WorldWideScience

Sample records for subnanometer size uncapped

  1. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique.

    Science.gov (United States)

    Shinde, Manish; Patil, Rajendra; Karmakar, Soumen; Bhoraskar, Sudha; Rane, Sunit; Gade, Wasudev; Amalnerkar, Dinesh

    2012-02-01

    We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.

  2. Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation

    Science.gov (United States)

    Shinde, Manish; Pawar, Amol; Karmakar, Soumen; Seth, Tanay; Raut, Varsha; Rane, Sunit; Bhoraskar, Sudha; Amalnerkar, Dinesh

    2009-11-01

    Uncapped silver nanoparticles were synthesized by DC arc thermal plasma technique. The synthesized nanoparticles were structurally cubic and showed wide particle size variation (between 20-150 nm). Thick film paste formulated from such uncapped silver nanoparticles was screen-printed on alumina substrates and the resultant `green' films were fired at different firing temperatures. The films fired at 600 °C revealed better microstructure properties and also yielded the lowest value of sheet resistance in comparison to those corresponding to conventional peak firing temperature of 850 °C. Our findings directly support the role of silver nanoparticles in substantially depressing the operative peak firing temperature involved in traditional conductor thick films technology.

  3. Role of arterial telomere dysfunction in hypertension: relative contributions of telomere shortening and telomere uncapping.

    Science.gov (United States)

    Morgan, R Garrett; Ives, Stephen J; Walker, Ashley E; Cawthon, Richard M; Andtbacka, Robert H I; Noyes, Dirk; Lesniewski, Lisa A; Richardson, Russell S; Donato, Anthony J

    2014-06-01

    Telomere shortening in arteries could lead to telomere uncapping and cellular senescence, which in turn could promote the development of hypertension. To assess the novel role of arterial telomere dysfunction in hypertension, we compared mean telomere length (qPCR), telomere uncapping (serine 139 phosphorylated histone γ-H2A.X (γ-H2) localized to telomeres: ChIP), and tumor suppressor protein p53 (P53)/cyclin-dependent kinase inhibitor 1A (P21)-induced senescence (P53 bound to P21 gene promoter: ChIP) in arteries from 55 age-matched hypertensive and nonhypertensive individuals. Arterial mean telomere length was not different in hypertensive patients compared with nonhypertensive individuals (P = 0.29). Arterial telomere uncapping and P53/P21-induced senescence were two-fold greater in hypertensive patients compared with nonhypertensive individuals (P = 0.04 and P = 0.02, respectively). Arterial mean telomere length was not associated with telomere uncapping or P53/P21-induced senescence (r = -0.02, P = 0.44 and r = 0.01, P = 0.50, respectively), but telomere uncapping was a highly influential covariate for the hypertension group difference in P53/P21-induced senescence (r = 0.62, P hypertension status (P = 0.03), whereas mean telomere length was not (P = 0.68). Collectively, these findings demonstrate that arterial telomere uncapping and P53/P21-induced senescence are linked to hypertension independently of mean telomere length, and telomere uncapping influences hypertension status more than mean telomere length.

  4. Cluster size matters: Size-driven performance of subnanometer clusters in catalysis, electrocatalysis and Li-air batteries

    Science.gov (United States)

    Vajda, Stefan

    2015-03-01

    This paper discusses the strongly size-dependent performance of subnanometer cluster based catalysts in 1) heterogeneous catalysis, 2) electrocatalysis and 3) Li-air batteries. The experimental studies are based on I. fabrication of ultrasmall clusters with atomic precision control of particle size and their deposition on oxide and carbon based supports; II. test of performance, III. in situand ex situ X-ray characterization of cluster size, shape and oxidation state; and IV.electron microscopies. Heterogeneous catalysis. The pronounced effect of cluster size and support on the performance of the catalyst (catalyst activity and the yield of Cn products) will be illustrated on the example of nickel and cobalt clusters in Fischer-Tropsch reaction. Electrocatalysis. The study of the oxygen evolution reaction (OER) on size-selected palladium clusters supported on ultrananocrystalline diamond show pronounced size effects. While Pd4 clusters show no reaction, Pd6 and Pd17 clusters are among the most active catalysts known (in in terms of turnover rate per Pd atom). The system (soft-landed Pd4, Pd6, or Pd17 clusters on an UNCD Si coated electrode) shows stable electrochemical potentials over several cycles, and the characterization of the electrodes show no evidence for evolution or dissolution of either the support Theoretical calculations suggest that this striking difference may be a demonstration that bridging Pd-Pd sites, which are only present in three-dimensional clusters, are active for the oxygen evolution reaction in Pd6O6. Li-air batteries. The studies show that sub-nm silver clusters have dramatic size-dependent effect on the lowering of the overpotential, charge capacity, morphology of the discharge products, as well as on the morphology of the nm size building blocks of the discharge products. The results suggest that by precise control of the active surface sites on the cathode, the performance of Li-air cells can be significantly improved

  5. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke; Winans, Randall E.; Vajda, Stefan

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  6. Electrochemical stability of subnanometer Pt clusters

    DEFF Research Database (Denmark)

    Quinson, Jonathan; Röefzaad, Melanie; Deiana, Davide

    2018-01-01

    In the present work, the degradation of size-selected Pt nanoclusters is studied under electrochemical conditions. This model catalyst mimics carbon supported Pt nanoclusters and nanoparticles typically employed in proton exchange membrane fuel cells (PEMFCs). Insight into the early stage...... of degradation is given by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and confirmed by transmission electron microscopy (TEM). In contrast to common assumptions, it is demonstrated that even extremely small Pt clusters exhibit a remarkable stability under electrochemical...... - is observed. In light of the findings reported, developing highly-dispersed subnanometer Pt clusters as catalyst for PEMFCs is a realistic approach provided the operation conditions are suitably adjusted. Furthermore, mitigation strategies to improve the stability of few-atoms catalyst under electrochemical...

  7. Atomistic Insight on the Charging Energetics in Sub-nanometer Pore Supercacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Feng, Guang [Clemson University

    2010-01-01

    Electrodes featuring sub-nanometer pores can significantly enhance the capacitance and energy density of supercapacitors. However, ions must pay an energy penalty to enter sub-nanometer pores as they have to shed part of their solvation shell. The magnitude of such energy penalty plays a key role in determining the accessibility and charging/discharging of these sub-nanometer pores. Here we report on the atomistic simulation of Na+ and Cl ions entering a polarizable slit pore with a width of 0.82 nm. We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na+ and Cl ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ion and pore walls, the image charge effects, the moderate (19-26%) de-hydration of the ions inside the pore, and the strengthened interactions between ions and their hydration water molecules in the sub-nanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring sub- nanometer pores.

  8. Drosophila cell cycle under arrest: uncapped telomeres plead guilty.

    Science.gov (United States)

    Cenci, Giovanni

    2009-04-01

    Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.

  9. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    Science.gov (United States)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high

  10. Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Emilio Gutierrez-Beltran

    2015-09-01

    Full Text Available Recently, we have showed that Tudor Staphylococcal Nuclease (TSN or Tudor-SN proteins (TSN1 and TSN2 are localized in cytoplasmic messenger ribonucleoprotein (mRNP complexes called stress granules (SG and processing bodies (PB under heat stress in Arabidopsis. One of the primary functions of these mRNP complexes is mRNA decay, which generates uncapped mRNAs by the action of endonucleases and decapping enzymes (Thomas et al., 2011 [1]. In order to figure out whether TSN proteins could be implicated in mRNA decay, we isolated uncapped and total mRNAs of Wild type (WT; Col and Ler and TSN double knock-out (tsn1tsn2 seedlings grown under heat stress (39 °C for 40 min and control (23 °C conditions. Here, we provide the experimental procedure to reproduce the results (NCBI GEO accession number GSE63522 published by Gutierrez-Beltran et al. (2015 in The Plant Cell [2].

  11. Uncapped mRNA introduced into tobacco protoplasts can be imported into the nucleus and is trapped by leptomycin B.

    Science.gov (United States)

    Stuger, Rogier; Forreiter, Christoph

    2004-08-01

    The mechanism of nuclear export of RNAs in yeast and animal cells is rapidly being uncovered, but RNA export in plants has received little attention. We introduced capped and uncapped fluorescent mRNAs into tobacco (Nicotiana plumbaginifolia) protoplasts and studied their cellular localization. Following insertion, capped transcripts were found in the cytoplasm, while uncapped messengers transiently appeared in the nucleus in about one-quarter to one-third of the cells. These mRNAs were trapped by the nuclear export-inhibiting drug leptomycin B, pointing to an export mechanism in plants similar to Rev-NES-mediated RNP export in other organisms.

  12. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kgobudi Frans Chepape

    2017-01-01

    Full Text Available Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM analysis of the samples showed that 50% PVP-capped CdSe nanoparticles were uniformly distributed in size with an average of 2.7 nm and shape which was spherical-like. The photocatalytic degradation of methyl blue (MB in water showed efficiencies of 31% and 48% when using uncapped and 50% PVP-capped CdSe nanoparticles as photocatalysts, respectively. The efficiency of PVP-capped CdSe nanoparticles indicated that a complete green process can be utilized for photocatalytic treatment of water and waste water.

  13. Development of a sub-nanometer positioning device: combining a new linear motor with linear motion ball guide ways

    International Nuclear Information System (INIS)

    Otsuka, J; Tanaka, T; Masuda, I

    2010-01-01

    A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)

  14. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  15. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.

    Science.gov (United States)

    Yuan, Zhe; Govind Rajan, Ananth; Misra, Rahul Prasanna; Drahushuk, Lee W; Agrawal, Kumar Varoon; Strano, Michael S; Blankschtein, Daniel

    2017-08-22

    Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO 2 and CH 4 , through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO 2 and CH 4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO 2 /CH 4 mixture, the graphene nanopores exhibit a trade-off between the CO 2 permeance and the CO 2 /CH 4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO 2 /CH 4 separation factors higher than 10 2 have CO 2 permeances per pore lower than 10 -22 mol s -1 Pa -1 , and pores with separation factors of ∼10 have CO 2 permeances per pore between 10 -22 and 10 -21 mol s -1 Pa -1 . Finally, we show that a pore density of 10 14 m -2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric

  16. A general approach to homogeneous sub-nanometer metallic particle/graphene composites by S-coordinator

    Science.gov (United States)

    Wang, Senhao; Wang, Wei; Gu, Shangzhi; Zhang, Guoxin; Song, Ningning

    2018-05-01

    In this study, sulphur-modified reduced graphene oxide (S-rGO) was employed as substrate to investigate the growth mechanism of metal and metallic nanoparticles (NPs). It is observed that the monodispersed Au, SnO2, FeO(OH) and Co3S4 NPs in sub-nanometer (sub-nm) with narrow size distribution were successfully anchored on S-rGO, respectively. The results indicate that the S contained radicals, viz. the Cdbnd S and Csbnd Ssbnd C functional groups play an important role in determining the homogeneous distribution of NPs on S-rGO by providing active sites for the NPs anchoring and nucleation. In additional, as anode materials for lithium ion batteries (LIBs), the as-synthesized sub-nm sized Co3S4/S-rGO and SnO2/S-rGO composites show excellent Li storage performance. It could be stabilized at ca. 600 mAh/g after formation cycle with the coulombic efficiency of 98%. It is expected that the strategy of growing sub-nm sized metallic component onto graphene by applying sulphur functionalities could be utilized as a general method to prepare monodispersed graphene-based NPs with other metals, especially with transition metals in sub-nm sizes.

  17. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials

    Science.gov (United States)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli

    2016-10-01

    The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.

  18. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  19. Distinct Responses of Stem Cells to Telomere Uncapping-A Potential Strategy to Improve the Safety of Cell Therapy.

    Science.gov (United States)

    Liu, Chang Ching; Ma, Dong Liang; Yan, Ting-Dong; Fan, XiuBo; Poon, Zhiyong; Poon, Lai-Fong; Goh, Su-Ann; Rozen, Steve G; Hwang, William Ying Khee; Tergaonkar, Vinay; Tan, Patrick; Ghosh, Sujoy; Virshup, David M; Goh, Eyleen L K; Li, Shang

    2016-10-01

    In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484. © 2016 AlphaMed Press.

  20. Size-dependent and intra-band photoluminescence of NiS2 nano-alloys synthesized by microwave assisted hydrothermal technique

    CSIR Research Space (South Africa)

    Linganiso, C

    2013-03-01

    Full Text Available Synthesis of nickel disulfide (NiS2) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS2 formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained...

  1. Subnanometer Gold Clusters on Amino-Functionalized Silica: An Efficient Catalyst for the Synthesis of 1,3-Diynes by Oxidative Alkyne Coupling

    Czech Academy of Sciences Publication Activity Database

    Vilhanová, B.; Václavík, Jiří; Artiglia, L.; Ranocchiari, M.; Togni, A.; van Bokhoven, J. A.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 3414-3418 ISSN 2155-5435 Institutional support: RVO:61388963 Keywords : alkyne coupling * gold * heterogeneous catalysis * hypervalent iodine * subnanometer Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 10.614, year: 2016

  2. Multilayer X-ray mirrors for formation of sub-nanometer wavelength range beams

    International Nuclear Information System (INIS)

    Akhsakhalyan, A.A.; Akhsakhalyan, A.D.; Klyuenkov, E.B.; Murav'ev, V.A.; Salashchenko, N.N.; Kharitonov, A.I.

    2005-01-01

    Paper reviews the efforts undertaken in the RF Academy of Sciences IPM within recent 5 years to design multilayer mirror systems to produce X-ray wavelength subnanometer range beams. Paper describes a process to fabricate the mentioned systems covering the procedures to obtain supersmooth surfaces of the specified shape, to deposit gradient multilayer structures on the mentioned surfaces and describes the rules to calculate the optimal parameters of mirrors. Paper presents characteristics of mirror system two types: a mirror in the shape of a parabolic cylinder to collimate radiation in the DRON-4, DRON-6 production-type X-ray diffractometers and in the shape of a quadraelliptic reflector - a new wide-aperture four-corner focusing system [ru

  3. CO Oxidation by Subnanometer AgxAu3–x Supported Clusters via Density Functional Theory Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R.; Sementa, Luca; Barcaro, Giovanni; Vajda, S.; Apra, Edoardo; Fortunelli, Alessandro

    2012-09-07

    The activity of AgxAu3–x/MgO(100) clusters in CO oxidation is investigated computationally via systematic sampling techniques. It is found that these subnanometer species transform after ligand adsorption into reaction complexes which catalyze CO oxidation through a variety of different mechanisms, occurring via both Langmuir–Hinshelwood and Eley–Rideal paths and in some cases directly involving the oxide support. The alloyed Ag2Au1 cluster is proposed as the best catalyst in terms of efficiency and robustness.

  4. Subnanometer Ga 2 O 3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar; Tetreault, Nicolas; Humphry-Baker, Robin; Kessler, Florian; Baranoff, Etienne; Yi, Chenyi; Nazeeruddin, Mohammad Khaja; Grä tzel, Michael

    2012-01-01

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new

  5. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  6. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response

    Science.gov (United States)

    Mokkath, Junais Habeeb

    2018-05-01

    Composite plasmonic nanostructures with controlled size, shape and relative arrangement is a subject of significant current research interest. Much of this is stimulated by the prospects by generating enormous near-field enhancements of the surface and interparticle gap regions for potential applications in surface-enhanced spectroscopies. In this manuscript, using time-dependent density functional theory (TDDFT) calculations, we investigate how the optical response in size matched homodimers and size mismatched heterodimers composed of Aluminum modify while varying the size and interparticle gap distances in the sub-nanometer range. Both systems show interesting optical response evolution. In particular, the size mismatched heterodimers show even more complex optical response evolution due to a symmetry-breaking in the system.

  7. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  8. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    Science.gov (United States)

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  9. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  10. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  11. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  12. Chemical synthesis of highly size-confined triethylamine-capped ...

    Indian Academy of Sciences (India)

    2018-03-23

    Mar 23, 2018 ... TiO2 nanoparticles and its dye-sensitized solar cell performance .... Figure 5. Formation mechanism of TEA-capped and uncapped TiO2 nanoparticles. ... this research work, synthesized TEA-capped TiO2 nanopar- ticles were ...

  13. An EELS sub-nanometer investigation of the dielectric gate stack for the realization of InGaAs based MOSFET devices

    International Nuclear Information System (INIS)

    Longo, P; Paterson, G W; Craven, A J; Holland, M C; Thayne, I G

    2010-01-01

    In this paper, a subnanometer investigation of the Ga 2 O 3 /GdGaO dielectric gate stack deposited onto InGaAs is presented. Results regarding the influence of the growth conditions on the interface region from a chemical and morphological point of view are presented. The chemical information reported in this paper has been obtained using electron energy loss spectroscopy (EELS) that was carried out in a scanning transmission electron microscope ((S)TEM) showing both spatial and depth resolution.

  14. The effect of obesity on pathological complete response and survival in breast cancer patients receiving uncapped doses of neoadjuvant anthracycline-taxane-based chemotherapy.

