WorldWideScience

Sample records for subroutines linear algebra

  1. BLAS (Basic Linear Algebra Subroutines), Linear Algebra Modules and Supercomputers.

    Science.gov (United States)

    1984-12-31

    Linear Algebra Subroutines (BLAS) and linear algebra software modules in general. The need for these extensions and new sets of modules is largely due...potential computin .p"er. The participants represented most active groups in ilecar algebral , ware an were about equally divided among industry...discussions. Section 2 describes seven proposals for linear algebra software modules and Sec- tion 3 describes four presentations on the use of such

  2. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  3. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  4. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  5. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  6. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  7. Linear algebra

    CERN Document Server

    Said-Houari, Belkacem

    2017-01-01

    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  8. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  9. Linear algebra

    CERN Document Server

    Berberian, Sterling K

    2014-01-01

    Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.

  10. Linear algebra

    CERN Document Server

    Sahai, Vivek

    2013-01-01

    Beginning with the basic concepts of vector spaces such as linear independence, basis and dimension, quotient space, linear transformation and duality with an exposition of the theory of linear operators on a finite dimensional vector space, this book includes the concept of eigenvalues and eigenvectors, diagonalization, triangulation and Jordan and rational canonical forms. Inner product spaces which cover finite dimensional spectral theory and an elementary theory of bilinear forms are also discussed. This new edition of the book incorporates the rich feedback of its readers. We have added new subject matter in the text to make the book more comprehensive. Many new examples have been discussed to illustrate the text. More exercises have been included. We have taken care to arrange the exercises in increasing order of difficulty. There is now a new section of hints for almost all exercises, except those which are straightforward, to enhance their importance for individual study and for classroom use.

  11. Linear associative algebras

    CERN Document Server

    Abian, Alexander

    1973-01-01

    Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix

  12. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  13. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  14. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  15. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    GPUs have already become an integral part of high performance scientific computing, since they offer dedicated parallel hardware that can potentially accelerate the execution of many scientific applications. In this talk, I will consider the automatic performance acceleration of dense vector...... and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....

  16. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  17. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  18. Linear Algebra Thoroughly Explained

    CERN Document Server

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  19. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  20. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  1. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  2. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  3. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    1995-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  4. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  5. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  6. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  7. Linear algebra and its applications

    CERN Document Server

    Lax, Peter D

    2013-01-01

    Praise for the First Edition"". . .recommended for the teacher and researcher as well as for graduate students. In fact, [it] has a place on every mathematician's bookshelf."" -American Mathematical MonthlyLinear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features

  8. Linear Algebra and Linear Models

    Indian Academy of Sciences (India)

    This monograph provides an introduction to the basic aspects of the theory oflinear estima- tion and that of testing linear hypotheses. The primary objective is to provide a basic knowledge of analysis of linear models to advanced undergraduate or first year Master's students. The second edition virtually covers the same ...

  9. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  10. Topics in quaternion linear algebra

    CERN Document Server

    Rodman, Leiba

    2014-01-01

    Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

  11. Principles of linear algebra with Mathematica

    CERN Document Server

    Shiskowski, Kenneth M

    2013-01-01

    A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,

  12. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    Science.gov (United States)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  13. Linear algebra step by step

    CERN Document Server

    Singh, Kuldeep

    2013-01-01

    Linear algebra is a fundamental area of mathematics, and is arguably the most powerful mathematical tool ever developed. It is a core topic of study within fields as diverse as: business, economics, engineering, physics, computer science, ecology, sociology, demography and genetics. For an example of linear algebra at work, one needs to look no further than the Google search engine, which relies upon linear algebra to rank the results of a search with respect to relevance. The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced. It is compiled in a way that allows distance learning, with explicit solutions to set problems freely available online. The miscellaneous exercises at the end of each chapter comprise questions from past exam papers from various universities, helping to reinforce the reader's confidence. Also included, generally at the beginning of sections, are short historicalbiographies of the leading players in the field of lin...

  14. Meromorphic functions and linear algebra

    CERN Document Server

    Nevanlinna, Olavi

    2003-01-01

    This volume describes for the first time in monograph form important applications in numerical methods of linear algebra. The author presents new material and extended results from recent papers in a very readable style. The main goal of the book is to study the behavior of the resolvent of a matrix under the perturbation by low rank matrices. Whereas the eigenvalues (the poles of the resolvent) and the pseudospectra (the sets where the resolvent takes large values) can move dramatically under such perturbations, the growth of the resolvent as a matrix-valued meromorphic function remains essen

  15. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  16. C*-algebras and numerical linear algebra

    CERN Document Server

    Arveson, W

    1992-01-01

    We consider problems associated with the computation of spectra of self-adjoint operators in terms of the eigenvalue distributions of their n x n sections. Under rather general circumstances, we show how these eigenvalues accumulate near points of the essential spectrum of the given operator, and we prove that their averages converge to a measure concentrated precisely on the essential spectrum. In the primary cases of interest, namely the discretized Hamiltonians of one-dimensional quantum systems, this limiting measure is associated with a tracial state on a certain simple C*-algebra. These results have led us to conclude that one must view this kind of numerical analysis in the context of C*-algebras.

  17. An Application of Linear Algebra over Lattices

    Directory of Open Access Journals (Sweden)

    M. Hosseinyazdi

    2008-03-01

    Full Text Available In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given

  18. An Inquiry-Based Linear Algebra Class

    Science.gov (United States)

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  19. Towards a linear algebra of programming

    OpenAIRE

    Oliveira, José Nuno Fonseca

    2012-01-01

    The Algebra of Programming (AoP) is a discipline for programming from specifications using relation algebra. Specification vagueness and nondeterminism are captured by relations. (Final) implemen- tations are functions. Probabilistic functions are half way between relations and functions: they express the propensity, or like- lihood of ambiguous, multiple outputs. This paper puts forward a basis for a Linear Algebra of Programming (LAoP) extending standard AoP towards probabili...

  20. Advanced linear algebra for engineers with Matlab

    CERN Document Server

    Dianat, Sohail A

    2009-01-01

    Matrices, Matrix Algebra, and Elementary Matrix OperationsBasic Concepts and NotationMatrix AlgebraElementary Row OperationsSolution of System of Linear EquationsMatrix PartitionsBlock MultiplicationInner, Outer, and Kronecker ProductsDeterminants, Matrix Inversion and Solutions to Systems of Linear EquationsDeterminant of a MatrixMatrix InversionSolution of Simultaneous Linear EquationsApplications: Circuit AnalysisHomogeneous Coordinates SystemRank, Nu

  1. Numerical linear algebra theory and applications

    CERN Document Server

    Beilina, Larisa; Karchevskii, Mikhail

    2017-01-01

    This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

  2. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  3. Stability of Linear Equations--Algebraic Approach

    Science.gov (United States)

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  4. Linear algebra a first course with applications

    CERN Document Server

    Knop, Larry E

    2008-01-01

    Linear Algebra: A First Course with Applications explores the fundamental ideas of linear algebra, including vector spaces, subspaces, basis, span, linear independence, linear transformation, eigenvalues, and eigenvectors, as well as a variety of applications, from inventories to graphics to Google's PageRank. Unlike other texts on the subject, this classroom-tested book gives students enough time to absorb the material by focusing on vector spaces early on and using computational sections as numerical interludes. It offers introductions to Maple™, MATLAB®, and TI-83 Plus for calculating matri

  5. Algebra 2 linear algebra, Galois theory, representation theory, group extensions and Schur multiplier

    CERN Document Server

    Lal, Ramji

    2017-01-01

    This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1–5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. .

  6. Lie algebras and linear differential equations.

    Science.gov (United States)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  7. Linear algebra and group theory for physicists

    CERN Document Server

    Rao, K N Srinivasa

    2006-01-01

    Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...

  8. An introduction to linear algebra

    CERN Document Server

    Mirsky, L

    2003-01-01

    Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter.

  9. Noise limitations in optical linear algebra processors.

    Science.gov (United States)

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  10. Constructive Learning in Undergraduate Linear Algebra

    Science.gov (United States)

    Chandler, Farrah Jackson; Taylor, Dewey T.

    2008-01-01

    In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.

  11. Modules as Learning Tools in Linear Algebra

    Science.gov (United States)

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio

    2014-01-01

    This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…

  12. Basic linear algebra subprograms for FORTRAN usage

    Science.gov (United States)

    Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.

    1977-01-01

    A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.

  13. Optical linear algebra processors - Architectures and algorithms

    Science.gov (United States)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  14. Parallel algorithms for numerical linear algebra

    CERN Document Server

    van der Vorst, H

    1990-01-01

    This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p

  15. Mathematical methods linear algebra normed spaces distributions integration

    CERN Document Server

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  16. Linear algebra a first course with applications to differential equations

    CERN Document Server

    Apostol, Tom M

    2014-01-01

    Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.

  17. Linear algebra applications using Matlab software

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2005-10-01

    Full Text Available The paper presents two ways of special matrix generating using some functions included in the MatLab software package. The MatLab software package contains a set of functions that generate special matrixes used in the linear algebra applications and the signal processing from different activity fields. The paper presents two tipes of special matrixes that can be generated using written sintaxes in the dialog window of the MatLab software and for the command validity we need to press the Enter task. The applications presented in the paper represent eamples of numerical calculus using the MatLab software and belong to the scientific field „Computer Assisted Mathematics” thus creating the symbiosis between mathematics and informatics.

  18. Numerical stability in problems of linear algebra.

    Science.gov (United States)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  19. Investigating Students' Modes of Thinking in Linear Algebra: The Case of Linear Independence

    Science.gov (United States)

    Çelik, Derya

    2015-01-01

    Linear algebra is one of the most challenging topics to learn and teach in many countries. To facilitate the teaching and learning of linear algebra, priority should be given to epistemologically analyze the concepts that the undergraduate students have difficulty in conceptualizing and to define their ways of reasoning in linear algebra. After…

  20. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    Science.gov (United States)

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  1. Emphasizing Language and Visualization in Teaching Linear Algebra

    Science.gov (United States)

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-01-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…

  2. Typing linear algebra: A biproduct-oriented approach

    OpenAIRE

    Macedo, Hugo,; Oliveira, José de

    2013-01-01

    Interested in formalizing the generation of fast running code for linear algebra applications, the authors show how an index-free, calculational approach to matrix algebra can be developed by regarding matrices as morphisms of a category with biproducts. This shifts the traditional view of matrices as indexed structures to a type-level perspective analogous to that of the pointfree algebra of programming. The derivation of fusion, cancellation and abide laws from the biproduct equations makes...

  3. Schaum's outline of theory and problems of linear algebra

    CERN Document Server

    Lipschutz, Seymour

    2001-01-01

    This third edition of the successful outline in linear algebra--which sold more than 400,000 copies in its past two editions--has been thoroughly updated to increase its applicability to the fields in which linear algebra is now essential: computer science, engineering, mathematics, physics, and quantitative analysis. Revised coverage includes new problems relevant to computer science and a revised chapter on linear equations.

  4. The linear algebra survival guide illustrated with Mathematica

    CERN Document Server

    Szabo, Fred

    2015-01-01

    The Linear Algebra Survival Guide is a reference book with a free downloadable Mathematica notebook containing all of interactive code to make the content of the book playable in Mathematica and the Mathematica Player. It offers a concise introduction to the core topics of linear algebra which includes numerous exercises that will accompany a first or second course in linear algebra. This book will guide you through the powerful graphic displays and visualization of Mathematica that make the most abstract theories seem simple-- allowing you to tackle realistic problems using simple mathematic

  5. On Graph C*-Algebras with a Linear Ideal Lattice

    DEFF Research Database (Denmark)

    Eilers, Søren; Restorff, Gunnar; Ruiz, Efren

    2010-01-01

    At the cost of restricting the nature of the involved K-groups, we prove a classication result for a hitherto unexplored class of graph C-algebras, allowing us to classify all graph C-algebras on nitely many vertices with a nite linear ideal lattice if all pair of vertices are connected by innitely...

  6. Vortex lattice theory: A linear algebra approach

    Science.gov (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  7. Essential linear algebra with applications a problem-solving approach

    CERN Document Server

    Andreescu, Titu

    2014-01-01

    This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory;  • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them.   Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course.    ...

  8. Parallel and Scalable Sparse Basic Linear Algebra Subprograms

    DEFF Research Database (Denmark)

    Liu, Weifeng

    Sparse basic linear algebra subprograms (BLAS) are fundamental building blocks for numerous scientific computations and graph applications. Compared with Dense BLAS, parallelization of Sparse BLAS routines entails extra challenges due to the irregularity of sparse data structures. This thesis...

  9. Accelerating R with high performance linear algebra libraries

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2015-09-01

    Full Text Available Linear algebra routines are basic building blocks for the statistical software. In this paper we analyzed how can we improve R performance for matrix computations. We benchmarked few matrix operations using the standard linear algebra libraries included in the R distribution and high performance libraries like OpenBLAS, GotoBLAS and MKL. Our tests showed the best results are obtained with the MKL library, the other two libraries having similar performances, but lower than MKL.

  10. IDEALS GENERATED BY LINEAR FORMS AND SYMMETRIC ALGEBRAS

    Directory of Open Access Journals (Sweden)

    Gaetana Restuccia

    2016-01-01

    Full Text Available We consider ideals generated by linear forms in the variables X1 : : : ;Xn in the polynomial ring R[X1; : : : ;Xn], being R a commutative, Noetherian ring with identity. We investigate when a sequence a1; a2; : : : ; am of linear forms is an ssequence, in order to compute algebraic invariants of the symmetric algebra of the ideal I = (a1; a2; : : : ; am.

  11. Algebraic Foundations of Stability Theory: A Computerized Linear Algebra Bibliography

    Science.gov (United States)

    1976-09-30

    exterior powers of endomorphisms (with H. Robinson), Linear Al- gebra and its Applications, 14 (1976), 219-225. 32. Converses of the Fischer inequality and...powers ofithe sum of two endomorphisms on a projective module. One of the consequences of this theorem has to do with the polynomial det (%A +1X

  12. The Linear Span of Projections in AH Algebras and for Inclusions of C*-Algebras

    Directory of Open Access Journals (Sweden)

    Dinh Trung Hoa

    2013-01-01

    Full Text Available In the first part of this paper, we show that an AH algebra A=lim→(Ai,ϕi has the LP property if and only if every element of the centre of Ai belongs to the closure of the linear span of projections in A. As a consequence, a diagonal AH-algebra has the LP property if it has small eigenvalue variation in the sense of Bratteli and Elliott. The second contribution of this paper is that for an inclusion of unital C*-algebras P⊂A with a finite Watatani index, if a faithful conditional expectation E:A→P has the Rokhlin property in the sense of Kodaka et al., then P has the LP property under the condition thatA has the LP property. As an application, let A be a simple unital C*-algebra with the LP property, α an action of a finite group G onto Aut(A. If α has the Rokhlin property in the sense of Izumi, then the fixed point algebra AG and the crossed product algebra A ⋊α G have the LP property. We also point out that there is a symmetry on the CAR algebra such that its fixed point algebra does not have the LP property.

  13. Symmetric linear systems - An application of algebraic systems theory

    Science.gov (United States)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  14. Embodied, Symbolic and Formal Thinking in Linear Algebra

    Science.gov (United States)

    Stewart, Sepideh; Thomas, Michael O. J.

    2007-01-01

    Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…

  15. Numerical linear algebra a concise introduction with Matlab and Julia

    CERN Document Server

    Bornemann, Folkmar

    2018-01-01

    This book offers an introduction to the algorithmic-numerical thinking using basic problems of linear algebra. By focusing on linear algebra, it ensures a stronger thematic coherence than is otherwise found in introductory lectures on numerics. The book highlights the usefulness of matrix partitioning compared to a component view, leading not only to a clearer notation and shorter algorithms, but also to significant runtime gains in modern computer architectures. The algorithms and accompanying numerical examples are given in the programming environment MATLAB, and additionally – in an appendix – in the future-oriented, freely accessible programming language Julia. This book is suitable for a two-hour lecture on numerical linear algebra from the second semester of a bachelor's degree in mathematics.

  16. An introduction to linear algebra and tensors

    CERN Document Server

    Akivis, M A; Silverman, Richard A

    1978-01-01

    Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.

  17. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  18. Hardware Tailored Linear Algebra for Implicit Integrators in Embedded NMPC

    DEFF Research Database (Denmark)

    Frison, Gianluca; Quirynen, Rien; Zanelli, Andrea

    2017-01-01

    . In the case of stiff or implicitly defined dynamics, implicit integration schemes are typically preferred. This paper proposes a tailored implementation of the necessary linear algebra routines (LU factorization and triangular solutions), in order to allow for a considerable computational speedup...... of such integrators. In particular, the open-source BLASFEO framework is presented as a library of efficient linear algebra routines for small to medium-scale embedded optimization applications. Its performance is illustrated on the nonlinear optimal control example of a chain of masses. The proposed library allows...

