Sample records for subpoissonian photon statistics

  1. Generation of sub-Poissonian photon number distribution

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Ramanujam, P. S.


    An optimization of a nonlinear Mach-Zehnder interferometer to produce sub-Poissonian photon number distribution is proposed. We treat the system quantum mechanically and estimate the mirror parameters, the nonlinearity of the medium in the interferometer, and the input power to obtain minimal...... output uncertainty in the photon number. The power efficiency of the system is shown to be high....

  2. Sub-Poissonian photon emission in coupled double quantum dots-cavity system (United States)

    Ye, Han; Peng, Yi-Wei; Yu, Zhong-Yuan; Zhang, Wen; Liu, Yu-Min


    In this work, we theoretically analyze the few-photon emissions generated in a coupled double quantum dots (CDQDs)-single mode microcavity system, under continuous wave and pulse excitation. Compared with the uncoupled case, strong sub-Poissonian character is achieved in a CDQDs-cavity system at a certain laser frequency. Based on the proposed scheme, single photon generation can be obtained separately under QD-cavity resonant condition and off-resonant condition. For different cavity decay rates, we reveal that laser frequency detunings of minimum second-order autocorrelation function are discrete and can be divided into three regions. Moreover, the non-ideal situation where two QDs are not identical is discussed, indicating the robustness of the proposed scheme, which possesses sub-Poissonian character in a large QD difference variation range. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61401035), the Beijing Excellent Ph.D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2015ZC05).

  3. Emission probability and photon statistics of a coherently driven mazer

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Jin [Department of Physics, Shanghai Jiao Tong University, Shanghai (China)]. E-mail:; Zhang Zhiming [Department of Physics, Shanghai Jiao Tong University, Shanghai (China)


    The idea of a mazer is put forward with particular reference to the question of the driving-induced atomic coherence, which is established by a coherent driving field. The interaction of a quantum cavity field and an ultracold V-type three-level atom in which two levels are coupled by a coherent driving field, is derived. Its general quantum theory is established and the atomic emission probability and photon statistics are calculated and analysed. It is found that the mazer based on this driving-induced atomic coherence shows new features. There is a non-vanishing probability for the atom emitting a photon in the cavity even when the resonance condition is not fulfilled (here the resonance condition means that the cavity length is an integer multiple of half the atomic de Broglie wavelength). Under the resonance condition, the atomic emission probability has two sets of resonance peaks. For a very strong coherent driving field, the emission of the atom can be forbidden. As to the photon statistics, when the driving field is not very strong, the driving-induced atomic coherence reduces the photon number fluctuations of the cavity field. The photon statistics exhibits strong sub-Poissonian behaviour. In the region considered here, it can even be sub-Poissonian for any cavity length. However, when the driving field is too strong, the sub-Poissonian property may disappear. (author)

  4. Lattice topology dictates photon statistics. (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A


    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  5. Heralded source of bright multi-mode mesoscopic sub-Poissonian light

    DEFF Research Database (Denmark)

    Iskhakov, Timur; Usenko, V. C.; Andersen, Ulrik Lund


    In a direct detection scheme, we observed 7.8 dB of twin-beam squeezing for multi-mode two-color squeezed vacuum generated via parametric downconversion. Applying postselection, we conditionally prepared a sub-Poissonian state of light containing 6.3 . 105 photons per pulse on the average......), as well as for probing multi-mode non-linear optical effects. (C) 2016 Optical Society of America...

  6. Non-Poissonian photon statistics from macroscopic photon cutting materials. (United States)

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T


    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  7. Non-Poissonian photon statistics from macroscopic photon cutting materials

    NARCIS (Netherlands)

    De Jong, Mathijs; Meijerink, A; Rabouw, Freddy T.


    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and

  8. Photon counts statistics in leukocyte cell dynamics

    NARCIS (Netherlands)

    Wijk, E. van; Greef, J. van der; Wijk, R. van


    In the present experiment ultra-weak photon emission/ chemiluminescence from isolated neutrophils was recorded. It is associated with the production of reactive oxygen species (ROS) in the "respiratory burst" process which can be activated by PMA (Phorbol 12-Myristate 13-Acetate). Commonly, the

  9. Photonics

    CERN Document Server

    Andrews, David L


    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  10. Time-resolved statistics of photon pairs in two-cavity Josephson photonics

    Energy Technology Data Exchange (ETDEWEB)

    Dambach, Simon; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University (Germany)


    We analyze the creation and emission of pairs of highly nonclassical microwave photons in a setup where a voltage-biased Josephson junction is connected in series to two electromagnetic oscillators. Tuning the external voltage such that the Josephson frequency equals the sum of the two mode frequencies, each tunneling Cooper pair creates one additional photon in both of the two oscillators. The time-resolved statistics of photon emission events from the two oscillators is investigated by means of single- and cross-oscillator variants of the second-order correlation function g{sup (2)}(τ) and the waiting-time distribution w(τ). They provide insight into the strongly correlated quantum dynamics of the two oscillator subsystems and reveal a rich variety of quantum features of light including strong antibunching and the presence of negative values in the Wigner function. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Nonclassicality Generated by Applying Hermite-Polynomials Photon-Added Operator on the Even/Odd Coherent States (United States)

    Ren, Gang; Du, Jian-ming; Zhang, Wen-hai; Yu, Hai-jun


    We examine nonclassical properties of the quantum state generated by applying Hermite polynomials photon-added operator on the even/odd coherent state (HPECS/HPOCS). Explicit expressions for its nonclassical properties, such as quantum statistical properties and squeezing phenomenon, are obtained. It is interesting to find that the HPECS/HPOCS exhibits sub-Poissonian distribution, anti-bunching effects and negative values of the Wigner function. Thus, we confirm the HPPECS/HPPOCS is a new nonclassical state. Finally, we reveal that the HPPECS/HPPOCS is a novel intelligent state by its squeezing effects in position distribution and quadrature squeezing.

  12. Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties (United States)

    A, Karimi; M, K. Tavassoly


    In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.

  13. Coherent two-photon excitation of quantum dots (United States)

    Ostermann, L.; Huber, T.; Prilmüller, M.; Solomon, G. S.; Ritsch, H.; Weihs, G.; Predojević, A.


    Single semiconductor quantum dots, due to their discrete energy structure, form single photon and twin photon sources that are characterized by a well-defined frequency of the emitted photons and inherently sub-Poissonian statistics. The single photons are generated through a recombination of an electron-hole pair formed by an electron from the conduction band and a hole from the valence band. When excited to the biexciton state quantum dots can provide pairs of photons emitted in a cascade. It has been shown that this biexciton-exciton cascade can deliver entangled pairs of photons. To achieve a deterministic generation of photon pairs from a quantum dot system one requires exciting it using a two-photon resonant excitation of the biexciton. Particularly, an efficient and coherent excitation of the biexciton requires the elimination of the single exciton probability amplitude in the excitation pulse and reaching the lowest possible degree of dephasing caused by the laser excitation. These two conditions impose contradictory demands on the excitation pulse-length and its intensity. We addressed this problem from a point of view that does not include interaction of the quantum dot with the semiconductor environment. We found an optimized operation regime for the system under consideration and provide guidelines on how to extend this study to other similar systems. In particular, our study shows that an optimal excitation process requires a trade-off between the biexciton binding energy and the excitation laser pulse length.

  14. Photon emission statistics and photon tracking in single-molecule spectroscopy of molecular aggregates : Dimers and trimers

    NARCIS (Netherlands)

    Bloemsma, E. A.; Knoester, J.


    Based on the generating function formalism, we investigate broadband photon statistics of emission for single dimers and trimers driven by a continuous monochromatic laser field. In particular, we study the first and second moments of the emission statistics, which are the fluorescence excitation

  15. Photonic Quantum Noise Reduction with Low-Pump Parametric Amplifiers for Photonic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Andre Vatarescu


    Full Text Available An approximation-free and fully quantum optic formalism for parametric processes is presented. Phase-dependent gain coefficients and related phase-pulling effects are identified for quantum Rayleigh emission and the electro-optic conversion of photons providing parametric amplification in small-scale integration of photonic devices. These mechanisms can be manipulated to deliver, simultaneously, sub-Poissonian distributions of photons as well as phase-dependent amplification in the same optical quadrature of a signal field.

  16. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength. (United States)

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide


    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

  17. Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides

    DEFF Research Database (Denmark)

    Javadi, Alisa; Garcia-Fernandez, Pedro David; Sapienza, Luca


    We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24.......We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24....

  18. Inexpensive electronics and software for photon statistics and correlation spectroscopy. (United States)

    Gamari, Benjamin D; Zhang, Dianwen; Buckman, Richard E; Milas, Peker; Denker, John S; Chen, Hui; Li, Hongmin; Goldner, Lori S


    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors.

  19. Sub-Poissonian Narrowing of Length Distributions Realized in Ga-Catalyzed GaAs Nanowires. (United States)

    Koivusalo, Eero S; Hakkarainen, Teemu V; Guina, Mircea D; Dubrovskii, Vladimir G


    Herein, we present experimental data on the record length uniformity within the ensembles of semiconductor nanowires. The length distributions of Ga-catalyzed GaAs nanowires obtained by cost-effective lithography-free technique on silicon substrates systematically feature a pronounced sub-Poissonian character. For example, nanowires with the mean length ⟨L⟩ of 2480 nm show a length distribution variance of only 367 nm(2), which is more than twice smaller than the Poisson variance h⟨L⟩ of 808 nm(2) for this mean length (with h = 0.326 nm as the height of GaAs monolayer). For 5125 nm mean length, the measured variance is 1200 nm(2) against 1671 nm(2) for Poisson distribution. A supporting model to explain the experimental findings is proposed. We speculate that the fluctuation-induced broadening of the length distribution is suppressed by nucleation antibunching, the effect which is commonly observed in individual vapor-liquid-solid nanowires but has never been seen for their ensembles. Without kinetic fluctuations, the two remaining effects contributing to the length distribution width are the nucleation randomness for nanowires emerging from the substrate and the shadowing effect on long enough nanowires. This explains an interesting time evolution of the variance that saturates after a short incubation stage but then starts increasing again due to shadowing, remaining, however, smaller than the Poisson value for a sufficiently long time.

  20. Measurement of photon statistics with live photoreceptor cells. (United States)

    Sim, Nigel; Cheng, Mei Fun; Bessarab, Dmitri; Jones, C Michael; Krivitsky, Leonid A


    We analyzed the electrophysiological response of an isolated rod photoreceptor of Xenopus laevis under stimulation by coherent and pseudothermal light sources. Using the suction-electrode technique for single cell recordings and a fiber optics setup for light delivery allowed measurements of the major statistical characteristics of the rod response. The results indicate differences in average responses of rod cells to coherent and pseudothermal light of the same intensity and also differences in signal-to-noise ratios and second-order intensity correlation functions. These findings should be relevant for interdisciplinary studies seeking applications of quantum optics in biology.

  1. Computed tomography from photon statistics to modern cone-beam CT

    CERN Document Server

    Buzug, T M


    Tis book provides an overview of X-ray technology, the historic developmental milestones of modern CT systems, and gives a comprehensive insight into the main reconstruction methods used in computed tomography. Te basis of reconstr- tion is, undoubtedly, mathematics. However, the beauty of computed tomography cannot be understood without a detailed knowledge of X-ray generation, photon- matter interaction, X-ray detection, photon statistics, as well as fundamental signal processing concepts and dedicated measurement systems. Terefore, the reader will ?nd a number of references to these basic d

  2. Detection of beamsplitting attack in a quantum cryptographic channel based on photon number statistics monitoring (United States)

    Gaidash, A. A.; Egorov, V. I.; Gleim, A. V.


    Quantum cryptography in theory allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source. In order to overcome this possibility, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. We present an alternative method based on monitoring photon number statistics after detection. This method can therefore be used with any existing protocol.

  3. Statistical evaluation of photon count rate data for nanoscale particle measurement in wastewaters. (United States)

    Smeraldi, Josh; Ganesh, Rajagopalan; Safarik, Jana; Rosso, Diego


    The dynamic light scattering (DLS) technique can detect the concentration and size distribution of nanoscale particles in aqueous solutions by analyzing photon interactions. This study evaluated the applicability of using photon count rate data from DLS analyses for measuring levels of biogenic and manufactured nanoscale particles in wastewater. Statistical evaluations were performed using secondary wastewater effluent and a Malvern Zetasizer. Dynamic light scattering analyses were performed equally by two analysts over a period of two days using five dilutions and twelve replicates for each dilution. Linearity evaluation using the sixty sample analysis yielded a regression coefficient R(2) = 0.959. The accuracy analysis for various dilutions indicated a recovery of 100 ± 6%. Precision analyses indicated low variance coefficients for the impact of analysts, days, and within sample error. The variation by analysts was apparent only in the most diluted sample (intermediate precision ~12%), where the photon count rate was close to the instrument detection limit. The variation for different days was apparent in the two most concentrated samples, which indicated that wastewater samples must be analyzed for nanoscale particle measurement within the same day of collection. Upon addition of 10 mg l(-1) of nanosilica to wastewater effluent samples, the measured photon count rates were within 5% of the estimated values. The results indicated that photon count rate data can effectively complement various techniques currently available to detect nanoscale particles in wastewaters.

  4. Statistical x-ray computed tomography imaging from photon-starved measurements (United States)

    Chang, Zhiqian; Zhang, Ruoqiao; Thibault, Jean-Baptiste; Sauer, Ken; Bouman, Charles


    Dose reduction in clinical X-ray computed tomography (CT) causes low signal-to-noise ratio (SNR) in photonsparse situations. Statistical iterative reconstruction algorithms have the advantage of retaining image quality while reducing input dosage, but they meet their limits of practicality when significant portions of the sinogram near photon starvation. The corruption of electronic noise leads to measured photon counts taking on negative values, posing a problem for the log() operation in preprocessing of data. In this paper, we propose two categories of projection correction methods: an adaptive denoising filter and Bayesian inference. The denoising filter is easy to implement and preserves local statistics, but it introduces correlation between channels and may affect image resolution. Bayesian inference is a point-wise estimation based on measurements and prior information. Both approaches help improve diagnostic image quality at dramatically reduced dosage.

  5. Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides (United States)

    Vasco, J. P.; Hughes, S.


    We present a fully three-dimensional Bloch mode expansion technique and a photon Green function formalism to compute the quality factors, mode volumes, and Purcell enhancement distributions of a disordered W1 photonic crystal slab waveguide in the slow-light Anderson-localization regime. By considering fabrication (intrinsic) and intentional (extrinsic) disorder we find that the Purcell enhancement statistics are well described by log-normal distributions without any fitting parameters. We also compare directly the effects of hole size fluctuations as well as fluctuations in the hole position. The functional dependence of the mean and standard deviation of the quality factor and Purcell enhancement distributions is found to decrease exponentially with the square root of the extrinsic disorder parameter. The strong coupling probability between a single quantum dot and an Anderson-localized mode is numerically computed and found to exponentially decrease with the squared extrinsic disorder parameter, where low disordered systems give rise to larger probabilities when state-of-the-art quantum dots are considered. The optimal spatial regions to position quantum dots in the W1 waveguide are also discussed. These theoretical results are fundamentally interesting for disordered photonics and connect to recent experimental works on photonic crystal slab waveguides in the slow-light regime. Our three-dimensional slab results also contradict some previous findings that use simpler two-dimensional models to understand these complex planar systems.

  6. Light scattering and photon statistics of quantum emitters coupled to metallic nanoparticles

    Directory of Open Access Journals (Sweden)

    O. Di Stefano


    Full Text Available We study theoretically the quantum optical properties of hybrid artificial molecules composed of an individual quantum emitter and a metallic nanoparticle. The coupling between the two systems can give rise to a Fano interference effect which strongly influences the quantum statistical properties of the scattered photons: a small frequency shift of the incident light field may cause changes in the intensity correlation function of the scattered field of orders of magnitude. The system opens a good perspective for applications in active metamaterials and ultracompact single-photon devices. We also demonstrate with accurate scattering calculations that a system constituted by a single quantum emitter (a semiconductor quantum dot placed in the gap between two metallic nanoparticles can display the vacuum Rabi splitting.

  7. Photonics

    CERN Document Server

    Andrews, David L


    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  8. Photonics

    CERN Document Server

    Andrews, David L


    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  9. Photonics

    CERN Document Server

    Andrews, David L


    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  10. Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission (United States)

    Lee, Y.-J.; Talghader, J. J.


    For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.

  11. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas


    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible

  12. Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion (United States)

    Maghrebi, Mohammad F.; Jaffe, Robert L.; Kardar, Mehran


    We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations are derived for the radiated energy and angular momentum as trace formulas involving the object's scattering matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the uncertainty of the object's angular velocity in steady rotation. Finally, we show in some detail that a rotating object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum electrodynamics is presented.

  13. Strong field line shapes and photon statistics from a single molecule under anomalous noise. (United States)

    Sanda, Frantisek


    We revisit the line-shape theory of a single molecule with anomalous stochastic spectral diffusion. Waiting time profiles for bath induced spectral jumps in the ground and excited states become different when a molecule, probed by continuous-wave laser field, reaches the steady state. This effect is studied for the stationary dichotomic continuous-time-random-walk spectral diffusion of a single two-level chromophore with power-law distributions of waiting times. Correlated waiting time distributions, line shapes, two-point fluorescence correlation function, and Mandel Q parameter are calculated for arbitrary magnitude of laser field. We extended previous weak field results and examined the breakdown of the central limit theorem in photon statistics, indicated by asymptotic power-law growth of Mandel Q parameter. Frequency profile of the Mandel Q parameter identifies the peaks of spectrum, which are related to anomalous spectral diffusion dynamics.

  14. Photonic forces in the near field of statistically homogeneous fluctuating sources

    CERN Document Server

    Aunon, Juan Miguel


    Electromagnetic sources, as e.g. lasers, antennas, diffusers or thermal sources, produce a wavefield that interacts with objects to transfer them its momentum. We show that the photonic force exerted on a small particle in the near field of a planar statistically homogeneous fluctuating source uniquely depends and acts along the coordinate perpendicular to its surface. The gradient part of this force is contributed by only the evanescent components of the emitted field, its sign being opposite to that of the real part of the particle polarizability. The non-conservative force part is uniquely due to the propagating components, being repulsive and constant. Also, the source coherence length adds a degree of freedom since it largely affects these forces. The excitation of plasmons in the source surface drastically enhances the gradient force. Hence, partially coherent wavefields from fluctuating sources constitute new concepts for particle manipulation at the subwavelength scale

  15. Statistical properties of photon modes in random arrays of ZnO nano-needles

    Energy Technology Data Exchange (ETDEWEB)

    Minz, Christoph; Leipold, David; Runge, Erich [Technische Universitaet Ilmenau, 98693 Ilmenau (Germany)


    Localization of electromagnetic waves in random media received renewed interest in the last years. Recent ultrafast optical experiments indicate the existence of highly localized photon modes in a system of homogeneous, randomly distributed, vertically aligned ZnO nano-needles. In particular, hot spots in the spatial distribution of the second harmonic generation (SHG) were found. In this work, we discuss the optical near field, which we obtain from full 3D solutions of Maxwell's equations of a model system in time domain. The spatial distribution of the electric near-field and the squared electric near-field intensity are investigated with statistical methods. The results are compared to the experimental findings. We thank Manfred Maschek, Slawa Schmidt, Martin Silies and Christoph Lienau from the Carl von Ossietzky Universitaet Oldenburg as well as Takashi Yatsui, Kokoro Kitamura and Motoichi Ohtsu from the University of Tokyo for sharing their experimental data with us prior to publication.

  16. A unified statistical framework for material decomposition using multienergy photon counting x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jiyoung; Kang, Dong-Goo; Kang, Sunghoon; Sung, Younghun [Samsung Advanced Institute of Technology (SAIT), San 14, Nong-seo dong, Giheung-gu, Yongin, Kyunggi 446-712 (Korea, Republic of); Ye, Jong Chul [Bio-Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejon 305-701 (Korea, Republic of)


    Purpose: Material decomposition using multienergy photon counting x-ray detectors (PCXD) has been an active research area over the past few years. Even with some success, the problem of optimal energy selection and three material decomposition including malignant tissue is still on going research topic, and more systematic studies are required. This paper aims to address this in a unified statistical framework in a mammographic environment.Methods: A unified statistical framework for energy level optimization and decomposition of three materials is proposed. In particular, an energy level optimization algorithm is derived using the theory of the minimum variance unbiased estimator, and an iterative algorithm is proposed for material composition as well as system parameter estimation under the unified statistical estimation framework. To verify the performance of the proposed algorithm, the authors performed simulation studies as well as real experiments using physical breast phantom and ex vivo breast specimen. Quantitative comparisons using various performance measures were conducted, and qualitative performance evaluations for ex vivo breast specimen were also performed by comparing the ground-truth malignant tissue areas identified by radiologists.Results: Both simulation and real experiments confirmed that the optimized energy bins by the proposed method allow better material decomposition quality. Moreover, for the specimen thickness estimation errors up to 2 mm, the proposed method provides good reconstruction results in both simulation and real ex vivo breast phantom experiments compared to existing methods.Conclusions: The proposed statistical framework of PCXD has been successfully applied for the energy optimization and decomposition of three material in a mammographic environment. Experimental results using the physical breast phantom and ex vivo specimen support the practicality of the proposed algorithm.

  17. An accurate behavioral model for single-photon avalanche diode statistical performance simulation (United States)

    Xu, Yue; Zhao, Tingchen; Li, Ding


    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  18. Quantum jumps and photon statistics in fluorescent systems coupled to classically fluctuating reservoirs (United States)

    Budini, Adrián A.


    In this paper, we develop a quantum-jump approach for describing the photon emission process of single fluorophore systems coupled to complex classically fluctuating reservoirs. The formalism relies on an open quantum system approach where the dynamics of the system and the reservoir fluctuations are described through a density matrix whose evolution is defined by a Lindblad rate equation. For each realization of the photon-measurement processes it is possible to define a conditional system state (stochastic density matrix) whose evolution depends on both the photon detection events and the fluctuations between the configurational states of the reservoir. In contrast to standard fluorescent systems the photon-to-photon emission process is not a renewal one, being defined by a (stochastic) waiting time distribution that in each recording event parametrically depends on the conditional state. The formalism allows calculating experimental observables such as the full hierarchy of joint probabilities associated with the time intervals between consecutive photon recording events. These results provide a powerful basis for characterizing different situations arising in single-molecule spectroscopy, such as spectral fluctuations, lifetime fluctuations and light-assisted processes.

  19. A statistical approach for measuring dislocations in 2D photonic crystals

    DEFF Research Database (Denmark)

    Malureanu, Radu; Frandsen, Lars Hagedorn


    In this paper, a comparison between the placement accuracy of lattice atoms in photonic crystal structures fabricated with different lithographic techniques is made. Using atomic force microscopy measurements and self-developed algorithms for calculating the holes position within less than 0.01nm...

  20. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.L.


    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  1. Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. (United States)

    Ridolfo, A; Di Stefano, O; Fina, N; Saija, R; Savasta, S


    We study theoretically the quantum optical properties of hybrid molecules composed of an individual quantum dot and a metallic nanoparticle. We calculate the resonance fluorescence of this composite system. Its incoherent part, arising from nonlinear quantum processes, is enhanced by more than 2 orders of magnitude as compared to that of the dot alone. The coupling between the two systems gives rise to a Fano interference effect which strongly influences the quantum statistical properties of the scattered photons: a small frequency shift of the incident light field may cause changes in the intensity correlation function of the scattered field of orders of magnitude. The system opens a good perspective for applications in active metamaterials and ultracompact single-photon devices.