    Science.gov (United States)

    Farr, Alex; Stolz, Myriam; Baumann, Lukas; Bago-Horvath, Zsuzsanna; Oppolzer, Elisabeth; Pfeiler, Georg; Seifert, Michael; Singer, Christian F

    2017-06-01

    The effect of obesity in breast cancer patients undergoing neoadjuvant chemotherapy (NAC) remains controversial. The aim of this study was to determine the obesity-related effect on pathological complete response (pCR) and survival in women receiving full uncapped doses of NAC. We retrospectively analyzed the data of all consecutive women who underwent anthracycline-taxane-based NAC for primary breast cancer between 2005 and 2015 at the Department of Obstetrics and Gynecology, Medical University of Vienna. Following the WHO criteria, women with a body mass index (BMI) ≥30 kg/m 2 at baseline were considered obese, whereas those with a BMI <30 kg/m 2 were considered non-obese. Those with dose reductions or dose capping were not eligible for study inclusion. Cox regression and logistic regression were performed. The Kaplan-Meier method was used to analyze disease-free, progression-free, and overall survival. The pCR served as the main outcome measure. Among 120 women who received neoadjuvant epirubicin plus cyclophosphamide and docetaxel, 28 (23.3%) were obese and 92 (76.7%) were non-obese. In the multivariate logistic regression model that adjusted for potentially confounding variables, obesity had an independent positive predictive effect on pCR (OR 4.29, 95% CI, 1.42-13.91; p = 0.011), which was significant in the postmenopausal subgroup (OR 4.72, 95% CI, 1.47-15.84; p = 0.01). When comparing non-obese with obese women, we found that obese women experienced longer progression-free survival (HR 0.10, 95% CI, 8.448 × 10 -4 -0.81; p = 0.025). Obese women receiving full uncapped doses of anthracycline-taxane-based NAC have increased pCR and favorable progression-free survival. This could result from increased dose intensity with increased efficacy and toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    Science.gov (United States)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  16. Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects: Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects

    Energy Technology Data Exchange (ETDEWEB)

    Mammen, Nisha [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India; Spanu, Leonardo [Shell Technology Center, Shell India Markets Private Limited, -560048 Bangalore India; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Yang, Bing [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Halder, Avik [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Institute for Molecular Engineering, The University of Chicago, 60637 Chicago IL USA; Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India

    2017-12-22

    Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases also feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.

  17. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  18. Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.

    Science.gov (United States)

    Zoellner, Andreas; Tan, Si; Saraf, Shailendhar; Alfauwaz, Abdul; DeBra, Dan; Buchman, Sasha; Lipa, John A

    2017-10-16

    We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensors. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam's power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87nm/Hz at 1 Hz and 0.39nm/Hz at 10 Hz. We describe the application of the module to the inertial sensor of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.

  19. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO{sub 2} transformation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Ramasamy [Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu 625 009 (India); National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India); Thamaraichelvan, Arunachalam [Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Kelambakkam, Tamilnadu 603 103 (India); Ganesan, Tharumeya Kuppusamy [Department of Chemistry, The American College, Madurai, Tamilnadu 625 002 (India); Viswanathan, Balasubramanian, E-mail: bvnathan@iitm.ac.in [National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India)

    2017-02-28

    Highlights: • On interaction with adsorbate CO{sub 2,} the adsorbent changes its configuration around the metal. • Electron transfer is faster in low coordinative environment of Cu. • CO formation is more favorable on Cu sites with even coordination number. • Cu at coordination number two has a over potential of −0.35 V. - Abstract: Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO{sub 2} to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO{sub 2} to CO at an applied potential of −0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO{sub 2} to various value added chemicals.

  20. Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications

    KAUST Repository

    Rondelli, Manuel

    2017-05-10

    The use of physicochemical preparation techniques of metal clusters in the ultrahigh vacuum (UHV) allows for high control of cluster nuclearity and size distribution for fundamental studies in catalysis. Surprisingly, the potential of these systems as catalysts for organic chemistry transformations in solution has not been explored. To this end, single Pt atoms and Pt clusters with two narrow size distributions were prepared in the UHV and applied for the hydrogenation of p-chloronitrobenzene to p-chloroaniline in ethanol. Following the observation of very high catalytic turnovers (approaching the million molecules of p-nitroaniline formed per Pt cluster) and of size-dependent activity, this work addresses fundamental questions with respect to the suitability of these systems as heterogeneous catalysts for the conversion of solution-phase reagents. For this purpose, we employ scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS) characterization before and after reaction to assess the stability of the clusters on the support and the question of heterogeneity versus homogeneity in the catalytic process.

  1. Quantum size effects in TiO2 thin films grown by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Massimo Tallarida

    2014-01-01

    Full Text Available We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems.

  2. Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications

    KAUST Repository

    Rondelli, Manuel; Zwaschka, Gregor; Krause, Maximilian; Rö tzer, Marian D.; Hedhili, Mohamed N.; Hogerl, Manuel Peter; D’ Elia, Valerio; Schweinberger, Florian F.; Basset, Jean-Marie; Heiz, Ueli

    2017-01-01

    as catalysts for organic chemistry transformations in solution has not been explored. To this end, single Pt atoms and Pt clusters with two narrow size distributions were prepared in the UHV and applied for the hydrogenation of p-chloronitrobenzene to p

  3. Efficiency Gain For Bi-Facial Multi-Crystalline Solar Cell With Uncapped Al2O3 And Local Firing-Through Al-BSF

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, I.; Manshanden, P.; Janssen, G.; Weeber, A.W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Granneman, E.; Siarheyeva, O. [Levitech BV, Versterkerstraat 10, 1322 AP Almere (Netherlands)

    2013-06-15

    The p-type bi-facial cell concept, p-PASHA (Passivated on all sides H- pattern), is developed at ECN and employs an uncapped AlOx passivation layer on the rear through which a screen printed H-pattern of aluminium contacts is fired. Here we report a net gain in cell efficiency of 0.2% absolute for the p-PASHA cell vs. industrial reference with the addition of a clean and an ALD step. Even higher gains up to 0.5% abs. are expected after optimization of the cell design and process. Apart from the efficiency gain, the bi-facial cell concept allows for 50-80% reduction in Al paste consumption, the use of thinner wafers, and consists of less processing steps compared to prevalent PERC concepts. The Al2O3 dielectric layer is deposited in the Levitrack, an industrial-type system for high-throughput Atomic Layer Deposition (ALD) developed by Levitech. The efficiency gain is obtained on multi-crystalline wafers, at a rear metal fraction of 40%. Localized IQE mapping, cross-sectional SEM investigation, resistance measurements and 2D simulation relate the efficiency improvement compared to our conventional process to better eutectic and BSF formation at the Al contact edges.

  4. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  5. A system for aerodynamically sizing ultrafine environmental radioactive particles

    International Nuclear Information System (INIS)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by 222 Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It's major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented

  6. A system for aerodynamically sizing ultrafine environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  7. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells.

    Science.gov (United States)

    Chandiran, Aravind Kumar; Tetreault, Nicolas; Humphry-Baker, Robin; Kessler, Florian; Baranoff, Etienne; Yi, Chenyi; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.

  8. Improved Performance of Uncapped Al2O3 and Local Firing-Through Al-BSF in Bi-facial Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, I.; Mewe, A.A.; Weeber, A.W. [ECN Solar Energy, P.O. Box 1, .1755 ZG Petten (Netherlands); Granneman, E.; Vermont, P. [Levitech BV, Versterkerstraat 10, 1322 AP Almere (Netherlands)

    2012-06-15

    Silicon solar cells that dominate today's market are H-pattern cells based on p-type silicon wafer material with a full Al Back Surface Field (BSF) as rear contact. ECN's rear passivated bi-facial PASHA (Passivated on all sides H- pattern) and ASPIRe (All Sides Passivated and Interconnected at the Rear, MWT) concepts answer the market pressure to decrease the euro/watt price and increase the efficiency. For optimized cells we estimate 0.5-0.8% absolute higher cell efficiencies compared to the industrial standard due to better rear passivation and reflection, while thinner wafers <150{mu}m) can be processed with limited yield loss. In addition, Al paste consumption can be reduced by 50-70% owing to the open rear metallization. Here we report on the improved performance of PASHA cells passivated by an uncapped Al2O3 layer on the rear, through which Al paste is fired for contact and local aluminum BSF formation. The Al2O3 dielectric layer is deposited in the Levitrack, an industrial-type system for high-throughput Atomic Layer Deposition (ALD) developed by Levitech. On Cz and mc material, a gain in J{sub sc} x V{sub oc} of 1% and 2.5% respectively is obtained compared to the reference, at a rear metal fraction of 30%. Localized IQE mapping shows that the passivation quality of the Al2O3 passivation layer is maintained after firing which is a major improvement as compared to our previous report. Furthermore, reliability tests on single cell laminates (Cz cells) suggest that the passivation layer remains stable during the lifetime of a module.

  9. Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials

    Science.gov (United States)

    Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.

    2017-12-01

    High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.

  10. Subnanometer Ga 2 O 3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga 2O 3, the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO 2 conduction band and the hole injection into the electrolyte are characterized in detail. © 2012 American Chemical Society.

  11. Screening tool to evaluate the vulnerability of down-gradient receptors to groundwater contaminants from uncapped landfills

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ronald J.; Reilly, Timothy J. [U.S. Geological Survey, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648 (United States); Lopez, Anthony [Bayer-Risse Engineering, Inc., 78 Route 173 West, Suite 6, Hampton, NJ 08827 (United States); Romanok, Kristin [U.S. Geological Survey, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648 (United States); Wengrowski, Edward W. [New Jersey Pinelands Commission, 15 Springfield Road, New Lisbon, NJ 08064 (United States)

    2015-09-15

    Highlights: • A spreadsheet-based risk screening tool for groundwater affected by landfills is presented. • Domenico solute transport equations are used to estimate downgradient contaminant concentrations. • Landfills are categorized as presenting high, moderate or low risks. • Analysis of parameter sensitivity and examples of the method’s application are given. • The method has value to regulators and those considering redeveloping closed landfills. - Abstract: A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically

  12. Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    Kim, H.; Detavenier, C.; Straten, O. van der; Rossnagel, S.M.; Kellock, A.J.; Park, D.-G.

    2005-01-01

    TaN x diffusion barriers with good barrier properties at subnanometer thickness were deposited by plasma-enhanced atomic layer deposition (PE-ALD) from pentakis(dimethylamino)Ta. Hydrogen and/or nitrogen plasma was used as reactants to produce TaN x thin films with a different nitrogen content. The film properties including the carbon and oxygen impurity content were affected by the nitrogen flow during the process. The deposited film has nanocrystalline grains with hydrogen-only plasma, while the amorphous structure was obtained for nitrogen plasma. The diffusion barrier properties of deposited TaN films for Cu interconnects have been studied by thermal stress test based on synchrotron x-ray diffraction. The results indicate that the PE-ALD TaN films are good diffusion barriers even at a small thickness as 0.6 nm. Better diffusion barrier properties were obtained for higher nitrogen content. Based on a diffusion kinetics analysis, the nanocrystalline microstructure of the films was responsible for the better diffusion barrier properties compared to polycrystalline PE-ALD TaN films deposited from TaCl 5

  13. Partitioning and nanostructural evolution in model Ni-based superalloys containing W, Re, and Ru studied on a subnanometer scale

    International Nuclear Information System (INIS)

    Isheim, D.; Seidman, D.N.

    2004-01-01

    Full text: Modern Ni-based sueralloys, for example, Rene N6, rely on a complex microstructure and microchemistry to achieve their superior mechanical and physical properties with up to 10 or more alloying additions. Refractory metal additions are known to improve the high-temperature creep-resistance and the influence and interactions with various alloying additions have drawn much attention. We study partitioning behavior of the alloying elements, growth and coarsening kinetics of γ' (L1 2 structure) precipitates in a series of model superalloys containing W, Re, and Ru in the earlier stages of the transformation with precipitates several tens of nanometers in diameter. The three-dimensional elemental spatial distribution with respect to γ' (L1 2 structure) precipitates, their heterophase interfaces, and their temporal evolution with high-temperature aging are characterized by 3D atom-probe (3DAP) microscopy with subnanometer resolution. The overall microstructure is characterized by transmission electron microscopy (TEM), which helps in the spanning of length scales. The experimental characterization provides important input parameters for modeling of partitioning and nanostructural evolution by ThermoCalc and PrecipiCalc and thus allows for a critical test of the predictive capabilities of these models. (author)

  14. Upper Airway Volume Segmentation Analysis Using Cine MRI Findings in Children with Tracheostomy Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Bradley L.; Abbott, M. Bret; Donnelly, Lane F.; Dardzinski, Bernard J.; Poe, Stacy A.; Kalra, Maninder; Amin, Raouf S.; Cotton, Robin T. [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States)

    2007-12-15

    The purpose of this study is to evaluate the airway dynamics of the upper airway as depicted on cine MRI in children with tracheotomy tubes during two states of airflow through the upper airway. Sagittal fast gradient echo cine MR images of the supra-glottic airway were obtained with a 1.5T MRI scanner on seven children with tracheotomy tubes. Two sets of images were obtained with either the tubes capped or uncapped. The findings of the cine MRI were retrospectively reviewed. Volume segmentation of the cine images to compare the airway volume change over time (mean volume, standard deviation, normalized range, and coefficient of variance) was performed for the capped and uncapped tubes in both the nasopharynx and hypopharynx (Signed Rank Test). Graphical representation of the airway volume over time demonstrates a qualitative increased fluctuation in patients with the tracheotomy tube capped as compared to uncapped in both the nasopharyngeal and hypopharyngeal regions of interest. In the nasopharynx, the mean airway volume (capped 2.72 mL, uncapped 2.09 mL, p = 0.0313), the airway volume standard deviation (capped 0.42 mL, uncapped 0.20 mL, p = 0.0156), and the airway volume range (capped 2.10 mL, uncapped 1.09 mL, p = 0.0156) were significantly larger in the capped group of patients. In the hypopharynx, the airway volume standard deviation (capped 1.54 mL, uncapped 0.67 mL, p = 0.0156), and the airway volume range (capped 6.44 mL, uncapped 2.93 mL, p = 0.0156) were significantly larger in the capped tubes. The coefficient of variance (capped 0.37, uncapped 0.26, p = 0.0469) and the normalized range (capped 1.52, uncapped 1.09, p = 0.0313) were significantly larger in the capped tubes. There is a statistically significant change in airway dynamics in children with tracheotomy tubes when breathing via the airway as compared to breathing via the tracheotomy tube.

  15. Upper Airway Volume Segmentation Analysis Using Cine MRI Findings in Children with Tracheostomy Tubes

    International Nuclear Information System (INIS)

    Fricke, Bradley L.; Abbott, M. Bret; Donnelly, Lane F.; Dardzinski, Bernard J.; Poe, Stacy A.; Kalra, Maninder; Amin, Raouf S.; Cotton, Robin T.

    2007-01-01

    The purpose of this study is to evaluate the airway dynamics of the upper airway as depicted on cine MRI in children with tracheotomy tubes during two states of airflow through the upper airway. Sagittal fast gradient echo cine MR images of the supra-glottic airway were obtained with a 1.5T MRI scanner on seven children with tracheotomy tubes. Two sets of images were obtained with either the tubes capped or uncapped. The findings of the cine MRI were retrospectively reviewed. Volume segmentation of the cine images to compare the airway volume change over time (mean volume, standard deviation, normalized range, and coefficient of variance) was performed for the capped and uncapped tubes in both the nasopharynx and hypopharynx (Signed Rank Test). Graphical representation of the airway volume over time demonstrates a qualitative increased fluctuation in patients with the tracheotomy tube capped as compared to uncapped in both the nasopharyngeal and hypopharyngeal regions of interest. In the nasopharynx, the mean airway volume (capped 2.72 mL, uncapped 2.09 mL, p = 0.0313), the airway volume standard deviation (capped 0.42 mL, uncapped 0.20 mL, p = 0.0156), and the airway volume range (capped 2.10 mL, uncapped 1.09 mL, p = 0.0156) were significantly larger in the capped group of patients. In the hypopharynx, the airway volume standard deviation (capped 1.54 mL, uncapped 0.67 mL, p = 0.0156), and the airway volume range (capped 6.44 mL, uncapped 2.93 mL, p = 0.0156) were significantly larger in the capped tubes. The coefficient of variance (capped 0.37, uncapped 0.26, p = 0.0469) and the normalized range (capped 1.52, uncapped 1.09, p = 0.0313) were significantly larger in the capped tubes. There is a statistically significant change in airway dynamics in children with tracheotomy tubes when breathing via the airway as compared to breathing via the tracheotomy tube

  16. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Rabia [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Usman, Muhammad, E-mail: uk_phy@yahoo.com [Department of Physics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Physics, School of Science and Engineering, Lahore University of Management Sciences, Lahore 54729 (Pakistan); Tabassum, Saira; Zia, Muhammad [Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2016-11-15

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  17. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Javed, Rabia; Usman, Muhammad; Tabassum, Saira; Zia, Muhammad

    2016-01-01

    Highlights: • ZnO nanoparticles have been effectively capped with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) shown by the data of XRD, FTIR and UV–visible spectroscopy. • Reduction in size occurred from 34 nm to 26 nm due to capping agent and band gap energy increases with the decrease in the particle size. • Antibacterial activity against Gram-positive bacteria is greater than the Gram-negative bacteria. • All biological assays reveal highest activities in capped ZnO nanoparticles as compared to the uncapped ZnO nanoparticles. • Highest antibacterial activity has been exhibited by ZnO-PVP while highest antioxidant and antidiabetic activities have been conferred by ZnO- PEG. - Abstract: Different biological activities of capped and uncapped ZnO nanoparticles were investigated, and the effects of potential capping agents on these biological activities were studied. ZnO nanoparticles were synthesized and capped by polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) using a simple chemical method of co-precipitation. Characterization by X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and UV–vis spectroscopy confirmed the crystallinity, size, functional group, and band gap of synthesized nanoparticles. Reduction in size occurred from 34 nm to 26 nm due to surfactant. Results of all biological activities indicated significantly higher values in capped as compared to uncapped nanoparticles. Antibacterial activity against Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC15224), and Acetobacter was obtained. This activity was more prominent against Gram-positive bacteria, and ZnO-PVP nanoparticles elucidated highest antibacterial activity (zone of inhibition 17 mm) against Gram-positive, Bacillus subtilis species. Antioxidant activities including total flavonoid content, total phenolic content, total antioxidant capacity, total reducing power and %age inhibition of DPPH, and

  18. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  19. Very low resistance alloyed Ni-based ohmic contacts to InP-capped and uncapped n{sup +}-In{sub 0.53} Ga{sub 0.47}As

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Michael; Yu, Shih-Ying; Choi, Won Hyuck; Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lee, Rinus T. P. [SEMATECH, 257 Fuller Road, Suite 2200, Albany, New York 12203 (United States)

    2014-10-28

    Successful application of the silicide-like Ni{sub x}InGaAs phase for self-aligned source/drain contacts requires the formation of low-resistance ohmic contacts between the phase and underlying InGaAs. We report Ni-based contacts to InP-capped and uncapped n{sup +}- In{sub 0.53}Ga{sub 0.47}As (N{sub D} = 3 × 10{sup 19 }cm{sup −3}) with a specific contact resistance (ρ{sub c}) of 4.0 × 10{sup −8 }± 7 × 10{sup −9} Ω·cm{sup 2} and 4.6 × 10{sup −8 }± 9 × 10{sup −9} Ω·cm{sup 2}, respectively, after annealing at 350 °C for 60 s. With an ammonium sulfide pre-metallization surface treatment, ρ{sub c} is further reduced to 2.1 × 10{sup −8 }± 2 × 10{sup −9} Ω·cm{sup 2} and 1.8 × 10{sup −8 }± 1 × 10{sup −9} Ω·cm{sup 2} on epilayers with and without 10 nm InP caps, respectively. Transmission electron microscopy reveals that the ammonium sulfide surface treatment results in more complete elimination of the semiconductor's native oxide at the contact interface, which is responsible for a reduced contact resistance both before and after annealing.