  19. Linear algebra and matrix analysis for statistics

    CERN Document Server

    Banerjee, Sudipto

    2014-01-01

    Matrices, Vectors, and Their OperationsBasic definitions and notations Matrix addition and scalar-matrix multiplication Matrix multiplication Partitioned matricesThe ""trace"" of a square matrix Some special matricesSystems of Linear EquationsIntroduction Gaussian elimination Gauss-Jordan elimination Elementary matrices Homogeneous linear systems The inverse of a matrixMore on Linear EquationsThe LU decompositionCrout's Algorithm LU decomposition with row interchanges The LDU and Cholesky factorizations Inverse of partitioned matrices The LDU decomposition for partitioned matricesThe Sherman-W

  20. Creating Discussions with Classroom Voting in Linear Algebra

    Science.gov (United States)

    Cline, Kelly; Zullo, Holly; Duncan, Jonathan; Stewart, Ann; Snipes, Marie

    2013-01-01

    We present a study of classroom voting in linear algebra, in which the instructors posed multiple-choice questions to the class and then allowed a few minutes for consideration and small-group discussion. After each student in the class voted on the correct answer using a classroom response system, a set of clickers, the instructor then guided a…

  1. A Framework for Mathematical Thinking: The Case of Linear Algebra

    Science.gov (United States)

    Stewart, Sepideh; Thomas, Michael O. J.

    2009-01-01

    Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

  2. A Choice Option between Proofs in Linear Algebra

    Science.gov (United States)

    Rensaa, Ragnhild Johanne

    2007-01-01

    At their final exam in linear algebra students at the author's university were given the possibility to choose between two types of proofs to be done. They could either prove two short statements by themselves or they could explain four steps in a given proof. This paper reports on investigations of students' responses to the choice option…

  3. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  4. Definitions Are Important: The Case of Linear Algebra

    Science.gov (United States)

    Berman, Abraham; Shvartsman, Ludmila

    2016-01-01

    In this paper we describe an experiment in a linear algebra course. The aim of the experiment was to promote the students' understanding of the studied concepts focusing on their definitions. It seems to be a given that students should understand concepts' definitions before working substantially with them. Unfortunately, in many cases they do…

  5. Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses

    Science.gov (United States)

    Martínez-Sierra, Gustavo; García-González, María del Socorro

    2016-01-01

    Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…

  6. Partially Flipped Linear Algebra: A Team-Based Approach

    Science.gov (United States)

    Carney, Debra; Ormes, Nicholas; Swanson, Rebecca

    2015-01-01

    In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…

  7. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  8. Clearing the Fog from the Undergraduate Course in Linear Algebra

    Science.gov (United States)

    Scott, Damon

    2007-01-01

    For over a decade it has been a common observation that a "fog" passes over the course in linear algebra once abstract vector spaces are presented. See [2, 3]. We show how this fog may be cleared by having the students translate "abstract" vector-space problems to isomorphic "concrete" settings, solve the "concrete" problem either by hand or with…

  9. Using Cognitive Tutor Software in Learning Linear Algebra Word Concept

    Science.gov (United States)

    Yang, Kai-Ju

    2015-01-01

    This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…

  10. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    Science.gov (United States)

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  11. Type inference for linear algebra with units of measurement

    NARCIS (Netherlands)

    P.R. Griffioen (Paul)

    2013-01-01

    htmlabstractRefining types of numerical data with units of measurement has the potential to increase safety of programming languages but is restricted to homogeneous units when checked statically with parametric polymorphism. We lift units to vectors and show how type inference of linear algebra

  12. Linear Algebra and the Experiences of a "Flipper"

    Science.gov (United States)

    Wright, Sarah E.

    2015-01-01

    This paper describes the linear algebra class I taught during Spring 2014 semester at Adelphi University. I discuss the details of how I flipped the class and incorporated elements of inquiry-based learning as well as the reasoning behind specific decisions I made. I give feedback from the students on the success of the course and provide my own…

  13. Algebraic Framework for Linear and Morphological Scale-Spaces

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.; van den Boomgaard, R.

    2002-01-01

    This paper proposes a general algebraic construction technique for image scale-spaces. The basic idea is to first downscale the image by some factor using an invertible scaling, then apply an image operator (linear or morphological) at a unit scale, and finally resize the image to its original

  14. Algebraic framework for linear and morphological scale-spaces

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk); R. van den Boomgaard

    2000-01-01

    textabstractThis paper proposes a general algebraic construction technique for image scale-spaces. The basic idea is to first downscale the image by some factor using an invertible scaling, then apply an image operator (linear or morphological) at a unit scale, and finally resize the image to its

  15. Reading between the Lines: Teaching Linear Algebra

    Science.gov (United States)

    Lewis, Jennifer M.; Blunk, Merrie L.

    2012-01-01

    This paper compares lessons on linear equations from the same curriculum materials taught by two teachers of different levels of mathematical knowledge for teaching (MKT). The analysis indicates that the mathematical quality of instruction in these two classrooms appears to be a function of differences in MKT. Although the two teachers were…

  16. Exact solution of some linear matrix equations using algebraic methods

    Science.gov (United States)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  17. Projection of angular momentum via linear algebra

    Science.gov (United States)

    Johnson, Calvin W.; O'Mara, Kevin D.

    2017-12-01

    Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.

  18. Heterogenous Acceleration for Linear Algebra in Multi-coprocessor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Luszczek, Piotr R [ORNL; Tomov, Stanimire Z [ORNL; Dongarra, Jack J [ORNL

    2015-01-01

    We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs and coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.

  19. A linear process-algebraic format for probabilistic systems with data

    NARCIS (Netherlands)

    Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Timmer, Mark; Gomes, L.; Khomenko, V.; Fernandes, J.M.

    This paper presents a novel linear process algebraic format for probabilistic automata. The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear format while preserving strong probabilistic bisimulation. This generalises similar

  20. Short Round Sub-Linear Zero-Knowledge Argument for Linear Algebraic Relations

    Science.gov (United States)

    Seo, Jae Hong

    Zero-knowledge arguments allows one party to prove that a statement is true, without leaking any other information than the truth of the statement. In many applications such as verifiable shuffle (as a practical application) and circuit satisfiability (as a theoretical application), zero-knowledge arguments for mathematical statements related to linear algebra are essentially used. Groth proposed (at CRYPTO 2009) an elegant methodology for zero-knowledge arguments for linear algebraic relations over finite fields. He obtained zero-knowledge arguments of the sub-linear size for linear algebra using reductions from linear algebraic relations to equations of the form z = x *' y, where x, y ∈ Fnp are committed vectors, z ∈ Fp is a committed element, and *' : Fnp × Fnp → Fp is a bilinear map. These reductions impose additional rounds on zero-knowledge arguments of the sub-linear size. The round complexity of interactive zero-knowledge arguments is an important measure along with communication and computational complexities. We focus on minimizing the round complexity of sub-linear zero-knowledge arguments for linear algebra. To reduce round complexity, we propose a general transformation from a t-round zero-knowledge argument, satisfying mild conditions, to a (t - 2)-round zero-knowledge argument; this transformation is of independent interest.

  1. Linear algebra and matrices topics for a second course

    CERN Document Server

    Shapiro, Helene

    2015-01-01

    Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first c...

  2. Using linear algebra for protein structural comparison and classification

    OpenAIRE

    Janaína Gomide; Raquel Melo-Minardi; Marcos Augusto dos Santos; Goran Neshich; Wagner Meira Jr.; Júlio César Lopes; Marcelo Santoro

    2009-01-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as term...

  3. Applications of non-linear algebra to biology

    OpenAIRE

    Cartwright, Dustin Alexander

    2010-01-01

    We present two applications of non-linear algebra to biology. Our first application is to the analysis of gene expression data from Arabidoposis roots. In Chapter 2, we present a method forcomputing non-negative roots to certain systems of polynomials. This algorithm is based on a generalization of the Expectation-Maximization and Iterative Proportional Fitting from statistics. In Chapter 3, this method is applied to a model for gene expression coming from roots of the Arabidopsis plant. Vari...

  4. [Relations between biomedical variables: mathematical analysis or linear algebra?].

    Science.gov (United States)

    Hucher, M; Berlie, J; Brunet, M

    1977-01-01

    The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.

  5. The design of linear algebra libraries for high performance computers

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Walker, D.W. [Oak Ridge National Lab., TN (United States)

    1993-08-01

    This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACK currently under development. The importance of block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the application developer. The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are presented, and optimization issues associated with the implementation of the LU factorization algorithm on distributed memory concurrent computers are discussed, together with its performance on the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.

  6. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    Science.gov (United States)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  7. Those Do What? Connecting Eigenvectors and Eigenvalues to the Rest of Linear Algebra: Using Visual Enhancements to Help Students Connect Eigenvectors to the Rest of Linear Algebra

    Science.gov (United States)

    Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.

    2010-01-01

    This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…

  8. First order linear ordinary differential equations in associative algebras

    Directory of Open Access Journals (Sweden)

    Gordon Erlebacher

    2004-01-01

    Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.

  9. Matrix preconditioning: a robust operation for optical linear algebra processors.

    Science.gov (United States)

    Ghosh, A; Paparao, P

    1987-07-15

    Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.

  10. Negative base encoding in optical linear algebra processors

    Science.gov (United States)

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  11. Relating Reasoning Methodologies in Linear Logic and Process Algebra

    Directory of Open Access Journals (Sweden)

    Yuxin Deng

    2012-11-01

    Full Text Available We show that the proof-theoretic notion of logical preorder coincides with the process-theoretic notion of contextual preorder for a CCS-like calculus obtained from the formula-as-process interpretation of a fragment of linear logic. The argument makes use of other standard notions in process algebra, namely a labeled transition system and a coinductively defined simulation relation. This result establishes a connection between an approach to reason about process specifications and a method to reason about logic specifications.

  12. Using Example Generation to Explore Students' Understanding of the Concepts of Linear Dependence/Independence in Linear Algebra

    Science.gov (United States)

    Aydin, Sinan

    2014-01-01

    Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…

  13. Student Learning of Basis, Span and Linear Independence in Linear Algebra

    Science.gov (United States)

    Stewart, Sepideh; Thomas, Michael O. J.

    2010-01-01

    One of the earlier, more challenging concepts in linear algebra at university is that of basis. Students are often taught procedurally how to find a basis for a subspace using matrix manipulation, but may struggle with understanding the construct of basis, making further progress harder. We believe one reason for this is because students have…

  14. Linear response theory an analytic-algebraic approach

    CERN Document Server

    De Nittis, Giuseppe

    2017-01-01

    This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3–5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about...

  15. Using linear algebra for protein structural comparison and classification

    Science.gov (United States)

    2009-01-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in. PMID:21637532

  16. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    Science.gov (United States)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  17. Using linear algebra for protein structural comparison and classification

    Directory of Open Access Journals (Sweden)

    Janaína Gomide

    2009-01-01

    Full Text Available In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD and Latent Semantic Indexing (LSI techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  18. Using linear algebra for protein structural comparison and classification.

    Science.gov (United States)

    Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo

    2009-07-01

    In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

  19. Optimization techniques for OpenCL-based linear algebra routines

    Science.gov (United States)

    Kozacik, Stephen; Fox, Paul; Humphrey, John; Kuller, Aryeh; Kelmelis, Eric; Prather, Dennis W.

    2014-06-01

    The OpenCL standard for general-purpose parallel programming allows a developer to target highly parallel computations towards graphics processing units (GPUs), CPUs, co-processing devices, and field programmable gate arrays (FPGAs). The computationally intense domains of linear algebra and image processing have shown significant speedups when implemented in the OpenCL environment. A major benefit of OpenCL is that a routine written for one device can be run across many different devices and architectures; however, a kernel optimized for one device may not exhibit high performance when executed on a different device. For this reason kernels must typically be hand-optimized for every target device family. Due to the large number of parameters that can affect performance, hand tuning for every possible device is impractical and often produces suboptimal results. For this work, we focused on optimizing the general matrix multiplication routine. General matrix multiplication is used as a building block for many linear algebra routines and often comprises a large portion of the run-time. Prior work has shown this routine to be a good candidate for high-performance implementation in OpenCL. We selected several candidate algorithms from the literature that are suitable for parameterization. We then developed parameterized kernels implementing these algorithms using only portable OpenCL features. Our implementation queries device information supplied by the OpenCL runtime and utilizes this as well as user input to generate a search space that satisfies device and algorithmic constraints. Preliminary results from our work confirm that optimizations are not portable from one device to the next, and show the benefits of automatic tuning. Using a standard set of tuning parameters seen in the literature for the NVIDIA Fermi architecture achieves a performance of 1.6 TFLOPS on an AMD 7970 device, while automatically tuning achieves a peak of 2.7 TFLOPS

  20. -Orthomorphisms and -Linear Operators on the Order Dual of an -Algebra

    Directory of Open Access Journals (Sweden)

    Ying Feng

    2012-01-01

    Full Text Available We consider the -orthomorphisms and -linear operators on the order dual of an -algebra. In particular, when the -algebra has the factorization property (not necessarily unital, we prove that the orthomorphisms, -orthomorphisms, and -linear operators on the order dual are precisely the same class of operators.

  1. Advanced Mathematics Online: Assessing Particularities in the Online Delivery of a Second Linear Algebra Course

    Science.gov (United States)

    Montiel, Mariana; Bhatti, Uzma

    2010-01-01

    This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…

  2. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    Science.gov (United States)

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  3. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.

  4. On MV-algebras of non-linear functions

    Directory of Open Access Journals (Sweden)

    Antonio Di Nola

    2017-01-01

    Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  5. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  6. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    Science.gov (United States)

    Yildiz Ulus, Aysegul

    2013-01-01

    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  7. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    Science.gov (United States)

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  8. Student learning and perceptions in a flipped linear algebra course

    Science.gov (United States)

    Love, Betty; Hodge, Angie; Grandgenett, Neal; Swift, Andrew W.

    2014-04-01

    The traditional lecture style of teaching has long been the norm in college science, technology, engineering, and mathematics (STEM) courses, but an innovative teaching model, facilitated by recent advances in technology, is gaining popularity across college campuses. This new model inverts or 'flips' the usual classroom paradigm, in that students learn initial course concepts outside of the classroom, while class time is reserved for more active problem-based learning and practice activities. While the flipped classroom model shows promise for improving STEM learning and increasing student interest in STEM fields, discussions to date of the model and its impact are more anecdotal than data driven - very little research has been undertaken to rigorously assess the potential effects on student learning that can result from the flipped classroom environment. This study involved 55 students in 2 sections of an applied linear algebra course, using the traditional lecture format in one section and the flipped classroom model in another. In the latter, students were expected to prepare for the class in some way, such as watching screencasts prepared by the instructor, or reading the textbook or the instructor's notes. Student content understanding and course perceptions were examined. Content understanding was measured by the performance on course exams, and students in the flipped classroom environment had a more significant increase between the sequential exams compared to the students in the traditional lecture section, while performing similarly in the final exam. Course perceptions were represented by an end-of-semester survey that indicated that the flipped classroom students were very positive about their experience in the course, and particularly appreciated the student collaboration and instructional video components.

  9. The role of C*-algebras in infinite dimensional numerical linear algebra

    CERN Document Server

    Arveson, W

    1993-01-01

    This is a survey of four recent papers which deal with the relationship of simple C*-algebras to the problem of computing the spectra of self-adjoint operators in the general case, especially when the spectrum is not discrete. It is an expanded version of a talk presented at the 50 year C*-algebra celebration, held at the annual meeting of the AMS in San Antonio during January, 1993.

  10. Efficient linear algebra routines for symmetric matrices stored in packed form.

    Science.gov (United States)

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  11. A Simple and Practical Linear Algebra Library Interface with Static Size Checking

    Directory of Open Access Journals (Sweden)

    Akinori Abe

    2015-12-01

    Full Text Available Linear algebra is a major field of numerical computation and is widely applied. Most linear algebra libraries (in most programming languages do not statically guarantee consistency of the dimensions of vectors and matrices, causing runtime errors. While advanced type systems—specifically, dependent types on natural numbers—can ensure consistency among the sizes of collections such as lists and arrays, such type systems generally require non-trivial changes to existing languages and application programs, or tricky type-level programming. We have developed a linear algebra library interface that verifies the consistency (with respect to dimensions of matrix operations by means of generative phantom types, implemented via fairly standard ML types and module system. To evaluate its usability, we ported to it a practical machine learning library from a traditional linear algebra library. We found that most of the changes required for the porting could be made mechanically, and changes that needed human thought are minor.

  12. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  13. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  14. Linear algebra and linear operators in engineering with applications in Mathematica

    CERN Document Server

    Davis, H Ted

    2000-01-01

    Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical ...

  15. Groups, matrices, and vector spaces a group theoretic approach to linear algebra

    CERN Document Server

    Carrell, James B

    2017-01-01

    This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory ...

  16. A high-speed linear algebra library with automatic parallelism

    Science.gov (United States)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  17. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  18. Trajectory piecewise linear approach for nonlinear differential-algebraic equations in circuit simulation

    NARCIS (Netherlands)

    Voss, T.; Pulch, R.; ter Maten, E. J. W.; El Guennouni, A.; Ciuprina, G; Ioan, D

    2007-01-01

    In this paper we extend the Trajectory Piecewise Linear (TPWL) model order reduction (MOR) method for nonlinear differential algebraic equations (DAE). The TPWL method is based on combining several linear reduced models at different time points, which are created along a typical trajectory, to

  19. Matrix Operations for Engineers and Scientists An Essential Guide in Linear Algebra

    CERN Document Server

    Jeffrey, Alan

    2010-01-01

    Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designe...

  20. Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.

    Science.gov (United States)

    Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O

    1996-10-01

    This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.

  1. Mathematical modelling in engineering: an alternative way to teach Linear Algebra

    Science.gov (United States)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-10-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).