  2. High-statistics study of K^0_S pair production in two-photon collisions

    CERN Document Server

    Uehara, S; Nakazawa, H; Adachi, I; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Bakich, A M; Bala, A; Bhardwaj, V; Bhuyan, B; Bondar, A; Bonvicini, G; Bozek, A; Bračko, M; Chekelian, V; Chen, A; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, S -K; Choi, Y; Cinabro, D; Dalseno, J; Dingfelder, J; Doležal, Z; Dutta, D; Eidelman, S; Epifanov, D; Farhat, H; Fast, J E; Feindt, M; Ferber, T; Frey, A; Gaur, V; Gabyshev, N; Ganguly, S; Gillard, R; Giordano, F; Goh, Y M; Golob, B; Haba, J; Hayasaka, K; Hayashii, H; Hoshi, Y; Hou, W -S; Hyun, H J; Iijima, T; Ishikawa, A; Itoh, R; Iwasaki, Y; Julius, T; Kah, D H; Kang, J H; Kato, E; Kawai, H; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, H O; Kim, J B; Kim, J H; Kim, Y J; Klucar, J; Ko, B R; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kumita, T; Kuzmin, A; Kwon, Y -J; Lee, S -H; Li, J; Li, Y; Liu, C; Liu, Z Q; Liventsev, D; Lukin, P; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Moll, A; Mori, T; Muramatsu, N; Mussa, R; Nagasaka, Y; Nakao, M; Ng, C; Nisar, N K; Nishida, S; Nitoh, O; Ogawa, S; Okuno, S; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Pestotnik, R; Petrič, M; Piilonen, L E; Ritter, M; Röhrken, M; Rostomyan, A; Sahoo, H; Saito, T; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Seidl, R; Senyo, K; Seon, O; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Simon, F; Sohn, Y -S; Sokolov, A; Solovieva, E; Starič, M; Steder, M; Sumihama, M; Sumiyoshi, T; Tamponi, U; Tanida, K; Tatishvili, G; Teramoto, Y; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Vahsen, S E; Van Hulse, C; Varner, G; Wagner, M N; Wang, C H; Wang, M -Z; Wang, P; Wang, X L; Williams, K M; Won, E; Yamashita, Y; Yashchenko, S; Yook, Y; Yuan, C Z; Yusa, Y; Zhang, C C; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A


    We report a high-statistics measurement of the differential cross section of the process gamma gamma --> K^0_S K^0_S in the range 1.05 GeV K^0_S K^0_S is reported. The detailed behavior of the cross section is updated and compared with QCD-based calculations.

  3. Photon-number statistics from resonance fluorescence of a two-level atom near a plasmonic nanoparticle (United States)

    Pastukhov, Vladimir M.; Vladimirova, Yulia V.; Zadkov, Victor N.


    The photon-number statistics from resonance fluorescence of a two-level atom near a metal nanosphere driven by a laser field with finite bandwidth is studied theoretically. Our analysis shows that all interesting physics here takes place in a small area around the nanosphere where the near field and the atom-nanosphere coupling essentially affect the radiative properties of the atom. Computer modeling estimates this area roughly as r ≤2 a (r is the distance from the center of the nanosphere to the atom), with a being the radius of the nanosphere. At the larger distances, the influence of the nanoparticle vanishes and the atom tends to behave similarly to that in free space. It is shown that the distribution function p (n ,T ) of the emission probability of n photons in a given time interval T in steady-state resonance fluorescence drastically depends on the atom location around the nanosphere for r ≤2 a , featuring a characteristic twist in the ridgelike dependence and a convergence time of up to 9 μ s, two orders of magnitude slower than for the atom in free space. At large distances, the distribution converges to a Gaussian one, as for the atom in free space. The typical convergence time scale at large distances r >2 a tends to the convergence time of the atom in free space. There are also two areas symmetrical around the nanosphere in which Ω ˜γ and the convergence time goes to zero. This behavior is determined by the interplay of the radiative and nonradiative decay rates of the atom due to the coupling with the metal nanosphere and by the near-field intensity. Additional parameters are the normalized laser frequency detuning from the atomic resonance and the bandwidth of the incoming laser field.

  4. Statistics

    CERN Document Server

    Hayslett, H T


    Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the

  5. Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QED revealed by many-level real-time path-integral calculations (United States)

    Cygorek, M.; Barth, A. M.; Ungar, F.; Vagov, A.; Axt, V. M.


    The generation of photons in a microcavity coupled to a laser-driven quantum dot interacting with longitudinal acoustic (LA) phonons is studied in the regime of simultaneously strong driving and strong dot-cavity coupling. The stationary cavity photon number is found to depend in a nontrivial way on the detuning between the laser and the exciton transition in the dot. In particular, the maximal efficiency of the cavity feeding is obtained for detunings corresponding to transition energies between cavity-dressed states with excitation numbers larger than one. Phonons significantly enhance the cavity feeding at large detunings. In the strong-driving, strong-coupling limit, the photon statistics is highly non-Poissonian. While without phonons a double-peaked structure in the photon distribution is predicted, phonons make the photon statistics thermal-like with very high effective temperatures ˜105 K, even for low phonon temperatures ˜4 K. These results were obtained by numerical calculations where the driving, the dot-cavity coupling, and the dot-phonon interactions are taken into account without approximations. This is achieved by a reformulation of an exact iterative path-integral scheme which is applicable to a large class of quantum-dissipative systems and which in our case reduces the numerical demands by 15 orders of magnitude.

  6. Statistics (United States)

    Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

  7. Statistical analysis of the spontaneously emitted photon signals from palm and dorsal sides of both hands in human subjects

    NARCIS (Netherlands)

    Wijk, E.P.A. van; Wijk, R.V.; Bajpai, R.P.; Greef, J. van der


    Photon signals emitted spontaneously from dorsal and palm sides of both hands were recorded using 6000 time windows of size T=50. ms in 50 healthy human subjects. These photon signals demonstrated universal behaviour by variance and mean. The data sets for larger time windows up to T=50. s were

  8. Statistical Description for Assumption-free Single-shot Measurement of Femtosecond Laser Pulse Parameters via Two-photon-induced Photocurrents


    Tkaczyk, Eric,; Rivet, Sylvain; Canioni, Lionel; Santran, Stéphane; Sarger, Laurent


    Through examining the product of the mathematical variance of intensity with respect to time and frequency, we arrive at a temporal characterization of laser pulses through parameters for pulse duration, group delay dispersion and temporal form. These statistics, which are sufficient to predict subsequent pulse behavior, are recoverable in a simple experiment, measuring the two-photon-induced photocurrents in three nonlinear diodes. With only two photodiodes, we demonstrate that pulse duratio...

  9. Measuring mouse retina response near the detection threshold to direct stimulation of photons with sub-poisson statistics (United States)

    Tavala, Amir; Dovzhik, Krishna; Schicker, Klaus; Koschak, Alexandra; Zeilinger, Anton

    Probing the visual system of human and animals at very low photon rate regime has recently attracted the quantum optics community. In an experiment on the isolated photoreceptor cells of Xenopus, the cell output signal was measured while stimulating it by pulses with sub-poisson distributed photons. The results showed single photon detection efficiency of 29 +/-4.7% [1]. Another behavioral experiment on human suggests a less detection capability at perception level with the chance of 0.516 +/-0.01 (i.e. slightly better than random guess) [2]. Although the species are different, both biological models and experimental observations with classical light stimuli expect that a fraction of single photon responses is filtered somewhere within the retina network and/or during the neural processes in the brain. In this ongoing experiment, we look for a quantitative answer to this question by measuring the output signals of the last neural layer of WT mouse retina using microelectrode arrays. We use a heralded downconversion single-photon source. We stimulate the retina directly since the eye lens (responsible for 20-50% of optical loss and scattering [2]) is being removed. Here, we demonstrate our first results that confirms the response to the sub-poisson distributied pulses. This project was supported by Austrian Academy of Sciences, SFB FoQuS F 4007-N23 funded by FWF and ERC QIT4QAD 227844 funded by EU Commission.

  10. Statistical analysis on activation and photo-bleaching of step-wise multi-photon activation fluorescence of melanin (United States)

    Gu, Zetong; Lai, Zhenhua; Zhang, Xi; Yin, Jihao; DiMarzio, Charles A.


    Melanin is regarded as the most enigmatic pigments/biopolymers found in most organisms. We have shown previously that melanin goes through a step-wise multi-photon absorption process after the fluorescence has been activated with high laser intensity. No melanin step-wise multi-photon activation fluorescence (SMPAF) can be obtained without the activation process. The step-wise multi-photon activation fluorescence has been observed to require less laser power than what would be expected from a non-linear optical process. In this paper, we examined the power dependence of the activation process of melanin SMPAF at 830nm and 920nm wavelengths. We have conducted research using varying the laser power to activate the melanin in a point-scanning mode for multi-photon microscopy. We recorded the fluorescence signals and position. A sequence of experiments indicates the relationship of activation to power, energy and time so that we can optimize the power level. Also we explored regional analysis of melanin to study the spatial relationship in SMPAF and define three types of regions which exhibit differences in the activation process.

  11. Local Sampling of the Wigner Function at Telecom Wavelength with Loss-Tolerant Detection of Photon Statistics. (United States)

    Harder, G; Silberhorn, Ch; Rehacek, J; Hradil, Z; Motka, L; Stoklasa, B; Sánchez-Soto, L L


    We report the experimental point-by-point sampling of the Wigner function for nonclassical states created in an ultrafast pulsed type-II parametric down-conversion source. We use a loss-tolerant time-multiplexed detector based on a fiber-optical setup and a pair of photon-number-resolving avalanche photodiodes. By capitalizing on an expedient data-pattern tomography, we assess the properties of the light states with outstanding accuracy. The method allows us to reliably infer the squeezing of genuine two-mode states without any phase reference.

  12. Hallo photons calls photon; Allo photon appelle photon

    Energy Technology Data Exchange (ETDEWEB)



    When a pair of photons is created, it seems that these 2 photons are bound together by a mysterious link. This phenomenon has been discovered at the beginning of the seventies. In this new experiment the 2 photons are separated and have to follow different ways through optic cables until they face a quantum gate. At this point they have to chose between a short and a long itinerary. Statistically they have the same probability to take either. In all cases the 2 photons agree to do the same choice even if the 2 quantum gates are distant of about 10 kilometers. Some applications in ciphering and coding of messages are expected. (A.C.)

  13. Generation of coherent states of photon-added type via pathway of eigenfunctions

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, K [Institute of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, PL 87-100 Torun (Poland); Penson, K A [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie, CNRS UMR 7600, Tour 24-2ieme et., 4 pl. Jussieu, F 75252 Paris Cedex 05 (France); Duchamp, G H E, E-mail: dede@fizyka.umk.p, E-mail: penson@lptl.jussieu.f, E-mail: ghed@lipn-univ.paris13.f [LIPN, Institut Galilee, Universite Paris XIII, CNRS UMR 7030, 99 Av. J-B Clement, F 93430 Villetaneuse (France)


    We obtain and investigate the regular eigenfunctions of simple differential operators x{sup r} d{sup r+1}/dx{sup r+1}, r = 1, 2, ..., with the eigenvalues equal to 1. With the help of these eigenfunctions, we construct a non-unitary analogue of a boson displacement operator which will be acting on the vacuum. In this way, we generate collective quantum states of the Fock space which are normalized and equipped with the resolution of unity with the positive weight functions that we obtain explicitly. These states are thus coherent states in the sense of Klauder. They span the truncated Fock space without first r lowest-lying basis states: |0), |1), ..., |r - 1). These states are squeezed, sub-Poissonian in nature and reminiscent of photon-added states in Agarwal and Tara (1991 Phys. Rev. A 43 492).

  14. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.


    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  15. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.


    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  16. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)



    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  17. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole


    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based...... on the positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  18. Mathematical foundations of quantum statistics

    CERN Document Server

    Khinchin, A Y


    A coherent, well-organized look at the basis of quantum statistics' computational methods, the determination of the mean values of occupation numbers, the foundations of the statistics of photons and material particles, thermodynamics.

  19. Microwave photonics

    CERN Document Server

    Lee, Chi H


    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  20. Photon heterodyning. (United States)

    Okawa, Youhei; Omura, Fuminori; Yasutake, Yuhsuke; Fukatsu, Susumu


    Single-photon interference experiments are attempted in the time domain using true single-photon streams. Self-heterodyning beats are clearly observed by letting the field associated with a single photon interfere with itself on a field-quadratic detector, which is a time analogue of Young's two-slit interference experiment. The temporal first-order coherence of single-photon fields, i.e., transient interference fringes, develops as cumulative detection events are mapped point-by-point onto a virtual capture frame by properly correlating the time-series data. The ability to single out photon counts at a designated timing paves the way for digital heterodyning with faint light for such use as phase measurement and quantum information processing.

  1. Microwave photonics

    CERN Document Server

    Lee, Chi H


    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  2. Photon diffraction (United States)

    Hodge, John


    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at˜scjh/.

  3. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    DEFF Research Database (Denmark)

    Lehmann, Tau Bernstorff

    In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single......-photons from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...... veries the single-photon nature of the quantum-dot. Furthermore correlationmeasurement between the outputs of the power divider conrms the passive separation of the singlephotonemission.A scheme for post-emission entanglement generation between single-photons from an efficientsource is discussed...

  4. Testing QCD in Photon-Photon Interactions


    Soldner-Rembold, Stefan


    At high energies photon-photon interactions are dominated by quantum fluctuations of the photons into fermion-antifermion pairs and into vector mesons. This is called photon structure. Electron-positron collisions at LEP are an ideal laboratory for studying photon structure and for testing QCD.

  5. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P


    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  6. Photonic Bandgaps in Photonic Molecules (United States)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)


    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  7. Photon Rao

    Indian Academy of Sciences (India)

    Volume 2 Issue 5 May 1997 pp 69-72 Feature Article. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao · More Details Fulltext PDF. Volume 16 Issue 12 December 2011 pp 1303-1306. Molecule of the Month - Molecular-Chameleon: Solvatochromism at its Iridescent Best!

  8. Photon differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Revall Frisvad, Jeppe; Erleben, Kenny


    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  9. Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny


    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  10. Photon-Photon Scattering at the Photon Linear Collider


    Jikia, G.; Tkabladze, A.


    Photon-photon scattering at the Photon Linear Collider is considered. Explicit formulas for helicity amplitudes due to $W$ boson loops are presented. It is shown that photon-photon scattering should be easily observable at PLC and separation of the $W$ loop contribution (which dominates at high energies) will be possible at $e^+e^-$ c.m. energy of 500~GeV or higher.

  11. Photon-Photon Interaction in a Photon Gas


    Thoma, Markus H.


    Using the effective Lagrangian for the low energy photon-photon interaction the lowest order photon self energy at finite temperature and in non-equilibrium is calculated within the real time formalism. The Debye mass, the dispersion relation, the dielectric tensor, and the velocity of light following from the photon self energy are discussed. As an application we consider the interaction of photons with the cosmic microwave background radiation.

  12. Photon Collider Physics with Real Photon Beams

    Energy Technology Data Exchange (ETDEWEB)

    Gronberg, J; Asztalos, S


    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  13. Essentials of photonics

    CERN Document Server

    Rogers, Alan; Baets, Roel


    Photons and ElectronsHistorical SketchThe Wave Nature of LightPolarizationThe Electromagnetic SpectrumEmission and Absorption ProcessesPhoton Statistics The Behaviour of Electrons LasersSummaryWave Properties of LightThe Electromagnetic SpectrumWave RepresentationElectromagnetic WavesReflection and RefractionTotal Internal ReflectionInterference of LightLight WaveguidingInterferometersDiffractionGaussian Beams and Stable Optical ResonatorsPolarization OpticsThe Polarization EllipseCrystal OpticsRetarding WaveplatesA Variable Waveplate: The Soleil-Babinet Compensator Polarizing PrismsLinear BirefringenceCircular BirefringenceElliptical BirefringencePractical Polarization EffectsPolarization AnalysisThe Form of the Jones MatricesLight and Matter Emission, Propagation, and Absorption ProcessesClassical Theory of Light Propagation in Uniform Dielectric Media Optical Dispersion Emission and Absorption of LightOptical Coherence and CorrelationIntroductionMeasure of Coherence Wiener-Khinchin TheoremDual-Beam Interfe...

  14. Twisted photons (United States)

    Molina-Terriza, Gabriel; Torres, Juan P.; Torner, Lluis


    The orbital angular momentum of light represents a fundamentally new optical degree of freedom. Unlike linear momentum, or spin angular momentum, which is associated with the polarization of light, orbital angular momentum arises as a subtler and more complex consequence of the spatial distribution of the intensity and phase of an optical field - even down to the single photon limit. Consequently, researchers have only begun to appreciate its implications for our understanding of the many ways in which light and matter can interact, or its practical potential for quantum information applications. This article reviews some of the landmark advances in the study and use of the orbital angular momentum of photons, and in particular its potential for realizing high-dimensional quantum spaces.

  15. Vesicle Photonics (United States)

    Vasdekis, A. E.; Scott, E. A.; Roke, S.; Hubbell, J. A.; Psaltis, D.


    Amphiphiles, under appropriate conditions, can self-assemble into nanoscale thin membrane vessels (vesicles) that encapsulate and hence protect and transport molecular payloads. Vesicles assemble naturally within cells but can also be artificially synthesized. In this article, we review the mechanisms and applications of light-field interactions with vesicles. By being associated with light-emitting entities (e.g., dyes, fluorescent proteins, or quantum dots), vesicles can act as imaging agents in addition to cargo carriers. Vesicles can also be optically probed on the basis of their nonlinear response, typically from the vesicle membrane. Light fields can be employed to transport vesicles by using optical tweezers (photon momentum) or can directly perturb the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy). We conclude with emerging vesicle applications in biology and photochemical microreactors.

  16. Measuring the two-photon decay width of intermediate-mass Higgs bosons at a photon-photon collider


    Ohgaki, Tomomi; Takahashi, Tohru; Watanabe, Isamu


    The feasibility of a measurement of the partial decay width of the intermediate-mass Higgs boson into two photons at a photon-photon collider is studied by a simulation. The QCD radiative correction for quark pair background processes is taken into account for the realistic background estimation. It is found that the twophoton decay width can be measured with the statistical error of 7.6% with about one year of experiment. The impact of the measurement of the two-photon decay width to look fo...

  17. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons. (United States)

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat


    Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Photonic Nanojets. (United States)

    Heifetz, Alexander; Kong, Soon-Cheol; Sahakian, Alan V; Taflove, Allen; Backman, Vadim


    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet's minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter d(ν) perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as d(ν)3 for a fixed λ. This perturbation is much slower than the d(ν)6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000(th) the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage.


    NARCIS (Netherlands)



    High energy photon emission accompanying the spontaneous fission of Cf-252 is measured for different mass splits. The photon yields up to an energy of 20 MeV are obtained at several angles relative to the fission direction. Statistical model calculations are used to interpret the data. The photon

  20. Disordered photonics (United States)

    Wiersma, Diederik S.


    What do lotus flowers have in common with human bones, liquid crystals with colloidal suspensions, and white beetles with the beautiful stones of the Taj Mahal? The answer is they all feature disordered structures that strongly scatter light, in which light waves entering the material are scattered several times before exiting in random directions. These randomly distributed rays interfere with each other, leading to interesting, and sometimes unexpected, physical phenomena. This Review describes the physics behind the optical properties of disordered structures and how knowledge of multiple light scattering can be used to develop new applications. The field of disordered photonics has grown immensely over the past decade, ranging from investigations into fundamental topics such as Anderson localization and other transport phenomena, to applications in imaging, random lasing and solar energy.

  1. Photon - Hadron Correlations in Heavy Ion Collisions from PHENIX (United States)

    Danley, Tyler; Phenix Collaboration


    Direct photon-jet pairs are produced in the initial hard scattering of nucleons in A+A collisions in which a quark-gluon plasma is formed. The photon is not affected by the quark-gluon plasma, while the jet loses energy. This allows the direct photon to be an energy calibrator for the jet which can then be studied through photon-hadron pair correlations. Obtaining direct photons is challenging because of the myriad of background photons. Typically, a statistical subtraction method is used in A+A at RHIC. In addition to a statistical method, we have also developed a direct method to obtain isolated photons in A+A by using an isolation cut like those used in direct photon identification in p+p collisions. The isolation cut provides for a cleaner sample of direct photons, potentially reducing the systematic uncertainties on direct photon-hadron correlations when compared to the statistical subtraction sample but presents its own new challenges in the A+A high multiplicity environment. We present the status of centrality-dependent direct photon-hadron angular correlations and fragmentation functions in A+A collisions as well as recent results from recent high-statistics PHENIX datasets.

  2. Photon-photon interactions via Rydberg blockade. (United States)

    Gorshkov, Alexey V; Otterbach, Johannes; Fleischhauer, Michael; Pohl, Thomas; Lukin, Mikhail D


    We develop the theory of light propagation under the conditions of electromagnetically induced transparency in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We show that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-photon gates, as well as for studying many-body phenomena with strongly correlated photons.

  3. Photonics and Optoelectronics (United States)


    Photonic Crystals, Metamaterials , nano-materials & 2D materials & Nano-Probes & Novel Sensing - Integrated Photonics & Silicon Photonics...nanostructures, plasmonics, metamaterials --Overcoming current interconnect challenges --Need for Design Tools for photonic IC’s: scattered landscape...DARPA NNI/NNCO BRI (2D Materials & Devices Beyond Graphene – planning phase) LRIR PIs Szep – RY: PICS Quantum Information

  4. RR photons

    CERN Document Server

    Camara, Pablo G; Marchesano, Fernando


    Type II string compactifications to 4d generically contain massless Ramond-Ramond U(1) gauge symmetries. However there is no massless matter charged under these U(1)'s, which makes a priori difficult to measure any physical consequences of their existence. There is however a window of opportunity if these RR U(1)'s mix with the hypercharge $U(1)_Y$ (hence with the photon). In this paper we study in detail different avenues by which $U(1)_{RR}$ bosons may mix with D-brane U(1)'s. We concentrate on Type IIA orientifolds and their M-theory lift, and provide geometric criteria for the existence of such mixing, which may occur either via standard kinetic mixing or via the mass terms induced by St\\"uckelberg couplings. The latter case is particularly interesting, and appears whenever D-branes wrap torsional $p$-cycles in the compactification manifold. We also show that in the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and particles appear in the 4d effective action, and that ty...

  5. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis


    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  6. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique


    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  7. Cancer Statistics (United States)

    ... What Is Cancer? Cancer Statistics Cancer Disparities Cancer Statistics Cancer has a major impact on society in ... success of efforts to control and manage cancer. Statistics at a Glance: The Burden of Cancer in ...

  8. Caregiving Statistics (United States)

    ... Coping with Alzheimer’s COPD Caregiving Take Care! Caregiver Statistics Statistics on Family Caregivers and Family Caregiving Caregiving Population ... Health Care Caregiver Self-Awareness State by State Statistics Caregiving Population The value of the services family ...

  9. Nuclear photonics (United States)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.


    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  10. Jet and hadron production in photon-photon collisions


    Soldner-Rembold, Stefan


    Di-jet and inclusive charged hadron production cross-sections measured in photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep scattering by H1 and in photon-proton scattering by ZEUS are shown to be consistent in similar kinematic ranges. New results from TOPAZ on prompt photon production in photon-photon interactions are presented.

  11. Photon-photon measurements in CMS

    CERN Document Server

    Chudasama, Ruchi


    We discuss the measurement of photon-photon processes using data collected by the CMS experiment in pp collisions at $\\sqrt{s}$ = 7 and 8 TeV and in PbPb collisions at $\\sqrt{s_{_{{\\rm NN}}}}= 5.02$ TeV.

  12. A photonic thermalization gap in disordered lattices

    CERN Document Server

    Kondakci, H E; Saleh, B E A


    The formation of gaps -- forbidden ranges in the values of a physical parameter -- is a ubiquitous feature of a variety of physical systems: from energy bandgaps of electrons in periodic lattices and their analogs in photonic, phononic, and plasmonic systems to pseudo energy gaps in aperiodic quasicrystals. Here, we report on a `thermalization' gap for light propagating in finite disordered structures characterized by disorder-immune chiral symmetry -- the appearance of the eigenvalues and eigenvectors in skew-symmetric pairs. In this class of systems, the span of sub- thermal photon statistics is inaccessible to input coherent light, which -- once the steady state is reached -- always emerges with super-thermal statistics no matter how small the disorder level. We formulate an independent constraint that must be satisfied by the input field for the chiral symmetry to be `activated' and the gap to be observed. This unique feature enables a new form of photon-statistics interferometry: the deterministic tuning...

  13. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.


    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  14. Photonic crystal light source (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM


    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  15. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    of photonic crystals to control electromagnetic radiation, study of photonic band gaps in photonic crystals is a must. The photonic band gaps in photonic crystals depend upon the arrangement of the constituent air holes/dielectric rods, fill factor and dielectric contrast of the two mediums used in forming photonic crystals. In.

  16. Quantum Measurements Based on Photon Number Resolved Detection (United States)

    Silberhorn, Christine


    The characterization of any quantum system requires measurements, which allows an observer to gain information about a performed experiment. The theory of quantum measurements connects the properties of a quantum state, which is typically defined by its density matrix ρ, and the description of the measurement devices, represented by a positive-operator-valued measure (POVM), with the probabilities of obtaining specific detection outcomes. The way on how we interpret our results depends, on the one hand, on the technical limitations of available detectors, and on the other hand, on our knowledge about the measurement apparatus. Up to recently no practical photon-number resolving detectors were available. Hence most research dealing with multi-photon states is based on homodyne tomography schemes. A time-multiplexing detector (TMD) that is capable to resolve photon statistics can be built from a fiber network followed by avalanche photo-detection. TMDs enable the direct measurement of count statistics, but their moderate efficiency hampers identifying the photon number of each signal state on a single-shot basis. The POVMs describing this detector correspond to loss-degraded photon number measurements, and a precise calibration of the losses can be utilized to recover the original photon number statistics in ensemble measurements by a loss inversion method. However, the knowledge of the photon statistics is not sufficient to completely characterize a state, because photon counting annihilates any information about the coherences between photon numbers. Nevertheless, TMD measurements can render a complete characterization of a density matrix ρ, if the statistics of the displaced states are analyzed. We investigate the capabilities of detector tomography and loss-tolerant detection of photon statistics for the complete characterization of photonic states.