  20. Yeast Interacting Proteins Database: YOR117W, YJL184W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available c stress response, telomere uncapping and elongation, transcription; component of the EKC/KEOPS protein comp...n proposed to be involved in the modification of N-linked oligosaccharides, osmotic stress response, telomere uncap

  1. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    Science.gov (United States)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  2. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  3. Size-dependent and intra-band photoluminescence of NiS2 nano-alloys synthesized by microwave assisted hydrothermal technique

    International Nuclear Information System (INIS)

    Linganiso, Ella Cebisa; Mhlanga, Sabelo Dalton; Coville, Neil John; Mwakikunga, Bonex Wakufwa

    2013-01-01

    Graphical abstract: Unexpected ultra-violet (UV) emission as well as near infra-red (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions due to the smaller crystallite size of the capped NiS 2 nanostructures was also observed. Band energy and local density of states calculation for NiS 2 were used to support the experimentally observed luminescence results. The luminescence features at wavelengths of 400 nm (3.10 eV), 428 nm (2.90 eV), 447 nm (2.77 eV) and 464 nm (2.67) can be attributed to some of those electrons de-exciting from S (3p) levels down to the Ni (3d) (blue to UV emission) whereas those features at wavelengths of 710 nm (1.75 eV), 751 nm (1.65 eV), 754 nm (1.64 eV) [NiS 2 /HDA-capped NiS 2 ] and 784 nm (1.58 eV) respectively seem to result from de-excitations between either Ni(3d) or S (3s, 3p) levels and Ni–S hybridization levels (red to near IR emission). Highlights: ► Rapid solid state alloying of Ni and S from their liquid state precursor by microwaves. ► New photoluminescence data of NiS 2 system. ► Unexpected luminescence in the UV–Visible and near IR ranges for such a metal matrix alloy. ► Explanation of NiS 2 photoluminescence from ab initio calculations by electronic energy band structure and density of states. -- Abstract: Synthesis of nickel disulfide (NiS 2 ) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS 2 formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained for the uncapped nanostructures and 9 nm was obtained for the capped nanostructures estimated using the Scherrer equation. Unexpected ultra-violet (UV) emission as well as near infrared (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions

  4. Water desalination using capacitive deionization with microporous carbon electrodes.

    Science.gov (United States)

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination. © 2012 American Chemical Society

  5. Interlayer exchange coupling, dipolar coupling and magnetoresistance in Fe/MgO/Fe trilayers with a subnanometer MgO barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kozioł-Rachwał, A. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Skowroński, W.; Frankowski, M. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Chęciński, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ziętek, S.; Rzeszut, P. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ślęzak, M.; Matlak, K.; Ślęzak, T. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Stobiecki, T. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Korecki, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków (Poland)

    2017-02-15

    Fe/MgO/Fe trilayers with a subnanometer MgO tunnel barrier were grown by molecular beam epitaxy. Longitudinal magnetooptic Kerr effect measurements confirmed the existence of the antiferromagnetic interlayer exchange coupling (IEC) between the Fe layers for 2 Å

  6. Scanning tunneling spectroscopy on vortex cores in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B.W.; Maggio-Aprile, I.; Fischer, Oe. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Renner, C. [NEC Research Inst., Princeton, NJ (United States)

    2002-07-01

    Scanning tunneling spectroscopy (STS) with its unique capacity for tunneling spectroscopy with sub-nanometer spatial resolution, has opened new ways to look at the flux lines and their distribution in superconductors. In contrast to all other imaging techniques, which are sensitive to the local magnetic field, STM relies on local changes in the density of states near the Fermi level to generate a real space image of the vortex distribution. It is thus sensitive to the vortex cores, which in high temperature superconductors have a size approaching the interatomic distances. The small size of the vortex cores and the anisotropic character of the high temperature superconductors allow pinning to play a large role in determining the vortex core positions. Vortex hopping between different pinning sites, again down to a sub-nanometer scale, has been studied by STM imaging as a function of time. These studies give microscopic indications for quantum tunneling of vortices. Moreover, STM provides new insights into the detailed electronic vortex core structure, revealing localized quasiparticles. (orig.)

  7. Size-dependent and intra-band photoluminescence of NiS{sub 2} nano-alloys synthesized by microwave assisted hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Linganiso, Ella Cebisa [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); Mhlanga, Sabelo Dalton; Coville, Neil John [Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); DST/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); Mwakikunga, Bonex Wakufwa, E-mail: bmwakikunga@csir.co.za [DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Department of Physics and Biochemical Sciences, University of Malawi, The Polytechnic, Private Bag 303, Chichiri, Blantyre 3 (Malawi)

    2013-03-05

    Graphical abstract: Unexpected ultra-violet (UV) emission as well as near infra-red (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions due to the smaller crystallite size of the capped NiS{sub 2} nanostructures was also observed. Band energy and local density of states calculation for NiS{sub 2} were used to support the experimentally observed luminescence results. The luminescence features at wavelengths of 400 nm (3.10 eV), 428 nm (2.90 eV), 447 nm (2.77 eV) and 464 nm (2.67) can be attributed to some of those electrons de-exciting from S (3p) levels down to the Ni (3d) (blue to UV emission) whereas those features at wavelengths of 710 nm (1.75 eV), 751 nm (1.65 eV), 754 nm (1.64 eV) [NiS{sub 2}/HDA-capped NiS{sub 2}] and 784 nm (1.58 eV) respectively seem to result from de-excitations between either Ni(3d) or S (3s, 3p) levels and Ni–S hybridization levels (red to near IR emission). Highlights: ► Rapid solid state alloying of Ni and S from their liquid state precursor by microwaves. ► New photoluminescence data of NiS{sub 2} system. ► Unexpected luminescence in the UV–Visible and near IR ranges for such a metal matrix alloy. ► Explanation of NiS{sub 2} photoluminescence from ab initio calculations by electronic energy band structure and density of states. -- Abstract: Synthesis of nickel disulfide (NiS{sub 2}) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS{sub 2} formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained for the uncapped nanostructures and 9 nm was obtained for the capped nanostructures estimated using the Scherrer equation. Unexpected ultra-violet (UV) emission as well as near infrared (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material

  8. Molecular-level chemistry of model single-crystal oxide surfaces with model halogenated compounds

    Science.gov (United States)

    Adib, Kaveh

    Synchrotron-based X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD) and low energy electron diffraction (LEED) have been used to investigate, at a molecular level, the chemistry of different terminations of single crystal iron-oxide surfaces with probe molecules (CCl4 and D2O). Comparisons of the reactivity of these surfaces towards CCl4, indicate that the presence of an uncapped surface Fe cation (strong Lewis acid site) and an adjacent oxygen site capped by that cation can effect the C-Cl bond cleavage in CCl4, resulting in dissociatively adsorbed Cl-adatoms and carbon-containing fragments. If in addition to these sites, an uncapped surface oxygen (Lewis base) site is also available, the carbon-containing moiety can then move that site, coordinate itself with that uncapped oxygen, and stabilize itself. At a later step, the carbon-containing fragment may form a strong covalent bond with the uncapped oxygen and may even abstract that surface oxygen. On the other hand, if an uncapped oxygen is not available to stabilize the carbon-containing fragment, the surface coordination will not occur and upon the subsequent thermal annealing of the surface the Cl-adatoms and the carbon-containing fragments will recombine and desorb as CCl4. Finally, the presence of surface deuteroxyls blocking the strong Lewis acid and base sites of the reactive surface, passivates this surface. Such a deuteroxylated surface will be unreactive towards CCl 4. Such a molecular level understanding of the surface chemistry of metal-oxides will have applications in the areas of selective catalysis, including environmental catalysis, and chemical sensor technology.

  9. 'Green' synthesis of starch capped CdSe nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Li Jinhua; Ren Cuiling; Liu Xiaoyan; Hu Zhide; Xue Desheng

    2007-01-01

    The nearly monodisperse starch capped CdSe nanoparticles were successfully synthesized by a simple and 'green' route at room temperature. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption and photoluminescence (PL) spectra. The XRD analysis showed that the starch capped CdSe nanoparticles were of the cubic structure, the average particle size was calculated to be about 3 nm according to the Debye-Scherrer equation. TEM micrographs exhibited that the starch capped CdSe nanoparticles were well dispersed than the uncapped CdSe nanoparticles, the mean particles size of the capped CdSe was about 3 nm in the TEM image, which was in good agreement with the XRD

  10. In-Plane Multimagnetron Approach

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2017-04-01

    Nanoparticles (NPs) and sub-nanometer clusters containing controlled amounts of different atoms are of interest for a variety of potential applications including catalysis,1, 2 optics,3, 4 magnetics,5-7 sensors,8, 9 and biotheraputics.10, 11 Alloy NPs may possess enhanced physical and chemical properties compared to single metal species due to the additional interplay between their different elemental components. By reducing the quantity of expensive precious metals in alloy NPs by substituting cheaper base metals, it may also be possible to achieve equivalent or even superior performance to pure noble metal NPs for applications such as heterogeneous catalysis at substantially reduced material costs.12 In addition, alloying of elements that are immiscible in bulk form is possible in NPs because the enthalpy of mixing decreases and becomes negative at small particle sizes.13, 14 As a result, a substantially broader array of alloy species may be generated in the form of NPs and sub-nanometer clusters.

  11. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers

    OpenAIRE

    Thomas , Jean-Louis; Marchiano , Régis; Baresch , Diego

    2017-01-01

    International audience; Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and positioned micron size particles, biological samples or even atoms with subnanometer accuracy in three dimens...

  12. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  13. The doping effect of Italian feed-in tariffs on the PV market

    International Nuclear Information System (INIS)

    Antonelli, Marco; Desideri, Umberto

    2014-01-01

    In less than six years, Italy has become one of the leading markets for PV power plants and one of the countries in the world with the largest number of installations and installed peak power. Such a quick and large growth is due to a series of feed-in tariff schemes that have been uncapped until 2012. As a matter of fact, any size or any number of PV power plants could be installed during a period of three years. Since the feed-in tariffs are not paid by national taxes but are charged on the electricity bills, Italian energy users are now due to pay each year a surcharge of 9 billion euros on their energy bills. This paper aims at discussing this development by highlighting the benefits but also some significant drawbacks that the application of uncontrolled feed-in tariffs has produced. - Highlights: • Italy has had a booming PV development due to uncapped FIT schemes for 4 years. • The RES development has disrupted the utilization of all programmable power plants. • The financial burden will exceed 7 billion euros for the next 20 years. • The market prices were driven by the incentives and not viceversa. • The installation was not based on available solar radiation

  14. Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000.

    Science.gov (United States)

    Platero-Prats, Ana E; Li, Zhanyong; Gallington, Leighanne C; Peters, Aaron W; Hupp, Joseph T; Farha, Omar K; Chapman, Karena W

    2017-09-01

    We explore the dynamic structure and reactivity of Cu species supported on NU-1000. By combining pair distribution function (PDF) analysis and difference envelope density (DED) analysis of in situ synchrotron-based X-ray scattering data, we simultaneously probe the local structure of supported Cu-species, their distribution within NU-1000 and distortions of the NU-1000 lattice under conditions relevant to catalysis and catalyst activation. These analyses show that atomic layer deposition (ALD) of Cu in NU-1000 (Cu-AIM) leads to the formation of Cu-oxo clusters within the small pores that connect the triangular and hexagonal channels. Exposure of Cu-AIM to a reducing atmosphere at 200 °C produces metallic Cu 0 of two distinct particle sizes: ∼4 nm nanoparticles and small sub-nanometer clusters. The size of these nanoparticles appears to be constrained by NU-1000 pore dimensions, with evidence of the sub-nanometer clusters being bound within the triangular channels flanked by pyrene rings. This supported Cu 0 -NU-1000 system is catalytically active for gas-phase ethylene hydrogenation. Exposure of the catalyst to oxidative atmosphere re-oxidises the Cu species to a Cu 2 O cuprite phase. The dynamic restructuring of the system in different chemical environments underscores the importance of probing these systems in situ.

  15. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Science.gov (United States)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  16. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles

    International Nuclear Information System (INIS)

    Wang, Shanshan; Liu, Zhonghui; Bartic, Carmen; Xu, Hong; Ye, Jian

    2016-01-01

    Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.

  17. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Liu, Zhonghui [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China); Bartic, Carmen [KU Leuven, Department of Physics (Belgium); Xu, Hong, E-mail: xuhong@sjtu.edu.cn; Ye, Jian, E-mail: yejian78@sjtu.edu.cn [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China)

    2016-08-15

    Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.

  18. Transport of nitrate from a large cement-based wasteform

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1986-10-01

    A two-dimensional finite element model has been developed to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith. A steady-state velocity field is also calculated, based on saturated ground water flow and Darcy's law. Model predictions are compared with data from two lysimeter field experiments begun in 1984. The model results agree very well with data from the uncapped and clay-capped monoliths. A peak concentration of 140 ppM is predicted for the uncapped case within four years; the clay-capped case shows a rather flat peak of 70 ppM occurring within approximately 20 years. The clay cap effectively reduces the groundwater velocity and dispersion coefficient adjacent to the exposed monolith surface. The cap also significantly reduces the flux of nitrate out the top surface of the monolith, in contrast to the uncapped monolith. Predictions for a landfill monolith design show a peak concentration of approximately 280 ppM occurring within 25 years. Results indicate that the 44 ppM drinking water guideline would be exceeded for over 1000 years. Alternate designs and various restrictive liners are being considered. 9 refs., 8 figs

  19. Positron annihilation studies of mesoporous silica films using a slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi; Ito, Kenji; Kabayashi, Yoshinori

    2006-01-01

    Positron annihilation lifetime spectra were measured for mesoporous silica films, which were synthesized using triblock copolymer (EO 106 PO 70 EO 106 ) as a structure-directing agent. Different positron lifetime spectra for the deposited and calcined films indicated the formation of meso-structure after calcination, which was confirmed by Fourier transform infrared (FTIR) spectra and field emission-scanning electron microscopy (FE-SEM) observation. Open porosity or pore interconnectivity of a silica film might be evaluated by a two-dimensional positron annihilation lifetime spectrum of an uncapped film. Pore sizes and their distributions in the silica films were found to be affected by thermal treatments

  20. Electronic structures of GeSi nanoislands grown on pit-patterned Si(001 substrate

    Directory of Open Access Journals (Sweden)

    Han Ye

    2014-11-01

    Full Text Available Patterning pit on Si(001 substrate prior to Ge deposition is an important approach to achieve GeSi nanoislands with high ordering and size uniformity. In present work, the electronic structures of realistic uncapped pyramid, dome, barn and cupola nanoislands grown in {105} pits are systematically investigated by solving Schrödinger equation for heavy-hole, which resorts to inhomogeneous strain distribution and nonlinear composition-dependent band parameters. Uniform, partitioned and equilibrium composition profile (CP in nanoisland and inverted pyramid structure are simulated separately. We demonstrate the huge impact of composition profile on localization of heavy-hole: wave function of ground state is confined near pit facets for uniform CP, at bottom of nanoisland for partitioned CP and at top of nanoisland for equilibrium CP. Moreover, such localization is gradually compromised by the size effect as pit filling ratio or pit size decreases. The results pave the fundamental guideline of designing nanoislands on pit-patterned substrates for desired applications.

  1. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    Science.gov (United States)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  2. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  3. A study of copper precipitation in the thermally aged FeCu alloy using SANS

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, J. H.; Kwon, S. C.; Kim, W. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, M. N.; Koo, Y. M. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2005-07-01

    The continued operation or lifetime extension of a number of nuclear power plant around the world requires an understanding of the damage imparted to the reactor pressure vessel (RPV) steel by radiation. Irradiation embrittlement of nuclear reactor pressure vessel steels results from a high number of nanometer sized Cu rich precipitates (CRPs) and sub-nanometer defect-solute clusters. The copper precipitation leads to a distortion of the crystal lattice surrounding the copper precipitates and yields an internal micro-stress. In order to study the effect of copper precipitation on the steel embrittlement under neutron irradiation, the characteristics of nano size defects were investigated using small angle neutron scattering (SANS) in the thermal aged FeCu model alloys. The results on the precipitation composition, number density, size distribution and matrix composition obtained using a high resolution TEM and SANS are compared and contrasted.

  4. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Rhonda [Naval Research Laboratory, Washington, D.C.; Chisholm, Matthew F [ORNL; Heck, Phillipp [The Field Museum, Chicago, IL; Alexander, Conel [Carnegie Institution of Washington; Nittler, Larry [Carnegie Institution of Washington

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon ND mixture is also a plausible contributor to the 2175 extinction feature in the diffuse ISM.

