochastic model in a continuous time framework to study the decision problem of a reversible repository project for the radioactive waste, with multiple disposal stages. We consider that the value of reversibility, related to the radioactive waste packages, is jointly affected by economic and technological uncertainty. These uncertainties are modeled, first, by a 2-Dimensional Geometric Brownian Motion, and, second, by a Geometric Brownian Motion with a Poisson jump process. A numerical analysis and a sensitivity study of various parameters are also proposed. Switching options values in the geological disposal of radioactive waste. (authors)

  1. Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  2. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-05-22

    As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by

  3. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  4. Environmental impacts of ocean disposal of CO2

    International Nuclear Information System (INIS)

    Adams, E.; Herzog, H.; Auerbach, D.

    1995-01-01

    One option to reduce atmospheric CO 2 levels is to capture and sequester power plant CO 2 Commercial CO 2 capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO 2 is highly uncertain. The deep ocean is one of only a few possible CO 2 disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO 2 . The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO 2 is originally discharged. However, peak atmospheric CO 2 concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO 2 injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO 2 will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996

  5. The HADES demonstration and pilot project on radioactive waste disposal in a clay formation

    International Nuclear Information System (INIS)

    Bonne, A.; Beckers, H.; Beaufays, R.; Buyens, M.; Coursier, J.; Bruyn, D. de; Fonteyne, A.; Genicot, J.; Lamy, D.; Meynendonckx, P.; Monsecour, M.; Neerdael, B.; Noynaert, L.; Voet, M.; Volekaert, G.

    1992-01-01

    The overall objective of the HADES programme is the evaluation of the technical feasibility and safety of the disposal of radwaste in a deep clay formation. The pilot phase is aimed at demonstrating the system behaviour for those components of the system and those operations and issues which can be demonstrated directly. The time period considered covers a first phase of the development programme of the pilot project which includes: -The construction of a concrete lined tests drift of about 30 m length with a useful inner diameter of 3.5 m. In the lining, a number of openings or ports are foreseen for emplacing the various tests and sensors for the general auscultation in the host rock; - Mine-by test for the investigation of the response of the surrounding clay on the excavating; - CERBERUS test, a combined heating-irradiation test aiming at evaluating by simulation (electrical heaters and Co-60 radiation source) the impact of a HLW canister on its immediate near field; - Design of a gallery heating test for the demonstration by simulation of the behaviour of a concrete lined gallery structure and of the surrounding clay mass in a temperature field (TEMPPRES code for temperature and pressure evolution simulation). 21 refs

  6. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  7. The International hydrocoin project. Groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal. Summary report

    International Nuclear Information System (INIS)

    1992-01-01

    In 1984 the Swedish Nuclear Power Inspectorate, SKI, initiated the international cooperation project HYDROCOIN for the study of groundwater flow modelling in the context of radioactive waste disposal. The objective of HYDROCOIN was to improve knowledge of the influence of various strategies for groundwater flow modelling for the safety assessment of final repositories for radioactive wastes. The study comprised: the impact on the groundwater flow calculations of different solution algorithms, the capabilities of different models to describe field tests and bench-scale experiments, and the impact on the groundwater flow calculations of incorporating various physical phenomena. The work was conducted at three levels addressing code verification (Level 1), model validation (Level 2), and sensitivity and uncertainty analysis of groundwater flow calculations (Level 3). This report gives an overview and summary of test cases of HYDROCOIN Level 1, the issue of validation groundwater flow models (HYDROCOIN Level 2), the methodologies used in uncertainty and sensitivity analysis (HYDROCOIN Level 3). 108 figs., 24 tabs., 2 appendices

  8. The FP7 collaborative project RECOSY - a comprehensive information management system for european disposal R and D (INMAN): a proposal for the next European framework program - 59397

    International Nuclear Information System (INIS)