  17. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D


    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  18. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon


    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  19. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon


    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  20. Interferometric control of the photon-number distribution

    Directory of Open Access Journals (Sweden)

    H. Esat Kondakci


    Full Text Available We demonstrate deterministic control over the photon-number distribution by interfering two coherent beams within a disordered photonic lattice. By sweeping a relative phase between two equal-amplitude coherent fields with Poissonian statistics that excite adjacent sites in a lattice endowed with disorder-immune chiral symmetry, we measure an output photon-number distribution that changes periodically between super-thermal and sub-thermal photon statistics upon ensemble averaging. Thus, the photon-bunching level is controlled interferometrically at a fixed mean photon-number by gradually activating the excitation symmetry of the chiral-mode pairs with structured coherent illumination and without modifying the disorder level of the random system itself.

  1. Frequency Conversion of Single Photons: Physics, Devices, and Applications (United States)


    89 6.7 Rabi oscillations in photon counts for downconverted quantum dot single, and show that the photon statistics of the quantum dot emission are preserved. Additionally, through the observation of Rabi oscillations in the...InAs is grown by molecular beam epitaxy (MBE, [119]) on a GaAs substrate, due to the lattice mismatch between InAs and GaAs, after the growth of a

  2. Descriptive statistics. (United States)

    Shi, Runhua; McLarty, Jerry W


    In this article, we introduced basic concepts of statistics, type of distributions, and descriptive statistics. A few examples were also provided. The basic concepts presented herein are only a fraction of the concepts related to descriptive statistics. Also, there are many commonly used distributions not presented herein, such as Poisson distributions for rare events and exponential distributions, F distributions, and logistic distributions. More information can be found in many statistics books and publications.

  3. Statistics of dark matter substructure - III. Halo-to-halo variance (United States)

    Jiang, Fangzhou; van den Bosch, Frank C.


    We present a study of unprecedented statistical power regarding the halo-to-halo variance of dark matter substructure. Combining N-body simulations and a semi-analytical model, we investigate the variance in subhalo mass fractions and occupation numbers, with an emphasis on their halo-formation-time dependence. We show that the average subhalo mass fraction, fsub, is mainly a function of halo formation time: at fixed formation redshift, the average subhalo mass fraction is virtually independent of halo mass and the mass dependence of fsub therefore mainly manifests the later assembly of more massive haloes. We note that the observational constraints on fsub from gravitational lensing are substantially higher than the median Λcold dark matter predictions, yet marginally lie within the 95th percentile when the halo-to-halo variance is considered. The halo occupation number distribution of subhaloes, P(Nsub|Mhalo), in addition to the well-known super-Poissonity for large 〈Nsub〉, is sub-Poissonian for 〈Nsub〉 ≲ 2. Ignoring this results in systematic errors of the predicted clustering of galaxies of a few percent, with a complicated scale- and luminosity dependence. The non-Poissonity is likely imprinted at accretion, and the dynamical evolution of subhaloes drives the statistics towards Poissonian. Contrary to a recent claim, the non-Poissonity of subhalo occupation statistics does not vanish by selecting haloes with fixed mass and fixed formation redshift. Finally, we use subhalo occupation statistics to put loose constraints on the mass and formation redshift of the Milky Way halo.

  4. Electron and Photon ID

    CERN Document Server

    Hryn'ova, Tetiana; The ATLAS collaboration


    The identification of prompt photons and the rejection of background coming mostly from photons from hadron decays relies on the high granularity of the ATLAS calorimeter. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. Several methods are used to measure with data the efficiency of the photon identification requirements, to cover a broad energy spectrum. At low energy, photons from radiative Z decays are used. In the medium energy range, similarities between electrons and photon showers are exploited using Z->ee decays. At high energy, inclusive photon samples are used. The measurement of the efficiencies of the electron identification and isolation cuts are performed with the data using tag and probe techniques with large statis...

  5. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic......This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...

  6. Inclusive hard processes in photon-photon and photon-proton interactions


    Glasman, Claudia


    Measurements of jet, prompt photon, high-pT hadron and heavy quark production in photon-induced processes provide tests of QCD and are sensitive to the photon parton densities. A review of the latest experimental results in photon-photon and photon-proton interactions is presented. Next-to-leading-order QCD calculations for these measurements are discussed.

  7. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices

    Directory of Open Access Journals (Sweden)

    Lee Carroll


    Full Text Available Dedicated multi-project wafer (MPW runs for photonic integrated circuits (PICs from Si foundries mean that researchers and small-to-medium enterprises (SMEs can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved.

  8. Tagged photon facility at Centre for Advanced Technology, Indore ...

    Indian Academy of Sciences (India)

    production of neutron in a quasi-free kinematics. Table 1 shows the beam times, ω statistics and other relevant parameters for the ω photoproduction from various targets. The fraction of ω decaying inside the nucleus were maximized by requiring the incident photon energy to be close to the production threshold. The photon.

  9. Single-photon non-linear optics with a quantum dot in a waveguide. (United States)

    Javadi, A; Söllner, I; Arcari, M; Hansen, S Lindskov; Midolo, L; Mahmoodian, S; Kiršanskė, G; Pregnolato, T; Lee, E H; Song, J D; Stobbe, S; Lodahl, P


    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  10. Nonlinear silicon photonics (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.


    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  11. Statistical physics

    CERN Document Server

    Sadovskii, Michael V


    This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.

  12. Heavy Quark Pair Production in Polarized Photon--Photon Collisions


    Jikia, George; Tkabladze, Avto


    We present the next-to-leading-order cross sections of the heavy quark-antiquark pair production in polarized photon-photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including one-loop QCD radiative corrections.

  13. Harmonic statistics

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail:


    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  14. Statistical distributions

    CERN Document Server

    Forbes, Catherine; Hastings, Nicholas; Peacock, Brian J.


    A new edition of the trusted guide on commonly used statistical distributions Fully updated to reflect the latest developments on the topic, Statistical Distributions, Fourth Edition continues to serve as an authoritative guide on the application of statistical methods to research across various disciplines. The book provides a concise presentation of popular statistical distributions along with the necessary knowledge for their successful use in data modeling and analysis. Following a basic introduction, forty popular distributions are outlined in individual chapters that are complete with re

  15. Statistical methods

    CERN Document Server

    Szulc, Stefan


    Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then

  16. Statistical optics

    CERN Document Server

    Goodman, Joseph W


    This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications.  The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i

  17. Single-photon imaging

    CERN Document Server

    Seitz, Peter


    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  18. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C


    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  19. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan


    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  20. Photonic Integrated Circuits (United States)

    Krainak, Michael; Merritt, Scott


    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  1. Advanced Photon Source (APS) (United States)

    Federal Laboratory Consortium — The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratoryprovides this nation's (in fact, this hemisphere's) brightest storage...

  2. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca


    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  3. Scan Statistics

    CERN Document Server

    Glaz, Joseph


    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  4. Practical Statistics

    CERN Document Server

    Lyons, L.


    Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.

  5. Efficiency vs. multi-photon contribution test for quantum dots. (United States)

    Predojević, Ana; Ježek, Miroslav; Huber, Tobias; Jayakumar, Harishankar; Kauten, Thomas; Solomon, Glenn S; Filip, Radim; Weihs, Gregor


    The development of linear quantum computing within integrated circuits demands high quality semiconductor single photon sources. In particular, for a reliable single photon source it is not sufficient to have a low multi-photon component, but also to possess high efficiency. We investigate the photon statistics of the emission from a single quantum dot with a method that is able to sensitively detect the trade-off between the efficiency and the multi-photon contribution. Our measurements show, that the light emitted from the quantum dot when it is resonantly excited possess a very low multi-photon content. Additionally, we demonstrated, for the first time, the non-Gaussian nature of the quantum state emitted from a single quantum dot.

  6. First Measurement of the Quark-to-Photon Fragmentation Function

    CERN Document Server

    Thompson, J


    Earlier measurements at LEP of isolated hard photons in hadronic $Z$ decays attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon production {\\em inside} hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energy $z\\geq 0.7$. After statistical subtraction of non-prompt photons, the quark- to-photon fragmentation function, $D(z)$, is extracted directly from the measured prompt production rate. By taking into account the perturbative contributions to $D(z)$ obtained from an $\\cal{O}(\\alpha \\alpha_S)$ QCD calculation, the unknown non-perturbative component of $D(z)$ is determined at high $z$. This measurement is compared with an earlier theoretical parametrisation widely used to determine the level of quark bremsstrahlung present in prompt photon production at the hadron colliders.

  7. Semiconductor statistics

    CERN Document Server

    Blakemore, J S


    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  8. Statistics Clinic (United States)

    Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James


    Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.

  9. Resonances in photon-photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.


    Selected topics in meson spectroscoy are reviewed as they are illuminated by photon-photon collisons. Subjects include the S*/f/sub 0/ (975) and delta/a/sub 0/ (980) as /ovr qq/qq candidates, the /iota///eta/ (1460) and theta/f/sub 2/ (1700) as glueball candidates, and the spin 1 X(1420) seen in tagged events which represents new physics whether its parity is positive, J/sup PC/ = 1/sup + +/, or negative with exotic J/sup PC/ = 1/sup /minus/+/. 57 refs., 2 figs., 1 tab.

  10. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.


    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  11. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T


    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  12. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole


    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  13. Technical Assessment: Integrated Photonics (United States)


    Photonics for accessible Biomedical Diagnostics” [16] to advance the frontiers of biophotonics research in mid- IR materials systems, integrated photonic...An example of the ongoing research includes recent work from Universiti Teknologi, Malaysia where ring resonator is being targeted for Salmonella

  14. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.


    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  15. Photonic layered media (United States)

    Fleming, James G.; Lin, Shawn-Yu


    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  16. CMS Statistics (United States)

    U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...

  17. WPRDC Statistics (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Data about the usage of the WPRDC site and its various datasets, obtained by combining Google Analytics statistics with information from the WPRDC's data portal.

  18. Accident Statistics (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  19. Image Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.

  20. Multiparametric statistics

    CERN Document Server

    Serdobolskii, Vadim Ivanovich


    This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...

  1. Trichomoniasis Statistics (United States)

    ... Search Form Controls Cancel Submit Search the CDC Trichomoniasis Note: Javascript is disabled or is not supported ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Trichomoniasis Statistics Recommend on Facebook Tweet Share Compartir In ...

  2. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell


    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  3. Vital statistics

    CERN Document Server

    MacKenzie, Dana


    The drawbacks of using 19th-century mathematics in physics and astronomy are illustrated. To continue with the expansion of the knowledge about the cosmos, the scientists will have to come in terms with modern statistics. Some researchers have deliberately started importing techniques that are used in medical research. However, the physicists need to identify the brand of statistics that will be suitable for them, and make a choice between the Bayesian and the frequentists approach. (Edited abstract).

  4. Cascaded Kerr photon-blockade soruces and applications in quantum key distribution. (United States)

    Li, Ao; Zhou, Yiheng; Wang, Xiang-Bin


    To raise the repetition rate, a single-photon source based on Kerr quantum blockade in a cascaded quantum system is studied. Using the quantum trajectory method, we calculate and simulate the photon number distributions out of a two-cavity system. A high quality single-photon source can be achieved through optimizing parameters. The designed photon source is further applied to the decoy state quantum key distribution (QKD). With and without statistical fluctuation, the key rate can be both raised drastically.

  5. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip (United States)

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.


    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  6. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. (United States)

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X


    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  7. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic...

  8. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  9. Ion photon emission microscope (United States)

    Doyle, Barney L.


    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  10. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic......Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  11. Incoherent on-off keying with classical and non-classical light. (United States)

    Jarzyna, Marcin; Kuszaj, Piotr; Banaszek, Konrad


    We analyze the performance of on-off keying (OOK) and its restricted version pulse position modulation (PPM) over a lossy narrowband optical channel under the constraint of a low average photon number, when direct detection is used at the output. An analytical approximation for the maximum PPM transmission rate is derived, quantifying the effects of photon statistics on the communication efficiency in terms of the g((2)) second-order intensity correlation function of the light source. Enhancement attainable through the use of sub-Poissonian light is discussed.

  12. Statistical mechanics

    CERN Document Server

    Jana, Madhusudan


    Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...

  13. Statistical physics

    CERN Document Server

    Guénault, Tony


    In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...

  14. Statistical mechanics

    CERN Document Server

    Schwabl, Franz


    The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...

  15. Progress in neuromorphic photonics (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.


    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  16. Statistical mechanics

    CERN Document Server

    Davidson, Norman


    Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody

  17. AP statistics

    CERN Document Server

    Levine-Wissing, Robin


    All Access for the AP® Statistics Exam Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the online tools that come with it, will help you personalize your AP® Statistics prep

  18. Statistical inference

    CERN Document Server

    Rohatgi, Vijay K


    Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth

  19. Tomography of photon-added and photon-subtracted states

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the

  20. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D


    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  1. Physics of photonic devices

    CERN Document Server

    Chuang, Shun Lien


    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  2. Single photon quantum cryptography. (United States)

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe


    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  3. Fundamentals of photonics

    CERN Document Server

    Saleh, Bahaa E A


    Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advan

  4. Photonic structures in biology (United States)

    Vukusic, Pete; Sambles, J. Roy


    Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.

  5. Statistical Mechancis

    CERN Document Server

    Gallavotti, Giovanni


    C. Cercignani: A sketch of the theory of the Boltzmann equation.- O.E. Lanford: Qualitative and statistical theory of dissipative systems.- E.H. Lieb: many particle Coulomb systems.- B. Tirozzi: Report on renormalization group.- A. Wehrl: Basic properties of entropy in quantum mechanics.

  6. Statistical Computing

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Statistical Computing - Understanding Randomness and Random Numbers. Sudhakar Kunte. Series Article Volume 4 Issue 10 October 1999 pp 16-21. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. New results for a photon-photon collider

    Energy Technology Data Exchange (ETDEWEB)

    David Asner et al.


    We present new results from studies in progress on physics at a two-photon collider. We report on the sensitivity to top squark parameters of MSSM Higgs boson production in two-photon collisions; Higgs boson decay to two photons; radion production in models of warped extra dimensions; chargino pair production; sensitivity to the trilinear Higgs boson coupling; charged Higgs boson pair production; and we discuss the backgrounds produced by resolved photon-photon interactions.

  8. Photon radiation from quarks at LEP

    CERN Document Server

    Thompson, J C


    Earlier measurements at LEP of isolated hard photons in hadronic zo decays attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include their production inside hadron jets. Events are selected where all particles combine "democratically" to form 2 hadron jets, one of which contains a photon with a fractional energy z � 0. 7. After the statistical subtraction of events arising from non-prompt photons, the quark-to-photon fragmentation function, D(z), is extracted directly from the measured prompt production rate. Taking into account the perturbative contributions to D(z) obtained in an O(aa,) MS renormalisation scheme enables the unknown non-perturbative component of D(z) to be determined at high z. This measurement provides a better description of quark bremmstrahlung than hitherto employed in high energy hadron-hadron collisions. A updated analysis is also presented from OPAL of comparisons between 1-jet plus isolated photon rates and different QCD matrix element ...

  9. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S


    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  10. Hybrid photonic crystal fiber

    National Research Council Canada - National Science Library

    Arismar Cerqueira S. Jr; F. Luan; C. M. B. Cordeiro; A. K. George; J. C. Knight


    We present a hybrid photonic crystal fiber in which a guided mode is confined simultaneously by modified total internal reflection from an array of air holes and antiresonant reflection from a line...

  11. Photonics in switching

    CERN Document Server

    Midwinter, John E; Kelley, Paul


    Photonics in Switching provides a broad, balanced overview of the use of optics or photonics in switching, from materials and devices to system architecture. The chapters, each written by an expert in the field, survey the key technologies, setting them in context and highlighting their benefits and possible applications. This book is a valuable resource for those working in the communications industry, either at the professional or student level, who do not have extensive background knowledge or the underlying physics of the technology.

  12. Photon mass and electrogenesis

    National Research Council Canada - National Science Library

    Dolgov, Alexander; Pelliccia, Diego N


    ... and the vanishing of the photon mass. Attempts to break the electric current conservation theoretically [4,5] or to observe it experimentally [6,7] have a long history. If the photon mass is zero, then the Maxwell equations automatically imply the current conservation. Indeed, from (1) ∇ μ F μ ν = 4 π J ν follows (2) ∇ ν J ν = 1 − g ∂ ν ( − g J ν ) = 0 , bec...

  13. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard


    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  14. Magnetic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lyubchanskii, I L [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Dadoenkova, N N [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Lyubchanskii, M I [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Shapovalov, E A [Department of Physics, Donetsk National University, 24, Universitetskaya St., 83055 Donetsk (Ukraine); Rasing, Th [NSRIM Institute, University of Nijmegen, 6525 ED, Nijmegen (Netherlands)


    In this paper we outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation. The main (and principal) characteristic of this new class of PCs is the presence of magnetically ordered components (or external magnetic field). The linear and nonlinear optical properties of such magnetic PCs are discussed. (topical review)


    Directory of Open Access Journals (Sweden)



    Full Text Available The hollow core photonic crystal waveguide biosensor is designed and described. The biosensor was tested in experiments for artificial sweetener identification in drinks. The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids filling up the hollow core. The compactness, good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promising for various biomedical applications.

  16. QUANTUM CRYPTOGRAPHY: Single Photons. (United States)

    Benjamin, S


    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  17. Handbook of silicon photonics

    CERN Document Server

    Pavesi, Lorenzo


    The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors, multiplexers, light sources, and various subsystems, have been developed that take advantage of state-of-the-art silicon technology.

  18. Photonics Explorer: revolutionizing photonics in the classroom (United States)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo


    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  19. Programmable Quantum Photonic Processor Using Silicon Photonics (United States)


    al, ’’ Semiconductor Quantum Technologies for Information Processing and Sensing,,’’ Canadian Institute for Advanced Research - Quantum Information... Graphene Optoelectronic Devices for Optical Interconnects,’’ , CLEO/Europe-EQEC 2015, Munich, Germany (6/21/2015) ● Jacob Mower, Nicholas C. Harris...Processing Using Active Silicon Photonic Integrated Circuits,’’ CLEO/Europe-EQEC 2015, Munich, Germany (6/22/2015) ● D. Englund et al, ’’ Semiconductor

  20. [Descriptive statistics]. (United States)

    Rendón-Macías, Mario Enrique; Villasís-Keever, Miguel Ángel; Miranda-Novales, María Guadalupe


    Descriptive statistics is the branch of statistics that gives recommendations on how to summarize clearly and simply research data in tables, figures, charts, or graphs. Before performing a descriptive analysis it is paramount to summarize its goal or goals, and to identify the measurement scales of the different variables recorded in the study. Tables or charts aim to provide timely information on the results of an investigation. The graphs show trends and can be histograms, pie charts, "box and whiskers" plots, line graphs, or scatter plots. Images serve as examples to reinforce concepts or facts. The choice of a chart, graph, or image must be based on the study objectives. Usually it is not recommended to use more than seven in an article, also depending on its length.

  1. Photonic band structure

    Energy Technology Data Exchange (ETDEWEB)

    Yablonovitch, E. [Univ. of California, Los Angeles, CA (United States)


    We learned how to create 3-dimensionally periodic dielectric structures which are to photon waves, as semiconductor crystals are to electron waves. That is, these photonic crystals have a photonic bandgap, a band of frequencies in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Photonic bandgaps provide for spontaneous emission inhibition and allow for a new class of electromagnetic micro-cavities. If the perfect 3-dimensional periodicity is broken by a local defect, then local electromagnetic modes can occur within the forbidden bandgap. The addition of extra dielectric material locally, inside the photonic crystal, produces {open_quotes}donor{close_quotes} modes. Conversely, the local removal of dielectric material from the photonic crystal produces {open_quotes}acceptor{close_quotes} modes. Therefore, it will now be possible to make high-Q electromagnetic cavities of volume {approx_lt}1 cubic wavelength, for short wavelengths at which metallic cavities are useless. These new dielectric micro-resonators can cover the range all the way from millimeter waves, down to ultraviolet wavelengths.

  2. Photonic crystals and metamaterials (United States)

    Lourtioz, Jean-Michel


    Recent results obtained on semiconductor-based photonic crystal devices are of great promise for future developments of photonic crystals and their applications to 'all-photonic' integrated circuits. Device performance mostly relies on the strong confinement of light thanks to photonic bandgap effects, but photonic crystals also exhibit remarkable dispersion properties in their transmission bands, thus opening the perspective of new optical functionalities. Slow light, supercollimation, superprism, and negative refraction effects are among the fascinating phenomena which strongly motivate the community. Studies in these directions parallel those on metamaterials, which are expected to provide a simultaneous control of the dielectric permittivity and of the magnetic permeability. In this article, we briefly review some important advances on photonic crystals and metamaterials, as these two topics received a particular attention during the "Nanosciences et Radioélectricité" workshop organized by CNFRS in Paris on the 20th and 21st of March 2007. To cite this article: J.-M. Lourtioz, C. R. Physique 9 (2008).

  3. Quantum Biometrics with Retinal Photon Counting (United States)

    Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.


    It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.

  4. Experimental statistics

    CERN Document Server

    Natrella, Mary Gibbons


    Formulated to assist scientists and engineers engaged in army ordnance research and development programs, this well-known and highly regarded handbook is a ready reference for advanced undergraduate and graduate students as well as for professionals seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Topics include characterizing and comparing the measured performance of a material, product, or process; general considerations in planning experiments; statistical techniques for analyzing extreme-value data; use of transformations

  5. Two-photon interference from two blinking quantum emitters (United States)

    Jöns, Klaus D.; Stensson, Katarina; Reindl, Marcus; Swillo, Marcin; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo; Björk, Gunnar


    We investigate the effect of blinking on the two-photon interference measurement from two independent quantum emitters. We find that blinking significantly alters the statistics in the Hong-Ou-Mandel second-order intensity correlation function g(2 )(τ ) and the outcome of two-photon interference measurements performed with independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally recognized by a deviation from the gD(2 )(0 ) =0.5 value when distinguishable photons from two emitters impinge on a beam splitter. Our findings explain the significant differences between linear losses and blinking for correlation measurements between independent sources and are experimentally verified using a parametric down-conversion photon-pair source. We show that blinking imposes a mandatory cross-check measurement to correctly estimate the degree of indistinguishability of photons emitted by independent quantum emitters.

  6. Higher-order photon bunching in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Assmann, M.; Veit, F.; Bayer, M.


    Quantum mechanically indistinguishable particles such as photons may show collective behavior. Therefore, an appropriate description of a light field must consider the properties of an assembly of photons instead of independent particles. We have studied multiphoton correlations up to fourth order...... in the single-mode emission of a semiconductor microcavity in the weak and strong coupling regimes. The counting statistics of single photons were recorded with picosecond time resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our results show bunching behavior...... in the strong coupling case, which vanishes in the weak coupling regime as the cavity starts lasing. In particular, we verify the n factorial prediction for the zero-delay correlation function of n thermal light photons....

  7. Multi-photon absorption limits to heralded single photon sources (United States)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.


    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  8. Statistical mechanics

    CERN Document Server

    Sheffield, Scott


    In recent years, statistical mechanics has been increasingly recognized as a central domain of mathematics. Major developments include the Schramm-Loewner evolution, which describes two-dimensional phase transitions, random matrix theory, renormalization group theory and the fluctuations of random surfaces described by dimers. The lectures contained in this volume present an introduction to recent mathematical progress in these fields. They are designed for graduate students in mathematics with a strong background in analysis and probability. This book will be of particular interest to graduate students and researchers interested in modern aspects of probability, conformal field theory, percolation, random matrices and stochastic differential equations.

  9. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle


    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  10. Polariton Pattern Formation and Photon Statistics of the Associated Emission

    Directory of Open Access Journals (Sweden)

    C. E. Whittaker


    Full Text Available We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton scattering from the pump state to interfering high-order vortex and antivortex modes, breaking azimuthal symmetry. The interplay between a multimode parametric instability and intrinsic optical bistability leads to a sharp spike in the value of second-order coherence g^{(2}(0 of the emitted light, which we attribute to the strongly superlinear kinetics of the underlying scattering processes driving the formation of patterns. We show numerically by means of a linear stability analysis how the growth of parametric instabilities in our system can lead to spontaneous symmetry breaking, predicting the formation and competition of different pattern states in good agreement with experimental observations.