  5. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap

    International Nuclear Information System (INIS)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-01-01

    Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene–SiO 2 –Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au–graphene–Cu hybrid configuration as an SERS substrate. (paper)

  6. Assessing hygienic behavior and attraction to Varroa mite (Acari ...

    African Journals Online (AJOL)

    user

    2011-02-07

    Feb 7, 2011 ... treatment and then the selected 5th instar larva were transferred to fundamental colonies with 10 to 12 ... Key words: Varroa mite, hygienic behavior (uncapping and .... into a container containing hot water and detergent.

  7. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K., E-mail: ksato@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Xu, Q.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Dai, Y. [Spallation Neutron Source Division, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Kikuchi, K. [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai-mura, Naka-gun, Ibaraki 319-1106 (Japan)

    2012-12-15

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<{approx}0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  8. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    International Nuclear Information System (INIS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-01-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<∼0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  9. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    Science.gov (United States)

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-08

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The effect of different thickness alumina capping layers on the final morphology of dewet thin Ni films

    Science.gov (United States)

    White, Benjamin C.; Behbahanian, Amir; Stoker, T. McKay; Fowlkes, Jason D.; Hartnett, Chris; Rack, Phillip D.; Roberts, Nicholas A.

    2018-03-01

    Nanoparticles on a substrate have numerous applications in nanotechnology, from enhancements to solar cell efficiency to improvements in carbon nanotube growth. Producing nanoparticles in a cost effective fashion with control over size and spacing is desired, but difficult to do. This work presents a scalable method for altering the radius and pitch distributions of nickel nanoparticles. The introduction of alumina capping layers to thin nickel films during a pulsed laser-induced dewetting process has yielded reductions in the mean and standard deviation of radii and pitch for dewet nanoparticles with no noticeable difference in final morphology with increased capping layer thickness. The differences in carbon nanotube mats grown, on the uncapped sample and one of the capped samples, is also presented here, with a more dense mat being present for the capped case.

  11. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    International Nuclear Information System (INIS)

    Stroud, Rhonda M.; Chisholm, Matthew F.; Heck, Philipp R.; Alexander, Conel M. O'D.; Nittler, Larry R.

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon-ND mixture is also a plausible contributor to the 2175 A extinction feature in the diffuse ISM.

  12. Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles

    International Nuclear Information System (INIS)

    Nottbohm, Christoph T.; Beyer, Andre; Sologubenko, Alla S.; Ennen, Inga; Huetten, Andreas; Roesner, Harald; Eck, Wolfgang; Mayer, Joachim; Goelzhaeuser, Armin

    2008-01-01

    The resolution in transmission electron microscopy (TEM) has reached values as low as 0.08 nm. However, these values are not accessible for very small objects in the size range of a few nanometers or lower, as they have to be placed on some support, which contributes to the overall electron-scattering signal, thereby blurring the contrast. Here, we report on the use of nanosheets made from cross-linked aromatic self-assembled monolayers as TEM sample supports. When transferred onto a copper grid, a single 1.6-nm-thick nanosheet can cover the grid and is free standing within the micron-sized openings. Despite its thinness, the sheet is stable under the impact of the electron beam. Micrographs taken from nanoclusters onto these nanosheets show highly increased contrast in comparison to the images taken from amorphous carbon supports. In scanning transmission electron microscopy with nanosheet support, a size analysis of sub-nanometer Au clusters was performed and single Au atoms were resolved

  13. Changes in infestation, cell cap condition, and reproductive status of Varroa destructor (Mesostigmata: Varrroidae) in brood exposed to honey bees with Varroa sensitive hygiene

    Science.gov (United States)

    Honey bees (Apis mellifera L.) bred for Varroa sensitive hygiene (VSH) selectively remove pupae infested with Varroa destructor Anderson & Trueman from capped brood that is inserted into the nest. After one week, remaining brood cells tend to have been uncapped and recapped, and remaining mites are...

  14. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  15. Simple model for the power-law blinking of single semiconductor nanocrystals

    NARCIS (Netherlands)

    Verberk, Rogier; Oijen, Antoine M. van; Orrit, Michel

    2002-01-01

    We assign the blinking of nanocrystals to electron tunneling towards a uniform spatial distribution of traps. This naturally explains the power-law distribution of off times, and the power-law correlation function we measured on uncapped CdS dots. Capped dots, on the other hand, present extended on

  16. Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates

    Science.gov (United States)

    Dorati, Rossella; DeTrizio, Antonella; Spalla, Melissa; Migliavacca, Roberta; Pagani, Laura; Pisani, Silvia; Chiesa, Enrica; Modena, Tiziana; Genta, Ida

    2018-01-01

    Nanotechnology is a promising approach both for restoring or enhancing activity of old and conventional antimicrobial agents and for treating intracellular infections by providing intracellular targeting and sustained release of drug inside infected cells. The present paper introduces a formulation study of gentamicin loaded biodegradable nanoparticles (Nps). Solid-oil-in water technique was studied for gentamicin sulfate nanoencapsulation using uncapped Polylactide-co-glycolide (PLGA-H) and Polylactide-co-glycolide-co-Polyethylenglycol (PLGA-PEG) blends. Screening design was applied to optimize: drug payload, Nps size and size distribution, stability and resuspendability after freeze-drying. PLGA-PEG concentration resulted most significant factor influencing particles size and drug content (DC): 8 w/w% DC and 200 nm Nps were obtained. Stirring rate resulted most influencing factor for size distribution (PDI): 700 rpm permitted to obtain homogeneous Nps dispersion (PDI = 1). Further experimental parameters investigated, by 23 screening design, were: polymer blend composition (PLGA-PEG and PLGA-H), Polyvinylalcohol (PVA) and methanol concentrations into aqueous phase. Drug content was increased to 10.5 w/w%. Nanoparticle lyophilization was studied adding cryoprotectants, polyvinypirrolidone K17 and K32, and sodiumcarboxymetylcellulose. Freeze-drying protocol was optimized by a mixture design. A freeze-dried Nps powder free resuspendable with stable Nps size and payload, was developed. The powder was tested on clinic bacterial isolates demonstrating that after encapsulation, gentamicin sulfate kept its activity. PMID:29329209

  17. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    Directory of Open Access Journals (Sweden)

    Fan Qiuling

    2012-05-01

    Full Text Available Abstract Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV-like cap-independent translation elements (BTEs. The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  18. Gd doped Au nanoclusters: Molecular magnets with novel properties

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, magnetic, and optical properties of subnanometer Au N and AuN-1Gd1 gas phase clusters (N = 2 to 8) are systematically investigated in the framework of (time-dependent) density functional theory, using the B3LYP hybrid exchange correlation functional. The size dependent evolution of the gap between the highest occupied and lowest unoccupied molecular orbitals, the magnetism, and the absorption spectra are studied. The simultaneous appearance of large magnetic moments, significant band gaps, and plasmon resonances in the visible spectral region leads to novel multi-functional nanomaterials for applications in drug delivery, magnetic resonance imaging, and photo-responsive agents. © 2013 Elsevier B.V. All rights reserved.

  19. Towards 100% renewable energy systems: Uncapping power system flexibility

    International Nuclear Information System (INIS)

    Papaefthymiou, G.; Dragoon, Ken

    2016-01-01

    Relying almost entirely on energy from variable renewable resources such as wind and solar energy will require a transformation in the way power systems are planned and operated. This paper outlines the necessary steps in creating power systems with the flexibility needed to maintain stability and reliability while relying primarily on variable energy resources. These steps are provided in the form of a comprehensive overview of policies, technical changes, and institutional systems, organized in three development phases: an initial phase (penetration up to about 10%) characterized by relatively mild changes to conventional power system operations and structures; a dynamic middle phase (up to about 50% penetration) characterized by phasing out conventional generation and a concerted effort to wring flexibility from existing infrastructure; and the high penetration phase that inevitably addresses how power systems operate over longer periods of weeks or months when variable generation will be in either short supply, or in over-abundance. Although this transition is likely a decades-long and incremental process and depends on the specifics of each system, the needed policies, research, demonstration projects and institutional changes need to start now precisely because of the complexity of the transformation. The list of policy actions presented in this paper can serve as a guideline to policy makers on effectuating the transition and on tracking the preparedness of systems. - Highlights: •100% VRES systems: combined analysis of all related technical and policy challenges. •Transition elements: classification of the complete range of challenges in 9 elements. •Development regimes: policy actions in 3 VRES penetration regimes (low-medium-high). •Policies: comprehensive guideline and detailed presentation of policies per regime. •Roadmap: lists of actions per regime act as transition roadmap to 100% VRES systems.

  20. Growth of two-dimensional arrays of uncapped gold nanoparticles ...

    Indian Academy of Sciences (India)

    These nanoparticles have been prepared without using any kind of capping agent. Analysis by TEM showed discrete Au nanoparticles of 4 nm average diameter. AFM analysis also showed similar result. The TEM studies showed that these nanoparticles formed self-assembled coherent patterns with dimensions exceeding ...

  1. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  2. "Should I Stay or Should I Go?": Dilemmas and Decisions among UK Undergraduates

    Science.gov (United States)

    Bradley, Harriet

    2017-01-01

    There is increasing concern about high rates of dropout from universities, especially among students from disadvantaged backgrounds. In the UK this is related to recent changes in higher education policy, especially the imposition of a higher fees regime and the uncapping of student numbers. While recent research has explored the demography of…

  3. Durability of Capped Wood Plastic Composites

    Science.gov (United States)

    Mark Mankowski; Mark J. Manning; Damien P. Slowik

    2015-01-01

    Manufacturers of wood plastic composites (WPCs) have recently introduced capped decking to their product lines. These new materials have begun to take market share from the previous generation of uncapped products that possessed a homogenous composition throughout the thickness of their cross-section. These capped offerings have been introduced with claims that the...

  4. Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine

    International Nuclear Information System (INIS)

    Darwish, Maher; Mohammadi, Ali; Assi, Navid

    2016-01-01

    Highlights: • PVP-stabilized CdS nanoparticles have been fabricated by a polyol-microwave method. • CdS nanoparticles were characterized and the size was approximately 48 ± 10 nm. • Catalytic activity of our nanoparticles was examined for tartrazine degradation. • Remarkable results were obtained under both UV and visible light irradiations. - Abstract: Polyvinylpyrrolidone capped cadmium sulfide nanoparticles have been successfully synthesized by a facile polyol method with ethylene glycol. Microwave irradiation and calcination were used to control the size and shape of nanoparticles. Characterization with scanning electron microscopy revealed a restricted nanoparticles growth comparing with the uncapped product, hexagonal phase and 48 nm average particle size were confirmed by X-ray diffraction, and finally mechanism of passivation was suggested depending on Fourier transform infrared spectra. The efficiency of nanoparticles was evaluated by the photocatalytic degradation of tartrazine in aqueous solution under UVC and visible light irradiation. Complete degradation of the dye was observed after 90 min of UVC irradiation under optimized conditions. Kinetic of reaction fitted well to the pseudo-first-order kinetic and Langmuir–Hinshelwood models. Furthermore, 85% degradation of the dye in 9 h under visible light suggests that cadmium sulfide is a promising tool to work under visible light for environmental remediation.

  5. Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Maher, E-mail: m-darwish@razi.tums.ac.ir [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Ali, E-mail: alimohammadi@tums.ac.ir [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Assi, Navid, E-mail: navid_a30@yahoo.com [Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • PVP-stabilized CdS nanoparticles have been fabricated by a polyol-microwave method. • CdS nanoparticles were characterized and the size was approximately 48 ± 10 nm. • Catalytic activity of our nanoparticles was examined for tartrazine degradation. • Remarkable results were obtained under both UV and visible light irradiations. - Abstract: Polyvinylpyrrolidone capped cadmium sulfide nanoparticles have been successfully synthesized by a facile polyol method with ethylene glycol. Microwave irradiation and calcination were used to control the size and shape of nanoparticles. Characterization with scanning electron microscopy revealed a restricted nanoparticles growth comparing with the uncapped product, hexagonal phase and 48 nm average particle size were confirmed by X-ray diffraction, and finally mechanism of passivation was suggested depending on Fourier transform infrared spectra. The efficiency of nanoparticles was evaluated by the photocatalytic degradation of tartrazine in aqueous solution under UVC and visible light irradiation. Complete degradation of the dye was observed after 90 min of UVC irradiation under optimized conditions. Kinetic of reaction fitted well to the pseudo-first-order kinetic and Langmuir–Hinshelwood models. Furthermore, 85% degradation of the dye in 9 h under visible light suggests that cadmium sulfide is a promising tool to work under visible light for environmental remediation.

  6. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.

    Science.gov (United States)

    Chiesa, E; Dorati, R; Modena, T; Conti, B; Genta, I

    2018-01-30

    Design of Experiment-assisted evaluation of critical process (total flow rate, TFR, flow rate ratio, FRR) and formulation (polymer concentration and structure, drug:polymer ratio) variables in a novel microfluidics-based device, a staggered herringbone micromixer (SHM), for poly(lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (NPs) manufacturing was performed in order to systematically evaluate and mathematically describe their effects on NPs sizes and drug encapsulation; a small hydrophilic moiety, N-acetylcysteine, was chosen as challenging model drug. SHM-assisted nanoprecipitation method consistently yielded NPs with tailor made sizes (in the range of 100-900 nm) and polydispersity index range from 0.061 to 0.286. Significant effects on NPs sizes were highlighted for TFR and FRR: increasing TFR (from 5 to 15 mL/min) and decreasing FRR (from 1:1 to 1:5 v/v, acetonitrile: buffer) NPs with mean diameter <200 nm were obtained. SHM technique allowed for flexible, application-specific tuning of PLGA NPs size using organic solvents with relatively low toxicity (acetone, acetonitrile), varying aqueous phase composition (Tris buffer vs PVA aqueous solution) and PLGA characteristics (Mw ranging from 25-90 kDa, capped or un-capped PLGA, different lactide:glycolide molar ratio). A very satisfactory N-Ac encapsulation efficiency (more than 67%) and a prolonged release (by 168 h) were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    International Nuclear Information System (INIS)

    Singh, S. C.; Gopal, R.; Kotnala, R. K.

    2015-01-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects

  8. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9.

    Directory of Open Access Journals (Sweden)

    Hien-Ping Ngo

    2010-08-01

    Full Text Available Maintenance of telomere capping is absolutely essential to the survival of eukaryotic cells. Telomere capping proteins, such as Cdc13 and POT1, are essential for the viability of budding yeast and mammalian cells, respectively. Here we identify, for the first time, three genetic modifications that allow budding yeast cells to survive without telomere capping by Cdc13. We found that simultaneous inactivation of Sgs1, Exo1, and Rad9, three DNA damage response (DDR proteins, is sufficient to allow cell division in the absence of Cdc13. Quantitative amplification of ssDNA (QAOS was used to show that the RecQ helicase Sgs1 plays an important role in the resection of uncapped telomeres, especially in the absence of checkpoint protein Rad9. Strikingly, simultaneous deletion of SGS1 and the nuclease EXO1, further reduces resection at uncapped telomeres and together with deletion of RAD9 permits cell survival without CDC13. Pulsed-field gel electrophoresis studies show that cdc13-1 rad9Delta sgs1Delta exo1Delta strains can maintain linear chromosomes despite the absence of telomere capping by Cdc13. However, with continued passage, the telomeres of such strains eventually become short and are maintained by recombination-based mechanisms. Remarkably, cdc13Delta rad9Delta sgs1Delta exo1Delta strains, lacking any Cdc13 gene product, are viable and can grow indefinitely. Our work has uncovered a critical role for RecQ helicases in limiting the division of cells with uncapped telomeres, and this may provide one explanation for increased tumorigenesis in human diseases associated with mutations of RecQ helicases. Our results reveal the plasticity of the telomere cap and indicate that the essential role of telomere capping is to counteract specific aspects of the DDR.

  9. The local microenvironment surrounding dansyl molecules attached to controlled pore glass in pure and alcohol-modified supercritical carbon dioxide.

    Science.gov (United States)

    Page, Phillip M; McCarty, Taylor A; Munson, Chase A; Bright, Frank V

    2008-06-01

    We report on the local microenvironment surrounding a free dansyl probe, dansyl attached to controlled pore glass (D-CPG), and dansyl molecules attached to trimethylsilyl-capped CPG (capped D-CPG) in pure and alcohol-modified supercritical CO2. These systems were selected to provide insights into the local microenvironment surrounding a reactive agent immobilized at a silica surface in contact with pure and cosolvent-modified supercritical CO2. Local surface-bound dansyl molecule solvation on the CPG surface depends on the dansyl molecule surface loading, the surface chemistry (uncapped versus capped), the bulk fluid density, and the alcohol gas phase absolute acidity. At high dansyl loadings, the surface-bound dansyl molecules are largely "solvated" by other dansyl molecules and these molecules are not affected significantly by the fluid phase. When the dansyl surface loading decreases, dansyl molecules can be accessed/solvated/wetted by the fluid phase. However, at the lowest dansyl loadings studied, the dansyl molecules are in a fluid inaccessible/restrictive environment and do not sense the fluid phase to any significant degree. In uncapped D-CPG, one can poise the system such that the local concentration of an environmentally less responsible cosolvent (alcohol) in the immediate vicinity of surface-immobilized dansyl molecules can approach 100% even though the bulk solution contains orders of magnitude less of this less environmentally responsible cosolvent. In capped C-CPG, the surface excess is attenuated in comparison to that of uncapped D-CPG. The extent of this cosolvent surface excess is discussed in terms of the dansyl surface loading, the local density fluctuations, the cosolvent and surface silanol gas phase acidities, and the silica surface chemistry. These results also have implications for cleanings, extractions, heterogeneous reactions, separations, and nanomaterial fabrication using supercritical fluids.

  10. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer

    Science.gov (United States)

    Laurent M. Matuana; Shan Jin; Nicole M. Stark

    2011-01-01

    This study examined the effect coextruding a clear HDPE cap layer onto HDPE/wood-flour composites has on the discoloration of coextruded composites exposed to accelerated UV tests. Chroma meter, FTIRATR, XPS, SEM, and UV vis measurements accounted for the analysis of discoloration, functional groups, and degree of oxidation of both uncapped (control) and coextruded...