    Buckau, Gunnar; ); Delos, Anne; Montoya, Vanessa

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The Collaborative Project Redox phenomena Controlling Systems (RECOSY) started in 2008 falls within the EURATOM program and is implemented within the 7. Framework Program. The main objective of ReCosy is the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal providing tools to apply the results to Performance Assessment/Safety Case. Although redox is not a new issue, different questions are still not resolved, such as, redox processes in the long-term dissolution/ chemical transformation of the radioactive waste, waste packages and engineered barriers, and migration in the far-field, including which species are formed and their respective various retention mechanisms. In order to solve this questions, the project includes i) development of advanced analytical tools, ii) investigations of processes responsible for redox control (thermodynamically and kinetically controlled processes, surface reactions and microbial processes), iii) provision of required data on redox controlling processes, and iv) response to internal/external disturbances in disposal systems to internal/external disturbances. The work program of the project is structured along six Research and Technological Development work-packages. Specific Work-packages on knowledge management, education and training (WP7) and administrative management issues (WP8) are also included in the project. In WP1, the scientific state-of-the-art and its application to Performance Assessment/Safety Case is documented and regularly up-dated, based on the safety case of the ANDRA B2 cell. WP2 deals with the development and testing of redox determination methods using different type of electrodes

  9. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  10. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  11. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  12. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  13. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives

  14. Institutional factors in resource recovery co-disposal demonstration project, Middlesex County, New Jersey, Spring 1980 - Summer 1981

    Science.gov (United States)

    McCarthy, R. M.

    1982-02-01

    A proposal to provide 1200 tons per day of solid waste disposal combined with 200 tons per day of sludge disposal was presented. The prospects for codisposal in Middlesex County were analyzed. Technically, codisposal was possible, however, it lacked a proven track record. Proposal for a resource recovery plant to be designed, built, and operated was acknowledged as consistent with County planning.

  15. French experience in design and construction of near-surface disposal facilities for low-level waste

    International Nuclear Information System (INIS)

    Jousselin, D.; Medal, G.; Augustin, X.; Wavrechin, B. de

    1993-01-01

    France disposes of all radioactive waste produced on its territory. Short-lived waste (with a half-life shorter than 30 years) are disposed of, since 1969 on the 'La Manche' disposal facility (CSM 'Centre de La Manche'). As this center will be saturated in 1994, ANDRA (French National Agency for Radioactive Waste Management) has undertaken in 1984 the studies and works necessary to the realization of a new disposal facility. TECHNICATOME was associated, since the beginning of those studies and was chosen by ANDRA as Prime Contractor for the new Radwaste Disposal Center. French conception was chosen by Spanish Authorities in 1987, ENRESA (Empresa Nacional de Residuos Radioactivos SA) selected the Cabril Site in the South of Spain as disposal of low and medium activity radwaste. TECHNICATOME was associated with this project, through a joint French-Spanish engineering team. Authority of North Carolina State (USA) decided in 1989 to build a low-level radioactive waste disposal facility and the contract has been awarded to CNSI (Chem Nuclear System Inc.) with a proposal based on the French experience. A french team ANDRA/TECHNICATOME/SGN is in charge of the design of the disposal facility

  16. Disposal of the radioactive contaminated soils from the NPP site

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.; Sajtlava, M.; Hulla, J.; Kovacs, T.

    2004-01-01

    Disposal of contaminated soils at site of NPP is one of the most important task within the frame of research and development tasks of the NPP decommissioning. The works within this field can be seen in several areas. Considered soil activity monitoring, observation of its geo-technical and geo-chemical parameters, volume balance, research of the radio nuclides behaviour in the soil and simulation of their influence on the surrounding environment with special emphasis on underground water, project studies and construction of the disposal facility for contaminated soils. This work presents overview of gained results in the mentioned areas of the research and development. (author)

  17. The ultimate solution. Disposal of disused sealed radioactive sources (DSRS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2011-01-01