  11. Simultaneous, Full Characterization of a Single-Photon State

    Directory of Open Access Journals (Sweden)

    Tim Thomay


    Full Text Available As single-photon sources become more mature and are used more often in quantum information, communications, and measurement applications, their characterization becomes more important. Single-photon-like light is often characterized by its brightness, as well as two quantum properties: the suppression of multiphoton content and the photon indistinguishability. While it is desirable to obtain these quantities from a single measurement, currently two or more measurements are required. Here, we show that using two-photon (n=2 number-resolving detectors, one can completely characterize single-photon-like states in a single measurement, where previously two or more measurements were necessary. We simultaneously determine the brightness, the suppression of multiphoton states, the indistinguishability, and the statistical distribution of Fock states to third order for a quantum light source. We find n≥3 number-resolving detectors provide no additional advantage in the single-photon characterization. The new method extracts more information per experimental trial than a conventional measurement for all input states and is particularly more efficient for statistical mixtures of photon states. Thus, using this n=2, number-resolving detector scheme will provide advantages in a variety of quantum optics measurements and systems.

  12. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration


    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  13. Fuel Effective Photonic Propulsion (United States)

    Rajalakshmi, N.; Srivarshini, S.


    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  14. Observing Photons in Space (United States)

    Huber, Martin C. E.; Pauluhn, Anuschka; Timothy, J. Gethyn

    This first chapter of the book "Observing Photons in Space" serves to illustrate the rewards of observing photons in space, to state our aims, and to introduce the structure and the conventions used. The title of the book reflects the history of space astronomy: it started at the high-energy end of the electromagnetic spectrum, where the photon aspect of the radiation dominates. Nevertheless, both the wave and the photon aspects of this radiation will be considered extensively. In this first chapter we describe the arduous efforts that were needed before observations from pointed, stable platforms, lifted by rocket above the Earth"s atmosphere, became the matter of course they seem to be today. This exemplifies the direct link between technical effort -- including proper design, construction, testing and calibration -- and some of the early fundamental insights gained from space observations. We further report in some detail the pioneering work of the early space astronomers, who started with the study of γ- and X-rays as well as ultraviolet photons. We also show how efforts to observe from space platforms in the visible, infrared, sub-millimetre and microwave domains developed and led to today"s emphasis on observations at long wavelengths.

  15. Photonic topological insulators. (United States)

    Khanikaev, Alexander B; Mousavi, S Hossein; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H; Shvets, Gennady


    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

  16. Antigravity Acts on Photons (United States)

    Brynjolfsson, Ari


    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  17. Snapping single flying photons based on tunneling assisted multiphoton absorption (United States)

    Li, Zhengyong; Matthiesen, Clemens; Wu, Chongqing; Atature, Mete; Institute of Optical Information Team; Quantum Information and Nanoscale Metrology Group Team


    Multi-photon absorption (MPA) can be used to measure the temporal correlation of flying photons at a much shorter timescale within a maximum delay (about 1 fs) given by the Heisenberg principle. We first measure the 2PA and 3PA of GaAsP material by using a mode locked laser (Mira 900) with pulse width less than 100 fs (76 MHz), and obtain pronounced 2PA and 3PA at 60 mW and 130 mW respectively (wavelength: 900 nm). We further strengthen the absorption process by using an extra electrical field through photon assisted tunneling, and double the MPA coefficient by a bias voltage of 5 V. Then, we demonstrate the tunneling assisted MPA in GaAsP by a pump-probe scheme, and successfully snap flying single photons in 1550-nm telecom band by using a synchronous 900-nm fs sampling pulse train, which scanning the flying photons through a motorizing translation stage. Experimental results show that the time-domain width of the single photon is around 250 fs, and further statistical investigations demonstrate that the single photons follow subPoisson distribution with Mandel Q parameter of about -0.2, which means the photons are antibunching definitely. The authors acknowledge the support of the NSFC (Nos.11274037 and 61275075), the NCET (No NCET-12-0765), and the FANEDD (No 201236).

  18. Statistical Neurodynamics. (United States)

    Paine, Gregory Harold


    The primary objective of the thesis is to explore the dynamical properties of small nerve networks by means of the methods of statistical mechanics. To this end, a general formalism is developed and applied to elementary groupings of model neurons which are driven by either constant (steady state) or nonconstant (nonsteady state) forces. Neuronal models described by a system of coupled, nonlinear, first-order, ordinary differential equations are considered. A linearized form of the neuronal equations is studied in detail. A Lagrange function corresponding to the linear neural network is constructed which, through a Legendre transformation, provides a constant of motion. By invoking the Maximum-Entropy Principle with the single integral of motion as a constraint, a probability distribution function for the network in a steady state can be obtained. The formalism is implemented for some simple networks driven by a constant force; accordingly, the analysis focuses on a study of fluctuations about the steady state. In particular, a network composed of N noninteracting neurons, termed Free Thinkers, is considered in detail, with a view to interpretation and numerical estimation of the Lagrange multiplier corresponding to the constant of motion. As an archetypical example of a net of interacting neurons, the classical neural oscillator, consisting of two mutually inhibitory neurons, is investigated. It is further shown that in the case of a network driven by a nonconstant force, the Maximum-Entropy Principle can be applied to determine a probability distribution functional describing the network in a nonsteady state. The above examples are reconsidered with nonconstant driving forces which produce small deviations from the steady state. Numerical studies are performed on simplified models of two physical systems: the starfish central nervous system and the mammalian olfactory bulb. Discussions are given as to how statistical neurodynamics can be used to gain a better

  19. Compact photonic spin filters (United States)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun


    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  20. Photon kinetics in plasmas

    Directory of Open Access Journals (Sweden)

    V.G. Morozov


    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  1. Models for Photon-photon Total Cross-sections


    Godbole, RM; Grau, A.; Pancheri, G.


    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  2. How well does QCD work for photon-photon collisions?


    Wengler, Thorsten


    The performance of QCD in describing hadronic photon-photon collisions is investigated in the light of recent measurements from LEP on di-jet production, light hadron transverse momentum spectra, and heavy quark production.

  3. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per


    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  4. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka


    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir...

  5. Photon Localization Revisited

    Directory of Open Access Journals (Sweden)

    Izumi Ojima


    Full Text Available In the light of the Newton–Wigner–Wightman theorem of localizability question, we have proposed before a typical generation mechanism of effective mass for photons to be localized in the form of polaritons owing to photon-media interactions. In this paper, the general essence of this example model is extracted in such a form as quantum field ontology associated with the eventualization principle, which enables us to explain the mutual relations, back and forth, between quantum fields and various forms of particles in the localized form of the former.

  6. Direct Photons at RHIC


    David, G.; Collaboration, for the PHENIX


    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum ($p_T$) range. The $p$ + $p$ measurements allow a fundamental test of QCD, and serve as a bas...

  7. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.


    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...... of GaAs and defined by reactive-ion etching....

  8. Studying 750 GeV Di-photon Resonance at Photon-Photon Collider


    Ito, Hayato; Moroi, Takeo; Takaesu, Yoshitaro


    Motivated by the recent LHC discovery of the di-photon excess at the invariant mass of ~ 750 GeV, we study the prospect of investigating the scalar resonance at a future photon-photon collider. We show that, if the di-photon excess observed at the LHC is due to a new scalar boson coupled to the standard-model gauge bosons, such a scalar boson can be observed and studied at the photon-photon collider with the center-of-mass energy of ~ 1 TeV in large fraction of parameter space.

  9. Comparison of photon-photon and photon-magnetic field pair production rates. [in neutron stars (United States)

    Burns, M. L.; Harding, A. K.


    Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense (10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field (gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.

  10. Comparison of Photon-photon and Photon-magnetic Field Pair Production Rates (United States)

    Burns, M. L.; Harding, A. K.


    Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense ( 10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field ( gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.

  11. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Rosen) cor- relations as codified in Bell's inequalities have been tested for the polarization-entangled states of two photons. Similarly, quantum teleportation and quantum encryption have also been accomplished using photon polarization states.

  12. The PHOTON explorations: sixteen activities, many uses (United States)

    Donnelly, Judith; Amatrudo, Kathryn; Robinson, Kathleen; Hanes, Fenna


    The PHOTON Explorations were adapted from favorite demonstrations of teacher participants in the PHOTON projects of the New England Board of Higher Education as well as Hands-on-Optics activities and interesting demonstrations found on the web. Since the end of project PHOTON2 in 2006, the sixteen inquiry-based activities have formed the basis for a hands-on "home lab" distance- learning course that has been used for college students, teacher professional development and corporate training. With the support of OSA, they have been brought to life in a series of sixteen short videos aimed at a middle school audience. The Explorations are regularly used as activities in outreach activities for middle and high school students and are introduced yearly to an international audience at an outreach workshop at SPIE's Optics and Photonics meeting. In this paper we will demonstrate the Explorations, trace their origins and explain the content. We will also provide details on the development of the Exploration videos, the online course, and outreach materials and give statistics on their use in each format. Links to online resources will be provided.

  13. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan


    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  14. Hidden Photons in Extra Dimensions


    Wallace, Chris J.; Jaeckel, Joerg; Roy, Sabyasachi


    Additional U(1) gauge symmetries and corresponding vector bosons, called hidden photons, interacting with the regular photon via kinetic mixing are well motivated in extensions of the Standard Model. Such extensions often exhibit extra spatial dimensions. In this note we investigate the effects of hidden photons living in extra dimensions. In four dimensions such a hidden photon is only detectable if it has a mass or if there exists additional matter charged under it. We note that in extra di...

  15. Photons, photon jets, and dark photons at 750 GeV and beyond. (United States)

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro


    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance [Formula: see text] can be mimicked by a process of the form [Formula: see text], where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an [Formula: see text] pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to [Formula: see text], where there are no photons at all but the dark photon [Formula: see text] decays to [Formula: see text] pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  16. ALICE Photon Spectrometer

    CERN Multimedia

    Kharlov, Y


    PHOS provides unique coverage of the following physics topics: - Study initial phase of the collision of heavy nuclei via direct photons, - Jet-quenching as a probe of deconfinement, studied via high Pτ ϒ and π0, - Signals of chiral-symmetry restoration, - QCD studies in pp collisions via identified neutral spectra.

  17. Mechanochromic photonic gels. (United States)

    Chan, Edwin P; Walish, Joseph J; Urbas, Augustine M; Thomas, Edwin L


    Polymer gels are remarkable materials with physical structures that can adapt significantly and quite rapidly with changes in the local environment, such as temperature, light intensity, electrochemistry, and mechanical force. An interesting phenomenon observed in certain polymer gel systems is mechanochromism - a change in color due to a mechanical deformation. Mechanochromic photonic gels are periodically structured gels engineered with a photonic stopband that can be tuned by mechanical forces to reflect specific colors. These materials have potential as mechanochromic sensors because both the mechanical and optical properties are highly tailorable via incorporation of diluents, solvents, nanoparticles, or polymers, or the application of stimuli such as temperature, pH, or electric or strain fields. Recent advances in photonic gels that display strain-dependent optical properties are discussed. In particular, this discussion focuses primarily on polymer-based photonic gels that are directly or indirectly fabricated via self-assembly, as these materials are promising soft material platforms for scalable mechanochromic sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole


    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  19. Direct Photon Results from CDF

    Directory of Open Access Journals (Sweden)

    Yang Tingjun


    Full Text Available Direct (prompt photon production is a field of very high interest in hadron colliders. It provides probes to search for new phenomena and to test QCD predictions. In this article, two recent cross-section results for direct photon production using the full CDF Run II data set are presented: diphoton production and photon production in association with a heavy quark.

  20. Two-photon spectroscopy of excitons with entangled photons. (United States)

    Schlawin, Frank; Mukamel, Shaul


    The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.

  1. The intensity detection of single-photon detectors based on photon counting probability density statistics (United States)

    Zhang, Zijing; Wu, Long; Song, Jie; Zhao, Yuan


    Not Available Projiect supported by the Fundamental Research Funds for the Central Universities, China (Grant No. AUGA5710056414), the Program for Innovation Research of Science in Harbin Institute of Technology (Grant Nos. PIRS OF HIT A201412 and PIRS OF HIT Q201505), the National Natural Science Foundation of China (Grant No. 11675046), the Doctoral Fund of the Ministry of Education of China (Grant No. 20122302120003), the Natural Science Foundation of Heilongjiang Province of China (Grant No. A201303), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q15060).

  2. Physics with Photons in ATLAS

    CERN Multimedia

    CERN. Geneva


    The fine granularity ATLAS electromagnetic calorimeter provides a precise measurement of the photon energy and direction, as well as efficient rejection of background from fake photons, while the high precision inner detector allows also the reconstruction of photons that convert into electron-positron pairs.Isolated photons are measured using well-defined infrared-safe isolation criteria corrected for underlying event and the effects of additional proton-proton collisions. Differential cross sections for inclusive photons and diphotons are presented, and the spectrum of diphoton production is used to search for the Higgs boson in this decay channel.

  3. Few-photon optical diode


    Roy, Dibyendu


    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  4. Quantum properties of transverse pattern formation in second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Scotto, P.; Zambrini, R.


    these equations through extensive numerical simulations and analytically in the linearized limit. Our study, made below and above the threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern formation in second-harmonic generation. Close to the threshold...... transverse wave number, which are not identified in a linearized analysis, are also described. The intensity differences between opposite points of the far fields are shown to exhibit sub-Poissonian statistics, revealing the quantum nature of the correlations. We observe twin beam correlations in both...

  5. Atomic Beam Correlations and the Quantum State of the Micromaser

    CERN Document Server

    Elmfors, P; Skagerstam, B S; Elmfors, Per; Lautrup, Benny; Skagerstam, Bo Sture


    Correlation measurements on atoms having passed through a micromaser can be used to infer properties of the quantum state of the radiation field in the cavity. Long- (or short)-range correlations in time are associated with super- (or sub)-Poissonian photon statistics. In some realistic experimental situations the long-range correlations may reach a magnitude of many times the decay time of the cavity. Our assertions are verified by comparing theoretical calculations with a high-precision Monte Carlo simulation of the micromaser system.

  6. Lighting the way: photonics leaders II (PL2) optics and photonics teacher professional development (United States)

    Gilchrist, Pamela O.; Hilliard-Clark, Joyce; Bowles, Tuere; Carpenter, Eric


    A sample group of nineteen teachers completed the second phase of the Photonics Leaders II Optics and Photonics professional development program. Participants took a basic Physics content knowledge test that was designed by a Professor of Physics. The test was completed before the teachers participated in the program and at the end of the program to gather data for statistical inquiry. Statistical studies on pre-test and post-test data indicated significant gains in physics content knowledge over time, and that instructors teaching at the middle school level or only teaching one subject area scored significantly lower during the pretest. Reports from previous participants are summarized to disseminate the percentage of teachers who have incorporated at least one workshop activity and the kind of activity performed. The concerns and limitations reported by previous participants are reviewed as well.

  7. Avalanche photodiode photon counting receivers for space-borne lidars (United States)

    Sun, Xiaoli; Davidson, Frederic M.


    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  8. Quantum fingerprinting using two-photon interference. (United States)

    Jachura, Michał; Lipka, Michał; Jarzyna, Marcin; Banaszek, Konrad


    We present a quantum fingerprinting protocol relying on two-photon interference which does not require a shared phase reference between the parties preparing optical signals carrying data fingerprints. We show that the scaling of the protocol, in terms of transmittable classical information, is analogous to the recently proposed and demonstrated scheme based on coherent pulses and first-order interference, offering comparable advantage over classical fingerprinting protocols without access to shared prior randomness. We analyze the protocol taking into account non-Poissonian photon statistics of optical signals and a variety of imperfections, such as transmission losses, dark counts, and residual distinguishability. The impact of these effects on the protocol performance is quantified with the help of Chernoff information.

  9. Photonic Counterparts of Cooper Pairs (United States)

    Saraiva, André; Júnior, Filomeno S. de Aguiar; de Melo e Souza, Reinaldo; Pena, Arthur Patrocínio; Monken, Carlos H.; Santos, Marcelo F.; Koiller, Belita; Jorio, Ado


    The microscopic theory of superconductivity raised the disruptive idea that electrons couple through the elusive exchange of virtual phonons, overcoming the strong Coulomb repulsion to form Cooper pairs. Light is also known to interact with atomic vibrations, as, for example, in the Raman effect. We show that photon pairs exchange virtual vibrations in transparent media, leading to an effective photon-photon interaction identical to that for electrons in the BCS theory of superconductivity, in spite of the fact that photons are bosons. In this scenario, photons may exchange energy without matching a quantum of vibration of the medium. As a result, pair correlations for photons scattered away from the Raman resonances are expected to be enhanced. An experimental demonstration of this effect is provided here by time-correlated Raman measurements in different media. The experimental data confirm our theoretical interpretation of a photonic Cooper pairing, without the need for any fitting parameters.

  10. Time correlated single-photon counting and fluorescence spectroscopy (United States)

    Erdmann, Rainer; Enderlein, Jorg; Wahl, Michael


    A comprehensive reference on modern technological aspects of time-correlated single photon counting as used in academic and industrial applications. It thus covers areas that have either been neglected in the current literature, or for which an updated reference is not available. The book focuses on general fundamentals of photon statistics, light sources, and electronics for photon counting, time-correlated photon counting, data analysis, and fluorescence correlation techniques. One whole chapter is also devoted to applications of this universal technique in life sciences, with most of the attention given to fluorescence phenomena. The whole is backed by an appendix offering measurement examples and practical hints for data analysis. For physicists, spectroscopists, chemists, and biochemists.

  11. Photons in a ball (United States)

    Mück, Wolfgang


    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation.

  12. Photonics meet digital art (United States)

    Curticapean, Dan; Israel, Kai


    The paper focuses on the work of an interdisciplinary project between photonics and digital art. The result is a poster collection dedicated to the International Year of Light 2015. In addition, an internet platform was created that presents the project. It can be accessed at From the idea to the final realization, milestones with tasks and steps will be presented in the paper. As an interdisciplinary project, students from technological degree programs were involved as well as art program students. The 2015 Anniversaries: Alhazen (1015), De Caus (1615), Fresnel (1815), Maxwell (1865), Einstein (1905), Penzias Wilson, Kao (1965) and their milestone contributions in optics and photonics will be highlighted.

  13. Photonics an introduction

    CERN Document Server

    Reider, Georg A


    This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors. The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light–matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively. The book is intended for both students of physics and elect...

  14. Quantum Communication with Photons (United States)

    Krenn, Mario; Malik, Mehul; Scheidl, Thomas; Ursin, Rupert; Zeilinger, Anton

    The secure communication of information plays an ever increasing role in our society today. Classical methods of encryption inherently rely on the difficulty of solving a problem such as finding prime factors of large numbers and can, in principle, be cracked by a fast enough machine. The burgeoning field of quantum communication relies on the fundamental laws of physics to offer unconditional information security. Here we introduce the key concepts of quantum superposition and entanglement as well as the no-cloning theorem that form the basis of this field. Then, we review basic quantum communication schemes with single and entangled photons and discuss recent experimental progress in ground and space-based quantum communication. Finally, we discuss the emerging field of high-dimensional quantum communication, which promises increased data rates and higher levels of security than ever before. We discuss recent experiments that use the orbital angular momentum of photons for sharing large amounts of information in a secure fashion.

  15. The ubiquitous photonic wheel

    CERN Document Server

    Aiello, Andrea


    A circularly polarized electromagnetic plane wave carries an electric field that rotates clockwise or counterclockwise around the propagation direction of the wave. According to the handedness of this rotation, its \\emph{longitudinal} spin angular momentum density is either parallel or antiparallel to the propagation of light. However, there are also light waves that are not simply plane and carry an electric field that rotates around an axis perpendicular to the propagation direction, thus yielding \\emph{transverse} spin angular momentum density. Electric field configurations of this kind have been suggestively dubbed "photonic wheels". It has been recently shown that photonic wheels are commonplace in optics as they occur in electromagnetic fields confined by waveguides, in strongly focused beams, in plasmonic and evanescent waves. In this work we establish a general theory of electromagnetic waves {propagating along a well defined direction, which carry} transverse spin angular momentum density. We show th...

  16. The lattice photon propagator (United States)

    Coddington, P.; Hey, A.; Mandula, J.; Ogilvie, M.


    The photon propagator in the Landau gauge is calculated for a U(1) lattice gauge theory. In the confined, strong coupling phase, the propagator resembles that of a massive particle. In the weak coupling phase, the propagator is that of a massless particle. An abrupt change occurs at the transition point. The results are compared to simulations of the gluon propagator in SU(3) lattice gauge theory.

  17. Superluminal noncommutative photons


    Cai, Rong-Gen


    With the help of the Seiberg-Witten map, one can obtain an effective action of a deformed QED from a noncommutative QED. Starting from the deformed QED, we investigate the propagation of photons in the background of electromagnetic field, up to the leading order of the noncommutativity parameter. In our setting (both the electric and magnetic fields are parallel to the coordinate axis $x^1$ and the nonvanishing component of the noncommutativity parameter is $\\theta^{23}$), we find that the el...

  18. Active photonic metamaterials


    Sámson, Z.L; Gholipour, B; De Angelis, F.; Li, S.; Knight, K. J.; Zhang, J.; Uchino, T.; Huang, C. C.; MacDonald, K. F.; Ashburn, P.; Di Fabrizio, E.; Hewak, D W; Zheludev, N. I.


    Nanostructured photonic metamaterials with narrow-band responses provide a promising platform for applications ranging from slow-light and polarization control to optical modulation and the 'lasing spaser'. We show that the introduction of functional (nonlinear, switchable, gain, etc.) media into such structures provides a powerful paradigm for the active control of their resonant properties, for the enhancement of nonlinear responses and for strong switching performance in sub-wavelength dev...

  19. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y


    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  20. Photonic Molecule Lasers Revisited (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.


    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  1. Active Photonic Devices (United States)

    Della Valle, Giuseppe; Osellame, Roberto

    The chapter is devoted to active photonic devices fabricated by fs-laser writing. After a brief introduction focused on the role played by fs-laser written active devices, Sect. 10.2 briefly reviews the spectroscopical properties of the most interesting active ions so far exploited, namely erbium, ytterbium, neodimium, and bismuth. In Sect. 10.3 the main figures of merit for an active waveguide, namely the internal gain, the insertion loss, the net gain, and the noise figure are introduced and the experimental procedure for accurate gain measurement is also detailed. A thorough review of the active photonic devices demonstrated with the femtosecond laser microfabrication technique is presented in Sects. 10.4, 10.5, and 10.6, where several active waveguides and amplifiers, prototypal lasers, as well as more functionalized laser devices (operating under single longitudinal mode or stable mode-locking regime) are illustrated, respectively. Finally, conclusions and future perspectives of femtosecond-laser micromachining of active photonic devices are provided.

  2. Integrated photonic quantum walks (United States)

    Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander


    Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.

  3. Entangled photon spectroscopy (United States)

    Schlawin, Frank


    This tutorial outlines the theory of nonlinear spectroscopy with quantum light, and in particular with entangled photons. To this end, we briefly review molecular quantum electrodynamics, and discuss the approximations involved. Then we outline the perturbation theory underlying nonlinear spectroscopy. In contrast to the conventional semiclassical theory, our derivation starts from Glauber's photon counting formalism, and naturally includes the semiclassical theory as a special case. Finally, we review previous work, which we sort into work depending on the unusual features of quantum noise, and work relying upon quantum correlations in entangled photons. This work naturally draws from both quantum optics and chemical physics. Even though it is impossible to provide a comprehensive overview of both fields in one tutorial, this text aims to be self-contained. We refer to specialised reviews, where we cannot provide details. We do not attempt to provide an exhaustive review of all the literature, but rather focus on specific examples intended to elucidate the underlying physics, and merely cite the remaining publications.

  4. Towards a measurement of the two-photon decay width of the Higgs boson at a photon collider

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rosca, A. [West Univ. of Timisoara (Romania)


    A study of the measurement of the two photon decay width times the branching ratio of a Higgs boson with the mass of 120 GeV in photon-photon collisions is presented, assuming a {gamma}{gamma} integrated luminosity of 80 fb{sup -1} in the high energy part of the spectrum. The analysis is based on the reconstruction of the Higgs events produced in the {gamma}{gamma}{yields}H process, followed by the decay f the Higgs into a b anti b pair. A statistical error of the measurement of the two-photon width, {gamma}(H{yields}{gamma}{gamma}), times the branching ratio of the Higgs boson, BR(H {yields}b anti b) is found to be 2.1 % for one year of data taking. (orig.)

  5. Photon-triggered nanowire transistors (United States)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu


    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  6. Photon Structure Functions: Target Photon Mass Effects and QCD Corrections


    Mathews, Prakash(Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700 064, India); Ravindran, V.