  11. Modelling the effect of size-asymmetric competition on size inequality

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Ruø; Weiner, Jacob

    2017-01-01

    Abstract The concept of size asymmetry in resource competition among plants, in which larger individuals obtain a disproportionate share of contested resources, appears to be very straightforward, but the effects of size asymmetry on growth and size variation among individuals have proved...... to be controversial. It has often been assumed that competition among individual plants in a population has to be size-asymmetric to result in higher size inequality than in the absence of competition, but here we question this inference. Using very simple, individual-based models, we investigate how size symmetry...... of competition affects the development in size inequality between two competing plants and show that increased size inequality due to competition is not always strong evidence for size-asymmetric competition. Even absolute symmetric competition, in which all plants receive the same amount of resources...

  12. Sizing for ethnicity in multi-cultural societies: development of size ...

    African Journals Online (AJOL)

    ... years, and fell in the size 6/10 to size 14/38 size range. The findings of the study suggest that young South African women of African descent with a triangular body shape may experience loose fit in the upper body of garments sized according to the size specifications currently used in the South African apparel industry.

  13. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  14. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  15. Positron Annihilation Spectroscopy as a Novel Interfacial Probe for Thin Polymeric Films and Nano-Composites

    Science.gov (United States)

    Awad, Somia; Chen, Hongmin; Maina, Grace; Lee, L. James; Gu, Xiaohong; Jean, Y. C.

    2010-03-01

    Positron annihilation spectroscopy (PAS) has been developed as a novel probe to characterize the sub-nanometer defect, free volume, profile from the surface, interfaces, and to the bulk in polymeric materials when a variable mono-energy slow positron beam is used. Free-volume hole sizes, fractions, and distributions are measurable as a function of depth at the high precision. PAS has been successfully used to study the interfacial properties of polymeric nanocomposites at different chemical bonding. In nano-scale thin polymeric films, such as in PS/SiO2, and PU/ZnO, significant variations of Tg as a function of depth and of wt% oxide are observed. Variations of Tg are dependent on strong or weak interactions between polymers and nano-scale oxides surfaces.

  16. Three-Dimensional Atomic Structure of Metastable Nanoclusters in Doped Semiconductors

    Science.gov (United States)

    Couillard, Martin; Radtke, Guillaume; Knights, Andrew P.; Botton, Gianluigi A.

    2011-10-01

    Aberration-corrected scanning transmission electron microscopy is used to determine the atomic structure of nanoclusters of cerium dopant atoms embedded in silicon. By channeling electrons along two crystallographic orientations, we identify a characteristic zinc-blende chemical ordering within CeSi clusters coherent with the silicon host matrix. Strain energy limits the size of these ordered arrangements to just above 1 nm. With the local order identified, we then determine the atomic configuration of an individual subnanometer cluster by quantifying the scattering intensity under weak channeling condition in terms of the number of atoms. Analysis based on single-atom visualization also evidences the presence of split-vacancy impurity complexes, which supports the hypothesis of a vacancy-assisted formation of these metastable CeSi nanophases.

  17. Relaxometry imaging of superparamagnetic magnetite nanoparticles at ambient conditions

    Science.gov (United States)

    Finkler, Amit; Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Wrachtrup, Jörg

    We present a novel technique to image superparamagnetic iron oxide nanoparticles via their fluctuating magnetic fields. The detection is based on the nitrogen-vacancy (NV) color center in diamond, which allows optically detected magnetic resonance (ODMR) measurements on its electron spin structure. In combination with an atomic-force-microscope, this atomic-sized color center maps ambient magnetic fields in a wide frequency range from DC up to several GHz, while retaining a high spatial resolution in the sub-nanometer range. We demonstrate imaging of single 10 nm sized magnetite nanoparticles using this spin noise detection technique. By fitting simulations (Ornstein-Uhlenbeck process) to the data, we are able to infer additional information on such a particle and its dynamics, like the attempt frequency and the anisotropy constant. This is of high interest to the proposed application of magnetite nanoparticles as an alternative MRI contrast agent or to the field of particle-aided tumor hyperthermia.

  18. On the Relationship between Pollen Size and Genome Size

    Directory of Open Access Journals (Sweden)

    Charles A. Knight

    2010-01-01

    Full Text Available Here we test whether genome size is a predictor of pollen size. If it were, inferences of ancient genome size would be possible using the abundant paleo-palynolgical record. We performed regression analyses across 464 species of pollen width and genome size. We found a significant positive trend. However, regression analysis using phylogentically independent contrasts did not support the correlated evolution of these traits. Instead, a large split between angiosperms and gymnosperms for both pollen width and genome size was revealed. Sister taxa were not more likely to show a positive contrast when compared to deeper nodes. However, significantly more congeneric species had a positive trend than expected by chance. These results may reflect the strong selection pressure for pollen to be small. Also, because pollen grains are not metabolically active when measured, their biology is different than other cells which have been shown to be strongly related to genome size, such as guard cells. Our findings contrast with previously published research. It was our hope that pollen size could be used as a proxy for inferring the genome size of ancient species. However, our results suggest pollen is not a good candidate for such endeavors.

  19. Advanced Holographic Phase Nulls Suitable for EUV Quality Optical Testing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A number of future space sciences missions require optical surfaces that are accurate to nanometer and sub-nanometer levels. These applications include large...

  20. Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2011-05-01

    Full Text Available Abstract Background The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (pppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (pppGpp - abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (pppGpp, and to a termination of cell division. The combination of single-cell timelapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.

  1. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    Science.gov (United States)

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  2. Mechanical design of ultraprecision weak-link stages for nanometer-scale x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D [APS Engineering Support Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Maser, J, E-mail: shu@aps.anl.go [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-09-01

    A nanopositioning diagnostic setup has been built to support the Argonne Center for Nanoscale Materials (CNM) nanoprobe instrument commissioning process at the APS. Its laser Doppler interferometer system provides subnanometer positioning diagnostic resolution with large dynamic range. A set of original APS designed ultraprecision PZT-driven weak-link stages with high-stiffness motor-driven stages has been tested with this diagnostic setup. In this paper we present a preliminary test result of the ultraprecision weak-link stage system developed for the CNM hard x-ray nanoprobe instrument at APS sector 26. A test result for a novel laminar weak-link mechanism with sub-centimeter travel range and sub-nanometer positioning resolution is also introduced in this paper as a future work.

  3. Size did not matter: An evolutionary account of the variation in penis size and size anxiety

    Directory of Open Access Journals (Sweden)

    Menelaos Apostolou

    2016-12-01

    Full Text Available The human penis exhibits considerable variation in size, while a substantial proportion of the adult male population experiences size anxiety. This paper employs an evolutionary framework in order to understand this variation, as well as the concern men exhibit about the adequacy of the size of their penis. It is argued that female choice has been one important sexual selection force, responsible for shaping the size of the penis. However, this force has been relatively weak, because women do not consider the size of their partners’ penis to be the most important determinant of their sexual satisfaction. Also, in ancestral human societies, sexual satisfaction was a secondary concern, while women had limited space to exercise mate choice. The mismatch between ancestral and modern conditions, with female choice being stronger in the present than in the past, causes anxiety in men about their ability to satisfy their partners, which is also manifested in their concerns about size.

  4. Squamate hatchling size and the evolutionary causes of negative offspring size allometry.

    Science.gov (United States)

    Meiri, S; Feldman, A; Kratochvíl, L

    2015-02-01

    Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary

  5. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    Science.gov (United States)

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  6. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    Directory of Open Access Journals (Sweden)

    Richard B King

    Full Text Available Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females and annual growth increments of individuals of unknown age (1,152 males, 730 females. We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further

  7. Variation in clutch size in relation to nest size in birds.

    Science.gov (United States)

    Møller, Anders P; Adriaensen, Frank; Artemyev, Alexandr; Bańbura, Jerzy; Barba, Emilio; Biard, Clotilde; Blondel, Jacques; Bouslama, Zihad; Bouvier, Jean-Charles; Camprodon, Jordi; Cecere, Francesco; Charmantier, Anne; Charter, Motti; Cichoń, Mariusz; Cusimano, Camillo; Czeszczewik, Dorota; Demeyrier, Virginie; Doligez, Blandine; Doutrelant, Claire; Dubiec, Anna; Eens, Marcel; Eeva, Tapio; Faivre, Bruno; Ferns, Peter N; Forsman, Jukka T; García-Del-Rey, Eduardo; Goldshtein, Aya; Goodenough, Anne E; Gosler, Andrew G; Góźdź, Iga; Grégoire, Arnaud; Gustafsson, Lars; Hartley, Ian R; Heeb, Philipp; Hinsley, Shelley A; Isenmann, Paul; Jacob, Staffan; Järvinen, Antero; Juškaitis, Rimvydas; Korpimäki, Erkki; Krams, Indrikis; Laaksonen, Toni; Leclercq, Bernard; Lehikoinen, Esa; Loukola, Olli; Lundberg, Arne; Mainwaring, Mark C; Mänd, Raivo; Massa, Bruno; Mazgajski, Tomasz D; Merino, Santiago; Mitrus, Cezary; Mönkkönen, Mikko; Morales-Fernaz, Judith; Morin, Xavier; Nager, Ruedi G; Nilsson, Jan-Åke; Nilsson, Sven G; Norte, Ana C; Orell, Markku; Perret, Philippe; Pimentel, Carla S; Pinxten, Rianne; Priedniece, Ilze; Quidoz, Marie-Claude; Remeš, Vladimir; Richner, Heinz; Robles, Hugo; Rytkönen, Seppo; Senar, Juan Carlos; Seppänen, Janne T; da Silva, Luís P; Slagsvold, Tore; Solonen, Tapio; Sorace, Alberto; Stenning, Martyn J; Török, János; Tryjanowski, Piotr; van Noordwijk, Arie J; von Numers, Mikael; Walankiewicz, Wiesław; Lambrechts, Marcel M

    2014-09-01

    Nests are structures built to support and protect eggs and/or offspring from predators, parasites, and adverse weather conditions. Nests are mainly constructed prior to egg laying, meaning that parent birds must make decisions about nest site choice and nest building behavior before the start of egg-laying. Parent birds should be selected to choose nest sites and to build optimally sized nests, yet our current understanding of clutch size-nest size relationships is limited to small-scale studies performed over short time periods. Here, we quantified the relationship between clutch size and nest size, using an exhaustive database of 116 slope estimates based on 17,472 nests of 21 species of hole and non-hole-nesting birds. There was a significant, positive relationship between clutch size and the base area of the nest box or the nest, and this relationship did not differ significantly between open nesting and hole-nesting species. The slope of the relationship showed significant intraspecific and interspecific heterogeneity among four species of secondary hole-nesting species, but also among all 116 slope estimates. The estimated relationship between clutch size and nest box base area in study sites with more than a single size of nest box was not significantly different from the relationship using studies with only a single size of nest box. The slope of the relationship between clutch size and nest base area in different species of birds was significantly negatively related to minimum base area, and less so to maximum base area in a given study. These findings are consistent with the hypothesis that bird species have a general reaction norm reflecting the relationship between nest size and clutch size. Further, they suggest that scientists may influence the clutch size decisions of hole-nesting birds through the provisioning of nest boxes of varying sizes.

  8. Quantum-corrected transient analysis of plasmonic nanostructures

    KAUST Repository

    Uysal, Ismail Enes; Ulku, Huseyin Arda; Sajjad, Muhammad; Singh, Nirpendra; Schwingenschlö gl, Udo; Bagci, Hakan

    2017-01-01

    A time domain surface integral equation (TD-SIE) solver is developed for quantum-corrected analysis of transient electromagnetic field interactions on plasmonic nanostructures with sub-nanometer gaps. “Quantum correction” introduces an auxiliary

  9. Analysis of transient electromagnetic interactions on nanodevices using a quantum corrected integral equation approach

    KAUST Repository

    Uysal, Ismail Enes; Ulku, Huseyin Arda; Bagci, Hakan

    2015-01-01

    Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device

  10. Displacement laser interferometry with sub-nanometer uncertainty

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.

    2004-01-01

    Development in industry is asking for improved resolution and higher accuracy in mechanical measurement. Together with miniaturization the demand for sub nanometer uncertainty on dimensional metrology is increasing rapidly. Displacement laser interferometers are used widely as precision displacement

  11. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    Science.gov (United States)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  12. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    Science.gov (United States)

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  13. Asymptotic size determines species abundance in the marine size spectrum

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2006-01-01

    The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory......, where population structure is derived from physiology and simple arguments regarding the predator-prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found...... to be proportional to the weight raised to the power -2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function...

  14. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    International Nuclear Information System (INIS)

    Barucca, G.; Ferragut, R.; Fiori, F.; Lussana, D.; Mengucci, P.; Moia, F.; Riontino, G.

    2011-01-01

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the β'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on β'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with β'' → β' transformation.

  15. Analysis of transient electromagnetic interactions on nanodevices using a quantum corrected integral equation approach

    KAUST Repository

    Uysal, Ismail Enes

    2015-10-26

    Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.

  16. Joint evolution of predator body size and prey-size preference.

    NARCIS (Netherlands)

    Troost, T.A.; Kooi, B.W.; Dieckmann, U.

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators' demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for

  17. Joint evolution of predator body size and prey-size preference

    NARCIS (Netherlands)

    Troost, Tineke; Kooi, Bob; Dieckmann, Ulf

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators’ demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account

  18. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the highresolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO{sub 2}-Si{sub 3}N{sub 4}O{sub x}-SiO{sub 2} on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials.

  19. Telomere dysfunction and cell survival: roles for distinctTIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-Ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Beausejour, Christian; Kaminker, Patrick; Campisi, Judith

    2006-11-07

    Telomeres are maintained by three DNA binding proteins, TRF1, TRF2 and POT1, and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. These and two other proteins form a soluble complex that may be the core telomere-maintenance complex. It is not clear whether subcomplexes exist or function in vivo. Here, we provide evidence for two TIN2 subcomplexes with distinct functions in human cells. TIN2 ablation by RNA interference caused telomere uncapping and p53-independent cell death in all cells tested. However, we isolated two TIN2 complexes from cell lysates, each selectively sensitive to a TIN2 mutant (TIN2-13, TIN2-15C). In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN215C more than TIN2-13 caused genomic instability and cell death. Thus, TIN2 subcomplexes likely have distinct functions in telomere maintenance, and may provide selective targets for eliminating cells with mutant p53.

  20. Rapid parallel evolution overcomes global honey bee parasite.

    Science.gov (United States)

    Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter

    2018-05-16

    In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.

  1. Quantum-corrected plasmonic field analysis using a time domain PMCHWT integral equation

    KAUST Repository

    Uysal, Ismail E.; Ulku, H. Arda; Bagci, Hakan

    2016-01-01

    When two structures are within sub-nanometer distance of each other, quantum tunneling, i.e., electrons "jumping" from one structure to another, becomes relevant. Classical electromagnetic solvers do not directly account for this additional path

  2. Relative efficiency and sample size for cluster randomized trials with variable cluster sizes.

    Science.gov (United States)

    You, Zhiying; Williams, O Dale; Aban, Inmaculada; Kabagambe, Edmond Kato; Tiwari, Hemant K; Cutter, Gary

    2011-02-01

    The statistical power of cluster randomized trials depends on two sample size components, the number of clusters per group and the numbers of individuals within clusters (cluster size). Variable cluster sizes are common and this variation alone may have significant impact on study power. Previous approaches have taken this into account by either adjusting total sample size using a designated design effect or adjusting the number of clusters according to an assessment of the relative efficiency of unequal versus equal cluster sizes. This article defines a relative efficiency of unequal versus equal cluster sizes using noncentrality parameters, investigates properties of this measure, and proposes an approach for adjusting the required sample size accordingly. We focus on comparing two groups with normally distributed outcomes using t-test, and use the noncentrality parameter to define the relative efficiency of unequal versus equal cluster sizes and show that statistical power depends only on this parameter for a given number of clusters. We calculate the sample size required for an unequal cluster sizes trial to have the same power as one with equal cluster sizes. Relative efficiency based on the noncentrality parameter is straightforward to calculate and easy to interpret. It connects the required mean cluster size directly to the required sample size with equal cluster sizes. Consequently, our approach first determines the sample size requirements with equal cluster sizes for a pre-specified study power and then calculates the required mean cluster size while keeping the number of clusters unchanged. Our approach allows adjustment in mean cluster size alone or simultaneous adjustment in mean cluster size and number of clusters, and is a flexible alternative to and a useful complement to existing methods. Comparison indicated that we have defined a relative efficiency that is greater than the relative efficiency in the literature under some conditions. Our measure

  3. Sustainable Sizing.

    Science.gov (United States)

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  4. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving.

    Science.gov (United States)

    Tal, Aner; Niemann, Stina; Wansink, Brian

    2017-02-06

    Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1) and its effects on food serving in the context of cereal (study 2). Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 65.84% larger (221 vs. 134 calories) than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 20% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 45% over the suggested serving size. Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  5. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving

    Directory of Open Access Journals (Sweden)

    Aner Tal

    2017-02-01

    Full Text Available Abstract Background Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1 and its effects on food serving in the context of cereal (study 2. Methods Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Results Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 64.7% larger (221 vs. 134 calories than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 17.8% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 42% over the suggested serving size. Conclusions Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  6. Cell size, genome size and the dominance of Angiosperms

    Science.gov (United States)

    Simonin, K. A.; Roddy, A. B.