  2. Advanced topics in linear algebra weaving matrix problems through the Weyr form

    CERN Document Server

    O'Meara, Kevin; Vinsonhaler, Charles

    2011-01-01

    The Weyr matrix canonical form is a largely unknown cousin of the Jordan canonical form. Discovered by Eduard Weyr in 1885, the Weyr form outperforms the Jordan form in a number of mathematical situations, yet it remains somewhat of a mystery, even to many who are skilled in linear algebra. Written in an engaging style, this book presents various advanced topics in linear algebra linked through the Weyr form. Kevin O'Meara, John Clark, and Charles Vinsonhaler develop the Weyr form from scratch and include an algorithm for computing it. A fascinating duality exists between the Weyr form and the

  3. Algebra

    CERN Document Server

    Sepanski, Mark R

    2010-01-01

    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  4. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, Emmanuel; Demmel, Jim; Dongarra, Jack; Hadri, Bilel; Kurzak, Jakub; Langou, Julien; Ltaief, Hatem; Luszczek, Piotr [Department of Electrical Engineering and Computer Science, University of Tennessee (United States); Tomov, Stanimire, E-mail: eagullo@eecs.utk.ed, E-mail: dongarra@eecs.utk.ed, E-mail: hadri@eecs.utk.ed, E-mail: kurzak@eecs.utk.ed, E-mail: ltaief@eecs.utk.ed, E-mail: luszczek@eecs.utk.ed, E-mail: tomov@eecs.utk.ed, E-mail: demmel@cs.berkeley.ed, E-mail: julien.langou@ucdenver.ed

    2009-07-01

    The emergence and continuing use of multi-core architectures and graphics processing units require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMA) are two projects that aims to achieve high performance and portability across a wide range of multi-core architectures and hybrid systems respectively. We present in this document a comparative study of PLASMA's performance against established linear algebra packages and some preliminary results of MAGMA on hybrid multi-core and GPU systems.

  5. Students’ thinking modes and the emergence of signs in learning linear algebra

    NARCIS (Netherlands)

    Turgut, M.; Drijvers, P.H.M.

    2016-01-01

    To analyse the use of a dynamic geometry environment for linear algebra by two students, we combine a semiotic mediation approach with a lens of students’ thinking modes. This way of approaching the data shows promise for a detailed understanding of the observed phenomena.

  6. Linear algebra-based matrix structural analysis of two-dimensional reciprocal structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The following paper proposes a formulation for the extension of linear algebra-based matrix structural analysis to assemblies in which elements join in intermediate points. Such a formulation in particular must include now the possibility to describe an expanded set of joints as prismatic joint...

  7. An Example of Inquiry in Linear Algebra: The Roles of Symbolizing and Brokering

    Science.gov (United States)

    Zandieh, Michelle; Wawro, Megan; Rasmussen, Chris

    2017-01-01

    In this paper we address practical questions such as: How do symbols appear and evolve in an inquiry-oriented classroom? How can an instructor connect students with traditional notation and vocabulary without undermining their sense of ownership of the material? We tender an example from linear algebra that highlights the roles of the instructor…

  8. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

    Science.gov (United States)

    Shama, Gilli; Dreyfus, Tommy

    1994-01-01

    Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

  9. Subspace in Linear Algebra: Investigating Students' Concept Images and Interactions with the Formal Definition

    Science.gov (United States)

    Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.

    2011-01-01

    This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…

  10. A Practical Approach to Inquiry-Based Learning in Linear Algebra

    Science.gov (United States)

    Chang, J.-M.

    2011-01-01

    Linear algebra has become one of the most useful fields of mathematics since last decade, yet students still have trouble seeing the connection between some of the abstract concepts and real-world applications. In this article, we propose the use of thought-provoking questions in lesson designs to allow two-way communications between instructors…

  11. Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z

    Science.gov (United States)

    Beaver, Scott

    2015-01-01

    For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.

  12. Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra

    Science.gov (United States)

    Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly

    2014-01-01

    The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…

  13. A Modified Approach to Team-Based Learning in Linear Algebra Courses

    Science.gov (United States)

    Nanes, Kalman M.

    2014-01-01

    This paper documents the author's adaptation of team-based learning (TBL), an active learning pedagogy developed by Larry Michaelsen and others, in the linear algebra classroom. The paper discusses the standard components of TBL and the necessary changes to those components for the needs of the course in question. There is also an empirically…

  14. Student Connections of Linear Algebra Concepts: An Analysis of Concept Maps

    Science.gov (United States)

    Lapp, Douglas A.; Nyman, Melvin A.; Berry, John S.

    2010-01-01

    This article examines the connections of linear algebra concepts in a first course at the undergraduate level. The theoretical underpinnings of this study are grounded in the constructivist perspective (including social constructivism), Vernaud's theory of conceptual fields and Pirie and Kieren's model for the growth of mathematical understanding.…

  15. Developing Conceptual Understanding and Definitional Clarity in Linear Algebra through the Three Worlds of Mathematical Thinking

    Science.gov (United States)

    Hannah, John; Stewart, Sepideh; Thomas, Michael

    2016-01-01

    Linear algebra is one of the first abstract mathematics courses that students encounter at university. Research shows that many students find the dense presentation of definitions, theorems and proofs difficult to comprehend. Using a case study approach, we report on a teaching intervention based on Tall's three worlds (embodied, symbolic and…

  16. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    Science.gov (United States)

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  17. Principal Component Analysis: Resources for an Essential Application of Linear Algebra

    Science.gov (United States)

    Pankavich, Stephen; Swanson, Rebecca

    2015-01-01

    Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…

  18. Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra

    Science.gov (United States)

    Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç

    2017-01-01

    In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…

  19. Student Reactions to Learning Theory Based Curriculum Materials in Linear Algebra--A Survey Analysis

    Science.gov (United States)

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff

    2016-01-01

    In this report we examine students' perceptions of the implementation of carefully designed curriculum materials (called modules) in linear algebra courses at three different universities. The curricular materials were produced collaboratively by STEM and mathematics education faculty as members of a professional learning community (PLC) over…

  20. Using Technology to Facilitate Reasoning: Lifting the Fog from Linear Algebra

    Science.gov (United States)

    Berry, John S.; Lapp, Douglas A.; Nyman, Melvin A.

    2008-01-01

    This article discusses student difficulties in grasping concepts from linear algebra. Using an example from an interview with a student, we propose changes that might positively impact student understanding of concepts within a problem-solving context. In particular, we illustrate barriers to student understanding and suggest technological…

  1. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Science.gov (United States)

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  2. Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations

    Science.gov (United States)

    Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie

    2015-01-01

    The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…

  3. A note on probabilistic models over strings: the linear algebra approach.

    Science.gov (United States)

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  4. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    Science.gov (United States)

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  5. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    Science.gov (United States)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  6. Individual and Collective Analyses of the Genesis of Student Reasoning Regarding the Invertible Matrix Theorem in Linear Algebra

    Science.gov (United States)

    Wawro, Megan Jean

    2011-01-01

    In this study, I considered the development of mathematical meaning related to the Invertible Matrix Theorem (IMT) for both a classroom community and an individual student over time. In this particular linear algebra course, the IMT was a core theorem in that it connected many concepts fundamental to linear algebra through the notion of…

  7. Lectures on algebraic system theory: Linear systems over rings

    Science.gov (United States)

    Kamen, E. W.

    1978-01-01

    The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.

  8. Memory Hierarchy Behavior Study during the Execution of Recursive Linear Algebra Library

    Directory of Open Access Journals (Sweden)

    I. Šimeček

    2008-01-01

    Full Text Available For good performance of every computer program, good cache and TLB utilization is crucial. In numerical linear algebra libraries (such as BLAS or LAPACK, good cache utilization is achieved by explicit loop restructuring (mainly loop blocking, but this requires difficult memory pattern behavior analysis. In this paper, we represent the recursive implementation (“divide and conquer” approach of some routines from numerical algebra libraries. This implementation leads to good cache and TLB utilization with no need to analyze the memory pattern behavior due to “natural” partition of data. 

  9. On the economical solution method for a system of linear algebraic equations

    Directory of Open Access Journals (Sweden)

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  10. A SINDA '85 nodal heat transfer rate calculation user subroutine

    Science.gov (United States)

    Cheston, Derrick J.

    1992-01-01

    This paper describes a subroutine, GETQ, which was developed to compute the heat transfer rates through all conductors attached to a node within a SINDA '85 thermal submodel. The subroutine was written for version 2.3 of SINDA '85. Upon calling GETQ, the user supplies the submodel name and node number which the heat transfer rate computation is desired. The returned heat transfer rate values are broken down into linear, nonlinear, source and combined heat loads.

  11. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  12. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    Science.gov (United States)

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  13. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  14. GPU TECHNOLOGIES EMBODIED IN PARALLEL SOLVERS OF LINEAR ALGEBRAIC EQUATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sidorov Alexander Vladimirovich

    2012-10-01

    Full Text Available The author reviews existing shareware solvers that are operated by graphical computer devices. The purpose of this review is to explore the opportunities and limitations of the above parallel solvers applicable for resolution of linear algebraic problems that arise at Research and Educational Centre of Computer Modeling at MSUCE, and Research and Engineering Centre STADYO. The author has explored new applications of the GPU in the PETSc suite and compared them with the results generated absent of the GPU. The research is performed within the CUSP library developed to resolve the problems of linear algebra through the application of GPU. The author has also reviewed the new MAGMA project which is analogous to LAPACK for the GPU.

  15. Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs

    KAUST Repository

    Charara, Ali

    2017-03-06

    Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

  16. The Effects of Formalism on Teacher Trainees' Algebraic and Geometric Interpretation of the Notions of Linear Dependency/Independency

    Science.gov (United States)

    Ertekin, E.; Solak, S.; Yazici, E.

    2010-01-01

    The aim of this study is to identify the effects of formalism in teaching on primary and secondary school mathematics teacher trainees' algebraic and geometric interpretations of the notions of linear dependency/independency. Quantitative research methods are drawn in order to determine differences in success levels between algebraic and geometric…

  17. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    Science.gov (United States)

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  18. Tracking control of concentration profiles in a fed-batch bioreactor using a linear algebra methodology.

    Science.gov (United States)

    Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan

    2015-07-01

    Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing

    CERN Document Server

    Goodman, Roe W

    2016-01-01

    This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.

  20. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  1. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

    KAUST Repository

    Liu, Da-Yan

    2015-04-30

    This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

  2. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  3. Modern algebra

    CERN Document Server

    Warner, Seth

    1990-01-01

    Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.

  4. RUSEEP Benchmark and the Ill-Conditioning Problem in Linear Algebra

    CERN Document Server

    Emelyanenko, G A; Samojlov, V N; Vorontsova, N I; Mamonov, A V

    2005-01-01

    Here we present a comprehensive analysis of a few most known linear algebra software packages, including those capable of solving ill-conditioned problems. The tests are performed with the help of the new universal benchmarking system RUSEEP, a brief description of which is provided in the paper, and the results of the comparison of these programs' performance with the new software package JINRLINPACK are discussed. We propose a new highly effective method for choosing the regularization parameter based on the uncertainty principle and give the results of numerical experiments demonstrating its advantage over other existing regularization techniques.

  5. An Ada Linear-Algebra Software Package Modeled After HAL/S

    Science.gov (United States)

    Klumpp, Allan R.; Lawson, Charles L.

    1990-01-01

    New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.

  6. The development of an algebraic multigrid algorithm for symmetric positive definite linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanek, P.; Mandel, J.; Brezina, M. [Univ. of Colorado, Denver, CO (United States)

    1996-12-31

    An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.

  7. Design and Implementation of Numerical Linear Algebra Algorithms on Fixed Point DSPs

    Directory of Open Access Journals (Sweden)

    Gene Frantz

    2007-01-01

    Full Text Available Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital signal processors (DSPs to reduce total hardware costs. Converting the simulation model to fixed point arithmetic and then porting it to a target DSP device is a difficult and time-consuming process. In this paper, we analyze the conversion process. We transformed selected linear algebra algorithms from floating point to fixed point arithmetic, and compared real-time requirements and performance between the fixed point DSP and floating point DSP algorithm implementations. We also introduce an advanced code optimization and an implementation by DSP-specific, fixed point C code generation. By using the techniques described in the paper, speed can be increased by a factor of up to 10 compared to floating point emulation on fixed point hardware.

  8. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.

    Science.gov (United States)

    Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris

    2012-06-01

    In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications.

  9. Credit Documentation and the Mark 15 Subroutine

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, J.E.

    2001-08-16

    This report documents the rewrite of the heat transfer subroutine. Part of the process of preparing the Mark 15 assembly for production operation is the development of thermal-hydraulic limits for the assembly. These limits require, among other items, the development of a Mark 15 assembly subroutine for the CREDIT code.

  10. Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

    KAUST Repository

    Ltaief, Hatem

    2011-08-31

    This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency. © 2011 Springer-Verlag.

  11. A Linear Algebra Framework for Static High Performance Fortran Code Distribution

    Directory of Open Access Journals (Sweden)

    Corinne Ancourt

    1997-01-01

    Full Text Available High Performance Fortran (HPF was developed to support data parallel programming for single-instruction multiple-data (SIMD and multiple-instruction multiple-data (MIMD machines with distributed memory. The programmer is provided a familiar uniform logical address space and specifies the data distribution by directives. The compiler then exploits these directives to allocate arrays in the local memories, to assign computations to elementary processors, and to migrate data between processors when required. We show here that linear algebra is a powerful framework to encode HPF directives and to synthesize distributed code with space-efficient array allocation, tight loop bounds, and vectorized communications for INDEPENDENT loops. The generated code includes traditional optimizations such as guard elimination, message vectorization and aggregation, and overlap analysis. The systematic use of an affine framework makes it possible to prove the compilation scheme correct.

  12. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  13. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1986-01-01

    Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra

  14. Some Issues about the Introduction of First Concepts in Linear Algebra during Tutorial Sessions at the Beginning of University

    Science.gov (United States)

    Grenier-Boley, Nicolas

    2014-01-01

    Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…

  15. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    Science.gov (United States)

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  16. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack

    2012-11-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  17. Spectral theory of linear operators and spectral systems in Banach algebras

    CERN Document Server

    Müller, Vladimir

    2003-01-01

    This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...

  18. Elementary algebra

    CERN Document Server

    McKeague, Charles P

    1981-01-01

    Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e

  19. Young Students Learning Formal Algebraic Notation and Solving Linear Equations: Are Commonly Experienced Difficulties Avoidable?

    Science.gov (United States)

    Hewitt, Dave

    2012-01-01

    This study looks at a mixed ability group of 21 Year 5 primary students (aged 9-10 years old) who had previously never had formal instruction using letters to stand for unknowns or variables in a mathematics context; nor had they been introduced to formal algebraic notation. Three lessons were taught using the computer software "Grid Algebra"…

  20. Student connections of linear algebra concepts: an analysis of concept maps

    Science.gov (United States)

    Lapp, Douglas A.; Nyman, Melvin A.; Berry, John S.

    2010-01-01

    This article examines the connections of linear algebra concepts in a first course at the undergraduate level. The theoretical underpinnings of this study are grounded in the constructivist perspective (including social constructivism), Vernaud's theory of conceptual fields and Pirie and Kieren's model for the growth of mathematical understanding. In addition to the existing techniques for analysing concept maps, two new techniques are developed for analysing qualitative data based on student-constructed concept maps: (1) temporal clumping of concepts and (2) the use of adjacency matrices of an undirected graph representation of the concept map. Findings suggest that students may find it more difficult to make connections between concepts like eigenvalues and eigenvectors and concepts from other parts of the conceptual field such as basis and dimension. In fact, eigenvalues and eigenvectors seemed to be the most disconnected concepts within all of the students' concept maps. In addition, the relationships between link types and certain clumps are suggested as well as directions for future study and curriculum design.

  1. High Productivity Programming of Dense Linear Algebra on Heterogeneous NUMA Architectures

    KAUST Repository

    Alomairy, Rabab M.

    2013-07-01

    High-end multicore systems with GPU-based accelerators are now ubiquitous in the hardware landscape. Besides dealing with the nontrivial heterogeneous environ- ment, end users should often take into consideration the underlying memory architec- ture to decrease the overhead of data motion, especially when running on non-uniform memory access (NUMA) platforms. We propose the OmpSs parallel programming model approach using its Nanos++ dynamic runtime system to solve the two challeng- ing problems aforementioned, through 1) an innovative NUMA node-aware scheduling policy to reduce data movement between NUMA nodes and 2) a nested parallelism feature to concurrently exploit the resources available from the GPU devices as well as the CPU host, without compromising the overall performance. Our approach fea- tures separation of concerns by abstracting the complexity of the hardware from the end users so that high productivity can be achieved. The Cholesky factorization is used as a benchmark representative of dense numerical linear algebra algorithms. Superior performance is also demonstrated on the symmetric matrix inversion based on Cholesky factorization, commonly used in co-variance computations in statistics. Performance on a NUMA system with Kepler-based GPUs exceeds that of existing implementations, while the OmpSs-enabled code remains very similar to its original sequential version.

  2. Algebra review

    CERN Document Server

    Denlinger, Charles

    1978-01-01

    Algebra Review serves as a background supplement to Howard Anton and Bernard Kolman's books on finite mathematics-Applied Finite Mathematics and Applied Finite Mathematics with Calculus. This book discusses the number systems of algebra, algebraic notation, exponents and radicals, and fractional exponents. The polynomials and factoring, binomial theorem, and rational expressions are also elaborated. This text covers equations such as linear equations, quadratic equations, and higher degree equations. The Cartesian coordinate system, graphing equations in two variables, and some special functio

  3. FORTRAN callable CAMAC standard subroutines. [Macro-11

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, D.W.; Harrison, J.F.; Kozlowski, T.; Oothoudt, M.A.; Perry, D.G.