    We present a systematic analysis of the polarised and unpolarised processes $e^+ ~e^- \\rightarrow e^+ ~e^- X$ in the deep inelastic limit and study the effects of target photon mass (virtuality) on the photon structure functions. The effect of target photon virtuality manifests as new singly polarised structure functions and also alters the physical interpretation of the unpolarised structure functions. The physical interpretation of these structure functions in terms of hadronic components i...

  7. Physics of quantum light emitters in disordered photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P.D. [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona (Spain); Lodahl, P. [Niels Bohr Institute, University of Copenhagen (Denmark)


    Nanophotonics focuses on the control of light and the interaction with matter by the aid of intricate nanostructures. Typically, a photonic nanostructure is carefully designed for a specific application and any imperfections may reduce its performance, i.e., a thorough investigation of the role of unavoidable fabrication imperfections is essential for any application. However, another approach to nanophotonic applications exists where fabrication disorder is used to induce functionalities by enhancing light-matter interaction. Disorder leads to multiple scattering of light, which is the realm of statistical optics where light propagation requires a statistical description. We review here the recent progress on disordered photonic nanostructures and the potential implications for quantum photonics devices. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)



    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  9. Photon correlation in single-photon frequency upconversion. (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping


    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  10. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J


    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  11. Reconstruction and Identification of Photons

    CERN Document Server

    The ATLAS Collaboration


    This note presents the description and performance of photon identification methods in ATLAS. The reconstruction of an electromagnetic object begins in the calorimeter, and the inner detector information determines whether the object is a photon - either converted or unconverted - or an electron. Three photon identification methods are presented: a simple cut-based method, a Loglikelihood- ratio-based method and a covariance-matrix-based method. The shower shape variables based on calorimeter information and track information used in all three methods are described. The efficiencies for single photons and for photons from the benchmark H !gg signal events, as well as the rejection of the background from jet samples, are presented. The performance of the cut-based method on high-pT photons from a graviton decay process G!gg is also discussed.

  12. All-photonic quantum repeaters (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong


    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  13. Photonic arms, legs, and skin (United States)

    Nocentini, Sara; Martella, Daniele; Nuzhdin, Dmitri; Parmeggiani, Camilla; Wiersma, Diederik S.


    In this contribution, we will report on a new adventure in the field of photonics, combining the optical control of photonic materials with that of true micro meter scale robotics. We will show how one can create complex photonic structures using polymers that respond to optical stimuli, and how this technology can be used to create moving elements, photonic skin, and even complete micro meter size robots that can walk and swim. Using light as the only source of energy. The materials that we have developed to that end can also be used to realize tunable photonic components that respond to light and adapt their photonic response on the basis of the illumination conditions.

  14. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice


    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  15. Direct photons in WA98

    CERN Document Server

    Aggarwal, M M; Ahammed, Z; Angelis, Aris L S; Antonenko, V G; Arefev, V; Astakhov, V A; Avdeichikov, V; Awes, T C; Baba, P V K S; Badyal, S K; Barlag, C; Bathe, S; Batyunya, B; Bernier, T; Bhalla, K B; Bhatia, V S; Blume, C; Bock, R; Bohne, E M; Böröcz, Z K; Bucher, D; Buijs, A; Büsching, H; Carlén, L; Chalyshev, V; Chattopadhyay, S; Cherbachev, R; Chujo, T; Claussen, A; Das, A C; Decowski, M P; Delagrange, H; Dzhordzhadze, V; Dönni, P; Dubovik, I; Dutt, S; Dutta-Majumdar, M R; El-Chenawi, K F; Eliseev, S; Enosawa, K; Foka, P Y; Fokin, S L; Ganti, M S; Garpman, S; Gavrishchuk, O P; Geurts, F J M; Ghosh, T K; Glasow, R; Gupta, S K; Guskov, B; Gustafsson, Hans Åke; Gutbrod, H H; Higuchi, R; Hrivnacova, I; Ippolitov, M S; Kalechofsky, H; Kamermans, R; Kampert, K H; Karadzhev, K; Karpio, K; Kato, S; Kees, S; Klein-Bösing, C; Knoche, S; Kolb, B W; Kosarev, I G; Kucheryaev, I; Krümpel, T; Kugler, A; Kulinich, P A; Kurata, M; Kurita, K; Kuzmin, N A; Langbein, I; Lee, Y Y; Löhner, H; Luquin, Lionel; Mahapatra, D P; Man'ko, V I; Martin, M; Martínez, G; Maksimov, A; Mgebrishvili, G; Miake, Y; Mir, M F; Mishra, G C; Miyamoto, Y; Mohanty, B; Morrison, D; Mukhopadhyay, D S; Naef, H; Nandi, B K; Nayak, S K; Nayak, T K; Neumaier, S; Nyanin, A; Nikitin, V A; Nikolaev, S; Nilsson, P O; Nishimura, S; Nomokonov, V P; Nystrand, J; Obenshain, F E; Oskarsson, A; Otterlund, I; Pachr, M; Pavlyuk, S; Peitzmann, Thomas; Petracek, V; Pinganaud, W; Plasil, F; Von Poblotzki, U; Purschke, M L; Rak, J; Raniwala, R; Raniwala, S; Ramamurthy, V S; Rao, N K; Retière, F; Reygers, K; Roland, G; Rosselet, L; Rufanov, I A; Roy, C; Rubio, J M; Sako, H; Sambyal, S S; Santo, R; Sato, S; Schlagheck, H; Schmidt, H R; Schutz, Y; Shabratova, G; Shah, T H; Sibiryak, Yu; Siemiarczuk, T; Silvermyr, D; Sinha, B C; Slavin, N V; Söderström, K; Solomey, Nickolas; Sood, G; Sørensen, S P; Stankus, P; Stefanek, G; Steinberg, P; Stenlund, E; Stüken, D; Sumbera, M; Svensson, S; Trivedi, M D; Tsvetkov, A A; Tykarski, L; Urbahn, J; Van den Pijll, E C; van Eijndhoven, N; van Nieuwenhuizen, G J; Vinogradov, A; Viyogi, Y P; Vodopyanov, A S; Vörös, S; Wyslouch, B; Yagi, K; Yokota, Y; Young, G R


    A measurement of direct photon production in /sup 208/Pb+/sup 208/Pb collisions at 158 A GeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons was extracted as a function of transverse momentum in the interval 0.51.5 GeV/c. the result constitutes the first observation of direct photons in ultrarelativistic heavy-ion collisions. (19 refs).

  16. Photonic local oscillator development (United States)

    Kimberk, Robert; Tong, Edward; Hunter, Todd R.; Christensen, Robert; Blundell, Ray


    In the receiver lab, we have developed a 200 GHz to 230 GHz local oscillator constructed from mostly commercially available 1550 nm laser communication components. Theoretical and experimental work show that the laser adds negligible phase noise to this photonic local oscillator system and that spectral purity and phase stability are similar to Gunn oscillator based local oscillator output. The optical path consists of a single 1550 nm diode laser, a lithium niobate optical phase modulator, a Mach Zehnder interferometer (MZI) with a free spectral range of 75 GHz, and a 160 GHz to 260 GHz photomixer whose output is connected to a horn antenna. All of the optical devices and connections are polarization maintaining, and the photomixer was designed and fabricated at the CCLRC Rutherford Appleton Laboratory. The electrical path consists of a YIG synthesizer, operating in the frequency range 14-20 GHz, a frequency doubler, and a power amplifier connected to the RF port of the phase modulator. At the SMA on Mauna Kea, we incorporated the photonic LO into one element (Antenna 6) of a five antenna array for test observations of CO J=2-1 made towards the ultracompact HII region G138.295+1.555. Spectral features of comparable width occur on baselines with and without antenna 6, and noise increases with baseline length independent of antenna number. Continuum observations were also made toward the quasar 3c454.3 for a period of about one hour. In summary, the SMA has proven that the photonic local oscillator operates with adequate phase and frequency stability for radio-interferometry.

  17. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)


    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  18. Silicon applications in photonics (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.


    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  19. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A. [Fermilab; Fox, Patrick J. [Fermilab; Kearney, John [Fermilab


    We study models that produce a Higgs boson plus photon ($h^0 \\gamma$) resonance at the LHC. When the resonance is a $Z'$ boson, decays to $h^0 \\gamma$ occur at one loop. If the $Z'$ boson couples at tree-level to quarks, then the $h^0 \\gamma$ branching fraction is typically of order $10^{-5}$ or smaller. Nevertheless, there are models that would allow the observation of $Z' \\to h^0 \\gamma$ at $\\sqrt{s} = 13$ TeV with a cross section times branching fraction larger than 1 fb for a $Z'$ mass in the 200--450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The 1-loop decay of the $Z'$ into lepton pairs competes with $h^0 \\gamma$, even if the $Z'$ couplings to leptons vanish at tree level. We also present a model in which a $Z'$ boson decays into a Higgs boson and a pair of collimated photons, mimicking an $h^0 \\gamma$ resonance. In this model, the $h^0 \\gamma$ resonance search would be the discovery mode for a $Z'$ as heavy as 2 TeV. When the resonance is a scalar, although decay to $h^0 \\gamma$ is forbidden by angular momentum conservation, the $h^0$ plus collimated photons channel is allowed. We comment on prospects of observing an $h^0 \\gamma$ resonance through different Higgs decays, on constraints from related searches, and on models where $h^0$ is replaced by a nonstandard Higgs boson.

  20. Photonic quantum computing (Conference Presentation) (United States)

    O'Brien, Jeremy L.


    Of the various approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation at the single photon level; while the challenge of entangling interactions between photons can be met via measurement induced non-linearities. However, the real excitement with this architecture is the promise of ultimate manufacturability: All of the components--inc. sources, detectors, filters, switches, delay lines--have been implemented on chip, and increasingly sophisticated integration of these components is being achieved. We will discuss the opportunities and challenges of a fully integrated photonic quantum computer.

  1. Photonic crystal optofluidic biolaser (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem


    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  2. Spaceborne Photonics Institute (United States)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.


    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  3. Advanced Photonic Hybrid Materials (United States)


    Rev. 8/98) Prescribed by ANSI Std. Z39.18 Advanced photonic hybrid materials    Final report from S. Parola, Laboratoire de  Chimie  ENS Lyon...Meeting, San Francisco, USA, April 2013.  ‐ Nanoparticules hybrides fluorescentes pour l’imagerie, S. Parola, GDR Imagerie,  Chimie  et Microscopie, Lyon

  4. Applied photonic therapy in veterinary medicine (United States)

    Wood, Terry R.; McLaren, Brian C.


    There can be no question that specific systemic physiological results occur, when red light (660nm) is applied to the skin, it is now more a question of detailed mechanisms. Before gathering statistically signifcant clinical trial data, it is important to first enumerate the type of results observed in practice. Case histories are presented highlighting the use of photonic therapy in veterinary medicine. Over 900 surgical procedures have been performed and documented, utilizing the principles of photonic therapy, and while hemostasis, pain relief, and nausea relief, were the primary goals, the peri-operative death rate, the post-operative seroma, and post-operative infection were reduced to almost zero, and there was a noticeable increase in the healing rate. Scientifically applied photonic therapy, rather than supplanting conventional veterinary medicine, compliments and increases the veterinarian's set of skills. This paper proposes a hypothesis of how 660 nm light applied to specific points on the skin, produces various physiological changes in animals. By using animals, there can be no placebo, hypnotic or psychosomatic confounding effects.

  5. Childhood Cancer Statistics (United States)

    ... Financial Reports Watchdog Ratings Feedback Contact Select Page Childhood Cancer Statistics Home > Cancer Resources > Childhood Cancer Statistics Childhood Cancer Statistics – Graphs and Infographics Number of Diagnoses ...

  6. Photon Differentials in Space and Time

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny


    We present a novel photon mapping algorithm for animations. We extend our previous work on photon differentials [12] with time differentials. The result is a first order model of photon cones in space an time that effectively reduces the number of required photons per frame as well as efficiently...... reduces temporal aliasing without any need for in-between-frame photon maps....

  7. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan


    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  8. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  9. Two-photon and two-photon-assisted slow light. (United States)

    Bautista, E Sánchez; Cabrera-Granado, E; Weigand, R


    We show that light pulses propagating in two-photon absorbing systems may present time delays like slow light produced via coherent population oscillations in one-photon interactions. Two regimes are numerically studied for a simplified two-level system: (a) a light pulse at frequency ω/2 undergoes two-photon absorption (TPA) and is delayed by the absorbing system (two-photon slow light) and (b) a light pulse at frequency ω is delayed in a system prepared by TPA of a light pulse at frequency ω/2 (two-photon-assisted slow light). The study carried out in solutions of dyes and dendrites shows significant delays, low distortion, and good transmission for easily reachable experimental conditions. The working principle can be applied to other media and can be used in telecommunications technology.

  10. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann


    We present a new adaptive photon tracing algorithm which can handle illumination settings that are considered difficult for photon tracing approaches such as outdoor scenes, close-ups of a small part of an illuminated region, and illumination coming through a small gap. The key contribution in our...... algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...

  11. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber. (United States)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido


    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  12. MQSA National Statistics (United States)

    ... Standards Act and Program MQSA Insights MQSA National Statistics Share Tweet Linkedin Pin it More sharing options ... but should level off with time. Archived Scorecard Statistics 2018 Scorecard Statistics 2017 Scorecard Statistics 2016 Scorecard ...

  13. Progress in 2D photonic crystal Fano resonance photonics (United States)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui


    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  14. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  15. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider


    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  16. Photon Production Within Storage Capsules

    CERN Document Server

    Rittmann, P D


    This report provides tables and electronic worksheets that list the photon production rate within SrF2 and CsC1 storage capsules, particularly the continuous spectrum of bremsstrahlung photons from the slowing down of the emitted electrons (BREMCALC).

  17. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi


    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...... fabricated on silicon-on-insulator chips and have advantages of compactness and capability to integrate with electronics....

  18. XCOM: Photon Cross Sections Database (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  19. Nanowire-based Quantum Photonics

    NARCIS (Netherlands)

    Bulgarini, G.


    In this thesis work, I studied individual quantum dots embedded in one-dimensional nanostructures called nanowires. Amongst the effects given by the nanometric dimensions, quantum dots enable the generation of single light particles: photons. Single photon emitters and detectors are central building

  20. Production of $\\chi_{c2}$ Mesons in Photon-Photon Collisions at LEP

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bohme, J.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; De Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C.K.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.


    We present an observation at LEP of the production of chi_c2 mesons in the collisions of two quasi-real photons using the OPAL detector. The chi_c2 mesons are reconstructed in the decay channel Chi_c2 to J/psi gamma to l+l- gamma (with l= e,mu) using all data taken at e+e- centre-of-mass energies of 91 and 183 GeV, corresponding to integrated luminosities of 167 and 55 pb-1 respectively. The two-photon width of the Chi_2 is determined to be 1.76 +- 0.47 +- 0.37 +- 0.15 keV where the first error is statistical, the second is systematic and the third comes from branching ratio uncertainties.

  1. Photon-by-Photon Determination of Emission Bursts from Diffusing Single Chromophores (United States)

    Zhang, Kai; Yang, Haw


    Diffusing-type single molecule experiment is expected to provide rich information such as protein conformational distribution, DNA sequencing, ultra-sensitive detection, to name a few. However, its application is greatly limited by the difficulty of extracting the useful information out of the noisy data because of the embedded Poissonian noise. Conventional analysis of such trajectories involves further smoothing the data followed by artificially setting a threshold to distinguish the signal, risking the chance of ignoring the fast transition events along the trajectory. Here we report a statistically robust algorithm, which operates on the trajectory photon by photon, based on the well established sequential test model. A demonstration experiment with the gold nanoparticle diffusing throuth the detection volume shows that our algorithm indeed retrieves more information, relieving the incertitude of artificial placement of bin width and threshold.

  2. Sampling, Probability Models and Statistical Reasoning Statistical ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...

  3. Photon intensity interferometry with multidetectors

    Energy Technology Data Exchange (ETDEWEB)

    Badala, A. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Barbera, R. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy) Dipartimento di Fisica dell' Universita di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Palmeri, A. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Pappalardo, G.S. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Riggi, F. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy) Dipartimento di Fisica dell' Universita di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Russo, A.C. (Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 57, Corso Italia, I-95129 Catania (Italy)); Russo, G. (Dipartimento di Fisica dell' Universita di Catania, 57, Corso Italia, I-95129 Catania (Italy) Istit


    The technique of two-photon interferometry in heavy ion collisions at the intermediate energies is discussed and the importance of a new methodology, used in the treatment of the experimental data, is evidenced. For the first time, both the relative momentum, q[sub rel], and the relative energy, q[sub 0], of the two correlated photons have been simultaneously used to extract the source size and lifetime of the emitting source. As an application, the performances of the BaF[sub 2] ball of the MEDEA multidetector as a photon intensity interferometer have been evaluated. The response of such a detector to correlated pairs of photons has been studied through full GEANT3 simulations. The effects of the experimental filter on the photon correlation function have been investigated, and the noise, induced in the correlation signal by cosmic radiation, neutral pion decay, and [gamma]-conversion, has also been estimated. ((orig.))

  4. Photon intensity interferometry with multidetectors (United States)

    Badalà, A.; Barbera, R.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.; Russo, A. C.; Russo, G.; Turrisi, R.


    The technique of two-photon interferometry in heavy ion collisions at the intermediate energies is discussed and the importance of a new methodology, used in the treatment of the experimental data, is evidenced. For the first time, both the relative momentum, qrel, and the relative energy, q0, of the two correlated photons have been simultaneously used to extract the source size and lifetime of the emitting source. As an application, the performances of the BaF 2 ball of the MEDEA multidetector as a photon intensity interferometer have been evaluated. The response of such a detector to correlated pairs of photons has been studied through full GEANT3 simulations. The effects of the experimental filter on the photon correlation function have been investigated, and the noise, induced in the correlation signal by cosmic radiation, neutral pion decay, and γ-conversion, has also been estimated.

  5. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal


    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  6. On Self Sustained Photonic Globes

    CERN Document Server

    Eswaran, K


    In this paper we consider a classical treatment of a very dense collection of photons forming a self-sustained globe under its own gravitational influence. We call this a "photonic globe" We show that such a dense photonic globe will have a radius closely corresponding to the Schwarzschild radius. Thus lending substance to the conjuncture that the region within the Schwarzschild radius of a black hole contains only pure radiation. As an application example, we consider the case of a very large photonic globe whose radius corresponds to the radius of the universe and containing radiation of the frequency of the microwave background (160.2 GHZ). It so turns out that such a photonic globe has an average density which closely corresponds to the observed average density of our universe.

  7. Photonic quantum information: science and technology. (United States)

    Takeuchi, Shigeki


    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  8. Spatial photon correlations in multiple scattering media

    DEFF Research Database (Denmark)

    Smolka, Stephan; Muskens, O.; Lagendijk, A.


    We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....

  9. Electron and photon energy measurement calibration with the ATLAS detector

    CERN Document Server

    Manzoni, Stefano; The ATLAS collaboration


    An accurate calibration of the energy measurement of electron and photon is paramount for many ATLAS physics analysis. The calibration of the energy measurement is performed in-situ using a large statistics of Z->ee events. The results obtained with the pp collisions data recorded in 2015 and 2016 at sqrt(s)= 13 TeV, corresponding to an integrated luminosity of 3.2 fb-1 and 2.7 fb-1 respectively , as well as the corresponding uncertainties on the electron and photon energy scales, are presented.

  10. Electron and photon energy measurement calibration with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00436885; The ATLAS collaboration


    An accurate calibration of the energy measurement of electrons and photons is paramount for many ATLAS physics analyses. The calibration of the energy measurement is performed $in$-$situ$ using a large statistics of $Z \\rightarrow ee$ events. The results obtained with the $pp$ collisions data recorded in 2015 and 2016 at $\\sqrt{s}=13$ TeV, corresponding to an integrated luminosity of 3.2 fb$^{-1}$ and 2.7 fb$^{-1}$ respectively, as well as the corresponding uncertainties on the electron and photon energy scales, are presented

  11. Nonlocal hyperconcentration on entangled photons using photonic module system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhang, Ru [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, Chuan, E-mail: [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)


    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  12. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)



    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  13. Holographic Two-Photon Induced Photopolymerization (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  14. Advances in DNA photonics (United States)

    Heckman, Emily M.; Aga, Roberto S.; Fehrman Cory, Emily M.; Ouchen, Fahima; Lesko, Alyssa; Telek, Brian; Lombardi, Jack; Bartsch, Carrie M.; Grote, James G.


    In this paper we present our current research in exploring a DNA biopolymer for photonics applications. A new processing technique has been adopted that employs a modified soxhlet-dialysis (SD) rinsing technique to completely remove excess ionic contaminants from the DNA biopolymer, resulting in a material with greater mechanical stability and enhanced performance reproducibility. This newly processed material has been shown to be an excellent material for cladding layers in poled polymer electro-optic (EO) waveguide modulator applications. Thin film poling results are reported for materials using the DNA biopolymer as a cladding layer, as are results for beam steering devices also using the DNA biopolymer. Finally, progress on fabrication of a Mach Zehnder EO modulator with DNA biopolymer claddings using nanoimprint lithography techniques is reported.

  15. Regenerative photonic therapy: Review (United States)

    Salansky, Natasha; Salansky, Norman


    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  16. Photon Sources for Brachytherapy (United States)

    Rijnders, Alex

    As introduction a short overview of the history of brachytherapy (BT) is given, with a focus on the evolution in the photon sources that have been used over the years. A major step in this evolution was the introduction of the automatic afterloading devices, which could be compared to the introduction of linear accelerators in external beam radiotherapy (EBRT). The modern afterloaders allow for optimization of the dose delivery and the use of different dose rates (low dose rate, high dose rate and pulsed dose rate) in function of tumor biology and patient comfort. Still today new sources are under investigation, and these developments together with the improvements in treatment planning and treatment techniques will enforce the role and place of BT as a valuable alternative for or supplementary to EBRT.

  17. Photonics a short course

    CERN Document Server

    Degiorgio, Vittorio


    This extended and revised edition will serve as a concise, self-contained, up-to-date introduction to Photonics for undergraduate students. It can also be used as a primer by researchers and professionals who start working in the field. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optic and acousto-optic modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optical phenomena, and optical fiber components and devices. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical applications, solid-state lighting, displays, and photovoltaics. This second edition includes a set of problems at the end of all but the last chapter. These problems deal with numerical c...

  18. Photonics a short course

    CERN Document Server

    Degiorgio, Vittorio


    This book will serve as a concise, self-contained, up-to-date introduction to Photonics, to be used as a textbook for undergraduate students or as a reference book for researchers and professionals. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optical and acousto-optical modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optics, and optical fiber components and devices.. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical applications, solid-state lighting, displays, and photovoltaics.

  19. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C


    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  20. Photon enhanced thermionic emission (United States)

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun


    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  1. Photonics principles and practices

    CERN Document Server

    Al-Azzawi, Abdul


    Light The Nature of Light Light and Shadows Thermal Radiation Light Production Light Intensity Light and Colour Laws of Light Optics Plane Mirrors Spherical Mirrors Lenses Prisms Beamsplitters Light Passing through Optical Components Optical Instruments for Viewing Applications Polarization of Light Optical Materials Waves and Diffraction Waves Interference and Diffraction The Diffraction Grating Interferometers Spectrometers and Spectroscopes Optical Fibres Fibre Optic Cables Advanced Fibre Optic Cables Light Attenuation in Optical Components Fibre-Optic Cable Types and Installations Fibre-Optic Connectors Passive Fibre Optic Devices Wavelength Division Multiplexer Optical Amplifiers Optical Receivers Lasers Optical Switches Optical Fibre Communications Fibre Optic Lighting Testing Fibre Optic Testing Safety Photonics Laboratory Safety Miscellaneous Appendix A: Details of the Devices, Components, Tools, and Parts Appendix B: Alignment Procedure of a Conventional Ar...

  2. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)


    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  3. Heavy-quark correlations in direct photon-photon collisions

    CERN Document Server

    Krämer, M; Kramer, Michael; Laenen, Eric


    In two-photon collisions at LEP2 and a future e^+e^- linear collider heavy quarks (mainly charm) will be pair-produced rather copiously. The production via direct and resolved photons can be distinguished experimentally via a remnant-jet tag. We study correlations of the heavy quarks at next-to-leading order in QCD in the direct channel, which is free from phenomenological parton densities in the photon. These correlations are therefore directly calculable in perturbative QCD and provide a stringent test of the production mechanism.