    2016-12-01

    Angiosperms are capable of maintaining the highest rates of photosynthetic gas exchange of all land plants. High rates of photosynthesis depends mechanistically both on efficiently transporting water to the sites of evaporation in the leaf and on regulating the loss of that water to the atmosphere as CO2 diffuses into the leaf. Angiosperm leaves are unique in their ability to sustain high fluxes of liquid and vapor phase water transport due to high vein densities and numerous, small stomata. Despite the ubiquity of studies characterizing the anatomical and physiological adaptations that enable angiosperms to maintain high rates of photosynthesis, the underlying mechanism explaining why they have been able to develop such high leaf vein densities, and such small and abundant stomata, is still incomplete. Here we ask whether the scaling of genome size and cell size places a fundamental constraint on the photosynthetic metabolism of land plants, and whether genome downsizing among the angiosperms directly contributed to their greater potential and realized primary productivity relative to the other major groups of terrestrial plants. Using previously published data we show that a single relationship can predict guard cell size from genome size across the major groups of terrestrial land plants (e.g. angiosperms, conifers, cycads and ferns). Similarly, a strong positive correlation exists between genome size and both stomatal density and vein density that together ultimately constrains maximum potential (gs, max) and operational stomatal conductance (gs, op). Further the difference in the slopes describing the covariation between genome size and both gs, max and gs, op suggests that genome downsizing brings gs, op closer to gs, max. Taken together the data presented here suggests that the smaller genomes of angiosperms allow their final cell sizes to vary more widely and respond more directly to environmental conditions and in doing so bring operational photosynthetic

  7. The pack size effect: Influence on consumer perceptions of portion sizes

    NARCIS (Netherlands)

    Hieke, Sophie; Palascha, Aikaterini; Jola, Corinne; Wills, Josephine; Raats, Monique M.

    2016-01-01

    Larger portions as well as larger packs can lead to larger prospective consumption estimates, larger servings and increased consumption, described as 'portion-size effects' and 'pack size effects'. Although related, the effects of pack sizes on portion estimates have received less attention. While

  8. Short and medium range order in two-component silica glasses by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Inoue, K.; Kataoka, H.; Nagai, Y.; Hasegawa, M.; Kobayashi, Y.

    2014-01-01

    The dependence of chemical composition on the average sizes of subnanometer-scale intrinsic structural open spaces surrounded by glass random networks in two-component silica-based glasses was investigated systematically using positronium (Ps) confined in the open spaces. The average sizes of the open spaces for SiO 2 -B 2 O 3 and SiO 2 -GeO 2 glasses are only slightly dependent on the chemical compositions because the B 2 O 3 and GeO 2 are glass network formers that are incorporated into the glass network of the base SiO 2 . However, the open space sizes for all SiO 2 -R 2 O (R = Li, Na, K) glasses, where R 2 O is a glass network modifier that occupies the open spaces, decrease rapidly with an increase in the R 2 O concentration. Despite the large difference in the ionic radii of the alkali metal (R) atoms, the open space sizes decrease similarly for all the alkali metal atoms studied. This dependence of the chemical composition on the open space sizes in SiO 2 -R 2 O observed by Ps shows that the alkali metal atoms do not randomly occupy the structural open spaces, but filling of the open spaces by R 2 O proceeds selectively from the larger to the smaller open spaces as the R 2 O concentrations are increased.

  9. Hit size effectiveness in relation to the microdosimetric site size

    International Nuclear Information System (INIS)

    Varma, M.N.; Wuu, C.S.; Zaider, M.

    1994-01-01

    This paper examines the effect of site size (that is, the diameter of the microdosimetric volume) on the hit size effectiveness function (HSEF), q(y), for several endpoints relevant in radiation protection. A Bayesian and maximum entropy approach is used to solve the integral equations that determine, given microdosimetric spectra and measured initial slopes, the function q(y). All microdosimetric spectra have been calculated de novo. The somewhat surprising conclusion of this analysis is that site size plays only a minor role in selecting the hit size effectiveness function q(y). It thus appears that practical means (e.g. conventional proportional counters) are already at hand to actually implement the HSEF as a radiation protection tool. (Author)

  10. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection

    Science.gov (United States)

    Ohara, Tetsuo

    2012-01-01

    A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.

  11. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces.

    Science.gov (United States)

    Ciesielski, Artur; Palma, Carlos-Andres; Bonini, Massimo; Samorì, Paolo

    2010-08-24

    Materials with a pre-programmed order at the supramolecular level can be engineered with a sub-nanometer precision making use of reversible non- covalent interactions. The intrinsic ability of supramolecular materials to recognize and exchange their constituents makes them constitutionally dynamic materials. The tailoring of the materials properties relies on the full control over the self-assembly behavior of molecular modules exposing recognition sites and incorporating functional units. In this review we focus on three classes of weak-interactions to form complex 2D architectures starting from properly designed molecular modules: van der Waals, metallo-ligand and hydrogen bonding. Scanning tunneling microscopy studies will provide evidence with a sub-nanometer resolution, on the formation of responsive multicomponent architectures with controlled geometries and properties. Such endeavor enriches the scientist capability of generating more and more complex smart materials featuring controlled functions and unprecedented properties.

  12. Mid-size urbanism

    NARCIS (Netherlands)

    Zwart, de B.A.M.

    2013-01-01

    To speak of the project for the mid-size city is to speculate about the possibility of mid-size urbanity as a design category. An urbanism not necessarily defined by the scale of the intervention or the size of the city undergoing transformation, but by the framing of the issues at hand and the

  13. Helium ion lithography principles and performance

    NARCIS (Netherlands)

    Drift, E. van der; Maas, D.J.

    2012-01-01

    Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From

  14. Probing plasmonic nanostructures by photons and electrons

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Harald; Kneipp, Janina

    2015-01-01

    We discuss recent developments for studying plasmonic metal nanostructures. Exploiting photons and electrons opens up new capabilities to probe the complete plasmon spectrum including bright and dark modes and related local optical fields at subnanometer spatial resolution. This comprehensive cha...

  15. Dipole-source localization using biomimetic flow-sensor arrays positioned as lateral-line system

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Lammerink, Theodorus S.J.; Kolster, M.L.; Bruinink, C.M.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2010-01-01

    In-plane linear displacements of microelectromechanical systems are measured with subnanometer accuracy by observing the periodic micropatterns with a charge-coupled device camera attached to an optical microscope. The translation of the microstructure is retrieved from the video by phase-shift

  16. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Ferragut, R. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Fiori, F. [Dipartimento SAIFET, Sezione di Scienze Fisiche, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Lussana, D. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy); Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Moia, F. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Riontino, G. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy)

    2011-06-15

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the {beta}'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on {beta}'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with {beta}'' {yields} {beta}' transformation.

  17. Effect of ultrasmall Au–Ag aggregates formed by ion implantation in Er-implanted silica on the 1.54 μm Er{sup 3+} luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Maurizio, C., E-mail: chiara.maurizio@unipd.it [Physics and Astronomy Department, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Cesca, T. [Physics and Astronomy Department, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Trapananti, A. [CNR-IOM c/o European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (France); Kalinic, B.; Scian, C.; Mazzoldi, P. [Physics and Astronomy Department, University of Padova, Via Marzolo 8, 35131 Padova (Italy); Battaglin, G. [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Dorsoduro 2137, I-30123 Venice (Italy); Mattei, G. [Physics and Astronomy Department, University of Padova, Via Marzolo 8, 35131 Padova (Italy)

    2014-05-01

    Multiple implantations of Au and Ag ions in pure silica and Er-doped silica matrices have been performed to promote the formation of small Au–Ag alloy clusters. Upon annealing in N{sub 2} atmosphere at 600 °C the structural investigation based on X-ray absorption spectroscopy at Au L{sub 3}-edge detected for both cases the formation of Au–Ag alloy clusters, whose size is likely below 1 nm. The alloy composition is rich in Au; a minor part of Au atoms remains dispersed into the matrix and oxidized. In the Er-doped silica, the presence of these small alloy aggregates promotes a strong enhancement of the Er{sup 3+} luminescence at 1.54 μm, that is more marked with respect to similarly produced layers where only pure Au sub-nanometer clusters were present.

  18. Muzzle size, paranasal swelling size and body mass in Mandrillus leucophaeus.

    Science.gov (United States)

    Elton, Sarah; Morgan, Bethan J

    2006-04-01

    The drill (Mandrillus leucophaeus), a forest-living Old World monkey, is highly sexually dimorphic, with males exhibiting extreme secondary sexual characteristics, including growth of paranasal swellings on the muzzle. In this study, the size of the secondary bone that forms the paranasal swellings on the muzzles of drills was assessed in relation to body mass proxies. The relationship between the overall size of the muzzle and surrogate measures of body mass was also examined. In female drills, muzzle breadth was positively correlated with two proxies of overall body mass, greatest skull length and upper M1 area. However, there was no such correlation in males. Paranasal swellings in males also appeared to have no significant relationship to body mass proxies. This suggests that secondary bone growth on the muzzles of male drills is independent of overall body size. Furthermore, this secondary bone appears to be vermiculate, probably developing rapidly and in an irregular manner, with no correlation in the sizes of paranasal swelling height and breadth. However, various paranasal swelling dimensions were related to the size of the muzzle. It is suggested that the growth of the paranasal swellings and possibly the muzzle could be influenced by androgen production and reflect testes size and sperm motility. The size and appearance of the paranasal swellings may thus be an indicator of reproductive quality both to potential mates and male competitors. Further work is required to investigate the importance of the paranasal swellings as secondary sexual characteristics in Mandrillus and the relationship between body size and secondary sexual characteristics. Attention should also be paid to the mechanisms and trajectories of facial growth in Mandrillus.

  19. Container size influences snack food intake independently of portion size.

    Science.gov (United States)

    Marchiori, David; Corneille, Olivier; Klein, Olivier

    2012-06-01

    While larger containers have been found to increase food intake, it is unclear whether this effect is driven by container size, portion size, or their combination, as these variables are usually confounded. The study was advertised as examining the effects of snack food consumption on information processing and participants were served M&M's for free consumption in individual cubicles while watching a TV show. Participants were served (1) a medium portion of M&M's in a small (n=30) or (2) in a large container (n=29), or (3) a large portion in a large container (n=29). The larger container increased intake by 129% (199 kcal) despite holding portion size constant, while controlling for different confounding variables. This research suggests that larger containers stimulate food intake over and above their impact on portion size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction.

    Science.gov (United States)

    Zhang, Meng; Song, Xiaoxu; Deines, T W; Pei, Z J; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.

  1. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes.

    Directory of Open Access Journals (Sweden)

    Yue Bin

    Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.

  2. Sizing for ethnicity in multi-cultural societies: development of size

    African Journals Online (AJOL)

    user

    biggest complaint concerning apparel products, ... aimed to develop size specifications for young ... study of South African women has never been ... measurement difference between two adjacent .... sizes according to current industry practice. A ..... Comparison of body shape between USA ... Englewood Cliffs, New. Jersey.

  3. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik

    2011-01-01

    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  4. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  5. Selective Propene Epoxidation on Immobilized Au6-10 Clusters: The Effect of Hydrogen and Water on Activity and Selectivity

    DEFF Research Database (Denmark)

    Lee, Sungsik; Molina, Luis M.; López, María J.

    2009-01-01

    Epoxidation made easy: Subnanometer gold clusters immobilized on amorphous alumina result in a highly active and selective catalyst for propene epoxidation. The highest selectivity is found for gas mixtures involving oxygen and water, thus avoiding the use of hydrogen. Ab initio DFT calculations ...

  6. The art of SPM : scanning probe microscopy in materials science

    NARCIS (Netherlands)

    Loos, J.

    2005-01-01

    In this Progress Report, outstanding scientific applications of scanning probe microscopy (SPM) in the field of materials science and the latest technique developments are introduced and discussed. Besides being able to image the organization of matter with sub-nanometer resolution, SPM, owing to

  7. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    Science.gov (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Sizing up countability

    OpenAIRE

    De Belder, Marijke

    2008-01-01

    SIZING UP COUNTABILITY: TOWARDS A MORE FINE-GRAINED MASS-COUNT DISTINCTION MARIJKE DE BELDER CRISSP/CATHOLIC UNIVERSITY OF BRUSSELS/FACULTÉS UNIVERSITAIRES SAINT-LOUIS 1. Summary Borer (2005) argues that the presence of the functional projection DivP, which divides stuff into units, yields count readings in the NP and that its absence yields mass readings. I claim, however, that countability requires not only DivP (which creates units) but also SizeP (which assigns size). The head ...

  9. INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E.

    2013-01-01

    The Kuiper Belt is a remnant from the early solar system and its size distribution contains many important constraints that can be used to test models of planet formation and collisional evolution. We show, by comparing observations with theoretical models, that the observed Kuiper Belt size distribution is well matched by coagulation models, which start with an initial planetesimal population with radii of about 1 km, and subsequent collisional evolution. We find that the observed size distribution above R ∼ 30 km is primordial, i.e., it has not been modified by collisional evolution over the age of the solar system, and that the size distribution below R ∼ 30 km has been modified by collisions and that its slope is well matched by collisional evolution models that use published strength laws. We investigate in detail the resulting size distribution of bodies ranging from 0.01 km to 30 km and find that its slope changes several times as a function of radius before approaching the expected value for an equilibrium collisional cascade of material strength dominated bodies for R ∼< 0.1 km. Compared to a single power-law size distribution that would span the whole range from 0.01 km to 30 km, we find in general a strong deficit of bodies around R ∼ 10 km and a strong excess of bodies around 2 km in radius. This deficit and excess of bodies are caused by the planetesimal size distribution left over from the runaway growth phase, which left most of the initial mass in small planetesimals while only a small fraction of the total mass is converted into large protoplanets. This excess mass in small planetesimals leaves a permanent signature in the size distribution of small bodies that is not erased after 4.5 Gyr of collisional evolution. Observations of the small Kuiper Belt Object (KBO) size distribution can therefore test if large KBOs grew as a result of runaway growth and constrained the initial planetesimal sizes. We find that results from recent KBO

  10. [Effect sizes, statistical power and sample sizes in "the Japanese Journal of Psychology"].

    Science.gov (United States)

    Suzukawa, Yumi; Toyoda, Hideki

    2012-04-01

    This study analyzed the statistical power of research studies published in the "Japanese Journal of Psychology" in 2008 and 2009. Sample effect sizes and sample statistical powers were calculated for each statistical test and analyzed with respect to the analytical methods and the fields of the studies. The results show that in the fields like perception, cognition or learning, the effect sizes were relatively large, although the sample sizes were small. At the same time, because of the small sample sizes, some meaningful effects could not be detected. In the other fields, because of the large sample sizes, meaningless effects could be detected. This implies that researchers who could not get large enough effect sizes would use larger samples to obtain significant results.

  11. A general model for the scaling of offspring size and adult size.

    Science.gov (United States)

    Falster, Daniel S; Moles, Angela T; Westoby, Mark

    2008-09-01

    Understanding evolutionary coordination among different life-history traits is a key challenge for ecology and evolution. Here we develop a general quantitative model predicting how offspring size should scale with adult size by combining a simple model for life-history evolution with a frequency-dependent survivorship model. The key innovation is that larger offspring are afforded three different advantages during ontogeny: higher survivorship per time, a shortened juvenile phase, and advantage during size-competitive growth. In this model, it turns out that size-asymmetric advantage during competition is the factor driving evolution toward larger offspring sizes. For simplified and limiting cases, the model is shown to produce the same predictions as the previously existing theory on which it is founded. The explicit treatment of different survival advantages has biologically important new effects, mainly through an interaction between total maternal investment in reproduction and the duration of competitive growth. This goes on to explain alternative allometries between log offspring size and log adult size, as observed in mammals (slope = 0.95) and plants (slope = 0.54). Further, it suggests how these differences relate quantitatively to specific biological processes during recruitment. In these ways, the model generalizes across previous theory and provides explanations for some differences between major taxa.

  12. Optical properties of ThO{sub 2}–based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, F.J.; Castro, M.A. [Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana, s/n, 24071 León (Spain); Vázquez, M.D.; Debán, L. [Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, C/Paseo de Belén, no. 7, 47011 Valladolid (Spain); Aller, A.J., E-mail: aj.aller@unileon.es [Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental Sciences, University of León, Campus de Vegazana, s/n, 24071 León (Spain)

    2017-04-15

    Thoria nanomaterials show great interest in different fields other than nuclear technology. In this work, optical characteristics of four types of thoria-based nanoparticles were evaluated. The ultraviolet-visible (UV–vis) absorption spectrum of the pure (undoped/uncapped) thoria nanoparticles was characterised by an intense peak at 222 nm, while the doped/capped thoria nanoparticles shown maximum absorption peaks at both 195/200 nm and 233 nm. Contrarily to the particle size, the band gap energy of the thoria nanoparticles decreased with the doping/capping process using arsenic (As{sup (III)})/cysteine (Cyst). The room-temperature photoluminescence excitation spectra were featured by two bands located at 268 nm for both pure and As-doped thoria nanoparticles and at 352 nm for all thoria-based nanoparticles studied, recording the photoluminescence emission at 500 nm. The characteristic wavelengths of the photoluminescence emission spectra were at 325 and 385 nm for the pure and As-doped thoria nanoparticles, while only the band at 385/415 nm was noted for the Cyst-capped thoria nanoparticles, with slightly red shift depending on the excitation wavelength.

  13. Optical properties of ThO2–based nanoparticles

    International Nuclear Information System (INIS)

    Pereira, F.J.; Castro, M.A.; Vázquez, M.D.; Debán, L.; Aller, A.J.

    2017-01-01

    Thoria nanomaterials show great interest in different fields other than nuclear technology. In this work, optical characteristics of four types of thoria-based nanoparticles were evaluated. The ultraviolet-visible (UV–vis) absorption spectrum of the pure (undoped/uncapped) thoria nanoparticles was characterised by an intense peak at 222 nm, while the doped/capped thoria nanoparticles shown maximum absorption peaks at both 195/200 nm and 233 nm. Contrarily to the particle size, the band gap energy of the thoria nanoparticles decreased with the doping/capping process using arsenic (As (III) )/cysteine (Cyst). The room-temperature photoluminescence excitation spectra were featured by two bands located at 268 nm for both pure and As-doped thoria nanoparticles and at 352 nm for all thoria-based nanoparticles studied, recording the photoluminescence emission at 500 nm. The characteristic wavelengths of the photoluminescence emission spectra were at 325 and 385 nm for the pure and As-doped thoria nanoparticles, while only the band at 385/415 nm was noted for the Cyst-capped thoria nanoparticles, with slightly red shift depending on the excitation wavelength.