    The borehole disposal concept (BDC) was first presented to ICEM by Potier, J-M in 2005. This paper repeats the basics introduced by Potier and relates further developments. It also documents the history of the development of the BDC. For countries with no access to existing or planned geological disposal facilities for radioactive wastes, the only options for managing high activity or long-lived disused radioactive sources are to store them indefinitely, return them to the supplier or find an alternative method of disposal. Disused sealed radioactive sources (DSRS) pose an unacceptable radiological and security risk if not properly managed. Out of control sources have already led to many high-profile incidents or accidents. One needs only to remember the recent accident in India that occurred earlier this year. Countries without solutions in place need to consider the future management of DSRSs urgently. An on-going problem in developing countries is what to do with sources that cannot be returned to the suppliers, sources for which there is no further use, sources that have not been maintained in a working condition and sources that are no longer suitable for their intended purpose. Disposal in boreholes is intended to be simple and effective, meeting the same high standards of long-term radiological safety as any other type of radioactive waste disposal. It is believed that the BDC can be readily deployed with simple, cost-effective technologies. These are appropriate both to the relatively small amounts and activities of the wastes and the resources that can realistically be found in developing countries. The South African Nuclear Energy Corporation Ltd (Necsa) has carried out project development and demonstration activities since 1996. The project looked into the technical feasibility, safety and economic viability of BDC under the social, economic, environmental and infrastructural conditions currently prevalent in Africa. Implementation is near at hand with

  18. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  19. Techno-economic Comparison of Geological Disposal of Carbon Dioxide and Radioactive Waste

    International Nuclear Information System (INIS)

    2014-12-01

    The reduction of greenhouse gas emissions is an important prerequisite for sustainable development. The energy sector is a major contributor to such emissions, which are mostly from fossil fuel fired power plants acting as point sources of carbon dioxide (CO 2 ) discharges. For the last twenty years, the new technology of carbon capture and storage, which mitigates CO 2 emissions, has been considered in many IAEA Member States. This technology involves the removal of CO 2 from the combustion process and its disposal in geological formations, such as depleted oil or gas fields, saline aquifers or unmineable coal seams. A large scale energy supply option with low CO 2 emissions is nuclear power. The high level radioactive waste produced during nuclear power plant operation and decommissioning as well as in nuclear fuel reprocessing is also planned to be disposed of in deep geological formations. To further research and development in these areas and to compare and learn from the planning, development and implementation of these two underground waste disposal concepts, the IAEA launched the coordinated research project (CRP) Techno-economic Comparison of Ultimate Disposal Facilities for Carbon Dioxide and Radioactive Waste. The project started in 2008 and was completed in 2012. The project established an international network of nine institutions from nine IAEA Member States, representing both developing and developed countries. The CRP results compared the geological disposal facilities in the following areas: geology, environmental impacts, risk and safety assessment, monitoring, cost estimation, public perception, policy, regulation and institutions. This publication documents the outcome of the CRP and is structured into thematic chapters, covering areas analysed. Each chapter was prepared under the guidance of a lead author and involved co-authors from different Member States with diverse expertise in related areas. Participants drew on the results of earlier

  20. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  1. Microfabric of illitic clays from the Pacific deep-sea basin

    International Nuclear Information System (INIS)

    Burkett, D.J.; Bennett, R.H.; Bryant, W.R.

    1990-01-01

    The microfabric of deep-sea illitic clays was investigated using electron microscopy in support of the In-Situ Heat Transfer Experiment (ISHTE) Simulation test (ISIMU) and the Subseabed Disposal Program (SDP). Sandia National Laboratories, ISHTE and the field exercises were designed to investigate the thermal, fluid, and mechanical response of the sediment to the emplacement of radioactive waste in the seabed. Clay fabric of an undisturbed core sample, designated RAMA, was compared to dredge, remolded, reconsolidated material in order to investigate the effects of mechanical disturbances from sediment remolding and heater probe insertion and effects of induced thermal gradients caused by heating of the sediment

  2. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  3. Pilot research projects for underground disposal of radioactive wastes in the United States of America

    International Nuclear Information System (INIS)

    Stein, R.; Collyer, P.L.

