WorldWideScience

Sample records for subscale injector testing

  1. A3 Subscale Diffuser Test Article Design

    Science.gov (United States)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  2. Subscale hood seal test topical report

    Energy Technology Data Exchange (ETDEWEB)

    Versteeg, J.L.; Herold, B.A.; McClintic, J.K.; Schmall, R.A.; Hoetzl, M.

    1991-09-06

    To maximize the transfer of heat from the recirculated gases to the scrap, it is essential to percolate as much of the gases as possible through the scrap. To accomplish this flow path and avoid the bypassing of hot gas around the scrap, the seal between the preheater hood and the scrap bucket must be relatively tight. These tests which are described in this report were designed to measure the performance of several possible seal designs under simulated operating conditions. At the conclusion of the tests, one design was recommended as the primary arrangement with another design considered as an alternate. Both designs met the criteria of low leakage but one design was preferred due an expected greater resistance to wear. The test results also provided valuable information for estimating seal leakage in the full scale installation.

  3. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Science.gov (United States)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  4. Swirl Coaxial Injector Testing with LOX/RP-J

    Science.gov (United States)

    Greene, Sandra Elam; Casiano, Matt

    2013-01-01

    Testing was conducted at NASA fs Marshall Space Flight Center (MSFC) in the fall of 2012 to evaluate the operation and performance of liquid oxygen (LOX) and kerosene (RP ]1) in an existing swirl coaxial injector. While selected Russian engines use variations of swirl coaxial injectors, component level performance data has not been readily available, and all previously documented component testing at MSFC with LOX/RP ]1 had been performed using a variety of impinging injector designs. Impinging injectors have been adequate for specific LOX/RP ]1 engine applications, yet swirl coaxial injectors offer easier fabrication efforts, providing cost and schedule savings for hardware development. Swirl coaxial elements also offer more flexibility for design changes. Furthermore, testing with LOX and liquid methane propellants at MSFC showed that a swirl coaxial injector offered improved performance compared to an impinging injector. So, technical interest was generated to see if similar performance gains could be achieved with LOX/RP ]1 using a swirl coaxial injector. Results would allow such injectors to be considered for future engine concepts that require LOX/RP ]1 propellants. Existing injector and chamber hardware was used in the test assemblies. The injector had been tested in previous programs at MSFC using LOX/methane and LOX/hydrogen propellants. Minor modifications were made to the injector to accommodate the required LOX/RP ]1 flows. Mainstage tests were performed over a range of chamber pressures and mixture ratios. Additional testing included detonated gbombs h for stability data. Test results suggested characteristic velocity, C*, efficiencies for the injector were 95 ]97%. The injector also appeared dynamically stable with quick recovery from the pressure perturbations generated in the bomb tests.

  5. SPE5 Sub-Scale Test Series Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Vandersall, Kevin S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reeves, Robert V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DeHaven, Martin R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strickland, Shawn L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-14

    A series of 2 SPE5 sub-scale tests were performed to experimentally confirm that a booster system designed and evaluated in prior tests would properly initiate the PBXN-110 case charge fill. To conduct the experiments, a canister was designed to contain the nominally 50 mm diameter booster tube with an outer fill of approximately 150 mm diameter by 150 mm in length. The canisters were filled with PBXN-110 at NAWS-China Lake and shipped back to LLNL for testing in the High Explosives Applications Facility (HEAF). Piezoelectric crystal pins were placed on the outside of the booster tube before filling, and a series of piezoelectric crystal pins along with Photonic Doppler Velocimetry (PDV) probes were placed on the outer surface of the canister to measure the relative timing and magnitude of the detonation. The 2 piezoelectric crystal pins integral to the booster design were also utilized along with a series of either piezoelectric crystal pins or piezoelectric polymer pads on the top of the canister or outside case that utilized direct contact, gaps, or different thicknesses of RTV cushions to obtain time of arrival data to evaluate the response in preparation for the large-scale SPE5 test. To further quantify the margin of the booster operation, the 1st test (SPE5SS1) was functioned with both detonators and the 2nd test (SPE5SS2) was functioned with only 1 detonator. A full detonation of the material was observed in both experiments as observed by the pin timing and PDV signals. The piezoelectric pads were found to provide a greater measured signal magnitude during the testing with an RTV layer present, and the improved response is due to the larger measurement surface area of the pad. This report will detail the experiment design, canister assembly for filling, final assembly, experiment firing, presentation of the diagnostic results, and a discussion of the results.

  6. Summary of Liquid Oxygen/Hydrogen, Direct Metal Laser Sintering Injector Testing and Evaluation Effort at Marshall Space Flight Center

    Science.gov (United States)

    Barnett, Gregory; Bullard, David B.

    2015-01-01

    The last several years have witnessed a significant advancement in the area of additive manufacturing technology. One area that has seen substantial expansion in application has been laser sintering (or melting) in a powder bed. This technology is often termed 3D printing or various acronyms that may be industry, process, or company specific. Components manufactured via 3D printing have the potential to significantly reduce development and fabrication time and cost. The usefulness of 3D printed components is influenced by several factors such as material properties and surface roughness. This paper details three injectors that were designed, fabricated, and tested in order to evaluate the utility of 3D printed components for rocket engine applications. The three injectors were tested in a hot-fire environment with chamber pressures of approximately 1400 psia. One injector was a 28 element design printed by Directed Manufacturing. The other two injectors were identical 40 element designs printed by Directed Manufacturing and Solid Concepts. All the injectors were swirl-coaxial designs and were subscale versions of a full-scale injector currently in fabrication. The test and evaluation programs for the 28 element and 40 element injectors provided a substantial amount of data that confirms the feasibility of 3D printed parts for future applications. The operating conditions of previously tested, conventionally manufactured injectors were reproduced in the 28 and 40 element programs in order to contrast the performance of each. Overall, the 3D printed injectors demonstrated comparable performance to the conventionally manufactured units. The design features of the aforementioned injectors can readily be implemented in future applications with a high degree of confidence.

  7. Planetary Airplane Extraction System Development and Subscale Testing

    Science.gov (United States)

    Teter, John E., Jr.

    2006-01-01

    The Aerial Regional-scale Environmental Survey (ARES) project will employ an airplane as the science platform from which to collect science data in the previously inaccessible, thin atmosphere of Mars. In order for the airplane to arrive safely in the Martian atmosphere, a number of sequences must occur. A critical element in the entry sequence at Mars is an extraction maneuver to separate the airplane quickly (in less than a second) from its protective backshell to reduce the possibility of re-contact, potentially leading to mission failure. This paper describes the development, testing, and lessons learned from building a 1/3 scale model of this airplane extraction system. This design, based on the successful Mars Exploration Rover (MER) extraction mechanism, employs a series of trucks rolling along tracks located on the surface of the central parachute can. Numerous tests using high speed video were conducted at the Langley Research Center to validate this concept. One area of concern was that that although the airplane released cleanly, a pitching moment could be introduced. While targeted for a Mars mission, this concept will enable environmental surveys by aircraft in other planetary bodies with a sensible atmosphere such as Venus or Saturn's moon, Titan.

  8. Pool swell sub-scale testing and code comparison

    International Nuclear Information System (INIS)

    Elisson, K.

    1981-01-01

    The main objective of the experiment was to investigate the pool swell dynamics in general and the forces on the lowered central part of the diaphragm between drywell and wetwell in particular. Apart from the high speed camera pressure transducers and strain gauges were used to monitor the transient. Data was recorded on a 14 channel FM recorder and then digitalised and plotted. In total more than one hundred tests were performed including parametric variations of for example geometry, break flow, initial drywell pressure and initial water level. In parallel to this experiment pool swell calculations have been performed with the computer codes COPTA and STEALTH. COPTA which is a lumped mass code for pressure suppression containment analysis has a slug pool swell mode. STEALTH which is a general purpose lagrangian hydrodynamics code has been used in a 2-D axisymmetric version. The STEALTH code has been used to calculate the radial variations in the vertical displacement and velocity of the pool surface and to predict the load on the lowered central part of the diaphragm. A comparison between the calculations and the experimental data indicates that both codes are sufficiently correct in their description of the pool swell transient. (orig.)

  9. Tritium pellet injector design for tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper

  10. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  11. An Injector for the CLIC Test Facility (CTF3)

    CERN Document Server

    Braun, H; Rinolfi, Louis; Zhou, F; Mouton, B; Miller, R; Yeremian, A D

    2000-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  12. An Injector for the CLIC Test Facility (CTF3)

    International Nuclear Information System (INIS)

    Miller, Roger H.

    2001-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed

  13. An injector for the CLIC test Facility (CTF3)

    CERN Document Server

    Braun, Hans-Heinrich; Rinolfi, L.; Zhou, F.; Mouton, B.; Miller, R.; Yeremian, D.

    2008-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  14. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    Science.gov (United States)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  15. Design and Test of a Nb3Sn Subscale Dipole Magnet for Training Studies

    International Nuclear Information System (INIS)

    Felice, Helene; Caspi, Shlomo; Dietderich, Daniel R.; Felice, Helene; Ferracin, Paolo; Gourlay, Steve A.; Hafalia, Aurelo R.; Lietzke, Alan F.; Mailfert, Alain; Sabbi, GainLuca; Vedrine, Pierre

    2007-01-01

    As part of a collaboration between CEA/Saclay and the Superconducting Magnet Group at LBNL, a subscale dipole structure has been developed to study training in Nb3Sn coils under variable pre-stress conditions. This design is derived from the LBNL Subscale Magnet and relies on the use of identical Nb 3 Sn racetrack coils. Whereas the original LBNL subscale magnet was in a dual bore 'common-coil' configuration, the new subscale dipole magnet (SD) is assembled as a single bore dipole made of two superposed racetrack coils. The dipole is supported by a new mechanical structure developed to withstand the horizontal and axial Lorentz forces and capable of applying variable vertical, horizontal and axial preload. The magnet was tested at LBNL as part of a series of training studies aiming at understanding of the relation between pre-stress and magnet performance. Particular attention is given to the coil ends where the magnetic field peaks and stress conditions are the least understood. After a description of SD design, assembly, cool-down and tests results are reported and compared with the computations of the OPERA3D and ANSYS magnetic and mechanical models

  16. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    Science.gov (United States)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  17. First operational tests of the positive-ion injector for ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Den Hartog, P.K.; Pardo, R.C.

    1989-01-01

    This paper summarizes the status and first operational experience with the positive-ion injector for ATLAS. The new injector consists of an ECR ion source on a 350-kV platform, followed by a superconducting injector linac of a new kind. In Phase I of this project, the ECR source, voltage platform, bunching system, beam-transport system, and a 3-MV injector linac were completed and tested in early 1989 by a successful acceleration of an 40 Ar 12+ beam. Most of the new system operated as planned, and the longitudinal emittance of the 36-MeV beam out of the injector was measured to be only 5 π keV-ns, much smaller than the emittance for the present tandem injector. When completed in 1990, the final injector linac will be enlarged to 12 MV, enough to allow the original ATLAS linac to accelerate uranium ions up to 8 MeV/u. 8 refs., 2 figs

  18. PIP-II Injector Test: Challenges and Status

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, P. F. [Fermilab; Carneiro, J. P. [Fermilab; Edelen, J. [Fermilab; Lebedev, V. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab

    2016-10-04

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the Injector Test warm front end, including results of the beam commissioning through the installed components, and progress with SRF cryomodules and other systems.

  19. Overview of the testing activities on ITER sub-scale pre-compression rings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati, Rome (Italy); Capobianchi, Mario; Crescenzi, Fabio; Massimi, Alberto; Mugnaini, Giampiero; Pizzuto, Aldo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati, Rome (Italy); Knaster, Juan [ITER Organisation, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France); Rajainmaki, Hannu [FUSION FOR ENERGY, Josep Pla no. 2, Torres Diagonal Litoral Edificio B3, 08019 Barcelona (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer ENEA developed a high strength glass fiber-epoxy composite for ITER pre-compression rings. Black-Right-Pointing-Pointer High UTS values were obtained at RT on linear specimens (2200 MPa) and on scaled ring mock-ups (1550 MPa). Black-Right-Pointing-Pointer Creep tests showed very low creep strain and creep rates. Black-Right-Pointing-Pointer Long term tests showed no significant stress relaxation on the ring mock-ups. - Abstract: After a first R and D and testing activity to develop and characterize by tensile and creep tests a high strength glass fiber-epoxy composite as reference material for the manufacture of ITER pre-compression rings, ENEA designed and manufactured a dedicated testing facility and different sub-scale composite ring mock-ups in order to characterize their mechanical properties. The paper reports the results of the overall testing activities performed during the last years on a total number of eleven sub-scale pre-compression ring mock-ups manufactured by winding S2 glass fibers on a diameter of 1 m (1/5 of the full scale) both by vacuum pressure epoxy impregnation (VPI) and filament wet winding techniques (WW). The first three rings were manufactured by ENEA Frascati thanks to a particular VPI technique; one of them was used as base composite material to manufacture different sets of specimens for shear, compression and non destructive tests (NDT). Then, five other mock-ups were manufactured following ENEA VPI process and three using WW technique by two different industrial companies. The rings were tested in ENEA Frascati in a dedicated hydraulic testing machine consisting of 18 radial actuators working in position control with a total load capability of 1000 tons. The complete testing campaign consisted of six ultimate tensile strength (UTS) tests and four stress relaxation (SR) tests. The tests demonstrated that the composite (S2 glass-epoxy) is a valid and viable solution for the ITER pre

  20. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Wysor, R.B.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium

  1. The high current test facility injector operation to 40 mA dc

    International Nuclear Information System (INIS)

    Ungrin, J.; Ormrod, J.H.; Michel, W.L.

    1976-01-01

    The high current test facility injector is a 750 keV proton accelerator designed to investigate the problems involved in the acceleration of intense dc proton beams. The performance of the injector and the experience gained in operation with dc beams up to 40 mA are described. (author)

  2. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  3. Pellet injectors for the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Combs, S.K.

    1986-01-01

    The repeating pneumatic injector is a device from the ORNL development program. A new eight-shot deuterium pellet injector has been designed and constructed specifically for the TFTR application and is scheduled to replace the repeating injector this year. The new device combines a cryogenic extruder and a cold wheel rotary mechanism to form and chamber eight pellets in a batch operation; the eight pellets can then be delivered in any time sequence. Another unique feature of the device is the variable pellet size with three pellets each of 3.0 and 3.5 mm diam and two each of 4.0 mm diam. The experience and technology that have been developed on previous injectors at ORNL have been utilized in the design of this latest pellet injection system

  4. Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

    International Nuclear Information System (INIS)

    Andraka, Charles; Bohn, Mark S.; Corey, John; Mehos, Mark; Moreno, James; Rawlinson, Scott

    1999-01-01

    We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6 th -scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750 ampersand deg;C. The air/fuel mixture was electrically preheated to 640 ampersand deg;C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6 th -scale results, we are designing a till-scale hybrid receiver. This is a fully-integrated system, including burner, pin-fin primary heat exchanger, recuperator (in place of the electrical pre-heater used in the prototype system), solar absorber, and sodium heat pipe. The major challenges of the design are to avoid pre-ignition, achieve robust heat-pipe performance, and attain long life of the burner matrix, recuperator, and flue-gas seals. We have used computational fluid dynamics extensively in designing to avoid pre-ignition and for designing the heat-pipe wick, and we have used individual component tests and results of the 1/6 th -scale test to optimize for long life. In this paper, we present our design philosophy and basic details of our design. We describe the sub-scale test rig and compare test results with predictions. Finally, we outline the evolution of our full-scale design, and present its current status

  5. First operational tests of the positive-ion injector for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Den Hartog, P.K.; Pardo, R.C.; Shepard, K.W.; Benaroya, R.; Billquist, P.J.; Clifft, B.E.; Markovich, P.; Munson, F.H. Jr.; Nixon, J.M.

    1989-01-01

    This paper summarizes the status and first operational experience with the positive-ion injector for ATLAS. The new injector consists of an ECR ion source on a 350-kV platform, followed by a superconducting injector linac of a new kind. In Phase I of this project, the ECR source, voltage platform, bunching system, beam-transport system, and a 3-MV injector linac were completed and tested in early 1989 by a successful acceleration of an /sup 40/Ar/sup 12 +/ beam. Most of the new system operated as planned, and the longitudinal emittance of the 36-MeV beam out of the injector was measured to be only 5 ..pi.. keV-ns, much smaller than the emittance for the present tandem injector. When completed in 1990, the final injector linac will be enlarged to 12 MV, enough to allow the original ATLAS linac to accelerate uranium ions up to 8 MeV/u. 8 refs., 2 figs.

  6. Digital Measuring Devices Used for Injector Hydraulic Test

    Directory of Open Access Journals (Sweden)

    S. N. Leontiev

    2015-01-01

    Full Text Available To ensure a high specific impulse of the LRE (liquid-propellant engine chamber it is necessary to have optimally organized combustion of the fuel components. This can be ensured by choosing the optimum geometry of gas-dynamic contour of the LRE combustor, as well as by improving the sputtering processes and mixing the fuel components, for example, by selection of the optimum type, characteristics, and location of injectors on the mixing unit of the chamber.These particular reasons arise the interest in the injector characteristics in terms of science, and technological aspects determine the need for control of underlying design parameters in their manufacture.The objective of this work is to give an experimental justification on used digital measurement instrumentation and research the hydraulic characteristics of injectors.To determine injector parameters most widely were used the units with sectional collectors. A technique to control injector parameters using the sectional collectors involves spraying the liquid by injector at a given pressure drop on it for a certain time (the longer, the higher the accuracy and reliability of the results and then determining the amount of liquid in each section to calculate the required parameters of injector.In this work the liquid flow through the injector was determined by high-precision flowmeters FLONET FN2024.1 of electromagnetic type, which have very high metrological characteristics, in particular a flow rate error does not exceed 0.5% in a range of water flow from Qmin= 0.0028 l/s to Qmax Qmax = 0.28 l/s. To determine the coefficient of uneven spray were used differential pressure sensors DMD 331-ASLX of company "DB Sensors RUS", which have an error of 0.075% with a range of differential pressure 0 ... 5 kPa. Measuring complex MIC-200 of company "NPP Measure" and WinPos software for processing array information provided entry, recording, and processing of all the data of the experiment.In this

  7. Design and Optimization of a Hypersonic Test Facility for Sub-Scale Testing

    National Research Council Canada - National Science Library

    O'Kresik, Stephen

    2003-01-01

    ... to 7.5 with a maximum system mass flow rate variation from 3 to 45 lbm/s. Additionally, a dynamic design process was outlined to assist other designers in producing similar test stands. Finally, a software analysis package was developed to analyze proposed changes in the support system architecture.

  8. Development of a non-engine fuel injector deposit test for alternative fuels (ENIAK-project)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Hajo; Pohland vom Schloss, Heide [OWI - Oel Waerme Institut GmbH, Herzogenrath (Germany)

    2013-06-01

    Deposit formation in and on the injectors of diesel engines may lead to injector malfunction, resulting in a loss in power, rough engine operation and poor emission levels. Poor Biodiesel quality, contamination with copper and zinc as well as undesired reactions between (several) additives and biodiesel components are known causes for nozzle fouling. Therefore, good housekeeping when using biodiesel is required, and all additives have to pass a no-harm test concerning injector fouling. The standard fouling tests are two engine tests: The XUD9-test (CEC F-23-01) and the DW-10-test (CEC DF 98-08). The XUD9 is a cost efficient, fast and proven testing method. It uses, however, an obsolete indirect injection diesel engine and cannot reproduce internal diesel injector deposits (IDID). The newer DW10 test is complex, costly and designed for high stress. This reduces the engine life and leads to a fuel consumption of approximately 1,000 1 per test, both contributing to the high costs of the test. The ENIAK-Project is funded by the FNR (''Fachagentur Nachwachsende Rohstoffe'', Agency for Renewable Resources) and conducted in cooperation with AGQM, ASG and ERC. Its main goal is the development, assembly, commissioning, and evaluation of a non-engine fuel injector test. It uses a complete common rail system. The injection takes place in a self-designed reactor instead of an engine, and the fuel is not combusted, but re-condensed and pumped in a circle, leading to a low amount of fuel required. If the test method proves to be as reliable as expected, it can be used as an alternative test method for injector fouling with low requirements regarding infrastructure on the testing site and sample volume. (orig.)

  9. A single-stage high pressure steam injector for next generation reactors: test results and analysis

    International Nuclear Information System (INIS)

    Cattadori, G.; Galbiati, L.; Mazzocchi, L.; Vanini, P.

    1995-01-01

    Steam injectors can be used in advanced light water reactors (ALWRs) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of steam injectors, that would take advantage of the available energy from primary steam without the introduction of any rotating machinery. The reference application considered in this work is a high pressure safety injection system for a BWR; a water flow rate of about 60 kg/s to be delivered against primary pressures covering a quite wide range up to 9 MPa is required. Nevertheless, steam driven water injectors with similar characteristics could be used to satisfy the high pressure core coolant makeup requirements of next generation PWRs. With regard to BWR application, an instrumented steam injector prototype with a flow rate scaling factor of about 1:6 has been built and tested. The tested steam injector operates at a constant inlet water pressure (about 0.2 MPa) and inlet water temperature ranging from 15 to 37 o C, with steam pressure ranging from 2.5 to 8.7 MPa, always fulfilling the discharge pressure target (10% higher than steam pressure). To achieve these results an original double-overflow flow rate-control/startup system has been developed. (Author)

  10. Design and testing of the 2 MV heavy ion injector for the Fusion Energy Research Program

    International Nuclear Information System (INIS)

    Abraham, W.; Benjegerdes, R.; Reginato, L.; Stoker, J.; Hipple, R.; Peters, C.; Pruyn, J.; Vanecek, D.; Yu, S.

    1995-04-01

    The Fusion Energy Research Group at the Lawrence Berkeley Laboratory has constructed and tested a pulsed 2 MV injector that produces a driver size beam of potassium ions. This paper describes the engineering aspects of this development which were generated in a closely coupled effort with the physics staff. Details of the ion source and beam transport physics are covered in another paper at this conference. This paper discusses the design details of the pulse generator, the ion source, the extractor, the diode column, and the electrostatic quadrupole column. Included will be the test results and operating experience of the complete injector

  11. Chracterization of the beam from the RFQ of the PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Carneiro. J.-P., Carneiro. J.-P. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Scarpine, V. [Fermilab; Sista, V. L.S. [Bhabha Atomic Res. Ctr.; Steimel, J. [Fermilab

    2017-05-01

    A 2.1 MeV, 10 mA CW RFQ has been installed and commissioned at the Fermilab’s test accelerator known as PIP-II Injector Test. This report describes the measure-ments of the beam properties after acceleration in the RFQ, including the energy and emittance.

  12. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development & Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan

    2014-01-01

    ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.

  13. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  14. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors

    Science.gov (United States)

    Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Fiorentin, A.; Gambetta, G.; Gnesotto, F.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Moresco, M.; Ocello, E.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Recchia, M.; Rizzolo, A.; Rostagni, G.; Sartori, E.; Siragusa, M.; Sonato, P.; Sottocornola, A.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Kashiwagi, M.; Hanada, M.; Tobari, H.; Watanabe, K.; Maejima, T.; Kojima, A.; Umeda, N.; Yamanaka, H.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Heinemann, B.; Kraus, W.; Hanke, S.; Hauer, V.; Ochoa, S.; Blatchford, P.; Chuilon, B.; Xue, Y.; De Esch, H. P. L.; Hemsworth, R.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Cavenago, M.; D'Arienzo, M.; Sandri, S.; Tonti, A.

    2017-08-01

    The ITER Neutral Beam Test Facility (NBTF), called PRIMA (Padova Research on ITER Megavolt Accelerator), is hosted in Padova, Italy and includes two experiments: MITICA, the full-scale prototype of the ITER heating neutral beam injector, and SPIDER, the full-size radio frequency negative-ions source. The NBTF realization and the exploitation of SPIDER and MITICA have been recognized as necessary to make the future operation of the ITER heating neutral beam injectors efficient and reliable, fundamental to the achievement of thermonuclear-relevant plasma parameters in ITER. This paper reports on design and R&D carried out to construct PRIMA, SPIDER and MITICA, and highlights the huge progress made in just a few years, from the signature of the agreement for the NBTF realization in 2011, up to now—when the buildings and relevant infrastructures have been completed, SPIDER is entering the integrated commissioning phase and the procurements of several MITICA components are at a well advanced stage.

  15. Hot-Fire Test of Liquid Oxygen/Hydrogen Space Launch Mission Injector Applicable to Exploration Upper Stage

    Science.gov (United States)

    Barnett, Greg; Turpin, Jason; Nettles, Mindy

    2015-01-01

    This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..

  16. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  17. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  18. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  19. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking

    Science.gov (United States)

    Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.

    2012-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.

  20. Dale Reed with X-38 and a Subscale Model Used in Test Program

    Science.gov (United States)

    1997-01-01

    shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and

  1. Construction of the facility for the testing of the TFTR Neutral Beam Injector

    International Nuclear Information System (INIS)

    Haughian, J.; Lou, K.; Roth, D.

    1979-11-01

    The prototype for the TFTR Neutral Beam Injection System has been assembled at the Lawrence Berkeley Laboraory, and is presently under test. Some of the construction features of the shielding enclosure, the cryogenic supply system, control and computer area, and the auxiliary vacuum and utility supply system are described. In addition, the paper describes the target chamber, its beam dump and cryopanels, and the duct that connects the target chamber to the injector vessel

  2. Doublet III neutral beam injector test tank cryopanel design

    International Nuclear Information System (INIS)

    Doll, D.W.; Kamperschroer, J.H.; Arend, P.V.

    1980-03-01

    A simple condensing cryopanel has been designed for the Doublet III neutral beam test tank with a 320,000 liters per second pumping capacity for hydrogen. This maintains a vacuum in the test tank which simulates the Doublet III vessel, 1.3 x 10 -3 Pa (approx.10 -5 torr). The hydrogen gas load comes from the beam striking the test tank calorimeter and amounts to about 7.2 torr liters per second. The cryopanel is cylindrical shaped with a liquid helium (LHe) surface that pumps through liquid nitrogen (LN) cooled aluminum chevrons located in squirrel-cage fashion around the inside surface of the cylinder. The LHe cooled surface is a smooth cylinder 2.09m in diameter by .69m long with LHe flowing in a approx. 1mm annular space between concentric cylinders. The chevrons which are not blackened are cooled from each end with LN flowing in ring manifolds that serve as the primary cryopanel structure. The LHe is force fed at 55.2 kPa remaining in the liquid phase through the panel. External heat exchanger capability permits use of helium at 3.8 to 4.2 0 K. Normal operating flow rate is 1.4 g/sec for a heat load expected to be 12.2 W total

  3. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    Science.gov (United States)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  4. Development of the quickmix injector for in-situ filter testing

    International Nuclear Information System (INIS)

    Costigan, G.; Loughborough, D.

    1993-01-01

    In-situ filter testing is routinely carried out on nuclear ventilation plant to assess the effectiveness of installed filter systems. Ideally the system is tested by introducing a sub-micron aerosol upstream of the filter, in such a way as to present a uniform challenge to the whole of the upstream filter face. Samples are withdrawn from upstream and downstream of the filter, and the respective concentrations are used to calculate the system (or filter) efficiency. These requirements are documented in the Atomic Energy Code of Practice, AECP 1054. The Filter Development Section at Harwell Laboratory has been investigating methods of improving the accuracy and reliability of the in-situ filter test over the past ten years. The programme has included the evaluation of devices used to mix the aerosol and multi-point samplers to obtain representative aerosol samples. This paper reports the results of laboratory trials on the open-quotes QUICKMIXclose quotes injector developed and patented by Harwell. The Quickmix injector is designed to mix the test aerosol with the air stream and thereby reduce the duct length required to produce uniform concentrations. The injector has been tested in ducts ranging from 150 mm diameter to 610 mm square, at air velocities up to 26 m/s. Upstream mixing lengths required to achieve a ± 10% concentration variation on the mean were reduced to between 2 and 5 duct diameters, with a very small pressure drop. This simple, compact device is being installed in new and existing plants in the UK to improve the accuracy and reliability of in-situ filter testing. Some examples of plant applications are given, together with some of the first results from operating plant

  5. Performance test results of ion beam transport for SST-1 neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Jana, M R; Mattoo, S K [Institute for Plasma Research Bhat, Gandhinagar-382428, Gujarat (India); Uhlemann, R, E-mail: mukti@ipr.res.i [Forschungszentrum Juelich, Institute fur Energieforschung IEF-4, Plasmaphysik D-52425 Juelich (Germany)

    2010-02-01

    A neutral beam injector is built at IPR to heat the plasma of SST-1 and its upgrade. It delivers a maximum beam power of 1.7 MW for 55 kV Hydrogen beam or 80 kV Deuterium beam. At lower beam voltage, the delivered power falls to 500 kW at 30 kV Hydrogen beam which is adequate to heat SST-1 plasma ions to {approx} 1 keV. Process of acceleration of ions to the required beam voltage, conversion of ions to neutrals and removal of un-neutralized ions and the beam diagnostic systems occupy a large space. The consequence is that linear extent of the neutral beam injector is at least a few meters. Also, port access provides a very narrow duct. Even a very good injector design and fabrication practices keep beam divergence at a very low but finite value. The result is beam transport becomes an important issue. Since a wide area beam is constructed by hundreds of beam lets, it becomes essential they be focused in such a way that beam transport loss is minimized. Horizontal and vertical focal lengths are two parameters, in addition to beam divergence, which give a description of the beam transport. We have obtained these two parameters for our injector by using beam transport code; making several hundred simulation runs by varying optical parameters of the beam. The selected parameters set has been translated into the engineering features of the extractor grid set of the ion source. Aperture displacement technique is used to secure the horizontal beam focusing at 5.4 m. Combination of both aperture displacement and inclining of two grid halves to {approx} 17 mrad are secured for vertical beam focusing at 7 m from earth grid of the ion source. The gaps between the design, engineered and performance tested values usually arise due to lack of exercising control over fabrication processes or due to inaccuracies in the assumption made in the model calculations of beam optics and beam transport. This has been the case with several injectors, notably with JET injector. To overcome

  6. Progress in the study and construction of the TESLA test facility injector

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T. [Paris-11 Univ., 91 - Orsay (France). Lab. de l`Accelerateur Lineaire; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee; Buhler, S.; Junquera, T. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire] [and others

    1995-12-31

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.). 7 refs.

  7. Progress in the study and construction of the TESLA test facility injector

    International Nuclear Information System (INIS)

    Chehab, R.; Bernard, M.; Bourdon, J.C.; Garvey, T.; Aune, B.; Desmons, M.; Fusellier, J.; Gougnaud, F.; Buhler, S.; Junquera, T.

    1995-01-01

    A 500 MeV, 1.3 GHz superconducting linear accelerator is being studied and built to serve as a test facility for the TESLA linear collider project. The phase 1 injector consists of a 250 keV electron gun, buncher and a superconducting capture cavity at the main linac frequency. The main characteristics (intensity, position, emittance, bunch length, energy spread) are to be measured using different techniques. A particular effort will be made on the use of optical transition radiation (OTR) for the determination of the transverse beam emittance as well as the bunch length. (K.A.)

  8. Improving the utility of the fine motor skills subscale of the comprehensive developmental inventory for infants and toddlers: a computerized adaptive test.

    Science.gov (United States)

    Huang, Chien-Yu; Tung, Li-Chen; Chou, Yeh-Tai; Chou, Willy; Chen, Kuan-Lin; Hsieh, Ching-Lin

    2017-07-27

    This study aimed at improving the utility of the fine motor subscale of the comprehensive developmental inventory for infants and toddlers (CDIIT) by developing a computerized adaptive test of fine motor skills. We built an item bank for the computerized adaptive test of fine motor skills using the fine motor subscale of the CDIIT items fitting the Rasch model. We also examined the psychometric properties and efficiency of the computerized adaptive test of fine motor skills with simulated computerized adaptive tests. Data from 1742 children with suspected developmental delays were retrieved. The mean scores of the fine motor subscale of the CDIIT increased along with age groups (mean scores = 1.36-36.97). The computerized adaptive test of fine motor skills contains 31 items meeting the Rasch model's assumptions (infit mean square = 0.57-1.21, outfit mean square = 0.11-1.17). For children of 6-71 months, the computerized adaptive test of fine motor skills had high Rasch person reliability (average reliability >0.90), high concurrent validity (rs = 0.67-0.99), adequate to excellent diagnostic accuracy (area under receiver operating characteristic = 0.71-1.00), and large responsiveness (effect size = 1.05-3.93). The computerized adaptive test of fine motor skills used 48-84% fewer items than the fine motor subscale of the CDIIT. The computerized adaptive test of fine motor skills used fewer items for assessment but was as reliable and valid as the fine motor subscale of the CDIIT. Implications for Rehabilitation We developed a computerized adaptive test based on the comprehensive developmental inventory for infants and toddlers (CDIIT) for assessing fine motor skills. The computerized adaptive test has been shown to be efficient because it uses fewer items than the original measure and automatically presents the results right after the test is completed. The computerized adaptive test is as reliable and valid as the CDIIT.

  9. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Kaye, R. A.

    1999-01-01

    In recent tests without beam, the Argonne 12 MHz split-coaxial radio-frequency quadruple (RFQ) achieved a cw intervane voltage of more than 100 kV, the design operating voltage for the device. This voltage is sufficient for the RFQ to function as the first stage of a RIB injector for the Argonne Tandem Linear Accelerator System (ATLAS). Previously reported beam dynamics calculations for the structure predict longitudinal emittance growth of only a few keV·ns for beams of mass 132 and above with transverse emittance of 0.27 π mm·mrad (normalized). Such beam quality is not typical of RFQ devices. The work reported here is preparation for tests with beams of mass up to 132. Beam diagnostic stations are being developed to measure the energy gain and beam quality of heavy ions accelerated by the RFQ using the Dynamitron accelerator facility at the ANL Physics Division as the injector. Beam diagnostic development includes provisions for performing the measurements with both a Si charged-particle detector and an electrostatic energy spectrometer system

  10. Incremental Validity of the Subscales of the Emotional Regulation Related to Testing Scale for Predicting Test Anxiety

    Science.gov (United States)

    Feldt, Ronald; Lindley, Kyla; Louison, Rebecca; Roe, Allison; Timm, Megan; Utinkova, Nikola

    2015-01-01

    The Emotional Regulation Related to Testing Scale (ERT Scale) assesses strategies students use to regulate emotion related to academic testing. It has four dimensions: Cognitive Appraising Processes (CAP), Emotion-Focusing Processes (EFP), Task-Focusing Processes (TFP), and Regaining Task-Focusing Processes (RTFP). The study examined the factor…

  11. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-01-01

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged 132 Xe and 84 Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations

  12. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  13. Gas utilization in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T 2 allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H 2 to D 2 could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs

  14. Installation Progress at the PIP-II Injector Test at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Chen, A. [Fermilab; Czajkowski, J. [Fermilab; Derwent, P. [Fermilab; Edelen, J. [Fermilab; Hanna, B. [Fermilab; Hartsell, B. [Fermilab; Kendziora, K. [Fermilab; Mitchell, D. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab; Zuchnik, T. [Fermilab; Edelen, A. [Colorado State U.

    2016-10-04

    A CW-compatible, pulsed H- superconducting linac “PIP-II” is being planned to upgrade Fermilab's injection complex. To validate the front-end concept, a test acceler-ator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Con-tinuous Wave (CW) mode, and a 10 m-long Medium En-ergy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.

  15. Status of the Warm Front End of PIP-II Injector Test

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, Alexander [Fermilab; Alvarez, Matthew [Fermilab; Andrews, Richard [Fermilab; Baffes, Curtis [Fermilab; Carneiro, Jean-Paul [Fermilab; Chen, Alex [Fermilab; Derwent, Paul [Fermilab; Edelen, Jonathan [Fermilab; Frolov, Daniil [Fermilab; Hanna, Bruce [Fermilab; Prost, Lionel [Fermilab; Saewert, Gregory [Fermilab; Saini, Arun [Fermilab; Scarpine, Victor [Fermilab; Sista, V. Lalitha [Fermilab; Steimel, Jim [Fermilab; Sun, Ding [Fermilab; Warner, Arden [Fermilab

    2017-05-01

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H⁻ SRF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10 mA DC, 30 keV H⁻ ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the warm front end.

  16. Neutron dose rate at the SwissFEL injector test facility: first measurements

    International Nuclear Information System (INIS)

    Hohmann, E.; Frey, N.; Fuchs, A.; Harm, C.; Hoedlmoser, H.; Luescher, R.; Mayer, S.; Morath, O.; Philipp, R.; Rehmann, A.; Schietinger, T.