  14. Variation in clutch size in relation to nest size in birds

    OpenAIRE

    Moller Anders P.; Adriaensen Frank; Artemyev Alexandr; Banbura Jerzy; Barba Emilio; Biard Clotilde; Blondel Jacques; Bouslama Zihad; Bouvier Jean-Charles; Camprodon Jordi; Cecere Francesco; Charmantier Anne; Charter Motti; Cichon Mariusz; Cusimano Camillo

    2014-01-01

    © 2014 The Authors. Nests are structures built to support and protect eggs and/or offspring from predators, parasites, and adverse weather conditions. Nests are mainly constructed prior to egg laying, meaning that parent birds must make decisions about nest site choice and nest building behavior before the start of egg-laying. Parent birds should be selected to choose nest sites and to build optimally sized nests, yet our current understanding of clutch size-nest size relationships is limited...

  15. Size matters: the interplay between sensing and size in aquatic environments

    Science.gov (United States)

    Wadhwa, Navish; Martens, Erik A.; Lindemann, Christian; Jacobsen, Nis S.; Andersen, Ken H.; Visser, Andre

    2015-11-01

    Sensing the presence or absence of other organisms in the surroundings is critical for the survival of any aquatic organism. This is achieved via the use of various sensory modes such as chemosensing, mechanosensing, vision, hearing, and echolocation. We ask how the size of an organism determines what sensory modes are available to it while others are not. We investigate this by examining the physical laws governing signal generation, transmission, and reception, together with the limits set by physiology. Hydrodynamics plays an important role in sensing; in particular chemosensing and mechanosensing are constrained by the physics of fluid motion at various scales. Through our analysis, we find a hierarchy of sensing modes determined by body size. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in the literature. Our analysis of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. The Centre for Ocean Life is a VKR center of excellence supported by the Villum Foundation.

  16. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    Science.gov (United States)

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  17. Sample size methodology

    CERN Document Server

    Desu, M M

    2012-01-01

    One of the most important problems in designing an experiment or a survey is sample size determination and this book presents the currently available methodology. It includes both random sampling from standard probability distributions and from finite populations. Also discussed is sample size determination for estimating parameters in a Bayesian setting by considering the posterior distribution of the parameter and specifying the necessary requirements. The determination of the sample size is considered for ranking and selection problems as well as for the design of clinical trials. Appropria

  18. Innovative In-Situ Remediation of Contaminated Sediments for Simultaneous Control of Contamination and Erosion. Part 1

    Science.gov (United States)

    2011-08-01

    Mn3+ in the oxide crystal lattice, and (3) replacement of Mn3+ or Mn4+ by Co3 +. Generally, the sorption of Co by Mn oxides increases greatly with pH...four treatments: two control treatments consisting of uncapped sediments (i.e., no amendments added); two caps composed of a single six inch layer of 50...organoclays and biopolymer coated sand for various hydrophobic organic compounds. Point ( single concentration) partition coefficient measurements

  19. Selective layer disordering in III-nitrides with a capping layer

    Science.gov (United States)

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  20. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.

    2017-01-01

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2

  1. The relationship between UT reported size and actual size of the defects in rotor forgings

    International Nuclear Information System (INIS)

    Seong, Un Hak; Kim, Jeong Tae; Park, Yun Sik

    2003-01-01

    In order to evaluate the reliability of rotor forgings, it is very important to know the actual size of the defects in the rotor forgings. The determination of the defect size requires the accurate non-destructive measurement. However, there may be some differences between the reported size with the ultrasonic non-destructive testing method and the actual size of defects. These differences may be a severe cause of errors in evaluation of rotor forgings. So, the calculated size with 'Master Curve' considering safety factor, which is usually larger than the reported size, has been used in evaluation of rotor forgings. The relation between the EFBH (Equivalent Flat Bottom Hole) size measured by non-destructive method and the actual size by destructive method in many rotors manufactured at Doosan was investigated. In this investigation 'Master Curve' compensating the differences between UT reported size and actual size of defects in our rotor forgings was obtainable. The applicability of this 'Master Curve' as a way of calculating the actual defect size was also investigated. For the evaluation of rotor forgings, it is expected that this 'Master Curve' may be used to determine the accurate actual size of defects.

  2. The relationship between UT reported size and actual size of the defects in rotor forgings

    International Nuclear Information System (INIS)

    Seong, Un Hak; Kim, Jeong Tae; Park, Yun Sik

    2003-01-01

    In order to evaluate the reliability of rotor forgings, it is very important to know the actual size of the defects in the rotor forgings. The determination of the defect size requires the accurate non-destructive measurement. However, there may be some difference between the reported size with ultrasonic non-destructive testing method and the actual size of defects. These differences may be a severe cause of errors in evaluation of rotor forgings. So, the calculated size with 'Master Curve' considering safety factor, which is usually larger than the reported size, has been used in evaluation of rotor forgings. The relation between the EFBH (Equivalent Flat Bottom Hole) size measured by non-destructive method and the actual size by destructive method in many rotors manufactured at Doosan was investigated. In this investigation, 'Master Curve' compensating the differences between UT reported size and actual size of defects in our rotor forgings was obtainable. The applicability of this 'Master Curve' as a way of calculating the actual defect size was also investigated. For the evaluation of rotor forgings, it is expected that this 'Master Curve' may be used to determine the accurate actual size of defects.

  3. The Roles of Size and Size Difference in Australian and Chinese Inter-firm Collaborations

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available There has been considerable debate on the contribution and significance of firm size to the establishment, operation and success of business collaboration. One important source of this debate arises from differing definitions of firm size used in previous research. This paper uses firm size categories and size differences between collaborating firms to examine their contribution to the formation and performance of inter-firmcollaboration in Australia and China. Both qualitative case study and quantitative data analyses are adopted in this paper. Results from both the qualitative case study and quantitative study in Australia and China show that size plays a significant positive role in the formation and performance of business collaboration. Firmsprefer collaborating with larger partners. Bigger firms are more likely to achieve success collaborations. However, size difference plays a negative role in business collaboration. Collaborating with a bigger partner makes it harder to succeed. On the other hand, size and size difference play very different roles in performanceand outcomes of business collaboration in different countries.This paper compares the roles of firm size and size difference in Australian and Chinese inter-firm collaboration. The results provide important strategic implications for business managers, industry regulators, and policy decision makers regarding international business collaboration.

  4. Song repertoire size correlates with measures of body size in Eurasian blackbirds

    DEFF Research Database (Denmark)

    Hesler, Nana; Mundry, Roger; Sacher, Thomas

    2012-01-01

    In most oscine bird species males possess a repertoire of different song patterns. The size of these repertoires is assumed to serve as an honest signal of male quality. The Eurasian blackbird’s (Turdus merula) song contains a large repertoire of different element types with a flexible song...... organisation. Here we investigated whether repertoire size in Eurasian blackbirds correlates with measures of body size, namely length of wing, 8th primary, beak and tarsus. So far, very few studies have investigated species with large repertoires and a flexible song organisation in this context. We found...... positive correlations, meaning that larger males had larger repertoires. Larger males may have better fighting abilities and, thus, advantages in territorial defence. Larger structural body size may also reflect better conditions during early development. Therefore, under the assumption that body size...

  5. 76 FR 70410 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2011-11-14

    ...: University of Florida, Department of Biochemistry, 1600 SW Archer Road, Gainesville, FL 32610-0245... prepared from diverse cell types such as mammalian tissues, invertebrate cells, plant cells, bacterial cells, and fungal cells. To determine the 3D structures of isolated macromolecules at sub-nanometer...

  6. An Astigmatic Detection System for Polymeric Cantilever-based Sensors

    DEFF Research Database (Denmark)

    Hwu, En-Te; Liao, Hsien-Shun; Bosco, Filippo

    2012-01-01

    fluctuation measurements on cantilever beams with a subnanometer resolution. Furthermore, an external excitation can intensify the resonance amplitude, enhancing the signal- to-noise ratio. The full width at half maximum (FWHM) of the laser spot is 568 nm, which facilitates read-out on potentially...

  7. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations

    DEFF Research Database (Denmark)

    Esteban, Rubén; Zugarramurdi, Asier; Zhang, Pu

    2015-01-01

    The optical response of plasmonic nanogaps is challenging to address when the separation between the two nanoparticles forming the gap is reduced to a few nanometers or even subnanometer distances. We have compared results of the plasmon response within different levels of approximation, and iden...

  8. A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis

    Science.gov (United States)

    Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.

    2014-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  9. A novel low energy electron microscope for DNA sequencing and surface analysis.

    Science.gov (United States)

    Mankos, M; Shadman, K; Persson, H H J; N'Diaye, A T; Schmid, A K; Davis, R W

    2014-10-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  10. Experimental determination of size distributions: analyzing proper sample sizes

    International Nuclear Information System (INIS)

    Buffo, A; Alopaeus, V

    2016-01-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used. (paper)

  11. Poverty and household size

    NARCIS (Netherlands)

    Lanjouw, P.; Ravallion, M.

    1995-01-01

    The widely held view that larger families tend to be poorer in developing countries has influenced research and policy. The scope for size economies in consumption cautions against this view. The authors find that the correlation between poverty and size vanishes in Pakistan when the size elasticity

  12. Determination of the optimal sample size for a clinical trial accounting for the population size.

    Science.gov (United States)

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    Science.gov (United States)

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size.

  14. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  15. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    Science.gov (United States)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  16. Publication Bias in Psychology: A Diagnosis Based on the Correlation between Effect Size and Sample Size

    Science.gov (United States)

    Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas

    2014-01-01

    Background The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. Methods We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. Results We found a negative correlation of r = −.45 [95% CI: −.53; −.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. Conclusion The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology. PMID:25192357

  17. Size-dependent thermoelasticity

    Directory of Open Access Journals (Sweden)

    Ali R. Hadjesfandiari

    Full Text Available In this paper a consistent theory is developed for size-dependent thermoelasticity in heterogeneous anisotropic solids. This theory shows that the temperature change can create not only thermal strains, but also thermal mean curvatures in the solids. This formulation is based on the consistent size-dependent continuum mechanics in which the couple-stress tensor is skew-symmetric. Here by including scale-dependent measures in the energy and entropy equations, the general expressions for force- and couple-stresses, as well as entropy density, are obtained. Next, for the linear material the constitutive relations and governing coupled size-dependent thermoelasticity equations are developed. For linear material, one can see that the thermal properties are characterized by the classical symmetric thermal expansion tensor and the new size-dependent skew-symmetric thermal flexion tensor. Thus, for the most general anisotropic case, there are nine independent thermoelastic constants. Interestingly, for isotropic and cubic materials the thermal flexion tensor vanishes, which shows there is no thermal mean curvature

  18. Prognostic value of nucleolar size and size pleomorphism in choroidal melanomas

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Gamel, J W; Jensen, O A

    1993-01-01

    Morphometric estimates of nucleolar size have been shown to possess a high prognostic value in patients with uveal melanomas. The authors investigated various quantitative estimators of the mean size and pleomorphism of nucleoli in choroidal melanomas from a consecutive series of 95 Danish patien...

  19. Optical wireless link between a nanoscale antenna and a transducing rectenna.

    Science.gov (United States)

    Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2018-05-18

    Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

  20. Nanoscale control of energy and matter in plasma-surface interactions: Toward energy- and matter-efficient nanotech

    International Nuclear Information System (INIS)

    Ostrikov, K.

    2011-01-01

    The approach to control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at nano- and subnanometer scales is introduced. This ability is related to the solution of the grand challenge of directing energy and matter at nanoscales and is critical for the renewable energy and energy-efficient technologies for a sustainable future development. The examples of deterministic synthesis of self-organized arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication are considered to illustrate this possibility. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under nonequilibrium conditions and harnessing numerous plasma-specific controls of species creation, delivery to the surface, nucleation, and large-scale self-organization of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilized, and further processed to meet the specific requirements of the envisaged applications.

  1. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  2. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zrimsek, Alyssa B; Chiang, Naihao; Mattei, Michael; Zaleski, Stephanie; McAnally, Michael O; Chapman, Craig T; Henry, Anne-Isabelle; Schatz, George C; Van Duyne, Richard P

    2017-06-14

    Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.

  3. Development of the measurement system with interferometers for ultraprecise X-ray mirror

    CERN Document Server

    Yamauchi, K; Mimura, H

    2003-01-01

    A figure measurement system with a stitching method has been developed for evaluation and fabrication of the ultraprecise hard X-ray mirror optics. This system was constructed by two interferometers. One is the Michelson-type microscopic interferometer which is improved to keep the focus distance within 0.1 mu m. Another is the Fizeau's interferometer employed to compensate stitching error in the long spatial wavelength range. To estimate the absolute accuracy in this figure measurement system, the reflection X-ray intensity distributions of flat and aspherical mirrors, which are fabricated by us, were predicted by wave-optical simulation based on measured profile an compared with actually observed distributions. As the result, they are in good agreements. These agreements prove that the developed system has sub-nanometer absolute accuracy in all the spatial wavelength range longer than 0.5mm, because sub-nanometer figure error in those spatial wavelength ranges are known to affect reflection X-ray intensity ...

  4. Germinant size of jack pine in relation to seed size and geographic origin

    Science.gov (United States)

    C.W. Yeatman

    1966-01-01

    The initial size of conifer seedlings is closely related to seed size (Hadders 1963), and seed size is a maternal characteristic that is highly subject to environmental modification (Mergen et al. 1964; Righter 1945). The effect of seed weight must be accounted for in critical studies of seedlings which attempt to attribute differences in growth to specific genetic or...

  5. Electromagnetic Characterization of Carbon Nanotube Films Subject to an Oxidative Treatment at Elevated Temperature (Preprint)

    Science.gov (United States)

    2010-07-01

    response to the tip causes a redistribution of charge on the tip in order to maintain the equipotential surface of the sphere, and also results in a shift...can be obtained. In some instances these treatments lead to uncapping of nanotubes. Geng et al. [25] have shown that the surfaces of SWNT bundles...20] discovered a new and catalyst-free method for the growth of CNTs: surface decomposition of silicon carbide (SiC). This thermal decomposition

  6. PENENTUAN PRODUCTION LOT SIZES DAN TRANSFER BATCH SIZES DENGAN PENDEKATAN MULTISTAGE

    Directory of Open Access Journals (Sweden)

    Purnawan Adi W

    2012-02-01

    optimal lot size in a system of production with several types. Analysis of production batch (production lot using hybrid analytic simulation is one kind of research about optimal lot size. That research uses single-stage system approach where there are not relationships between processes in every stage or in other word; one process is independent to other process. Using the same research object with one before, this research then take up problem how to determine production lot size with multi-stage approach. First, determining optimal production lot size by linear program using the same data with previous research. Then, production lot size is used as simulation input to determine transfer batch size. Average of queue length and waiting time as performance measurement are used as reference in determining transfer batch size from several alternatives.In this research, it shows that production lot size is same with demand each period. Determination result of transfer batch size by using simulation then implemented on model. The result is descent of inventory of connector product at 76.35% and 50.59% for box connector product, as compared to inventory using single-stage approach. Keywords : multistage, production lot, transfer batch

  7. Carrier confinement in Ge/Si quantum dots grown with an intermediate ultrathin oxide layer

    Science.gov (United States)

    Kuryliuk, V.; Korotchenkov, O.; Cantarero, A.

    2012-02-01

    We present computational results for strain effects on charge carrier confinement in GexSi1-x quantum dots (QDs) grown on an oxidized Si surface. The strain and free carrier probability density distributions are obtained using the continuum elasticity theory and the effective-mass approximation implemented by a finite-element modeling scheme. Using realistic parameters and conditions for hemisphere and pyramid QDs, it is pointed out that an uncapped hemisphere dot deposited on the Si surface with an intermediate ultrathin oxide layer offers advantageous electron-hole separation distances with respect to a square-based pyramid grown directly on Si. The enhanced separation is associated with a larger electron localization depth in the Si substrate for uncapped hemisphere dots. Thus, for dot diameters smaller than 15-20 nm and surface density of the dots (nQD) ranging from about 1010 to 1012 cm-2, the localization depth may be enhanced from about 8 nm for a pyramid to 38 nm for a hemisphere dot. We find that the effect in a hemisphere dot is very sensitive to the dot density and size, whereas the localization depth is not significantly affected by the variation of the Ge fraction x in GexSi1-x and the aspect ratio of the dot. We also calculate the effect of the fixed oxide charge (Qox) with densities ranging from 10-9 to 10-7 C/cm2 for 10-Ωcm p-type Si wafers on the carrier confinement. Although the confinement potential can be strongly perturbed by the charge at nQD less than ≈4×1011 cm-2, it is not very sensitive to the value of Qox at higher nQD. Since, to our knowledge, there are no data on carrier confinement for Ge QDs deposited on oxidized Si surfaces, these results might be applicable to functional devices utilizing separated electrons and holes such as photovoltaic devices, spin transistors, and quantum computing components. The use of hemisphere QDs placed on oxidized Si rather than pyramid dots grown on bare Si may help to confine charge carriers deeper

  8. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    trash bags according to size of plates and weighed in bulk. Results Those eating from smaller plates (n=145) left significantly less food to waste (aver. 14,8g) than participants eating from standard plates (n=75) (aver. 20g) amounting to a reduction of 25,8%. Conclusions Our field experiment tests...... the hypothesis that a decrease in the size of food plates may lead to significant reductions in food waste from buffets. It supports and extends the set of circumstances in which a recent experiment found that reduced dinner plates in a hotel chain lead to reduced quantities of leftovers....

  9. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale

    International Nuclear Information System (INIS)

    Bolzon, B.

    2007-11-01

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  10. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    Science.gov (United States)

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  11. The large sample size fallacy.