    1984-01-01

    Disposal of commercial radioactive waste in the United States of America in a deep underground formation will ensure permanent isolation from the biosphere with minimal post-closure surveillance and maintenance. The siting, design and development, performance assessment, operation, licensing, certification and decommissioning of an underground repository have stimulated the development of several pilot research projects throughout the country. These pilot tests and projects, along with their resulting data base, are viewed as important steps in the overall location and construction of a repository. Beginning in the 1960s, research at pilot facilities has progressed from underground spent fuel tests in an abandoned salt mine to the production of vitrified nuclear waste in complex borosilicate glass logs. Simulated underground repository experiments have been performed in the dense basalts of Washington State, the volcanic tuffaceous rock of Nevada and both domal and bedded salts of Louisiana and Kansas. In addition to underground pilot in situ tests, other facilities have been constructed or modified to monitor the performance of spent fuel in dry storage wells and self-shielded concrete casks. As the National Waste Terminal Storage (NWTS) programme advances to the next stage of underground site characterization for each of three different geological sites, additional pilot facilities are under consideration. These include a Test and Evaluation Facility (TEF) for site verification and equipment performance and testing, as well as a salt testing facility for verification of in situ simulation equipment. Although not associated with the NWTS programme, the construction of the Waste Isolation Pilot Plant (WIPP) in the bedded salts of New Mexico is well under way for deep testing and experimentation with the defence programme's transuranic nuclear waste. (author)

  4. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  5. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  6. Shale disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within

  7. Commercial disposal of high integrity containers (HICs) containing EPICOR-II prefilters from Three Mile Island: Reflections and projections

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Schmitt, R.C.

    1986-09-01

    The processes of loading, transporting, and commerically disposing of 46 EPICOR-II prefilters, each contained in a High Integrity Container (HIC), are described. Also described are participation of the regulatory agencies and industrial organizations in combining their efforts to accomplish this task. The significant aspect of the task was that the commerical disposal involved the first-of-a-kind production use of a reinforced concrete HIC at the US Ecology, Inc., facility in the State of Washington. The same type of container probably can be used in below- or above-ground disposal of other types of high specific activity, low-level nuclear wastes. 14 refs., 4 figs

  8. Application of organic tracers in characterizing the greater confinement disposal test at the Nevada Test Site

    International Nuclear Information System (INIS)

    Olson, M.C.

    1985-01-01

    The Greater Confinement Disposal Test (GCDT) is a research project investigating the feasibility of augered-shaft disposal of low-level radioactive waste considered unsuitable for shallow land burial. Gaseous diffusion of radionuclides through alluvial sediments is considered the primary contaminant migration process. Volatile halocarbon tracers are released in the subsurface and their migration is monitored to determine media effective diffusion coefficients, tortuosity values, and sorption terms. Design and instrumentation of the emplacement and monitoring shafts of the disposal facility are detailed. Instrumentation includes a three-dimensional array of soil-air sample stations encircling the disposal waste. Recirculation flow lines minimize induced advection in the alluvial matrix due to tracer sample collection. 6 references, 5 figures, 2 tables

  9. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  10. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  11. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    International Nuclear Information System (INIS)

    McLaughlin, T.J.

    1998-01-01

    This document is prepared in order to support the US Department of Energy's evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors

  12. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  13. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  14. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  15. Study on risk communication support system of geological disposal

    International Nuclear Information System (INIS)

    Higuchi, Natsuko; Yoshizawa, Yuji; Takeuchi, Mitsuo; Kitayama, Kazumi; Kobayashi, Yoko

    2008-01-01

    In order to smoothly implement the selection of a final site for disposal of high-level radioactive waste (HLW), it is necessary to ensure effective communication with various stakeholders and to gain public confidence. Text mining technology can extract useful information from texts such as symposium dialogs or questionnaires after a lecture. The problem and its solution are extracted by structuring and visualizing the topics and it is possible to obtain feedback information for the next symposium or lecture and/or posterity. We applied text mining to analyze a facilitation of panel discussion and to understand future researchers. The development of such an analysis technique will contribute to mutual confidence and agreement among all the stakeholders in a HLW disposal project. (author)