    2014-01-01

    At the Paul Scherrer Institute, the new SwissFEL Free Electron Laser facility is currently in the design phase. It is foreseen to accelerate electrons up to a maximum energy of 7 GeV with a pulsed time structure. An injector test facility is operated at a maximum energy of 300 MeV and serves as the principal test and demonstration plant for the SwissFEL project. Secondary radiation is created in unavoidable interactions of the primary beam with beamline components. The resulting ambient dose-equivalent rate due to neutrons was measured along the beamline with different commercially available survey instruments. The present study compares the readings of these neutron detectors (one of them is specifically designed for measurements in pulsed fields). The experiments were carried out in both, a normal and a diagnostic mode of operation of the injector. Measurements were taken at the SwissFEL injector test facility using three different types of commercially available survey instruments for normal and diagnostic mode of operation at different positions inside the accelerator vault. During normal operation, the doses indicated by the different instruments agree within the measurement uncertainty except for the beam dump region. There, due to its limited energy range and high sensitivity, the LB6411 shows significantly lower dose values than the other instruments. The photon background in the vault associated with each pulse causes the scintillator used by the LB6419 to saturate. As a result, only the channel using the delayed 12 C(n,p)12-reaction could be used during the measurements. The highest doses per pulse were measured next to the beam dump and the bunch compressor. For the optimisation of the accelerator, luminescent screens can be inserted into the beam path causing a dose distributed over several metres depending on the screen type. The dose arise to 40 % from neutrons with energies of >20 MeV. Although the charge of each pulse were reduced to decrease

  17. First-principles simulation and comparison with beam tests for transverse instabilities and damper performance in the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Nicklaus, Dennis; Foster, G.William; Kashikhin, Vladimir

    2005-01-01

    An end-to-end performance calculation and comparison with beam tests was performed for the bunch-by-bunch digital transverse damper in the Fermilab Main Injector. Time dependent magnetic wakefields responsible for ''Resistive Wall'' transverse instabilities in the Main Injector were calculated with OPERA-2D using the actual beam pipe and dipole magnet lamination geometry. The leading order dipole component was parameterized and used as input to a bunch-by-bunch simulation which included the filling pattern and injection errors experienced in high-intensity operation of the Main Injector. The instability growth times, and the spreading of the disturbance due to newly misinjected batches was compared between simulations and beam data collected by the damper system. Further simulation models the effects of the damper system on the beam

  18. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  19. Fabrication, Treatment and Testing of a 1.6 Cell Photo-injector Cavity for HZB

    International Nuclear Information System (INIS)

    Kneisel, P.; Kamps, T.; Knobloch, J.; Kugeler, O.; Neumann, A.; Nietubyc, R.; Sekutowicz, J.K.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Forschungszentrum Dresden (FZD) and JLab we have fabricated and tested after appropriate surface treatment a 1.5 cell, 1300 MHz RRR niobium photo-injector cavity to be used in a demonstration test at BESSY*. Following a baseline test at JLab, the cavity received a lead spot coating of ∼ 8 mm diameter deposited with a cathode arc at the Soltan Institute on the endplate made from large grain niobium. It had been demonstrated in earlier tests with a DESY built 1.5 cell cavity - the original design - that a lead spot of this size can be a good electron source, when irradiated with a laser light of 213 nm. In the initial test with the lead spot we could measure a peak surface electric field of ∼ 29 MV/m; after a second surface treatment, carried out to improve the cavity performance, but which was not done with sufficient precaution, the lead spot was destroyed and the cavity had to be coated a second time. This contribution reports about the experiences and results obtained with this cavity.

  20. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  1. Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L. [Colorado State U.; Biedron, S. G.; Milton, S. V.; Bowring, D.; Chase, B. E.; Edelen, J. P.; Nicklaus, D.; Steimel, J.

    2016-12-16

    For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.

  2. Cooling for SC devices of test cryomodule for ADS Injector II at IMP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Wang, S. Y.; Sun, S.; Wang, S. H.; Liu, Y. Y. [Shanghai Institute of Applied Physics, CAS, Shanghai 201204 (China); Guo, X. L. [JiangSu University, Zhenjiang 212013 (China)

    2014-01-29

    The superconducting half-wave resonance cavities connected in series with superconducting solenoids will be applied to the Injector II of the Accelerator Driven Sub-critical System (ADS) to be built at the Modern Physics Institute, China. A test system has been developed for the purpose of performance test of the HWR cavities as well as validating the relevant technique for cooling the cavity and the solenoids together. It mainly comprises a cryogenic valve box (TVB), a test cryomodule (TCM1) and transfer lines. The TCM1 includes one HWR cavity, two superconducting solenoids, one cold BPM and their cooling system. The design of the TCM1 cryostat was carried out by the Shanghai Institute of Applied Physics (SINAP), CAS. Both the cavity and the solenoids will work at 4.4 K by bath cooling. The fast cooling down for the cavity from around 100 K to 120 K is required to avoid degrading of the cavity performance. After cool down and before energization, the solenoids should be warmed up to above 10 K and re-cooled down for the purpose of degaussing. The TCM1 can not only be cooled by using the dewar-filling system, but also operated by the refrigerator system. For the purpose of reducing the heat loads to the cold mass at 4 K from room temperature, thermal radiation shields cooled by liquid nitrogen flowing in tubing were employed. This paper presents the design details of cooling circuits and thermal shields of the TCM1 as well as related calculations and analyses.

  3. Sub-scale Waterflow Cavitation and Dynamic Transfer Function Testing of an Oxidizer Turbo-Pump Combined Inducer and Impeller

    Science.gov (United States)

    Karon, D. M.; Patel, S. K.; Zoladz, T. F.

    2016-01-01

    In 2009 and 2010, Concepts NREC prepared for and performed a series of tests on a 52% scale of a version of the Pratt & Whitney Rocketdyne J-2X Oxidizer Turbopump under a Phase III SBIR with NASA MSFC. The test article was a combined inducer and impeller, tested as a unit. This paper presents an overview of the test rig and facility, instrumentation, signal conditioning, data acquisition systems, testing approach, measurement developments, and lessons learned. Results from these tests were presented in the form of two papers at the previous JANNAF joint propulsion conference, in December of 2011.

  4. Using computer graphics to analyze the placement of neutral-beam injectors for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1977-01-01

    To optimize the neutral-beam current incident on the fusion plasma and limit the heat load on exposed surfaces of the Mirror Fusion Test Facility magnet coils, impingement of the neutral beams on the magnet structure must be minimized. Also, placement of the neutral-beam injectors must comply with specifications for neutral-current heating of the plasma and should allow maximum flexibility to accommodate alternative beam aiming patterns without significant hardware replacement or experiment down-time. Injector placements and aimings are analyzed by means of the Structural Analysis Movie Post Processor (SAMPP), a general-purpose graphics code for the display of three-dimensional finite-element models. SAMPP is used to visually assemble, disassemble, or cut away sections of the complex three-dimensional apparatus, which is represented by an assemblage of 8-node solid finite elements. The resulting picture is used to detect and quantify interactions between the structure and the neutral-particle beams

  5. Make-up of injector test stand (ITS-1) and preliminary results with Model-I ion source

    International Nuclear Information System (INIS)

    Matsuda, S.; Ito, T.; Kondo, U.; Ohara, Y.; Oga, T.; Shibata, T.; Shirakata, H.; Sugawara, T.; Tanaka, S.

    Constitution of the 1-st injector test stand (ITS-1) in the Thermonuclear Division, JAERI, and the performance of the Model-I ion source are described. Heating a plasma by neutral beam injection is one of the promising means in the thermonuclear fusion devices. Purpose of the test stand is to develop the ion sources used in such injection systems. The test stand was completed in February 1975, which is capable of testing the ion sources up to 12 amps at 30 kV. A hydrogen ion beam of 5.5 amps at 25 kV was obtained in the Model-I ion source

  6. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Fang Yan

    2015-05-01

    Full Text Available The 10 MeV accelerator-driven subcritical system (ADS Injector I test stand at Institute of High Energy Physics (IHEP is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC spoke cavities with β=0.12. The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β=0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ∼5  MeV. Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  7. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Science.gov (United States)

    Yan, Fang; Pei, Shilun; Geng, Huiping; Meng, Cai; Zhao, Yaliang; Sun, Biao; Cheng, Peng; Yang, Zheng; Ouyang, Huafu; Li, Zhihui; Tang, Jingyu; Wang, Jianli; Sui, Yefeng; Dai, Jianping; Sha, Peng; Ge, Rui

    2015-05-01

    The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC) spoke cavities with β =0.12 . The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β =0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ˜5 MeV . Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  8. Pre-season adductor squeeze test and HAGOS function sport and recreation subscale scores predict groin injury in Gaelic football players.

    Science.gov (United States)

    Delahunt, Eamonn; Fitzpatrick, Helen; Blake, Catherine

    2017-01-01

    To determine if pre-season adductor squeeze test and HAGOS function, sport and recreation subscale scores can identify Gaelic football players at risk of developing groin injury. Prospective study. Senior inter-county Gaelic football team. Fifty-five male elite Gaelic football players (age = 24.0 ± 2.8 years, body mass = 84.48 ± 7.67 kg, height = 1.85 ± 0.06 m, BMI = 24.70 ± 1.77 kg/m 2 ) from a single senior inter-county Gaelic football team. Occurrence of groin injury during the season. Ten time-loss groin injuries were registered representing 13% of all injuries. The odds ratio for sustaining a groin injury if pre-season adductor squeeze test score was below 225 mmHg, was 7.78. The odds ratio for sustaining a groin injury if pre-season HAGOS function, sport and recreation subscale score was football players at risk of developing groin injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. DIAGNOSTICS AND REGENERATION OF COMMON RAIL INJECTORS

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-03-01

    Full Text Available The article presents the methodology of Common Rail injector diagnostic, regeneration and regulation with use of professional test stands. The EPS 815 machine can be used to test and repair all BOSCH injectors fully satisfying the producer requirements and standards. The article describes an example injector diagnosis with use of such test stand and additionally presents appropriate injector regeneration and encoding techniques

  10. Sub-Scale Orion Parachute Test Results from the National Full-Scale Aerodynamics Complex 80- By 120-ft Wind Tunnel

    Science.gov (United States)

    Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine

    2017-01-01

    A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.

  11. Deuterium pellet injector gun design

    International Nuclear Information System (INIS)

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging

  12. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Lazar

    2012-10-15

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  13. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    International Nuclear Information System (INIS)

    Staykov, Lazar

    2012-10-01

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  14. Fabrication, Tuning, Treatment and Testing of Two 3.5 Cell Photo-Injector Cavities for the ELBE Linac

    International Nuclear Information System (INIS)

    Arnold, A.; Murcek, P.; Teichert, J.; Xiang, R.; Eremeev, G. V.; Kneisel, P.; Stirbet, M.; Turlington, L.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Thomas Jefferson Lab National Accelerator Facility (TJNAF) we have fabricated and tested two 1.3 GHz 3.5 cell photo-injector cavities from polycrystalline RRR niobium and large grain RRR niobium, respectively. The cavity with the better performance will replace the presently used injector cavity in the ELBE linac. The cavities have been fabricated and pre-tuned at TJNAF, while the more sophisticated final field tuning, the adjustment of the external couplings and the field profile measurement of transverse electric modes for RF focusing was done at HZDR. The following standard surface treatment and the vertical test was carried out at TJNAF's production facilities. A major challenge turned out to be the rinsing of the cathode cell, which has small opening (O-slash10mm) to receive the cathode stalk. Another unexpected problem encountered after etching, since large visible defects appeared in the least accessible cathode cell. This contribution reports about our experiences, initial results and the on-going diagnostic work to understand and fix the problems

  15. Industrial application of fluidized bed combustion. Phase I, task 4: sub-scale unit testing and data analysis. Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goodstine, S.L.; Accortt, J.I.; Harris, R.D.; Kantersaria, P.P.; Matthews, F.T.; Jones, B.C.; Jukkola, G.D.

    1979-12-01

    Combustion Engineering, under contract with the Department of Energy, has developed, designed, and is constructing a 50,000 lbs steam/hr Industrial FBC Demonstration Plant. The plant will provide steam for space heating at the Great Lakes Naval Base in North Chicago, Illinois. Its operation will enable industry to objectively appraise the performance, reliability, and economics of FBC technology. A hot sub-scale unit (SSU), simulating the operating conditions of the demonstration plant, has been constructed and operated at Combustion Engineering's Kreisinger Development Laboratory in Windsor, Connecticut. The SSU facility has served as a valuable developmental tool in establishing the performance characteristics of the FBC process and equipment as used in the larger Demonstration Plant. Experience gained during more than 2000 hours of operation, including the analytical results derived from an extensive test program of 1500 hours operation, has defined problems and identified solutions in engineering the larger FBC Demonstration Plant. This report presents documentation of the results of the SSU test program.

  16. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    Science.gov (United States)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  17. 49 CFR 230.57 - Injectors and feedwater pumps.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Injectors and feedwater pumps. 230.57 Section 230... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water.... Injectors and feedwater pumps must be kept in good condition, free from scale, and must be tested at the...

  18. Beam dynamics studies of the photo-injector in low-charge operation mode for the ERL test facility at IHEP

    International Nuclear Information System (INIS)

    Jiao Yi; Xiao Ouzheng

    2014-01-01

    The energy recovery linac test facility (ERL-TF), which is a compact ERL-FEL (free electron laser) two-purpose machine, was proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector that started with a photocathode direct-current gun has been designed. In this paper, optimization of the injector beam dynamics in low-charge operation mode is performed with iterative scans using Impact-T. In addition, the dependencies between the optimized beam quality and the initial offset at cathode and element parameters are investigated. The tolerance of alignment and rotation errors is also analyzed. (authors)

  19. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  20. NLCTA injector experimental results

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Adolphsen, C.; Miller, R.H.; Nantista, C.D.; Wang, J.W.

    1997-04-01

    The purpose of the Next Linear Collider Test Accelerator (NLCTA) at SLAC is to integrate the new technologies of X-band accelerator structures and RF systems for the Next Linear Collider (NLC), demonstrate multibunch beam-loading energy compensation and suppression of high-order deflecting modes, measure the transverse components of the accelerating field, and measure the dark current generated by RF field emission in the accelerator. For beam loading R and D, an average current of about 1 A in a 120 ns long bunch train is required. The initial commissioning of the NLCTA injector, as well as the rest of the accelerator have been progressing very well. The initial beam parameters are very close to the requirement and they expect that injector will meet the specified requirements by the end of this summer

  1. Pellet injectors for steady state plasma fuelling

    International Nuclear Information System (INIS)

    Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.

    2005-01-01

    Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation

  2. Pneumatic pellet injectors for TFTR and JET

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.

    1986-01-01

    This paper describes the development of pneumatic hydrogen pellet injectors for plasma fueling applications on the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). The performance parameters of these injectors represent an extension of previous experience and include pellet sizes in the range 2-6 mm in diameter and speeds approaching 2 km/s. Design features and operating characteristics of these pneumatic injectors are presented

  3. Direct Fuel Injector Power Drive System Optimization

    Science.gov (United States)

    2014-04-01

    solenoid coil to create magnetic field in the stator. Then, the stator pulls the pintle to open the injector nozzle . This pintle movement occurs when the...that typically deal with power strategies to the injector solenoid coil. Numerical simulation codes for diesel injection systems were developed by...Laboratory) for providing the JP-8 test fuel. REFERENCES 1. Digesu, P. and Laforgia D., “ Diesel electro- injector : A numerical simulation code”. Journal of

  4. ENIAK. Development of a non-motor injector coking test facility for alternative fuels; ENIAK. Entwicklung eines nichtmotorischen Injektorverkokungspruefstands fuer alternative Kraftstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Hajo; Schloss, Heide vom; Yang, Zhi; Grote, Melanie [OWI Oel-Waerme-Institut GmbH, Aachen (Germany). Gruppe Anwendungstechnik

    2013-10-01

    Poor Biodiesel quality, contamination with copper and zinc as well as undesired reactions between (several) additives and biodiesel components are known causes for nozzle fouling. Therefore, among other things, all additives have to pass a no-harm test. The standard fouling tests are two engine tests: the XUD9-test (CEC F-23-01) and the DW-10-test (CEC DF 98-08). The XUD9 is a cost efficient, fast and proven testing method. It uses, however, an obsolete indirect injection diesel engine. The newer DW10 test is complex, costly and designed for high stress. This reduces the engine life and leads to a fuel consumption of approximately 1,000 l per test, both contributing to the high costs of the test. The main goal of the project ENIAK is the development, assembly, commissioning, and evaluation of a non-engine fuel injector test. It uses four complete common rail systems. The injection takes place in four self-designed reactors instead of an engine, and the fuel is not combusted, but re-condensed and pumped in a circle. If the test method proves to be as reliable as expected, it can be used as an alternative test method for injector fouling with low requirements regarding infrastructure on the testing site and sample volume. The project is funded by the the federal ministry of consumer protection, food and agriculture via FNR (''Fachagentur Nachwachsende Rohstoffe'', Agency for Renewable Resources). (orig.)

  5. Facility for the testing of the TFTR prototype neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Haughian, J.M.

    1977-07-01

    The design of the prototype neutral beam injection system for TFTR is nearing completion at the Lawrence Livermore Laboratory. This paper describes some of the features of the facility at the Lawrence Berkeley Laboratory where this prototype will be assembled and tested.

  6. Facility for the testing of the TFTR prototype neutral beam injector

    International Nuclear Information System (INIS)

    Haughian, J.M.

    1977-07-01

    The design of the prototype neutral beam injection system for TFTR is nearing completion at the Lawrence Livermore Laboratory. This paper describes some of the features of the facility at the Lawrence Berkeley Laboratory where this prototype will be assembled and tested

  7. Gas utilization in the Tokamak Fusion Test Reactor neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Jones, T.T.C.

    1989-01-01

    Measurements of gas utilization were performed using hydrogen and deuterium beams in the Tokamak Fusion Test Reactor (TFTR) neutral beam test beamline to study the feasibility of operating tritium beams with existing ion sources under conditions of minimal tritium consumption. (i) It was found that the fraction of gas molecules introduced into the TFTR long-pulse ion sources that are converted to extracted ions (i.e., the ion source gas efficiency) was higher than with previous short-pulse sources. Gas efficiencies were studied over the range 33%--55%, and its effect on neutralization of the extracted ions was studied. At the high end of the gas efficiency range, the neutral fraction of the beam fell below that predicted from room-temperature molecular gas flow (similar to observations at the Joint European Torus). (ii) Beam isotope change studies were performed. No extracted hydrogen ions were observed in the first deuterium beam following a working gas change from H 2 to D 2 . There was no arc conditioning or gas injection preceding the first beam extraction attempt. (iii) Experiments were also performed to determine the reliability of ion source operation during the long waiting periods between pulses that are anticipated during tritium operation. It was found that an ion source conditioned to 120 kV could produce a clean beam pulse after a waiting period of 14 h by preceding the beam extraction with several acceleration voltage/filament warm-up pulses. It can be concluded that the operation of up to six ion sources on tritium gas should be compatible with on-site inventory restrictions established for D--T, Q = 1 experiments on TFTR

  8. Commissioning of the RFQ1 injector

    International Nuclear Information System (INIS)

    Arbique, G.M.; Sheikh, J.Y.; Taylor, T.; Birney, L.F.; Davidson, A.D.; Wills, J.S.C.

    1987-01-01

    The RFQ1 accelerator is being developed at Chalk River to test the limits of the cw RFQ technology. A 50 kV injector has been built and is now being commissioned as the first phase of the program. This paper describes some of the innovative features of the RFQ1 injector and reports on initial operating experience

  9. Alternative Bio-Derived JP-8 Class Fuel and JP-8 Fuel: Flame Tube Combustor Test Results Compared using a GE TAPS Injector Configuration

    Science.gov (United States)

    Hicks, Yolanda R.; Anderson, Robert; Tedder, Sarah

    2016-01-01

    This paper presents results from tests in a NASA Glenn Research Center (GRC) flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include 2D, planar laser-based imaging as well as basic flow visualization of the flame. Four conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics and Environmentally Responsible Aviation Projects were tested.

  10. Temporal behavior of neutral particle fluxes in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.

    1989-09-01

    Data from an E parallel B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs

  11. CNG INJECTOR RESEARCH FOR DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adam Majczak

    2017-03-01

    Full Text Available The article presents the tests results of the prototype design of hydraulically assisted injector, that is designed for gas supply into diesel engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose a injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

  12. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber

    Science.gov (United States)

    Quentmeyer, Richard J.; Roncace, Elizabeth A.

    1993-01-01

    An experimental investigation was conducted to determine the hot-gas-side heat transfer characteristics for a liquid-hydrogen-cooled, subscale, plug-nozzle rocket test apparatus. This apparatus has been used since 1975 to evaluate rocket engine advanced cooling concepts and fabrication techniques, to screen candidate combustion chamber liner materials, and to provide data for model development. In order to obtain the data, a water-cooled calorimeter chamber having the same geometric configuration as the plug-nozzle test apparatus was tested. It also used the same two showerhead injector types that were used on the test apparatus: one having a Rigimesh faceplate and the other having a platelet faceplate. The tests were conducted using liquid oxygen and gaseous hydrogen as the propellants over a mixture ratio range of 5.8 to 6.3 at a nominal chamber pressure of 4.14 MPa abs (600 psia). The two injectors showed similar performance characteristics with the Rigimesh faceplate having a slightly higher average characteristic-exhaust-velocity efficiency of 96 percent versus 94.4 percent for the platelet faceplate. The throat heat flux was 54 MW/m(sup 2) (33 Btu/in.(sup 2)-sec) at the nominal operating condition, which was a chamber pressure of 4.14 MPa abs (600 psia), a hot-gas-side wall temperature of 730 K (1314 R), and a mixture ratio of 6.0. The chamber throat region correlation coefficient C(sub g) for a Nusselt number correlation of the form Nu =C(sub g)Re(sup 0.8)Pr(sup 0.3) averaged 0.023 for the Rigimesh faceplate and 0.026 for the platelet faceplate.

  13. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    International Nuclear Information System (INIS)

    Gobin, R.; Bogard, D.; Chauvin, N.; Chel, S.; Delferrière, O.; Harrault, F.; Mattei, P.; Senée, F.; Cara, P.; Mosnier, A.; Shidara, H.; Okumura, Y.

    2014-01-01

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported

  14. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  15. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  16. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Barber, G.C.; Baylor, L.R.

    1994-01-01

    Oak Ridge National Laboratory has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for more than 15 years. Recent major applications of the ORNL development program include (1) a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor, (2) a centrifuge pellet injector for the Tore Supra tokamak, and most recently (3) a three-barrel repeating pneumatic injector for the DIII-D tokamak. In addition to applications, ORNL is developing advanced technologies, including high-speed pellet injectors, tritium injectors, and long-pulse pellet feed systems. The high-speed research involves a collaboration between ORNL and ENEA-Frascati in the development of a repeating two-stage light gas gun based on an extrusion-type pellet feed system. Construction of a new tritium-compatible, extruder-based repeating pneumatic injector (8-mm-diam) is complete and will replace the pipe gun in the original tritium proof-of-principle experiment. The development of a steady-state feed system in which three standard extruders operate in tandem is under way. These research and development activities are relevant to the International Thermonuclear Experimental Reactor and are briefly described in this paper

  17. Toward the popular therapeutic equipment for cancers by heavy particle beam (2). Development of a compact highly efficient injector. 1. Success of its beam test set in front of the RFQ linear accelerator

    International Nuclear Information System (INIS)

    Iwata, Yoshiyuki

    2005-01-01

    For popularization of heavy particle beams for cancer treatment, efforts have been done to reduce the size of injector, and the recently developed one is far more compact in size and more electricity-saving than the current Heavy Ion Medical Accelerator in Chiba (HIMAC) injector. This paper describes its outline. The injector has made it possible to decrease the manufacturing cost of the injector itself, the size of therapeutic equipment, and costs of facility construction and operation. Its beam has been tested and found to be satisfactory in the RFQ (radio frequency quadrupole) linac. The IH-DTL (interdigital H-mode drift tube linac) to be set backward is now under manufacturing and is to be completed within this year. Thus total beam test in combination of the RFQ linac and IH-DTL can be examined to design a more popular equipment for cancer therapy. The accelerator developed hereby is conceivably useful not only in the medical field but also for application as a physical and industrial heavy ion injector. (S.I.)

  18. Pellet injector development and experiments at ORNL

    International Nuclear Information System (INIS)

    Baylor, L.R.; Argo, B.E.; Barber, G.C.; Combs, S.K.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.H.

    1993-01-01

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER)

  19. Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC photo-injector energy upgrade

    CERN Document Server

    Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.

    2011-01-01

    The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.

  20. Development of 4-shot pellet injector for JET-2M

    International Nuclear Information System (INIS)

    Noda, O.; Kuribayashi, S.; Uchikawa, T.; Onozuka, M.; Kasaki, S.; Hasegawa, K.

    1987-01-01

    A pneumatic 4 pellet injector has been constructed for JFT-2M. The performance tests have proved high performance and reliability of the injector. The maximum pellet velocity obtained in hydrogen pellet tests is 1.4km sec. The device is now in use for JFT-2M in a place of a previous single pellet injector, contributing to plasma studies. In this paper the outline of features and performance of the device is presented

  1. Injector of solid indicator

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, G.I.; Luk' yanov, E.P.; Pruslin, Y.A.; Zabrodin, P.I.

    1981-04-25

    The injector can be used with remote introduction of indicators into a borehole for study in an oil well of the parameters of movement of fluid currents, control of the state of the equipment, and study of the properties of the rocks. Proposed is a method of increasing the reliability of operation of the injector by stabilizing the rate of its dispersing. Introduced to the injector of a solid indicator are auxiliary brackets and a cathode made from nonmetallic electrical conducting material and reinforced at the end by an elastic bracket. The auxillary cathode is attached to the end surface of the anode and cathode.

  2. Redirecting by Injector

    Science.gov (United States)

    Filman, Robert E.; Lee, Diana D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe the Object Infrastructure Framework, a system that seeks to simplify the creation of distributed applications by injecting behavior on the communication paths between components. We touch on some of the ilities and services that can be achieved with injector technology, and then focus on the uses of redirecting injectors, injectors that take requests directed at a particular server and generate requests directed at others. We close by noting that OIF is an Aspect-Oriented Programming system, and comparing OIF to related work.

  3. The ATLAS positive ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs

  4. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  5. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  6. Application of advanced diagnostics to airblast injector flows

    Science.gov (United States)

    Mcvey, John B.; Kennedy, Jan B.; Russell, Sid

    1987-01-01

    This effort is concerned with the application of both conventional laser velocimetry and phase Doppler anemometry to the flow produced by an airblast nozzle. The emphasis is placed on the acquisition of data using actual engine injector/swirler components at (noncombusting) conditions simulating those encountered in the engine. The objective of the effort was to test the applicability of the instrumentation to real injector flows, to develop information on the behavior of injectors at high flow, and to provide data useful in the development of physical models of injector flows.

  7. LTP fibre injector qualification and status

    International Nuclear Information System (INIS)

    Bogenstahl, J; Cunningham, L; Fitzsimons, E D; Hough, J; Killow, C J; Perreur-Lloyd, M; Robertson, D; Rowan, S; Ward, H

    2009-01-01

    This paper presents the current state of the LISA Technology Package (LTP) fibre injector qualification project in terms of vibration and shock tests. The fibre injector is a custom built part and therefore must undergo a full space qualification process. The mounting structure and method for sinusoidal vibration and random vibration tests as well as shock tests will be presented. Furthermore a proposal will be presented to use the fibre injector pair qualification model to build an optical prototype bench. The optical prototype bench is a full-scale model of the flight model. It will be used for development and rehearsal of all the assembly stages of the flight model and will provide an on-ground simulator for investigation as an updated engineering model.

  8. Pellet injector development at ORNL

    International Nuclear Information System (INIS)

    Milora, S.L.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Whealton, J.H.; Wilgen, J.B.; Schmidt, G.L.

    1992-01-01

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma

  9. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    Science.gov (United States)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry

  10. Pneumatic pellet injector for JT-60

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Hiratsuka, Hajime; Kawasaki, Kouzo.

    1990-01-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author)

  11. Pneumatic pellet injector for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori (Mitsubishi Heavy Industries Ltd., Tokyo (Japan)); Hiratsuka, Hajime; Kawasaki, Kouzo

    1990-11-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author).

  12. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  13. Modeling of classical swirl injector dynamics

    Science.gov (United States)

    Ismailov, Maksud M.

    The knowledge of the dynamics of a swirl injector is crucial in designing a stable liquid rocket engine. Since the swirl injector is a complex fluid flow device in itself, not much work has been conducted to describe its dynamics either analytically or by using computational fluid dynamics techniques. Even the experimental observation is limited up to date. Thus far, there exists an analytical linear theory by Bazarov [1], which is based on long-wave disturbances traveling on the free surface of the injector core. This theory does not account for variation of the nozzle reflection coefficient as a function of disturbance frequency, and yields a response function which is strongly dependent on the so called artificial viscosity factor. This causes an uncertainty in designing an injector for the given operational combustion instability frequencies in the rocket engine. In this work, the author has studied alternative techniques to describe the swirl injector response, both analytically and computationally. In the analytical part, by using the linear small perturbation analysis, the entire phenomenon of unsteady flow in swirl injectors is dissected into fundamental components, which are the phenomena of disturbance wave refraction and reflection, and vortex chamber resonance. This reveals the nature of flow instability and the driving factors leading to maximum injector response. In the computational part, by employing the nonlinear boundary element method (BEM), the author sets the boundary conditions such that they closely simulate those in the analytical part. The simulation results then show distinct peak responses at frequencies that are coincident with those resonant frequencies predicted in the analytical part. Moreover, a cold flow test of the injector related to this study also shows a clear growth of instability with its maximum amplitude at the first fundamental frequency predicted both by analytical methods and BEM. It shall be noted however that Bazarov

  14. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  15. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  16. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  17. Injector MD Days 2017

    CERN Document Server

    Rumolo, G

    2017-01-01

    The Injector Machine Development (MD) days 2017 were held on 23-24 March, 2017, at CERN with thefollowing main goals:Give a chance to the MD users to present their results and show the relevant progress made in 2016 onseveral fronts.Provide the MD users and the Operation (OP) crews with a general overview on the outcome and theimpact of all ongoing MD activities.Identify the open questions and consequently define - with priorities - a list of machine studies in theinjectors for 2017 (covering the operational beams, LHC Injectors Upgrade, High Luminosity LHC,Physics Beyond Colliders, other projects).Create the opportunity to collect and document the highlights of the 2016 MDs and define the perspectivesfor 2017.Discuss how to make best use of the MD time, in particular let the main MD user express their wishesand see whether/how OP teams can contribute to their fulfilment.

  18. Fermilab Main Injector plan

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-07-15

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10{sup 31} per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research.

  19. Fermilab Main Injector plan

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Fermilab Main Injector is the centrepiece of the 'Fermilab III' scheme to significantly upgrade the Laboratory's existing accelerator complex. The new accelerator is designed to provide increased particle beam levels to boost the collision rate in the Tevatron proton-antiproton collider (luminosity in excess of 5 x 10 31 per sq cm per s) and, if approved, would provide increased flexibility in all areas of high energy physics research

  20. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  1. Pellet injector research at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Foster, C.A.; Milora, S.L.

    1988-01-01

    Advanced plasma fueling systems for magnetic confinement devices are under development a the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogen isotope pellets at speeds in the range 1-2 km/s and higher. Recently, ORNL provided pneumataic-based pellet fueling systems for two of the world's largest tokamak experiments, the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). A new versatile centrifuge type injector is being readied at ORNL for use on the Tore Supra tokamak. Also, a new simplified eight-shot injector design has been developed for use on the Princeton Beta Experiment (PBX) and the Advanced Toroidal Facility (ATF). In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of 2 km/s and is carrying out a Tritium Proof-of-Principle (TPOP) experiment in which the fabrication and acceleration of tritium pellets have already been demonstrated. This paper describes these ongoing activities. 25 refs., 9 figs

  2. FERMILAB: Main Injector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10 31 cm -2 s -1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  3. FERMILAB: Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10{sup 31} cm{sup -2} s{sup -1} in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction.

  4. Development of railgun pellet injector using a laser-induced plasma armature. Results of dummy pellet acceleration tests

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo; Ogino, Mutsuo

    1995-01-01

    Using the low electric energy railgun system, dummy pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. The primary objective of the development is to improve the pellet acceleration efficiency and durability of the rail materials. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. As low electric energy was used, rail materials were used for multiple operations. Tungsten-alloy rail provided longer durability and slightly higher energy conversion coefficient than copper rail. The energy conversion coefficient was from 0.3 to 0.5% using a plastic insulator. A ceramic insulator improved the energy conversion coefficient by 80%. The highest pellet velocity was 1.7 km/s using wooden pellets accelerated by 1m-long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km/s using a 3m-long railgun. (author)

  5. Development of railgun pellet injector using a laser-induced plasma armature. Results of dummy pellet acceleration tests

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo; Ogino, Mutsuo [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Nuclear Energy Systems Engineering Center

    1995-03-01

    Using the low electric energy railgun system, dummy pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. The primary objective of the development is to improve the pellet acceleration efficiency and durability of the rail materials. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. As low electric energy was used, rail materials were used for multiple operations. Tungsten-alloy rail provided longer durability and slightly higher energy conversion coefficient than copper rail. The energy conversion coefficient was from 0.3 to 0.5% using a plastic insulator. A ceramic insulator improved the energy conversion coefficient by 80%. The highest pellet velocity was 1.7 km/s using wooden pellets accelerated by 1m-long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km/s using a 3m-long railgun. (author).

  6. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  7. NLC electron injector beam dynamics

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.

    1995-10-01

    The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC

  8. The NLC Injector System

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Clendenin, J.E.; Emma, P.; Frisch, J.; Jobe, R.; Kotseroglou, T.; Krejcik, P.; Kulikov, A.V.; Li, Z.; Maruyama, T.; Millage, K.K.; McKee, B.; Mulhollan, G.; Munro, M.H.; Rago, C.E.; Raubenheimer, T.O.; Ross, M.C.; Phinney, N.; Schultz, D.C.; Sheppard, J.C.; Spencer, C.M.; Vlieks, A.E.; Woodley, M D.; Bibber, K. van; Takeda, S.

    1999-01-01

    The Next Linear Collider (NW) Injector System is designed to produce low emittance, 10 GeV electron and positron beams at 120 hertz for injection into the NLC main linacs. Each beam consists of a train of 9.5 bunches spaced by 2.8 ns; each bunch has a population of 1.15 x 10 10 particles. At injection into the main linacs, the horizontal and vertical emittances are specified to be γ var e psilon x = 3 x 10 -6 m-rad and γ var e psilon

  9. SLC injector modeling

    International Nuclear Information System (INIS)

    Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.; Miller, R.H.

    1985-03-01

    The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results

  10. Deterioration of the fuel injection parameters as a result of Common Rail injectors deposit formation

    Directory of Open Access Journals (Sweden)

    Stępień Zbigniew

    2017-01-01

    Full Text Available The article describes external and internal Common Rail injectors deposits formed in dynamometer engine simulation tests. It discussed not only the key reasons and factors influencing injector deposit formation but also the resulting way of fuel preparation and engine test approaches. The effects of external coking deposit as well as internal deposits two most common form types that is carboxylic soaps and organic amides on deterioration of the fuel injection parameters were assessed. The assessments covered both deposits impacts on quantitative and qualitative changes of the injectors diagnostic parameters and as a result on deterioration of the injector performance. Finally the comparisons between characteristic of dosage of one fuel injector before test and characteristics few injectors after engine tests of simulated deposit formation were made.

  11. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  12. Injector of the Utrecht EN tandem

    Energy Technology Data Exchange (ETDEWEB)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van (Rijksuniversiteit Utrecht (Netherlands). Fysisch Lab.)

    1984-02-15

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90/sup 0/ analysing magnet, m/..delta..m=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system.

  13. The injector of the Utrecht EN tandem

    International Nuclear Information System (INIS)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van

    1984-01-01

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90 0 analysing magnet, m/Δm=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system. (orig.)

  14. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  15. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons

    Data.gov (United States)

    National Aeronautics and Space Administration — The project objective is to develop and test a sub-scale version of the Maraia Entry Capsule on a high altitude balloon. The capsule is released at 100,000 ft. The...

  16. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    Fisher, P.W.; Milora, S.L.; Combs, S.K.; Carlson, R.V.; Coffin, D.O.

    1988-01-01

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  17. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.

  18. CFD simulation of coaxial injectors

    Science.gov (United States)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  19. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  20. LHC Report: imaginative injectors

    CERN Multimedia

    Pierre Freyermuth for the LHC team

    2016-01-01

    A new bunch injection scheme from the PS to the SPS allowed the LHC to achieve a new peak luminosity record.   Figure 1: PSB multi-turn injection principle: to vary the parameters during injection with the aim of putting the newly injected beam in a different region of the transverse phase-space plan. The LHC relies on the injector complex to deliver beam with well-defined bunch populations and the necessary transverse and longitudinal characteristics – all of which fold directly into luminosity performance. There are several processes taking place in the PS Booster (PSB) and the Proton Synchrotron (PS) acting on the beam structure in order to obtain the LHC beam characteristics. Two processes are mainly responsible for the beam brightness: the PSB multi-turn injection and the PS radio-frequency (RF) gymnastics. The total number of protons in a bunch and the transverse emittances are mostly determined by the multi-turn Booster injection, while the number of bunches and their time spacin...

  1. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  2. Ramp injector scale effects on supersonic combustion

    Science.gov (United States)

    Trebs, Adam

    The combustion field downstream of a 10 degree compression ramp injector has been studied experimentally using wall static pressure measurement, OH-PLIF, and 2 kHz intensified video filtered for OH emission at 320 nm. Nominal test section entrance conditions were Mach 2, 131 kPa static pressure, and 756K stagnation temperature. The experiment was equipped with a variable length inlet duct that facilitated varying the boundary layer development length while the injector shock structure in relation to the combustor geometry remained nearly fixed. As the boundary within an engine varies with flight condition and does not scale linearly with the physical scale of the engine, the boundary layer scale relative to mixing structures of the engine becomes relevant to the problem of engine scaling and general engine performance. By varying the boundary layer thickness from 40% of the ramp height to 150% of the ramp height, changes in the combustion flowfield downstream of the injector could be diagnosed. It was found that flame shape changed, the persistence of the vortex cores was reduced, and combustion efficiency rose as the incident boundary layer grew.

  3. Results of subscale MTF compression experiments

    Science.gov (United States)

    Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General

    2016-10-01

    In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.

  4. Impact of palm biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Fazal, M.A.; Khan, Abdul Faheem; Fayaz, H.; Varman, M.