  4. ITMO Photonics: center of excellence (United States)

    Voznesenskaya, Anna; Bougrov, Vladislav; Kozlov, Sergey; Vasilev, Vladimir


    ITMO University, the leading Russian center in photonics research and education, has the mission to train highlyqualified competitive professionals able to act in conditions of fast-changing world. This paradigm is implemented through creation of a strategic academic unit ITMO Photonics, the center of excellence concentrating organizational, scientific, educational, financial, laboratory and human resources. This Center has the following features: dissemination of breakthrough scientific results in photonics such as advanced photonic materials, ultrafast optical and quantum information, laser physics, engineering and technologies, into undergraduate and graduate educational programs through including special modules into the curricula and considerable student's research and internships; transformation of the educational process in accordance with the best international educational practices, presence in the global education market in the form of joint educational programs with leading universities, i.e. those being included in the network programs of international scientific cooperation, and international accreditation of educational programs; development of mechanisms for the commercialization of innovative products - results of scientific research; securing financial sustainability of research in the field of photonics of informationcommunication systems via funding increase and the diversification of funding sources. Along with focusing on the research promotion, the Center is involved in science popularization through such projects as career guidance for high school students; interaction between student's chapters of international optical societies; invited lectures of World-famous experts in photonics; short educational programs in optics, photonics and light engineering for international students; contests, Olympics and grants for talented young researchers; social events; interactive demonstrations.

  5. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies


    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard


    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  6. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies


    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard


    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  7. Quantum mechanics of a photon (United States)

    Babaei, Hassan; Mostafazadeh, Ali


    A first-quantized free photon is a complex massless vector field A =(Aμ ) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H , determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.

  8. arXiv Squeezed relic photons beyond the horizon

    CERN Document Server

    Giovannini, Massimo


    Owing to the analogy with the ordinary photons in the visible range of the electromagnetic spectrum, the Glauber theory is generalized to address the quantum coherence of the gauge field fluctuations parametrically amplified during an inflationary stage of expansion. The first and second degrees of quantum coherence of relic photons are then computed beyond the effective horizon defined by the evolution of the susceptibility. In the zero-delay limit the Hanbury Brown-Twiss correlations exhibit a super-Poissonian statistics which is however different from the conventional results of the single-mode approximation customarily employed, in quantum optics, to classify the coherence properties of visible light. While in the case of large-scale curvature perturbations the degrees of quantum coherence coincide with the naive expectation of the single-mode approximation, the net degree of second-order coherence computed for the relic photons diminishes thanks to the effect of the polarizations. We suggest that the Han...

  9. Light polarization oscillations induced by photon-photon scattering (United States)

    Briscese, Fabio


    We consider the Heisenberg-Euler action for an electromagnetic field in vacuum, which includes quantum corrections to the Maxwell equations induced by photon-photon scattering. We show that, in some configurations, the plane monochromatic waves become unstable, due to the appearance of secularities in the dynamical equations. These secularities can be treated using a multiscale approach, introducing a slow time variable. The amplitudes of the plane electromagnetic waves satisfy a system of ordinary differential nonlinear equations in the slow time. The analysis of this system shows that, due to the effect of photon-photon scattering, in the unstable configurations the electromagnetic waves oscillate periodically between left-hand-sided and right-hand-sided polarizations. Finally, we discuss the physical implications of this finding and the possibility of disclosing traces of this effect in optical experiments.

  10. Single photon source characterization with a superconducting single photon detector. (United States)

    Hadfield, Robert H; Stevens, Martin J; Gruber, Steven S; Miller, Aaron J; Schwall, Robert E; Mirin, Richard P; Nam, Sae Woo


    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g(2)( ?). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  11. Flexible scalable photonic manufacturing method (United States)

    Skunes, Timothy A.; Case, Steven K.


    A process for flexible, scalable photonic manufacturing is described. Optical components are actively pre-aligned and secured to precision mounts. In a subsequent operation, the mounted optical components are passively placed onto a substrate known as an Optical Circuit Board (OCB). The passive placement may be either manual for low volume applications or with a pick-and-place robot for high volume applications. Mating registration features on the component mounts and the OCB facilitate accurate optical alignment. New photonic circuits may be created by changing the layout of the OCB. Predicted yield data from Monte Carlo tolerance simulations for two fiber optic photonic circuits is presented.

  12. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.


    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  13. Summary of Lepton Photon 2011

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC


    In this lecture, I summarize developments presented at the Lepton Photon 2011 conference and give my perspective on the current situation in high-energy physics. I am grateful to the organizers of Lepton Photon 2011 for providing us a very pleasant and simulating week in Mumbai. This year's Lepton Photon conference has covered the full range of subjects that fall within the scope of high-energy physics, including connections to cosmology, nuclear physics, and atomic physics. The experiments that were discussed detect particles ranging in energy from radio frequencies to EeV.

  14. Photonic Microresonator Research and Applications

    CERN Document Server

    Chremmos, Ioannis; Uzunoglu, Nikolaos


    Photonic Microresonator Research and Applications explores advances in the fabrication process that enable nanometer waveguide separations. The technology surrounding the design and fabrication of optical microresonators has matured to a point where there is a need for commercialization. Consequently, there is a need for device research involving more advanced architectures and more esoteric operating princples. This volume discusses these issues, while also: Showing a reader how to design and fabricate microresonators Discussing microresonators in photonic crystals, microsphere circuits, and sensors, and provides application oriented examples Covering the latest in microresonator research with contributions from the leading researchers Photonic Microresonator Research and Applications would appeal to researchers and academics working in the optical sciences.

  15. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo


    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  16. Heralded amplification of photonic qubits. (United States)

    Bruno, Natalia; Pini, Vittorio; Martin, Anthony; Verma, Varun B; Nam, Sae Woo; Mirin, Richard; Lita, Adriana; Marsili, Francesco; Korzh, Boris; Bussières, Félix; Sangouard, Nicolas; Zbinden, Hugo; Gisin, Nicolas; Thew, Rob


    We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources. This provides a significant advance towards demonstrating device-independent quantum key distribution as well as fundamental tests of quantum mechanics over extended distances.

  17. Manufacturing method of photonic crystal (United States)

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang


    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  18. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide


    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...... a detailed analysis of the noise in the device and reveal in particular the thermal excitation of mechanical modes at 4 K....

  19. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels


    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  20. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen


    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...... topological imperfections such as sidewall roughness on a sub-nm scale becomes essential. In this paper we use atomic force microscopy (AFM) on tilted samples to obtain the most detailed sidewall roughness measurements yet on nanophotonic structures....

  1. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P


    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  2. What are the statistics in statistical learning? (United States)

    Holt, Lori L.; Lotto, Andrew J.


    The idea that speech perception is shaped by the statistical structure of the input is gaining wide enthusiasm and growing empirical support. Nonetheless, statistics and statistical learning are broad terms with many possible interpretations and, perhaps, many potential underlying mechanisms. In order to define the role of statistics in speech perception mechanistically, we will need to more precisely define the statistics of statistical learning and examine similarities and differences across subgroups. In this talk, we examine learning of four types of information: (1) acoustic variance that is defining for contrastive categories, (2) the correlation between acoustic attributes or linguistic features, (3) the probability or frequency of events or a series of events, (4) the shape of input distributions. We present representative data from online speech perception and speech development and discuss inter-relationships among the subgroups. [Work supported by NSF, NIH and the James S. McDonnell Foundation.

  3. PHOTON PBL: problem-based learning in photonics technology education (United States)

    Massa, Nicholas; Audet, Richard; Donnelly, Judith; Hanes, Fenna; Kehrhahn, Marijke


    Problem-based learning (PBL) is an educational approach whereby students learn course content by actively and collaboratively solving real-world problems presented in a context similar to that in which the learning is to be applied. Research shows that PBL improves student learning and retention, critical thinking and problem-solving skills, and the ability to skillfully apply knowledge to new situations - skills deemed critical to lifelong learning. Used extensively in medical education since the 1970's, and widely adopted in other fields including business, law, and education, PBL is emerging as an alternative to traditional lecture-based courses in engineering and technology education. In today's ever-changing global economy where photonics technicians are required to work productively in teams to solve complex problems across disciplines as well as cultures, PBL represents an exciting alternative to traditional lecture-based photonics education. In this paper we present the PHOTON PBL project, a National Science Foundation Advanced Technology Education (NSF-ATE) project aimed at creating, in partnership with the photonics industry and university research labs from across the US, a comprehensive series of multimedia-based PBL instructional resource materials and offering faculty professional development in the use of PBL in photonics technology education. Quantitative and qualitative research will be conducted on the effectiveness of PBL in photonics technician education.

  4. Blood Facts and Statistics (United States)

    ... Blood > Blood Facts and Statistics Blood Facts and Statistics Facts about blood needs Facts about the blood ... to Top Learn About Blood Blood Facts and Statistics Blood Components Whole Blood and Red Blood Cells ...

  5. Adrenal Gland Tumors: Statistics (United States)

    ... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...

  6. State transportation statistics 2009 (United States)


    The Bureau of Transportation Statistics (BTS), a part of DOTs Research and : Innovative Technology Administration (RITA), presents State Transportation : Statistics 2009, a statistical profile of transportation in the 50 states and the : District ...

  7. Neuroendocrine Tumor: Statistics (United States)

    ... Tumor > Neuroendocrine Tumor: Statistics Request Permissions Neuroendocrine Tumor: Statistics Approved by the Cancer.Net Editorial Board , 11/ ... the body. It is important to remember that statistics on the survival rates for people with a ...

  8. The foundations of statistics

    CERN Document Server

    Savage, Leonard J


    Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.

  9. Generalized Fractional Statistics


    Kaniadakis, G.; A. Lavagno(Politecnico di Torino and INFN Sezione di Torino, Torino Italy); Quarati, P.


    We link, by means of a semiclassical approach, the fractional statistics of particles obeying the Haldane exclusion principle to the Tsallis statistics and derive a generalized quantum entropy and its associated statistics.

  10. EDITORIAL: Photonic terahertz technology (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.


    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  11. Recent advances in silicon photonic integrated circuits (United States)

    Bowers, John E.; Komljenovic, Tin; Davenport, Michael; Hulme, Jared; Liu, Alan Y.; Santis, Christos T.; Spott, Alexander; Srinivasan, Sudharsanan; Stanton, Eric J.; Zhang, Chong


    We review recent breakthroughs in silicon photonics technology and components and describe progress in silicon photonic integrated circuits. Heterogeneous silicon photonics has recently demonstrated performance that significantly outperforms native III-V components. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications, sensors and silicon electronics is reviewed.

  12. Photon final states at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mario; /University Coll. London


    The authors present here several recent measurements involving associate production of photons and jets at the Tevatron. In particular, inclusive photon + met from D0, and photon + b-jets and photon + b-jet + leptons + MET from CDF are described in some detail. These measurements offer a good test of QCD predictions in rather complex final states.

  13. Benchmarking comparison and validation of MCNP photon interaction data (United States)

    Colling, Bethany; Kodeli, I.; Lilley, S.; Packer, L. W.


    The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p). Suitable benchmark experiments (iron and water) were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p) with MCNP6 and 84p if using MCNP-5.

  14. On the Doppler effect for photons in rotating systems

    CERN Document Server

    Giuliani, Giuseppe


    The analysis of the Doppler effect for photons in rotating systems, studied using the M\\"ossbauer effect, confirms the general conclusions of a previous paper dedicated to experiments with photons emitted/absorbed by atoms/nuclei in inertial flight. The wave theory of light is so deeply rooted that it has been--and currently is--applied to describe phenomena in which the fundamental entities at work are discrete (photons). The fact that the wave theory of light can describe one aspect of these phenomena can not overshadow two issues: the corpuscular theory of light, firstly applied to the Doppler effect for photons by Schr\\"odinger in 1922, is by far more complete since it describes all the features of the studied phenomena; the wave theory can be used only when the number of photons at work is statistically significant. The disregard of basic methodological criteria may appear as a minor fault. However, the historical development of quantum physics shows that the predominance of the wave theory of radiation,...

  15. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik


    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... reflection, which may described by an effective refractive index which is lower in the cladding than in the core (index guiding fibre). By solving Maxwell's equations, under the conditions defined by the geometry of the fibre structure, we may predict the properties of the fibre. In all but rare cases...

  16. Spontaneous Photon Emission in Cavities

    Directory of Open Access Journals (Sweden)

    Alber G.


    Full Text Available We investigate spontaneous photon emission processes of two-level atoms in parabolic and ellipsoidal cavities thereby taking into account the full multimode scenario. In particular, we calculate the excitation probabilities of the atoms and the energy density of the resulting few-photon electromagnetic radiation field by using semiclassical methods for the description of the multimode scenario. Based on this approach photon path representations are developed for relevant transition probability amplitudes which are valid in the optical frequency regime where the dipole and the rotating-wave approximations apply. Comparisons with numerical results demonstrate the quality of these semiclassical results even in cases in which the wave length of a spontaneously emitted photon becomes comparable or even larger than characteristic length scales of the cavity. This is the dynamical regime in which diffraction effects become important so that geometric optical considerations are typically not applicable.

  17. Novel Photonic RF Spectrometer Project (United States)

    National Aeronautics and Space Administration — Leveraging on recent breakthroughs in broadband photonic devices and components for RF and microwave applications, SML proposes a new type of broadband microwave...

  18. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas


    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  19. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Abstract. Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  20. Photonic Molecules and Spectral Engineering (United States)

    Boriskina, Svetlana V.

    This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and enhanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically induced transparency, and enhancing sensitivity of microcavity-based bio-, stress-, and rotation sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of optimally tuned PMs for cavity quantum electrodynamic experiments, classical and quantum information processing, and sensing.

  1. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han


    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  2. Femtosecond Photon-Counting Receiver (United States)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji


    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  3. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil


    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  4. Photon spectra from WIMP annihilation


    Ruiz Cembranos, José Alberto; Cruz Dombriz, Álvaro de la; Dobado González, Antonio; Lineros, R. A.; López Maroto, Antonio


    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation int...

  5. Topological Order in Silicon Photonics (United States)


    AFRL-AFOSR-VA-TR-2017-0037 Topological orders in Silicon photonics Mohammad Hafezi MARYLAND UNIV COLLEGE PARK 3112 LEE BLDG COLLEGE PARK, MD 20742...15 SEP 2016 4. TITLE AND SUBTITLE Topological Order in Silicon Photonics 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA-9550-14-1-0267 5c. PROGRAM...DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION A: Distribution approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Topological features

  6. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard


    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  7. The photon: A virtual reality


    Andrews, D.L.


    It has been observed that every photon is, in a sense, virtual - being emitted and then sooner or later absorbed. As the motif of a quantum radiation state, the photon shares these characteristics of any virtual state: that it is not directly observable; and that it can signify only one of a number of indeterminable intermediates, between matter states that are directly measurable. Nonetheless, other traits of real and virtual behavior are usually quite clearly differentiable. How 'real', the...

  8. Photon polarization in np fusion

    CERN Document Server

    Ramachandran, G; Kumar, S P


    A model-independent irreducible tensor formalism is developed to discuss photon polarization in np fusion. It is shown that photon polarization arising out of the interference of the dominant isovector M1 amplitude at thermal neutron energies with the small isoscalar M1 and E2 amplitudes can be studied with advantage in suitably designed polarized beam and polarized target experiments, where the neutron and proton polarizations are either opposite to each other or orthogonal to each other. (letter to the editor)

  9. Experimental search for muonic photons

    CERN Document Server

    Vilain, P; Beyer, R; Flegel, Wilfried; Mouthuy, T; Øverås, H; Panman, J; Rozanov, A N; Winter, Klaus; Zacek, G; Zacek, V; Büsser, F W; Foos, C; Gerland, L; Layda, T; Niebergall, F; Rädel, G; Stähelin, P; Voss, T; Favart, D; Grégoire, G; Knoops, E; Lemaître, V; Gorbunov, P; Grigoriev, E A; Ilyin, V A; Khovanskii, V D; Maslennikov, A M; Okun, Lev Borisovich; Lippich, W; Nathaniel, A; Staude, A; Vogt, J; Cocco, A G; Ereditato, A; Fiorillo, G; Marchetti-Stasi, F; Palladino, Vittorio; Strolin, P; Capone, A; De Pedis, D; Dore, U; Frenkel-Rambaldi, A; Loverre, P F; Macina, Daniela; Piredda, G; Santacesaria, R; Di Capua, E; Ricciardi, S; Saitta, B; Akkus, B; Arik, E; Serin-Zeyrek, M; Sever, R; Tolun, P; Hiller, K; Nahnhauer, R; Roloff, H


    We report new limits on the production of muonic photons in the CERN neutrino beam. The results are based on the analysis of neutrino production of dimuons in the CHARM II detector. A $90\\%$ CL limit on the coupling constant of muonic photons, $\\alpha_{\\mu} / \\alpha < (1.5 \\div 3.2) \\times10^{-6}$ is derived for a muon neutrino mass in the range $m_{\

  10. Nonlinear optics in photonic nanowires. (United States)

    Foster, Mark A; Turner, Amy C; Lipson, Michal; Gaeta, Alexander L


    We review recent research on nonlinear optical interactions in waveguides with sub-micron transverse dimensions, which are termed photonic nanowires. Such nanowaveguides, fabricated from glasses or semiconductors, provide the maximal confinement of light for index guiding structures enabling large enhancement of nonlinear interactions and group-velocity dispersion engineering. The combination of these two properties make photonic nanowires ideally suited for many nonlinear optical applications including the generation of single-cycle pulses and optical processing with sub-mW powers.

  11. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok


    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  12. Ultra-broadband photonic internet (United States)

    Romaniuk, Ryszard S.


    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  13. Topological Photonics for Continuous Media (United States)

    Silveirinha, Mario

    Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.

  14. Photon Luminescence of the Moon (United States)

    Wilson, T.L.; Lee, K.T.


    Luminescence is typically described as light emitted by objects at low temperatures, induced by chemical reactions, electrical energy, atomic interactions, or acoustical and mechanical stress. An example is photoluminescence created when photons (electromagnetic radiation) strike a substance and are absorbed, resulting in the emission of a resonant fluorescent or phosphorescent albedo. In planetary science, there exists X-ray fluorescence induced by sunlight absorbed by a regolith a property used to measure some of the chemical composition of the Moon s surface during the Apollo program. However, there exists an equally important phenomenon in planetary science which will be designated here as photon luminescence. It is not conventional photoluminescence because the incoming radiation that strikes the planetary surface is not photons but rather cosmic rays (CRs). Nevertheless, the result is the same: the generation of a photon albedo. In particular, Galactic CRs (GCRs) and solar energetic particles (SEPs) both induce a photon albedo that radiates from the surface of the Moon. Other particle albedos are generated as well, most of which are hazardous (e.g. neutrons). The photon luminescence or albedo of the lunar surface induced by GCRs and SEPs will be derived here, demonstrating that the Moon literally glows in the dark (when there is no sunlight or Earthshine). This extends earlier work on the same subject [1-4]. A side-by-side comparison of these two albedos and related mitigation measures will also be discussed.

  15. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  16. Prospects for Photon-Photon and Photon-Proton Measurements with Forward Proton Taggers in ATLAS

    CERN Document Server

    Trzebinski, Maciej; The ATLAS collaboration


    Talk for Photon2017 conference. Topics covered: ALFA and AFP detectors. Physics: elastic scattering, diffractive bremsstrahlung, exclusive pion pair production, anomalous gauge couplings, new physics (e.g. magnetic monopoles).

  17. Photon-atom interactions

    CERN Document Server

    Weissbluth, Mitchel


    This book provides an introduction to the body of theory shared by several branches of modern optics--nonlinear optics, quantum electronics, laser physics, and quantum optics--with an emphasis on quantum and statistical aspects. It is intended for well prepared undergraduate and graduate students in physics, applied physics, electrical engineering, and chemistry who seek a level of preparation of sufficient maturity to enable them to follow the specialized literature.

  18. Stan: Statistical inference (United States)

    Stan Development Team


    Stan facilitates statistical inference at the frontiers of applied statistics and provides both a modeling language for specifying complex statistical models and a library of statistical algorithms for computing inferences with those models. These components are exposed through interfaces in environments such as R, Python, and the command line.

  19. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg (eds.)


    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  20. What is a photon? (United States)

    Kracklauer, A. F.


    The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.

  1. Statistics using R

    CERN Document Server

    Purohit, Sudha G; Deshmukh, Shailaja R


    STATISTICS USING R will be useful at different levels, from an undergraduate course in statistics, through graduate courses in biological sciences, engineering, management and so on. The book introduces statistical terminology and defines it for the benefit of a novice. For a practicing statistician, it will serve as a guide to R language for statistical analysis. For a researcher, it is a dual guide, simultaneously explaining appropriate statistical methods for the problems at hand and indicating how these methods can be implemented using the R language. For a software developer, it is a guide in a variety of statistical methods for development of a suite of statistical procedures.

  2. Brain mapping with single photon emission CT. (United States)

    Matthew, E; Hill, T C


    To investigate the feasibility of performing brain mapping studies by using cortical activation paradigms and single photon emission computed tomography (SPECT) and to evaluate methods of analysis. Twenty healthy volunteers underwent technetium-99m bicisate SPECT under baseline conditions and during either full-field or right hemifield visual stimulation with a black and white reversing checkerboard pattern. Changes in regional cerebral perfusion were measured by using regions of interest (ROIs) and statistical parametric mapping. ROI analysis identified statistically significant increases in perfusion in the occipital cortex with full-field visual stimulation (mean +/- standard error of the mean percentage change from baseline: left, 8.0 +/- 1.5; right, 6.6 +/- 2.4). With right hemifield visual stimulation, perfusion was significantly increased only in the left occipital cortex (left, 5.2 +/- 1.5; right, -0.2 +/- 1.9). Statistical parametric mapping showed areas of activation (more than 100 voxel clusters showed significant change from baseline at a threshold value of P or = 2.58) in the left primary visual cortex (right hemifield visual stimulation) and in both right and left primary visual areas (full-field visual stimulation). Brain mapping studies were preformed with Tc-99m bicisate SPECT, and activation-induced changes were visualized and measured. These methods can be applied to develop improved methods of diagnosis and assessment of treatment outcome in patients with neuropsychiatric disorders.

  3. LHCb: Probing photon polarization in Bs->phi gamma decay at LHCb

    CERN Multimedia

    Shchutska, L


    The radiative decay Bs->phi gamma is one of the benchmark channels in the physics programme of the LHCb experiment. It provides the possibility to test the Standard Model through the indirect measurement of the photon polarization in b->s gamma transition. The statistical uncertainty in the wrong polarization fraction of photons is estimated to be ~0.2 with the 2 fb^{-1} of integrated luminosity.

  4. Photonics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Elizabeth [UNLV Research Foundation, Las Vegas, NV (United States)


    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV's Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home's electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation's energy consumption by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve

  5. Measurements of direct photons in Au+Au collisions with PHENIX

    CERN Document Server

    Bannier, Benjamin


    The PHENIX experiment has published direct photon yields and elliptic flow coefficients $v_2$ from Au+Au collisions at RHIC energies. These results have sparked much theoretical discussion. The measured yields and flow parameters are difficult to reconcile in current model calculations of thermal radiation based on hydrodynamic time evolution of the collision volume. Our latest analyses which use high statistics data from the 2007 and 2010 runs allow the determination of direct photon yields with finer granularity in centrality and photon momentum and down to $p_T$ as low as 0.4 GeV/$c$. We will summarize the current status and present new results from PHENIX.

  6. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    DEFF Research Database (Denmark)

    Gerard, J. M.; Claudon, J.; Munsch, M.


    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...... dots in ultrathin photonic wires 2) the control of the linear polarization of the single photons by photonic wires with an elliptical section, 3) the joint observation (unlike-cavity-based devices) of a record high efficiency and pure single photon emission process in a photonic wire single photon...

  7. The photon: a virtual reality (United States)

    Andrews, David L.


    It has been observed that every photon is, in a sense, virtual - being emitted and then sooner or later absorbed. As the motif of a quantum radiation state, the photon shares these characteristics of any virtual state: that it is not directly observable; and that it can signify only one of a number of indeterminable intermediates, between matter states that are directly measurable. Nonetheless, other traits of real and virtual behavior are usually quite clearly differentiable. How 'real', then, is the photon? To address this and related questions it is helpful to look in detail at the quantum description of light emission and absorption. A straightforward analysis of the dynamic electric field, based on quantum electro-dynamics, reveals not only the entanglement of energy transfer mechanisms usually regarded as 'radiative' and 'radiationless'; it also gives significant physical insights into several other electromagnetic topics. These include: the propagating and non-propagating character in electromagnetic fields; near-zone and wave-zone effects; transverse and longitudinal character; the effects of retardation, manifestations of quantum uncertainty and issues of photon spin. As a result it is possible to gain a clearer perspective on when, or whether, the terms 'real' and 'virtual' are helpful descriptors of the photon.