  16. Spent fuel disposal problem in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Milanov, M; Stefanova, I [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1994-12-31

    The internationally agreed basic safety principles and criteria for spent fuel (SF) and high level waste (HLW) disposal are outlined. In the framework of these principles the specific problems of Bulgaria described in the `National Concept for Radioactive Waste Management and Disposal in Republic of Bulgaria` are discussed. The possible alternatives for spent fuel management are: (1) sending the spent fuel for disposal in other country; (2) once-through cycle and (3) closed fuel cycle. A mixed solution of the problem is implemented in Bulgaria. According to the agreement between Bulgaria and former Soviet Union a part of the spent fuel has been returned to Russia. The once-through and closed-fuel cycle are also considered. The projected cumulated amount of spent fuel is estimated for two cases: (1) the six units of Kozloduy NPP are in operation till the end of their lifetime (3300 tHM) and (2) low estimate (2700 tHM) - only units 5 and 6 are operated till the end of their lifetime. The reprocessing of the total amount of 3300 tHM will lead to the production of about 370 m{sup 3} vitrified high level wastes. Together with the HLW about 1850 m{sup 3} cladding hulls and 7800 m{sup 3} intermediate-level wastes will be generated, which should be disposed off in deep geological repository. The total production of radioactive waste in once-through cycle is 181 000 m{sup 3}, and in closed cycle - 190 000 m{sup 3}. Geological investigations are performed resulting in categorization of the territory of the country based on geological, geotechnical and hydrogeological conditions. This will facilitate the choice of the most suitable location for deep geological repository. 7 figs., 11 refs.

  17. NEA international co-operative projects

    International Nuclear Information System (INIS)

    1989-01-01

    This text is consecrated at the international co-operative projects of the OECD Nuclear Energy Agency (NEA) in the field of reactor safety (Halden reactor project, Loft project, studies on the damaged Three Mile Island unit-2 reactor, inspection of reactor steel components, incident reporting system) and in the field of radioactive waste management (Stripa project, geochemical data bases, Alligator river project, seabed disposal of high-level radioactive waste, decommissioning of nuclear facilities)

  18. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  19. 7 CFR 1955.132 - Pilot projects.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Pilot projects. 1955.132 Section 1955.132 Agriculture... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.132 Pilot projects. FmHA or its successor agency under Public Law 103-354 may conduct pilot projects to test policies and...

  20. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  1. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  2. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  3. Fiscal 2000 survey report on rationalization project for international energy conservation, technological dissemination project for international energy conservation, and Green Helmet Project. Japan-China alternative energy seminar/waste disposal; 2000 nendo kokusai energy shiyo gorika nado taisaku jigyo, kokusai energy shohi koritsuka nado gijutsu fukyu jigyo, green helmet jigyo chosa hokokusho. Nicchu sekiyu daitai energy seminar haikibutsu shori

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper explains the Japan-China alternative energy seminar (February 28 and March 1, 2001, at Beijing). The purpose of the seminar is to introduce systematic and three-dimensional or land/sea/air measures for waste disposal including recycling in Japan, to provide guidance of measures in improving recognition and methods for waste disposal in China, and also to contribute to the dissemination and promotion of a model project for effectively utilizing waste heat from rubbish incineration, a project being implemented in Harbin City now. The activities of NEDO were introduced, with emphasis placed on a model program, called Green Aid Project, for managing heat from waste incineration. On the subjects of sustainable development, urban environment, and energy, the policy of China's tenth five-year plan was demonstrated, and the treatment of wastes in China was also explained. The present state of waste processing in Japan was introduced, as was its maintenance of the facilities. Concerning Japan's waste processing technologies and characteristics of the equipment, there were presented non-incineration processing including crushing/separating, RDF, compost, methane fermentation, etc.; incineration plants; and each of the technologies such as combustion, exhaust gas, ash treatment, use of remaining heat, and gasification melting. (NEDO)

  4. Concept and Idea-Project for Yugoslav Low and Intermediate level Radioactive Waste Materials Final Disposal Facility

    International Nuclear Information System (INIS)

    Peric, A.