    2013-01-01

    Highlights: • 250 h Endurance test on 2 fuel samples; diesel fuel and PB20. • Visual inspection of injectors running on DF and PB20 showed deposit accumulation. • SEM and EDS analysis showed less injector deposits for DF compared to PB20 blend. • Engine oil analysis showed higher value of wear particles for PB20 compared to DF. - Abstract: During short term engine operation, renewable fuels derived from vegetable oils, are capable of providing good engine performance. In more extended operations, some of the same fuels can cause degradation of engine performance, excessive carbon and lacquer deposits and actual damage to the engine. Moreover, temperatures in the area of the injector tip due to advanced diesel injection systems may lead to particularly stubborn deposits at and around the injector tip. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline and PB20 (20% palm biodiesel and 80% DF) in a single cylinder CI engine. The effects of DF and PB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors during running on both fuels. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed greater carbon deposits on and around the injector tip for PB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations, decreased viscosity and increased density values when the engine was fuelled with PB20. Finally, fuel economy and emission results during the endurance test showed higher brake specific fuel consumption (bsfc) and NO x emissions, and lower HC and CO emissions, for the PB20 blend compared to DF

  5. First operation of the ATLAS positive-ion injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shephard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate that all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system. (Author) 5 refs., tab., fig

  6. First operation of the ATLAS Positive-Ion Injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate tat all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system

  7. Platelet injectors for Space Shuttle orbit maneuvering engine

    Science.gov (United States)

    Kahl, R. C.; Labotz, R. J.; Bassham, L. B.

    1974-01-01

    The Space Shuttle Orbit Maneuvering Subsystem Rocket Engine employs a platelet element injector concept. This injector has demonstrated 316-sec vacuum specific impulse performance under simulated altitude conditions when tested with a milled slot/electroformed nickel close-out regenerative chamber and a full 71 area ratio nozzle. To date, over 300 altitude engine tests and 300 stability bomb tests have demonstrated stable, erosion free operation with this concept to test durations of 150 seconds. The injector and chamber also meet the reusable requirements of the shuttle with a cycle life capability in excess of 1000 cycles. An extensive altitude restart program has also demonstrated OMS-engine operation over large variations in the burn and coast times with helium saturated propellants.

  8. Shielding calculations for the TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Santoro, R.T.; Lillie, R.A.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1979-07-01

    Two-dimensional discrete ordinates calculations have been performed to determine the location and thickness of concrete shielding around the Tokamak Fusion Test Reactor (TFTR) neutral beam injectors. Two sets of calculations were performed: one to determine the dose equivalent rate on the roof and walls of the test cell building when no injectors are present, and one to determine the contribution to the dose equivalent rate at these locations from radiation streaming through the injection duct. Shielding the side and rear of the neutral beam injector with 0.305 and 0.61 m of concrete, respectively, and lining the inside of the test cell wall with an additional layer of concrete having a thickness of 0.305 m and a height above the axis of deuteron injection of 3.10 m are sufficient to maintain the biological dose equivalent rate outside the test cell to approx. 1 mrem/DT pulse

  9. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  10. The light-ion injector

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In an extensive field mapping program the magnetic fields of the main coils and various pole-gap coils of the light-ion injector (SPC1) were measured. As a further test, the measured field maps were used to calculate the excitation currents through the various coils for a specific field shape. Orbit calculations, based on the electric potential fields measured is the electrolytic tank on the 3:1 scale model of the central region, made it possible to optimise the ion-source position, improve the axial focussing of the beam and specify an approximate position for the second axial. The coils for the first magnetic channel were manufactured and field measurements with the channel in position in the pole-gap have been performed. The radio-frequency system of SPC1 consists of three main sections, namely resonators, power amplifiers and the control systems. The purpose of the rf-system is to provide the accelerating voltages of up to 70 kV peak in the 8,6 to 26 MHz frequency range, which are required to accelerate the particle beams

  11. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1983-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  12. Experimental Investigation of Characteristics of a Double-Base Swirl Injector in a Liquid Rocket Propellant Engine

    Directory of Open Access Journals (Sweden)

    Fathollah OMMI

    2009-07-01

    Full Text Available In this work the fundamentals of swirl injector calculation is investigated and new design procedure is proposed. The design method for double-base liquid-liquid injectors is presented based on this theory and experimental results. Then special conditions related to double-based liquid-liquid injectors are studied and the corresponding results are applied in design manipulation. The behaviour of injector in various performing conditions is studied, and the design procedure is presented based on obtained results. A computer code for designing the injector is proposed. Based on this code, four injectors are manufactured. A specialized laboratory was setup for the measurement of macroscopic spray characteristics under different pressure such as homogeneous droplet distribution, spray angle, swirl effect. Finally, through PDA cold test, the microscopic characteristics of injectors spray are also obtained and measured. The results, which will be explained in detail, are satisfactory.

  13. RIIM two-pulse injector experiments

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Jones, E.E.; Hasti, D.E.; Jojola, J.M.; Lehmann, M.

    1987-01-01

    The RADLAC-II foilless diode injector was operated under double pulse conditions utilizing the RIIM accelerator as the test bed. The original RIIM accelerator pulse-power network was modified to provide for the generation, transmission, and delivery to the foilless diode of two distinct voltage pulses with variable interpulse separation from 0 to 2 ms. Two pulse-power assemblies were investigated and will be presented in connection with the diode performance. In both cases, the generated plasma and an excessive neutral gas release, following the first pulse, prevented the diode from producing a second beam pulse for interpulse separations larger than ∼1 μs. 4 refs

  14. Development of repeating pneumatic pellet injector

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Shimomura, T. (Mitsubishi Heavy Industries Ltd., Kobe (Japan)) (and others)

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s{sup -1}, chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s{sup -1}, as planned. (author).

  15. Development of repeating pneumatic pellet injector

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Shimomura, T.

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s -1 , chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s -1 , as planned. (author)

  16. Operation of the repeating pneumatic injector on TFTR and design of an 8-shot deuterium pellet injector

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foust, C.R.

    1985-01-01

    The repeating pneumatic hydrogen pellet injector, which was developed at the Oak Ridge National Laboratory (ORNL), has been installed and operated on the Tokamak Fusion Test Reactor (TFTR). The injector combines high-speed extruder and pneumatic acceleration technologies to propel frozen hydrogen isotope pellets repetitively at high speeds. The pellets are transported to the plasma in an injection line that also serves to minimize the gas loading on the torus; the injection line incorporates a fast shutter valve and two stages of guide tubes with intermediate vacuum pumping stations. A remote, stand-alone control and data acquisition system is used for injector and vacuum system operation. In early pellet fueling experiments on TFTR, the injector has been used to deliver deuterium pellets at speeds ranging from 1.0 to 1.5 km/s into plasma discharges. First, single large (nominal 4-mm-dia) pellets provided high densities in TFTR (1.8 x 10 14 cm -3 on axis); after conversion to smaller (nominal 2.7-mm-dia) pellets, up to five pellets were injected at 0.25-s intervals into a plasma discharge, giving a line-averaged density of 1 x 10 14 cm -3 . Operating characteristics and performance of the injector in initial tests on TFTR are presented

  17. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    Science.gov (United States)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  18. INTOR neutral beam injector concept

    International Nuclear Information System (INIS)

    Metzler, D.H.; Stewart, L.D.

    1981-01-01

    The US INTOR phase 1 effort in the plasma heating area is described. Positive ion based sources extrapolated from present day technology are proposed. These sources operate at 175 keV beam energy for 6 s. Five injectors - plus one spare - inject 75 MW. Beam energy, source size, interface, radiation hardening, and many other studies are summarized

  19. New developments of HIF injector

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-01-01

    Full Text Available The ultra-high intensity heavy-ion beam is highly pursued for heavy-ion researches and applications. However, it is limited by heavy-ion production of ion source and space-charge-effect in the low energy region. The Heavy-ion Inertial Fusion (HIF facilities were proposed in 1970s. The HIF injectors have large cavity number and long total length, e.g., there are 27 injectors in HIDIF and HIBLIC is 30 km in length, and the corresponding HIF facilities are too large and too expensive to be constructed. Recently, ion acceleration technologies have been developing rapidly, especially in the low energy region, where the acceleration of high intensity heavy-ions is realized. Meanwhile, superconducting (SC acceleration matures and increases the acceleration gradient in medium and high energy regions. The length of HIF injectors can be shortened to a buildable length of 2.5 km. This paper will present a review of a renewed HIF injector, which adopts multi-beam linac-based cavities. Keywords: Heavy-ion inertial fusion (HIF, Radio frequency quadrupole (RFQ, IH cavity, Heavy-ion, Multi-beam accelerator, PACS Codes: 52.58.Hm, 28.52.Av, 29.20.Ej, 29.27.-a, 29.27.Ac, 41.75.Lx

  20. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  1. Experimental and numerical investigation of a porous fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, J.

    2009-03-15

    Diesel engines are the most fuel efficient engines for transportation. However the details of the mixing and combustion process in the cylinders result in relatively high emissions of soot. In his graduation work the author developed a new type of fuel injection system for Diesel engines. The injection from the developed porous injector nozzle can be regarded as the limiting case of injection from very many, very small holes. Furthermore it is expected that the improved combustion characteristics yielded much less soot emissions. After the computational determination of an optimal geometry for the porous nozzle, experiments have been performed. The results of the prototypes showed a rather homogeneous hemispherical spray shape. The author conducted tests that showed that the mass flow, at constant pressure, of the porous injector is higher than the conventional one. This means that the pressure can be set lower or injection time can be shortened. A patent is applied and obtained for this innovative injector.

  2. Development of a low swirl injector concept for gas turbines

    International Nuclear Information System (INIS)

    Cheng, R.K.; Fable, S.A.; Schmidt, D; Arellano, L.; Smith, K.O.

    2000-01-01

    This paper presents a demonstration of a novel lean premixed low-swirl injector (LSI) concept for ultra-low NOx gas turbines. Low-swirl flame stabilization method is a recent discovery that is being applied to atmospheric heating equipment. Low-swirl burners are simple and support ultra-lean premixed flames that are less susceptible to combustion instabilities than conventional high-swirl designs. As a first step towards transferring this method to turbines, an injector modeled after the design of atmospheric low-swirl burner has been tested up to T=646 F and 10 atm and shows good promise for future development

  3. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    Science.gov (United States)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for

  4. Experimental study of acoustic damping induced by gas-liquid scheme injectors in a combustion chamber

    International Nuclear Information System (INIS)

    Kim, Hak Soon; Sohn, Chae Hoon

    2007-01-01

    In a liquid rocket engine, acoustic damping induced by gas-liquid scheme injectors is studied experimentally for combustion stability by adopting linear acoustic test. In the previous work, it has been found that gas-liquid scheme injector can play a significant role in acoustic damping or absorption when it is tuned finely. Based on this finding, acoustic-damping characteristics of multi-injectors are intensively investigated. From the experimental data, it is found that acoustic oscillations are almost damped out by multi-injectors when they have the tuning length proposed in the previous study. The length corresponds to a half wavelength of the first longitudinal overtone mode traveling inside the injector with the acoustic frequency intended for damping in the chamber. But, new injector-coupled acoustic modes show up in the chamber with the injectors of the tuning length although the target mode is nearly damped out. And, appreciable frequency shift is always observed except for the case of the worst tuned injector. Accordingly, it is proposed that the tuning length is adjusted to have the shorter length than a half wavelength when these phenomena are considered

  5. ATA injector-gun calculations

    International Nuclear Information System (INIS)

    Paul, A.C.

    1981-01-01

    ATA is a pulsed, 50 ns 10 KA, 50 MeV linear induction electron accelerator at LLNL. The ETA could be used as an injector for ATA. However the possibility of building a new injector gun for ATA, raised the question as to what changes from the ETA gun in electrode dimensions or potentials, if any, should be considered. In this report the EBQ code results for the four electrode configurations are reviewed and an attempt is made to determine the geometrical scaling laws appropriate to these ETA type gun geometries. Comparison of these scaling laws will be made to ETA operation. The characteristic operating curves for these geometries will also be presented and the effect of washer position determined. It will be shown that emittance growth will impose a limitation on beam current for a given anode potential before the virtual cathode limit is reached

  6. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buchelt, E.; Jacobi, D.; Lackner, E.; Schilling, H.B.; Ulrich, M.; Weber, G.

    1983-08-01

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  7. Injector linac of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Hori, T.; Suzuki, S.; Yanagida, K.; Itoh, Y.; Mizuno, A.; Taniuchi, T.; Sakaki, H.; Kuba, A.; Fukushima, S.; Kobayashi, T.; Asaka, T.; Yokomizo, H.

    1996-01-01

    The linac that is SPring-8 injector was completed and started operation from August 1. A beam was able to be transported to the final beam dumping at a tail end on August 8. From now on this linac carries out beam adjustment and be scheduled to do a beam injection to a synchrotron in October. The construction and fundamental performance of the linac are described. (author)

  8. Improved Bevatron local injector ion source performance

    International Nuclear Information System (INIS)

    Stover, G.; Zajec, E.

    1985-05-01

    Performance tests of the improved Bevatron Local Injector PIG Ion Source using particles of Si 4 + , Ne 3 + , and He 2 + are described. Initial measurements of the 8.4 keV/nucleon Si 4 + beam show an intensity of 100 particle microamperes with a normalized emittance of .06 π cm-mrad. A low energy beam transport line provides mass analysis, diagnostics, and matching into a 200 MHz RFQ linac. The RFQ accelerates the beam from 8.4 to 200 keV/nucleon. The injector is unusual in the sense that all ion source power supplies, the ac distribution network, vacuum control equipment, and computer control system are contained in a four bay rack mounted on insulators which is located on a floor immediately above the ion source. The rack, transmission line, and the ion source housing are raised by a dc power supply to 80 kilovolts above earth ground. All power supplies, which are referenced to rack ground, are modular in construction and easily removable for maintenance. AC power is delivered to the rack via a 21 kVA, 3-phase transformer. 2 refs., 5 figs., 1 tab

  9. Multi-beam injector development at LBL

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Brodzik, D.A.; Johnson, R.M.; Pike, C.D.; Vanecek, D.L.; Humphries, S. Jr.; Meyer, E.A.; Hewett, D.W.

    1990-06-01

    LBL is developing a multi-beam injector that will be used for scaled accelerator experiments related to Heavy Ion Fusion. The device will produce sixteen 0.5 Amp beams of C+ at 2 MeV energy. The carbon arc source has been developed to the point where the emittance is within a factor of four of the design target. Modelling of the source behavior to find ways to reduce the emittance is discussed. Source lifetime and reliability is also of paramount importance to us and data regarding the lifetime and failure modes of different source configurations is discussed. One half of the accelerating column has been constructed and tested at high voltage. One beam experiments in this half column are underway. The second half of the column is being built and the transition 2 MV experiments should begin soon. In addition to beam and source performance we also discuss the controls for the injector and the electronics associated with the source and current injection. 3 refs., 2 figs

  10. Impact of biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.

    2014-01-01

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NO x emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  11. Additive Manufacturing of Fuel Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadek Tadros, Dr. Alber Alphonse [Edison Welding Institute, Inc., Columbus, OH (United States); Ritter, Dr. George W. [Edison Welding Institute, Inc., Columbus, OH (United States); Drews, Charles Donald [Edison Welding Institute, Inc., Columbus, OH (United States); Ryan, Daniel [Solar Turbines Inc., San Diego, CA (United States)

    2017-10-24

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventional manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project

  12. An Evaluation of the Texas Functional Living Scale's Latent Structure and Subscales.

    Science.gov (United States)

    González, David Andrés; Soble, Jason R; Marceaux, Janice C; McCoy, Karin J M

    2017-02-01

    Performance-based functional assessment is a critical component of neuropsychological practice. The Texas Functional Living Scale (TFLS) has promise given its brevity, nationally representative norms, and co-norming with Wechsler scales. However, its subscale structure has not been evaluated. The purpose of this study was to evaluate the TFLS in a mixed clinical sample (n = 197). Reliability and convergent and discriminant validity coefficients were calculated with neurocognitive testing and collateral reports and factor analysis was performed. The Money and Calculation subscale had the best psychometric properties of the subscales. The evidence did not support solitary interpretation of the Time subscale. A three-factor latent structure emerged representing memory and semantic retrieval, performance and visual scanning, and financial calculation. This study added psychometric support for interpretation of the TFLS total score and some of its subscales. Study limitations included sample characteristics (e.g., gender ratio) and low power for collateral report analyses. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    Science.gov (United States)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  14. Design status of heavy ion injector program

    International Nuclear Information System (INIS)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 -7 torr) high voltage (HV) accelerating column

  15. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  16. NBS-LANL RTM injector installation

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Lindstrom, E.R.; Martin, E.R.; Mohr, D.L.; Penner, S.; Yoder, N.R.; Young, L.M.

    1983-01-01

    The injector for the NBS-LANL CW racetrack microtron consists of a 100 KeV electron gun and beam transport line followed by a 5 MeV linac. The function of the gun and transport line, which have been installed at NBS, is to provide a chopped and bunched 100 KeV and up to 0.67 mA dc or pulsed beam of very low transverse emittance for matched insertion into the linac. In this paper the authors present both the design and construction details of the 100 KeV system and the results of preliminary beam tests. The tests conducted thus far show the gun and transport system to be performing well within design specifications

  17. Inspection of diesel engine injectors by several electromagnetic nondestructive methods

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Balassa, P.; Gasparics, A.; Tomáš, Ivan; Mészáros, I.

    2017-01-01

    Roč. 54, č. 3 (2017), s. 449-459 ISSN 1383-5416 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : electromagnetic nondestructive testing * diesel engine injector * eddy current testing * magnetic hysteresis measurements * magnetic adaptive testing Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.769, year: 2016

  18. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Milora, S.L.; Gouge, M.J.; Fisher, P.W.; Combs, S.K.; Cole, M.J.; Wysor, R.B.; Fehling, D.T.; Foust, C.R.; Baylor, L.R.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1991-01-01

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  19. LHCb: Hardware Data Injector

    CERN Multimedia

    Delord, V; Neufeld, N

    2009-01-01

    The LHCb High Level Trigger and Data Acquisition system selects about 2 kHz of events out of the 1 MHz of events, which have been selected previously by the first-level hardware trigger. The selected events are consolidated into files and then sent to permanent storage for subsequent analysis on the Grid. The goal of the upgrade of the LHCb readout is to lift the limitation to 1 MHz. This means speeding up the DAQ to 40 MHz. Such a DAQ system will certainly employ 10 Gigabit or technologies and might also need new networking protocols: a customized TCP or proprietary solutions. A test module is being presented, which integrates in the existing LHCb infrastructure. It is a 10-Gigabit traffic generator, flexible enough to generate LHCb's raw data packets using dummy data or simulated data. These data are seen as real data coming from sub-detectors by the DAQ. The implementation is based on an FPGA using 10 Gigabit Ethernet interface. This module is integrated in the experiment control system. The architecture, ...

  20. Ion source and injector development

    International Nuclear Information System (INIS)

    Curtis, C.D.

    1976-01-01

    This is a survey of low energy accelerators which inject into proton linacs. Laboratories covered include Argonne, Brookhaven, CERN, Chalk River, Fermi, ITEP, KEK, Rutherford, and Saclay. This paper emphasizes complete injector systems, comparing significant hardware features and beam performance data, including recent additions. There is increased activity now in the acceleration of polarized protons, H + and H - , and of unpolarized H - . New source development and programs for these ion beams is outlined at the end of the report. Heavy-ion sources are not included

  1. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  2. Feasibility and application on steam injector for next-generation reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Ishiyama, Takenori; Miyano, Hiroshi; Nei, Hiromichi; Shioiri, Akio

    1991-01-01

    A feasibility study has been conducted on steam injector for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) of Passive Containment Cooling System (PCCS), because of easy start-up without an AC power. An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a two-stage Steam Injector System (SIS) for PCIS and a one-stage low pressure SIS for PCCS. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIS could work over a very wide range of the steam pressure, and is applicable for PCIS or PCCS in the next generation reactors. (author)

  3. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Energy recovery tests performed on an injector of energetic neutral atoms in which the ion source is operated at the ground potential and the neutralizer is biased at the high energy potential corresponding to the desired neutral beam energy, are presented. The operation of the suppressor grid is studied in two different experiments. These tests underline the problems to be solved for an efficient recovery of the energy of the unneutralized beam fraction

  4. A Neutral Beam Injector Upgrade for NSTX

    International Nuclear Information System (INIS)

    Stevenson, T.; McCormack, B.; Loesser, G.D.; Kalish, M.; Ramakrishnan, S.; Grisham, L.; Edwards, J.; Cropper, M.; Rossi, G.; Halle, A. von; Williams, M.

    2002-01-01

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current

  5. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  6. Engineering problems of future neutral beam injectors

    International Nuclear Information System (INIS)

    Fink, J.

    1977-01-01

    Because there is no limit to the energy or power that can be delivered by a neutral-beam injector, its use will be restricted by either its cost, size, or reliability. Studies show that these factors can be improved by the injector design, and several examples, taken from mirror reactor studies, are given

  7. Dementia knowledge assessment scale (DKAS): confirmatory factor analysis and comparative subscale scores among an international cohort.

    Science.gov (United States)

    Annear, Michael J; Toye, Chris; Elliott, Kate-Ellen J; McInerney, Frances; Eccleston, Claire; Robinson, Andrew

    2017-07-31

    Dementia is a life-limiting condition that is increasing in global prevalence in line with population ageing. In this context, it is necessary to accurately measure dementia knowledge across a spectrum of health professional and lay populations with the aim of informing targeted educational interventions and improving literacy, care, and support. Building on prior exploratory analysis, which informed the development of the preliminarily valid and reliable version of the Dementia Knowledge Assessment Scale (DKAS), a Confirmatory Factor Analysis (CFA) was performed to affirm construct validity and proposed subscales to further increase the measure's utility for academics and educators. A large, de novo sample of 3649 volunteer respondents to a dementia-related online course was recruited to evaluate the performance of the DKAS and its proposed subscales. Respondents represented diverse cohorts, including health professionals, students, and members of the general public. Analyses included CFA (using structural equation modelling), measures of internal consistency (α), and non-parametric tests of subscale correlation (Spearman Correlation) and score differences between cohorts (Kruskal-Wallis one-way analysis of variance). Findings of the CFA supported a 25-item, four-factor model for the DKAS with two items removed due to poor performance and one item moved between factors. The resultant model exhibited good reliability (α = .85; ω h  = .87; overall scale), with acceptable subscale internal consistency (α ≥ .65; subscales). Subscales showed acceptable correlation without any indication of redundancy. Finally, total and DKAS subscale scores showed good discrimination between cohorts of respondents who would be anticipated to hold different levels of knowledge on the basis of education or experience related to dementia. The DKAS has been confirmed as a reliable and valid measure of dementia knowledge for diverse populations that is capable of elucidating

  8. Injector machine development days 2017

    CERN Document Server

    Bartosik, H

    2017-01-01

    Following the important progress made in 2016 in the Machine Development (MD) activities that took place in all the accelerators of the LHC injector chain, the days 23-24 March, 2017, have been devoted to summarise the main out- come from the MDs and lay out the plans for the next steps. The event was also triggered by the following motivations and goals: Give a chance to the MD users to present their results; Provide a platform in which MD users, MD coordinators and operations crews meet and discuss openly the optimisation of the MD time and procedures, taking into account of the different perspectives; Provide an overview of all the ongoing activities to better frame their impact in the broader picture of the CERN short and long term projects; Identify the open questions, define and prioritise ma- chine studies in the injectors for 2017; Create the opportunity to obtain and document written reports from MD users. Within this contribution, we just summarise the context and the main points discussed at the ev...

  9. Table-top pellet injector (TATOP) for impurity pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Herrmann, Albrecht [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Kocsis, Gábor; Kovács, Ádám; Németh, József [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Ploeckl, Bernhard [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • A portable pellet injector for solid state pellets was designed. • Aims to study ELM triggering potential of impurity pellets. • Aims for multi-machine comparison of pellet–plasma interaction. • Max. pellet speed: 450 m/s, max. rate: 25 Hz. • Pellet size: 0.5–1.5 mm (diameter). - Abstract: A table-top pellet injector (TATOP) has been designed to fulfill the following scientific aims: to study the ELM triggering potential of impurity pellets, and to make pellet injection experiments comparable over several fusion machines. The TATOP is based on a centrifugal accelerator therefore the complete system is run in vacuum, ensuring the compatibility with fusion devices. The injector is able to launch any solid material (stable at room temperature) in form of balls with a diameter in the 0.5–1.5 mm range. The device hosts three individual pellet tanks that can contain e.g. pellets of different materials, and the user can select from those without opening the vacuum chamber. A key element of the accelerator is a two-stage stop cylinder that reduces the spatial scatter of pellets exiting the acceleration arm below 6°, enabling the efficient collection of all fired pellets. The injector has a maximum launch speed of 450 m/s. The launching of pellets can be done individually by providing TTL triggers for the injector, giving a high level of freedom for the experimenter when designing pellet trains. However, the (temporary) firing rate cannot be larger than 25 Hz. TATOP characterization was done in a test bed; however, the project is still in progress and before application at a fusion oriented experiment.

  10. Development and validation of the functional assessment of cancer therapy-antiangiogenesis subscale.

    Science.gov (United States)

    Kaiser, Karen; Beaumont, Jennifer L; Webster, Kimberly; Yount, Susan E; Wagner, Lynne I; Kuzel, Timothy M; Cella, David

    2015-05-01

    The Functional Assessment of Cancer Therapy (FACT)-Antiangiogenesis (AntiA) Subscale was developed and validated to enhance treatment decision-making and side effect management for patients receiving anti-angiogenesis therapies. Side effects related to anti-angiogenesis therapies were identified from the literature, clinician input, and patient input. Fifty-nine possible patient expressions of side effects were generated. Patient and clinician ratings of the importance of these expressions led us to develop a 24-item questionnaire with clinical and research potential. To assess the scale's reliability and validity, 167 patients completed the AntiA Subscale, the Functional Assessment of Cancer Therapy-general (FACT-G), the FACT-Kidney Symptom Index (FKSI), the FACIT-Fatigue Subscale, the Global Rating of Change Scale (GRC), and the PROMIS Global Health Scale. Patient responses to the AntiA were analyzed for internal consistency, test-retest reliability, convergent and discriminant validity, and responsiveness to change in clinical status. All tested scales were found to have good internal consistency reliability (Cronbach's alpha 0.70-0.92). Test-retest reliability was also good (0.72-0.88) for total and subscale scores and lower for individual items. The total score, subscale scores, and all single items (except nosebleeds) significantly differentiated between groups defined by level of side effect bother. Evaluation of responsiveness to change in this study was not conclusive, suggesting an area for further research. The AntiA is a reliable and valid measure of side effects from anti-angiogenesis therapy. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Microwave proton source development for a high-current linac injector

    International Nuclear Information System (INIS)

    Sherman, J.; Bolme, G.; Geisik, C.

    1995-01-01

    Powerful CW proton linear accelerators (100-mA at 0.5--1.0 GeV) are being proposed for spallation neutron-source applications. A 75-keV, 110-mA dc proton injector using a microwave ion source is being tested for these applications. It has achieved 80-keV, 110-mA hydrogen-ion-beam operation. Video and dc beam-current toroid diagnostics are operational, and an EPICS control system is also operational on the 75-keV injector. A technical base development program has also been carried out on a 50-keV injector obtained from Chalk River Laboratories, and it includes low-energy beam transport studies, ion source lifetime tests, and proton-fraction enhancement studies. Technical base results and the present status of the 75-keV injector will be presented

  12. How well do the ADAS-cog and its subscales measure cognitive dysfunction in Alzheimer's disease?

    Science.gov (United States)

    Benge, Jared F; Balsis, Steve; Geraci, Lisa; Massman, Paul J; Doody, Rachelle S

    2009-01-01

    The Alzheimer's Disease Assessment Scale-cognitive (ADAS-cog) is regularly used to assess cognitive dysfunction in Alzheimer's disease (AD) clinical trials. Yet, little is known about how the instrument and its subscales measure cognition across the spectrum of AD. The current investigation used item response theory (IRT) analyses to assess the measurement properties of the ADAS-cog across the range of cognitive dysfunction in AD. We used IRT-based analyses to establish the relationship between cognitive dysfunction and the probability of obtaining observed scores on each subscale and the test as a whole. Data were obtained from 1,087 patients with AD and amnestic mild cognitive impairment. Results showed that the ADAS-cog and its subscales provide maximum information at moderate levels of cognitive dysfunction. Raw score differences toward the lower and higher ends of the scale corresponded to large differences in cognitive dysfunction, whereas raw score differences toward the middle of the scale corresponded to smaller differences. The utility of the ADAS-cog and its subscales is optimal in the moderate range of cognitive dysfunction, but raw score differences in that region correspond to relatively small differences in cognitive dysfunction. Implications for tracking and staging dementia and for clinical trials are discussed. Copyright 2009 S. Karger AG, Basel.

  13. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  14. Understanding the spectrum of diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Robert; Barbour, Robert [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Understanding the origin of diesel fuel injector deposits used to be relatively simple; for the most part they were caused by the decomposition of fuel during the combustion process, were generally organic in nature and typically only affected the nozzle orifices. However, modem fuel injector designs appear to be both more severe in terms of generating conditions conducive to creating new and different types of deposits and more likely to have their operation affected by those deposits. Changes to fuel composition and type have in some cases increased the potential pool of reactive species or provided new potential deposit precursors. As a result, the universe of diesel injector deposits now range from the traditional organic to partially or fully inorganic in nature and from nozzle coking deposits to deposits which can seize the internal components of the injector; so called internal diesel injector deposits. Frequently, combinations of inorganic and organic deposits are found. While power loss is one well known issue associated with nozzle deposits, other field problems resulting from these new deposits include severe issues with drivability, emissions, fuel consumption and even engine failure. Conventional deposit control additive chemistries were developed to be effective against organic nozzle coking deposits. These conventional additives in many cases may prove ineffective against this wide range of deposit types. This paper discusses the range of deposits that have been found to adversely impact modem diesel fuel injectors and compares the performance of conventional and new, advanced deposit control additives against these various challenges to proper fuel injector functioning. (orig.)

  15. Prototype ion source for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Akiba, M.

    1981-01-01

    A prototype ion source for JT-60 neutral beam injectors has been fabricated and tested. Here, we review the construction of the prototype ion source and report the experimental results about the source characteristics that has been obtained at this time. The prototype ion source is now installed at the prototype unit of JT-60 neutral beam injection units and the demonstration of the performances of the ion source and the prototype unit has just started

  16. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1981-02-01

    Two-dimensional radiation transport methods have been used to estimate the effects of neutron and gamma ray streaming on the performance of the Engineering Test Facility (ETF) neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10 -3 MW/m 3 which implies a total heat load of 2.2 x 10 -4 MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated

  17. Development of a pellet cutting and loading device for the JT-60 repetitive pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Ichige, Hisashi; Kizu, Kaname; Iwahashi, Takaaki; Honda, Masao

    2001-03-01

    In JT-60, a pellet injector that repetitively injects deuterium pellets is under development to supply fuel to high temperature plasmas and sustain high-density plasmas. The pellet injector generates cubic pellets and accelerates them with a straight-arm rotor by centrifugal force. In this acceleration method, it is important to supply pellets reliably and stably, to prevent pellet orbits from disordering and to stabilize the launching direction. To achieve higher performance of the injector, a pellet cutting and loading device that cuts a deuterium ice rod into cubic pellets and loads them to the pellet injector successively and stably has been developed. The pellet cutting and loading device can cut a deuterium ice rod produced at low temperature of -8 Pam 3 /s, cutting time of <3 ms, cutting frequency of 1-20 Hz and cutter stroke of 2.5 mm were confirmed in the device test. In the operation test after assembling this device to the centrifugal pellet injector, the operational performance of pellet injection frequency of ∼10 Hz, pellet speed of ∼690 m/s and pellet injection duration time of ∼3.5 s was achieved. Thus, the development of the pellet cutting and loading device contributed to the upgrade of the JT-60 pellet injector. (author)

  18. The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod

    International Nuclear Information System (INIS)

    Urbahn, J.A.

    1994-05-01

    A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have lead to a single stage, pipe gun design with twenty barrels. Pellets are formed by in- situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extrusively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius

  19. Laser-driven injector of electrons for IOTA

    Science.gov (United States)

    Romanov, Aleksandr

    2017-03-01

    Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.

  20. Therminoic gun control system for the CEBAF injector

    International Nuclear Information System (INIS)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  1. Optimization of RF Compressor in the SPARX Injector

    CERN Document Server

    Ronsivalle, Concetta; Ferrario, Massimo; Serafini, Luca; Spataro, Bruno

    2005-01-01

    The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.

  2. Change of International Restless Legs Syndrome Study Group Rating Scale subscales with treatment and placebo: a pilot study

    Directory of Open Access Journals (Sweden)

    Mitchell UH

    2014-02-01

    Full Text Available Ulrike H Mitchell,1 Sterling C Hilton2 1Brigham Young University, Department of Exercise Sciences, 2Department of Educational Leadership and Foundations, Provo, UT, USA Background: In 2003, the 10-question International Restless Legs Syndrome Study Group Rating Scale (IRLS was developed as a means of assessing the severity of restless legs syndrome. Two subscales were identified: symptom severity (SS 1 and symptom impact (SS 2. Only one study has investigated the subscales' responsiveness to a 12-week treatment with ropinirole. This current study was undertaken to assess the impact of a 4-week, non-pharmaceutical treatment on the two subscales and to explore whether or not both subscales were impacted by the observed placebo effect. Methods: The pooled data from questionnaires of 58 patients (41 from both treatment groups and 17 from the sham treatment control group, who participated in two clinical studies, were reviewed. Their change in score over a 4-week trial was computed. The average change in both subscales in both groups was computed and t-tests were performed. Results: In the treatment group, the average scores of both subscales changed significantly from baseline to week 4 (P<0.005 for both. Compared to the control, SS 1 changed (P<0.001, but not SS 2 (P=0.18. In the sham treatment group, the scores for SS 1 changed significantly (P=0.002, but not for SS 2 (P=0.2. Conclusion: This study corroborated findings from an earlier study in which both subscales changed with a 12-week drug treatment. It also showed that the observed placebo effect is attributed to a small but significant change in symptom severity, but not symptom impact. Keywords: restless legs syndrome, RLS severity scale, IRLS subscales, symptom impact, symptom severity

  3. Heavy ion fusion 2 MV injector

    International Nuclear Information System (INIS)

    Yu, S.; Eylon, S.; Henestroza, E.

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K + , 15% above original design goals in energy and current. Normalized edge emittance of less than 1 π mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than ± 0.2% over the 1 micros pulse

  4. An introduction to photo-injector design

    International Nuclear Information System (INIS)

    Travier, C.

    1993-07-01

    A quick overview is given of the RF gun basic theory for photo-injectors and of the presently achievable technical parameters thus providing some guidelines to help the designer in his choices. Simple scaling laws and formulas for both beam dynamics and technical parameters are proposed and compared to corresponding values for existing photo-injectors. Various sophisticated schemes used to improve the performances beyond those given by a straightforward approach are reviewed. (author) 65 refs., 11 figs., 3 tabs

  5. A light ion four rod RFQ injector

    International Nuclear Information System (INIS)

    Schempp, A.; Ferch, M.; Klein, H.

    1987-01-01

    The four-rod RFQ has been developed in Frankfurt as an alternative solution for ion injectors. A 202 MHz resonator has been built with design parameters taken from the HERA injector (18keV-750keV, 20mA H - ). Properties of this structure are described and applications as light ion accelerator for particles from an EBIS ion source are discussed

  6. Energy Cascade Analysis: from Subscale Eddies to Mean Flow

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James

    2017-11-01

    Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  7. When should we perform a repeat training on adrenaline auto-injector use for physician trainees?

    Science.gov (United States)

    Topal, E; Bakirtas, A; Yilmaz, O; Karagol, I H E; Arga, M; Demirsoy, M S; Turktas, I

    2014-01-01

    Studies demonstrate that both doctors and patients may use adrenaline auto-injector improperly and the usage skills are improved by training. In this study, we aimed to determine the appropriate frequency of training to maintain skills for adrenaline auto-injector use. We invited all interns of 2011-2012 training period. At baseline, all participants were given theoretical and practical training on adrenaline auto-injector use. The participants were randomly assigned into two groups. We asked those in group 1 to demonstrate the use of adrenaline auto-injector trainer in the third month and those in group 2 in the sixth month. One hundred and sixty interns were enrolled. Compared with the beginning score, demonstration of skills at all the steps and total scores did not change for the group tested in the third month (p=0.265 and p=0.888, respectively). However; for the group examined in the sixth month; the demonstration of skills for proper use of the auto-injector at all steps and the mean time to administer adrenaline decreased (p=0.018 and padrenaline (p<0.001) and presumptive self-injection into thumb (p=0.029). Auto-injector usage skills of physician trainees decrease after the sixth month and are better in those who had skill reinforcement at 3 months, suggesting continued education and skill reinforcement may be useful. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.

  8. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, W.; Steimel, J.