    1979-01-01

    An implementation of the COMPUTER AUTOMATED MEASUREMENTS AND CONTROL (CAMAC) Standard Subroutines is presented. CAMAC is a hardware protocol for designing devices in a standard format and lay-out. The standard subroutines represent an effort to carry the standardization of CAMAC over to the programming to facilitate the generation of unambiguous and portable programs. The routines are written in Macro-11 and are designed to be callable from the FORTRAN languages supported on the RSX systems, that is, 11/M and 11/D. Four levels of subroutines are defined--Levels A, B, C, and system dependent. Level A, the simplist, consists of the primary subroutines. They provide the ability to define the CAMAC address of a CAMAC entity and the desired access to it. Level B provide single-action routines. Level C allows block transfers, multiple actions, and inverse declarations. The system dependent routines allow the programmer the flexibility to take advantage of the particular computer system that is being used. Segregating the computer specific routines allows the programmer, when necessary, to write truly portable programs that will be usable on any computer system that adheres to the standard.

  4. Accelerating Scientific Applications using High Performance Dense and Sparse Linear Algebra Kernels on GPUs

    KAUST Repository

    Abdelfattah, Ahmad

    2015-01-15

    High performance computing (HPC) platforms are evolving to more heterogeneous configurations to support the workloads of various applications. The current hardware landscape is composed of traditional multicore CPUs equipped with hardware accelerators that can handle high levels of parallelism. Graphical Processing Units (GPUs) are popular high performance hardware accelerators in modern supercomputers. GPU programming has a different model than that for CPUs, which means that many numerical kernels have to be redesigned and optimized specifically for this architecture. GPUs usually outperform multicore CPUs in some compute intensive and massively parallel applications that have regular processing patterns. However, most scientific applications rely on crucial memory-bound kernels and may witness bottlenecks due to the overhead of the memory bus latency. They can still take advantage of the GPU compute power capabilities, provided that an efficient architecture-aware design is achieved. This dissertation presents a uniform design strategy for optimizing critical memory-bound kernels on GPUs. Based on hierarchical register blocking, double buffering and latency hiding techniques, this strategy leverages the performance of a wide range of standard numerical kernels found in dense and sparse linear algebra libraries. The work presented here focuses on matrix-vector multiplication kernels (MVM) as repre- sentative and most important memory-bound operations in this context. Each kernel inherits the benefits of the proposed strategies. By exposing a proper set of tuning parameters, the strategy is flexible enough to suit different types of matrices, ranging from large dense matrices, to sparse matrices with dense block structures, while high performance is maintained. Furthermore, the tuning parameters are used to maintain the relative performance across different GPU architectures. Multi-GPU acceleration is proposed to scale the performance on several devices. The

  5. Connection Between the SU(3) Algebraic Model and Configuration Space for Bending Modes of Linear Molecules: Application to Acetylene

    Science.gov (United States)

    Renato, Lemus; María del Mar, Estezez-Fregozo

    2017-06-01

    An approach to connect the su(3) dynamical group- used to describe the bending modes of linear molecules- with configuration space is discussed. The SU(3) group may be seen as a consequence of adding a scalar boson to the SU(2) space of two degenerate harmonic oscillators. The resulting SU(3) group becomes the dynamical group for the bending degrees of freedom of linear molecules, but the connection to configuration space is not obvious. This work aims at providing this connection. Our approach is based on the basis of establishing a mapping between the algebraic and configuration states. An arbitrary operator in configuration space is then expanded in terms of generators of the dynamical algebra. The coefficients are determined through a minimization procedure and given in terms of matrix elements defined in configuration space. As an application we consider the vibrational description of the bending modes of the acetylene molecule, where the force constants are estimated in the framework of the U(3) × U(3) model.

  6. Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II

    Science.gov (United States)

    Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael

    2008-01-01

    Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.

  7. Time evolution of linear and generalized Heisenberg algebra nonlinear Pöschl-Teller coherent states

    Science.gov (United States)

    Rego-Monteiro, M. A.; Curado, E. M. F.; Rodrigues, Ligia M. C. S.

    2017-11-01

    We analyze the time evolution of two kinds of coherent states for a particle in a Pöschl-Teller potential. We find a pair of canonically conjugate operators and compare the behavior of their time evolution for both coherent states. The nonlinear ones are more localized. The trajectory in the phase space of the mean values of these two operators is a kind of generalization of the Rose algebraic curves. The new pair of canonically conjugate variables leads to a fourth-order Schrödinger equation which has the same energy spectrum as the Pöschl-Teller system.

  8. N-linear algebraic maps for chemical structure codification: a suitable generalization for atom-pair approaches?

    Science.gov (United States)

    Garcia-Jacas, Cesar R; Marrero-Ponce, Yovani; Barigye, Stephen J; Valdes-Martini, Jose R; Rivera-Borroto, Oscar M; Olivero-Verbel, Jesus

    2014-01-01

    The present manuscript introduces, for the first time, a novel 3D-QSAR alignment free method (QuBiLS-MIDAS) based on tensor concepts through the use of the three-linear and four-linear algebraic forms as specific cases of n-linear maps. To this end, the k(th) three-tuple and four-tuple spatial-(dis)similarity matrices are defined, as tensors of order 3 and 4, respectively, to represent 3Dinformation among "three and four" atoms of the molecular structures. Several measures (multi-metrics) to establish (dis)-similarity relations among "three and four" atoms are discussed, as well as, normalization schemes proposed for the n-tuple spatial-(dis)similarity matrices based on the simple-stochastic and mutual probability algebraic transformations. To consider specific interactions among atoms, both for the global and local indices, n-tuple path and length cut-off constraints are introduced. This algebraic scaffold can also be seen as a generalization of the vector-matrix-vector multiplication procedure (which is a matrix representation of the traditional linear, quadratic and bilinear forms) for the calculation of molecular descriptors and is thus a new theoretical approach with a methodological contribution. A variability analysis based on Shannon's entropy reveals that the best distributions are achieved with the ternary and quaternary measures corresponding to the bond and dihedral angles. In addition, the proposed indices have superior entropy behavior than the descriptors calculated by other programs used in chemo-informatics studies, such as, DRAGON, PADEL, Mold2, and so on. A principal component analysis shows that the novel 3D n-tuple indices codify the same information captured by the DRAGON 3D-indices, as well as, information not codified by the latter. A QSAR study to obtain deeper criteria on the contribution of the novel molecular parameters was performed for the binding affinity to the corticosteroid-binding globulin, using Cramer's steroid database. The

  9. Exact Results Regarding the Physics of Complex Systems via Linear Algebra, Hidden Markov Models, and Information Theory

    Science.gov (United States)

    Riechers, Paul Michael

    How can we ever make sense of what we observe? As a practical matter, most complex systems--that is, many-bodied systems with strongly interacting degrees of freedom--can only be observed through a time-series of relatively few functionals of their microstate. Nevertheless, because of the strong coupling, the many instantaneously-hidden degrees of freedom inject themselves over time into the observable time-series--giving us hope for inference. This dissertation delivers new broadly-applicable results regarding the generation, prediction, and physical implication of such stochastic time-series with hidden structure. After the development of the general mathematical theory, the remainder of the dissertation can be subdivided into three parts. The first part addresses the fundamental limits of generation and predictability of structured stochastic processes. The second part identifies the possible correlation in and diffraction patterns of chaotic crystals. The third part establishes new relationships that constrain and elucidate the fluctuations and thermodynamics of nonequilibrium systems. One of the predominant themes in this dissertation is the use of rather flexible mathematical structures called `hidden Markov models'. Indeed, much of this dissertation grew out of the recognition that--beyond their ability to simulate many sophisticated nonlinear and non-Markovian processes of interest--hidden Markov models enable an exact linear algebraic analysis of processes they represent. However, to proceed required the development of a generalized spectral theory for arbitrary functions of potentially nondiagonalizable operators, which is developed and utilized herein. Despite its long history, it appears (somewhat surprisingly) that not all of linear algebra had been worked out to the extent necessary to address the physics of complex systems. This extension of the more familiar spectral theory is of interest in its own right, and has created several new and rather

  10. Novel Supercomputing Approaches for High Performance Linear Algebra Using FPGAs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop novel FPGA-based algorithmic technology that will enable unprecedented computational power for the solution of large sparse linear equation...

  11. Using the Quaternions to Compose Rotations. Applications of Linear Algebra to Geometry. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 313.

    Science.gov (United States)

    Solomon, Frederick

    This module applies linear algebraic methods to solve the following problem: If an object in a three-dimensional coordinate system is first rotated about a given axis through the origin by a given angle, and then rotated about another axis through the origin by another angle, there is a straightforward way to calculate the combined result of the…

  12. An Investigation into Challenges Faced by Secondary School Teachers and Pupils in Algebraic Linear Equations: A Case of Mufulira District, Zambia

    Science.gov (United States)

    Samuel, Koji; Mulenga, H. M.; Angel, Mukuka

    2016-01-01

    This paper investigates the challenges faced by secondary school teachers and pupils in the teaching and learning of algebraic linear equations. The study involved 80 grade 11 pupils and 15 teachers of mathematics, drawn from 4 selected secondary schools in Mufulira district, Zambia in Central Africa. A descriptive survey method was employed to…

  13. A Method for Using Adjacency Matrices to Analyze the Connections Students Make within and between Concepts: The Case of Linear Algebra

    Science.gov (United States)

    Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle

    2014-01-01

    The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation…

  14. Asymptotic aspect of derivations in Banach algebras.

    Science.gov (United States)

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  15. Applications of a Sequence of Points in Teaching Linear Algebra, Numerical Methods and Discrete Mathematics

    Science.gov (United States)

    Shi, Yixun

    2009-01-01

    Based on a sequence of points and a particular linear transformation generalized from this sequence, two recent papers (E. Mauch and Y. Shi, "Using a sequence of number pairs as an example in teaching mathematics". Math. Comput. Educ., 39 (2005), pp. 198-205; Y. Shi, "Case study projects for college mathematics courses based on a particular…

  16. Basic algebra

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  17. Symmetry Lie algebras and properties of linear ordinary differential equations with maximal dimension

    Science.gov (United States)

    Folly-Gbetoula, Mensah; Kara, A. H.

    2015-04-01

    Solutions of linear iterative equations and expressions for these solutions in terms of the parameters of the first-order source equation are obtained. Based on certain properties of iterative equations, finding the solutions is reduced to finding solutions of the second-order source equation. We have therefore found classes of solutions to the source equations by letting the parameters of the source equation be functions of a specific type such as monomials, functions of exponential and logarithmic type.

  18. Non-linear partial differential equations an algebraic view of generalized solutions

    CERN Document Server

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  19. FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung-Hwan [ORNL; Xu, Luna [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Sukumar, Sreenivas Rangan [ORNL; Kannan, Ramakrishnan [ORNL

    2016-01-01

    Linear algebraic operations such as matrix manipulations form the kernel of many machine learning and other crucial algorithms. Scaling up as well as scaling out such algorithms are highly desirable to enable efficient processing over millions of data points. To this end, we present a matrix manipulation approach to effectively scale-up each node in a scale-out data parallel platform such as Apache Spark. Specifically, we enable hardware acceleration for matrix multiplications in a distributed Spark setup without user intervention. Our approach supports both dense and sparse distributed matrices, and provides flexible control of acceleration by matrix density. We demonstrate the benefit of our approach for generalized matrix multiplication operations over large matrices with up to four billion elements. To connect the effectiveness of our approach with machine learning applications, we performed Gramian matrix computation via generalized matrix multiplications. Our experiments show that our approach achieves more than 2x performance speed-up, and up to 96.1% computation improvement, compared to a state of the art Spark MLlib for dense matrices.

  20. Algebraic partial Boolean algebras

    CERN Document Server

    Smith, D

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...

  1. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  2. Beginning algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division

  3. Introduction to abstract algebra

    CERN Document Server

    Smith, Jonathan D H

    2008-01-01

    Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduc

  4. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    Science.gov (United States)

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  5. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  6. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  7. Resolution of First- and Second-Order Linear Differential Equations with Periodic Inputs by a Computer Algebra System

    Directory of Open Access Journals (Sweden)

    M. Legua

    2008-01-01

    Full Text Available In signal processing, a pulse means a rapid change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. A square wave function may be viewed as a pulse that repeats its occurrence periodically but the return to the baseline value takes some time to happen. When these periodic functions act as inputs in dynamic systems, the standard tool commonly used to solve the associated initial value problem (IVP is Laplace transform and its inverse. We show how a computer algebra system may also provide the solution of these IVP straight forwardly by adequately introducing the periodic input.

  8. Data driven linear algebraic methods for analysis of molecular pathways: application to disease progression in shock/trauma

    Science.gov (United States)

    McGuire, Mary F.; Iyengar, M. Sriram; Mercer, David W.

    2012-01-01

    Motivation Although trauma is the leading cause of death for those below 45 years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. Results In the node/molecular analysis of the first 24 hours from trauma, PSA uncovered 7 molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which 3 molecules had not been previously associated with any shock / trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships – activation, expression, inhibition, and transcription – and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on

  9. Data driven linear algebraic methods for analysis of molecular pathways: application to disease progression in shock/trauma.

    Science.gov (United States)

    McGuire, Mary F; Sriram Iyengar, M; Mercer, David W

    2012-04-01

    Although trauma is the leading cause of death for those below 45years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. In the node/molecular analysis of the first 24h from trauma, PSA uncovered seven molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which three molecules had not been previously associated with any shock/trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships--activation, expression, inhibition, and transcription--and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction

  10. DYNSTALL: Subroutine package with a dynamic stall model

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    2001-03-01

    A subroutine package, called DYNSTALL, for the calculation of 2D unsteady airfoil aerodynamics is described. The subroutines are written in FORTRAN. DYNSTALL is basically an implementation of the Beddoes-Leishman dynamic stall model. This model is a semi-empirical model for dynamic stall. It includes, however, also models for attached flow unsteady aerodynamics. It is complete in the sense that it treats attached flow as well as separated flow. Semi-empirical means that the model relies on empirically determined constants. Semi because the constants are constants in equations with some physical interpretation. It requires the input of 2D airfoil aerodynamic data via tables as function of angle of attack. The method is intended for use in an aeroelastic code with the aerodynamics solved by blade/element method. DYNSTALL was written to work for any 2D angles of attack relative to the airfoil, e.g. flow from the rear of an airfoil.

  11. Quantum computing with black-box quantum subroutines

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Jayne [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Gu, Mile [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing (China); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Modi, Kavan [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore (Singapore)

    2014-07-01

    In classical computation a subroutine is treated as a black box and we do not need to know its exact physical implementation to use it. A complex problem can be decomposed into smaller problems using such modularity. We show that quantum mechanically applying an unknown quantum process as a subroutine is impossible, and this restricts computation models such as DQC1 from operating on unknown inputs. We present a method to avoid this situation for certain computational problems and apply to a modular version of Shor's factoring algorithm. We examine how quantum entanglement and discord fare in this implementation. In this way we are able to study the role of discord in Shor's factoring algorithm.

  12. Highly Accelerated, Intravascular T1, T2, and Proton Density Mapping with Linear Algebraic Modeling and Sensitivity Profile Correction at 3T.

    Science.gov (United States)

    Wang, Guan; Zhang, Yi; Hegde, Shashank Sathyanarayana; Bottomley, Paul A

    2016-05-01

    Vessel wall MRI with intravascular (IV) detectors can produce superior local signal-to-noise ratios (SNR) and generate high-resolution T1, T2, and proton density (PD) maps that could be used to automatically classify atherosclerotic lesion stage. However, long acquisition times potentially limit multi-parametric mapping. Here, for the first time, spectroscopy with linear algebraic modeling (SLAM) is applied to yield accurate compartment-average T1, T2 and PD measures at least 10 times faster compared to a standard full k-space reconstructed MIX-TSE sequence at 3T. Simple phase and magnitude sensitivity corrections are incorporated into the SLAM reconstruction to compensate for IV detector non-uniformity.

  13. Boolean algebra

    CERN Document Server

    Goodstein, R L

    2007-01-01

    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  14. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  15. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    Science.gov (United States)

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  16. Iterant Algebra

    Directory of Open Access Journals (Sweden)

    Louis H. Kauffman

    2017-07-01

    Full Text Available We give an exposition of iterant algebra, a generalization of matrix algebra that is motivated by the structure of measurement for discrete processes. We show how Clifford algebras and matrix algebras arise naturally from iterants, and we then use this point of view to discuss the Schrödinger and Dirac equations, Majorana Fermions, representations of the braid group and the framed braids in relation to the structure of the Standard Model for physics.

  17. Applied matrix algebra in the statistical sciences

    CERN Document Server

    Basilevsky, Alexander

    2005-01-01

    This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.

  18. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  19. Leibniz Algebras and Lie Algebras

    Directory of Open Access Journals (Sweden)

    Geoffrey Mason

    2013-10-01

    Full Text Available This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.

  20. Radiology PRICER 2. 0 subroutines for RADMAIN and RADPRICE. Software

    Energy Technology Data Exchange (ETDEWEB)

    Kowaleski, R.

    1989-04-01

    RADMAIN is a driver program provided for installation testing of PRICER 2.0. The format of the tape accompanying the form is 6250-BPI, 9-track, standard-label multifile tape. The six files contained on the tape are: RADMAIN - Driver program - COBOL vs source code; RADPRICE - Radiology Pricing subroutine; RADPROV - COBOL vs source code - Providers with carriers and localities; RADHCPCS - Radiology HCPCS codes; RADPREV - Prevailing charges and Fee Schedule amounts for Radiology; BILL - Radiology Bill Test File. Software Description: The software is written in the COBOL language for use on IBM 3090-500E using XA operating system.