    1997-01-01

    Encapsulation of rad waste in a mortar matrix and displacement of such solidified waste forms into the shallow land burial system, engineered trench system type is suggested concept for the final disposal of low and intermediate level rad waste. The mortar-rad waste mixtures are cured in containers of either concrete or metal for an appropriate period of time, after which solidified rad waste-mortar monoliths are then placed in the engineered trench system, parallelepiped honeycomb structure. Trench consists of vertical barrier-walls, bottom barrier-floors, surface barrier-caps and permeable-reactive walls. Surroundings of the trench consists of buffer barrier materials, mainly clay. Each segment of the trench is equipped with the independent drainage system, as a part of the main drainage. Encapsulation of each filled trench honeycomb segment is performed with concrete cap. Completed trench is covered with impermeable plastic foil and soil leaner, preferably clay. Paper presents an overview of the final disposal facility engineered trench system type. Advantages in comparison with other types of final disposal system are given. (author)

  5. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  6. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Rob

    2012-01-01

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts

  7. A first approximation for modeling the liquid diffusion pathway at the greater confinement disposal facilities

    International Nuclear Information System (INIS)

    Olague, N.E.; Price, L.L.

    1991-01-01

    The greater confinement disposal (GCD) project is an ongoing project examining the disposal of orphan wastes in Area 5 of the Nevada Test Site. One of the major tasks for the project is performance assessment. With regard to performance assessment, a preliminary conceptual model for ground-water flow and radionuclide transport to the accessible environment at the GCD facilities has been developed. One of the transport pathways that has been postulated is diffusion of radionuclides in the liquid phase upward to the land surface. This pathway is not usually considered in a performance assessment, but is included in the GCD conceptual model because of relatively low recharge estimates at the GCD site and the proximity of the waste to the land surface. These low recharge estimates indicate that convective flow downward to the water table may be negligible; thus, diffusion upward to the land surface may then become important. As part of a preliminary performance assessment which considered a basecase scenario and a climate-change scenario, a first approximation for modeling the liquid-diffusion pathway was formulated. The model includes an analytical solution that incorporates both diffusion and radioactivity decay. Overall, these results indicate that, despite the configuration of the GCD facilities that establishes the need for considering the liquid-diffusion pathway, the GCD disposal concept appears to be a technically feasible method for disposing of orphan wastes. Future analyses will consist of investigating the underlying assumptions of the liquid-diffusion model, refining the model is necessary, and reducing uncertainty in the input parameters. 11 refs., 6 figs

  8. The analysis of geological formations from Romania available for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Alecu, Catalin

    2003-01-01

    The majority of countries possessing nuclear power industry has not yet decided upon the option about closing the nuclear cycle. There are still in progress projects concerning the final disposal, while worldwide it is not foreseen the reprocessing of the whole amount of reusable fissionable materials. The annual worldwide production of used nuclear fuel continues to be about 10 500 - 11 000 tones of heavy metal. The difficulties in designing used fuel final disposal repositories led to the design of some interim storage facilities, providing a satisfactory safety level for biosphere. On the other hand, regardless of the selected option we respect to closing the nuclear cycle, a final repository must exists, either for the high level wastes resulted from reprocessing the used nuclear fuel or for the used fuel considered radioactive waste. Although, presently, in Romania, the nuclear fuel extracted from the reactor after its 'useful life' is declared as radioactive waste, it may contain a certain amount of fissionable material that could be used in other types of reactors. This possibility implies taking into account the concept regarding the recovery of fuel after a certain period of time, although, by definition, final disposal means prevention of this possibility. The harmonization of the Romanian legislation with that of the European Community and the adhering to the European Conventions, poses among other issues the problem of the final disposal of the used nuclear fuel. Starting from these major requirements the paper presents the main aspects of the Project 011/11.10.2001, entitled 'Researches for the selection and preliminary characterization of the host rock for the final disposal of the used nuclear fuel', part of The National Research Program: Medium, Energy and Resources. A complex analysis regarding the implications on the design of the Used Nuclear Fuel Final Disposal Repository in Romania was performed, the analysis of the available geological