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  9. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, Willem; Steimel, James

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  10. The LHC Lead Injector Chain

    CERN Document Server

    Beuret, A; Blas, A; Burkhardt, H; Carli, Christian; Chanel, M; Fowler, A; Gourber-Pace, M; Hancock, S; Hourican, M; Hill, C E; Jowett, John M; Kahle, K; Küchler, D; Lombardi, A M; Mahner, E; Manglunki, Django; Martini, M; Maury, S; Pedersen, F; Raich, U; Rossi, C; Royer, J P; Schindl, Karlheinz; Scrivens, R; Sermeus, L; Shaposhnikova, Elena; Tranquille, G; Vretenar, Maurizio; Zickler, T

    2004-01-01

    A sizeable part of the LHC physics programme foresees lead-lead collisions with a design luminosity of 1027 cm-2 s-1. This will be achieved after an upgrade of the ion injector chain comprising Linac3, LEIR, PS and SPS machines [1,2]. Each LHC ring will be filled in 10 min by almost 600 bunches, each of 7×107 lead ions. Central to the scheme is the Low Energy Ion Ring (LEIR) [3,4], which transforms long pulses from Linac3 into high-brilliance bunches by means of multi-turn injection, electron cooling and accumulation. Major limitations along the chain, including space charge, intrabeam scattering, vacuum issues and emittance preservation are highlighted. The conversion from LEAR (Low Energy Antiproton Ring) to LEIR involves new magnets and power converters, high-current electron cooling, broadband RF cavities, and a UHV vacuum system with getter (NEG) coatings to achieve a few 10-12 mbar. Major hardware changes in Linac3 and the PS are also covered. An early ion scheme with fewer bunches (but each at nominal...

  11. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3 He separator, which was an integral part of the gun assembly, was capable of lowering 3 He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  12. Development of the pellet injector for JT-60

    International Nuclear Information System (INIS)

    Kawasaki, Kouzo; Hiratsuka, Hajimo; Takatsu, Hideyuki; Shimizu, Masatsugu; Onozuka, Masanori; Uchikawa, Takashi; Iwamoto, Syuichi; Hashiri, Nobuo

    1989-01-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proved that the device provides high speed hydrogen pellets just as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 1.6 km/sec at 50 bar propellant gas. The device is now in use for JT-60 contributing to plasma study. In this paper the outline of features and performance of the device is presented. (author). 4 refs.; 8 figs

  13. Development of compact toroids injector for direct plasma controls

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  14. Development of compact toroids injector for direct plasma controls

    International Nuclear Information System (INIS)

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  15. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    Lavender, W.; Baird, S.; Brennan, S.; Borland, M.; Hettel, R.; Nuhn, H.D.; Ortiz, R.; Safranek, J.; Sebek, J.; Wermelskirchen, C.; Yang, J.

    1991-01-01

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  16. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  17. Status of the SPIRAL2 injector commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Jacob, J.; Lamy, T.; Sole, P. [LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Barué, C.; Bertrand, P.; Canet, C.; Ferdinand, R.; Flambard, J.-L.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Biarrotte, J. L. [IPN Orsay, Université Paris Sud, CNRS/IN2P3, 15 rue Georges Clémenceau, 91406 Orsay Cedex (France); Denis, J.-F.; Roger, A.; Touzery, R.; Tuske, O.; Uriot, D. [Irfu, CEA Saclay, DSM/Irfu/SACM, 91191 Gif Sur Yvette (France); and others

    2016-02-15

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  18. Neutral beam injector performance on the PLT and PDX tokamaks

    International Nuclear Information System (INIS)

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures

  19. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon; Badra, Jihad; Elwardani, Ahmed Elsaid; Im, Hong G.

    2016-01-01

    linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide

  20. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M; Pardo, R C; Shepard, K W; Billquist, P J; Bogaty, J M; Clifft, B E; Harkewicz, R; Joh, K; Markovich, P K; Munson, F H; Zinkann, G; Nolen, J A [Physics Div., Argonne National Lab., IL (United States)

    1993-03-01

    A Positive-Ion Injector (PII) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structure. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to [approx equal] 1.1 MeV/u. When ions with q/A>0.1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating [sup 30]Si[sup 7+], [sup 40]Ar[sup 11+], [sup 132]Xe[sup 13+], and [sup 208]Pb[sup 24+]. For all of these, transmission through the injector linac was [approx equal] 100% of the pre-bunched beam, which corresponds to [approx equal] 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time. (orig.).

  1. The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN

    CERN Document Server

    Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M

    2010-01-01

    A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...

  2. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  3. The Fermilab Main Injector Technical Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1994-08-01

    This report contains a description of the design, cost estimate, and construction schedule of the Fermilab Main Injector (FMI) Project. The technical, cost, and schedule baselines for the FMI Project have already been established and may be found in the Fermilab Main Injector Title I Design Report, issued in August 1992. This report updates and expands upon the design and schedule for construction of all subsystem components and associated civil construction described in the Title I Design Report. The facilities described have been designed in conformance with DOE 6430.1A, "United States Department of Energy General Design Criteria."

  4. Repeating pneumatic pellet injector in JAERI

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi; Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  5. Mechanical design for TMX injector system

    International Nuclear Information System (INIS)

    Calderon, M.O.; Chen, F.F.K.; Denhoy, B.S.

    1977-01-01

    The injector system for the Tandem Mirror Experiment (TMX) contains the components required to create and maintain a high-temperature, high-density plasma. These components include a streaming-plasma gun in each of the plug tanks to form the target-plasma, 24 neutral-beam source modules for injecting neutral deuterium atoms to heat and replace losses from the plasma, and a gas box system that applies a streaming cold gas to the plasma to stabilize it. This paper discusses the mechanical design problems and solutions for this injector system

  6. Repeating pneumatic pellet injector in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment); Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author).

  7. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  8. Predictive Evaluations of Oxygen-Rich Hydrocarbon Combustion Gas-Centered Swirl Coaxial Injectors using a Flamelet-Based 3-D CFD Simulation Approach

    Science.gov (United States)

    Richardson, Brian R.; Braman, Kalem; West, Jeff

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has embarked upon a joint project with the Air Force to improve the state-of-the-art of space application combustion device design and operational understanding. One goal of the project is to design, build and hot-fire test a 40,000 pound-thrust Oxygen/Rocket Propellant-2 (RP-2) Oxygen-Rich staged engine at MSFC. The overall project goals afford the opportunity to test multiple different injector designs and experimentally evaluate the any effect on the engine performance and combustion dynamics. To maximize the available test resources and benefits, pre-test, combusting flow, Computational Fluid Dynamics (CFD) analysis was performed on the individual injectors to guide the design. The results of the CFD analysis were used to design the injectors for specific, targeted fluid dynamic features and the analysis results also provided some predictive input for acoustic and thermal analysis of the main Thrust Chamber Assembly (TCA). MSFC has developed and demonstrated the ability to utilize a computationally efficient, flamelet-based combustion model to guide the pre-test design of single-element Gas Centered Swirl Coaxial (GCSC) injectors. Previous, Oxygen/RP-2 simulation models utilizing the Loci-STREAM flow solver, were validated using single injector test data from the EC-1 Air Force test facility. The simulation effort herein is an extension of the validated, CFD driven, single-injector design approach applied to single injectors which will be part of a larger engine array. Time-accurate, Three-Dimensional, CFD simulations were performed for five different classes of injector geometries. Simulations were performed to guide the design of the injector to achieve a variety of intended performance goals. For example, two GCSC injectors were designed to achieve stable hydrodynamic behavior of the propellant circuits while providing the largest thermal margin possible within the design envelope. While another injector was designed

  9. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  10. 21 CFR 870.1670 - Syringe actuator for an injector.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Syringe actuator for an injector. 870.1670 Section 870.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device...

  11. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (6) Operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Yujiro; Abe, Yutaka; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2004-01-01

    One of the most interesting devices for next generation reactor systems aiming at simplified system and improvement of safety and credibility is the steam injector which is a passive pump without large motor or turbo-machinery. One of the applications of the steam injector is the passive water injection system to inject the coolant water into the core. The system can be started up merely by injecting the steam without any outer power supply. Since the steam injector is a simple, compact and passive device for water injection, if the steam injector is applied to the actual reactor, it is expected to make the system simple and to reduce the construction cost. Although non-condensable gases are well known for reducing heat transfer between water and steam, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper reports about the experimental apparatus, measurement instrument and experimental results of observing the phenomenon inside the test section supplying water and steam to the test by using both the high-speed camera and the video camera and measuring the temperature and the pressure distribution n the test section. (author)

  12. Validity of the Mania Subscale of the Diagnostic Assessment for the Severely Handicapped-II (DASH-II).

    Science.gov (United States)

    Matson, Johnny L.; Smiroldo, Brandi B.

    1997-01-01

    A study tested the validity of the Diagnostic Assessment for the Severely Handicapped-II (DASH-II) for determining the presence of mania (bipolar disorder) in 22 individuals with severe mental retardation. Results found the mania subscale to be internally consistent and able to be used to classify manic and control subjects accurately. (Author/CR)

  13. Diagnostics and camera strobe timers for hydrogen pellet injectors

    International Nuclear Information System (INIS)

    Bauer, M.L.; Fisher, P.W.; Qualls, A.L.

    1993-01-01

    Hydrogen pellet injectors have been used to fuel fusion experimental devices for the last decade. As part of developments to improve pellet production and velocity, various diagnostic devices were implemented, ranging from witness plates to microwave mass meters to high speed photography. This paper will discuss details of the various implementations of light sources, cameras, synchronizing electronics and other diagnostic systems developed at Oak Ridge for the Tritium Proof-of-Principle (TPOP) experiment at the Los Alamos National Laboratory's Tritium System Test Assembly (TSTA), a system built for the Oak Ridge Advanced Toroidal Facility (ATF), and the Tritium Pellet Injector (TPI) built for the Princeton Tokamak Fusion Test Reactor (TFTR). Although a number of diagnostic systems were implemented on each pellet injector, the emphasis here will be on the development of a synchronization system for high-speed photography using pulsed light sources, standard video cameras, and video recorders. This system enabled near real-time visualization of the pellet shape, size and flight trajectory over a wide range of pellet speeds and at one or two positions along the flight path. Additionally, the system provides synchronization pulses to the data system for pseudo points along the flight path, such as the estimated plasma edge. This was accomplished using an electronic system that took the time measured between sets of light gates, and generated proportionally delayed triggers for light source strobes and pseudo points. Systems were built with two camera stations, one located after the end of the barrel, and a second camera located closer to the main reactor vessel wall. Two or three light gates were used to sense pellet velocity and various spacings were implemented on the three experiments. Both analog and digital schemes were examined for implementing the delay system. A digital technique was chosen

  14. Management of high current transients in the CWDD Injector 200 kV power system

    International Nuclear Information System (INIS)

    Carwardine, J.A.; Pile, G.; Zinneman, T.E.

    1993-01-01

    The injector for the Continuous Wave Deuterium Demonstrator is designed to deliver a high current CW negative deuterium ion beam at an energy of 200 keV to a Radio Frequency Quadrupole. The injector comprises a volume ion source, triode accelerator, high-power electron traps and low-energy beam transport with a single focusing solenoid. Some 75 Joules of energy are stored in stray capacitance around the high voltage system and discharged in a few microseconds following an injector breakdown. In order to limit damage to the accelerator grids, a magnetic snubber is incorporated to absorb most of the energy. Nevertheless, large current transients flow around the system as a result of an injector breakdown; these have frequently damaged power components and caused spurious behavior in many of the supporting systems. The analytical and practical approaches taken to minimize the effects of these transients are described. Injector breakdowns were simulated using an air spark gap and measurements made using standard EMC test techniques. The power circuit was modeled using an electrical simulation code; good agreement was reached between the model and measured results

  15. Monte Carlo simulation of molecular flow in a neutral-beam injector and comparison with experiment

    International Nuclear Information System (INIS)

    Lillie, R.A.; Gabriel, T.A.; Schwenterly, S.W.; Alsmiller, R.G. Jr.; Santoro, R.T.

    1981-09-01

    Monte Carlo calculations have been performed to obtain estimates of the background gas pressure and molecular number density as a function of position in the PDX-prototype neutral beam injector which has undergone testing at the Oak Ridge National Laboratory. Estimates of these quantities together with the transient and steady-state energy deposition and molecular capture rates on the cryopanels of the cryocondensation pumps and the molecular escape rate from the injector were obtained utilizing a detailed geometric model of the neutral beam injector. The molecular flow calculations were performed using an existing Monte Carlo radiation transport code which was modified slightly to monitor the energy of the background gas molecules. The credibility of these calculations is demonstrated by the excellent agreement between the calculated and experimentally measured background gas pressure in front of the beamline calorimeter located in the downstream drift region of the injector. The usefulness of the calculational method as a design tool is illustrated by a comparison of the integrated beamline molecular density over the drift region of the injector for three modes of cryopump operation

  16. Evaluation of friction heating in cavitating high pressure Diesel injector nozzles

    Science.gov (United States)

    Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, Lifeng; Li, Jason; Marengo, M.; Gavaises, M.

    2015-12-01

    Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools.

  17. Achromatic beam transport of High Current Injector

    International Nuclear Information System (INIS)

    Kumar, Sarvesh; Mandal, A.

    2016-01-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time

  18. Displacement of cryomodule in CADS injector II

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jiandong; Zhang, Bin; Wang, Fengfeng; Wan, Yuqin; Sun, Guozhen; Yao, Junjie; Zhang, Juihui; He, Yuan [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics

    2017-06-15

    As Cryomodule can easily reduce higher power consumption and length of an accelerator and the accelerator can be operated more continuously. The Chinese academy of sciences institute of modern physics is developing an accelerator driven subcritical system (CADS) Injector II. Cryomodules are extremely complex systems, and their design optimization is strongly dependent on the accelerator application for which they are intended.

  19. Properties of high current RFQ injectors

    International Nuclear Information System (INIS)

    Schempp, A.; Goethe, J.W.

    1996-01-01

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author)

  20. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.W.

    1993-01-01

    A variety of pellet injector designs have been developed at ORNL including single-shot guns that inject one pellet, multiple-shot guns that inject four and eight pellets, machine gun-types (single- and multiple-barrel) that can inject up to >100 pellets, and centrifugal accelerators (mechanical devices that are inherently capable of high repetition rates and long-pulse operation). With these devices, macroscopic pellets (1--6 mm in diameter) composed of hydrogen isotopes are typically accelerated to speeds of ∼1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. In the past few years, steady progress has been made at ORNL in the development and application of pellet injectors for fueling present-day and future fusion devices. In this paper, we briefly describe some research and development activities at ORNL, including: (1) two recent applications and a new one on large experimental fusion devices, (2) high-velocity pellet injector development, and (3) tritium injector research

  1. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  2. Acquisition system of tandem injector parameters

    International Nuclear Information System (INIS)

    Decourt, M.

    1986-01-01

    The system centralizes all the parameters belonging to the accelerator injector. The acquisition center system reinforces an original device made of cameras and video receivers. Besides giving access to all the parameters of the ion source, the new system allows, in the ''OSCILLO'' mode, to visualize in real time any channel on the oscilloscope [fr

  3. Bevalac injector final stage RF amplifier upgrades

    International Nuclear Information System (INIS)

    Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.

    1991-01-01

    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  4. Properties of high current RFQ injectors

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, A.; Goethe, J.W. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1996-12-31

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author) 2 refs.

  5. Spray analysis of the PFAMEN injector

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; de Goey, L.P.H.; Bosi, M.; Postrioti, L.

    2013-01-01

    In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The

  6. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  7. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  8. LIPAc personnel protection system for realizing radiation licensing conditions on injector commissioning with deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Narita, Takahiro; Kasugai, Atsushi [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki [Gitec Co. Ltd., Hachinohe, Aomori (Japan); Marqueta, Alvaro; Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan); Sakaki, Hironao [Quantum Beam Science Center, JAEA, Kizu, Kyoto (Japan); Gobin, Raphael [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, Gif/Yvette (France)

    2016-11-01

    Highlights: • Personnel Protection System (PPS) is developed to adapt the radiation licensing. • PPS achieves the target performance to secure the personnel safety. • Pulse Duty Management System (PDMS) is developed to manage the beam-operation-time. • Satisfying performance of PDMS is confirmed by injector operation with H+ beam. • By the result of PPS and PDMS tests, the radiation license was successfully obtained. - Abstract: The performance validation of the Linear IFMIF Prototype Accelerator (LIPAc), up to the energy of 9 MeV deuteron beam with 125 mA continuous wave (CW), is planned in Rokkasho, Japan. There are three main phases of LIPAc performance validation: Injector commissioning, RFQ commissioning and LIPAc commissioning. Injector commissioning was started by H{sup +} and D{sup +} beam. To apply the radiation licensing for the Injector commissioning, the entering/leaving to/from accelerator vault should be under control, and access to the accelerator vault has to be prohibited for any person during the beam operation. The Personnel Protection System (PPS) was developed to adapt the radiation licensing conditions. The licensing requests that PPS must manage the accumulated D{sup +} current. So, to manage the overall D{sup +} beam time during injector operation, Pulse Duty Management System (PDMS) was developed as a configurable subsystem as part of the PPS. The PDMS was tested during H{sup +} beam (as simulated D{sup +}) operation, to confirm that it can handle the beam inhibit from Injector before the beam accumulation is above the threshold value specified in the radiation licensing condition. In this paper, the design and configuration of these systems and the result of the tests are presented.

  9. Characteristic deterioration of ADAS-Jcog subscale scores and correlations with regional cerebral blood flow reductions in Alzheimer's disease.

    Science.gov (United States)

    Yoshii, Fumihito; Kawaguchi, Chikako; Kohara, Saori; Shimizu, Mie; Onaka, Hiroe; Ryo, Masafuchi; Takahashi, Wakoh

    2018-05-01

    The Alzheimer Disease Assessment Scale (Japanese version) cognitive subscale (ADAS-Jcog) is composed of a number of subscale tasks. However, it is not clear which subscale tasks are most susceptible to impairment in Alzheimer's disease (AD) or what is the relationship between reduction in regional cerebral blood flow (rCBF) and decreased ADAS-Jcog scores. Subjects were 32 AD patients, aged 52-86 years. We examined the relationship between subscale tasks that showed marked score changes and brain regions that showed reduced rCBF over a 2-year period. rCBF was measured by single-photon emission computed tomography (SPECT) with technetium-99m ethyl cysteinate dimer ( 99m Tc-ECD), and the SPECT imaging data were analyzed with the easy Z-score imaging system (eZIS) and voxel-based stereotactic extraction estimation (vbSEE) methods. Total score of ADAS-Jcog deteriorated from 19.5 ± 7.0 to 35.7 ± 15.2 after 2 years. Subscale scores were significantly worse in all fields, particularly in orientation, word recall, remembering test instructions, commands, constructional praxis, and ideational praxis, in that order. Significant correlations were found between (1) word recall and commands and rCBF in the left middle temporal lobe, (2) naming objects/fingers and rCBF in the left temporal (middle, inferior) lobe, and (3) constructional and ideational praxis and rCBF in the right parietal (superior, inferior) lobe, temporal (superior, middle) lobe, angular gyrus, and cingulate gyrus. We identified the brain regions associated with specifically impaired subscales of ADAS-Jcog during progressive deterioration of AD over 2 years.

  10. Injection characteristics study of high-pressure direct injector for Compressed Natural Gas (CNG) using experimental and analytical method

    Science.gov (United States)

    Taha, Z.; Rahim, MF Abdul; Mamat, R.

    2017-10-01

    The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.

  11. Development of fast opening magnetic valve for JT-60 pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Kawasaki, Kouzo; Takatsu, Hideyuki; Miyo, Yasuhiko; Yoshioka, Yuji; Ohta, Kazuya; Shimizu, Masatsugu; Onozuka, Masanori; Uchikawa, Takashi; Iwamoto, Syuichi; Hashiri, Noboru

    1989-01-01

    A pneumatic four-pellet injector (JT-60 pellet injector) has been constructed for JT-60 in May, 1988. A fast opening magnetically driven propellant gas injection valve has been developed for JT-60 pellet injector. This valve can accelerate four cylindrical pellets, two 3.8 mm diameter by 3.8 mm and two 2.7 mm diameter by 2.7 mm, to greater than 1.6 km/s with propellent gas of up to 50 bar. It is now successfully in use in JT-60, contributing to plasma studies. In this paper the outline of a newly developed fast opening magnetic valve and the results of performance tests are presented. (author). 6 figs.; 1 tab

  12. EFFECT OF INJECTOR OPENING PRESSURE ON PERFORMANCE AND EMISSION OF LPG - METHYL ESTER OF MAHUA OIL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2017-11-01

    Full Text Available One of variables, which affect the performance and emission of dual fuel engine is injection pressure. Hence in the present work, effect of Injector opening pressure on the performance of the engine was studied.  A four stroke single cylinder engine was modified to work in dual fuel mode. Three injector opening pressures (180 bar, 200 bar and 220 bar were considered for the present work. Methyl ester of mahua oil was used as pilot fuel and LPG was used as primary fuel.    From the test results, it was observed that the injector opening pressure of 200 bar results in higher brake thermal efficiency. The higher injector opening pressure results in better atomization and peneatration of methyl ester of mahua oil. The exhaust emissions such as Smoke, unburnt hydro carbon and carbon monoxide of 200 bar is lower than other pressures.

  13. The Impact of Injector-Based Contrast Agent Administration on Bolus Shape and Magnetic Resonance Angiography Image Quality.

    Science.gov (United States)

    Jost, Gregor; Endrikat, Jan; Pietsch, Hubertus

    2017-01-01

    To compare injector-based contrast agent (CA) administration with hand injection in magnetic resonance angiography (MRA). Gadobutrol was administered in 6 minipigs with 3 protocols: (a) hand injection (one senior technician), (b) hand injection (6 less-experienced technicians), and (c) power injector administration. The arterial bolus shape was quantified by test bolus measurements. A head and neck MRA was performed for quantitative and qualitative comparison of signal enhancement. A significantly shorter time to peak was observed for protocol C, whereas no significant differences between protocols were found for peak height and bolus width. However, for protocol C, these parameters showed a much lower variation. The MRA revealed a significantly higher signal-to-noise ratio for injector-based administration. A superimposed strong contrast of the jugular vein was found in 50% of the hand injections. Injector-based CA administration results in a more standardized bolus shape, a higher vascular contrast, and a more robust visualization of target vessels.

  14. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  15. Accuracy of MRI-compatible contrast media injectors.

    Science.gov (United States)

    Saake, M; Wuest, W; Becker, S; Uder, M; Janka, R

    2014-03-01

    To analyze the exactness of MRI-compatible contrast media (CM) injectors in an experimental setup and clinical use. Ejected fluid volumes and amounts of CM were quantified for single and double piston injections. The focus was on small volumes, as used in pediatric examination and test-bolus measurements. Samples were collected before and after clinical MRI scans and amounts of CM were measured. For single piston injections the volume differences were minimal (mean difference 0.01  ml). For double piston injections the volume of the first injection was decreased (mean 20.74  ml, target 21.00  ml, p pistons of modern CM injectors work exactly. However, for small CM volumes the injected amount of CM can differ significantly from the target value in both directions. Influence factors are an incomplete elimination of air and exchange processes between the CM and saline chaser in the injection system. • In MRI examinations of children and test-bolus measurements, small amounts of CM are used. • The accuracy of single piston injections is high. • In double piston injections the injected amount of CM can differ significantly from the target value. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Development of Compact Toroid Injector for C-2 FRCs

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  17. Does parallel item content on WOMAC's Pain and Function Subscales limit its ability to detect change in functional status?

    Directory of Open Access Journals (Sweden)

    Kennedy Deborah M

    2004-06-01

    Full Text Available Abstract Background Although the Western Ontario and McMaster University Osteoarthritis Index (WOMAC is considered the leading outcome measure for patients with osteoarthritis of the lower extremity, recent work has challenged its factorial validity and the physical function subscale's ability to detect valid change when pain and function display different profiles of change. This study examined the etiology of the WOMAC's physical function subscale's limited ability to detect change in the presence of discordant changes for pain and function. We hypothesized that the duplication of some items on the WOMAC's pain and function subscales contributed to this shortcoming. Methods Two eight-item physical function scales were abstracted from the WOMAC's 17-item physical function subscale: one contained activities and themes that were duplicated on the pain subscale (SIMILAR-8; the other version avoided overlapping activities (DISSIMILAR-8. Factorial validity of the shortened measures was assessed on 310 patients awaiting hip or knee arthroplasty. The shortened measures' abilities to detect change were examined on a sample of 104 patients following primary hip or knee arthroplasty. The WOMAC and three performance measures that included activity specific pain assessments – 40 m walk test, stair test, and timed-up-and-go test – were administered preoperatively, within 16 days of hip or knee arthroplasty, and at an interval of greater than 20 days following the first post-surgical assessment. Standardized response means were used to quantify change. Results The SIMILAR-8 did not demonstrate factorial validity; however, the factorial structure of the DISSIMILAR-8 was supported. The time to complete the performance measures more than doubled between the preoperative and first postoperative assessments supporting the theory that lower extremity functional status diminished over this interval. The DISSIMILAR-8 detected this deterioration in functional

  18. Atlas positive-ion injector project

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R C; Bollinger, L M; Shepard, K W

    1987-04-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make beams of essentially all elements including uranium available at ATLAS. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides ions of high charge states at microampere currents, and rf superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m resulting in an essentially new method of acceleration for low-energy heavy ions.

  19. Chromaticity compensation scheme for the Main Injector

    International Nuclear Information System (INIS)

    Bogacz, S.A.

    1993-05-01

    The current Main Injector lattice is studied in the context of full chromaticity compensation in the presence of the eddy current, saturation and the end-pack sextupole fields generated by the dipole magnets. Two families of correcting sextupole magnets are placed to compensate these fields and to adjust the chromaticity (in both planes) to some desired value. Variation of the dipole induced sextupole fields with the B-field (changing along a ramp) are modeled according to recent experimental measurements of the Main Injector dipole magnet Analysis of the required sextupole strengths is carried out along two realistic momentum ramps. The results of our calculation give quantitative insight into the requisite performance of the sextupole magnets

  20. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  1. LS1 Report: injectors 2.0

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    Launched in 2009, the Accelerator Controls Renovation Project (ACCOR) will come to an end this year. It was brought in to replace the approximately 450 real-time control systems of the LHC injector complex, some of which were based on technology more than 20 years old.   One of the approximately 450 real-time systems that have been modified in the ACCOR project. These systems, which use special software and thousands of electronics boards, control devices that are essential to the proper functioning of the injectors – the radiofrequency system, the instrumentation, the injection kicker system, the magnets, etc. – and some of them were no longer capable of keeping pace with the LHC. As a result, they urgently needed to be upgraded. "In 2009, after assessing the new technology available on the market, we signed contracts with Europe's most cutting-edge electronics manufacturers," explains Marc Vanden Eynden, ACCOR Project Leader. We then quickly m...

  2. The subscales and short forms of the dizziness handicap inventory: are they useful for comparison of the patient groups?

    Science.gov (United States)

    Ardıç, Fazıl Necdet; Tümkaya, Funda; Akdağ, Beyza; Şenol, Hande

    2017-10-01

    Dizziness Handicap Inventory (DHI) is one of the most frequently used surveys for vertigo. The aim of the study was re-analyze the consistency of subscales and correlation between original and different short forms. The data of 2111 patients were analyzed. Original three subscales, screening form of DHI and short form of DHI were evaluated. The suitability of the data set for factor analysis and factor structure was analyzed with Kaiser-Meyer-Olkin (KMO) coefficient, Bartlett's Sphericity Test, and Varimax method. Pearson correlation analysis was performed. Factor analysis showed that two factor solutions are more prominent in our data. The factors proposed in different studies are not in harmony with each other. There is high correlation between the original and screening and short forms of DHI. This study indicated that the factor structure of the scale was not consistent. It is not advised to use subscale scores for comparison especially in international level. Therefore, total score should be used rather than the scores of the subscales. Using DHI screening form instead of original 25 questions is more convenient, because it is highly correlated with the original one and has fewer questions. Implications for rehabilitation Factor structure of the DHI is not consistent enough for comparison of the international studies. Total score of DHI is reliable. Using the screening version of DHI is better, because it is highly correlated with the original form and has fewer questions (10 questions).

  3. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.I.; Som, S.; Aggarwal, Suresh K. [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Kastengren, A.L.; El-Hannouny, E.M.; Longman, D.E.; Powell, C.F. [Argonne National Laboratory, Energy Systems Division, Argonne, IL (United States)

    2009-07-15

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software

  4. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Science.gov (United States)

    Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.

    2009-07-01

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.

  5. Progress on Lead Photocathodes for Superconducting Injectors

    CERN Document Server

    Smedley, John; Langner, Jerzy; Lefferts, Richard; Lipski, Andrzej; Rao, Triveni; Sekutowicz, Jacek; Strzyzewski, P

    2005-01-01

    We present the results of our investigation of bulk, electroplated and vacuum deposited lead as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the wavelength of the incident light, from 310 nm to 190 nm. Quantum efficiencies of 0.3% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  6. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  7. Radiation shielding of the main injector

    International Nuclear Information System (INIS)

    Bhat, C.M.; Martin, P.S.

    1995-05-01

    The radiation shielding in the Fermilab Main Injector (FMI) complex has been carried out by adopting a number of prescribed stringent guidelines established by a previous safety analysis. Determination of the required amount of radiation shielding at various locations of the FMI has been done using Monte Carlo computations. A three dimensional ray tracing code as well as a code based upon empirical observations have been employed in certain cases

  8. Repeating pneumatic hydrogen pellet injector for plasma fueling

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foust, C.R.; Foster, C.A.; Schuresko, D.D.

    1985-01-01

    A repeating pneumatic pellet injector has been developed for plasma fueling applications. The repetitive device extends pneumatic injector operation to steady state. The active mechanism consists of an extruder and a gun assembly that are cooled by flowing liquid-helium refrigerant. The extruder provides a continuous supply of solid hydrogen to the gun assembly, where a reciprocating gun barrel forms and chambers cylindrical pellet from the extrusion; pellets are then accelerated with compressed hydrogen gas (pressures up to 125 bar) to velocities -1 have been obtained with 2.1- , 3.4- , and 4.0-mm-diameter pellets. The present apparatus operates at higher firing rates in short bursts; for example, a rate of 6 s -1 for 2 s with the larger pellets. These pellet parameters are in the range applicable for fueling large present-day fusion devices such as the Tokamak Fusion Test Reactor (TFTR). Experimental results are presented, including effects of propellant pressure and barrel length on gun performance

  9. Refined beam measurements on the SNS H- injector

    Science.gov (United States)

    Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.

    2017-08-01

    The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.

  10. On the formation of string cavitation inside fuel injectors

    Science.gov (United States)

    Reid, B. A.; Gavaises, M.; Mitroglou, N.; Hargrave, G. K.; Garner, C. P.; Long, E. J.; McDavid, R. M.

    2014-01-01

    The formation of vortex or `string' cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single `bridging' string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow.

  11. Pellet injector development at ORNL [Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Gouge, M.J.; Argo, B.E.; Baylor, L.R.; Combs, S.K.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Simmons, D.W.; Sparks, D.O.; Tsai, C.C.

    1990-01-01

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low 3 He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor

  12. Performance of the PHIN High Charge Photo Injector

    CERN Document Server

    Petrarca, M; Doebert, S; Dabrowski, A; Divall, M; Fedoseev, V; Lebas, N; Lefevre, T; Losito, R; Egger, D; Mete, O

    2010-01-01

    The high charge PHIN photo injector is studied at CERN as an electron source for the CLIC Test Facility (CTF3) drive beam as an alternative to the present thermionic gun. The objective of PHIN is to demonstrate the feasibility of a laser-based electron source for CLIC. The photo injector operates with a 2.5 cell, 3 GHz RF gun using a Cs2Te photocathode illuminated by UV laser pulses generated by amplifying and frequency quadrupling the signal from a Nd:YLF oscillator running at 1.5GHz. The challenge is to generate a beam structure of 1908 micro bunches with 2.33nC per micro bunch at 1.5GHz leading to a high integrated train charge of 4446nC and nominal beam energy of 5.5MeV with current stability below 1%. In this paper we report and discuss the time resolved transverse and longitudinal beam parameters measurements. The performance of the photo cathodes made at CERN with a peak quantum efficiency of 18 % is shown as well. Laser pointing and amplitude stability results are discussed taking into account correla...

  13. Proposed Fermilab upgrade main injector project

    International Nuclear Information System (INIS)

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider

  14. Lithium Pellet Injector Development for NSTX

    International Nuclear Information System (INIS)

    Gettelfinger, G.; Dong, J.; Gernhardt, R.; Kugel, H.; Sichta, P.; Timberlake, J.

    2003-01-01

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described

  15. The JET high frequency pellet injector project

    International Nuclear Information System (INIS)

    Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.

    2007-01-01

    A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable

  16. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  17. Spray cone angle and air core diameter of hollow cone swirl rocket injector

    Directory of Open Access Journals (Sweden)

    Ahmad Hussein Abdul Hamid

    2011-12-01

    Full Text Available ABSTRACT : Fuel injector for liquid rocket is a very critical component since that small difference in its design can dramatically affect the combustion efficiency. The primary function of the injector is to break the fuel up into very small droplets. The smaller droplets are necessary for fast quiet ignition and to establish a flame front close to the injector head, thus shorter combustion chamber is possible to be utilized. This paper presents an experimetal investigation of a mono-propellant hollow cone swirl injector. Several injectors with different configuration were investigated under cold flow test, where water is used as simulation fluid. This investigation reveals that higher injection pressure leads to higher spray cone angle. The effect of injection pressure on spray cone angle is more prominent for injector with least number of tangential ports. Furthermore, it was found that injector with the most number of tangential ports and with the smallest tangential port diameter produces the widest resulting spray. Experimental data also tells that the diameter of an air core that forms inside the swirl chamber is largest for the injector with smallest tangential port diameter and least number of tangential ports.ABSTRAK : Injektor bahan api bagi roket cecair merupakan satu komponen yang amat kritikal memandangkan perbezaan kecil dalam reka bentuknya akan secara langsung mempengaruhi kecekapan pembakaran. Fungsi utama injektor adalah untuk memecahkan bahan api kepada titisan yang amat kecil. Titisan kecil penting untuk pembakaran pantas secara senyap dan untuk mewujudkan satu nyalaan di hadapan, berhampiran dengan kepala injektor, maka kebuk pembakaran yang lebih pendek berkemungkinan dapat digunakan. Kertas kerja ini mebentangkan satu penyelidikan eksperimental sebuah injektor ekabahan dorong geronggang kon pusar. Beberapa injektor dengan konfigurasi berbeza telah dikaji di bawah ujian aliran sejuk, di mana air digunakan sebagai bendalir

  18. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Kwan, J.W.; Ahle, L.; Beck, D.N.; Bieniosek, F. M.; Faltens, A.; Grote, D.P.; Halaxa, E.; Henestroza, E.; Herrmannsfeldt, W.B.; Karpenko, V.; Sangster, T.C.

    2000-01-01

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  19. First operational experience with the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Joh, K.; Markovich, P.K.; Munson, F.H.; Zinkann, G.; Nolen, J.A.

    1992-01-01

    A Positive-Ion Injector (PH) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structures. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to ∼ 1.1 MeV/u. When ions with q/A > 0. 1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating 3O Si 7+ , 40 Ar ll+ , 132 Xe 13+ , and 208 Pb 24+ . For all of these, transmission through the injecter linac was ∼ 100% of the pre-bunched beam, which corresponds to ∼ 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time

  20. Initial use of the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Den Hartog, P.K.; Munson, F.H. Jr.; Pardo, R.C.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    The positive-ion injector of ATLAS consists of an ECR heavy-ion source coupled to a 12-MV superconducting injector linac. The ECR source and a 3-MV version of the partially completed linac have been used to accelerate successfully several species of heavy ions. The operating experience is summarized, with emphasis on the excellent beam quality of beams from the new injector. Two new fast-timing detectors are described. 9 refs., 5 figs., 1 tab

  1. Modelling the High-speed Injector for Diesel ICE

    Science.gov (United States)

    Buryuk, V. V.; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Zvyagintsev, V. A.

    2018-01-01

    The article describes the results of research on the option of improving the operation speed of the electro-hydraulically driven injectors (Common Rail) for diesel ICE. The injector investigated in this article is a modified serial injector Common Rail-type with solenoid. The model and the injector parameters are represented in the package LMS Imagine. Lab AMESim with the detailed description of the substantiation and background for the research. Following the research results, the advantages of the proposed approach to analysing the operation speed were detected with outlining the direction of future studies.

  2. Compact 250-kV injector system for PIGMI

    International Nuclear Information System (INIS)

    Hamm, R.W.; Stevens, R.R. Jr.; Mueller, D.W.; Lederer, H.M.

    1978-01-01

    A 250-kV proton injector to be used in the development of a linac suitable for medical applications has been constructed. This injector utilizes a spherical Pierce geometry to produce a converging beam. A gas insulated accelerating column is cantilevered on a grounded vacuum system, with a separate high voltage equipment dome connected to a 300-kV Cockcroft-Walton power supply. The injector can be operated locally or remotely, with the remote control accomplished by a microprocessor system linked to a central control minicomputer. This injector has been designed as a low-cost compact system. The design details and the data obtained during initial operation are presented

  3. A Nonlinear Dynamic Subscale Model for Partially Resolved Numerical Simulation (PRNS)/Very Large Eddy Simulation (VLES) of Internal Non-Reacting Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, nan-Suey

    2010-01-01

    A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.

  4. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    Science.gov (United States)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  5. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  6. Diesel injector dynamic modelling and estimation of injection parameters from impact response part 2: prediction of injection parameters from monitored vibration

    OpenAIRE

    Gu, Fengshou; Ball, Andrew; Rao, K K

    1996-01-01

    Part 2 of this paper presents the experimental and analytical procedures used in the estimation of injection parameters from monitored vibration. The mechanical and flow‐induced sources of vibration in a fuel injector are detailed and the features of the resulting vibration response of the injector body are discussed. Experimental engine test and data acquisition procedures are described, and the use of an out‐of‐the‐engine test facility to confirm injection dependent vibration response is ou...