  1. The Algebra of Sleepiness: Investigating the Interaction of Homeostatic (S) and Circadian (C) Processes in Sleepiness Using Linear Metrics"

    Science.gov (United States)

    Mairesse, Olivier; Hofmans, Joeri; Neu, Daniel; Dinis Monica de Oliveira, Armando Luis; Cluydts, Raymond; Theuns, Peter

    2010-01-01

    The present studies were conducted to contribute to the debate on the interaction between circadian (C) and homeostatic (S) processes in models of sleep regulation. The Two-Process Model of Sleep Regulation assumes a linear relationship between processes S and C. However, recent elaborations of the model, based on data from forced desynchrony…

  2. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  3. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  4. Algebra I Essentials For Dummies

    CERN Document Server

    Sterling, Mary Jane

    2010-01-01

    With its use of multiple variables, functions, and formulas algebra can be confusing and overwhelming to learn and easy to forget. Perfect for students who need to review or reference critical concepts, Algebra I Essentials For Dummies provides content focused on key topics only, with discrete explanations of critical concepts taught in a typical Algebra I course, from functions and FOILs to quadratic and linear equations. This guide is also a perfect reference for parents who need to review critical algebra concepts as they help students with homework assignments, as well as for adult learner

  5. Algebraic geometry

    National Research Council Canada - National Science Library

    Hartshorne, Robin

    1977-01-01

    .... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...

  6. Algebraic Numbers

    Directory of Open Access Journals (Sweden)

    Watase Yasushige

    2016-12-01

    Full Text Available This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial ring of ℚ[x] turns to be a field.

  7. Problems in abstract algebra

    CERN Document Server

    Wadsworth, A R

    2017-01-01

    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  8. Generalized randomly amplified linear system driven by gaussian noises: extreme heavy tail and algebraic correlation decay in plasma turbulence.

    Science.gov (United States)

    Steinbrecher, György; Weyssow, B

    2004-03-26

    The extreme heavy tail and the power-law decay of the turbulent flux correlation observed in hot magnetically confined plasmas are modeled by a system of coupled Langevin equations describing a continuous time linear randomly amplified stochastic process where the amplification factor is driven by a superposition of colored noises which, in a suitable limit, generate a fractional Brownian motion. An exact analytical formula for the power-law tail exponent beta is derived. The extremely small value of the heavy tail exponent and the power-law distribution of laminar times also found experimentally are obtained, in a robust manner, for a wide range of input values, as a consequence of the (asymptotic) self-similarity property of the noise spectrum. As a by-product, a new representation of the persistent fractional Brownian motion is obtained.

  9. Implicative Algebras

    African Journals Online (AJOL)

    Tadesse

    Department of Mathematics, Faculty of Computer and Mathematical Sciences, Addis Ababa. University, Addis Ababa, Ethiopia(*drkvenkateswarlu@gmail.com, **berhanufk@yahoo.co.uk). ABSTRACT. In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra ...

  10. Waterloo Workshop on Computer Algebra

    CERN Document Server

    Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday

    2018-01-01

    This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

  11. Deficiently extremal Gorenstein algebras

    Indian Academy of Sciences (India)

    For the given codimension g ≥ 3 and initial degree p ≥ 2, a Gorenstein algebra R/I with minimal multiplicity is extremal in the sense of Schenzel [8]. This has a nice structural implication: the minimal resolution of R/I must be pure and almost linear, and so their. Betti numbers are given by Herzog and Kühl [3] formulae.

  12. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  13. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  14. Commutative Algebra

    CERN Document Server

    Fontana, Marco; Olberding, Bruce; Swanson, Irena

    2011-01-01

    Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigrou

  15. College algebra

    CERN Document Server

    Fine, Henry Burchard

    2005-01-01

    At the beginning of the twentieth century, college algebra was taught differently than it is nowadays. There are many topics that are now part of calculus or analysis classes. Other topics are covered only in abstract form in a modern algebra class on field theory. Fine's College Algebra offers the reader a chance to learn the origins of a variety of topics taught in today's curriculum, while also learning valuable techniques that, in some cases, are almost forgotten. In the early 1900s, methods were often emphasized, rather than abstract principles. In this book, Fine includes detailed discus

  16. Complex Algebraic Varieties

    CERN Document Server

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  17. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    -theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology......The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject...... of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group...

  18. Algebraic Geometry

    CERN Document Server

    Holme, Audun

    1988-01-01

    This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.

  19. Linear Models

    CERN Document Server

    Searle, Shayle R

    2012-01-01

    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  20. Computational methods in algebra and analysis

    OpenAIRE

    Castro Jiménez, Francisco Jesús

    2007-01-01

    This paper describes some applications of Computer Algebra to Algebraic Analysis also known as D-module theory, i.e. the algebraic study of the systems of linear partial differential equations. Gröbner bases for rings of linear differential operators are the main tools in the field. We start by giving a short review of the problem of solving systems of polynomial equations by symbolic methods. These problems motivate some of the later developed subjects. Ministerio de Cie...

  1. Realizations of AF-algebras as graph algebras, Exel-Laca algebras, and ultragraph algebras

    OpenAIRE

    Katsura, Takeshi; Sims, Aidan; Tomforde, Mark

    2008-01-01

    We give various necessary and sufficient conditions for an AF-algebra to be isomorphic to a graph C*-algebra, an Exel-Laca algebra, and an ultragraph C*-algebra. We also explore consequences of these results. In particular, we show that all stable AF-algebras are both graph C*-algebras and Exel-Laca algebras, and that all simple AF-algebras are either graph C*-algebras or Exel-Laca algebras. In addition, we obtain a characterization of AF-algebras that are isomorphic to the C*-algebra of a ro...

  2. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  3. Linear Algebra and Analysis Masterclasses

    Indian Academy of Sciences (India)

    Hilbert transform, Hilbert class-field, Hilbert basis theorem, Hilbert irreducibility theorem,. Hilbert nullstellensatz. ...... If an object in a given class can be carried into another by a transformation of a special kind, we say the two ..... on the null space of A. On the complement of this space, A can be inverted. Set G to be the.

  4. Inverting the Linear Algebra Classroom

    Science.gov (United States)

    Talbert, Robert

    2014-01-01

    The inverted classroom is a course design model in which students' initial contact with new information takes place outside of class meetings, and students spend class time on high-level sense-making activities. The inverted classroom model is so called because it inverts or "flips" the usual classroom design where typically class…

  5. Linear algebra and group theory

    CERN Document Server

    Smirnov, VI

    2011-01-01

    This accessible text by a Soviet mathematician features material not otherwise available to English-language readers. Its three-part treatment covers determinants and systems of equations, matrix theory, and group theory. 1961 edition.

  6. Approximate Implicitization Using Linear Algebra

    Directory of Open Access Journals (Sweden)

    Oliver J. D. Barrowclough

    2012-01-01

    Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

  7. Automated Reuse of Scientific Subroutine Libraries through Deductive Synthesis

    Science.gov (United States)

    Lowry, Michael R.; Pressburger, Thomas; VanBaalen, Jeffrey; Roach, Steven

    1997-01-01

    Systematic software construction offers the potential of elevating software engineering from an art-form to an engineering discipline. The desired result is more predictable software development leading to better quality and more maintainable software. However, the overhead costs associated with the formalisms, mathematics, and methods of systematic software construction have largely precluded their adoption in real-world software development. In fact, many mainstream software development organizations, such as Microsoft, still maintain a predominantly oral culture for software development projects; which is far removed from a formalism-based culture for software development. An exception is the limited domain of safety-critical software, where the high-assuiance inherent in systematic software construction justifies the additional cost. We believe that systematic software construction will only be adopted by mainstream software development organization when the overhead costs have been greatly reduced. Two approaches to cost mitigation are reuse (amortizing costs over many applications) and automation. For the last four years, NASA Ames has funded the Amphion project, whose objective is to automate software reuse through techniques from systematic software construction. In particular, deductive program synthesis (i.e., program extraction from proofs) is used to derive a composition of software components (e.g., subroutines) that correctly implements a specification. The construction of reuse libraries of software components is the standard software engineering solution for improving software development productivity and quality.

  8. Algebra and Number Theory An Integrated Approach

    CERN Document Server

    Dixon, Martyn; Subbotin, Igor

    2011-01-01

    Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines-linear algebra, abstract algebra, and number theory-into one compr

  9. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  10. Homology theory on algebraic varieties

    CERN Document Server

    Wallace, Andrew H

    1958-01-01

    Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n

  11. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  12. Differential Algebra for Model Comparison

    OpenAIRE

    Harrington, Heather A.; Ho, Kenneth L.; Meshkat, Nicolette

    2016-01-01

    We present a method for rejecting competing models from noisy time-course data that does not rely on parameter inference. First we characterize ordinary differential equation models in only measurable variables using differential algebra elimination. Next we extract additional information from the given data using Gaussian Process Regression (GPR) and then transform the differential invariants. We develop a test using linear algebra and statistics to reject transformed models with the given d...

  13. Abstract algebra

    CERN Document Server

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  14. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  15. Algebraic arithmetic

    CERN Document Server

    Bell, Eric T

    1927-01-01

    The central topic of this book is the presentation of the author's principle of arithmetical paraphrases, which won him the Bôcher Prize in 1924. This general principle served to unify and extend many isolated results in the theory of numbers. The author successfully provides a systematic attempt to find a unified theory for each of various classes of related important problems in the theory of numbers, including its interrelations with algebra and analysis. This book will be of interest to advanced students in various branches of mathematics, including number theory, abstract algebra, ellipti

  16. Computer algebra and algebraic analysis

    OpenAIRE

    Castro Jiménez, Francisco Jesús; Lambán Pardo, Laureano (Coordinador); Romero Ibáñez, Ana (Coordinador); Rubio García, Julio (Coordinador)

    2010-01-01

    Este artículo describe algunas aplicaciones del Álgebra Computacional al Análisis Algebraico, también conocido como teoría de D-módulos, es decir, el estudio algebraico de sistemas lineales de ecuaciones en derivadas parciales. Mostramos cómo calcular diferentes objetos e invariantes en teoría de D-módulos, utilizando bases de Groebner para anillos de operadores diferenciales lineales. This paper describes some applications of Computer Algebra to Algebraic Analysis also known as D-module t...

  17. A Characterization of a Unified Notion of Mathematical Function: The Case of High School Function and Linear Transformation

    Science.gov (United States)

    Zandieh, Michelle; Ellis, Jessica; Rasmussen, Chris

    2017-01-01

    As part of a larger study of student understanding of concepts in linear algebra, we interviewed 10 university linear algebra students as to their conceptions of functions from high school algebra and linear transformation from their study of linear algebra. An overarching goal of this study was to examine how linear algebra students see linear…

  18. Computer subroutines for estimation of human exposure to radiation in low Earth orbit

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.

    1985-01-01

    Computer subroutines to calculate human exposure to trapped radiations in low Earth orbit (LEO) on the basis of a simple approximation of the human geometry by spherical shell shields of varying thickness are presented and detailed. The subroutines calculate the dose to critical body organs and the fraction of exposure limit reached as a function of altitude of orbit, degree of inclination, shield thickness, and days in mission. Exposure rates are compared with current exposure limits.

  19. Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines

    Science.gov (United States)

    Sullivan, W. N.; Leonard, T. M.

    1980-11-01

    An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. A load generator was used for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

  20. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  1. Matrix relation algebras

    NARCIS (Netherlands)

    el Bachraoui, M.; van de Vel, M.L.J.

    2002-01-01

    Square matrices over a relation algebra are relation algebras in a natural way. We show that for fixed n, these algebras can be characterized as reducts of some richer kind of algebra. Hence for fixed n, the class of n × n matrix relation algebras has a first-order characterization. As a

  2. Algebraic theory of molecules

    CERN Document Server

    Iachello, F

    1995-01-01

    1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters

  3. Some Applications of Algebraic System Solving

    Science.gov (United States)

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  4. Robust Algebraic Multilevel Methods and Algorithms

    CERN Document Server

    Kraus, Johannes

    2009-01-01

    This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. Provides a systematic presentation of the recent advances in robust algebraic multilevel methods. Can be used for advanced courses on the topic.

  5. Deriving the Regression Line with Algebra

    Science.gov (United States)

    Quintanilla, John A.

    2017-01-01

    Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…

  6. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  7. Algebra I textbook for students of mathematics

    CERN Document Server

    Gorodentsev, Alexey L

    2016-01-01

    This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  8. Algebra II textbook for students of mathematics

    CERN Document Server

    Gorodentsev, Alexey L

    2017-01-01

    This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  9. Algebraic functions

    CERN Document Server

    Bliss, Gilbert Ames

    1933-01-01

    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  10. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  11. Applications of differential algebra for computing Lie algebras of infinitesimal CR-automorphisms

    OpenAIRE

    Sabzevari, Masoud; Hashemi, Amir; -Alizadeh, Benyamin M.; Merker, Joel

    2012-01-01

    We perform detailed computations of Lie algebras of infinitesimal CR-automorphisms associated to three specific model real analytic CR-generic submanifolds in C^9 by employing differential algebra computer tools -- mostly within the Maple package DifferentialAlgebra -- in order to automate the handling of the arising highly complex linear systems of pde's. Before treating these new examples which prolong previous works of Beloshapka, of Shananina and of Mamai, we provide general formulas for ...

  12. A distinguished real Banach algebra

    Indian Academy of Sciences (India)

    We present a new and elementary approach to characterize the maximal ideals and their associated multiplicative linear functionals for a classical real Banach algebra of analytic functions. Author Affiliations. Raymond Mortini1. Département de Mathématiques, LMAM, UMR 7122, Université Paul Verlaine, Ile du Saulcy, ...

  13. Open algebraic surfaces

    CERN Document Server

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  14. A linear programming manual

    Science.gov (United States)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  15. Discrete event systems in dioid algebra and conventional algebra

    CERN Document Server

    Declerck, Philippe

    2013-01-01

    This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i

  16. Recursive Linearization Of Dynamical Models Of Manipulators

    Science.gov (United States)

    Jain, Abhinandan; Rodriquez, Guillermo

    1993-01-01

    Report shows how spatial-operator algebra developed by authors used to derive linearized mathematical models of dynamics of robotic manipulators. Aspects of spatial-operator algebra also described in "Robot Control Based On Spatial-Operator Algebra" (NPO-17918), "Unified Formulation Of Dynamics Of Robot Arms" (NPO-18040), and "Spatial-Operator Algebra For Robotic Manipulators" (NPO-17770).

  17. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  18. Novikov-Jordan algebras

    OpenAIRE

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  19. Embeddings of Heyting Algebras

    NARCIS (Netherlands)

    Jongh, D.H.J. de; Visser, A.

    In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably

  20. Introduction to relation algebras relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  1. Algebraic Multigrid Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    2017-08-01

    AMG is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the BoomerAMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL and is very similar to the AMG2013 benchmark with additional optimizations. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem with a 27-point stencil, which can be scaled up and is designed to solve a very large problem. A second problem simulates a time dependent problem, in which successively various smnllcr systems are solved.

  2. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  3. Quantum cluster algebras and quantum nilpotent algebras.

    Science.gov (United States)

    Goodearl, Kenneth R; Yakimov, Milen T

    2014-07-08

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.

  4. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  5. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  6. Uniform Frechet algebras

    CERN Document Server

    Goldmann, H

    1990-01-01

    The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.

  7. Deformed Virasoro Algebras from Elliptic Quantum Algebras

    Science.gov (United States)

    Avan, J.; Frappat, L.; Ragoucy, E.

    2017-09-01

    We revisit the construction of deformed Virasoro algebras from elliptic quantum algebras of vertex type, generalizing the bilinear trace procedure proposed in the 1990s. It allows us to make contact with the vertex operator techniques that were introduced separately at the same period. As a by-product, the method pinpoints two critical values of the central charge for which the center of the algebra is extended, as well as (in the gl(2) case) a Liouville formula.

  8. Lie n-derivations on 7 -subspace lattice algebras

    Indian Academy of Sciences (India)

    all x ∈ K and all A ∈ Alg L. Based on this result, a complete characterization of linear n-Lie derivations on Alg L is obtained. Keywords. J -subspace lattice algebras; Lie derivations; Lie n-derivations; derivations. 2010 Mathematics Subject Classification. 47B47, 47L35. 1. Introduction. Let A be an algebra. Recall that a linear ...

  9. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  10. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  11. Relation between dual S-algebras and BE-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2015-05-01

    Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.  

  12. Algebra a complete introduction : teach yourself

    CERN Document Server

    Neill, Hugh

    2013-01-01

    Algebra: A Complete Introduction is the most comprehensive yet easy-to-use introduction to using Algebra. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge. The book covers all the key areas of algebra including elementary operations, linear equations, formulae, simultaneous equations, quadratic equations, logarithms, variation, laws and sequences. Everything you will need is here in this one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.

  13. Algebraic pattern recognition

    Science.gov (United States)

    Przybyłek, Michał R.

    2014-01-01

    This paper offers an algebraic explanation for the phenomenon of a new and prosperous branch of evolutionary metaheuristics - "skeletal algorithms". We show how this explanation gives rise to algorithms for recognition of algebraic theories and present sample applications.