  8. Photon Spectroscopy Of Heavy Quarkonia

    CERN Document Server

    Muramatsu, H


    We have studied the inclusive photon spectrum in y (2S), ϒ(2S), and ϒ(3 S) decays using the CLEO III detector. We present the most precise measurements of electric dipole (E1) photon transition rates and photon energies for y (2S) → γχcJ(1 P), ϒ(2S) → γχ cJ(1P), and ϒ(3S) → γχ bJ(2P) (J = 0, 1, 2). The rate for rare E1 transition, ϒ(3S) → γχ b0(1P) is measured for the first time. We also confirm the hindered magnetic dipole (M1) transition, y (2S) → γηc(1 S). However, the direct M1 transition y (2S) → γηc(2 S) observed by the Crystal Ball as a narrow peak at a photon energy of 91 MeV is not found in our data. We have also searched for the spin-singlet bottomonium states η b(1S) and ηb(2 S) via the hindered magnetic dipole (M1) photon transitions ϒ(3 S) → &gamma...

  9. Statistics For Dummies

    CERN Document Server

    Rumsey, Deborah


    The fun and easy way to get down to business with statistics Stymied by statistics? No fear ? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life. Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more.Tracks to a typical first semester statistics cou

  10. Industrial statistics with Minitab

    CERN Document Server

    Cintas, Pere Grima; Llabres, Xavier Tort-Martorell


    Industrial Statistics with MINITAB demonstrates the use of MINITAB as a tool for performing statistical analysis in an industrial context. This book covers introductory industrial statistics, exploring the most commonly used techniques alongside those that serve to give an overview of more complex issues. A plethora of examples in MINITAB are featured along with case studies for each of the statistical techniques presented. Industrial Statistics with MINITAB: Provides comprehensive coverage of user-friendly practical guidance to the essential statistical methods applied in industry.Explores

  11. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. (United States)

    Tang, Jing; Geng, Weidong; Xu, Xiulai


    We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay g((2))(0) in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum interference mechanism does not require a strong coupling strength between the cavity and the quantum dot, even with the pure dephasing of the system. This simple proposal provides an effective way for potential applications in solid state quantum computation and quantum information processing.

  12. Coherent state amplification using frequency conversion and a single photon source (United States)

    Kasture, Sachin


    Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.

  13. Ultrafast downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel (United States)

    Yu, L.; Pelc, J. S.; de Greve, K.; McMahon, P. L.; Fejer, M. M.; Yamamoto, Y.; Maier, S.; Schneider, C.; Kamp, M.; Hofling, S.; Forchel, A.; Natarajan, C. M.; Hadfield, R. H.


    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. Quantum frequency conversion (QFC), whereby a photonic qubit's carrier frequency is translated while maintaining its quantum state, is well-suited to the task. Quantum dots have been studied extensively as potential quantum network nodes, but they do not emit indistinguishable single photons at telecomm wavelengths. We report an ultrafast, low-noise downconversion quantum interface, in which 910-nm single photons from a quantum dot are downconverted to the 1.5- μm lowest-loss telecom band, showing near-perfect preservation of antibunched photon statistics. Moreover, the resulting time resolution could also improve photon indistinguishability. Together with the III-V semiconductor quantum dot spin system, this ultrafast downconversion quantum interface provides new possibility to realize long-distance quantum communication networks.

  14. Photonic quantum technologies (Presentation Recording) (United States)

    O'Brien, Jeremy L.


    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  15. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki


    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  16. Review of dark photon searches

    Directory of Open Access Journals (Sweden)

    Denig Achim


    Full Text Available Dark Photons are hypothetical extra-U(1 gauge bosons, which are motivated by a number of astrophysical anomalies as well as the presently seen deviation between the Standard Model prediction and the direct measurement of the anomalous magnetic moment of the muon, (g − 2μ. The Dark Photon does not serve as the Dark Matter particle itself, but acts as a messenger particle of a hypothetical Dark Sector with residual interaction to the Standard Model. We review recent Dark Photon searches, which were carried out in a global effort at various hadron and particle physics facilities. We also comment on the perspectives for future invisble searches, which directly probe the existence of Light Dark Matter particles.

  17. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail:; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)


    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  18. Schematic driven silicon photonics design (United States)

    Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris


    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.

  19. Quantum photonics hybrid integration platform

    CERN Document Server

    Murray, Eoin; Meany, Thomas; Flother, Frederick F; Lee, James P; Griffiths, Jonathan P; Jones, Geb A C; Farrer, Ian; Ritchie, David A; Bennet, Anthony J; Shields, Andrew J


    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to an SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO2 cladding. A tuneable Mach Zehnder modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single photon nature of the emission was veri?ed by an on-chip Hanbury Brown and Twiss measurement.

  20. Statistics for Finance

    DEFF Research Database (Denmark)

    Lindström, Erik; Madsen, Henrik; Nielsen, Jan Nygaard

    Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics...

  1. CMS Program Statistics (United States)

    U.S. Department of Health & Human Services — The CMS Office of Enterprise Data and Analytics has developed CMS Program Statistics, which includes detailed summary statistics on national health care, Medicare...

  2. Recreational Boating Statistics 2012 (United States)

    Department of Homeland Security — Every year, the USCG compiles statistics on reported recreational boating accidents. These statistics are derived from accident reports that are filed by the owners...

  3. Recreational Boating Statistics 2011 (United States)

    Department of Homeland Security — Every year, the USCG compiles statistics on reported recreational boating accidents. These statistics are derived from accident reports that are filed by the owners...

  4. Recreational Boating Statistics 2013 (United States)

    Department of Homeland Security — Every year, the USCG compiles statistics on reported recreational boating accidents. These statistics are derived from accident reports that are filed by the owners...

  5. Statistical data analysis handbook

    National Research Council Canada - National Science Library

    Wall, Francis J


    It must be emphasized that this is not a text book on statistics. Instead it is a working tool that presents data analysis in clear, concise terms which can be readily understood even by those without formal training in statistics...

  6. Mathematical and statistical analysis (United States)

    Houston, A. Glen


    The goal of the mathematical and statistical analysis component of RICIS is to research, develop, and evaluate mathematical and statistical techniques for aerospace technology applications. Specific research areas of interest include modeling, simulation, experiment design, reliability assessment, and numerical analysis.

  7. National transportation statistics 2011 (United States)


    Compiled and published by the U.S. Department of Transportation's Bureau of Transportation Statistics (BTS), National Transportation Statistics presents information on the U.S. transportation system, including its physical components, safety record, ...

  8. Principles of applied statistics

    National Research Council Canada - National Science Library

    Cox, D. R; Donnelly, Christl A


    .... David Cox and Christl Donnelly distil decades of scientific experience into usable principles for the successful application of statistics, showing how good statistical strategy shapes every stage of an investigation...

  9. Wigner Distribution of Twisted Photons (United States)

    Mirhosseini, Mohammad; Magaña-Loaiza, Omar S.; Chen, Changchen; Hashemi Rafsanjani, Seyed Mohammad; Boyd, Robert W.


    We present the first experimental characterization of the azimuthal Wigner distribution of a photon. Our protocol fully characterizes the transverse structure of a photon in conjugate bases of orbital angular momentum (OAM) and azimuthal angle. We provide a test of our protocol by characterizing pure superpositions and incoherent mixtures of OAM modes in a seven-dimensional space. The time required for performing measurements in our scheme scales only linearly with the dimension size of the state under investigation. This time scaling makes our technique suitable for quantum information applications involving a large number of OAM states.

  10. Research summer camp in photonics (United States)

    Buyanovskaya, Elizaveta; Melnik, Maksim; Egorov, Vladimir; Gleim, Artur; Lukishova, Svetlana; Kozlov, Sergei; Zhang, Xi-Cheng


    ITMO University and the University of Rochester became close partners several years ago. One of the first outcomes of this mutually beneficial partnership was the creation of International Institute of Photonics and Optical Information Technologies led by Prof. Sergei Kozlov and Prof. Xi-Cheng Zhang. Universities have created a double Masters-degree program in optics in 2014, and several ITMO students have been awarded degrees from Rochester. At the same time ITMO University organizes Summer Research camp in Photonics for University of Rochester students. Students spent two weeks in the Northern Capital of Russia learning about the emerging practical applications of femtosecond optics, terahertz biomedicine and quantum information technologies.

  11. Polymers for electronic & photonic application

    CERN Document Server

    Wong, C P


    The most recent advances in the use of polymeric materials by the electronic industry can be found in Polymers for Electronic and Photonic Applications. This bookprovides in-depth coverage of photoresis for micro-lithography, microelectronic encapsulants and packaging, insulators, dielectrics for multichip packaging,electronic and photonic applications of polymeric materials, among many other topics. Intended for engineers and scientists who design, process, and manufacturemicroelectronic components, this book will also prove useful for hybrid and systems packaging managers who want to be info

  12. Quantum cryptography with entangled photons (United States)

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger


    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  13. Photonic band-gap optimisation in inverted FCC photonic crystals

    NARCIS (Netherlands)

    Doosje, M; Hoenders, BJ; Knoester, J; Lenstra, D; Visser, TD; Leeuwen, KAH


    We present results of band-structure calculations for inverted photonic crystal structures. We consider a structure of air spheres in a dielectric background, arranged in an FCC lattice, with cylindrical tunnels connecting each pair of neighbouring spheres. The width of the band gap is optimised by

  14. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël


    as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...

  15. Ethics in Statistics (United States)

    Lenard, Christopher; McCarthy, Sally; Mills, Terence


    There are many different aspects of statistics. Statistics involves mathematics, computing, and applications to almost every field of endeavour. Each aspect provides an opportunity to spark someone's interest in the subject. In this paper we discuss some ethical aspects of statistics, and describe how an introduction to ethics has been…

  16. Nonparametric statistical inference

    CERN Document Server

    Gibbons, Jean Dickinson


    Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente

  17. Business statistics for dummies

    CERN Document Server

    Anderson, Alan


    Score higher in your business statistics course? Easy. Business statistics is a common course for business majors and MBA candidates. It examines common data sets and the proper way to use such information when conducting research and producing informational reports such as profit and loss statements, customer satisfaction surveys, and peer comparisons. Business Statistics For Dummies tracks to a typical business statistics course offered at the undergraduate and graduate levels and provides clear, practical explanations of business statistical ideas, techniques, formulas, and calculations, w

  18. Head First Statistics

    CERN Document Server

    Griffiths, Dawn


    Wouldn't it be great if there were a statistics book that made histograms, probability distributions, and chi square analysis more enjoyable than going to the dentist? Head First Statistics brings this typically dry subject to life, teaching you everything you want and need to know about statistics through engaging, interactive, and thought-provoking material, full of puzzles, stories, quizzes, visual aids, and real-world examples. Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics

  19. Statistics & probaility for dummies

    CERN Document Server

    Rumsey, Deborah J


    Two complete eBooks for one low price! Created and compiled by the publisher, this Statistics I and Statistics II bundle brings together two math titles in one, e-only bundle. With this special bundle, you'll get the complete text of the following two titles: Statistics For Dummies, 2nd Edition  Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more. Tra

  20. Statistics in a nutshell

    CERN Document Server

    Boslaugh, Sarah


    Need to learn statistics for your job? Want help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference for anyone new to the subject. Thoroughly revised and expanded, this edition helps you gain a solid understanding of statistics without the numbing complexity of many college texts. Each chapter presents easy-to-follow descriptions, along with graphics, formulas, solved examples, and hands-on exercises. If you want to perform common statistical analyses and learn a wide range of techniques without getting in over your head, this is your book.

  1. Statistics for Research

    CERN Document Server

    Dowdy, Shirley; Chilko, Daniel


    Praise for the Second Edition "Statistics for Research has other fine qualities besides superior organization. The examples and the statistical methods are laid out with unusual clarity by the simple device of using special formats for each. The book was written with great care and is extremely user-friendly."-The UMAP Journal Although the goals and procedures of statistical research have changed little since the Second Edition of Statistics for Research was published, the almost universal availability of personal computers and statistical computing application packages have made it possible f

  2. Quantum random walks circuits with photonic waveguides

    NARCIS (Netherlands)

    Peruzzo, Alberto; Matthews, Jonathan; Politi, Alberto; Lobino, Mirko; Zhou, Xiao-Qi; Thompson, Mark G.; O'Brien, Jeremy; Matsuda, Nobuyuki; Ismail, N.; Worhoff, Kerstin; Bromberg, Yaron; Lahini, Yoav; Silberberg, Yaron


    Arrays of 21 evanescently coupled waveguides are fabricated to implement quantum random walks and a generalised form of two-photon non-classical interference, which observed via two photon correlation.

  3. High intensity click statistics from a 10 × 10 avalanche photodiode array (United States)

    Kröger, Johannes; Ahrens, Thomas; Sperling, Jan; Vogel, Werner; Stolz, Heinrich; Hage, Boris


    Photon-number measurements are a fundamental technique for the discrimination and characterization of quantum states of light. Beyond the abilities of state-of-the-art devices, we present measurements with an array of 100 avalanche photodiodes exposed to photon-numbers ranging from well below to significantly above one photon per diode. Despite each single diode only discriminating between zero and non-zero photon-numbers we were able to extract a second order moment, which acts as a nonclassicality indicator. We demonstrate a vast enhancement of the applicable intensity range by two orders of magnitude relative to the standard application of such devices. It turns out that the probabilistic mapping of arbitrary photon-numbers on a finite number of registered clicks is not per se a disadvantage compared with true photon counters. Such detector arrays can bridge the gap between single-photon and linear detection, by investigation of the click statistics, without the necessity of photon statistics reconstruction.

  4. Photon Reconstruction and Identification with the ATLAS detector

    CERN Document Server

    Donega, M; The ATLAS collaboration


    The understanding of the reconstruction of photons will be one of the key issues at the start-up of data-taking with the ATLAS experiment at the LHC in 2009. Large statistics of photons produced in association with jets are expected over a wide range of ET, from 20 GeV to several hundred GeV. These will be used as an important in situ calibration tool for the jet energy scale. The energy measurement of unconverted photons is based on the electromagnetic calorimetry over the full relevant energy range (10 GeV to a few TeV). The electromagnetic calorimeter cluster algorithm starting from electronically calibrated calorimeter cells will be described. Local position and energy variations are corrected for. A refined calibration procedure, developed and validated over years of test-beam data-taking and analysis, strives to identify all sources of energy losses upstream of the calorimeter and outside the cluster and corrects for them one by one (using Monte-Carlo). Unconverted photons require a specific calibration...

  5. Estimation and inferential statistics

    CERN Document Server

    Sahu, Pradip Kumar; Das, Ajit Kumar


    This book focuses on the meaning of statistical inference and estimation. Statistical inference is concerned with the problems of estimation of population parameters and testing hypotheses. Primarily aimed at undergraduate and postgraduate students of statistics, the book is also useful to professionals and researchers in statistical, medical, social and other disciplines. It discusses current methodological techniques used in statistics and related interdisciplinary areas. Every concept is supported with relevant research examples to help readers to find the most suitable application. Statistical tools have been presented by using real-life examples, removing the “fear factor” usually associated with this complex subject. The book will help readers to discover diverse perspectives of statistical theory followed by relevant worked-out examples. Keeping in mind the needs of readers, as well as constantly changing scenarios, the material is presented in an easy-to-understand form.

  6. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth


    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  7. Statistics for economics

    CERN Document Server

    Naghshpour, Shahdad


    Statistics is the branch of mathematics that deals with real-life problems. As such, it is an essential tool for economists. Unfortunately, the way you and many other economists learn the concept of statistics is not compatible with the way economists think and learn. The problem is worsened by the use of mathematical jargon and complex derivations. Here's a book that proves none of this is necessary. All the examples and exercises in this book are constructed within the field of economics, thus eliminating the difficulty of learning statistics with examples from fields that have no relation to business, politics, or policy. Statistics is, in fact, not more difficult than economics. Anyone who can comprehend economics can understand and use statistics successfully within this field, including you! This book utilizes Microsoft Excel to obtain statistical results, as well as to perform additional necessary computations. Microsoft Excel is not the software of choice for performing sophisticated statistical analy...

  8. Baseline Statistics of Linked Statistical Data

    NARCIS (Netherlands)

    Scharnhorst, Andrea; Meroño-Peñuela, Albert; Guéret, Christophe


    We are surrounded by an ever increasing ocean of information, everybody will agree to that. We build sophisticated strategies to govern this information: design data models, develop infrastructures for data sharing, building tool for data analysis. Statistical datasets curated by National

  9. National Statistical Commission and Indian Official Statistics

    Indian Academy of Sciences (India)

    T J Rao1. C. R. Rao Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) University of Hyderabad Campus Central University Post Office, Prof. C. R. Rao Road Hyderabad 500 046, AP, India. Resonance – Journal of Science Education. Current Issue : Vol. 22, Issue 12 · Current Issue Volume 22 ...

  10. National Statistical Commission and Indian Official Statistics*

    Indian Academy of Sciences (India)

    IAS Admin

    Commission also stresses the importance of setting up of a. Methodological Study Unit to regularly undertake studies for bringing in improvements in the survey methodologies. The importance of a sound official statistical system in any country is well understood. Efficient governance depends largely on timely, accurate and ...

  11. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan


    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  12. Polarization properties of photonic bandgap fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard


    We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components.......We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components....

  13. Integrated Microwave Photonics for Wideband Signal Processing

    Directory of Open Access Journals (Sweden)

    Xiaoke Yi


    Full Text Available We describe recent progress in integrated microwave photonics in wideband signal processing applications with a focus on the key signal processing building blocks, the realization of monolithic integration, and cascaded photonic signal processing for analog radio frequency (RF photonic links. New developments in integration-based microwave photonic techniques, that have high potentialities to be used in a variety of sensing applications for enhanced resolution and speed are also presented.

  14. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.


    Silicon Photonics Cloud ( is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud ( is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  15. Two Photon Exchange for Exclusive Pion Electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Afanaciev, Andrei V. [George Washington U.; Aleksejevs, Aleksandrs G. [Memorial University of Newfoundland, Newfoundland, Canada; Barkanova, Svetlana G. [Acadia University, Nova Scotia, Canada


    We perform detailed calculations of two-photon-exchange QED corrections to the cross section of pion electroproduction. The results are obtained with and without the soft-photon approximation; analytic expressions for the radiative corrections are derived. The relative importance of the two-photon correction is analyzed for the kinematics of several experiments at Jefferson Lab. A significant, over 20%, effect due to two-photon exchange is predicted for the backward angles of electron scattering at large transferred momenta.

  16. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron


    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  17. Detecting Dark Photons with Reactor Neutrino Experiments (United States)

    Park, H. K.


    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ mass dark photons.

  18. Entangled-photon coincidence fluorescence imaging. (United States)

    Scarcelli, Giuliano; Yun, Seok H


    We describe fluorescence imaging using the second-order correlation of entangled photon pairs. The proposed method is based on the principle that one photon of the pair carries information on where the other photon has been absorbed and has produced fluorescence in a sample. Because fluorescent molecules serve as "detectors" breaking the entanglement, multiply-scattered fluorescence photons within the sample do not cause image blur. We discuss experimental implementations.

  19. Prompt Photon Production at HERA and LEP

    CERN Document Server

    Kluge, Thomas


    Results on isolated prompt photon production are presented. The measurements were performed at HERA in deep inelastic ep scattering and photoproduction, as well as at LEP in photon photon collisions. Differential cross sections are shown for inclusive prompt photons and those accompanied by a jet. The results are compared to predictions of perturbative QCD calculations in next to leading order and to predictions of the event generators PYTHIA and HERWIG.

  20. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin


    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  1. Photonics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Jeppesen, Palle; Jepsen, Peter Uhd; Lodahl, Peter


    tries to attract excellent researchers and students from all over the world and to collaborate with world leading research institutes and companies. The activities span from quantum photonics, nanotechnology and metamaterials over nonlinear fiber optics, optical sensors and diode lasers & LED systems...

  2. Integrated Ultrasonic-Photonic Devices

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva

    This thesis deals with the modeling, design, fabrication and characterization of integrated ultrasonic-photonic devices, with particular focus on the use of standard semiconductor materials such as GaAs and silicon. The devices are based on the use of guided acoustic waves to modulate the light...

  3. Silicon nitride microwave photonic circuits

    NARCIS (Netherlands)

    Roeloffzen, C.G.H.; Zhuang, L.; Taddei, Caterina; Taddei, Caterina; Leinse, Arne; Heideman, Rene; van Dijk, Paulus W.L.; Oldenbeuving, Ruud; Marpaung, D.A.I.; Burla, M.; Buria, Maurizio; Boller, Klaus J.


    We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleXTM) waveguide technology. All functionalities are built using the same basic building blocks, namely

  4. Photonic analogies of gravitational attractors

    KAUST Repository

    San-Román-Alerigi, Damián P.


    In our work we demonstrate a Gaussian-like refractive index mapping to realize light trapping. Our study shows that this centro-symmetrical photonic structure is able to mime the light geodesics described by celestial mechanics. Possible applications are discussed. © 2013 IEEE.

  5. Weak localization of photon noise

    NARCIS (Netherlands)

    Scalia, Paolo S.; Muskens, Otto L.; Lagendijk, Aart


    We present an experimental study of coherent backscattering (CBS) of photon noise from multiple scattering media. We use a pseudothermal light source with a microsecond coherence time to produce a noise spectrum covering a continuous transition, from wave fluctuations to shot noise over several MHz.

  6. Photonic effects in natural nanostructures (United States)

    Rey GonzáLez, Rafael Ramón; Barrera Patiã+/-O, Claudia Patricia

    Nature exhibits a great variety of structures and nanostructures. In particular the interaction light-matter has a strong dependence with the shape of the nanostructures. In some cases, in the so called structural color, ordered arrays of nanostructures play a very critical role. One of the most interesting color effects is the iridescence, the angular dependence of the observed color in some species of butterflies, insects, plants, beetles, fishes, birds and even in minerals. In the last years, iridescence has been related with photonic properties. In the present work, we present a theoretical study of the photonic properties for different patterns that exist in natural nanostructures present in wings of butterflies that exhibit iridescence. The nanostructures observed in these cases present spatial variations of the dielectric constant that are possible to model them as 1D and 2D photonic crystal. Partial photonic gaps are found as function of lattice constant, dielectric contrast and geometrical configuration. Also, disordered effects are considered. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia.

  7. The Impact of Silicon Photonics (United States)


    computing sys­ tems. An important investigation of nano -scale devices was made at the March 19, 20, 2007 workshop on "very large Manuscript received...operates on phase­ coherent light beams, (3j) photonic tester of electronic ICs, (3k) bionic signal processors, (31) neural network proces­ sors, (3m) data

  8. Photonics of 2D materials (United States)

    Zhang, Han; Wang, Junzhuan; Hasan, Tawfique; Bao, Qiaoliang


    The emergence of graphene and graphene-like two dimensional (2D) materials has attracted a strong interest from the photonics community in recent decade. Apart from zero-gap graphene, insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides and phosphorene/black phosphorus are being intensively investigated because of their fascinating photonic and optoelectronic properties. Compared to traditional bulk photonic materials such as Gallium Arsenide (GaAs) and Silicon (Si), 2D materials exhibit many unique properties important for device applications in nanophotonics. Firstly, quantum confinement in the direction perpendicular to 2D plane leads to novel electronic and optical features that are distinctively different from their bulk counterparts. Secondly, their surfaces are naturally passivated without any dangling bonds making them readily compatible for integration with photonic structures such as waveguides and cavities. It is also possible to construct vertical hetero-structures by using different 2D materials, without considering lattice mismatch issues that are common in bulk semiconductors. This is because the 2D layers with different lattice constants in heterostructures are only weakly bounded by van der Waals force. Thirdly, despite being atomically thin, many 2D materials interact very strongly with light.

  9. Photon Physics of Revised Electromagnetics

    Directory of Open Access Journals (Sweden)

    Lehnert B.


    Full Text Available Conventional theory, as based on Maxwell’s equations and associated quantum electrodynamical concepts in the vacuum, includes the condition of zero electric field divergence. In applications to models of the individual photon and to dense light beams such a theory exhibits several discrepancies from experimental evidence. These include the absence of angular momentum (spin, and the lack of spatially limited geometry in the directions transverse to that of the propagation. The present revised theory includes on the other hand a nonzero electric field divergence, and this changes the field equations substantially. It results in an extended quantum electrodynamical approach, leading to nonzero spin and spatially limited geometry for photon models and light beams. The photon models thereby behave as an entirety, having both particle and wave properties and possessing wave-packet solutions which are reconcilable with the photoelectric effect, and with the dot-shaped marks and interference patterns on a screen by individual photons in a two-slit experiment.

  10. Quantum Walks of Correlated Photons

    NARCIS (Netherlands)

    Peruzzo, Albert; Lobino, Mirko; Matthews, Jonathan C. F.; Matsuda, Nobuyuki; Politi, Alberto; Poulios, Konstantinos; Zhou, Xiao-Qi; Lahini, Yoav; Ismail, N.; Worhoff, Kerstin; Bromberg, Yaron; Silberberg, Yaron; Thompson, Mark G.; OBrien, Jeremy L.