  7. The effect of Web-based Braden Scale training on the reliability of Braden subscale ratings.

    Science.gov (United States)

    Magnan, Morris A; Maklebust, JoAnn

    2009-01-01

    The primary purpose of this study was to evaluate the effect of Web-based Braden Scale training on the reliability of Braden Scale subscale ratings made by nurses working in acute care hospitals. A secondary purpose was to describe the distribution of reliable Braden subscale ratings before and after Web-based Braden Scale training. Secondary analysis of data from a recently completed quasi-experimental, pretest-posttest, interrater reliability study. A convenience sample of RNs working at 3 Michigan medical centers voluntarily participated in the study. RN participants included nurses who used the Braden Scale regularly at their place of employment ("regular users") as well as nurses who did not use the Braden Scale at their place of employment ("new users"). Using a pretest-posttest, quasi-experimental design, pretest interrater reliability data were collected to identify the percentage of nurses making reliable Braden subscale assessments. Nurses then completed a Web-based Braden Scale training module after which posttest interrater reliability data were collected. The reliability of nurses' Braden subscale ratings was determined by examining the level of agreement/disagreement between ratings made by an RN and an "expert" rating the same patient. In total, 381 RN-to-expert dyads were available for analysis. During both the pretest and posttest periods, the percentage of reliable subscale ratings was highest for the activity subscale, lowest for the moisture subscale, and second lowest for the nutrition subscale. With Web-based Braden Scale training, the percentage of reliable Braden subscale ratings made by new users increased for all 6 subscales with statistically significant improvements in the percentage of reliable assessments made on 3 subscales: sensory-perception, moisture, and mobility. Training had virtually no effect on the percentage of reliable subscale ratings made by regular users of the Braden Scale. With Web-based Braden Scale training the

  8. Economic evaluation of epinephrine auto-injectors for peanut allergy.

    Science.gov (United States)

    Shaker, Marcus; Bean, Katherine; Verdi, Marylee

    2017-08-01

    Three commercial epinephrine auto-injectors were available in the United States in the summer of 2016: EpiPen, Adrenaclick, and epinephrine injection, USP auto-injector. To describe the variation in pharmacy costs among epinephrine auto-injector devices in New England and evaluate the additional expense associated with incremental auto-injector costs. Decision analysis software was used to evaluate costs of the most and least expensive epinephrine auto-injector devices for children with peanut allergy. To evaluate regional variation in epinephrine auto-injector costs, a random sample of New England national and corporate pharmacies was compared with a convenience sample of pharmacies from 10 Canadian provinces. Assuming prescriptions written for 2 double epinephrine packs each year (home and school), the mean costs of food allergy over the 20-year model horizon totaled $58,667 (95% confidence interval [CI] $57,745-$59,588) when EpiPen was prescribed and $45,588 (95% CI $44,873-$46,304) when epinephrine injection, USP auto-injector was prescribed. No effectiveness differences were evident between groups, with 17.19 (95% CI 17.11-17.27) quality-adjusted life years accruing for each subject. The incremental cost per episode of anaphylaxis treated with epinephrine over the model horizon was $12,576 for EpiPen vs epinephrine injection, USP auto-injector. EpiPen costs were lowest at Canadian pharmacies ($96, 95% CI $85-$107). There was price consistency between corporate and independent pharmacies throughout New England by device brand, with the epinephrine injection, USP auto-injector being the most affordable device. Cost differences among epinephrine auto-injectors were significant. More expensive auto-injector brands did not appear to provide incremental benefit. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-01-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500keV-1MeV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the open-quotes energy effectclose quotes: in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the open-quotes energy effectclose quotes by proper shaping of the quadrupoles electrodes. In order to check the physics of the open-quotes energy effectclose quotes of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 KeV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  10. An induction linac injector for scaled experiments

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Pike, C.; Brodzik, D.; Johnson, R.M.; Vanecek, D.; Hewett, D.W.

    1991-04-01

    An injector is being developed at LBL that would serve as the front end of a scaled induction linac accelerator technology experiment for heavy ion fusion. The ion mass being used is in the range 10--18. It is a multi-beam device intended to accelerate up to 2 MeV with 500 mA in each beam. The first half of the accelerating column has been built and experiments with one carbon beam are underway at the 1 MeV level. 5 refs., 1 fig

  11. Transition crossing in the main injector

    International Nuclear Information System (INIS)

    Wei, J.

    1990-01-01

    This report summarizes the study of various longitudinal problems pertaining to the transition-energy crossing in the proposed Fermi Lab Main Injector. The theory indicates that the beam loss and bunch-area growth are mainly caused by the chromatic non-linear effect, which is enhanced by the space-charge force near transition. Computer simulation using the program TIBETAN shows that a ''γ T jump'' of about 1.5 unit within 1 ms is adequate to achieve a ''clean'' crossing in the currently proposed h=588 scenario. 19 refs., 4 figs

  12. The positive ion injector for ALPI

    International Nuclear Information System (INIS)

    Bisoffi, G.

    1996-01-01

    In the framework of the ALPI upgrading, a new positive ion injector is foreseen in order to be able to accelerate ions with masses of the order of 200 and with high charge states from the velocity of β=0.009 up to β=0.055. The structures chosen for that velocity range are superconducting radio frequency quadrupoles operating at a frequency of 80 MHz, which is the operating frequency of the ALPI low β cavities. The paper describes the current status of the project including beam dynamics, cavity design, beam transfer lines and vacuum, control and cryogenic systems. (orig.)

  13. Radiotracer injector: An Industrial Application (RIIA)

    International Nuclear Information System (INIS)

    Noraishah Othman; Mohd Arif Hamzah; Fadil Ismail; Nurliyana Abdullah

    2011-01-01

    The radiotracer injector is meant for transferring liquid radiotracer in the system for industrial radiotracer application with minimal radiation exposure to the operator. The motivation of its invention is coming from the experience of the workers who are very concern about the radiation safety while handling with the radioactive source. The idea ensuring the operation while handling the radioactive source is fast and safe without interrupting the efficiency and efficacy of the process. Thus, semi automated device assisting with pneumatic technology is applied for its invention. (author)

  14. The arc power supply for the TEXTOR neutral injectors

    International Nuclear Information System (INIS)

    Schwarz, U.; Pfister, U.; Goll, O.; Wurslin, R.; Scherer, J.; Haubmann, S.

    1986-01-01

    The 24 single arcs in the plasma source of the TEXTOR neutral injector are supplied with an overall current of 1800 A at an arc voltage of 150 V DC. The current is switched on and off in less than 1 msec. The paper presents a new modular solution for such a power supply. Each arc is powered by a separately switched mode supply module. One single module consists of a diode rectifier bridge with a filter, a fast semiconductor switch, an inductance in series for stabilizing the current and a free-wheeling path. The layout of this power supply system is described in detail based on test results. Design features and technical data are given

  15. The Relationship Between Pathological Gambling and Sensation Seeking: The Role of Subscale Scores

    Science.gov (United States)

    Fortune, Erica E.

    2010-01-01

    Research investigating the relationship between gambling and sensation seeking has yet to establish conclusively whether pathological gamblers (PGs) are more or less sensation seeking than nonpathological gamblers (NPGs). Sensation seeking is usually measured with the Zuckerman et al. (J Consult Clin Psychol 46:139–149, 1978) SS Scale form V (SSS-V). Whereas previous studies relied on the SSS-V total score, the current study uses two samples to demonstrate the importance of the SSS-V subscales, which include Thrill and Adventure Seeking (TA), Experience Seeking (ES), Disinhibition (DS), and Boredom Susceptibility (BS). In two samples, strong intrascale correlations between DS and BS, and between TA and ES, suggest that certain subscales reflect similar underlying characteristics. In both samples PGs displayed higher scores than NPGs on the DS and BS subscales, with mean differences in Sample 2 reaching significant levels for both DS and BS. Results support the notion that the SSS-V can be divided into concepts reflecting actual behavior, based on the DS and BS subscales, and hypothetical behavior, based on the TA and ES subscales. Furthermore, PGs appear to have a preference for the more behavioral subscales while NPGs show a preference for the more hypothetical subscales. Reasons for the subscale divisions and preferences are discussed. PMID:19943092

  16. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    Science.gov (United States)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: (1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and (2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots

  17. Finding a solution to internal diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, Robert; Quigley, Robert; Panesar, Avtar; Payne, James [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim; Stevens, Andrew [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Internal diesel injector deposits (IDIDs) have caused widespread problems in the automotive industry since around 2005. Modem injectors that have been precisely engineered to operate highly controlled injection strategies are experiencing problems in the field due to deposits that have formed on their critical moving parts, such as the needle and control valve. Problems range from rough idling to a failure to start, when the moving parts become stuck. Early studies showed that the composition of these deposits is variable. In some cases the deposit contained noticeable amounts of sodium carboxylate; these are now generally referred to as 'sodium soaps'. In other incidences the dominant chemical functionality observed was an amide group, and hence these deposits are referred to as 'amide lacquers'. A combination of both types has been observed in many cases and other metals, like calcium, have also been detected. Further studies have shown that the sodium soap type can be formed from specific types of corrosion inhibitors. The source of the amide lacquers is less certain, but there are indications that they originate from specific fuel additives that contain critical levels of low molecular weight species. This paper broadly explores this area of high interest. It will report results on the analysis of deposits and the conditions needed to reproduce both types of IDID in bench engine testing. It will also investigate the types of contaminants that are likely to form IDIDs and explore difference in chemical structure that can lead to pro-fouling, non-fouling and anti-fouling behaviour. It will then show that a deposit control additive, specifically designed to control nozzle tip deposits in modem direct injection diesels, is equally effective in controlling IDIDs; both in terms of prevention and removal. Since IDIDS are formed from multiple sources, some of which are difficult to control in today' s market, the use of a broadly acting fuel

  18. A kaon physics program at the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Cooper, Peter

    1997-11-01

    In this paper we describe a triad of kaon experiments which will form the foundation of a kaon physics program at Fermilab in the Main Injector era. These three experiments; KAMI, CKM and CPT, span the range of experiment types discussed above. KAMI will use the existing neutral kaon beam and the KTeV detector as the basis of a search for the Standard Model ultra rare decay K L → π 0 ν anti ν decay mode is by far the theoretically cleanest measurement of the Standard Model parameter responsible for CP violation. CKM will measure the analogous charged kaon decay mode. Together these two experiments will determine the Standard Model contribution to CP violation independent of the B meson sector. The Standard Model parameters controlling CP violation must be observed to be the same in the K and B meson sectors in order to confirm the Standard Model as the sole source of CP violation in nature. CPT is a hybrid beam experiment using a high purity K + beam to produce a pure K 0 beam in order to search for violation of CPT symmetry at a mass scale up to the Planck mass. CPT also will measure new CP violation parameters to test the Standard Model and search for rare K S decays. The Fermilab infrastructure for such a physics program largely already exists. The Main Injector will be an existing accelerator by late 1998 with beam properties comparable to any of the previous ''kaon factory'' proposals. The KTeV detector and neutral kaon beamline are unsurpassed in the world and were originally designed to also operate with the 120 GeV Main Injector beam as KAMI. The Fermilab Meson laboratory was originally designed as an area for fixed target experiments using 200 GeV proton beams. The charged kaon beam experiments will naturally find a home there. Both charged kaon experiments, CKM and CPT, will share a new high purity RF separated charged kaon beam based on superconducting RF technology which will provide the highest intensity and purity charged kaon beam in the world

  19. Geometrical characterization and performance optimization of monopropellant thruster injector

    Directory of Open Access Journals (Sweden)

    T.R. Nada

    2012-12-01

    Full Text Available The function of the injector in a monopropellant thruster is to atomize the liquid hydrazine and to distribute it over the catalyst bed as uniformly as possible. A second objective is to place the maximum amount of catalyst in contact with the propellant in as short time as possible to minimize the starting transient time. Coverage by the spray is controlled mainly by cone angle and diameter of the catalyst bed, while atomization quality is measured by the Sauter Mean Diameter, SMD. These parameters are evaluated using empirical formulae. In this paper, two main types of injectors are investigated; plain orifice and full cone pressure swirl injectors. The performance of these two types is examined for use with blow down monopropellant propulsion system. A comprehensive characterization is given and design charts are introduced to facilitate optimizing the performance of the injector. Full-cone injector is a more suitable choice for monopropellant thruster and it might be available commercially.

  20. Review on pressure swirl injector in liquid rocket engine

    Science.gov (United States)

    Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng

    2018-04-01

    The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.

  1. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-08-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional ray-trace code with a two-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model

  2. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-01-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model. (Author) 5 figs., 7 refs

  3. Cybele: a large size ion source of module construction for Tore-Supra injector

    International Nuclear Information System (INIS)

    Simonin, A.; Garibaldi, P.

    2005-01-01

    A 70 keV 40 A hydrogen beam injector has been developed at Cadarache for plasma diagnostic purpose (MSE diagnostic and Charge exchange) on the Tore-Supra Tokamak. This injector daily operates with a large size ions source (called Pagoda) which does not completely fulfill all the requirements necessary for the present experiment. As a consequence, the development of a new ion source (called Cybele) has been underway whose objective is to meet high proton rate (>80%), current density of 160 mA/cm 2 within 5% of uniformity on the whole extraction surface for long shot operation (from 1 to 100 s). Moreover, the main particularity of Cybele is the module construction concept: it is composed of five source modules vertically juxtaposed, with a special orientation which fits the curved extraction surface of the injector; this curvature ensures a geometrical focalization of the neutral beam 7 m downstream in the Tore-Supra chamber. Cybele will be tested first in positive ion production for the Tore-Supra injector, and afterward in negative ion production mode; its modular concept could be advantageous to ensure plasma uniformity on the large extraction surface (about 1 m 2 ) of the ITER neutral beam injector. A module prototype (called the Drift Source) has already been developed in the past and optimized in the laboratory both for positive and negative ion production, where it has met the ITER ion source requirements in terms of D-current density (200 A/m 2 ), source pressure (0.3 Pa), uniformity and arc efficiency (0.015 A D-/kW). (authors)

  4. A three-barrel repeating pneumatic pellet injector for plasma fueling of the Joint European Torus

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Baylor, L.R.; Foust, C.R.; Gethers, F.E.; Sparks, D.O.

    1987-01-01

    Pellet fueling, the injection of frozen hydrogen isotope pellets at high velocity, has been used to improve plasma performance in various tokamak experiments. In one recent experiment, the repeating pneumatic hydrogen pellet injector was used on the Tokamak Fusion Test Reactor (TFTR). This machine gun-like device, which was developed at the Oak Ridge National Laboratory (ORNL) with an objective of steady-state fueling applications, was characterized by a fixed pellet size and a maximum repetition rate of 4 to 6 Hz for several seconds. It was used to deliver deuterium pellets at speeds ranging from 1.0 to 1.5 km/s into TFTR plasma discharges. In the first experiments, injection of single, large (nominal 4-mm-diam) pellets provided high plasma densities in TFTR (1.8 x 10 14 cm -3 on axis). After a conversion to smaller (nominal 2.7-mm-diam) pellets, the pellet injector was operated in the repeating mode to gradually increase the plasma density, injecting up to five pellets on a single machine pulse. This resulted in central plasma densities approaching 4 x 10 14 cm -3 and n tau values of 1.4 x 10 14 cm -3 s. For plasma fueling applications on the Joint European Torus (JET), a pellet injector fashioned after the prototype repeating pneumatic design has been developed. The versatile injector features three repeating guns in a common vacuum enclosure; the guns provide pellets that are 2.7, 4.0, and 6.0 mm in diameter and can operate independently at repetition rates of 5, 2.5, and 1 Hz, respectively. The injector has been installed on JET. A description of the equipment is presented, emphasizing the differences from the original repeating device. Performance characteristics of the three pneumatic guns are also included

  5. Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules

    International Nuclear Information System (INIS)

    Ferrari, A.; Mittica, A.

    2016-01-01

    Highlights: • Direct and indirect acting injectors are tested considering multiple injections. • The injection fusion threshold is higher for ballistic injectors than for stroke-end limited injectors. • The internal dynamics of the injector is analyzed for closely-coupled double injections. • Different regimes are identified and classified in the short dwell time range. • Innovative rate shaping injection schedules are defined for solenoid injectors. - Abstract: The multiple injection performance of Common Rail injectors has been analyzed at a hydraulic test rig as the dwell time was varied. The dependence of the injected volume on the dwell time has been investigated for direct acting piezoelectric and hydraulically-controlled (or indirect-acting) servo injectors. The injected fuel volumes in the long dwell-time range have been shown to be affected by the pressure waves that travel along the high pressure circuit for hydraulically-controlled servo injectors. On the other hand, the influence of pressure-wave-induced disturbances on multiple injection performance has been shown to be negligible for direct acting piezoelectric injectors. An analysis of closely-coupled injections has been conducted on a solenoid injector. When the dwell time is progressively reduced below a critical value, an increase in the fuel quantity that is injected in the second shot is observed. Injection fusion phenomena occur as the dwell time is diminished below a certain threshold and a maximum in the fuel volume, which is injected during the joint injections, is eventually detected for a very short electric dwell time value close to 100 μs. The cycle-to-cycle dispersion around this dwell time value results to be reduced significantly. A previously developed 1D model of the fuel injection system has been applied to analyze the injector transients. Detailed knowledge of the injection dynamics in the short dwell time region is of fundamental importance to optimize the

  6. Vortex flow and cavitation in diesel injector nozzles

    Science.gov (United States)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  7. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    Science.gov (United States)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural

  8. Transient states analysis of CI engine injectors with the use of optical methods

    Science.gov (United States)

    Skowron, M.; Pielecha, I.; Wisłocki, K.

    2016-09-01

    The main aim of research was to define real injection time delay against the time of electrical control signal for piezoelectric and electromagnetic diesel fuel injectors. The second objective of this work was the evaluation of influence of typical injection parameters on this delay. The analysis was focused on the occurrence of appropriate control signals recorded with the use of fast-varying data acquisition system and compared with the data recorded by high speed camera. The tests were conducted in constant volume chamber for different injector types used in combustion engines with direct injection of diesel fuel. The tests were performed under variable conditions: different fuel pressure, air back-pressure and injection duration time.

  9. Development of high current injector for tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takashi; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan); Kishimoto, Naoki; Saito, Tetsuya; Mori, Yoshiharu

    1997-02-01

    The development of the electrostatic type tandem accelerators has been carried out so far, but by the recent remarkable progress of negative ion sources, the beam current which was inconceivable so far has become obtainable, and the use as the electrostatic type tandem accelerators is expanding rapidly. The problem which must be solved in the development of a high energy, large current heavy ion injection device is the development of an injector. As to the generation of negative ions, by the development of plasma sputter negative ion sources, the almost satisfactory performance has been obtained in beam current, emittance, life and so on, but as for the transport and control of generated negative ion beam, there is the large problem of spatial charge effect. This time, the verifying test on this problem was carried out, therefore, its contents and results are reported. The equipment which was developed this time was delivered to the Institute for Materials Research. Its specifications are shown. The whole constitution, negative ion source, and beam transport system are described. Beam generation test and spatial charge effect test are reported. The test stand was made, and in the verifying test, the maximum beams of 4 mA in Cu and 3 mA in Ni were able to be generated and transported. The effect of the countermeasures to spatial charge effect was confirmed. (K.I.)

  10. Status of the positive-ion injector for ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.

    1986-01-01

    The planned positive-ion injector for ATLAS consists of an ECR ion source on a 350-kV platfrom and a superconducting injector linac of a new kind. The objective is to replace the present tandem injector with a system that can increase beam intensities by two orders of magnitude and extend the mass range up to uranium. In the first, developmental stage of the work, now in progress, the ECR source will be built, the technology of superconducting accelerating structures for low-velocity ions will be developed, and these structures will be used to form a 3-MV prototype injector linac. Even this small system, designed for ions with A < 130, will be superior to the present FN tandem as a heavy-ion injector. In later phases of the work, the injector linac will be enlarged enough to allow ATLAS to effectively accelerate uranium ions. The injector system is expected to provide exceptional beam quality. The status of the work, expected performance of the accelerator system, and the technical issues involved are summarized

  11. Class structure of the Injector Linac control system of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Itoh, Y.; Tamezane, K.; Sakaki, Y.; Kodera, M.; Yokomizo, H.

    1994-01-01

    The first section of the Injector Linac for SPring-8 has been constructed and the initial beam meets the specification. This section, from the electron gun to the buncher and monitors, is also used as a test stand for the control software. The concept of Object-Oriented programming was adopted because of the special requirements for the accelerator control. We present an overview of the linac control system and the software architecture. ((orig.))

  12. The injector linac for the Mainz microtron

    International Nuclear Information System (INIS)

    Euteneuer, H.; Braun, H.; Herminghaus, H.; Scholer, H.; Weis, T.

    1988-01-01

    The design and setup of a 3.5 MeV, 100μA injector for a cascade of race track microtrons is presented. It replaces a 2.1 MeV Van De Graaff for getting higher reliability, improved beam dynamics in the first RTM by increased and more stable input energy, as well as an easier access and a better vacuum to launch a beam of polarized electrons. In this paper, the considerations which led under given boundary conditions to the final design concept are discussed and its realization with PARMELA is described. Details of the linac setup are given. First operation showed a good longitudinal performance (energy stability ≤ ±2 star 10 -4 , spectrum ≤ 1 star 10 -3 FWHM, bunch length ≤ ± 1.5 degrees) and an excellent reproducibility of machine operation

  13. Siberian snakes for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-01-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near ±45 degrees are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field

  14. 3 GeV Injector Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  15. Commissioning the Linac Coherent Light Source injector

    Directory of Open Access Journals (Sweden)

    R. Akre

    2008-03-01

    Full Text Available The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics.

  16. String cavitation formation inside fuel injectors

    Science.gov (United States)

    Reid, B. A.; Gavaises, M.; Mitroglou, N.; Hargrave, G. K.; Garner, C. P.; McDavid, R. M.

    2015-12-01

    The formation of vortex or ‘string’ cavitation has been visualised at pressures up to 2000 bar in an automotive-sized optical diesel fuel injector nozzle. The multi-hole nozzle geometry studied allowed observation of the hole-to-hole vortex interaction and, in particular, that of a bridging vortex in the sac region between the holes. Above a threshold Reynolds number, their formation and appearance during a 2 ms injection event was repeatable and independent of upstream pressure and cavitation number. In addition, two different hole layouts and threedimensional flow simulations have been employed to describe how, the relative positions of adjacent holes influenced the formation and hole-to-hole interaction of the observed string cavitation vortices, with good agreement between the experimental and simulation results being achieved.

  17. The JET multi-pellet injector launcher

    International Nuclear Information System (INIS)

    Kupschus, P.; Bailey, W.; Gadeberg, M.; Hedley, L.; Twyman, P.; Szabo, T.; Evans, D.

    1987-01-01

    Under a collaborative agreement between the Joint European Torus JET and the United States Department of Energy US DOE, JET and Oak Ridge National Laboratory (ORNL) jointly built a multi-pellet injector for fuelling and re-fuelling of the JET plasma. A three-barrel repetitive pneumatic pellet Launcher - built by ORNL - is attached to a JET pellet launcher-machine interface (in short: Pellet Interface) which is the subject of this paper. The present Launcher-Interface combination provides deuterium or hydrogen injection at moderate pellet speeds for the next two operational periods on JET. The Pellet Interface, however, takes into account the future requirements of JET. It was designed to allow the attachment of the high speed pellet launchers now under development at JET and complies with the requirements of remote handling and tritium operation. In addition, the use of tritium pellets is being considered

  18. Injector upgrade for the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Kuerzeder, Thorsten; Brunken, Marco; Conrad, Jens; Eichhorn, Ralf; Graef, Hans-Dieter; Richter, Achim; Sievers, Sven [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany); Fuerst, Joel [Argonne National Laboratory, Argonne (United States)

    2009-07-01

    The injector section of the S-DALINAC currently delivers beams of up to 10 MeV w ith a current of up to 60{mu}A. The upgrade aims to increase both parameters to 14 MeV and 150{mu}A in order to allow more demanding experiments. Therefor e, a modified cryostat module equipped with two new cavities is required. Due to an increase in rf power to 2 kW the old coaxial rf input couplers, being design ed for a maximum power of 500 W, have to be replaced by new waveguide couplers. We review the design principles and report on the fabrication of the cavities an d the whole module.

  19. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  20. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-05-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500 keV-1MeV diode preinjector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the ''energy effect'': in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the ''energy effect'' by proper shaping of the quadrupoles electrodes. In order to check the physics of the ''energy effect'' of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 keV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  1. Simulation of transient effects in the heavy ion fusion injectors

    International Nuclear Information System (INIS)

    Chen, Y.J.; Hewett, D.

    1993-01-01

    The authors have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced

  2. Simulation of transient effects in the heavy ion fusion injectors

    Science.gov (United States)

    Chen, Yu-Jiuan; Hewett, D. W.

    1993-05-01

    We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.

  3. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  4. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  5. Pressure injectors for radiologists: A review and what is new

    International Nuclear Information System (INIS)

    Indrajit, Inna K; Sivasankar, Rajeev; D’Souza, John; Pant, Rochan; Negi, Raj S; Sahu, Samresh; Hashim, PI

    2015-01-01

    Pressure Injectors are used routinely in diagnostic and interventional radiology. Advances in medical science and technology have made it is imperative for both diagnostic as well as interventional radiologists to have a thorough understanding of the various aspects of pressure injectors. Further, as many radiologists may not be fully conversant with injections into ports, central lines and PICCs, it is important to familiarize oneself with the same. It is also important to follow stringent operating protocols during the use of pressure injectors to prevent complications such as contrast extravastion, sepsis and air embolism. This article aims to update existing knowledge base in this respect

  6. Differential Item Functioning in the SF-36 Physical Functioning and Mental Health Sub-Scales: A Population-Based Investigation in the Canadian Multicentre Osteoporosis Study.

    Science.gov (United States)

    Lix, Lisa M; Wu, Xiuyun; Hopman, Wilma; Mayo, Nancy; Sajobi, Tolulope T; Liu, Juxin; Prior, Jerilynn C; Papaioannou, Alexandra; Josse, Robert G; Towheed, Tanveer E; Davison, K Shawn; Sawatzky, Richard

    2016-01-01

    Self-reported health status measures, like the Short Form 36-item Health Survey (SF-36), can provide rich information about the overall health of a population and its components, such as physical, mental, and social health. However, differential item functioning (DIF), which arises when population sub-groups with the same underlying (i.e., latent) level of health have different measured item response probabilities, may compromise the comparability of these measures. The purpose of this study was to test for DIF on the SF-36 physical functioning (PF) and mental health (MH) sub-scale items in a Canadian population-based sample. Study data were from the prospective Canadian Multicentre Osteoporosis Study (CaMos), which collected baseline data in 1996-1997. DIF was tested using a multiple indicators multiple causes (MIMIC) method. Confirmatory factor analysis defined the latent variable measurement model for the item responses and latent variable regression with demographic and health status covariates (i.e., sex, age group, body weight, self-perceived general health) produced estimates of the magnitude of DIF effects. The CaMos cohort consisted of 9423 respondents; 69.4% were female and 51.7% were less than 65 years. Eight of 10 items on the PF sub-scale and four of five items on the MH sub-scale exhibited DIF. Large DIF effects were observed on PF sub-scale items about vigorous and moderate activities, lifting and carrying groceries, walking one block, and bathing or dressing. On the MH sub-scale items, all DIF effects were small or moderate in size. SF-36 PF and MH sub-scale scores were not comparable across population sub-groups defined by demographic and health status variables due to the effects of DIF, although the magnitude of this bias was not large for most items. We recommend testing and adjusting for DIF to ensure comparability of the SF-36 in population-based investigations.

  7. Airspace Simulation Through Indoor Operation of Subscale Flight Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An indoor environment for simulating airspace operations will be designed. Highly maneuverable subscale vehicles can be used to simulate the dynamics of full-scale...

  8. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2009-01-01

    equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid

  9. Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog): Normative Data for the Portuguese Population.

    Science.gov (United States)

    Nogueira, Joana; Freitas, Sandra; Duro, Diana; Tábuas-Pereira, Miguel; Guerreiro, Manuela; Almeida, Jorge; Santana, Isabel

    2018-02-28

    The Alzheimer's Disease Assessment Scale - Cognitive Subscale is a brief battery developed to assess cognitive functioning in Alzheimer's disease that encompasses the core characteristics of cognitive decline (e.g. memory, language, praxis, constructive ability and orientation). The early detection, as well as the monitoring of cognitive decline along disease progression, is extremely important in clinical care and interventional research. The main goals of the present study were to analyze the psychometric properties of the Portuguese version of the Alzheimer's Disease Assessment Scale - Cognitive Subscale, and to establish normative values for the Portuguese population. The Portuguese version of Alzheimer's Disease Assessment Scale - Cognitive Subscale was administered to 223 cognitively healthy participants according to a standard assessment protocol consisting of the Mini-Mental State Examination, the Montreal Cognitive Assessment and the Adults and Older Adults Functional Assessment Inventory. Normal performance on the assessment protocol was the inclusion criteria for the study. The Alzheimer's Disease Assessment Scale - Cognitive Subscale revealed good psychometric properties when used in the Portuguese population. Age was the main predictor of the Alzheimer's Disease Assessment Scale - Cognitive Subscale total score (R2 = 0.123), whereas the influence of education level was lower (R2 = 0.027). These two variables explained 14.4% of the variance on the Alzheimer's Disease Assessment Scale - Cognitive Subscale scores and were used to stratify the normative values for the Portuguese population presented here. On the total sample, the average total score in the Alzheimer's Disease Assessment Scale - Cognitive Subscale was 6 points. The normative data were determined according to age and educational level as these were the sociodemographic variables that significantly contributed to the prediction of the Alzheimer's Disease Assessment Scale - Cognitive Subscale

  10. Design and Analysis of Subscale and Full-Scale Buckling-Critical Cylinders for Launch Vehicle Technology Development

    Science.gov (United States)

    Hilburger, Mark W.; Lovejoy, Andrew E.; Thornburgh, Robert P.; Rankin, Charles

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) project has the goal of developing new analysis-based shell buckling design factors (knockdown factors) and design and analysis technologies for launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale levels. This paper describes the design and analysis of three different orthogrid-stiffeNed metallic cylindrical-shell test articles. Two of the test articles are 8-ft-diameter, 6-ft-long test articles, and one test article is a 27.5-ft-diameter, 20-ft-long Space Shuttle External Tank-derived test article.

  11. Ignition Delay Properties of Alternative Fuels with Navy-Relevant Diesel Injectors

    Science.gov (United States)

    2014-06-01

    nozzle tip. 8 Figure 3 EMD injector cross-sectional view, after [15]. c. Sturman Injector A Sturman research diesel injector was used to validate...PROPERTIES OF ALTERNATIVE FUELS WITH NAVY-RELEVANT DIESEL INJECTORS by Andrew J. Rydalch June 2014 Thesis Advisor: Christopher M. Brophy...Navy’s Green Fleet Initiative, this thesis researched the ignition characteristics for diesel replacement fuels used with Navy-relevant fuel injectors

  12. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    International Nuclear Information System (INIS)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  13. Automatic tuning of the LBL SuperHILAC third-injector transport line

    Energy Technology Data Exchange (ETDEWEB)

    Pines, H.

    1983-03-01

    Testing of a new automatic tuning procedure in an LBL SuperHILAC beam transport line has been conducted with the third injector microcomputer control system. This technique is an advance over the sequential station-by-station automatic tuning method developed for the Bevalac transfer line. The computer now performs steering/focusing adjustments simultaneously on a number of quadrupole and dipole magnets comprising multiple-station sections of the injection line. New magnet currents are computed from equations governing beam optics in a real-time simulation of the beam line. The key to this emittance utilizing the same control magnets and beam profile monitors used for manual tuning of the line. This emittance calculation requires high resolution beam profile measurements using multi-wire profile monitors recently installed in the third injector line.

  14. Thermo-mechanical design of the SINGAP accelerator grids for ITER NB injectors

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)], E-mail: piero.agostinetti@igi.cnr.it; Dal Bello, S.; Dalla Palma, M.; Zaccaria, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)

    2007-10-15

    The SINGle Aperture-SINgle GAP (SINGAP) accelerator for ITER neutral beam injector foresees four grids for the extraction and acceleration of negative ions, instead of the seven grids of the Multi-Aperture Multi-Grid (MAMuG) reference configuration. The grids have to fulfil specific requirements coming from ion extraction, beam optics and thermo-mechanical issues. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids carried out by Consorzio RFX for the design of the first ITER NB injector and the ITER NB Test Facility. The cooling circuit design (position and shape of the channels) and the cooling parameters (water coolant temperatures, pressure and velocity) were optimized with sensitivity analyses in order to satisfy the grid functional requirements (temperatures, stresses, in plane and out of plane deformations). The design required a complete modelling of the grids and their support frames by means of 3D FE and CAD models.

  15. Shunt impedance measurement of the APS BBC injector

    International Nuclear Information System (INIS)

    Sun, Y.E.; Lewellen, J.W.

    2006-01-01

    The injector test stand (ITS) at Advanced Photon Source (APS) presently incorporates a ballistic bunch compression (BBC) gun, and it is used as a beam source for a number of experiments, including THz generation, beam position monitor testing for the Linac Coherent Light Source (LCLS), novel cathode testing, and radiation therapy source development. The BBC gun uses three independently powered and phased rf cavities, one cathode cell, and two full cells to provide beam energies from 2 to 10 MeV with variable energy spread, energy chirp, and, to an extent, bunch duration. The shunt impedance of an rf accelerator determines how effectively the accelerator can convert supplied rf power to accelerating gradient. The calculation of the shunt impedance can be complicated if the beam energy changes substantially during its transit through a cavity, such as in a cathode cell. We present the results of direct measurements of the shunt impedance of the APS BBC gun on an individual cavity basis, including the cathode cell, and report on achieved gradients. We also present a comparison of the measured shunt impedance with theoretical values calculated from the rf models of the cavities.

  16. Integrated numerical modeling of a laser gun injector

    International Nuclear Information System (INIS)

    Liu, H.; Benson, S.; Bisognano, J.; Liger, P.; Neil, G.; Neuffer, D.; Sinclair, C.; Yunn, B.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ''conditioning for final bunching'' is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source

  17. Design of injector section for SPring-8 linac

    International Nuclear Information System (INIS)

    Yoshikawa, Hiroshi; Nakamura, Naoki; Mizuno, Akihiko; Suzuki, Shinsuke; Hori, Toshihiko; Yanagida, Kenichi; Mashiko, Katsuo; Yokomizo, Hideaki

    1993-07-01

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  18. Necessary LIU studies in the injectors during 2012

    International Nuclear Information System (INIS)

    Rumolo, G.; Bartosik, H.; Papaphilippou, Y.

    2012-01-01

    A significant fraction of the Machine Development (MD) time in the LHC injectors in 2011 was devoted to the study of the intensity limitations in the injectors (e.g. space charge effects in PS and SPS, electron cloud effects in the PS and SPS, single bunch and multi-bunch instabilities in PS and SPS, emittance preservation across the injector chain, etc.). The main results achieved in 2011 are presented as well as the questions that still remain unresolved and are of relevance for the LHC Injector Upgrade (LIU) project. 2012 MD will also continue exploring the potential of scenarios that might become operational in the future, like the development of a low gamma transition optics in the SPS or alternative production schemes for the LHC beams in the PS. A tentative prioritized list of studies is provided. (authors)

  19. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Eylon, S.

    1995-04-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  20. Injector for the University of Maryland Electron Ring (UMER)

    Energy Technology Data Exchange (ETDEWEB)

    Kehne, D. E-mail: dkehne@gmu.edu; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O' Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I

    2001-05-21

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  1. Injector for the University of Maryland Electron Ring (UMER)

    Science.gov (United States)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  2. High Brightness Injectors Based On Photocathode DC Gun

    International Nuclear Information System (INIS)

    B. Yunn

    2001-01-01

    Sample results of new injector design method based on a photocathode dc gun are presented, based on other work analytically proving the validity of the emittance compensation scheme for the case even when beam bunching is involved. We have designed several new injectors appropriate for different bunch charge ranges accordingly. Excellent beam quality produced by these injectors clearly shows that a photocathode dc gun can compete with a rf gun on an equal footing as the source of an electron beam for the bunch charge ranging up to 2 nano Coulomb (nC). This work therefore elevates a dc gun based injector to the preferred choice for many ongoing high brightness accelerator projects considering the proven operational stability and high average power capability of the dc gun

  3. Numerical determination of injector design for high beam quality

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1985-01-01

    The performance of a free electron laser strongly depends on the electron beam quality or brightness. The electron beam is transported into the free electron laser after it has been accelerated to the desired energy. Typically the maximum beam brightness produced by an accelerator is constrained by the beam brightness deliverd by the accelerator injector. Thus it is important to design the accelerator injector to yield the required electron beam brightness. The DPC (Darwin Particle Code) computer code has been written to numerically model accelerator injectors. DPC solves for the transport of a beam from emission through acceleration up to the full energy of the injector. The relativistic force equation is solved to determine particle orbits. Field equations are solved for self consistent electric and magnetic fields in the Darwin approximation. DPC has been used to investigate the beam quality consequences of A-K gap, accelerating stress, electrode configuration and axial magnetic field profile

  4. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  5. Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector

    International Nuclear Information System (INIS)

    Payri, Raúl; Salvador, F.J.; Manin, Julien; Viera, Alberto

    2016-01-01

    Highlights: • Lift-off length and ignition delay are measured through different methodologies. • Oxygen concentration, temperature and injection pressure sweeps are performed. • A multi hole injector is compared with an equivalent single hole injector. • Multi hole injector has shorter ignition delay and lift-off length than single hole. • Empirical correlations were calculated for an analytical description of the results. - Abstract: In this paper, lift-off length has been measured via both broadband luminosity and OH chemiluminescence. In addition, ignition delay has also been measured via broadband chemiluminescence and Schlieren imaging. A 3 orifice injector from the Engine Combustion Network (ECN) set, referred to as Spray B, and a single component fuel (n-dodecane) was used. Experiments were carried out in a constant flow and pressure facility, that allowed to reproduce engine-like thermodynamic conditions, and enabled the study to be performed over a wide range of test conditions with a very high repetition rate. Data obtained was also compared with results from a single orifice injector also from the Engine Combustion Network, with analog orifice characteristics (90 μm outlet diameter and convergent shape) and technology as the injector used. Results showed that there is good correlation between the ignition delay measured through both methodologies, that oxygen concentration and injection pressure plays a minor role in the ignition delay, being ambient temperature and density the parameters with the highest influence. Lift-off length measurements showed significant differences between methodologies. Minor deviation was observed between injectors with different nozzle geometry (seat inclination angle), due to temperature variations along the chamber, highlighting the importance of temperature distribution along combustion vessels. Empirical correlations for lift-off and ignition delay were calculated, underlining the effect of the conditions on

  6. Calculation of the beam injector steering system using Helmholtz coils

    International Nuclear Information System (INIS)

    Passaro, A.; Sircilli Neto, F.; Migliano, A.C.C.