  14. Families talen en algebra

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1976-01-01

    Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

  15. Algebraic operator approach to gas kinetic models

    Science.gov (United States)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  16. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  17. On algebraic time-derivative estimation and deadbeat state reconstruction

    DEFF Research Database (Denmark)

    Reger, Johann; Jouffroy, Jerome

    2009-01-01

    This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen as a spec......This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...

  18. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  19. Quantized Algebra I Texts

    Science.gov (United States)

    DeBuvitz, William

    2014-03-01

    I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.

  20. Combinatorial commutative algebra

    CERN Document Server

    Miller, Ezra

    2005-01-01

    Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

  1. Foundations of algebraic geometry

    CERN Document Server

    Weil, A

    1946-01-01

    This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

  2. Advanced finite element simulation with MSC Marc application of user subroutines

    CERN Document Server

    Javanbakht, Zia

    2017-01-01

    This book offers an in-depth insight into the general-purpose finite element program MSC Marc, which is distributed by MSC Software Corporation. It is a specialized program for nonlinear problems (implicit solver) which is common in academia and industry. The primary goal of this book is to provide a comprehensive introduction to a special feature of this software: the user can write user-subroutines in the programming language Fortran, which is the language of all classical finite element packages. This subroutine feature allows the user to replace certain modules of the core code and to implement new features such as constitutive laws or new elements. Thus, the functionality of commercial codes (‘black box’) can easily be extended by linking user written code to the main core of the program. This feature allows to take advantage of a commercial software package with the flexibility of a ‘semi-open’ code. .

  3. Fitting: Subroutine to fit four-moment probability distributions to data

    Energy Technology Data Exchange (ETDEWEB)

    Winterstein, S.R.; Lange, C.H.; Kumar, S. [Stanford Univ., CA (United States)

    1995-01-01

    FITTING is a Fortran subroutine that constructs a smooth, generalized four-parameter probability distribution model. It is fit to the first four statistical moments of the random variable X (i.e., average values of X, X{sup 2}, X{sup 3}, and X{sup 4}) which can be calculated from data using the associated subroutine CALMOM. The generalized model is produced from a cubic distortion of the parent model, calibrated to match the first four moments of the data. This four-moment matching is intended to provide models that are more faithful to the data in the upper tail of the distribution. Examples are shown for two specific cases.

  4. Applications of Maple To Algebraic Cryptography.

    Science.gov (United States)

    Sigmon, Neil P.

    1997-01-01

    Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…

  5. Algebraic cycles on an abelian variety

    OpenAIRE

    O'Sullivan, Peter

    2009-01-01

    It is shown that to every Q-linear cycle \\bar\\alpha modulo numerical equivalence on an abelian variety A there is canonically associated a Q-linear cycle \\alpha modulo rational equivalence on A lying above \\bar\\alpha. The assignment \\bar\\alpha -> \\alpha respects the algebraic operations and pullback and push forward along homomorphisms of abelian varieties.

  6. Development of a CMAQ Subroutine for Wind-blown Dust Emission Calculation

    Science.gov (United States)

    Park, S.

    2011-12-01

    A subroutine for calculating the wind-blown dust emission in the framework of the Community Multiscale Air Quality Modeling System (CMAQ) has been developed. This new subroutine, called WDEMIS, is analogous in its use to the recently added sea-salt emission subroutine SSEMIS. To make use of WDEMIS, the subroutine AERO_EMIS has to be modified so that WDEMIS (just like SSEMIS) is called by AERO_EMIS. The threshold friction velocity for smooth dry surface, the drag partitioning effect by non-erodible surface roughness elements, the soil moisture effect, the positive feedback of the saltating soil particles to the friction velocity, the saltation scheme calculating the horizontal soil flux, and the sandblasting scheme calculating the vertical dust emission flux are accounted for in WDEMIS. In order to supply soil characteristics required for wind-blown dust emission calculation, i.e., soil moisture content, land use fraction, and soil texture, the Pleim-Xiu land-surface model [Xiu and Pleim, 2001] is used by the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) combined with MCIP version 3.6. CMAQ modelling using WDEMIS was performed to simulate an Asian dust storm episode that occurred in April 2006 to evaluate the wind-blown dust emission prediction by WDEMIS. Sensitivity analysis showed that the accuracy of land use data and soil property supplied to WDEMIS is critical to performance of WDEMIS. Appropriate size fractioning is considered one of the most important improvement required in the future. Xiu, A., and J.E. Pleim, Development of a land surface model. Part I: Application in a mesoscale meteorology model, Journal of Applied Meteorology, 40, 192-209, 2001.

  7. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  8. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  9. Hochschild cohomology of the Weyl algebra and Vasiliev's equations

    Science.gov (United States)

    Sharapov, Alexey A.; Skvortsov, Evgeny D.

    2017-12-01

    We propose a simple injective resolution for the Hochschild complex of the Weyl algebra. By making use of this resolution, we derive explicit expressions for nontrivial cocycles of the Weyl algebra with coefficients in twisted bimodules as well as for the smash products of the Weyl algebra and a finite group of linear symplectic transformations. A relationship with the higher-spin field theory is briefly discussed.

  10. Commutative algebra constructive methods finite projective modules

    CERN Document Server

    Lombardi, Henri

    2015-01-01

    Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is r...

  11. Algebraic properties of generalized inverses

    CERN Document Server

    Cvetković‐Ilić, Dragana S

    2017-01-01

    This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...

  12. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  13. Simple relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  14. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  15. Algebraic Generalization Strategies Used by Kuwaiti Pre-Service Teachers

    Science.gov (United States)

    Alajmi, Amal Hussain

    2016-01-01

    This study reports on the algebraic generalization strategies used by elementary and middle/high school pre-service mathematics teachers in Kuwait. They were presented with 9 tasks that involved linear, exponential, and quadratic situations. The results showed that these pre-service teachers had difficulty in generalizing algebraic rules in all 3…

  16. Lifting solutions to perturbing problems in C*-algebras

    CERN Document Server

    Loring, Terry A

    1996-01-01

    The nature of C^*-algebras is such that one cannot study perturbation without also studying the theory of lifting and the theory of extensions. Approximation questions involving representations of relations in matrices and C^*-algebras are the central focus of this volume. A variety of approximation techniques are unified by translating them into lifting problems: from classical questions about transitivity of algebras of operators on Hilbert spaces to recent results in linear algebra. One chapter is devoted to Lin's theorem on approximating almost normal matrices by normal matrices. The techn

  17. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  18. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  19. Cohomology of Effect Algebras

    Directory of Open Access Journals (Sweden)

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  20. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  1. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  2. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    N.W. van den Hijligenberg; R. Martini

    1995-01-01

    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  3. The Virasoro vertex algebra and factorization algebras on Riemann surfaces

    Science.gov (United States)

    Williams, Brian

    2017-12-01

    This paper focuses on the connection of holomorphic two-dimensional factorization algebras and vertex algebras which has been made precise in the forthcoming book of Costello-Gwilliam. We provide a construction of the Virasoro vertex algebra starting from a local Lie algebra on the complex plane. Moreover, we discuss an extension of this factorization algebra to a factorization algebra on the category of Riemann surfaces. The factorization homology of this factorization algebra is computed as the correlation functions. We provide an example of how the Virasoro factorization algebra implements conformal symmetry of the beta-gamma system using the method of effective BV quantization.

  4. Topological characterizations of S-Linearity

    Directory of Open Access Journals (Sweden)

    Carfi', David

    2007-10-01

    Full Text Available We give several characterizations of basic concepts of S-linear algebra in terms of weak duality on topological vector spaces. On the way, some classic results of Functional Analysis are reinterpreted in terms of S-linear algebra, by an application-oriented fashion. The results are required in the S-linear algebra formulation of infinite dimensional Decision Theory and in the study of abstract evolution equations in economical and physical Theories.

  5. Fuzzy logic of quasi-truth an algebraic treatment

    CERN Document Server

    Di Nola, Antonio; Turunen, Esko

    2016-01-01

    This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Łukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV –algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate s...

  6. Holstein-Primakoff realization of Higgs algebra and its q-extension

    Science.gov (United States)

    Chung, Won Sang

    2014-03-01

    In this paper, Holstein-Primakoff realization of Higgs algebra is obtained by using the linear (or quadratic) deformation of Heisenberg algebra and q-deformed Higgs algebra is proposed. Some applications such as Kepler problem in a two-dimensional curved space and SUSY quantum mechanics are also discussed.

  7. Lie groups, lie algebras, and representations an elementary introduction

    CERN Document Server

    Hall, Brian

    2015-01-01

    This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...

  8. Representation theory a homological algebra point of view

    CERN Document Server

    Zimmermann, Alexander

    2014-01-01

      Introducing the representation theory of groups and finite dimensional algebras, this book first studies basic non-commutative ring theory, covering the necessary background of elementary homological algebra and representations of groups to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings ...

  9. Algebraic monoids, group embeddings, and algebraic combinatorics

    CERN Document Server

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

    2014-01-01

    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  10. XSNQ-U: a non-LTE emission and absorption coefficient subroutine

    Energy Technology Data Exchange (ETDEWEB)

    Lokke, W.A.; Grasberger, W.H.

    1977-01-06

    This report describes the non-LTE atomic-state computer program, XSNQ-U. The original classified report was issued in 1971. Since then, important changes and improvements have been included. XSNQ-U provides frequency-dependent emission and absorption coefficients for a material not in LTE (local thermodynamic equilibrium). As in XSNB, an LTE opacity subroutine, a compromise was sought between accuracy and computer speed. The result, XSNQ-U, is intended for use as a subroutine in any transport code. This report surveys the basic non-LTE equations for the average ion model, as pioneered by Grasberger (UCRL-12408 and -5135), and gives details for the approximations and technique used in XSNQ-U. Also included are some illustrative numerical examples. Since the writing of the classified report, the code has been modified to handle the case of multiple elements. The extension is straight forward; the notation of this report would only be more cumbersome if the single-element notation were replaced by the multiple-element notation. Also, the method of solving the rate equations by using analytical differentials as discussed in the classified report was replaced by a more direct incremental differences scheme, which is discussed in the present version. 12 figures, 2 tables.

  11. Avoiding Communication in Dense Linear Algebra

    Science.gov (United States)

    2013-08-16

    cost of O( nbt +1) words. We now consider the ith sweep, where we assume the band is too large to fit in fast memory. The dominant communication cost is...O( nbt +1) = O ( n2b2 M + nb ) . 10.3.1.5 Latency Cost We will assume the band matrix is stored in LAPACK symmetric band storage format (column-major

  12. A linear algebra model for quasispecies

    Science.gov (United States)

    García-Pelayo, Ricardo

    2002-06-01

    In the present work we present a simple model of the population genetics of quasispecies. We show that the error catastrophe arises because in Biology the mutation rates are almost zero and the mutations themselves are almost neutral. We obtain and discuss previously known results from the point of view of this model. New results are: the fitness of a sequence in terms of its abundance in the quasispecies, a formula for the stable distribution of a quasispecies in which the fitness depends only on the Hamming distance to the master sequence, the time it takes the master sequence to generate a stable quasispecies (such as in the infection by a virus) and the fitness of quasispecies.

  13. Dissipative Systems Synthesis: a Linear Algebraic Approach

    OpenAIRE

    Belur, Madhu N.; Pillai, Harish K.; Trentelman, H.L.

    2005-01-01

    In this paper we consider the problem of synthesis of dissipative systems for the case that first and higher order derivatives of the concerned variables also appear in the weighting function. The problem is formulated and solved using the behavioral approach to systems and control. We relate the problem of weighted H-infinity control as a special case of this synthesis problem. The synthesis problem and its solution can be systematically understood when one notices that it is similar to find...

  14. Krylov solvers for linear algebraic systems

    CERN Document Server

    Broyden, Charles George

    2004-01-01

    The first four chapters of this book give a comprehensive and unified theory of the Krylov methods. Many of these are shown to be particular examples ofthe block conjugate-gradient algorithm and it is this observation thatpermits the unification of the theory. The two major sub-classes of thosemethods, the Lanczos and the Hestenes-Stiefel, are developed in parallel asnatural generalisations of the Orthodir (GCR) and Orthomin algorithms. Theseare themselves based on Arnoldi's algorithm and a generalised Gram-Schmidtalgorithm and their properties, in particular their stability properties,are det

  15. High performance linear algebra algorithms: An introduction

    DEFF Research Database (Denmark)

    Gustavson, F.G.; Wasniewski, Jerzy

    2006-01-01

    . In talk two, Jerzy Waśniewski presented the recursive packed format and its related Cholesky factorization algorithm, [2]. This novel format gave especially good Cholesky performance for very large matrices. In talk three, Jerzy Waśniewski demonstrated a detailed tuning strategy for talk one and presented...... performance results on six important platforms, Alpha, IBM, Intel, Itanium, SGI and Sun. The performance runs covered the algorithms of talks one and two as well as Lapack’s full and packed Cholesky codes, [3]. Overall, the square block hybrid method was best but was not a clear winner. The recursive method...

  16. Playa: High-Performance Programmable Linear Algebra

    Directory of Open Access Journals (Sweden)

    Victoria E. Howle

    2012-01-01

    Full Text Available This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects from a user's perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for Playa's overloaded operators and other functions, and briefly survey some of the implementation issues involved.

  17. On almost ƒ-algebras

    African Journals Online (AJOL)

    Click on the link to view the abstract. Keywords: Almost ƒ-algebra; ƒ-algebra; orthosymmetric bimorphism. Quaestiones Mathematicae 32(2009), 55–69. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM.

  18. C*-algebras

    Science.gov (United States)

    Bär, Christian; Becker, Christian

    In this chapter we will collect those basic concepts and facts related to C*-algebras that will be needed later on. We give complete proofs. In Sects. 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C*-algebras, see, e.g. [2-6].

  19. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  20. Matrix algebra theory, computations and applications in statistics

    CERN Document Server

    Gentle, James E

    2017-01-01

    This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory. Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matrices encountered in statistics, such as...

  1. Quantum complexity of graph and algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Doern, Sebastian

    2008-02-04

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  2. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  3. Quantum affine algebras

    Energy Technology Data Exchange (ETDEWEB)

    Chari, V. (Tata Inst. of Fundamental Research, Bombay (India). School of Mathematics); Pressley, A. (King' s Coll., London (United Kingdom). Dept. of Mathematics)

    1991-12-01

    A quantum group is a Hopf algebra U{sub q}(a), depending on a parameter q element of C, which 'tends to' the universal enveloping algebra U(a) of a Lie algebra a as q tends to 1. In this paper, we develop a highest weight theory for the finite-dimensional representations of U{sub q}(a) when a is the affine algebra sl{sub 2}, assuming that q is not a root of unity. We also give a concrete construction of all finite-dimensional irreducible representations of U{sub q}(sl{sub 2}). Many, but not all, of the results extend without difficulty to the case of U{sub q}(g) with g any finite-dimensional complex simple Lie algebra. (orig./HSI).

  4. Deficiently extremal Cohen–Macaulay algebras

    Indian Academy of Sciences (India)

    /I has a p-linear resolution, its Betti numbers can be specified by Herzog and Kühl formulae. By manipulating the techniques of Herzog and Kühl, one can obtain some specific bounds for graded Betti numbers of nearly extremal CM algebras.

  5. The planar algebra of a semisimple and cosemisimple Hopf algebra

    Indian Academy of Sciences (India)

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection ...

  6. The algebraic size of the family of injective operators

    Directory of Open Access Journals (Sweden)

    Bernal-González Luis

    2017-01-01

    Full Text Available In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces.

  7. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    School of Mathematics and Physics, University of South China, Hengyang,. Hunan, People's Republic of China. E-mail: zhenglijing817@163.com. MS received 4 September 2013; revised 14 ... (Ŵ0,Ŵ0) with multiplication defined by the Yoneda product. In the rest of the paper, we fix a finite dimensional k-algebra S ∼= k × k ...

  8. Generalized Poincare algebras, Hopf algebras and {kappa}-Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, D., E-mail: domagoj.kovacevic@fer.hr [Faculty of Electrical Engineering and Computing, Unska 3, HR-10000 Zagreb (Croatia); Meljanac, S., E-mail: meljanac@irb.hr [Rudjer Boskovic Institute, Bijenicka c. 54, HR-10002 Zagreb (Croatia); Pachol, A., E-mail: pachol@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Strajn, R., E-mail: rina.strajn@gmail.com [Rudjer Boskovic Institute, Bijenicka c. 54, HR-10002 Zagreb (Croatia)

    2012-05-01

    We propose a generalized description for the {kappa}-Poincare-Hopf algebra as a symmetry quantum group of underlying {kappa}-Minkowski spacetime. We investigate all the possible implementations of (deformed) Lorentz algebras which are compatible with the given choice of {kappa}-Minkowski algebra realization. For the given realization of {kappa}-Minkowski spacetime there is a unique {kappa}-Poincare-Hopf algebra with undeformed Lorentz algebra. We have constructed a three-parameter family of deformed Lorentz generators with {kappa}-Poincare algebras which are related to {kappa}-Poincare-Hopf algebra with undeformed Lorentz algebra. Known bases of {kappa}-Poincare-Hopf algebra are obtained as special cases. Also deformation of igl(4) Hopf algebra compatible with the {kappa}-Minkowski spacetime is presented. Some physical applications are briefly discussed.