    Quantum walks of correlated particles offer the possibility of studying large-scale quantum interference; simulating biological, chemical, and physical systems; and providing a route to universal quantum computation. We have demonstrated quantum walks of two identical photons in an array of 21

  11. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    DEFF Research Database (Denmark)

    Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst


    and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may...

  12. Photon Differential Splatting for Rendering Caustics

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Schjøth, Lars; Erleben, Kenny


    on heuristics rather than knowledge of the local flux density. We use photon differentials to determine the size and shape of the splats such that we achieve adaptive anisotropic flux density estimation in photon splatting. As compared to previous work that uses photon differentials, we present the first method...

  13. NanoData Landscape Compilation. Photonics

    NARCIS (Netherlands)

    Allan, J.E.M.; Buist, H.E.; Chapman, A.; Flament, G.; Hartmann, C.; Jawad, I.; Kuijpers, L.T.; Kuittinen, H.; Noyons, E.; Giessen, A.M. van der; Yegros, A.


    Photonics emerged in the 1960s and 1970s from work on semiconductor light emitters, lasers and optical fibres. Nanoscale effects impact on photonics, e.g. in the surface quality of waveguides and optical fibres. The focus here remains as closely as possible on photonics as it relates to

  14. Photonics for MS study in radiocommunications (United States)

    Volner, Rudolf; Klima, Milos; Ticha, Dasa


    The paper is devoted to an education of Photonics at the Dept. of Telecommunications, Faculty of Electrical Engineering, at the University of Zilina. Originated from the university historical development the photonic subjects are implemented in two basic areas: Telecommunication Technology and Radiocommunication Technology. From the school year 1994/95 the new subject Photonics has been taught and it has attracted numerous students. The subject is focused on both physical principles and system application. The relevant parts can be listed as: interaction photon - matter, photonic receivers and transmitters, modulation and demodulation in Photonics, photonic networks - narrowband and wideband, photonic switches, image sensors and displays. The education of Photonics has been supported by research activities in the field of applied photonic system for signal (data) transmission and selected results have been implemented into the subject structure. The paper listed a detailed content of the subject in two fields: lectures and experimental laboratory exercises. As an integral part of the course we plan to implement selected experiments from the area of 2D photonic (image) processing and to expand the imaging photonic part.

  15. MITLL Silicon Integrated Photonics Process: Design Guide (United States)


    MIT Lincoln Laboratory Silicon Integrated Photonics Process Design Guide Revision 2015:1a (31 July 2015) Comprehensive Design...Government. Rev.: 2015:1a (18 June 2015) i MITLL Silicon Integrated Photonics Process Comprehensive Design Guide ... Silicon Integrated Photonics Process Comprehensive Design Guide 16  Deep Etch for Fiber Coupling (DEEP_ETCH

  16. ePIXfab - The silicon photonics platform

    NARCIS (Netherlands)

    Khanna, A.; Drissi, Y.; Dumon, P.; Baets, R.; Absil, P.; Pozo Torres, J.M.; Lo Cascio, D.M.R.; Fournier, M.; Fedeli, J.M.; Fulbert, L.; Zimmermann, L.; Tillack, B.; Aalto, T.; O'Brien, P.; Deptuck, D.; Xu, J.; Gale, D.


    ePIXfab-The European Silicon Photonics Support Center continues to provide state-of-the-art silicon photonics solutions to academia and industry for prototyping and research. ePIXfab is a consortium of EU research centers providing diverse expertise in the silicon photonics food chain, from training

  17. Review of Radio Frequency Photonics Basics (United States)


    Analog vs. Digital ............................................................................................................ 4 3.2 RF Photonic Links ...frequency (RF) photonics. Also a comparison of analog and digital metrics is covered. The findings show the analog delay line has an important purpose a good use for a RF photonic link . In addition, the external intensity modulation combined with direct detection link is the preferred option. 15

  18. APPLIED PHYSICS: How to Be Truly Photonic. (United States)

    Yablonovitch, E


    Photonic crystals behave toward light waves as semiconductors do toward electron waves. Yablonovitch discusses a report by Noda et al., who have made a photonic crystal with unprecedented performance, using GaAs, the best material for integration into optoelectronic devices. According to Yablonovitch, the work thus represents a significant step toward photonic integrated circuits.

  19. Photonic hybrid assembly through flexible waveguides

    NARCIS (Netherlands)

    Wörhoff, Kerstin; Prak, Albert; postma, F; Leinse, A; Wu, K.; Peters, T.J.; Tichem, M.; Amaning-Appiah, B.; Renukappa, V.; Vollrath, G.; Balcells-Ventura, J.; Uhlig, P.; Seyfried, M.; Rose, D.; Santos, Raquel; Leijtens, XJM; Flintham, B.; Wale, M.; Robbins, D.; Vivien, Laurent; Pavesi, Lorenzo; Pelli, Stefano


    Fully automated, high precision, cost-effective assembly technology for photonic packages remains one of the main challenges in photonic component manufacturing. Next to the cost aspect the most demanding assembly task for multiport photonic integrated circuits (PICs) is the high-precision (±0.1

  20. Proca Equations and the Photon Imaginary Mass


    De Aquino, Fran


    It has been recently proposed that the photon has imaginary mass and null real mass. Proca equations are the unique simplest relativistic generalization of Maxwell equations. They are the theoretical expressions of possible nonzero photon rest mass. The fact that the photon has imaginary mass introduces relevant modifications in Proca equations which point to a deviation from the Coulomb's inverse square law.

  1. Comments on the mass of the Photon


    Sidharth, Burra G.


    De Broglie believed that the photon has a mass, a view shared by a few others. Quite recently, the author has argued that the photon has a mass which is consistent with the latest experimental limits. In the present paper we point out that there is experimental evidence for this mass and also give a theoretical demonstration of the photon mass.

  2. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels


    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  3. The statistical stability phenomenon

    CERN Document Server

    Gorban, Igor I


    This monograph investigates violations of statistical stability of physical events, variables, and processes and develops a new physical-mathematical theory taking into consideration such violations – the theory of hyper-random phenomena. There are five parts. The first describes the phenomenon of statistical stability and its features, and develops methods for detecting violations of statistical stability, in particular when data is limited. The second part presents several examples of real processes of different physical nature and demonstrates the violation of statistical stability over broad observation intervals. The third part outlines the mathematical foundations of the theory of hyper-random phenomena, while the fourth develops the foundations of the mathematical analysis of divergent and many-valued functions. The fifth part contains theoretical and experimental studies of statistical laws where there is violation of statistical stability. The monograph should be of particular interest to engineers...

  4. Statistical Physics An Introduction

    CERN Document Server

    Yoshioka, Daijiro


    This book provides a comprehensive presentation of the basics of statistical physics. The first part explains the essence of statistical physics and how it provides a bridge between microscopic and macroscopic phenomena, allowing one to derive quantities such as entropy. Here the author avoids going into details such as Liouville’s theorem or the ergodic theorem, which are difficult for beginners and unnecessary for the actual application of the statistical mechanics. In the second part, statistical mechanics is applied to various systems which, although they look different, share the same mathematical structure. In this way readers can deepen their understanding of statistical physics. The book also features applications to quantum dynamics, thermodynamics, the Ising model and the statistical dynamics of free spins.

  5. Guidelines for Statistical Testing


    Strigini, L.; Littlewood, B.; European Space Agency


    This document provides an introduction to statistical testing. Statistical testing of software is here defined as testing in which the test cases are produced by a random process meant to produce different test cases with the same probabilities with which they would arise in actual use of the software. Statistical testing of software has these main advantages: for the purpose of reliability assessment and product acceptance, it supports directly estimates of reliability, and thus decisions on...

  6. Applied statistics for economists

    CERN Document Server

    Lewis, Margaret


    This book is an undergraduate text that introduces students to commonly-used statistical methods in economics. Using examples based on contemporary economic issues and readily-available data, it not only explains the mechanics of the various methods, it also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.

  7. Equilibrium statistical mechanics

    CERN Document Server

    Mayer, J E


    The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t

  8. Mathematical statistics with applications

    CERN Document Server

    Wackerly, Dennis D; Scheaffer, Richard L


    In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps you discover the nature of statistics and understand its essential role in scientific research.

  9. Contributions to statistics

    CERN Document Server

    Mahalanobis, P C


    Contributions to Statistics focuses on the processes, methodologies, and approaches involved in statistics. The book is presented to Professor P. C. Mahalanobis on the occasion of his 70th birthday. The selection first offers information on the recovery of ancillary information and combinatorial properties of partially balanced designs and association schemes. Discussions focus on combinatorial applications of the algebra of association matrices, sample size analogy, association matrices and the algebra of association schemes, and conceptual statistical experiments. The book then examines latt

  10. Optimization techniques in statistics

    CERN Document Server

    Rustagi, Jagdish S


    Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimiza

  11. Equilibrium statistical mechanics

    CERN Document Server

    Jackson, E Atlee


    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  12. Lectures on statistical mechanics

    CERN Document Server

    Bowler, M G


    Anyone dissatisfied with the almost ritual dullness of many 'standard' texts in statistical mechanics will be grateful for the lucid explanation and generally reassuring tone. Aimed at securing firm foundations for equilibrium statistical mechanics, topics of great subtlety are presented transparently and enthusiastically. Very little mathematical preparation is required beyond elementary calculus and prerequisites in physics are limited to some elementary classical thermodynamics. Suitable as a basis for a first course in statistical mechanics, the book is an ideal supplement to more convent

  13. Spying on photons with photons: quantum interference and information (United States)

    Ataman, Stefan


    The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.

  14. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo


    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  15. Digest of education statistics

    National Research Council Canada - National Science Library

    Contains information on a variety of subjects within the field of education statistics, including the number of schools and colleges, enrollments, teachers, graduates, educational attainment, finances...

  16. Annual Statistical Supplement, 2002 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2002 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  17. Annual Statistical Supplement, 2003 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2003 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  18. Annual Statistical Supplement, 2001 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2001 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  19. Annual Statistical Supplement, 2010 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2010 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  20. Annual Statistical Supplement, 2007 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2007 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  1. Annual Statistical Supplement, 2016 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2016 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  2. Annual Statistical Supplement, 2000 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2000 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  3. Statistics in a Nutshell

    CERN Document Server

    Boslaugh, Sarah


    Need to learn statistics as part of your job, or want some help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference that's perfect for anyone with no previous background in the subject. This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrat

  4. Annual Statistical Supplement, 2008 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2008 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  5. Annual Statistical Supplement, 2006 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2006 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  6. Annual Statistical Supplement, 2005 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2005 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  7. Annual Statistical Supplement, 2015 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2015 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  8. Statistics is Easy

    CERN Document Server

    Shasha, Dennis


    Statistics is the activity of inferring results about a population given a sample. Historically, statistics books assume an underlying distribution to the data (typically, the normal distribution) and derive results under that assumption. Unfortunately, in real life, one cannot normally be sure of the underlying distribution. For that reason, this book presents a distribution-independent approach to statistics based on a simple computational counting idea called resampling. This book explains the basic concepts of resampling, then systematically presents the standard statistical measures along

  9. Annual Statistical Supplement, 2004 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2004 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  10. 100 statistical tests

    CERN Document Server

    Kanji, Gopal K


    This expanded and updated Third Edition of Gopal K. Kanji's best-selling resource on statistical tests covers all the most commonly used tests with information on how to calculate and interpret results with simple datasets. Each entry begins with a short summary statement about the test's purpose, and contains details of the test objective, the limitations (or assumptions) involved, a brief outline of the method, a worked example, and the numerical calculation. 100 Statistical Tests, Third Edition is the one indispensable guide for users of statistical materials and consumers of statistical information at all levels and across all disciplines.

  11. Understanding Computational Bayesian Statistics

    CERN Document Server

    Bolstad, William M


    A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic

  12. Record Statistics and Dynamics

    DEFF Research Database (Denmark)

    Sibani, Paolo; Jensen, Henrik J.


    The term record statistics covers the statistical properties of records within an ordered series of numerical data obtained from observations or measurements. A record within such series is simply a value larger (or smaller) than all preceding values. The mathematical properties of records strongly...... fluctuations of e. g. the energy are able to push the system past some sort of ‘edge of stability’, inducing irreversible configurational changes, whose statistics then closely follows the statistics of record fluctuations....

  13. Principles of statistics

    CERN Document Server

    Bulmer, M G


    There are many textbooks which describe current methods of statistical analysis, while neglecting related theory. There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again fo

  14. Annual Statistical Supplement, 2014 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2014 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  15. Annual Statistical Supplement, 2009 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2009 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  16. Annual Statistical Supplement, 2011 (United States)

    Social Security Administration — The Annual Statistical Supplement, 2011 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...

  17. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    This thesis describes the design, fabrication and characterization of photonic crystal slab lasers. The main focus is on coupled photonic crystal cavity lasers which are examined in great detail. The cavity type which is mainly explored consists of a defect formed by a single missing hole....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...

  18. Multicolor quantum metrology with entangled photons. (United States)

    Bell, Bryn; Kannan, Srikanth; McMillan, Alex; Clark, Alex S; Wadsworth, William J; Rarity, John G


    Entangled photons can be used to make measurements with an accuracy beyond that possible with classical light. While most implementations of quantum metrology have used states made up of a single color of photons, we show that entangled states of two colors can show supersensitivity to optical phase and path length by using a photonic crystal fiber source of photon pairs inside an interferometer. This setup is relatively simple and robust to experimental imperfections. We demonstrate sensitivity beyond the standard quantum limit and show superresolved interference fringes using entangled states of two, four, and six photons.

  19. Photonic Crystals Physics and Practical Modeling

    CERN Document Server

    Sukhoivanov, Igor A


    The great interest in photonic crystals and their applications in the past decade requires a thorough training of students and professionals who can practically apply the knowledge of physics of photonic crystals together with skills of independent calculation of basic characteristics of photonic crystals and modelling of various photonic crystal elements for application in all-optical communication systems. This book combines basic backgrounds in fiber and integrated optics with detailed analysis of mathematical models for 1D, 2D and 3D photonic crystals and microstructured fibers, as well as with descriptions of real algorithms and codes for practical realization of the models.

  20. Radiance and photon noise: imaging in geometrical optics, physical optics, quantum optics and radiology (United States)

    Caucci, Luca; Myers, Kyle J.; Barrett, Harrison H.


    The statistics of detector outputs produced by an imaging system are derived from basic radiometric concepts and definitions. We show that a fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular, and wavelength variables. We begin the paper by recalling the concept of radiance in geometrical optics, radiology, physical optics, and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Building upon these concepts, we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors (capable of measuring radiance on a photon-by-photon basis). This allows us to rigorously show how the concept of radiance is related to the statistical properties of detector outputs and to the information content of a single detected photon. A Monte-Carlo technique, which is derived from the Boltzmann transport equation, is presented as a way to estimate probability density functions to be used in reconstruction from photon-processing data.

  1. Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. (United States)

    Loredo, J C; Broome, M A; Hilaire, P; Gazzano, O; Sagnes, I; Lemaitre, A; Almeida, M P; Senellart, P; White, A G


    A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

  2. Third-order antibunching from an imperfect single-photon source. (United States)

    Stevens, Martin J; Glancy, Scott; Nam, Sae Woo; Mirin, Richard P


    We measure second- and third-order temporal coherences, g((2))(τ) and g((3))(τ1,τ2), of an optically excited single-photon source: an InGaAs quantum dot in a microcavity pedestal. Increasing the optical excitation power leads to an increase in the measured count rate, and also an increase in multi-photon emission probability. We show that standard measurements of g((2)) provide limited information about this multi-photon probability, and that more information can be gained by simultaneously measuring g((3)). Experimental results are compared with a simple theoretical model to show that the observed antibunchings are consistent with an incoherent addition of two sources: 1) an ideal single-photon source that never emits multiple photons and 2) a background cavity emission having Poissonian photon number statistics. Spectrally resolved cross-correlation measurements between quantum-dot and cavity modes show that photons from these two sources are largely uncorrelated, further supporting the model. We also analyze the Hanbury Brown-Twiss interferometer implemented with two or three "click" detectors, and explore the conditions under which it can be used to accurately measure g((2))(τ) and g((3))(τ1,τ2).

  3. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector (United States)

    Huntington, Andrew


    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  4. Photon and light meson production in hadronic $Z^{0}$ decays

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bohme, J.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schorner, T.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.


    The inclusive production rates and differential cross-sections of photons and mesons with a final state containing photons have been measured with the OPAL detector at LEP. The light mesons covered by the measurements are the \\pi^0, multiplicities per hadronic Z^0 decay, extrapolated to the full energy range, are: = 20.97 +/- 0.02 +/- 1.15, = 9.55 +/- 0.06 +/- 0.75, = 0.97 +/- 0.03 +/- 0.11, = 2.40 +/- 0.06 +/- 0.43, = 1.04 +/- 0.04 +/- 0.14, = 0.14 +/- 0.01 +/- 0.02, = 0.27 +/- 0.04 +/- 0.10. where the first errors are statistical and the second systematic. In general, the results are in agreement with the predictions of the JETSET and HERWIG Monte Carlo models.

  5. Stochastic simulation and robust design optimization of integrated photonic filters

    Directory of Open Access Journals (Sweden)

    Weng Tsui-Wei


    Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  6. Electron and photon energy calibration with the ATLAS detector

    CERN Document Server

    Falke, Saskia; The ATLAS collaboration


    An accurate calibration of the energy measurement of electron and photon is needed for many ATLAS physics analysis. The calibration of the energy measurement is performed in-situ using a large statistics of Z->ee events. A pre-requisite of this calibration is a good understanding of the material in front of the calorimeter and of the inter-calibration of the different calorimeter layers. The Z->ee sample is also used to measure the energy resolution. The results obtained with the pp collisions data at sqrt(s)=13 TeV in 2016 (2015) corresponding to an integrated luminosity of 33.9 (3.1)fb-1 of sqrt(s)=13 TeV are presented as well as the corresponding uncertainties on the electron and photon energy scales.

  7. Helioscope bounds on hidden sector photons

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, J.


    The flux of hypothetical ''hidden photons'' from the Sun is computed under the assumption that they interact with normal matter only through kinetic mixing with the ordinary standard model photon. Requiring that the exotic luminosity is smaller than the standard photon luminosity provides limits for the mixing parameter down to {chi}

  8. Ultracompact quantum splitter of degenerate photon pairs

    CERN Document Server

    He, Jiakun; Casas-Bedoya, Alvaro; Zhang, Yanbing; Xiong, Chunle; Eggleton, Benjamin J


    Integrated sources of indistinguishable photons have attracted a lot of attention because of their applications in quantum communication and optical quantum computing. Here, we demonstrate an ultra-compact quantum splitter for degenerate single photons based on a monolithic chip incorporating Sagnac loop and a micro-ring resonator with a footprint of 0.011 mm2, generating and deterministically splitting indistinguishable photon pairs using time-reversed Hong-Ou-Mandel interference. The ring resonator provides enhanced photon generation rate, and the Sagnac loop ensures the photons travel through equal path lengths and interfere with the correct phase to enable the reversed HOM effect to take place. In the experiment, we observed a HOM dip visibility of 94.5 +- 3.3 %, indicating the photons generated by the degenerate single photon source are in a suitable state for further integration with other components for quantum applications, such as controlled-NOT gates.

  9. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. (United States)

    Bock, Matthias; Lenhard, Andreas; Chunnilall, Christopher; Becher, Christoph


    We present the realization of a highly efficient photon pair source based on spontaneous parametric downconversion (SPDC) in a periodically poled lithium niobate (PPLN) ridge waveguide. The source is suitable for long distance quantum communication applications as the photon pairs are located at the centers of the telecommunication O- and C- band at 1312 nm and 1557 nm. The high efficiency is confirmed by a conversion efficiency of 4 × 10-6 - which is to our knowledge among the highest conversion efficiencies reported so far - and a heralding efficiency of 64.1 ± 2.1%. The heralded single-photon properties are confirmed by the measurement of the photon statistics with a Click/No-Click method as well as the heralded g(2)-function. A minimum value for g(2)(0) of 0.001 ± 0.0003 indicating clear antibunching has been observed.

  10. Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip. (United States)

    Xu, Xinan; Xie, Zhenda; Zheng, Jiangjun; Liang, Junlin; Zhong, Tian; Yu, Mingbin; Kocaman, Serdar; Lo, Guo-Qiang; Kwong, Dim-Lee; Englund, Dirk R; Wong, Franco N C; Wong, Chee Wei


    Near-infrared Hong-Ou-Mandel quantum interference is observed in silicon nanophotonic directional couplers with raw visibilities on-chip at 90.5%. Spectrally-bright 1557-nm two-photon states are generated in a periodically-poled KTiOPO₄ waveguide chip, serving as the entangled photon source and pumped with a self-injection locked laser, for the photon statistical measurements. Efficient four-port coupling in the communications C-band and in the high-index-contrast silicon photonics platform is demonstrated, with matching theoretical predictions of the quantum interference visibility. Constituents for the residual quantum visibility imperfection are examined, supported with theoretical analysis of the sequentially-triggered multipair biphoton, towards scalable high-bitrate quantum information processing and communications. The on-chip HOM interference is useful towards scalable high-bitrate quantum information processing and communications.

  11. Number-Resolved Single-Photon Detection with Ultralow Noise van der Waals Hybrid. (United States)

    Roy, Kallol; Ahmed, Tanweer; Dubey, Harshit; Sai, T Phanindra; Kashid, Ranjit; Maliakal, Shruti; Hsieh, Kimberly; Shamim, Saquib; Ghosh, Arindam


    Van der Waals hybrids of graphene and transition metal dichalcogenides exhibit an extremely large response to optical excitation, yet counting of photons with single-photon resolution is not achieved. Here, a dual-gated bilayer graphene (BLG) and molybdenum disulphide (MoS 2 ) hybrid are demonstrated, where opening a band gap in the BLG allows extremely low channel (receiver) noise and large optical gain (≈10 10 ) simultaneously. The resulting device is capable of unambiguous determination of the Poissonian emission statistics of an optical source with single-photon resolution at an operating temperature of 80 K, dark count rate 0.07 Hz, and linear dynamic range of ≈40 dB. Single-shot number-resolved single-photon detection with van der Waals heterostructures may impact multiple technologies, including the linear optical quantum computation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Practical statistics for educators

    CERN Document Server

    Ravid, Ruth


    Practical Statistics for Educators, Fifth Edition, is a clear and easy-to-follow text written specifically for education students in introductory statistics courses and in action research courses. It is also a valuable resource and guidebook for educational practitioners who wish to study their own settings.

  13. Fermi–Dirac Statistics

    Indian Academy of Sciences (India)

    IAS Admin

    Dirac statistics, identical and in- distinguishable particles, Fermi gas. Fermi–Dirac Statistics. Derivation and Consequences. S Chaturvedi and Shyamal Biswas ... GENERAL. ARTICLE. RESONANCE. January 2014. 57. Historically, one of the first applications of. Fermi–Dirac distribution came from Fowler in the context of.

  14. Practical statistics simply explained

    CERN Document Server

    Langley, Dr Russell A


    For those who need to know statistics but shy away from math, this book teaches how to extract truth and draw valid conclusions from numerical data using logic and the philosophy of statistics rather than complex formulae. Lucid discussion of averages and scatter, investigation design, more. Problems with solutions.

  15. Thiele. Pioneer in statistics

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    This book studies the brilliant Danish 19th Century astronomer, T.N. Thiele who made important contributions to statistics, actuarial science, astronomy and mathematics. The most important of these contributions in statistics are translated into English for the first time, and the text includes c...

  16. Statistical methods in metabolomics. (United States)

    Korman, Alexander; Oh, Amy; Raskind, Alexander; Banks, David


    Metabolomics is the relatively new field in bioinformatics that uses measurements on metabolite abundance as a tool for disease diagnosis and other medical purposes. Although closely related to proteomics, the statistical analysis is potentially simpler since biochemists have significantly more domain knowledge about metabolites. This chapter reviews the challenges that metabolomics poses in the areas of quality control, statistical metrology, and data mining.

  17. On Statistical Testing. (United States)

    Huberty, Carl J.

    An approach to statistical testing, which combines Neyman-Pearson hypothesis testing and Fisher significance testing, is recommended. The use of P-values in this approach is discussed in some detail. The author also discusses some problems which are often found in introductory statistics textbooks. The problems involve the definitions of…

  18. Applied Statistics with SPSS (United States)

    Huizingh, Eelko K. R. E.


    Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…

  19. Handbook of Spatial Statistics

    CERN Document Server

    Gelfand, Alan E


    Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.

  20. Thiele. Pioneer in statistics

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    This book studies the brilliant Danish 19th Century astronomer, T.N. Thiele who made important contributions to statistics, actuarial science, astronomy and mathematics. The most important of these contributions in statistics are translated into English for the first time, and the text includes...