    1991-03-01

    In this work, a preliminary evaluation of the beam injector steering system of the IEAv electron linac is presented. From the existing injector configuration and with the assumptions of monoenergetic beam (100 keV) and uniform magnetic field, two pairs of Helmholtz coils were calculated for the steering system. Excitations of 105 A.turn and 37 A.turn were determined for the first and second coils, respectively. (author)

  7. Hydraulic Characterization of Diesel Engine Single-Hole Injectors

    OpenAIRE

    Arco Sola, Javier

    2015-01-01

    Due to world trend on the emission regulations and greater demand of fuel economy,the research on advanced diesel injector designs is a key factor for the next generation diesel engines. For that reason, it is well established that understanding the effects of the nozzle geometry on the spray development, fuel-air mixing, combustion and pollutants formation is of crucial importance to achieve these goals.In the present research, the influence of the injector nozzle geometry on the internalflo...

  8. Depression Subscale of the Hospital Anxiety and Depression Scale applied preoperatively in spinal surgery

    Directory of Open Access Journals (Sweden)

    Asdrubal Falavigna

    2012-05-01

    Full Text Available OBJECTIVE: To evaluate the accuracy of the Depression Subscale of Hospital Anxiety and Depression Scale (HADS-D in spine surgery, comparing it to Beck Depression Inventory (BDI. METHODS: In a cross-sectional study, the HADS-D and the BDI were applied to patients undergoing spine surgery for lumbar (n=139 or cervical spondylosis (n=17. Spearman correlation tests for HADS-D and BDI were applied. The internal consistency of HADS-D was estimated by Cronbach's alpha coefficient. RESULTS: According to the BDI, the prevalence of depression was of 28.8% (n=45. The Spearman r coefficient between HADS-D and BDI was 0.714 (p10, there was a sensitivity of 71.1%, specificity of 95.4%, and positive likelihood-ratio of 15.78. CONCLUSIONS: HADS-D showed a strong correlation with BDI and good reliability. HADS-D is a good alternative for screening depression and assessing its severity.

  9. The patellofemoral pain and osteoarthritis subscale of the KOOS (KOOS-PF): development and validation using the COSMIN checklist.

    Science.gov (United States)

    Crossley, Kay M; Macri, Erin M; Cowan, Sallie M; Collins, Natalie J; Roos, Ewa M

    2017-03-03

    Patellofemoral pain and osteoarthritis are prevalent and associated with substantial pain and functional impairments. Patient-reported outcome measures (PROMs) are recommended for research and clinical use, but no PROMs are specific for patellofemoral osteoarthritis, and existing PROMs for patellofemoral pain have methodological limitations. This study aimed to develop a new subscale of the Knee injury and Osteoarthritis Outcome Score for patellofemoral pain and osteoarthritis (KOOS-PF), and evaluate its measurement properties. Items were generated using input from 50 patients with patellofemoral pain and/or osteoarthritis and 14 health and medical clinicians. Item reduction was performed using data from patellofemoral cohorts (n=138). We used the COnsesus-based Standards for the selection of health Measurements INstruments guidelines to evaluate reliability, validity, responsiveness and interpretability of the final version of KOOS-PF and other KOOS subscales. From an initial 80 generated items, the final subscale included 11 items. KOOS-PF items loaded predominantly on one factor, pain during activities that load the patellofemoral joint. KOOS-PF had good internal consistency (Cronbach's α 0.86) and adequate test-retest reliability (intraclass correlation coefficient 0.86). Hypothesis testing supported convergent, divergent and known-groups validity. Responsiveness was confirmed, with KOOS-PF demonstrating a moderate correlation with Global Rating of Change scores (r 0.52) and large effect size (Cohen's d 0.89). Minimal detectable change was 2.3 (groups) and 16 (individuals), while minimal important change was 16.4. There were no floor or ceiling effects. The 11-item KOOS-PF, developed in consultation with patients and clinicians, demonstrated adequate measurement properties, and is recommended for clinical and research use in patients with patellofemoral pain and osteoarthritis. © Article author(s) (or their employer(s) unless otherwise stated in the text of

  10. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  11. Studies on Plasmoid Merging using Compact Toroid Injectors

    Science.gov (United States)

    Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team

    2017-10-01

    C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.

  12. Study of new prototype pintle injectors for diesel engine application

    International Nuclear Information System (INIS)

    Payri, Raul; Gimeno, Jaime; De la Morena, Joaquin; Battiston, Paul A.; Wadhwa, Amrita; Straub, Robert

    2016-01-01

    Highlights: • Pintle nozzles are proposed as a way to perform injection rate shaping strategies. • Rate shaping is achieved controlling the relative shape between needle and hole. • Compared to other rate shaping strategies, the spray velocity is less impacted. • Pintle nozzle design features determine initial spray penetration and angle. • The stabilized liquid length and spray angle depend mostly on the hole outlet area. - Abstract: A new prototype common rail injector featuring a complete new nozzle design concept was exhaustively characterized both from the hydraulic and spray formation point of view. A commercial injection rate meter together with a spray momentum test rig were used to determine the flow characteristics at the nozzle exit. A novel high pressure and high temperature chamber (up to 15 MPa and 1000 K) was used to determine liquid length and vapor penetration. Using these tools, three different pintle nozzle designs, with specific features in the outlet section, were studied. The test matrix included a sweep of injection pressure up to 2000 bar and a sweep of ambient temperature up to 950 K. The results obtained show that pintle nozzles offer great potential in terms of fuel mass flux controlled by variable nozzle geometry. Effects in the hydraulic measurements and spray images due to the variable geometry were observed and characterized.

  13. RF Photoelectric injectors using needle cathodes

    International Nuclear Information System (INIS)

    Lewellen, J.W.; Brau, C.A.

    2003-01-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2 , with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR

  14. RF Photoelectric injectors using needle cathodes

    Science.gov (United States)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  15. Electrothermal plasma gun as a pellet injector

    International Nuclear Information System (INIS)

    Kincaid, R.W.; Bourham, M.A.

    1994-01-01

    The NCSU electrothermal plasma gun SIRENS has been used to accelerate plastic (Lexan polycarbonate) pellets, to determine the feasibility of the use of electrothermal guns as pellet injectors. The use of an electrothermal gun to inject frozen hydrogenic pellets requires a mechanism to provide protective shells (sabots) for shielding the pellet from ablation during acceleration into and through the barrel of the gun. The gun has been modified to accommodate acceleration of the plastic pellets using special acceleration barrels equipped with diagnostics for velocity and position of the pellet, and targets to absorb the pellet's energy on impact. The length of the acceleration path could be varied between 15 and 45 cm. The discharge energy of the electrothermal gun ranged from 2 to 6 kJ. The pellet velocities have been measured via a set of break wires. Pellet masses were varied between 0.5 and 1.0 grams. Preliminary results on 0.5 and 1.0 g pellets show that the exit velocity reaches 0.9 km/s at 6 kJ input energy to the source. Higher velocities of 1.5 and 2.7 km/s have been achieved using 0.5 and 1.0 gm pellets in 30 cm long barrel, without cleaning the barrel between the shots

  16. Performance of the LHC Pre-Injectors

    CERN Document Server

    Benedikt, Michael; Chanel, M; Garoby, R; Giovannozzi, Massimo; Hancock, S; Martini, M; Métral, Elias; Métral, G; Schindl, Karlheinz; Vallet, J L

    2001-01-01

    The LHC pre-injector complex, comprising Linac 2, the PS Booster (PSB) and the PS, has undergone a major upgrade in order to meet the very stringent requirements of the LHC. Whereas bunches with the nominal spacing and transverse beam brightness were already available from the PS in 1999 [1], their length proved to be outside tolerance due to a debunching procedure plagued by microwave instabilities. An alternative scenario was then proposed, based on a series of bunch-splitting steps in the PS. The entire process has recently been implemented successfully, and beams whose longitudinal characteristics are safely inside LHC specifications are now routinely available. Variants of the method also enable bunch trains with gaps of different lengths to be generated. These are of interest for the study and possible cure of electron cloud effects in both the SPS and LHC. The paper summarizes the beam dynamics issues that had to be addressed to produce beams with all the requisite qualities for the LHC.

  17. Ion source operating at the Unilac injector

    International Nuclear Information System (INIS)

    Mueller, M.; Jacoby, W.

    1977-01-01

    The Unilac injection velocity (v = 0.005 X c) and the maximum potential difference between ion source and ground (320 kV) limit positive ion acceleration to a specific charge of not less than 0.0336 (corresponding to 238 U 8+ ). Ion sources qualified for the Unilac must be able to produce a charge spectrum with high intensities in the required charge states (1 - 10 particle μA). This requirement is satisfied for all elements by the Dubna type heated cathode penning ion source. Obviously, for isotopes of low natural abundance high beam currents can only be produced by employing enriched isotopes as feeding materials. Presently the injector is equipped with one penning ion source and one duoplasmatron ion source. 90% of the noble gas ions are provided by the duoplasmatron ion source, whereas ion beams of solids are exclusively furnished by the penning source. In particular, this latter source is well suited and highly developped for producing ion beams from solids by means of the sputtering process. In the future, however, we intend to produce metal ions up to a mass of 100 by a sputter version of the duoplasmatron. (orig.) [de

  18. Recent progress in photo-injectors

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1996-10-01

    In photoinjector electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense RF fields in a resonant cavity. Photoinjectors are very versatile tools. Normally we think of them in terms of the production of high electron density in 6-D phase space, for reasons such as injection to laser accelerators, generation of x-rays by Compton scattering and short wavelength FELs. Another example for the use of photo-injectors is the production of a high charge in a short time, for wake- field acceleration, two-beam accelerators and high-power, long-wavelength FELs. There are other potential uses, such as the generation of polarized electrons, compact accelerators for industrial applications and more. Photoinjectors are in operation in many electron accelerator facilities and a large number of new guns are under construction. The purpose of this work is to present some trend setting recent results that have been obtained in some of these laboratories. In particular the subjects of high density in 6-D phase space, new diagnostic tools, photocathode advances and high-charge production will be discussed

  19. Streamlined Darwin methods for particle beam injectors

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1987-01-01

    Physics issues that involve inductive effects, such as beam fluctuations, electromagnetic (EM) instability, or interactions with a cavity require a time-dependent simulation. The most elaborate time-dependent codes self-consistently solve Maxwell's equations and the force equation for a large number of macroparticles. Although these full EM particle-in-cell (PIC) codes have been used to study a broad range of phenomena, including beam injectors, they have several drawbacks. In an explicit solution of Maxwell's equations, the time step is restricted by a Courant condition. A second disadvantage is the production of anomalously large numerical fluctuations, caused by representing many real particles by a single computational macroparticle. Last, approximate models of internal boundaries can create nonphysical radiation in a full EM simulation. In this work, many of the problems of a fully electromagnetic simulation are avoided by using the Darwin field model. The Darwin field model is the magnetoinductive limit of Maxwell's equations, and it retains the first-order relativistic correction to the particle Lagrangian. It includes the part of the displacement current necessary to satisfy the charge-continuity equation. This feature is important for simulation of nonneutral beams. Because the Darwin model does not include the solenoidal vector component of the displacement current, it cannot be used to study high-frequency phenomena or effects caused by rapid current changes. However, because wave motion is not followed, the Courant condition of a fully electromagnetic code can be exceeded. In addition, inductive effects are modeled without creating nonphysical radiation

  20. LHC Injectors Upgrade (LIU) Project at CERN

    CERN Document Server

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  1. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Performance of positive ion based high power ion source of EAST neutral beam injector

    International Nuclear Information System (INIS)

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-01-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST

  3. Design of a repeating pneumatic pellet injector for the Joint European Torus

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Baylor, L.R.; Sparks, D.O.; Foust, C.R.; Gethers, F.E.

    1987-01-01

    A three-barrel pneumatic pellet injector has been developed for plasma fueling of the Joint European Torus (JET). The versatile device consists of three independent machine-gun-like mechanisms that operate at cryogenic temperatures (14 0 K to 20 0 K). Individual high speed extruders provide a continuous supply of solid deuterium to each gun assembly, where a reciprocating breech-side cutting mechanism forms and chambers cylindrical pellets from the extrusion; deuterium pellets are then accelerated in the gun barrels with controlled amounts of compressed hydrogen gas (pressures up to 100 bars) to velocities ≤ 1.5 km/s. The injector features three nominal pellet sizes (2.7 mm, 4.0 mm, and 6.0 mm) and has been tested at repetition rates of 5 Hz, 2.5 Hz, and 1 Hz, respectively. Each gun is capable of operating (individually or simultaneously) at the design repetition rate for 15-second duration pulses (limited only by the capacity of the extruder feed system). A remote, stand-alone control and data acquisition system is used for injector operation. 7 refs

  4. Time-dependent beam focusing at the DARHT-II injector diode

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Fawley, W.; Yu, S.

    1999-01-01

    The injector for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) is being designed and constructed at LBNL. The injector consists of a single gap diode extracting 2(micro)s, 2kA, 3.2 MeV electron beam from a 6.5 inches diameter thermionic dispenser cathode. The injector is powered through a ceramic column by a Marx generator. We also investigated the possibility of extracting a beam current of 4 kA. The focusing system for the electron beam consists of a Pierce electrostatic focusing electrode at the cathode and three solenoidal focusing magnets positioned between the anode and induction accelerator input. The off-energy components (beam-head) during the 400 ns energy rise time are overfocused, leading to beam envelope mismatch and growth resulting in the possibility of beam hitting the accelerator tube walls. The anode focusing magnets can be tuned to avoid the beam spill in the 2kA case. To allow beam-head control for the 4kA case we are considering the introduction of time-varying magnetic focusing field along the accelerator axis generated by a single-loop solenoid magnet positioned in the anode beam tube. We will present the beam-head dynamics calculations as well as the solenoid design and preliminary feasibility test results

  5. High voltage series protection of neutral injectors with crossed-field tubes

    International Nuclear Information System (INIS)

    Hofmann, G.A.; Thomas, D.G.

    1976-01-01

    High voltage neutral beam injectors for fusion machines require either parallel or series protection schemes to limit fault currents in case of arcing to safe levels. The protection device is usually located between the high voltage supply and beam injector and either crowbars (parallel protection) or disconnects (series protection) the high voltage supply when a fault occurs. Because of its isolating property, series protection is preferred. The Hughes crossed-field tube is uniquely suited for series protection schemes. The tube can conduct 40 A continuously upon application of voltage (approximately 300 V) and a static magnetic field (approximately 100 G). It is also capable of interrupting currents of 1000 A within 10 μs and withstand voltage of more than 120 kV. Experiments were performed to simulate the duty of a crossed-field tube as a series protection element in a neutral injector circuit under fault conditions. Results of on-switching tests under high and low voltage and interruption of fault currents are presented. An example of a possible protection circuit with crossed-field tubes is discussed

  6. A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets

    Science.gov (United States)

    Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele

    2016-12-01

    Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.

  7. A suite of diagnostics to validate and optimize the prototype ITER neutral beam injector

    Science.gov (United States)

    Pasqualotto, R.; Agostini, M.; Barbisan, M.; Brombin, M.; Cavazzana, R.; Croci, G.; Dalla Palma, M.; Delogu, R. S.; De Muri, M.; Muraro, A.; Peruzzo, S.; Pimazzoni, A.; Pomaro, N.; Rebai, M.; Rizzolo, A.; Sartori, E.; Serianni, G.; Spagnolo, S.; Spolaore, M.; Tardocchi, M.; Zaniol, B.; Zaupa, M.

    2017-10-01

    The ITER project requires additional heating provided by two neutral beam injectors using 40 A negative deuterium ions accelerated at 1 MV. As the beam requirements have never been experimentally met, a test facility is under construction at Consorzio RFX, which hosts two experiments: SPIDER, full-size 100 kV ion source prototype, and MITICA, 1 MeV full-size ITER injector prototype. Since diagnostics in ITER injectors will be mainly limited to thermocouples, due to neutron and gamma radiation and to limited access, it is crucial to thoroughly investigate and characterize in more accessible experiments the key parameters of source plasma and beam, using several complementary diagnostics assisted by modelling. In SPIDER and MITICA the ion source parameters will be measured by optical emission spectroscopy, electrostatic probes, cavity ring down spectroscopy for H^- density and laser absorption spectroscopy for cesium density. Measurements over multiple lines-of-sight will provide the spatial distribution of the parameters over the source extension. The beam profile uniformity and its divergence are studied with beam emission spectroscopy, complemented by visible tomography and neutron imaging, which are novel techniques, while an instrumented calorimeter based on custom unidirectional carbon fiber composite tiles observed by infrared cameras will measure the beam footprint on short pulses with the highest spatial resolution. All heated components will be monitored with thermocouples: as these will likely be the only measurements available in ITER injectors, their capabilities will be investigated by comparison with other techniques. SPIDER and MITICA diagnostics are described in the present paper with a focus on their rationale, key solutions and most original and effective implementations.

  8. Design of an electron injector for multi-stages laser wakefield acceleration

    International Nuclear Information System (INIS)

    Audet, T.

    2016-01-01

    Laser wakefield acceleration (LWFA) is a particle acceleration process relying on the interaction between high intensity laser pulses, of the order of 10 18 W/cm 2 and a plasma. The plasma wave generated in the laser wake sustain high amplitude electric fields (1- 100 GV/m). Those electric fields are 3 orders of magnitude higher than maximum electric fields in radio frequency cavities and represent the main benefit of LWFA, allowing more compact acceleration. However improvements of the LWFA-produced electron bunches properties, stability and repetition rate are mandatory for LWFA to be usable for applications. A scheme to improve electron bunches properties and to potentially increase the repetition rate is multi-stage LWFA. The laser plasma electron source, called the injector, has to produce relatively low energy (50 - 100 MeV), but high charge, small size and low divergence electron bunches. Produced electron bunches then have to be transported and injected into a second stage to increase electron kinetic energy. The subject of this thesis is to study and design a laser wakefield electron injector for multistage LWFA. In the frame of CILEX and the two-stages LWFA program, a prototype of the injector was built : ELISA consisting in a variable length gas cell. The plasma electronic density, which is a critical parameter for the control of the electron bunches properties, was characterized both experimentally and numerically. ELISA was used at 2 different laser facilities and physical mechanisms linked to electron bunches properties were studied in function of experimental parameters. A range of experimental parameters suitable for a laser wakefield injector was determined. A magnetic transport and diagnostic line was also built, implemented and tested at the UHI100 laser facility of the CEA Saclay. It allowed a more precise characterization of electron bunches generated with ELISA as well as an estimation of the quality of transported electron bunches for their

  9. Comparative prediction of nonepileptic events using MMPI-2 clinical scales, Harris Lingoes subscales, and restructured clinical scales.

    Science.gov (United States)

    Yamout, Karim Z; Heinrichs, Robin J; Baade, Lyle E; Soetaert, Dana K; Liow, Kore K

    2017-03-01

    The Minnesota Multiphasic Personality Inventory-2 (MMPI-2) is a psychological testing tool used to measure psychological and personality constructs. The MMPI-2 has proven helpful in identifying individuals with nonepileptic events/nonepileptic seizures. However, the MMPI-2 has had some updates that enhanced its original scales. The aim of this article was to test the utility of updated MMPI-2 scales in predicting the likelihood of non-epileptic seizures in individuals admitted to an EEG video monitoring unit. We compared sensitivity, specificity, and likelihood ratios of traditional MMPI-2 Clinical Scales against more homogenous MMPI-2 Harris-Lingoes subscales and the newer Restructured Clinical (RC) scales. Our results showed that the Restructured Scales did not show significant improvement over the original Clinical scales. However, one Harris-Lingoes subscale (HL4 of Clinical Scale 3) did show improved predictive utility over the original Clinical scales as well as over the newer Restructured Clinical scales. Our study suggests that the predictive utility of the MMPI-2 can be improved using already existing scales. This is particularly useful for those practitioners who are not invested in switching over to the newly developed MMPI-2 Restructured Form (MMPI-2 RF). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. New features of the MAX IV thermionic pre-injector

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, J., E-mail: joel.andersson@maxiv.lu.se; Olsson, D., E-mail: david.olsson@maxiv.lu.se; Curbis, F.; Malmgren, L.; Werin, S.

    2017-05-21

    The MAX IV facility in Lund, Sweden consists of two storage rings for production of synchrotron radiation. The smaller 1.5 GeV ring is presently under construction, while the larger 3 GeV ring is being commissioned. Both rings will be operating with top-up injections from a full-energy injector. During injection, the electron beam is first delivered to the main injector from a thermionic pre-injector which consists of a thermionic RF gun, a chopper system, and an energy filter. In order to reduce losses of high-energy electrons along the injector and in the rings, the electron beam provided by the thermionic pre-injector should have the correct time structure and energy distribution. In this paper, the design of the MAX IV thermionic pre-injector with all its sub components is presented. The electron beam delivered by the pre-injector and its dependence on parameters such as optics, cathode temperature, and RF power are studied. Measurements are here compared with simulation results obtained by particle tracking and electromagnetic codes. The chopper system is described in detail, and different driving schemes that optimize the injection efficiency for the two storage rings are investigated. During operation, it was discovered that the structure of the beam delivered by the gun is affected by mode beating between the accelerating and a low-order mode. This mode beating is also studied in detail. Finally, initial measurements of the electron beam delivered to the 3 GeV ring during commissioning are presented.

  11. Psychometric validation of the Hopkins Symptom Checklist (SCL-90) subscales for depression, anxiety, and interpersonal sensitivity

    DEFF Research Database (Denmark)

    Bech, P; Bille, J; Møller, S B

    2014-01-01

    BACKGROUND: The psychometric validity of many subscales of the 90-item Hopkins Symptom Checklist (SCL-90) remains largely unknown. Therefore, the aim of the present study was to evaluate the psychometric properties of the "Hamilton-subscales" for depression (SCL-D16), anxiety (SCL-A14), their 6......-item core-measures (SCL-D6 and SCL-A6), the anxiety symptom scale (SCL-ASS8) and the interpersonal sensitivity scale (IPS5). METHODS: The psychometric properties of the SCL-D16, SCL-A14, SCL-D6, SCL-A6, SCL-ASS8, and the IPS5 were evaluated based on SCL-90 ratings from 850 day patients from a Danish...... SCL-90 subscales were identified. Using these scales it is possible to perform a psychometrically valid evaluation of psychiatric patients regarding the severity of depression (HAM-D6), specific anxiety (SCL-ASS8) and interpersonal sensitivity (IPS5)....

  12. Negative hydrogen ion sources for neutral beam injectors

    International Nuclear Information System (INIS)

    Prelec, K.

    1977-01-01

    Negative ion sources offer an attractive alternative in the design of high energy neutral beam injectors. The requirements call for a single source unit capable of yielding H - or D - beam currents of up to 10 A, operating with pulses of 1 s duration or longer, with gas and power efficiencies comparable to or better than achievable with double electron capture systems. H - beam currents of up to 1 A have already been achieved in pulses of 10 ms; gas and power efficiencies were, however, lower than required. In order to increase the H - yield, extend the pulse length and improve gas and power efficiencies fundamental processes in the source plasma and on cesium covered electrode surfaces have to be analyzed; these processes will be briefly reviewed and scaling rules established. Based on these considerations as well as on results obtained with 1 A source models a larger model was designed and constructed, having a 7.5 cm long cathode with forced cooling. Results of initial tests will be presented and possible scaling up to 10 A units discussed

  13. Characterising large area silicon drift detectors with MOS injectors

    International Nuclear Information System (INIS)

    Bonvicini, V.; Rashevsky, A.; Vacchi, A.

    1999-01-01

    In the framework of the INFN DSI project, the first prototypes of a large-area Silicon Drift Detector (SDD) have been designed and produced on 5'' diameter wafers of Neutron Transmutation Doped (NTD) silicon with a resistivity of 3000 Ω·cm. The detector is a 'butterfly' bi-directional structure with a drift length of 32 mm and the drifting charge is collected by two arrays of anodes having a pitch of 200 μm. The high-voltage divider is integrated on-board and is realised with p + implantations. For test and calibration purposes, the detector has a new type of MOS injector. The paper presents results obtained to injecting charge at the maximum drift distance (32mm) from the anodes by means of the MOS injecting structure, As front-end electronics, the authors have used a 32-channels low-noise bipolar VLSI circuit (OLA, Omni-purpose Low-noise Amplifer) specifically designed for silicon drift detectors. The uniformity of the drift time in different regions of the sensitive area and its dependence on the ambient temperature are studied

  14. 3400 m/s deuterium pellet injector for Tore Supra

    International Nuclear Information System (INIS)

    Perin, J.P.; Geraud, A.

    1995-01-01

    This paper reports on the Tore Supra high velocity pellet injector which was built in Grenoble and after qualification tests installed on Tore Supra Tokomak where it is used for plasma and ablation studies. By using a two stage light gas gun (TSG) and two cells (φ = 3 mm or 4 mm), unsupported pellets pellets (1 to 3.5 10 21 atoms) made directly in the gun by > [1] have been launched into Tore Supra plasma at speeds between 2400m/s and 3400m/s with a reliability of 80%. These higher pellets velocities (> 2500 m/s) [2] are obtained by the optimization of a TSG and the search for the cryogenic conditions of freezing deuterium with good mechanical properties. In particular, the impurities concentration in deuterium during the condensation process has been studied. Several tens pellets have been injected into ohmically and ICR heated plasma and during LH current drive experiments with a good reliability in the range of 3000m/s. These experiments allowed us to extend significantly the ablation data base. Central penetrations can be reached even for high temperatures plasma (3-5 keV) and very peaked density profiles have been obtained in ohmically and ICR heated plasmas A transient improved confinement regime is then observed, which presents some features similar to the PEP regime obtained on JET. (orig.)

  15. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  16. Preliminary experiments on energy recovery on a neutral beam injector

    International Nuclear Information System (INIS)

    Fumelli, M.

    1977-06-01

    Experimental tests of energy recovery are made on an injector of energetic neutral atoms in which the ion source (the circular periplasmatron) is operated at the ground potential and the neutralizer is biased at the high negative potential corresponding to the desired neutral beam energy. To prevent the acceleration of the neutralizer plasma electrons toward the collector of the decelerated ions (the recovery electrode), a potential barrier is created by means of a negatively biased long cylindrical grid (called the suppressor grid) surrounding the beam. For a given negative potential (relative to the neutralizer) applied to this grid a plasma sheath develops at the periphery of the beam. At the entry of the grid the width of this sheath is generally much smaller than the beam radius. However, the ions are deflected by the electric field of the sheath outward through the grid. The ion density in the sheath is thus decreasing as the beam propagates and the result is a sheath-widening process which in turn causes more ions to be deflected. If the suppressor grid is sufficiently long the sheath will eventually fill the whole section of the beam, the potential on the axis will fall below the neutralizer potential and stop the electrons. Concurrently, most of the ions are deflected out of the suppressor. These ions can be decelerated and collected outside the region where the neutral beam propagates. A drawing of such a system is shown

  17. Real Time Flame Monitoring of Gasifier and Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  18. Estimated nuclear effects in the neutral beam injectors of a large fusion reactor

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.

    1980-12-01

    Estimates are given for the nuclear heat loads on the cryopanels, radiation damage (energy deposition rate) in ion gun insulators, and dose equivalent rates from induced activity in the components for the Engineering Test Facility (ETF) neutral beam injectors. The estimates have been obtained by scaling similar results, obtained by careful neutronics analysis for the Tokamak Fusion Test Reactor (TFTR). The approximate nature of the scaling procedure introduces considerable uncertainty in the results, but they are, hopefully, correct to within an order of magnitude and may be substantially more accurate

  19. The Impact of Injector-Based Contrast Agent Administration on Bolus Shape and Magnetic Resonance Angiography Image Quality

    Directory of Open Access Journals (Sweden)

    Gregor Jost

    2017-04-01

    Full Text Available Objective: To compare injector-based contrast agent (CA administration with hand injection in magnetic resonance angiography (MRA. Methods: Gadobutrol was administered in 6 minipigs with 3 protocols: (a hand injection (one senior technician, (b hand injection (6 less-experienced technicians, and (c power injector administration. The arterial bolus shape was quantified by test bolus measurements. A head and neck MRA was performed for quantitative and qualitative comparison of signal enhancement. Results: A significantly shorter time to peak was observed for protocol C, whereas no significant differences between protocols were found for peak height and bolus width. However, for protocol C, these parameters showed a much lower variation. The MRA revealed a significantly higher signal-to-noise ratio for injector-based administration. A superimposed strong contrast of the jugular vein was found in 50% of the hand injections. Conclusions: Injector-based CA administration results in a more standardized bolus shape, a higher vascular contrast, and a more robust visualization of target vessels.

  20. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    Science.gov (United States)

    Rudner, Lawrence

    2016-01-01

    In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…

  1. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-06-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  2. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-02-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  3. Confirmatory Factor Analysis and Multiple Linear Regression of the Neck Disability Index: Assessment If Subscales Are Equally Relevant in Whiplash and Nonspecific Neck Pain.

    Science.gov (United States)

    Croft, Arthur C; Milam, Bryce; Meylor, Jade; Manning, Richard

    2016-06-01

    Because of previously published recommendations to modify the Neck Disability Index (NDI), we evaluated the responsiveness and dimensionality of the NDI within a population of adult whiplash-injured subjects. The purpose of the present study was to evaluate the responsiveness and dimensionality of the NDI within a population of adult whiplash-injured subjects. Subjects who had sustained whiplash injuries of grade 2 or higher completed an NDI questionnaire. There were 123 subjects (55% female, of which 36% had recovered and 64% had chronic symptoms. NDI subscales were analyzed using confirmatory factor analysis, considering only the subscales and, secondly, using sex as an 11th variable. The subscales were also tested with multiple linear regression modeling using the total score as a target variable. When considering only the 10 NDI subscales, only a single factor emerged, with an eigenvalue of 5.4, explaining 53.7% of the total variance. Strong correlation (> .55) (P factor model of the NDI is not justified based on our results, and in this population of whiplash subjects, the NDI was unidimensional, demonstrating high internal consistency and supporting the original validation study of Vernon and Mior.

  4. Domain-specific cognitive effects of tramiprosate in patients with mild to moderate Alzheimer's disease: ADAS-cog subscale results from the Alphase Study.

    Science.gov (United States)

    Saumier, D; Duong, A; Haine, D; Garceau, D; Sampalis, J

    2009-11-01

    Tramiprosate (homotaurine, ALZHEMEDTM) was recently investigated for its efficacy, safety and disease-modification effects in a Phase III clinical study in mild to moderate Alzheimer's disease (AD) patients (the Alphase study). The primary cognitive endpoint measure of that study was the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog). To characterize potential cognitive benefits of tramiprosate, the present study describes exploratory analyses performed on scores obtained from the specific ADAS-cog subscales in order to determine whether specific domains of cognition may be differentially affected by tramiprosate, which would not have been evident from the measure's total score. Multi-center, double-blind, randomized, placebo-controlled study. 67 investigative sites in the United States and Canada. A total of 1,052 patients were randomized. Patients were randomized to receive twice a day Placebo (n=353), tramiprosate 100 mg (n=352) and tramiprosate 150 mg (n=347). ADAS-cog assessments were conducted every three months over the 78-week study period. Exploratory analyses were performed by comparing ADAS-cog subscale scores between Placebo and each active treatment arm at each visit. The findings of this analysis revealed statistically significant differences or statistical trends in favour of tramiprosate on six ADAS-cog subscales, namely Following Commands, Language Comprehension, Ideational Praxis, Object Naming, Remembering Test Instructions, and Spoken Language Ability. Differences in favor of Placebo were only observed on the Constructional Praxis subscale. This exploratory analysis suggests that tramiprosate may have some benefit on memory, language and praxis skills in mild to moderate AD individuals. Future clinical studies of tramiprosate should include specialized neuropsychological tests to validate its effects within these cognitive domains.

  5. Antisocial Personality Disorder Subscale (Chinese Version) of the Structured Clinical Interview for the DSM-IV Axis II disorders: validation study in Cantonese-speaking Hong Kong Chinese.

    Science.gov (United States)

    Tang, D Y Y; Liu, A C Y; Leung, M H T; Siu, B W M

    2013-06-01

    OBJECTIVE. Antisocial personality disorder (ASPD) is a risk factor for violence and is associated with poor treatment response when it is a co-morbid condition with substance abuse. It is an under-recognised clinical entity in the local Hong Kong setting, for which there are only a few available Chinese-language diagnostic instruments. None has been tested for its psychometric properties in the Cantonese-speaking population in Hong Kong. This study therefore aimed to assess the reliability and validity of the Chinese version of the ASPD subscale of the Structured Clinical Interview for the DSM-IV Axis II Disorders (SCID-II) in Hong Kong Chinese. METHODS. This assessment tool was modified according to dialectal differences between Mainland China and Hong Kong. Inpatients in Castle Peak Hospital, Hong Kong, who were designated for priority follow-up based on their assessed propensity for violence and who fulfilled the inclusion criteria for the study, were recruited. To assess the level of agreement, best-estimate diagnosis made by a multidisciplinary team was compared with diagnostic status determined by the SCID-II ASPD subscale. The internal consistency, sensitivity, and specificity of the subscale were also calculated. RESULTS. The internal consistency of the subscale was acceptable at 0.79, whereas the test-retest reliability and inter-rater reliability showed an excellent and good agreement of 0.90 and 0.86, respectively. Best-estimate clinical diagnosis-SCID diagnosis agreement was acceptable at 0.76. The sensitivity, specificity, positive and negative predictive values were 0.91, 0.86, 0.83, and 0.93, respectively. CONCLUSION. The Chinese version of the SCID-II ASPD subscale is reliable and valid for diagnosing ASPD in a Cantonese-speaking clinical population.

  6. Validity of the mental health subscale of the SF-36 in persons with spinal cord injury

    NARCIS (Netherlands)

    van Leeuwen, C. M. C.; van der Woude, L. H. V.; Post, M. W. M.

    Study design: Cross-sectional study 5 years after discharge from inpatient rehabilitation. Objective: To examine the psychometric properties of the Mental Health subscale (MHI-5) of the 36-Item Short Form Health Survey (SF-36) in persons with spinal cord injury (SCI). Setting: Eight Dutch

  7. Psychometric and Structural Analysis of the MMPI-2 Personality Psychopathology Five (PSY-5) Facet Subscales

    Science.gov (United States)

    Quilty, Lena C.; Bagby, R. Michael

    2007-01-01

    The Personality Psychopathology Five (PSY-5) is a model of personality psychopathology assessed in adult populations with a set of Minnesota Multiphasic Personality Inventory-2 (MMPI-2) scales. The authors examine the reliability and validity of recently developed lower-order facet subscales for each of these five domains, with an emphasis on…

  8. Further Investigation of the SI Scale of the MMPI: Reliabilities, Correlates, and Subscale Utility.

    Science.gov (United States)

    Williams, Carolyn L.

    1983-01-01

    Administered the SI scale of the Minnesota Multiphasic Personality Inventory (MMPI) and several measures typically used in social skills and assertiveness training research to college students (N=218). Results demonstrated acceptable reliability and support for the utility of the subscales of the SI scale of the MMPI. (LLL)

  9. Sub-scale Inverse Wind Turbine Blade Design Using Bound Circulation

    Science.gov (United States)

    Kelley, Christopher; Berg, Jonathan

    2014-11-01

    A goal of the National Rotor Testbed project at Sandia is to design a sub-scale wind turbine blade that has similitude to a modern, commercial size blade. However, a smaller diameter wind turbine operating at the same tip-speed-ratio exhibits a different range of operating Reynolds numbers across the blade span, thus changing the local lift and drag coefficients. Differences to load distribution also affect the wake dynamics and stability. An inverse wind turbine blade design tool has been implemented which uses a target, dimensionless circulation distribution from a full-scale blade to find the chord and twist along a sub-scale blade. In addition, airfoil polar data are interpolated from a few specified span stations leading to a smooth, manufacturable blade. The iterative process perturbs chord and twist, after running a blade element momentum theory code, to reduce the residual sum of the squares between the modeled sub-scale circulation and the target full-scale circulation. It is shown that the converged sub-scale design also leads to performance similarity in thrust and power coefficients. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract DE-AC04-94AL85000.

  10. Examining the Psychometric Properties of the Identify as a Professional Social Worker Subscale

    Science.gov (United States)

    Farmer, Antoinette Y.