  9. The graded Lie algebra of general relativity

    OpenAIRE

    Reiterer, Michael; Trubowitz, Eugene

    2014-01-01

    We construct a graded Lie algebra in which a solution to the vacuum Einstein equations is any element of degree 1 whose bracket with itself is zero. Each solution generates a cochain complex, whose first cohomology is linearized gravity about that solution. We gauge-fix to get a smaller cochain complex with the same cohomologies (deformation retraction). The new complex is much smaller, it consists of the solution spaces of linear homogeneous wave equations (symmetric hyperbolic equations). T...

  10. Algebras of holomorphic functions and control theory

    CERN Document Server

    Sasane, Amol

    2009-01-01

    This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co

  11. Brauer algebras of type B

    NARCIS (Netherlands)

    Cohen, A.M.; Liu, S.

    2015-01-01

    For each n ≥ 1, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

  12. On Genetic and Evolution Algebras

    Science.gov (United States)

    Qaralleh, Izzat

    2017-03-01

    The genetic and evolution algebras generally are non-associative algebra. The concept of evolution and genetic algebras were introduced to answer the question what non-Mendelian genetics offers to mathematics. This paper we review some results of evolution and genetic algebras.

  13. Counting relations on Ockham algebras

    OpenAIRE

    Davey, Brian A.; Nguyen, Long T.; Pitkethly, Jane G.

    2015-01-01

    We find all finite Ockham algebras that admit only finitely many compatible relations (modulo a natural equivalence). Up to isomorphism and symmetry, these Ockham algebras form two countably infinite families: one family consists of the quasi-primal Ockham algebras, and the other family is a sequence of generalised Stone algebras.

  14. A Richer Understanding of Algebra

    Science.gov (United States)

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…

  15. Radiology PRICER 2. 0 subroutine installation guide, Volume 1 and Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Kowaleski, R.

    1989-04-01

    Radiology pricing subroutine (PRICER 2.0) is furnished by the Health Care Financing Administration to process the payment of Outpatient Medicare claims with discharges on or after April 1, 1989. Volumes 1 and 2 contain the installation and operation guidelines necessary to install PRICER 2.0 in an IBM 3090 environment. The installation requires that the receiver be familiar with COBOL/VS, OS JCL, and that an interface module has been previously installed. The installation tape contains the program source code and data files necessary to completely install Radiology PRICER 2.0. Volume 2 contains Appendix A through G: Appendix A - RADMAIN (driver) source listing; Appendix B - RADPRICE source listing; Appendix C - listing of the Provider File; Appendix D - listing of the HCPCS Code File; Appendix E - listing of the Prevailing Charge/Fee Schedule File; Appendix F - listing of the bill test file; Appendix G - listing of the expected test results.

  16. Quantitative Algebraic Reasoning

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon

    2016-01-01

    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  17. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D......_E of C*(E). Our results pertain both automorphisms and proper endomorphisms. Firstly, the Weyl group and the restricted Weyl group of a graph C*-algebra are introduced and investigated. In particular, criteria of outerness for automorphisms in the restricted Weyl group are found. We also show...

  18. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    J. W. Kitchen

    1994-01-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  19. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  20. A Babylonian Geometrical Algebra.

    Science.gov (United States)

    Bidwell, James K.

    1986-01-01

    A possible method of derivation of prescriptions for solving problems, found in Babylonian cuneiform texts, is presented. It is a kind of "geometric algebra" based mainly on one figure and the manipulation of or within various areas and segments. (MNS)

  1. Methods of algebraic geometry in control theory

    CERN Document Server

    Falb, Peter

    1999-01-01

    "Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

  2. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  3. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  4. Noncommutative algebra and geometry

    CERN Document Server

    De Concini, Corrado; Vavilov, Nikolai 0

    2005-01-01

    Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.

  5. Roots of Linear Algebra: An Historical Exploration of Linear Systems

    Science.gov (United States)

    Andrews-Larson, Christine

    2015-01-01

    There is a long-standing tradition in mathematics education to look to history to inform instruction. An historical analysis of the genesis of a mathematical idea offers insight into: (i) the contexts that give rise to a need for a mathematical construct; (ii) the ways in which available tools might shape the development of that mathematical idea;…

  6. The Boolean algebra of Galois algebras

    Directory of Open Access Journals (Sweden)

    Lianyong Xue

    2003-02-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  7. Hecke algebras with unequal parameters

    CERN Document Server

    Lusztig, G

    2003-01-01

    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  8. Algebraic special functions and SO(3,2)

    Energy Technology Data Exchange (ETDEWEB)

    Celeghini, E., E-mail: celeghini@fi.infn.it [Dipartimento di Fisica, Università di Firenze and INFN–Sezione di Firenze, I50019 Sesto Fiorentino, Firenze (Italy); Olmo, M.A. del, E-mail: olmo@fta.uva.es [Departamento de Física Teórica and IMUVA, Universidad de Valladolid, E-47011, Valladolid (Spain)

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.

  9. The algebra of supertraces for 2+1 super de Sitter gravity

    Science.gov (United States)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  10. Comparison of DT neutron production codes MCUNED, ENEA-JSI source subroutine and DDT

    Energy Technology Data Exchange (ETDEWEB)

    Čufar, Aljaž, E-mail: aljaz.cufar@ijs.si [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Kodeli, Ivan [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Milocco, Alberto [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sauvan, Patrick [Departamento de Ingeniería Energética, E.T.S. Ingenieros Industriales, UNED, C/Juan del Rosal 12, 28040 Madrid (Spain); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden); Snoj, Luka [Reactor Physics Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2016-11-01

    Highlights: • Results of three codes capable of simulating the accelerator based DT neutron generators were compared on a simple model where only a thin target made of mixture of titanium and tritium is present. Two typical deuteron beam energies, 100 keV and 250 keV, were used in the comparison. • Comparisons of the angular dependence of the total neutron flux and spectrum as well as the neutron spectrum of all the neutrons emitted from the target show general agreement of the results but also some noticeable differences. • A comparison of figures of merit of the calculations using different codes showed that the computational time necessary to achieve the same statistical uncertainty can vary for more than 30× when different codes for the simulation of the DT neutron generator are used. - Abstract: As the DT fusion reaction produces neutrons with energies significantly higher than in fission reactors, special fusion-relevant benchmark experiments are often performed using DT neutron generators. However, commonly used Monte Carlo particle transport codes such as MCNP or TRIPOLI cannot be directly used to analyze these experiments since they do not have the capabilities to model the production of DT neutrons. Three of the available approaches to model the DT neutron generator source are the MCUNED code, the ENEA-JSI DT source subroutine and the DDT code. The MCUNED code is an extension of the well-established and validated MCNPX Monte Carlo code. The ENEA-JSI source subroutine was originally prepared for the modelling of the FNG experiments using different versions of the MCNP code (−4, −5, −X) and was later extended to allow the modelling of both DT and DD neutron sources. The DDT code prepares the DT source definition file (SDEF card in MCNP) which can then be used in different versions of the MCNP code. In the paper the methods for the simulation of the DT neutron production used in the codes are briefly described and compared for the case of a

  11. C*-algebras by example

    CERN Document Server

    Davidson, Kenneth R

    1996-01-01

    The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

  12. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  13. Particle-like structure of coaxial Lie algebras

    Science.gov (United States)

    Vinogradov, A. M.

    2018-01-01

    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  14. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  15. Regularity of C*-algebras and central sequence algebras

    DEFF Research Database (Denmark)

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  16. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  17. Quantum cluster algebra structures on quantum nilpotent algebras

    CERN Document Server

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  18. Differential structures in C*-algebras

    Indian Academy of Sciences (India)

    enveloping algebra non commutative differential forms and de Rham algebra. Second and higher order differential structure defined by a closed symmetric operator dom(δ) = a W∗-domain algebra. (Weaver) a W∗-domain algebra = non commutative ...

  19. Entanglement classification with algebraic geometry

    Science.gov (United States)

    Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.

    2017-05-01

    We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.

  20. Validation of the AeroDyn subroutines using NREL unsteady aerodynamics experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J.; Hansen, A.C.; Minnema, J.E. [Windward Engineering, Salt Lake City, UT (United States)

    2002-07-01

    Completion of the full-scale wind tunnel tests of the NREL Unsteady Aerodynamics Experiment (UAE) phase VI allowed validation of the AeroDyn wind turbine aerodynamics software to commence. Detailed knowledge of the inflow to the UAE was the bane of prior attempts to accomplish any in-depth validation in the past. The wind tunnel tests permitted unprecedented control and measurement of inflow to the UAE rotor. The data collected from these UAE tests are currently under investigation as part of an effort to better understand wind turbine rotor aerodynamics in order to improve aeroelastic modelling techniques. Preliminary results from this study using the AeroDyn subroutines are presented, pointing to several avenues towards improvement. Test data indicate that rotational effects cause more static stall delay over a larger portion of the blades than predicted by current methods. Despite the relatively stiff properties of the UAE, vibration modes appear to influence the aerodynamic forces and system loads. AeroDyn adequately predicts dynamic stall hysteresis loops when appropriate steady, 2D aerofoil tables are used. Problems encountered include uncertainties in converting measured inflow angle to angle of attack for the UAE phase VI. Future work is proposed to address this angle-of-attack problem and to analyse a slightly more complex dynamics model that incorporates some of the structural vibration modes evident in the test data. (author)

  1. FPSPACK: a package of FORTRAN subroutines to manage earthquake focal mechanism data

    Science.gov (United States)

    Gasperini, Paolo; Vannucci, Gianfranco

    2003-08-01

    Earthquakes fault plane solutions (FPSs) are routinely computed on the basis of various techniques and are reported in the literature with a wide range of formats and conventions. Although the equations relating the various parameters are well known and relatively simple, their practical application often arise to numerical singularities and indeterminations that sometimes are not well known by the authors and thus may result in wrong or inaccurate reporting of parameters. Such inaccuracies and mistakes affect about 40% of the published data we have examined to test our programs. Moreover the current use, in the seismological community, of at least two different coordinate systems to represent the Cartesian components of vectorial and tensorial quantities is a further cause of confusion. In order to simplify the management of such data, we have prepared a structured package of FORTRAN 77 subroutines performing almost all of the possible computations and conversions among different parameters and coordinate systems. The package has been extensively tested with the data of a revised database of FPS of Italy and surrounding regions (presented in a companion paper) as well as of CMT solutions included in the Harvard catalog.

  2. Parsing with Regular Expressions & Extensions to Kleene Algebra

    DEFF Research Database (Denmark)

    Grathwohl, Niels Bjørn Bugge

    to do so. To be optimal, the algorithm performs a PSPACE-complete preprocessing step; for a fixed RE the running time is linear in the input size. Finally, we present and implement a determinization procedure, omitting the preprocessing step, and a surface language, Kleenex, for expressing general...... string transductions. We have implemented a compiler that translates Kleenex programs into efficient C code. The resulting programs are essentially optimally streaming, run in worst-case linear time in the input size, and show consistent high performance in the 1 Gbps range on various use cases....... In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu...

  3. Certain group dynamical systems induced by Hecke algebras

    Directory of Open Access Journals (Sweden)

    Ilwoo Cho

    2016-01-01

    Full Text Available In this paper, we study dynamical systems induced by a certain group \\(\\mathfrak{T}_{N}^{K}\\ embedded in the Hecke algebra \\(\\mathcal{H}(G_{p}\\ induced by the generalized linear group \\(G_{p} = GL_{2}(\\mathbb{Q}_{p}\\ over the \\(p\\-adic number fields \\(\\mathbb{Q}_{p}\\ for a fixed prime \\(p\\. We study fundamental properties of such dynamical systems and the corresponding crossed product algebras in terms of free probability on the Hecke algebra \\(\\mathcal{H}(G_{p}\\.

  4. Algebraic Verification Method for SEREs Properties via Groebner Bases Approaches

    Directory of Open Access Journals (Sweden)

    Ning Zhou

    2013-01-01

    Full Text Available This work presents an efficient solution using computer algebra system to perform linear temporal properties verification for synchronous digital systems. The method is essentially based on both Groebner bases approaches and symbolic simulation. A mechanism for constructing canonical polynomial set based symbolic representations for both circuit descriptions and assertions is studied. We then present a complete checking algorithm framework based on these algebraic representations by using Groebner bases. The computational experience result in this work shows that the algebraic approach is a quite competitive checking method and will be a useful supplement to the existent verification methods based on simulation.

  5. Quandles an introduction to the algebra of knots

    CERN Document Server

    Elhamdadi, Mohamed

    2015-01-01

    From prehistory to the present, knots have been used for purposes both artistic and practical. The modern science of Knot Theory has ramifications for biochemistry and mathematical physics and is a rich source of research projects for undergraduate and graduate students and professionals alike. Quandles are essentially knots translated into algebra. This book provides an accessible introduction to quandle theory for readers with a background in linear algebra. Important concepts from topology and abstract algebra motivated by quandle theory are introduced along the way. With elementary self-co

  6. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  7. The planar algebra associated to a Kac algebra

    Indian Academy of Sciences (India)

    of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  8. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  9. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  10. Higher regulators, algebraic

    CERN Document Server

    Bloch, Spencer J

    2000-01-01

    This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

  11. Generalized Derivations and Bilocal Jordan Derivations of Nest Algebras

    Directory of Open Access Journals (Sweden)

    Dangui Yan

    2011-01-01

    Full Text Available Let H be a complex Hilbert space and B(H the collection of all linear bounded operators, A is the closed subspace lattice including 0 an H, then A is a nest, accordingly alg A={T∈B(H:TN⊆N,  ∀N∈A} is a nest algebra. It will be shown that of nest algebra, generalized derivations are generalized inner derivations, and bilocal Jordan derivations are inner derivations.

  12. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  13. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  14. Algebraic geometric codes

    Science.gov (United States)

    Shahshahani, M.

    1991-01-01

    The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.

  15. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  16. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  17. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  18. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  19. Algebra with Galois theory

    CERN Document Server

    Artin, Emil

    2007-01-01

    The present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory.

  20. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  1. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  2. Twisted Quantum Affine Algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    We give a highest weight classification of the finite-dimensional irreducible representations of twisted quantum affine algebras. As in the untwisted case, such representations are in one-to-one correspondence with n-tuples of monic polynomials in one variable. But whereas in the untwisted case n is the rank of the underlying finite-dimensional complex simple Lie algebra ?, in the twisted case n is the rank of the subalgebra of ? fixed by the diagram automorphism. The way in which such an n-tuple determines a representation is also more complicated than in the untwisted case.

  3. Quantum affine algebras

    Science.gov (United States)

    Chari, Vyjayanthi; Pressley, Andrew

    1991-12-01

    We classify the finite-dimensional irreducible representations of the quantum affine algebraU_q (hat sl_2 ) in terms of highest weights (this result has a straightforward generalization for arbitrary quantum affine algebras). We also give an explicit construction of all such representations by means of an evaluation homomorphismU_q (hat sl_2 ) to U_q (sl_2 ), first introduced by M. Jimbo. This is used to compute the trigonometric R-matrices associated to finite-dimensional representations ofU_q (hat sl_2 ).

  4. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  5. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1975-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  6. An algebraic analysis of bore hole samples

    Energy Technology Data Exchange (ETDEWEB)

    Estes, D.R. [Southern California Univ., Dept. of Mathematics, Los Angeles, CA (United States); Waid, C. [Waid Group, Inc., Gonzales, LA (United States)

    2000-07-01

    Quadratic cylinders are considered as models for strata occurring along linear fault lines. The question as to whether the cylinder can be recovered from the curve of intersection with the surface of a bore sample is then addressed. Basic techniques from algebraic geometry are used to show that there are at most two irreducible quadratic cylinders having the same bounded but infinite intersection with the surface of a right circular cylinder and each of the two is uniquely determined from the other. (Author)

  7. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...

  8. Denotational semantics for thread algebra

    NARCIS (Netherlands)

    Vu, T.D.

    2008-01-01

    This paper gives a denotational semantics for thread algebra (TA), an algebraic framework for the description and analysis of recent programming languages such as C# and Java [J.A. Bergstra, C.A. Middelburg, Thread algebra for strategic interleaving, Formal Aspects of Computing, in press.

  9. Process Algebra and Markov Chains

    NARCIS (Netherlands)

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  10. Challenges in Computational Commutative Algebra

    OpenAIRE

    Abbott, John

    2006-01-01

    In this paper we consider a number of challenges from the point of view of the CoCoA project one of whose tasks is to develop software specialized for computations in commutative algebra. Some of the challenges extend considerably beyond the boundary of commutative algebra, and are addressed to the computer algebra community as a whole.

  11. On Weak-BCC-Algebras

    Science.gov (United States)

    Thomys, Janus; Zhang, Xiaohong

    2013-01-01

    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  12. Crossed Products and MF algebras

    OpenAIRE

    Li, Weihua; Orfanos, Stefanos

    2013-01-01

    We prove that the crossed product AxG of a unital finitely generated MF algebra A by a discrete finitely generated amenable residually finite group G is an MF algebra, provided that the action is almost periodic. This generalizes a result of Hadwin and Shen. We also construct two examples of crossed product C*-algebras whose BDF Ext semigroups are not groups.

  13. Exotic group C*-algebras

    OpenAIRE

    Wiersma, Matthew

    2014-01-01

    Let $\\Gamma$ be a discrete group. When $\\Gamma$ is nonamenable, the reduced and full group $C$*-algebras differ and it is generally believed that there should be many intermediate $C$*-algebras, however few examples are known. In this paper we give new constructions and compare existing constructions of intermediate group $C$*-algebras for both generic and specific groups $\\Gamma$.