  9. Developing a LLW disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.; Hanrahan, T.P.

    1988-01-01

    US Ecology has been designated by the State of California to site and operate a low-level radioactive waste disposal facility. The firm identified three sites for detailed characterization work in February, 1987. Ecological and archaeological studies and related environmental assessments were undertaken to obtain land use permits from the Bureau of Land Management, which holds title to the sites. Geophysics investigations, exploratory borings, well drilling and weather station installation followed. Local Committees were established for each site to assist US Ecology in evaluating socio-economic impacts, and Native Americans were consulted regarding cultural resources. The project's Citizens Advisory Committee assisted in evaluating the three candidate sites. US Ecology systematically integrated citizen involvement into the technical studies leading to selection of the two site finalists. This approach furthered two objectives. Community leaders and the public received accurate information on the nature of low-level radioactive waste and the environmental conditions appropriate for its disposal

  10. Storage and disposal of radioactive waste as glass in canisters

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal

  11. Contents and Sample Arguments of a Safety Case for Near Surface Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2017-06-01

    This publication arises from the results of two projects to assist Member States in understanding and developing safety cases for near-surface radioactive waste disposal facilities. The objective of the publication is to give detailed information on the contents of safety cases for radioactive waste disposal and the types of arguments that may be included. It is written for technical experts preparing a safety case, and decision makers in the regulatory body and government. The publication outlines the key uses and aspects of the safety case, its evolution in parallel with that of the disposal facility, the key decision steps in the development of the waste disposal facility, the components of the safety case, their place in the Matrix of Arguments for a Safety Case (the MASC matrix), and a detailed description of the development of sample arguments that might be included in a safety case for each of two hypothetical radioactive waste disposal facilities.

  12. 7 CFR 1777.13 - Project priority.

    Science.gov (United States)

    2010-01-01

    ... joint financing committed to the proposed project is: (i) Twenty percent or more private, local, or.... (See definition in § 1777.4). The proposed project will provide water and/or waste disposal services to... 7 Agriculture 12 2010-01-01 2010-01-01 false Project priority. 1777.13 Section 1777.13 Agriculture...

  13. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.

  14. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    International Nuclear Information System (INIS)

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals

  15. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  16. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  17. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235 U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235 U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  18. Durability test of geomembrane liners presumed to avail near surface disposal facilities for low-level waste generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Kurosawa, Ryohei; Sakamoto, Yoshiaki; Kanno, Naohiro; Kashima, Takahiro

    2014-02-01

    The Low-level Radioactive Waste Disposal Project Center will construct near surface disposal facilities for radioactive wastes from research, industrial and medical facilities. The disposal facilities consist of “concrete pit type” for low-level radioactive wastes and “trench type” for very low level radioactive wastes. As for the trench type disposal facility, two kinds of facility designs are on projects – one for a normal trench type disposal facility without any of engineered barriers and the other for a trench type disposal facility with geomembrane liners that could prevent from causing environmental effects of non radioactive toxic materials contained in the waste packages. The disposal facility should be designed taking basic properties of durability on geomembrane liners into account, for it is exposed to natural environment on a long-term basis. This study examined mechanical strength and permeability properties to assess the durability on the basis of an indoor accelerated exposure experiment targeting the liner materials presumed to avail the conceptual design so far. Its results will be used for the basic and detailed design henceforth by confirming the empirical degradation characteristic with the progress of the exposure time. (author)

  19. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  20. Navy explosive ordnance disposal project: Optical ordnance system development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1996-03-01

    An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.