    2017-01-01

    The purpose of this study was to examine the psychometric properties of the Identify as a Professional Social Worker Subscale, which assessed the Council on Social Work Education--prescribed competency "identify as a professional social worker and conduct oneself accordingly." The results of confirmatory factory analysis indicated that…

  11. Comparison of Child Behavior Checklist subscales in screening for obsessive-compulsive disorder

    DEFF Research Database (Denmark)

    Andersen, Pia Aaron Skovby; Bilenberg, Niels

    2012-01-01

    Obsessive-compulsive disorder (OCD) is a prevalent psychiatric disorder in children and adolescents associated with significant functional impairment. Early and correct diagnosis is essential for an optimal treatment outcome. The purpose of this study was to determine which of four subscales...... derived from the Child Behavior Checklist best discriminates OCD patients from clinical and population-based controls....

  12. Extraction septum magnet for the SSRL SPEAR injector

    International Nuclear Information System (INIS)

    Cerino, J.; Baltay, M.; Boyce, R.; Harris, S.; Hettel, R.; Horton, M.; Zuo, K.

    1991-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) successfully commissioned a 3-3.5 GeV electron injector for the SPEAR Storage Ring during 1990. The Injector operates at a 10 Hz repetition rate and accelerates ∼ 10 10 electrons per second for extraction and transport to SPEAR. The extraction septum magnet is a pulsed Lambertson type which, for reasons of economy, was constructed from the same laminations which form 1/2 of an Injector booster synchrotron dipole magnet core block. The excitation coil also utilizes a design in common with the pulse chokes of the booster magnet circuit. The septum magnet is pulsed by an SCR controlled resonant LC circuit with a resonant frequency of 30 Hz

  13. Fundamental rocket injector/spray programs at the Phillips Laboratory

    Science.gov (United States)

    Talley, D. G.

    1993-11-01

    The performance and stability of liquid rocket engines is determined to a large degree by atomization, mixing, and combustion processes. Control over these processes is exerted through the design of the injector. Injectors in liquid rocket engines are called upon to perform many functions. They must first of all mix the propellants to provide suitable performance in the shortest possible length. For main injectors, this is driven by the tradeoff between the combustion chamber performance, stability, efficiency, and its weight and cost. In gas generators and preburners, however, it is also driven by the possibility of damage to downstream components, for example piping and turbine blades. This can occur if unburned fuel and oxidant later react to create hot spots. Weight and cost considerations require that the injector design be simple and lightweight. For reusable engines, the injectors must also be durable and easily maintained. Suitable atomization and mixing must be produced with as small a pressure drop as possible, so that the size and weight of pressure vessels and turbomachinery can be minimized. However, the pressure drop must not be so small as to promote feed system coupled instabilities. Another important function of the injectors is to ensure that the injector face plate and the chamber and nozzle walls are not damaged. Typically this requires reducing the heat transfer to an acceptable level and also keeping unburned oxygen from chemically attacking the walls, particularly in reusable engines. Therefore the mixing distribution is often tailored to be fuel-rich near the walls. Wall heat transfer can become catastrophically damaging in the presence of acoustic instabilities, so the injector must prevent these from occurring at all costs. In addition to acoustic stability (but coupled with it), injectors must also be kinetically stable. That is, the flame itself must maintain ignition in the combustion chamber. This is not typically a problem with main

  14. Hollow-Wall Heat Shield for Fuel Injector Component

    Science.gov (United States)

    Hanson, Russell B. (Inventor)

    2018-01-01

    A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.

  15. Heavy-Ion Injector for the High Current Experiment

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  16. Academic Training: A walk through the LHC injector chain

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 21, 22, 23 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  17. Pneumatic injector of deuterium macroparticles for TORE-SUPRA tokamak

    International Nuclear Information System (INIS)

    Vinyar, I.V.; Umov, A.P.; Lukin, A.Ya.; Skoblikov, S.V.; Reznichenko, P.V.; Krasil'nikov, I.A.

    2006-01-01

    The pneumatic injector for periodic injection of fuel-solid-deuterium pellets into the plasma of the TORE-SUPRA tokamak in a steady-state mode is described. The deuterium pellet injection with an unlimited duration is ensured by a screw extruder in which gaseous deuterium is frozen and squeezed outwards in the form of a rod with a rectangular cross section. A cutter installed on the injector's barrel cuts a cylinder with a diameter of 2 mm and a length of 1.0-3.5 mm out from this rod. The movement of the cutter is controlled by a pulsed electromagnetic drive at a pulse repetition rate of 10 Hz. In the injector's barrel, a compressed gas accelerates a deuterium pellet to a velocity of 100-650 m/s [ru

  18. Necessary LIU studies in the injectors during 2012

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2012-01-01

    A significant fraction of the Machine Development (MD) time in the LHC injectors in 2011 was devoted to the study of the intensity limitations in the injectors (e.g. space charge effects in PS and SPS, electron cloud effects in the PS and SPS, single bunch and multi-bunch instabilities in PS and SPS, emittance preservation across the injector chain, etc.). The main results achieved in 2011 will be presented as well as the questions that still remain unresolved and are of relevance for the LIU project. 2012 MDs will also continue exploring the potential of scenarios that might become operational in the future, like the development of a low gamma transition optics in the SPS or alternative production schemes for the LHC beams in the PS. A tentative prioritized list of studies is provided.

  19. ELECTRON BEAM ION SOURCE PRE-INJECTOR DIGNOSTICS

    International Nuclear Information System (INIS)

    WILINSKI, M.; ALESSI, J.; BEEBE, E.; BELLAVIA, S.; PIKIN, A.

    2006-01-01

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL,). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (R-FQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  20. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  1. Immune responses after fractional doses of inactivated poliovirus vaccine using newly developed intradermal jet injectors: a randomized controlled trial in Cuba.

    Science.gov (United States)

    Resik, Sonia; Tejeda, Alina; Mach, Ondrej; Fonseca, Magile; Diaz, Manuel; Alemany, Nilda; Garcia, Gloria; Hung, Lai Heng; Martinez, Yenisleydis; Sutter, Roland

    2015-01-03

    The World Health Organization recommends that, as part of the new polio endgame, a dose of inactivated poliovirus vaccine (IPV) be introduced by the end of 2015 in all countries using only oral poliovirus vaccine (OPV). Administration of fractional dose (1/5th of full dose) IPV (fIPV) intradermally may reduce costs, but its administration is cumbersome with BCG needle and syringe. We evaluated performance of two newly developed intradermal-only jet injectors and compared the immune response induced by fIPV with that induced by full-dose IPV. Children between 12 and 20 months of age, who had previously received two doses of OPV, were enrolled in Camaguey, Cuba. Subjects received a single dose of IPV (either full-dose IPV intramuscularly with needle and syringe or fIPV intradermally administered with one of two new injectors or with BCG needle or a conventional needle-free injector). Serum was tested for presence of poliovirus neutralizing antibodies on day 0 (pre-IPV) and on days 3, 7 and 21 (post-vaccination). Complete data were available from 74.2% (728/981) subjects. Baseline median antibody titers were 713, 284, and 113 for poliovirus types 1, 2, and 3, respectively. Seroprevalence at study end were similar across the intervention groups (≥ 94.8%). The immune response induced with one new injector was similar to BCG needle and to the conventional injector; and superior to the other new injector. fIPV induced significantly lower boosting response compared to full-dose IPV. No safety concerns were identified. One of the two new injectors demonstrated its ability to streamline intradermal fIPV administration, however, further investigations are needed to assess the potential contribution of fIPV in the polio endgame plan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The feasibility of employing a home healthcare model for education and treatment of opioid overdose using a naloxone auto-injector in a private practice pain medicine clinic.

    Science.gov (United States)

    Dragovich, Anthony; Brason, Fred; Beltran, Thomas; McCoart, Amy; Plunkett, Anthony R

    2018-04-18

    The purpose of this study was to determine if employing a home healthcare model for education and treatment of opioid overdose using Evzio® (Naloxone)* auto-injector in a private practice pain clinic. A prospective survey was used to determine the feasibility of integrating a naloxone auto-injector within the patient's home with a home care training model. Twenty moderate or high-risk patients were enrolled from our chronic pain clinic. Patients who were moderate or high risk completed an evaluation survey. The naloxone auto-injector was dispensed to all patients meeting criteria. The treating provider after prescribing the naloxone auto-injector then consulted home health per standard clinical practice. All patients had home health consulted to perform overdose identification and rescue training. A Cochran's Q test was conducted to examine differences in patient knowledge pre and post training. The post training test was done 2-4 weeks later. Forty subjects enrolled after meeting inclusion/exclusion criteria. Twenty withdrew because their insurance declined coverage for the naloxone auto-injector. Those completing home health showed a statistically significant difference in their ability to correctly identify the steps needed to effectively respond to an overdose p = 0.03 Discussion: Preliminary evidence would suggest training on overdose symptom recognition and proper use of prescription naloxone for treatment in the home setting by home health staff would prove more beneficial than the clinic setting, but feasibility was hindered by unaffordable costs related to insurance coverage limitations.

  3. Status of the positive ion injector for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P K; Benaroya, R; Bogaty, J M; Bollinger, L M; Clifft, B E; Craig, S L; Henderson, D; Markovich, P; Munson, F; Nixon, J M; Pardo, R C; Phillips, D; Shepard, K W; Tilbrook, I; Zinkann, G [Argonne National Lab., IL (USA). Physics Div.

    1989-04-01

    The positive ion injector project will replace a High Voltage Engineering Corp. model FN 9 MV tandem electrostatic accelerator as the injector into the ATLAS superconducting heavy ion linear accelerator. It consists of an electron cyclotron resonance (ECR) ion source on a 350-kV platform injecting into a linac of individually phased superconducting resonators which have been optimized for ions with velocities as low as {beta} = 0.009. The resulting combination will extend the useful mass range of ATLAS to projectiles as heavy as uranium, while increasing the beam currents available by a factor of 100. (orig.).

  4. Commissioning and operation of the nuclear physics injector at SLAC

    International Nuclear Information System (INIS)

    Koontz, R.F.; Iverson, R.; Leyer, G.K.; Miller, R.H.

    1985-01-01

    The new Nuclear Physics Injector (NPI) approved for construction in October of 1983 was completed by September of 1984, and delivered short pulse beams for SPEAR ring checkout in mid-October. Long pulse beams of up to 1.6 microsecond length were also demonstrated. The paper describes the startup operation, reviews the performance characteristics, and discusses the beam transport optics used to deliver 1 to 4 GeV beams to nuclear physics experiments in End Station A. The SLAC Nuclear Physics Injector is in full operationexclamation

  5. Commissioning and operation of the nuclear physics injector at SLAC

    International Nuclear Information System (INIS)

    Koontz, R.F.; Miller, R.H.; Leger, G.K.; Iverson, R.

    1985-01-01

    The new Nuclear Physics Injector (NPI) approved for construction in October of 1983 was completed by September of 1984, and delivered short pulse beams for SPEAR ring checkout in mid-October. Long pulse beams of up to 1.6 microsecond length were also demonstrated. The paper describes the start-up operation, reviews the performance characteristics, and discusses the beam transport optics used to deliver 1 to 4 GeV beams to nuclear physics experiments in End Station A. The SLAC Nuclear Physics Injector is in full operation!

  6. A Compact Multi-Beamlets High Current Injector for HIFDrivers

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, J.W.; Bieniosek, F.M.; Grote, D.P.; Westenskow, G.A.

    2005-09-06

    Using curved electrodes in the injector, an array of converging beamlets can produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than the one designed using traditional single large-aperture beams, so the success of this experiment has significant economical and technical impacts on the architecture of heavy ion fusion (HIF) drivers.

  7. Technological Challenges for High-Brightness Photo-Injectors

    CERN Multimedia

    Suberlucq, Guy

    2004-01-01

    Many applications, from linear colliders to free-electron lasers, passing through light sources and many other electron sources, require high brightness electron beams, usually produced by photo-injectors. Because certain parameters of these applications differ by several orders of magnitude, various solutions were implemented for the design and construction of the three main parts of the photo-injectors: lasers, photocathodes and guns. This paper summarizes the different requirements, how they lead to technological challenges and how R&D programs try to overcome these challenges. Some examples of state-of-the-art parts are presented.

  8. Injector modeling and achievement/maintenance of high brightness

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1985-10-01

    Viewgraphs for the workshop presentation are given. The presentation has three fundamental parts. In part one the need for numerical calculations is justified and the available computer codes are enumerated. The capabilities and features of the DPC computer code are the focal point in this section. In part two the injector design issues are discussed. These issues include such things as the beam optics and magnetic field profile. In part three the experimental results of two injector designs are compared with DPC predictions. 8 figs

  9. Development of the 2-MV Injector for HIF

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M. E-mail: fmbieniosek@lbl.gov; Kwan, J.W.; Henestroza, E.; Kim, C

    2001-05-21

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated.

  10. Development of the 2-MV Injector for HIF

    Science.gov (United States)

    Bieniosek, F. M.; Kwan, J. W.; Henestroza, E.; Kim, C.

    2001-05-01

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated.

  11. Development of the 2-MV Injector for HIF

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Kwan, J.W.; Henestroza, E.; Kim, C.

    2001-01-01

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated

  12. Development of the 2-MV injector for HIF

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Kwan, J.W.; Henestroza, E.; Kim, C.

    2000-01-01

    The 2-MV Injector consists of a 17-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with maximum current of 0.8 A of potassium beam at 2 MeV. Previous performance of the Injector produced a beam with adequate current and emittance but with a hollow profile at the end of the ESQ section. We have examined the profile of the beam as it leaves the diode. The measured nonuniform beam density distribution qualitatively agrees with EGUN simulation. Implications for emittance growth in the post acceleration and transport phase will be investigated

  13. Status of the positive ion injector for ATLAS

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Benaroya, R.; Bogaty, J.M.

    1988-01-01

    The positive ion injector project will replace a High Voltage Engineering Corp. model FN 9 MV tandem electrostatic accelerator as the injector into the ATLAS superconducting heavy ion linear accelerator. It consists of an electron cyclotron resonance (ECR) ion source on a 350-kV platform injecting into a linac of individually phased superconducting resonators which have been optimized for ions with velocities as low as β = 0.009. The resulting combination will extend the useful mass range of ATLAS to projectiles as heavy as uranium, while increasing the beam currents available by a factor of 100. (2 refs., 2 figs., 1 tab.)

  14. Injector spray characterization of methanol in reciprocating engines

    Science.gov (United States)

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  15. Plans for the upgrade of the LHC injectors

    CERN Document Server

    Garoby, R; Goddard, B; Hanke, K; Meddahi, M; Vretenar, M

    2011-01-01

    The LHC injectors upgrade (LIU) project has been launched at the end of 2010 to prepare the CERN accelerator complex for reliably providing beam with the challenging characteristics required by the high luminosity LHC until at least 2030. Based on the work already started on Linac4, PS Booster, PS and SPS, the LIU project coordinates studies and implementation, and interfaces with the high luminosity LHC (HL-LHC) project which looks after the upgrade of the LHC itself, expected by the end of the present decade. The anticipated beam characteristics are described, as well as the status of the studies and the solutions envisaged for improving the injector performances.

  16. Summary, Working Group 1: Electron guns and injector designs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Bazarov, I.V.

    2006-01-01

    We summarize the proceedings of Working Group 1 of the 2005 Energy Recovery Linac (ERL) Workshop. The subject of this working group, the electron gun and injector design, is arguably the most critical part of the ERL as it determines the ultimate performance of this type of accelerators. Working Group 1 dealt with a variety of subjects: The technology of DC, normal-conducting RF and superconducting RF guns; beam dynamics in the gun and injector; the cathode and laser package; modeling and computational issues; magnetized beams and polarization. A short overview of these issues covered in the Working Group is presented in this paper

  17. Development of a superconducting radio frequency photoelectron injector

    International Nuclear Information System (INIS)

    Arnold, A.; Buettig, H.; Janssen, D.; Kamps, T.; Klemz, G.; Lehmann, W.D.; Lehnert, U.; Lipka, D.; Marhauser, F.; Michel, P.; Moeller, K.; Murcek, P.; Schneider, Ch.; Schurig, R.; Staufenbiel, F.; Stephan, J.; Teichert, J.; Volkov, V.; Will, I.; Xiang, R.

    2007-01-01

    A superconducting radio frequency (RF) photoelectron injector (SRF gun) is under development at the Research Center Dresden-Rossendorf. This project aims mainly at replacing the present thermionic gun of the superconducting electron linac ELBE. Thereby the beam quality is greatly improved. Especially, the normalized transverse emittance can be reduced by up to one order of magnitude depending on the operating conditions. The length of the electron bunches will be shortened by about two orders of magnitude making the present bunchers in the injection beam line dispensable. The maximum obtainable bunch charge of the present thermionic gun amounts to 80pC. The SRF gun is designed to deliver also higher bunch charge values up to 2.5nC. Therefore, this gun can be used also for advanced facilities such as energy recovery linacs (ERLs) and soft X-ray FELs. The SRF gun is designed as a 312 cell cavity structure with three cells basically TESLA cells supplemented by a newly developed gun cell and a choke filter. The exit energy is projected to be 9.5MeV. In this paper, we present a description of the design of the SRF gun with special emphasis on the physical and technical problems arising from the necessity of integrating a photocathode into the superconducting cavity structure. Preparation, transfer, cooling and alignment of the photocathode are discussed. In designing the SRF gun cryostat for most components wherever possible the technical solutions were adapted from the ELBE cryostat in some cases with major modifications. As concerns the status of the project the design is finished, most parts are manufactured and the gun is being assembled. Some of the key components are tested in special test arrangements such as cavity warm tuning, cathode cooling, the mechanical behavior of the tuners and the effectiveness of the magnetic screening of the cavity

  18. Floating clamping mechanism of PT fuel injector and its dynamic characteristics analysis

    Science.gov (United States)

    Wang, Xinqing; Liang, Sheng; Xia, Tian; Wang, Dong; Qian, Shuhua

    2012-05-01

    PT fuel injector is one of the most important parts of modern diesel engine. To satisfy the requirements of the rapid and accurate test of PT fuel injector, the self-adaptive floating clamping mechanism was developed and used in the relevant bench. Its dynamic characteristics directly influence the test efficiency and accuracy. However, due to its special structure and complex oil pressure signal, related documents for evaluating dynamic characteristics of this mechanism are lack and some dynamic characteristics of this mechanism can't be extracted and recognized effectively by traditional methods. Aiming at the problem above-mentioned, a new method based on Hilbert-Huang transform (HHT) is presented. Firstly, combining with the actual working process, the dynamic liquid pressure signal of the mechanism is acquired. By analyzing the pressure fluctuation during the whole working process in time domain, oil leakage and hydraulic shock in the clamping chamber are discovered. Secondly, owing to the nonlinearity and nonstationarity of pressure signal, empirical mode decomposition is used, and the signal is decomposed and reconstructed into forced vibration, free vibration and noise. By analyzing forced vibration in the time domain, machining error and installation error of cam are revealed. Finally, free vibration component is analyzed in time-frequency domain with HHT, the traits of free vibration in the time-frequency domain are revealed. Compared with traditional methods, Hilbert spectrum has higher time-frequency resolutions and higher credibility. The improved mechanism based on the above analyses can guarantee the test accuracy of injector injection. This new method based on the analyses of the pressure signal and combined with HHT can provide scientific basis for evaluation, design improvement of the mechanism, and give references for dynamic characteristics analysis of the hydraulic system in the interrelated fields.

  19. The experimental determination of the relationship between the energising time of the common rail injector and the set fuel quantity and rail pressure

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2017-01-01

    Full Text Available The article discusses the issue of experimentally determining the relationship between the energising time of the common rail electromagnetic injector and the set fuel quantity and rail pressure. Experimental studies according to the assumed methodology were made on a test bench enabling the dynamic flow rate measurement of the injector. The fuel system mounted on the test bench was controlled by the laboratory CI engine control unit based on the original concept of one of the authors of the article. The results of the experimental studies have made it possible to determine many of the characteristics of the fuel flow rate depending on the specified rail pressure and the energising time of the injector. An analysis was then performed followed by extrapolation of the obtained results. The data obtained from these analyses are the basis for the development of the energising time control algorithm based on a set fuel quantity and rail pressure.

  20. Solution of some pumping problems in the injector vacuum system of the T-20

    International Nuclear Information System (INIS)

    Ershov, B.D.; Karasev, B.G.; Malyshev, I.F.; Saksaganskii, G.L.; Serbrennikov, D.V.; Sorokin, A.G.; Soikin, V.F.; Pustovoit, Yu.M.

    1978-09-01

    The fast neutral deuterium atom injection system in the T-20 includes 8 injectors. In the present paper an analysis is made of the vacuum system of the injectors with 160 keV rated fast atom energy, these being subjected to the largest gas loading. The pumping system for the 80 keV injectors is designed along similar lines. (UK)

  1. Effect of the temperature and dew point of the decarburization process on the oxide subscale of a 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, Maria das Gracas M.M. E-mail: gracamelo@acesita.com.br; Mantel, Marc J

    2003-01-01

    The oxide subscale formed on the decarburization annealing of 3% Si-Fe was investigated using microscopy and spectroscopy techniques. It was found that the morphology as well as the molecular structure of the subscale are affected by temperature and dew point. The results suggest that there is an optimum level of internal oxidation and an optimum fayalite/silica ratio in the subscale to achieve a oriented grain silicon steel having a continuous and smooth ceramic film and low core loss.

  2. Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding

    International Nuclear Information System (INIS)

    Urban, W.T.; Seed, T.J.; Dudziak, D.J.

    1980-01-01

    A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results

  3. GTS-LHC: A New Source For The LHC Ion Injector Chain

    International Nuclear Information System (INIS)

    Hill, C.E.; Kuechler, D.; Scrivens, R.; Hitz, D.; Guillemet, L.; Leroy, R.; Pacquet, J.Y.

    2005-01-01

    The ion injector chain for the LHC has to be adapted and modified to reach the design beam parameters. Up to now an ECR4 delivered the ion beam for the SPS fixed target physics programme. This source will be replaced by a higher intensity source to produce the Pb27+ ion current required to fill the Low Energy Ion Ring (LEIR). The new ion source will be based on the Grenoble Test Source which was itself based on empirical scaling laws derived from the Framework 5 'Innovative ECRIS' collaboration. This paper will describe the design principle, the commissioning timetable and the present status of the source development

  4. Power supply for plasma generator of HL-1M neutral beam injector

    International Nuclear Information System (INIS)

    Wang Detai; Qian Jiamei; Lei Guangjiu; Shun Mengda; Jiang Shaofeng; Wang Enyao; Lu Xuejun; Yang Tiehai; Wang Xuehua; Zhao Zhimin; Hao Ming; Huang Jianrong; Yu Yanqiu; Cheng Baoqiang; Wu Zhige; Sheng Ning; Hu Qingtao

    1999-01-01

    The diagram of the HL-1M Neutral Beam Injector (NBI) and the power supply (PS) system is shown. The NBI consists of ion source, beam line and power supply system etc. The ion source includes plasma generator and three-electrode extraction system. The power supply for plasma generator consists of a filament PS, an arc PS and gas valve PS. Testing has shown that the PS for plasma generator of the HL-1M NBI has excellent stability and obtain good plasma heating effect

  5. Differential Item Functioning in the SF-36 Physical Functioning and Mental Health Sub-Scales: A Population-Based Investigation in the Canadian Multicentre Osteoporosis Study.

    Directory of Open Access Journals (Sweden)

    Lisa M Lix

    Full Text Available Self-reported health status measures, like the Short Form 36-item Health Survey (SF-36, can provide rich information about the overall health of a population and its components, such as physical, mental, and social health. However, differential item functioning (DIF, which arises when population sub-groups with the same underlying (i.e., latent level of health have different measured item response probabilities, may compromise the comparability of these measures. The purpose of this study was to test for DIF on the SF-36 physical functioning (PF and mental health (MH sub-scale items in a Canadian population-based sample.Study data were from the prospective Canadian Multicentre Osteoporosis Study (CaMos, which collected baseline data in 1996-1997. DIF was tested using a multiple indicators multiple causes (MIMIC method. Confirmatory factor analysis defined the latent variable measurement model for the item responses and latent variable regression with demographic and health status covariates (i.e., sex, age group, body weight, self-perceived general health produced estimates of the magnitude of DIF effects.The CaMos cohort consisted of 9423 respondents; 69.4% were female and 51.7% were less than 65 years. Eight of 10 items on the PF sub-scale and four of five items on the MH sub-scale exhibited DIF. Large DIF effects were observed on PF sub-scale items about vigorous and moderate activities, lifting and carrying groceries, walking one block, and bathing or dressing. On the MH sub-scale items, all DIF effects were small or moderate in size.SF-36 PF and MH sub-scale scores were not comparable across population sub-groups defined by demographic and health status variables due to the effects of DIF, although the magnitude of this bias was not large for most items. We recommend testing and adjusting for DIF to ensure comparability of the SF-36 in population-based investigations.

  6. CryoModule Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CMTFis able to test complete SRF cryomodules at cryogenic operating temperatures and with RF Power. CMTF will house the PIP-II Injector Experiment allowing test of...

  7. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    Science.gov (United States)

    Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard

    2013-02-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.

  8. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    International Nuclear Information System (INIS)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun

    2015-01-01

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  9. Initial operation of the new bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-01-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV DC platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the Super HILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs

  10. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  11. Initial operation of the new Bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-05-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV dc platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the SuperHILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs. 5 refs

  12. Buried injector logic, a vertical IIL using deep ion implantation

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1987-01-01

    A vertically integrated alternative for integrated injection logic has been realized, named buried injector logic (BIL). 1 MeV ion implantations are used to create buried layers. The vertical pnp and npn transistors have thin base regions and exhibit a limited charge accumulation if a gate is

  13. Characteristics of modified CT injector for JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, N. [Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan)]. E-mail: fukumoto@elct.eng.himeji-tech.ac.jp; Ogawa, H. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan); Nagata, M. [Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan); Uyama, T. [Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan); Shibata, T. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan); Kashiwa, Y. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan); Kusama, Y. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan)

    2004-10-01

    The HIT-CTI mark II compact toroid (CT) injector employed for the JFT-2M tokamak facility at the Japan Atomic Energy Research Institute (JAERI) has been upgraded to improve injection performance. The nozzle of the mark III injector now has a linear tube in place of the original focus cone to avoid rapid focus and deceleration, and the tapered outer electrode has been replaced with more gentle taper in the compression section in order to facilitate gradual compression. The dependence of CT velocity and electron density on poloidal bias flux and trigger time of CT acceleration have been investigated in the operable range of 70-230 km/s average CT velocity and electron density of 0.1-1.0 x 10{sup 22} m{sup -3} at an accelerator bank voltage of 25 kV. The operation window is broader than that of the mark II injector. Emission of a CT plasmoid from the injector, and transport to the flux conserver as a high-density spheromak magnetic structure have also been confirmed.

  14. Study on the characteristics of the supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Shibayama, Shunsuke

    2014-01-01

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper

  15. Deflecting cavity for beam diagnostics at Cornell ERL injector

    International Nuclear Information System (INIS)

    Belomestnykh, Sergey; Bazarov, Ivan; Shemelin, Valery; Sikora, John; Smolenski, Karl; Veshcherevich, Vadim

    2010-01-01

    A single-cell, 1300-MHz, TM110-like mode vertically deflecting cavity is designed and built for beam slice emittance measurements, and to study the temporal response of negative electron affinity photocathodes in the ERL injector at Cornell University. We describe the cavity shape optimization procedure, RF and mechanical design, its performance with beam.

  16. Beam instrumentation in the LEP Pre-injector

    International Nuclear Information System (INIS)

    Battisti, S.; Bottollier, J.F.; Frammery, B.; Szeless, B.; Van Rooy, M.

    1987-01-01

    The main purpose of this paper is to review the beam instrumentation of the LEP pre-injector (LPI) including its design philosophy and software. The usefulness of these equipments for the LPI start-up is considered from an operational point of view and encountered problems are mentioned

  17. Development of H2 pellet injectors for industrial marketing

    International Nuclear Information System (INIS)

    Visler, T.

    1988-09-01

    1. Discussion of the construction of injector installation at ETA-BETA II. 2. Production and experience with two different ''pipe-guns''. One for large pellets, diameter/length = 4.5-5 mm/8-20 mm and one for small pellets, diameter/length = 2 mm/3-4 mm. (author) 27 ills., 39 refs

  18. Status of the new high intensity H- injector at LAMPF

    International Nuclear Information System (INIS)

    Stevens, R.R. Jr.; York, R.L.; McConnell, J.R.; Kandarian, R.

    1984-04-01

    The requirement for higher intensity H - ion beams for the proton storage ring now being constructed at LAMPF necessitated the development of a new H - ion source and the rebuilding of the original H - injector and its associated beam transport lines. The goal of the ion source development program was to produce an H - beam with a peak intensity of 20 mA at 10% duty factor and with a beam emittance of less than 0.08 cm-mrad normalized at 95% beam fraction. The ion source concept which was best suited to our requirements was the multicusp, surface-production source developed for neutral beam injectors at Berkeley by Ehlers and Leung. An accelerator version of this source has been subsequently developed at Los Alamos to meet these storage ring requirements. The use of these higher intensity H - beams, together with the more stringent chopping and bunching requirements entailed in the operation of the storage ring, now requires rebuilding the entire H - injector at LAMPF. This construction is in progress. It is anticipated that the new injector will be fully operational by the end of 1984 and that the required H - beams will be available for the operation of the storage ring in early 1985

  19. Investigation of the cavitation fluctuation characteristics in a Venturi injector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuncheng; Chen, Yan; Wang, Zijun; Zhou, Lingjiu; Yan, Haijun, E-mail: yanhj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China)

    2015-04-15

    The suction flow rate in a Venturi injector increases to a maximum and appears to be unstable when critical cavitation occurs. This study analyzes changes in the cavitation length in high-speed videos of a Venturi injector with critical cavitation to find periodic fluctuations in the cavitation cloud. Pressure fluctuation measurements show a dominant low frequency fluctuation that is almost as large as the oscillation frequency seen visually for the same conditions. The variation of the cavitation numbers and the measured transient outlet pressure show that critical cavitation occurs in the Venturi injector when the peak-to-peak pressure difference is greater than a critical value. Moreover, when the cavitation numbers become very small in the cavitation areas, the peak-to-peak pressures begin to decrease. The relationship between the suction performance and the outlet pressure fluctuations has a significant inflection point which can be used to determine proper working conditions. These experimental statistics provide a pressure range based on the inlet and outlet pressures for which the improvement of suction performance will not substantially change the outlet pressure fluctuations. Both the high-speed photography and the pressure measurement show the periodic oscillations of the cavitation cloud in a Venturi injector and can be used to detect the occurrence of critical cavitation. (paper)

  20. Flash radiographic technique applied to fuel injector sprays

    International Nuclear Information System (INIS)

    Vantine, H.C.

    1977-01-01

    A flash radiographic technique, using 50 ns exposure times, was used to study the pattern and density distribution of a fuel injector spray. The experimental apparatus and method are described. An 85 kVp flash x-ray generator, designed and fabricated at the Lawrence Livermore Laboratory, is utilized. Radiographic images, recorded on standard x-ray films, are digitized and computer processed

  1. Investigation of direct-injection via micro-porous injector

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; Luijten, C.C.M.; Goey, de L.P.H.

    2009-01-01

    The possibility to reduce soot emissions by means of injecting diesel fuel through a porous injector is investigated. From literature it is known that better oxygen entrainment into the fuel spray leads to lower soot emissions. By selection of porous material properties and geometry, the spray is

  2. Switchyard in the Main Injector era conceptual design report

    International Nuclear Information System (INIS)

    Brown, C.; Kobilarcik, T.; Lucas, P.; Malensek, A.; Murphy, C.T.; Yang, M.-J.

    1997-08-01

    This report presents elements of a design of the Switchyard and of the present fixed target beamlines in the era of the Main Injector (MI). It presumes that 800 GeV Tevatron beam will be transported to this area in the MI era, and permits it to share cycles with 120 GeV Main Injector beam if this option is desired. Geographically, the region discussed extends from the vicinity of AO to downstream points beyond which beam properties will be determined by the requirements of specific experiments. New neutrino lines not utilizing the present Switchyard (NuMI, BooNE) are not addressed. Similarly Main Injector beams upstream of AO are described fully in MI documentation and are unaffected by what is presented here. The timing both of the preparation of this report and of its recommendations for proceeding with construction relate to a desire to do required work in Transfer Hall and Enclosure B during the Main Injector construction shutdown (September 1997 - September 1998). As these areas are off-limits during any Tevatron operation, it is necessary for the fixed target program that work be completed here during this extended down period. The design presented here enables the operation of all beamlines in the manner specified in the current Laboratory plans for future fixed- target physics

  3. Beam dynamics simulation of the S-DALINAC injector section

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Darmstadt (Germany)

    2013-07-01

    In order to extend the experimental possibilities at the superconducting electron linear accelerator S-DALINAC a new polarized gun has recently been installed in addition to the well-established thermionic electron source. Beside the two electron sources the injector section consists of several short quadrupole triplets, an alpha magnet, a Wien filter and a chopper/prebuncher system. The setup of these components differs depending on whether bunched polarized electrons with kinetic energy in the 100 keV range are supplied by the polarized source or whether a continuous unpolarized 250 keV electron beam is extracted from the thermionic gun. The electrons pass through the injector at a relatively low energy and therefore are very sensitive to the beam forming elements in this section. Thus, a proper knowledge of the particle distribution at the exit of the injector section is essential for the quality of any simulation of the subsequent accelerator parts. In this contribution first numerical beam dynamics simulation results of the S-DALINAC injector setup are discussed.

  4. Design and Results of a Time Resolved Spectrometer for the 5 MeV Photo-Injector Phin

    CERN Document Server

    Dabrowski, A; Egger, D; Mete, O; Lefevre, T

    2010-01-01

    The CLIC Test Facility 3 (CTF3) drive beam injector should provide high intensity and high quality electron beams. The present installation relies on a thermionic gun followed by a complex RF bunching system. As an upgrade to improve the beam emittance and the energy spread and to minimize the beam losses, a photo-injector is being developed and tested at CERN. One of the major challenges is to provide a 3.5A beam with a stable (0.1%) beam energy over 1.2 μs and a relative energy spread smaller than 1%. A 90◦ spectrometer line consisting of a segmented dump and an Optical Transition Radiation screen has been built in order to study these issues. The following paper describes its design and shows performances during the beam commissioning.

  5. The positive-ion injector of ATLAS: design and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M [Physics Div., Argonne National Lab., IL (United States); Pardo, R C [Physics Div., Argonne National Lab., IL (United States); Shepard, K W [Physics Div., Argonne National Lab., IL (United States); Billquist, P J [Physics Div., Argonne National Lab., IL (United States); Bogaty, J M [Physics Div., Argonne National Lab., IL (United States); Clifft, B E [Physics Div., Argonne National Lab., IL (United States); Harkewicz, R [Physics Div., Argonne National Lab., IL (United States); Munson, F H [Physics Div., Argonne National Lab., IL (United States); Nolen, J A [Physics Div., Argonne National Lab., IL (United States); Zinkann, G P [Physics Div., Argonne National Lab., IL (United States)

    1993-06-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS is a replacement for the tandem injector of the present tandem-linac system. Unlike the tandem, the new injector provides ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and experience in the operation of ATLAS with its new injector is discussed. (orig.)

  6. The positive-ion injector of ATLAS: Design and operating experience

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The recently completed Positive-Ion Injector for the heavy-ion accelerator ATLAS is a replacement for the tandem injector of the present tandem-linac system. Unlike the tandem, the new injector provides ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and experience in the operation of ATLAS with its new injector is discussed

  7. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    Science.gov (United States)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  8. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    International Nuclear Information System (INIS)

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  9. Exploring the dimensionality of the Originality subscale of the Kirton Adaption-Innovation Inventory.

    Science.gov (United States)

    Im, Subin; Hu, Michael Y; Toh, Rex S

    2003-12-01

    The Kirton Adaption-Innovation Inventory, which is a widely used measure of innovative (as opposed to adaptive) cognitive individual style, is believed to have three dimensions: Sufficiency of Originality, Efficiency, and Rule/Group Conformity. Several studies have raised concerns regarding its construct validity, specifically with respect to the Sufficiency of Originality subscale. Within this subscale, exploratory factor analysis identified two distinct subdimensions, Idea Generation and Preference for Change. In this study, we used a sample of 356 household participants (with an average age of 56 yr., average income of 39,700 dollars, and average of 15 yr. of education) from the Arkansas Household Research Panel. We then employed Bollen and Grandjean's approach based on confirmatory factor analysis to assess whether there are actually two distinct subdimensions instead of one. Our study shows that within the Sufficiency of Originality subscale, there are indeed two distinct subdimensions, Idea Generation and Preference for Change. Further analyses indicate that dropping double-loaded items identified through exploratory factor analysis significantly improves the fit statistics. Also, allowing correlated errors for the measurement items that belong to the same subdimension can also significantly improve the overall fit of the model based on chi-square statistics.

  10. Transient Beam Dynamics in the LBL 2 MV Injector

    International Nuclear Information System (INIS)

    Henestroza, E; Grote, D

    1999-01-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 (micro)s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several (micro)s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented

  11. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  12. Study liquid length penetration results obtained with a direct acting piezo electric injector

    International Nuclear Information System (INIS)

    Payri, Raul; Gimeno, Jaime; Bardi, Michele; Plazas, Alejandro H.