  14. Meadow enriched ACP process algebras

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization

  15. Galois Connections for Flow Algebras

    DEFF Research Database (Denmark)

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis

    2011-01-01

    We generalise Galois connections from complete lattices to flow algebras. Flow algebras are algebraic structures that are less restrictive than idempotent semirings in that they replace distributivity with monotonicity and dispense with the annihilation property; therefore they are closer to the ...... using Galois connections such that correctness of the analyses is preserved. The approach is illustrated for a mutual exclusion algorithm....

  16. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  17. Orthogonal symmetries and Clifford algebras

    Indian Academy of Sciences (India)

    16]). Finite dimensional simple algebras with involution form an important class of algebras with involution whose properties are relatively well understood. By a theorem due to. Albert, a central simple K-algebra A carries an involution fixing K if ...

  18. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  19. Rings of quotients of incidence algebras and path algebras

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega

    2006-01-01

    We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets and ...... and finite quivers, respectively. The geometric background of these algebras gives us an intuitive idea of the construction of their maximal ring of quotients.......We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets...

  20. Discourses on Algebra

    Indian Academy of Sciences (India)

    To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans- late, and found that the original Russian ti- tle of Shafarevich's book was more like Se- lected Chapters of Algebra and that it was first published in a ...

  1. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  2. Algebraic geometry in India

    Indian Academy of Sciences (India)

    revolutionised by the introduction of new con- cepts and techniques by Grothendieck and others; this progress has been instrumental in solving outstanding and famous problems not only in algebraic geometry but also in related fields like number theory. Mathematicians from India have made influ- ential and extensive ...

  3. Pseudo-Weak-R0 Algebras

    Directory of Open Access Journals (Sweden)

    Yong Lin Liu

    2014-01-01

    Full Text Available A positive answer to the open problem of Iorgulescu on extending weak-R0 algebras and R0-algebras to the noncommutative forms is given. We show that pseudo-weak-R0 algebras are categorically isomorphic to pseudo-IMTL algebras and that pseudo-R0 algebras are categorically isomorphic to pseudo-NM algebras. Some properties, the noncommutative forms of the properties in weak-R0 algebras and R0-algebras, are investigated. The simplified axiom systems of pseudo-weak-R0 algebras and pseudo-R0 algebras are obtained.

  4. Advanced modern algebra part 2

    CERN Document Server

    Rotman, Joseph J

    2017-01-01

    This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

  5. Algebraic Approach to Algorithmic Logic

    Directory of Open Access Journals (Sweden)

    Bancerek Grzegorz

    2014-09-01

    Full Text Available We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure which is an extension of language signature and program algebra. While-if algebra of generator set and algebraic signature is bialgebra with appropriate properties and is used as basic type of algebraic logic.

  6. Planar Para Algebras, Reflection Positivity

    Science.gov (United States)

    Jaffe, Arthur; Liu, Zhengwei

    2017-05-01

    We define a planar para algebra, which arises naturally from combining planar algebras with the idea of ZN para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects that are invariant under para isotopy. For each ZN, we construct a family of subfactor planar para algebras that play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra (PAPPA). Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras, which one can use in the study of quantum information. An important ingredient in planar para algebra theory is the string Fourier transform (SFT), which we use on the matrix algebra generated by the Pauli matrices. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivity by relating the two reflections through the string Fourier transform.

  7. Towards classical spectrum generating algebras for f-deformations

    Energy Technology Data Exchange (ETDEWEB)

    Kullock, Ricardo, E-mail: ricardokullock@gmail.com [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro, Instituto de Aplicação Fernando Rodrigues da Silveira, Departamento de Ciências da Natureza, Rua Santa Alexandrina 288, 20261-232, Rio de Janeiro, RJ (Brazil); Latini, Danilo [Department of Mathematics and Physics and INFN, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2016-01-28

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion. - Highlights: • We study the classical analog of f-deformed oscillators. • We use the classical spectrum generating algebra. • The deformed trajectories have energy dependent frequencies. • The method leads to exact results for any acceptable f-deformation.

  8. La Enseñanza del álgebra Lineal Utilizando Modelización y Calculadora Gráfica: un Estudio con Profesores en Formación (Using Modelling and Graphic Calculators in the Teaching of Linear Algebra: A Study in a Teacher Training Program

    Directory of Open Access Journals (Sweden)

    José Ortíz

    2008-06-01

    Full Text Available Exploramos el conocimiento didáctico desarrollado por diez futuros profesores de matemáticas de secundaria que participaron en un programa de formación que integra, a través del álgebra lineal, el uso de la calculadora gráfica y la modelización matemática. Utilizamos una aproximación cualitativa. El análisis de las actividades de enseñanza diseñadas por los participantes que involucran la calculadora gráfica y la modelización muestra cambios y progreso en su conocimiento didáctico. We explored the didactical knowledge developed by ten secondary mathematics teachers who participated in a training program that involved the graphing calculator and modeling on linear algebra topics. We used a qualitative approach. The analysis of the algebra teaching activities designed by the participants involving the graphing calculator and modeling shows changes and progress in their didactical knowledge.

  9. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  10. Split Malcev algebras

    Indian Academy of Sciences (India)

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  11. Algebra, Arithmetic, and Geometry

    CERN Document Server

    Tschinkel, Yuri

    2009-01-01

    The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont

  12. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  13. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  14. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  15. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  16. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  17. Second-Order Algebraic Theories

    Science.gov (United States)

    Fiore, Marcelo; Mahmoud, Ola

    Fiore and Hur [10] recently introduced a conservative extension of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respectively provide a model theory and a formal deductive system for languages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categorical algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equivalences are established: at the syntactic level, that of second-order equational presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic translation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding.

  18. An APPLE a Day Will Keep the Text Away! or Using Microcomputers in Elementary Algebra.

    Science.gov (United States)

    Evans, Bob

    Three applications of microcomputers in Elementary Algebra instruction are described. The paper first discusses a program developed to help students explore the basic algebraic concept of linearity. Text and illustrations show how students can use the computer to visualize the conceptual relationship of slope and intercept, until they can…

  19. Pre-Service Teachers' Perceptions and Beliefs of Technological Pedagogical Content Knowledge on Algebra

    Science.gov (United States)

    Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin

    2015-01-01

    The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…

  20. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    Science.gov (United States)

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  1. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  2. Kleene Algebra and Bytecode Verification

    Science.gov (United States)

    2016-04-27

    Bytecode 2005 Preliminary Version Kleene Algebra and Bytecode Verification Lucja Kot 1 Dexter Kozen 2 Department of Computer Science Cornell...first-order methods that inductively annotate program points with abstract values. In [6] we introduced a second-order approach based on Kleene algebra ...form a left-handed Kleene algebra . The dataflow labeling is not achieved by inductively labeling the program with abstract values, but rather by

  3. Rational first integrals for polynomial vector fields on algebraic hypersurfaces of R^N 1

    OpenAIRE

    Llibre, Jaume

    2012-01-01

    Using sophisticated techniques of Algebraic Geometry Jouanolou in 1979 showed that if the number of invariant algebraic hypersurfaces of a polynomial vector field in Rn of degree m is at least n+m−1 n+ n, then the vector field has a rational first integral. Llibre and Zhang used only Linear Algebra provided a shorter and easier proof of the result given by Jouanolou. We use ideas of Llibre and Zhang to extend the Jouanolou result to polynomial vector fields defined on algebraic regular hypers...

  4. Theory of linear operations

    CERN Document Server

    Banach, S

    1987-01-01

    This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'''') complements this important monograph.

  5. Applications of Computer Algebra Conference

    CERN Document Server

    Martínez-Moro, Edgar

    2017-01-01

    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  6. Introduction to algebraic independence theory

    CERN Document Server

    Philippon, Patrice

    2001-01-01

    In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

  7. Chiral algebras of class S

    Energy Technology Data Exchange (ETDEWEB)

    Beem, Christopher [Institute for Advanced Study,Einstein Dr., Princeton, NJ 08540 (United States); Peelaers, Wolfger; Rastelli, Leonardo [C.N. Yang Institute for Theoretical Physics, SUNY,Stony Brook, NY 11794-3840 (United States); Rees, Balt C. van [Theory Group, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2015-05-05

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  8. Computational aspects of algebraic curves

    CERN Document Server

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  9. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    Science.gov (United States)

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  10. Abstract Algebra to Secondary School Algebra: Building Bridges

    Science.gov (United States)

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  11. The naked spinor a rewrite of Clifford algebra

    CERN Document Server

    Morris, Dennis

    2015-01-01

    This book is about spinors. The whole mathematical theory of spinors is within Clifford algebra, and so this book is about Clifford algebra. Spinor theory is really the theory of empty space, and so this book is about empty space. The whole of Clifford algebra is rewritten in a much simpler form, and so the whole of spinor theory is rewritten in a much simpler form. Not only does this book make Clifford algebra simple and obvious, but it lifts the fog and mirrors from this area of mathematics to make it clear and obvious. In doing so, the true nature of spinors is revealed to the reader, and, with that, the true nature of empty space. To understand this book you will need an elementary knowledge of linear algebra (matrices) an elementary knowledge of finite groups and an elementary knowledge of the complex numbers. From no more than that, you will gain a very deep understanding of Clifford algebra, spinors, and empty space. The book is well written with all the mathematical steps laid before the reader in a w...

  12. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  13. Handbook of algebra

    CERN Document Server

    Hazewinkel, M

    2008-01-01

    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  14. Statecharts Via Process Algebra

    Science.gov (United States)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  15. The Jacobson radical of group algebras

    CERN Document Server

    Karpilovsky, G

    1987-01-01

    Let G be a finite group and let F be a field. It is well known that linear representations of G over F can be interpreted as modules over the group algebra FG. Thus the investigation of ring-theoretic structure of the Jacobson radical J(FG) of FG is of fundamental importance. During the last two decades the subject has been pursued by a number of researchers and many interesting results have been obtained. This volume examines these results.The main body of the theory is presented, giving the central ideas, the basic results and the fundamental methods. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, thus familiarity with basic ring-theoretic and group-theoretic concepts and an understanding of elementary properties of modules, tensor products and fields. A chapter on algebraic preliminaries is included, providing a survey of topics needed later in the book. There is a fairly large bibliography of works which are either directly relevant to the text or of...

  16. Nonassociativity, Malcev algebras and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Guenaydin, M. [Institute for Gravitation and the Cosmos and Physics Department, Penn State University, University Park, PA (United States); Minic, D. [Department of Physics, Virginia Tech, Blacksburg, VA (United States)

    2013-10-15

    Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Algebraic Statistics for Network Models

    Science.gov (United States)

    2014-02-19

    use algebra, combinatorics and Markov bases to give a constructing way of answering this question for ERGMs of interest. Question 2: How do we model...for every function. 06/06/13 Petrović. Manuscripts 8, 10. Invited lecture at the Scientific Session on Commutative Algebra and Combinatorics at the

  18. Patterns to Develop Algebraic Reasoning

    Science.gov (United States)

    Stump, Sheryl L.

    2011-01-01

    What is the role of patterns in developing algebraic reasoning? This important question deserves thoughtful attention. In response, this article examines some differing views of algebraic reasoning, discusses a controversy regarding patterns, and describes how three types of patterns--in contextual problems, in growing geometric figures, and in…

  19. Process algebra for performance evaluation

    NARCIS (Netherlands)

    Hermanns, H.; Herzog, Ulrich; Katoen, Joost P.

    2002-01-01

    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server

  20. Algebraic Methods in Plane Geometry

    Indian Academy of Sciences (India)

    Srimath

    group, taxicab number, Carmi- chael number. Algebraic Methods in Plane Geometry. 2. Cubic Curves. Shailesh A Shirali. Shailesh Shirali heads a. Community Mathematics. Center at Rishi Valley. School (KFI). He has a ..... Ian Stewart and David Tall, Algebraic Number Theory and Fermat's Last. Theorem, A K Peters, 2002.

  1. A distinguished real Banach algebra

    Indian Academy of Sciences (India)

    ˆfnzn . With respect to the usual pointwise operations of addition, multiplication and scalar- multiplication by reals, Cs(T) and As become real algebras. When As is endowed with the supremum norm, then As is isomorphically isometric to the real Banach algebra, AR(D), of all holomorphic functions on the disk that are real on.

  2. Astro Algebra [CD-ROM].

    Science.gov (United States)

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  3. Revisiting timing in process algebra

    NARCIS (Netherlands)

    Middelburg, C.A.

    We shortly review the framework of process algebras with timing presented by Baeten and Middelburg [Handbook of Process Algebra, Elsevier, 2001, Chapter 10]. In order to cover processes that are capable of performing certain actions at all points in some time interval, we add integration to the

  4. On Solving Linear Complementarity Problems as Linear Programs.

    Science.gov (United States)

    1976-03-01

    I,1 c, -, I - - -= 1. I NIRODU CIT I ON Et is a fair’ly well-known fa(t that if a lineas complemenl•arity problem has L solution) then it has a...W. Cottle, "Manifestations of the Schur complement," Linear Algebra and Its Applications, 8 (1974), 189-211. [6] R. W. Cottle and G. B. Dantzig...34Complementarity pivot theory of mathematical programming," Linear Algebra and Its Applications . (1968), 103-125. [7] R. W. Cottle, G. H. Golub and R. S

  5. Elements of linear space

    CERN Document Server

    Amir-Moez, A R; Sneddon, I N

    1962-01-01

    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a

  6. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  7. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  8. Existence and Uniqueness of Solution of Schrodinger equation in extended Colombeau algebra

    Directory of Open Access Journals (Sweden)

    Fariba Fattahi

    2014-09-01

    Full Text Available In this paper, we establish the existence and uniquenessresult of the linear Schr¨odinger equation with Marchaudfractional derivative in Colombeau generalized algebra.The purpose of introducing Marchaud fractional derivativeis regularizing it in Colombeau sense.

  9. Max-plus algebraic throughput analysis of synchronous dataflow graphs

    NARCIS (Netherlands)

    de Groote, Robert; Kuper, Jan; Broersma, Haitze J.; Smit, Gerardus Johannes Maria

    2012-01-01

    In this paper we present a novel approach to throughput analysis of synchronous dataflow (SDF) graphs. Our approach is based on describing the evolution of actor firing times as a linear time-invariant system in max-plus algebra. Experimental results indicate that our approach is faster than

  10. Differential-algebraic equations in multibody system modeling

    Science.gov (United States)

    Pogorelov, D.

    1998-12-01

    Numerical methods for the efficient integration of both stiff and nonstiff equations of motion of multibody systems having the form of differential-algebraic equations (DAE) of index 3 are discussed. Linear multi-step ABM and BDF methods are considered for the non-iterational integration of nonstiff DAE. The Park method is proposed for integration of stiff equations.

  11. A new application of algebraic geometry to systems theory

    Science.gov (United States)

    Martin, C. F.; Hermann, R.

    1976-01-01

    Following an introduction to algebraic geometry, the dominant morphism theorem is stated, and the application of this theorem to systems-theoretic problems, such as the feedback problem, is discussed. The Gaussian elimination method used for solving linear equations is shown to be an example of a dominant morphism.

  12. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  13. (Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras

    Directory of Open Access Journals (Sweden)

    Dusko Pavlovic

    2017-01-01

    Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.

  14. On Cohen-Macaulayness of Algebras Generated by Generalized Power Sums. With an appendix by Misha Feigin

    Science.gov (United States)

    Etingof, Pavel; Rains, Eric

    2016-10-01

    Generalized power sums are linear combinations of ith powers of coordinates. We consider subalgebras of the polynomial algebra generated by generalized power sums, and study when such algebras are Cohen-Macaulay. It turns out that the Cohen-Macaulay property of such algebras is rare, and tends to be related to quantum integrability and representation theory of Cherednik algebras. Using representation theoretic results and deformation theory, we establish Cohen-Macaulayness of the algebra of q, t-deformed power sums defined by Sergeev and Veselov, and of some generalizations of this algebra, proving a conjecture of Brookner, Corwin, Etingof, and Sam. We also apply representation-theoretic techniques to studying m-quasi-invariants of deformed Calogero-Moser systems. In an appendix to this paper, M. Feigin uses representation theory of Cherednik algebras to compute Hilbert series for such quasi-invariants, and show that in the case of one light particle, the ring of quasi-invariants is Gorenstein.

  15. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  16. Invertibility-preserving maps of C∗-algebras with real rank zero

    Directory of Open Access Journals (Sweden)

    Istvan Kovacs

    2005-01-01

    Full Text Available In 1996, Harris and Kadison posed the following problem: show that a linear bijection between C∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that if A and B are semisimple Banach algebras and Φ:A→B is a linear map onto B that preserves the spectrum of elements, then Φ is a Jordan isomorphism if either A or B is a C∗-algebra of real rank zero. We also generalize a theorem of Russo.

  17. Linear network theory

    CERN Document Server

    Sander, K F

    1964-01-01

    Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies

  18. Multidimensional analysis algebras and systems for science and engineering

    CERN Document Server

    Hart, George W

    1995-01-01

    This book deals with the mathematical properties of dimensioned quantities, such as length, mass, voltage, and viscosity. Beginning with a careful examination of how one expresses the numerical results of a measurement and uses these results in subsequent manipulations, the author rigorously constructs the notion of dimensioned numbers and discusses their algebraic structure. The result is a unification of linear algebra and traditional dimensional analysis that can be extended from the scalars to which the traditional analysis is perforce restricted to multidimensional vectors of the sort frequently encountered in engineering, systems theory, economics, and other applications.

  19. Applications of computer algebra

    CERN Document Server

    1985-01-01

    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  20. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...