    2013-01-01

    Highlights: ► A direct acting injector capable of controlling needle lift has been used to determine liquid phase penetration. ► The influence of injection pressure, chamber density and chamber temperature have been measured. ► When needle lift is reduced the stabilized liquid length is shortened. ► The relationship between needle lift and liquid length makes needle lift as a new way to control the injection event. - Abstract: A state of the art prototype common rail injector featuring direct control of the needle by means of a piezo stack (direct acting) has been tested. Liquid phase penetration of the sprays in diesel engine-like conditions has been studied via imaging technique in a novel continuous flow test chamber that allows an accurate control on a wide range of thermodynamic conditions (up to 1000 K and 15 MPa). This state of the art injector fitted with a 7-hole nozzle, allows a fully flexible control on the nozzle needle movement, enabling various fuel injection rate typologies. The temporal evolution of the seven sprays has been studied recording movies of the injection event in evaporative conditions via Mie scattering imaging technique and using a high speed camera. The results showed a strong influence of needle position on the stabilized liquid length while the effect of the injection pressure is negligible: the decrease of the needle lift causes a pressure drop in the needle seat and thus a reduction in the effective pressure upstream of the orifices (in the nozzle sac). According to known literature the stabilized liquid-length depends mainly on effective diameter, spray cone-angle and fuel/air properties and does not depend on fuel velocity at the orifice outlet. Therefore, due to small change in the spray cone-angle, higher injection pressures give slightly lower liquid length. However, partial needle lifts has an opposite effect: when needle is partially lifted a dramatic increase of the spray cone-angle and a consequent reduction of

  13. Effect of injector geometry on the performance of an internally mixed liquid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Kushari, A.

    2010-11-15

    This paper presents the results of an experimental study of the effect of injector's geometry on the performance of an internally mixed, air-assisted, liquid injector. In this type of injector a small amount of air is injected into a liquid stream within the injector. The interaction of the liquid with the atomizing air inside the injector induces atomization. The results presented in this paper show that the size of the droplets produced by the investigated injector decreases with a decrease in the air injection area. This is due to the increase in atomizing air injection velocity that accompanies the decrease in the air injection area, which improves atomization. This study also shows that the droplet sizes decrease with an increase in the injector's length, which is attributed to the increase in total interactive force. (author)

  14. Present status of the negative ion sources and injectors at JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Minehara, E.; Yoshida, T.; Abe, S.

    1988-01-01

    The JAERI tandem accelerator began regular operation with the 350 kV negative ion jnjector and 3 kinds of nagative ion sources (Direct Extraction Duoplasmatron Ion Source, Heinickie Penning Ion Source, Negative Ion Sputter Source (Refocus-UNIS)) since 1982. An extension with the injector was constructed in 1984, (1) to increase reliability of all devices in the injector, (2) to exclude completely any unsafe operation in the injector, and (3) to tune several ion sources simultaneously, while a certain ion source is in operation. After the extended injector became available, we have been able to run the whole injector system very safely, steadily and effectively, and have had few troubles. Currently, the second injector has been constructed in order to obtain a full strength of resistance against any sudden troubles in the injector. Several other operational and developmental items will be discussed in the text briefly. (author)

  15. Radiation analysis of the CIT (Compact Ignition Tokamak) pellet injector system and its impact on personnel access

    Energy Technology Data Exchange (ETDEWEB)

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1987-01-01

    Conceptual design of the Compact Ignition Tokamak (CIT) is near completion. This short-pulse ignition experiment is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The high neutron wall loadings, /approximately/4-5 MW/m/sup 2/, associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components and personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility with a radius of /approximately/12 m. The most critical radiation concern in the CIT design process relates to the numerous penetrations in the device. This paper discusses the impact of a major penetration on the design and operations of the CIT pellet injection system. The pellet injector is a major component, which has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require personnel access. A nuclear analysis has been performed to determine the feasibility of hands-on access. Results indicate that personnel access to the pellet injector glovebox is possible. 10 refs., 3 figs., 3 tabs.

  16. Subscales correlations between MSSS-88 and PRISM scales in evaluation of spasticity for patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Knežević Tatjana

    2017-01-01

    Full Text Available Introduction/Objective. Patient-reported outcomes have been recognized as an important way of assessing health and well-being of patients with multiple sclerosis (MS. The aim of the study is to determine the correlation between different subscales of Patient-Reported Impact of Spasticity Measure (PRISM and Multiple Sclerosis Spasticity Scale (MSSS-88 scales in the estimation of spasticity influence on different domains Methods. The study is a cross-sectional observational study. MSSS-88 and PRISM scales were analyzed in five domains (body-function domain, activity domain, participation domain, personal factors/wellbeing domain, and hypothesis. For statistical interpretation of the correlation we performed the Spearman’s ρ-test, concurrent validity, divergent validity, and the linear regression model. Results. We found a significant correlation between subscales of evaluated MSSS-88 and PRISM scales for body domains; the highest correlation was between the need for assistance/positioning (NA/P and walking (W. Spasticity has the weakest correlation with the need for intervention (NI. The presence of pain has a negative impact and significant positive correlation between pain discomfort and NI. In the domain of body function for males, there was a non-significant correlation between muscle spasms and NI. The same applies for social functioning and social embarrassment domains, as well as for emotional health and psychological agitation for personal factors / wellbeing domain. The differences between genders of MS patients persist in different domains; muscle spasms are strong predictors for NI, and body movement is a strong predictor versus W for NA/P. Conclusion. MSSS-88 and PRISM scales can be considered reliable in measuring different domains of disability for MS patients with spasticity. Because it is shorter, quicker, and simple to use, it is concluded that the PRISM scale can successfully compete with and replace the MSSS-88 scale in

  17. An Absolute Valve for the ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    Jones, Ch.; Chuilon, B.; Michael, W.

    2006-01-01

    In the ITER reference design a fast shutter was included to limit tritium migration into the beamline vacuum enclosures. The need was recently identified to extend the functionality of the fast shutter to that of an absolute valve in order to facilitate injector maintenance procedures and to satisfy safety requirements in case of an in-vessel loss of coolant event. Three concepts have been examined satisfying the ITER requirements for speed of actuation, sealing performance over the required lifetime, and pressure differential in fault scenarios, namely: a rectangular closure section; a circular cross section; and a rotary JET-type valve. The rectangular section represents the most efficient usage of the available space envelope and leads to a minimum-mass system, although it requires greater total force for a given load per unit length of seal. However, a metallic seal of the '' hard/hard '' type, where the seal relies on the elastic properties of the material and does not utilise any type of spring device, can provide the required seal performance with typical loading of 200 kg/cm. The conceptual design of the proposed absolute valve will be presented. The aperture dimensions are 1.45 m high by 0.6 m wide, with minimum achievable leak rate of 1 · 10 -9 mbarl/s and maximum pressure differential of 3 bar across the valve. Sealing force is provided using two seal plates, linked by a 3 mm thick ' omega ' diaphragm, by pressurisation of the interspace to 8 bar; this allows for a relative movement of the plates of 2 mm. Movement of the device perpendicular to the beam direction is carried out using a novel magnetic drive in order to transmit the motive force across the vacuum boundary, similar to that demonstrated on a test-rig in an earlier study. The conceptual design includes provision of all the services such as pneumatics and water cooling to cope with the heat loads from neutral beams in quasi steady-state operation and from the ITER plasma. A future programme

  18. Criticality in the fabrication of ion extraction system for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.

    2008-01-01

    For the heating of plasma in steady-state superconducting tokamak (SST-1) (Y.C. Saxena, SST-1 Team, Present status of the SST-1 project, Nucl. Fusion 40 (2000) 1069-1082; D. Bora, SST-1 Team, Test results on systems developed for the SST-1 tokamak, Nucl. Fusion 43 (2003) 1748-1758), a neutral beam injector is provided to raise the ion temperature to ∼1 keV. This injector has a capability of injecting hydrogen beam with the power of 0.5 MW at 30 keV. For the upgrade of SST-1, power of 1.7 MW at 55 KeV is required. Further, beam power is to be provided for a pulse length of 1000S. We have designed a neutral beam injector (S.K. Mattoo, A.K. Chakraborty, U.K. Baruah, P.K. Jayakumar, M. Bandyopadhyay, N. Bisai, Ch. Chakrapani, M.R. Jana, R. Onali, V. Prahlad, P.J. Patel, G.B. Patel, B. Prajapati, N.V.M. Rao, S. Rambabu, C. Rotti, S.K. Sharma, S. Shah, V. Sharma, M.J. Singh, Engineering design of the steady-state neutral beam injector for SST-1, Fusion Eng. Des. 56 (2001) 685-691; A.K. Chakraborty, N. Bisai, M.R. Jana, P.K. Jayakumar, U.K. Baruah, P.J. Patel, K. Rajasekar, S.K. Mattoo, Neutral beam injector for steady-state superconducting tokamak, Fusion Technol. (1996) 657-660; P.K. Jayakumar, M.R. Jana, N. Bisai, M. Bajpai, N.P. Singh, U.K. Baruah, A.K. Chakraborty, M. Bandyopadhyay, C. Chrakrapani, D. Patel, G.B. Patel, P. Patel, V. Prahlad, N.V.M. Rao, C. Rotti, V. Sreedhar, S.K. Mattoo, Engineering issues of a 1000S neutral beam ion source, Fusion Technol. 1 (1998) 419-422) satisfying the requirements for both SST-1 and its upgrade. Since intense power is to be transported to SST-1 situated at a distance of several meters from the ion source, the optical quality of the beam becomes a primary concern. This in turn, is determined by the uniformity of the ion source plasma and the extractor geometry. To obtain the desired optical quality of the beam, stringent tolerances are to be met during the fabrication of ion extractor system. SST-1 neutral beam injector is

  19. Development of a two-state pellet injector for Heliotron-E

    International Nuclear Information System (INIS)

    Sudo, S.; Baba, T.; Kanno, M.; Saka, S.

    1991-01-01

    This paper reports on a two-stage pellet injector for Heliotron-E that is constructed and tested. The aim is to increase pellet velocity for more flexible density profile control of the Heliotron-E plasma and also to conduct a pellet ablation study using a wider range of pellet velocity. The pellet velocity is limited to ∼1.4 km/s in the current six-pellet injector at Heliotron-E. The fundamental operation is simulated with the Quickgun code. The experimental results generally agree well (within 80 to 90%) with the code calculations. By using a newly developed high-pressure fast valve, a hydrogen pellet velocity of 3.2 km/s has been achieved, without a supportive shell or sabot to protect the pellet, although more tests are needed to confirm whether pellets can reliably be accelerated to this high speed without fracturing. The dependence of the pellet velocity and breech pressure on the pump tube fill pressure is studied. The results show that the fill pressure is an important parameter. The effect of the clearance between the piston and the pump tube wall on the pellet velocity is also investigated. The wear and damage of the piston caused by the compressing propellant gas are investigated. It is shown that changes on the piston surface when hydrogen is used for fill gas are different from the case of helium

  20. State-of-the-Art Electron Guns and Injector Designs for Energy Recovery Linacs (ERL)

    CERN Document Server

    Todd, Alan; Ben-Zvi, Ilan; Benson, Stephen V; Blüm, Hans; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Campisi, Isidoro E; Chang, Xiangyun; Christina, Vincent; Cole, Michael; Colestock, Patrick L; Daly, Edward; Douglas, David; Dylla, Fred H; Falletta, Michael; Hahn, Harald; Hernandez-Garcia, Carlos; Hogan, John; Holmes, Douglas; Janssen, Dietmar; Kayran, Dmitry; Kelley, John P; Kewisch, Jorg; Kneisel, Peter; Kurennoy, Sergey; Lewellen, John W; Litvinenko, Vladimir N; Mammosser, John; McIntyre, Gary; Neil, George R; Nguyen, Dinh C; Nicoletti, Tony; Peterson, Ed; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Reass, William; Rees, Daniel; Rimmer, Robert; Rode, Claus; Russell, Steven; Scaduto, Joseph; Schrage, Dale L; Schultheiss, Tom; Sekutowicz, Jacek; Siggins, Tim; Warren Funk, L; Whitlach, Timothy; Wiseman, Mark; Wong, Robert; Wood, Richard L; Wu, Kuo-Chen; Young, Lloyd M; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    A key technology issue of ERL devices for high-power free-electron laser (FEL) and 4th generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Ongoing programs that target up to 1 Ampere injector performance at emittance values consistent with the requirements of these applications are described. We consider that there are three possible approaches that could deliver the required performance. The first is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. Such a 750 MHz device is being integrated and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility beginning in 2007. The second approach is a high-current normal-conducting RF photoinjector. A 700 MHz gun will undergo thermal test in 2006 at the Los Alamos National Laboratory, which, if successful, when equipped with a suitable cathode, would be capable of 1 Ampere operation. The last option is an SRF gun. A half-cell 703 MHz SRF gun capable of delivering 1.0...

  1. Scaling of the flow field in a combustion chamber with a gas–gas injector

    International Nuclear Information System (INIS)

    Xiao-Wei, Wang; Guo-Biao, Cai; Ping, Jin

    2010-01-01

    The scaling of the flow field in a gas–gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas–gas combustion flowfield, formulation analysis of the three-dimensional (3D) Navier–Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas–gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas–gas combustion chamber can be changed. Based on the criterion, multi-element injector chambers with different geometric sizes and at different chamber pressures ranging from 3 MPa to 20 MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64 MPa to 3.68 MPa. Wall temperature measurements are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied. (geophysics, astronomy and astrophysics)

  2. Item-level and subscale-level factoring of Biggs' Learning Process Questionnaire (LPQ) in a mainland Chinese sample.

    Science.gov (United States)

    Sachs, J; Gao, L

    2000-09-01

    The learning process questionnaire (LPQ) has been the source of intensive cross-cultural study. However, an item-level factor analysis of all the LPQ items simultaneously has never been reported. Rather, items within each subscale have been factor analysed to establish subscale unidimensionality and justify the use of composite subscale scores. It was of major interest to see if the six logically constructed items groups of the LPQ would be supported by empirical evidence. Additionally, it was of interest to compare the consistency of the reliability and correlational structure of the LPQ subscales in our study with those of previous cross-cultural studies. Confirmatory factor analysis was used to fit the six-factor item level model and to fit five representative subscale level factor models. A total of 1070 students between the ages of 15 to 18 years was drawn from a representative selection of 29 classes from within 15 secondary schools in Guangzhou, China. Males and females were almost equally represented. The six-factor item level model of the LPQ seemed to fit reasonably well, thus supporting the six dimensional structure of the LPQ and justifying the use of composite subscale scores for each LPQ dimension. However, the reliability of many of these subscales was low. Furthermore, only two subscale-level factor models showed marginally acceptable fit. Substantive considerations supported an oblique three-factor model. Because the LPQ subscales often show low internal consistency reliability, experimental and correlational studies that have used these subscales as dependent measures have been disappointing. It is suggested that some LPQ items should be revised and other items added to improve the inventory's overall psychometric properties.

  3. Development of hard-seal gate valve and fast shutter for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Kuribayashi, S.; Minami, M.; Matsuoka, T.; Takeshita, K.; Morita, H.; Kuriyama, M.; Matsuda, S.; Shirakata, H.

    1983-01-01

    A 600 mm hard-seal valve and a fast shutter for the JT-60 Neutral Beam Injector were developed. The 600 mm hard-seal gate valve was fabricated and tested for 500 cycles at various temperatures of up to 250 0 C. In consequence, requirements of the endurance and vacuum tightness were satisfied. Major components of the fast shutter, i.e., swing action bellows and a high-speed pneumatic cylinder, were tested for 30,000 cycles, and their reliability was confirmed. Then the fast shutter was fabricated and tested. The test result indicated that the fast shutter fully satisfied the requirements of the molecular gas flow conductance and opening/closing speed. (author)

  4. Subscales of the Barratt Impulsiveness Scale differentially relate to the Big Five factors of personality.

    Science.gov (United States)

    Lange, Florian; Wagner, Adina; Müller, Astrid; Eggert, Frank

    2017-06-01

    The place of impulsiveness in multidimensional personality frameworks is still unclear. In particular, no consensus has yet been reached with regard to the relation of impulsiveness to Neuroticism and Extraversion. We aim to contribute to a clearer understanding of these relationships by accounting for the multidimensional structure of impulsiveness. In three independent studies, we related the subscales of the Barratt Impulsiveness Scale (BIS) to the Big Five factors of personality. Study 1 investigated the associations between the BIS subscales and the Big Five factors as measured by the NEO Five-Factor Inventory (NEO-FFI) in a student sample (N = 113). Selective positive correlations emerged between motor impulsiveness and Extraversion and between attentional impulsiveness and Neuroticism. This pattern of results was replicated in Study 2 (N = 132) using a 10-item short version of the Big Five Inventory. In Study 3, we analyzed BIS and NEO-FFI data obtained from a sample of patients with pathological buying (N = 68). In these patients, the relationship between motor impulsiveness and Extraversion was significantly weakened when compared to the non-clinical samples. At the same time, the relationship between attentional impulsiveness and Neuroticism was substantially stronger in the clinical sample. Our studies highlight the utility of the BIS subscales for clarifying the relationship between impulsiveness and the Big Five personality factors. We conclude that impulsiveness might occupy multiple places in multidimensional personality frameworks, which need to be specified to improve the interpretability of impulsiveness scales. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  5. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels

    International Nuclear Information System (INIS)

    Battistoni, Michele; Grimaldi, Carlo Nazareno

    2012-01-01

    Highlights: ► Fluid-dynamic simulation of injection process with biodiesel and diesel fuel. ► Coupling of Eulerian and Lagrangian spray CFD simulations. ► Effects of hole shaping: conical versus cylindrical and edge rounding effects. ► Prediction of spray characteristics improved using inner nozzle flow data. ► Explanation of mass flow differences depending on hole shape and fuel type. -- Abstract: The aim of the paper is the comparison of the injection process with two fuels, a standard diesel fuel and a pure biodiesel, methyl ester of soybean oil. Multiphase cavitating flows inside injector nozzles are calculated by means of unsteady CFD simulations on moving grids from needle opening to closure, using an Eulerian–Eulerian two-fluid approach which takes into account bubble dynamics. Afterward, spray evolutions are also evaluated in a Lagrangian framework using results of the first computing step, mapped onto the hole exit area, for the initialization of the primary breakup model. Two nozzles with cylindrical and conical holes are studied and their behaviors are discussed in relation to fuel properties. Nozzle flow simulations highlighted that the extent of cavitation regions is not much affected by the fuel type, whereas it is strongly dependent on the nozzle shape. Biodiesel provides a slightly higher mass flow in highly cavitating nozzles. On the contrary using hole shaped nozzles (to reduce cavitation) diesel provides similar or slightly higher mass flow. Comparing the two fuels, the effects of different viscosities and densities play main role which explains these behaviors. Simulations of the spray evolution are also discussed highlighting the differences between the use of fossil and biodiesel fuels in terms of spray penetration, atomization and cone-angle. Usage of diesel fuel in the conical convergent nozzle gives higher liquid penetration.

  6. Using data from Multidimensional Pain Inventory subscales to assess functioning in pain rehabilitation

    DEFF Research Database (Denmark)

    Harlacher, Uwe; Persson, Ann L; Rivano-Fischer, Marcelo

    2011-01-01

    The aim of this study was to examine whether Multidimensional Pain Inventory (MPI) subscale score changes can be used for monitoring interdisciplinary cognitive behavioural pain rehabilitation programmes, using the Psychological General Well-Being (PGWB) index as an independent variable...... of rehabilitation outcome. Data from 434 consecutively referred patients disabled by chronic pain were analysed. The intervention was a 4-week interdisciplinary pain rehabilitation group programme (5 h/day), based on biopsychosocial and cognitive behavioural principles. Mean PGWB total scores improved after...... rehabilitation (P...

  7. Status of the ATLAS Positive-Ion Injector Project

    International Nuclear Information System (INIS)

    Pardo, R.C.; Benaroya, R.; Billquist, P.J.

    1987-01-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make available at ATLAS essentially all beams including uranium. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides high charge state ions at microampere currents, and RF superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m, resulting in an essentially new method of acceleration for low-energy heavy ions. 5 refs., 7 figs., 1 tabs

  8. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  9. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  10. A hot-spare injector for the APS linac

    International Nuclear Information System (INIS)

    Lewellen, J. W.

    1999-01-01

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades

  11. Evaluation of pesticide adsorption in gas chromatographic injector and column

    Directory of Open Access Journals (Sweden)

    Gevany Paulino de Pinho

    2012-01-01

    Full Text Available Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.

  12. The latest development of EAST neutral beam injector

    International Nuclear Information System (INIS)

    Hu Chundong; Xu Yongjian

    2014-01-01

    As the first full superconducting non-circular cross section Tokomak in the world, EAST is used to explore the forefront physics and engineering issues on the construction of Tokomak fusion reactor. Neutral beam injection has been recognized as one of the most effective means for plasma heating. According to the research plan of the EAST physics experiment, a set of neutral beam injector (4∼8 MW, 10∼100 s)will be built and operational in 2014. The paper presents the latest development of EAST neutral beam injector and the latest experiment results of long pulse beam extraction and high power beam extraction are reported, those results show that all targets reach or almost reach the design targets. All these will lay a solid foundation for the achievement of plasma heating and current drive for EAST in 2014. (authors)

  13. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana U.; Backfish, M. [Fermilab; Tan, C. Y. [Fermilab; Zwaska, R. [Fermilab

    2015-06-01

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance of beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.

  14. The CLIC Positron Capture and Acceleration in the Injector Linac.

    CERN Document Server

    Vivoli, Alessandro; Chehab, Robert; Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Rinolfi, Louis; Strakhovenko, Vladimir; Variola, Alessandro

    2010-01-01

    The baseline of the CLIC study considers non-polarized e+ for the 3 TeV centre of mass energy. The e+ source is based on the hybrid targets scheme, where a crystal-radiator target is followed by an amorphous-converter target. Simulations have been performed from the exit of the amorphous target up to the entrance of the Pre-Damping Ring. Downstream the amorphous target, there is an Adiabatic Matching Device (AMD) followed by a Pre-Injector Linac accelerating the e+ beam up to around 200 MeV. Then a common Injector Linac (for both e+ and e-) accelerates the beams up to 2.86 GeV before being injected into the Pre-Damping Ring. In this note, the characteristics of the AMD and the other sections are described and the beam parameters at the entrance of the Pre-Damping Ring are given.

  15. Diagnostics Neutral Beam Injector at the TCV Tokamak

    International Nuclear Information System (INIS)

    Mlynar, J.; Shukaev, A.N.; Bosshard, P.; Duval, B.P.; Ivanov, A.A.; Kollegov, M.; Kolmogorov, V.V.; Llobet, X.; Pitts, R.A.; Weisen, H.

    2001-10-01

    Within this report we summarize the technical and experimental effort made on diagnostics neutral beam injector (DNBI) which was installed at tokamak TCV last year. Basic components of DNBI are reviewed, its remote control is presented in more detail. Profile and attenuation studies are referred to. First experimental results obtained with DNBI, which led to a decision to upgrade the machine, are discussed in the last section. (author)

  16. Intensity limits of the PSI Injector II cyclotron

    Science.gov (United States)

    Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.

    2018-03-01

    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.

  17. A transitionless lattice for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Ng, K.Y.; Trbojevic, D.; Lee, S.Y.

    1991-05-01

    Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the γ t is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs

  18. Fabrication of small-orifice fuel injectors for diesel engines.

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  19. DESY III, the new proton injector for HERA

    International Nuclear Information System (INIS)

    Hemmie, G.; Maidment, J.R.

    1987-01-01

    The design of a 7.5 GeV/c proton synchrotron, DESY III, which will form part of the injector chain for HERA /1/ is described. Features of the latice and brief details of sub-systems are presented. A selection of parameters and expected time schedule for the accelerator which is at present under construction at the DESY laboratory, Hamburg, are given

  20. 70 MeV injector auto tuning system handbook

    International Nuclear Information System (INIS)

    Ellis, J.E.; Munn, R.W.; Sandels, E.G.

    1976-06-01

    The handbook is in three sections: (1) description and location; (2) operating instructions; and (3) design notes on the tank and debuncher auto tuning systems for the 70 MeV injector. The purpose of the auto tuning system is to maintain the 'tune' of the four tanks and debuncher to within a few Hz, stabilizing against changes of temperature and other physical factors affecting the resonant frequency of the tanks. (U.K.)

  1. Cylinder-Pressure Based Injector Calibration for Diesel Engines

    OpenAIRE

    König, Johan

    2008-01-01

    One way of complying with future emission restrictions for diesel engines is to use pressure sensors for improved combustion control. Implementation of pressure sensors into production engines would lead to new possibilities for fuel injection monitoring where one potential use is injector calibration. The scope of this thesis is to investigate the possibility of using pressure sensors for finding the minimal energizing time necessary for fuel injection. This minimal energizing time varies ov...

  2. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  3. Superconducting low-velocity linac for the Argonne positive-ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab

  4. Preliminary results of the International Fusion Materials Irradiation Facility deuteron injector

    Energy Technology Data Exchange (ETDEWEB)

    Gobin, R.; Adroit, G.; Bogard, D.; Bourdelle, G.; Chauvin, N.; Delferriere, O.; Gauthier, Y.; Girardot, P.; Guiho, P.; Harrault, F.; Jannin, J. L.; Loiseau, D.; Mattei, P.; Roger, A.; Sauce, Y.; Senee, F.; Vacher, T. [Commissariat a l' Energie Atomique et aux Energie Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)

    2012-02-15

    In the framework of the IFMIF-EVEDA project (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities), CEA/IRFU is in charge of the design, construction, and characterization of the 140 mA continuous deuteron injector, including the source and the low energy beam line. The electron cyclotron resonance ion source which operates at 2.45 GHz is associated with a 4-electrode extraction system in order to minimize beam divergence at the source exit. Krypton gas injection is foreseen in the 2-solenoid low energy beam line. Such Kr injection will allow reaching a high level of space charge compensation in order to improve the beam matching at the radio frequency quadrupole (RFQ) entrance. The injector construction is now completed on the Saclay site and the first plasma and beam production has been produced in May 2011. This installation will be tested with proton and deuteron beams either in pulsed or continuous mode at Saclay before shipping to Japan. In this paper, after a brief description of the installation, the preliminary results obtained with hydrogen gas injection into the plasma chamber will be reported.

  5. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    Science.gov (United States)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  6. Design of a repeating pneumatic pellet injector for the Joint European Torus

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Baylor, L.R.; Foust, C.R.; Gethers, F.E.; Sparks, D.O.

    1987-01-01

    A three-barrel pneumatic pellet launcher developed at Oak Ridge National Laboratory (ORNL) serves as the principal component of a plasma fueling system for the Joint European Torus (JET). The versatile device consists of three independent machine gun-like mechanisms that operate at cryogenic temperatures (14-20K). Individual high-speed extruders provide a continuous supply of solid deuterium to each gun assembly, where a reciprocating breech-side cutting mechanism forms and chambers cylindrical pellets from the extrusion; the deuterium pellets are then accelerated in the gun barrels with controlled amounts of compressed hydrogen gas (pressures up to 100 bar) to velocities of ≤1.5 km/s. The injector features three nominal pellet sizes (2.7,4.0, and 6.0 mm) and has been tested at pellet repetition rates of 5,2.5, and 1 Hz, respectively. Each gun can operate (individually or simultaneously) at the design repetition rate for 15-s pulses (limited only by the capacity of the extruder feed system). A remote, stand-alone control and data acquisition system is used for injector operation

  7. Superconducting low-velocity linac for the Argonne positive-ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Markovich, P.K.; Zinkann, G.P.; Clifft, B.; Benaroya, R.

    1989-01-01

    A low-velocity superconducting linac has been developed as part of a positive-ion injector system, which is replacing a 9 MV tandem as the injector for the ATLAS accelerator. The linac consists of an independently phased array of resonators, and is designed to accelerate various ions over a velocity range .008 < v/c < .06. The resonator array is formed of four different types of superconducting interdigital structures. The linac is being constructed in three phases, each of which will cover the full velocity range. Successive phases will increase the total accelerating potential and permit heavier ions to be accelerated. Assembly of the first phase was completed in early 1989. In initial tests with beam, a five-resonator array provided approximately 3.5 MV of accelerating potential and operated without difficulty for several hundred hours. The second phase is scheduled for completion in late 1989, and will increase the accelerating potential to more than 8 MV. 5 refs., 2 figs., 1 tab.

  8. Microcomputer control system for the SuperHILAC third injector

    International Nuclear Information System (INIS)

    Lancaster, H.D.; Magyary, S.B.; Glatz, J.; Selph, F.B.; Fahmie, M.P.; Ritchie, A.L.; Keith, S.R.; Stover, G.R.; Besse, L.J.

    1979-09-01

    A new control system using the latest technology in microcomputers will be used on the third injector at the SuperHILAC. It incorporates some new and progressive ideas in both hardware and software design. These ideas were inspired by the revolution in microprocessors. The third injector project consists of a high voltage pre-injector, a Wideroe type linear accelerator, and connecting beam lines, requiring control of 80 analog and 300 boolean devices. To solve this problem, emphasizing inexpensive, commercially available hardware, we designed a control system consisting of 20 microcomputer boards with a total of 700 kilobytes of memory. Each computer board using a 16-bit microprocessor has the computing power of a typical minicomputer. With these microcomputers operating in parallel, the programming can be greatly simplified, literally replacing software with hardware. This improves system response speed and cuts costs dramatically. An easy to use interpretive language, similar to BASIC, will allow operations personnel to write special purpose programs in addition to the compiled procedures

  9. Hollow-Cone Spray Modeling for Outwardly Opening Piezoelectric Injector

    KAUST Repository

    Sim, Jaeheon

    2016-01-04

    Linear instability sheet atomization (LISA) breakup model has been widely used for modeling hollow-cone spray. However, the model was originally developed for inwardlyopening pressure-swirl injectors by assuming toroidal ligament breakups. Therefore, LISA model is not suitable for simulating outwardly opening injectors having string-like structures at wide spray angles. Furthermore, the varying area and shape of the annular nozzle exit makes the modeling difficult. In this study, a new spray modeling was proposed for outwardly opening hollow-cone injector. The injection velocities are computed from the given mas flow rate and injection pressure regardless of ambiguous nozzle exit geometries. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like liquid film spray. Liquid spray injection was modeled using Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the detailed model was implemented by user defined functions. It was found that the new model predicted the liquid penetration length and local SMD accurately for various fuels and chamber conditions.

  10. Academic Training: A walk through the LHC injector chain

    CERN Document Server

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16 February from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 A walk through the LHC injector chain M. BENEDIKT, P. COLLIER, K. SCHINDL /CERN-AB Proton linac, PS Booster, PS, SPS and the two transfer channels from SPS to LHC are used for LHC proton injection. The lectures will review the features of these faithful machines and underline the modifications required for the LHC era. Moreover, an overview of the LHC lead ion injector scheme from the ion source through ion linac, LEIR, PS and SPS right to the LHC entry will be given. The particular behaviour of heavy ions in the LHC will be sketched and the repercussions on the injectors will be discussed. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on...

  11. Development of the centrifugal pellet injector for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D{sub 2} cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10{sup 20} atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D{alpha} intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  12. Development of the centrifugal pellet injector for JT-60U

    International Nuclear Information System (INIS)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D 2 cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10 20 atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. Dα intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  13. Initial development of a blurry injector for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Claudia Goncalves de; Costa, Fernando de Souza [National Institute for Space Research (INPE) Cachoeira Paulista, SP (Brazil). Associated Lab. of Combustion and Propulsion], Emails: claudia@lcp.inpe.br, fernando@lcp.inpe.br; Couto, Heraldo da Silva [Vale Energy Solution, Sao Jose dos Campos, SP (Brazil)], E-mail: heraldo.couto@vsesa.com.br

    2010-07-01

    The increasing costs of fossil fuels, environmental concerns and stringent regulations on fuel emissions have caused a significant interest on biofuels, especially ethanol and biodiesel. The combustion of liquid fuels in diesel engines, turbines, rocket engines and industrial furnaces depends on the effective atomization to increase the surface area of the fuel and thus to achieve high rates of mixing and evaporation. In order to promote combustion with maximum efficiency and minimum emissions, an injector must create a fuel spray that evaporates and disperses quickly to produce a homogeneous mixture of vaporized fuel and air. Blurry injectors can produce a spray of small droplets of similar sizes, provide excellent vaporization and mixing of fuel with air, low emissions of NO{sub x} and CO, and high efficiency. This work describes the initial development of a blurry injector for biofuels. Theoretical droplet sizes are calculated in terms of feed pressures and mass flow rates of fuel and air. Droplet size distribution and average diameters are measured by a laser system using a diffraction technique. (author)

  14. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  15. 400 kV injector compact ECR ion source

    International Nuclear Information System (INIS)

    Constantin, F.; Catana, D.; Macovei, M.; Ivanov, E.

    1997-01-01

    Obtaining multiple ionised ions is a fundamental problem for some applications and research. Multiple ionised ions can be produced from electronic bombardment, when n·τ≥5·10 9 cm -3 · s, where n is the density of electrons (in cm -3 ) and τ is the time of interaction between electrons and ions . The relative speed of electrons and ions determines the equilibrium between the stripping process of the atom's electrons and their capture. An ion source with high ionisation efficiency and large output current is the ECR source (Electron Cyclotron Resonance). Using an ECR source with permanent magnets as ion source for the injector will lead to following advantages: - the possibility to obtain multiple ionised particles; - an increase of ion beam intensities; - the expanding of accelerator activities; - a longer working time, due to magnetron lifetime. The ECR ion source is robust, compact and capable of high intensities of extracted ion current. The large functional domain for the residual gas pressure allows the production of multiple charged ions. The source can be easily integrated in the TRILAC's injection structure. We realised a compact microwave ion source which has an axial magnetic field generated by a permanent magnet of Co-Sm. 1200 G magnetic field is greater than the 875 G magnetic field corresponding to the electron-cyclotron frequency of 2.45 GHz. The microwave generator is a magnetron (2.45 GHz and 200 W in continuos wave). The microwave is fed through a coaxial connector on the top of flange. The test was made on He gas at a pressure between 8· 10 -4 and 5·10 -2 torr. The ion beam current was measured vs. extracted potential from 3 kV to 10 kV and has a dependence according to U 3/2 law. A maximal ion current of 300 μA at 10 kV extraction potential was measured. Dimension of ECR ion source, including Einzel lens are φ=12 cm and h=16 cm. (authors)

  16. On the prediction of spray angle of liquid-liquid pintle injectors

    Science.gov (United States)

    Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao

    2017-09-01

    The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.

  17. Study on biodiesel heat transfer through self-temperature limit injector during vehicle cold start

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2015-01-01

    Full Text Available A type of Self-Temperature Limit-Injector (STL- injector is proposed to reduce the biodiesel consumption and emission in vehicle cold start process. The STL-injector is capable of fast raising fuel temperature, which helps improve the quality of diesel spray and its combustion efficiency. A STL-injector model is established with consideration of electro-mechanic coupling and fluid-structure interaction. A transient simulation is conducted using dynamic grid technology. The results show that STL-injector can effectively raise biodiesel temperature to 350K from 300K in 32 seconds. That is to say, adding STL-injector to existing biodiesel combustion system is an environment-friendly solution due to improving atomization and spray quality quickly.

  18. Comparison of JP-8 Sprays from a Hydraulically Actuated Electronically Controlled Unit Injector and a Common Rail Injector

    Science.gov (United States)

    2015-10-01

    the oil from the engine to pressurize the fuel for injection. The engine oil passes to an intensifier piston and plunger inside the injector which...pressure. Fuel is supplied to a high pressure pump where the fuel is compressed to increase the pressure. The high pressure fuel is then directed to a...pressurization systems were used during the experiments for this study. The common rail fuel injection system consists of an air driven pump capable of

  19. High speed diagnostics for characterization of oxygen / hydrogen rocket injector flowfields

    Science.gov (United States)

    Locke, Justin M.

    location. The time-averaged results are consistent with previous spatially-resolved Raman spectroscopy measurements made in a similar rocket combustor under similar flow conditions. The primary atomization and combustion characteristics of a liquid oxygen (LOX) / gaseous hydrogen (GH2) shear coaxial injector element were also experimentally investigated. High speed movies using a shadowgraph imaging technique to visualize the LOX core were recorded for both hot-fire (LOX/GH 2) and cold-flow (LOX/gaseous oxygen (GO2)) conditions with the same injector and chamber. Flow conditions were set to approximate realistic rocket conditions. For the hot-fire tests (LOX/GH2), chamber pressures were 600, 730, and 920 psia, with momentum flux ratios (annulus flow/post flow) of 2.7, 2.0 and 1.6 respectively. The rocket assembly utilized a preburner to provide a background flow (M≈0.1) of hot gaseous nitrogen (GN2 )/GH2/water (H2O) gas with 25% volumetric concentration of hydrogen. For the cold-flow tests (LOX/GO2 with GO2 background flow), chamber pressures were 650 and 830 psia, thus above and below the critical pressure of oxygen (731.6 psia), with momentum flux ratios (annulus flow/post flow) of 2.2 and 1.8 respectively. The high speed visualizations under hot-fire conditions show a long sinuous LOX core region that breaks into large dense-oxygen structures, which are then quickly consumed. These results do not agree with the classical phenomenological breakup model that suggests a liquid core that is rapidly sheared into a drop cloud. Rather, a large-scale fragmentation model may be better suited to describe the primary atomization behavior in combusting flow from a LOX/GH2 shear coaxial injector element at realistic rocket conditions. Unlike the hot-fire case, cold-flow LOX visualization movies show a clear difference between the two chamber pressures, with the higher pressure (supercritical) case resembling behavior indicative of gaseous mixing compared to the typically two phase

  20. The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly

    Science.gov (United States)

    2000-01-01

    The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly over a dry lakebed runway during a captive-carry test flight from NASA's Dryden Flight Research Center, Edwards, California. The X-40 is attached to a sling which is suspended from the CH-47 by a 110-foot-long cable during the tests, while a small parachute trails behind to provide stability. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles. The X-37 will be carried into space aboard a space shuttle and then released to perform various maneuvers and a controlled re-entry through the Earth's atmosphere to an airplane-style landing on a runway, controlled entirely by pre-programmed computer software.