    Science.gov (United States)

    Lantz, Björn

    2013-06-01

    Significance in the statistical sense has little to do with significance in the common practical sense. Statistical significance is a necessary but not a sufficient condition for practical significance. Hence, results that are extremely statistically significant may be highly nonsignificant in practice. The degree of practical significance is generally determined by the size of the observed effect, not the p-value. The results of studies based on large samples are often characterized by extreme statistical significance despite small or even trivial effect sizes. Interpreting such results as significant in practice without further analysis is referred to as the large sample size fallacy in this article. The aim of this article is to explore the relevance of the large sample size fallacy in contemporary nursing research. Relatively few nursing articles display explicit measures of observed effect sizes or include a qualitative discussion of observed effect sizes. Statistical significance is often treated as an end in itself. Effect sizes should generally be calculated and presented along with p-values for statistically significant results, and observed effect sizes should be discussed qualitatively through direct and explicit comparisons with the effects in related literature. © 2012 Nordic College of Caring Science.

  12. The causal effect of board size in the performance of small and medium-sized firms

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Kongsted, Hans Christian; Meisner Nielsen, Kasper

    2008-01-01

    correlation between family size and board size and show this correlation to be driven by firms where the CEO's relatives serve on the board. Second, we find empirical evidence of a small adverse board size effect driven by the minority of small and medium-sized firms that are characterized by having......Empirical studies of large publicly traded firms have shown a robust negative relationship between board size and firm performance. The evidence on small and medium-sized firms is less clear; we show that existing work has been incomplete in analyzing the causal relationship due to weak...... identification strategies. Using a rich data set of almost 7000 closely held corporations we provide a causal analysis of board size effects on firm performance: We use a novel instrument given by the number of children of the chief executive officer (CEO) of the firms. First, we find a strong positive...

  13. Body Size, Fecundity, and Sexual Size Dimorphism in the Neotropical Cricket Macroanaxipha macilenta (Saussure) (Orthoptera: Gryllidae).

    Science.gov (United States)

    Cueva Del Castillo, R

    2015-04-01

    Body size is directly or indirectly correlated with fitness. Body size, which conveys maximal fitness, often differs between sexes. Sexual size dimorphism (SSD) evolves because body size tends to be related to reproductive success through different pathways in males and females. In general, female insects are larger than males, suggesting that natural selection for high female fecundity could be stronger than sexual selection in males. I assessed the role of body size and fecundity in SSD in the Neotropical cricket Macroanaxipha macilenta (Saussure). This species shows a SSD bias toward males. Females did not present a correlation between number of eggs and body size. Nonetheless, there were fluctuations in the number of eggs carried by females during the sampling period, and the size of females that were collected carrying eggs was larger than that of females collected with no eggs. Since mating induces vitellogenesis in some cricket species, differences in female body size might suggest male mate choice. Sexual selection in the body size of males of M. macilenta may possibly be stronger than the selection of female fecundity. Even so, no mating behavior was observed during the field observations, including audible male calling or courtship songs, yet males may produce ultrasonic calls due to their size. If female body size in M. macilenta is not directly related to fecundity, the lack of a correlated response to selection on female body size could represent an alternate evolutionary pathway in the evolution of body size and SSD in insects.

  14. Seasonal body size reductions with warming covary with major body size gradients in arthropod species

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2017-01-01

    experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature–size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic...... and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air...

  15. The Italian primary school-size distribution and the city-size: a complex nexus

    Science.gov (United States)

    Belmonte, Alessandro; di Clemente, Riccardo; Buldyrev, Sergey V.

    2014-06-01

    We characterize the statistical law according to which Italian primary school-size distributes. We find that the school-size can be approximated by a log-normal distribution, with a fat lower tail that collects a large number of very small schools. The upper tail of the school-size distribution decreases exponentially and the growth rates are distributed with a Laplace PDF. These distributions are similar to those observed for firms and are consistent with a Bose-Einstein preferential attachment process. The body of the distribution features a bimodal shape suggesting some source of heterogeneity in the school organization that we uncover by an in-depth analysis of the relation between schools-size and city-size. We propose a novel cluster methodology and a new spatial interaction approach among schools which outline the variety of policies implemented in Italy. Different regional policies are also discussed shedding lights on the relation between policy and geographical features.

  16. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    Science.gov (United States)

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.

  17. Neutral, seven-coordinate dioxime complexes of technetium(III): Synthesis and characterization

    International Nuclear Information System (INIS)

    Linder, K.E.; Malley, M.F.; Gougoutas, J.Z.; Unger, S.E.; Nunn, A.D.

    1990-01-01

    The tin-capped complexes 99 Tc(oxime) 3 (μ-OH)SnCl 3 [oxime = dimethylglyoxime (DMG) or cyclohexanedione dioxime (CDO)] can be prepared by the reduction of NH 4 TcO 4 with 2 equiv of SnCl 2 in the presence of dioxime and HCl. These tin-capped complexes can be readily converted into a new class of uncapped Tc-dioxime compounds, TcCl(oxime) 3 , by treatment with HCl. This reaction is reversible. Both the tin-capped and uncapped tris(dioxime) complexes can be converted to the previously reported boron-capped Tc-dioxime complexes TcCl(oxime) 3 BR (R = alkyl, OH) by reaction with boronic acids or with boric acid at low pH. All of these complexes [Tc(oxime) 3 (μ-OH)SnCl 3 , TcCl(oxime) 3 , and TcCl(oxime) 3 BR] appear to be neutral, seven-coordinate compounds of technetium(III). They have been characterized by elemental analysis, 1 H NMR and UV/visible spectroscopy, conductivity, and fast atom bombardment mass spectrometry. The synthesis, characterization, and reactivity of these compounds is discussed. The x-ray crystal structure analysis of TcCl(DMG) 3 and an abbreviated structure report on TcCl(DMG) 3 MeB are described. Crystal data for TcCl(DMG) 3 are reported. 23 refs., 6 figs., 5 tabs

  18. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies.

    Science.gov (United States)

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M; Rogers, Peter J; Hardman, Charlotte A

    2016-03-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study 3 participants were exposed to images of large or small portions of a snack food before selecting a portion size of snack food to consume. Across the three studies, visual exposure to larger as opposed to smaller portion sizes resulted in participants considering a normal portion of food to be larger than a reference intermediate sized portion. In studies 1 and 2 visual exposure to larger portion sizes also increased the size of self-reported ideal meal size. In study 3 visual exposure to larger portion sizes of a snack food did not affect how much of that food participants subsequently served themselves and ate. Visual exposure to larger portion sizes may adjust visual perceptions of what constitutes a 'normal' sized portion. However, we did not find evidence that visual exposure to larger portions altered snack food intake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  20. EFFECTS OF ULTRASOUND ON THE MORPHOLOGY, PARTICLE SIZE, CRYSTALLINITY, AND CRYSTALLITE SIZE OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    SUMARI SUMARI

    2014-05-01

    Full Text Available The aim of this study is to optimize ultrasound treatment to produce fragment of cellulose that is low in particles size, crystallite size, and crystallinity. Slurry of 1 % (w/v the cellulose was sonicated at different time periods and temperatures. An ultrasonic reactor was operated at 300 Watts and 28 kHz to cut down the polymer into smaller particles. We proved that ultrasound damages and fragments the cellulose particles into shorter fibers. The fiber lengths were reduced from in the range of 80-120 µm to 30-50 µm due to an hour ultrasonication and became 20-30 µm after 5 hours. It was also found some signs of erosion on the surface and stringy. The acoustic cavitation also generated a decrease in particle size, crystallinity, and crystallite size of the cellulose along with increasing sonication time but it did not change d-spacing. However, the highest reduction of particle size, crystallite size, and crystallinity of the cellulose occurred within the first hour of ultrasonication, after which the efficiency was decreased. The particle diameter, crystallite size, and crystallinity were decreased from 19.88 µm to 15.96 µm, 5.81 Å to 2.98 Å, and 77.7% to 73.9% respectively due to an hour ultrasound treatment at 40 °C. The treatment that was conducted at 40 °C or 60 °C did not give a different effect significantly. Cellulose with a smaller particle and crystallite size as well as a more amorphous shape is preferred for further study.

  1. Portion size: a qualitative study of consumers' attitudes toward point-of-purchase interventions aimed at portion size.

    Science.gov (United States)

    Vermeer, Willemijn M; Steenhuis, Ingrid H M; Seidell, Jacob C

    2010-02-01

    This qualitative study assessed consumers' opinions of food portion sizes and their attitudes toward portion-size interventions located in various point-of-purchase settings targeting overweight and obese people. Eight semi-structured focus group discussions were conducted with 49 participants. Constructs from the diffusion of innovations theory were included in the interview guide. Each focus group was recorded and transcribed verbatim. Data were coded and analyzed with Atlas.ti 5.2 using the framework approach. Results showed that many participants thought that portion sizes of various products have increased during the past decades and are larger than acceptable. The majority also indicated that value for money is important when purchasing and that large portion sizes offer more value for money than small portion sizes. Furthermore, many experienced difficulties with self-regulating the consumption of large portion sizes. Among the portion-size interventions that were discussed, participants had most positive attitudes toward a larger availability of portion sizes and pricing strategies, followed by serving-size labeling. In general, reducing package serving sizes as an intervention strategy to control food intake met resistance. The study concludes that consumers consider interventions consisting of a larger variety of available portion sizes, pricing strategies and serving-size labeling as most acceptable to implement.

  2. Do Renewable Energy Policies Reduce Carbon Emissions? On Caps and Intra-Jurisdictional Leakage

    OpenAIRE

    Perino, Grischa; Jarke, Johannes

    2015-01-01

    Climate policies overlapping a cap-and-trade scheme are generally considered not to change domestic emissions. In a two-sector general equilibrium model where only one sector is covered by a cap, we find that such policies do have a net impact on carbon emissions through inter-sectoral leakage. Promotion of renewable energy reduces emissions if tax-funded, but can increase emissions if funded by a levy on electricity. Replacing fossil fuels by electricity in uncapped sectors (e.g. power-to-he...

  3. Rectocele--does the size matter?

    Science.gov (United States)

    Carter, Dan; Gabel, Marc Beer

    2012-07-01

    Large rectoceles (>2 cm) are believed to be associated with difficulty in evacuation, constipation, rectal pain, and rectal bleeding. The aim of our study was to determine whether rectocele size is related to patient's symptoms or defecatory parameters. We conducted a retrospective study on data collected on patients referred to our clinic for the evaluation of evacuation disorders. All patients were questioned for constipation, fecal incontinence, and irritable bowel syndrome and were assessed with dynamic perineal ultrasonography and conventional anorectal manometry. Four hundred eighty-seven women were included in our study. Rectocele was diagnosed in 106 (22%) women, and rectocele diameter >2 cm in 93 (87%) women. Rectocele size was not significantly related to demographic data, parity, or patient's symptoms. The severity of the symptoms was not correlated to the size or to the position of the rectocele. The diagnosis of irritable bowel syndrome was neither related to the size of the rectocele. Rectocele location, occurrence of enterocele, and intussusception were not related to the size of the rectocele. Full evacuation of rectoceles was more common in small rectoceles (79% vs. 24%, p = 0.0001), and no evacuation was more common in large rectoceles (37% vs. 0, p = 0.01). Rectal hyposensitivity and anismus were not related to the size of the rectocele. In conclusion, only the evacuation of rectoceles was correlated to the size of the rectoceles, but had no clinical significance. Other clinical, anatomical factors were also not associated to the size of the rectoceles. Rectoceles' size alone may not be an indication for surgery.

  4. 7 CFR 51.344 - Size.

    Science.gov (United States)

    2010-01-01

    ... the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Grades of Apples for Processing Size § 51.344 Size. (a) The minimum and maximum sizes or range...

  5. Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin

    Science.gov (United States)

    Bhunia, Amit Kumar; Kanti Samanta, Pijus; Aich, Debasish; Saha, Satyajit; Kamilya, Tapanendu

    2015-06-01

    The interactions of human hemoglobin with protein capped silver nanoparticles and bare silver nanoparticles were studied to understand fundamental perspectives about the biocompatibility of protein capped silver nanoparticles compared with bare silver nanoparticles. Bare silver (Ag) nanoparticles (NPs) were prepared by the chemical reduction method. High resolution transmission electron microscopy (HRTEM) analysis along with absorption at ~390 nm indicated the formation of bare Ag NPs. Protein coated Ag NPs were prepared by a green synthesis method. Absorption at ~440 nm along with ~280 nm indicated the formation of protein coated Ag NPs. The biocompatibility of the above mentioned Ag NPs was studied by interaction with human hemoglobin (Hb) protein. In presence of bare Ag NPs, the Soret band of Hb was red shifted. This revealed the distortion of iron from the heme pockets of Hb. Also, the fluorescence peak of Hb was quenched and red shifted which indicated that Hb became unfolded in the presence of bare Ag NPs. No red shift of the absorption of Soret, along with no shift and quenching of the fluorescence peak of Hb were observed in the presence of protein coated Ag NPs. A hemolysis assay suggested that protein coated Ag NPs were more biocompatible than bare one.

  6. Mother-Offspring Relations: Prey Quality and Maternal Size Affect Egg Size of an Acariphagous Lady Beetle in Culture

    Directory of Open Access Journals (Sweden)

    Eric W. Riddick

    2012-01-01

    Full Text Available We investigated mother-offspring relations in a lady beetle Stethorus punctillum Weise that utilizes spider mites as prey. Our objectives were to determine if (1 prey quality affects egg size, (2 maternal size correlates with egg size, and (3 egg size affects hatching success. We fed predators spider mites Tetranychus urticae Koch from lima bean Phaseolus lunatus L. foliage in the laboratory. Mothers of unknown body size offered high rather than low quality spider mites since birth produced larger eggs. Mothers of known body size offered only high quality spider mites, produced eggs of variable size, but mean egg size correlated positively with hind femur length. Mothers laid their eggs singly, rather than in batches, and eggs were large relative to femur size. Egg size did not affect hatch success; mean hatch rate exceeded 95% regardless of egg size. In conclusion, the quality of prey consumed by S. punctillum mothers while in the larval stage can affect their size as adults and, consequently, the size of their eggs. The behavior of laying eggs singly, the positive relationship between maternal size and mean egg size, and the high rate of egg hatch suggest that S. punctillum mothers invest heavily in offspring.

  7. Size determinations of colloidal fat emulsions

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Klaus, Katrin; Steiniger, Frank

    2009-01-01

    Size and size distributions of colloidal dispersions are of crucial importance for their performance and safety. In the present study, commercially available fat emulsions (Lipofundin N, Lipofundin MCT and Lipidem) were analyzed by photon correlation spectroscopy, laser diffraction with adequate...... was checked with mixtures of monodisperse polystyrene nanospheres. In addition, the ultrastructure of Lipofundin N and Lipofundin MCT was investigated by cryo-electron microscopy. All different particle sizing methods gave different mean sizes and size distributions but overall, results were in reasonable...... agreement. By all methods, a larger mean droplet size (between 350 and 400 nm) as well as a broader distribution was measured for Lipofundin N compared to Lipofundin MCT and Lipidem (mean droplet size between about 280 and 320 nm). Size distributions of Lipofundin MCT and Lipidem were very similar...

  8. Portion Size Labeling and Intended Soft Drink Consumption: The Impact of Labeling Format and Size Portfolio

    Science.gov (United States)

    Vermeer, Willemijn M.; Steenhuis, Ingrid H. M.; Leeuwis, Franca H.; Bos, Arjan E. R.; de Boer, Michiel; Seidell, Jacob C.

    2010-01-01

    Objective: To assess what portion size labeling "format" is most promising in helping consumers selecting appropriate soft drink sizes, and whether labeling impact depends on the size portfolio. Methods: An experimental study was conducted in fast-food restaurants in which 2 labeling formats (ie, reference portion size and small/medium/large…

  9. The leaf size-twig size spectrum in evergreen broad- leaved forest of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... al., 1998; Brouat and McKey, 2001; Preston and Ackerly,. 2003; Westoby and Wright, 2003), few studies have examined the scaling relationship in relation to environ- mental gradients. In order to examine the response of the leaf size-twig size relationship to environmental variations, we investi-.

  10. Preparation and Surface Sizing Application of Sizing Agent Based on Collagen from Leather Waste

    Directory of Open Access Journals (Sweden)

    Xuechuan Wang

    2015-09-01

    Full Text Available Collagen extracted from leather waste was modified with maleic anhydride. Then, using ammonium persulfate as an initiator, by pre-modifying collagen reacted with styrene and ethyl acrylate monomers, a vinyl-grafted collagen sizing agent (VGCSA for paper was prepared. Before the experiment, the performance of VGCSA was tested and VGCSA emulsion was applied to the surface sizing of the corrugated paper. Effects of the amount of VGCSA, the compound proportion of VGCSA, and starch and styrene-acrylic emulsion were studied relative to paper properties. The morphological changes of the paper before and after sizing were characterized by SEM. It was found that the collagen reacted with styrene and ethyl acrylate monomers. Through the grafting of vinyl and collagen, the crystallinity and thermal stability of VGCSA increased. The structure of VGCSA was spherical with a uniform size, and the average particle size was approximately 350 to 400 nm. After being sized, the surface fibers of paper became smooth and orderly. The optimal sizing of VGCSA was 8 g/m2. The optimal proportion of VGCSA with starch was 4:6, and the optimal proportion of VGCSA with SAE was 2:8. The research indicates that collagen extracted from leather waste could be used as a biomaterial, and environmental and economic benefits could be created as well.

  11. Contingent orienting or contingent capture: a size singleton matching the target-distractor size relation cannot capture attention.

    Science.gov (United States)

    Du, Feng; Yin, Yue; Qi, Yue; Zhang, Kan

    2014-08-01

    In the present study, we examined whether a peripheral size-singleton distractor that matches the target-distractor size relation can capture attention and disrupt central target identification. Three experiments consistently showed that a size singleton that matches the target-distractor size relation cannot capture attention when it appears outside of the attentional window, even though the same size singleton produces a cuing effect. In addition, a color singleton that matches the target color, instead of a size singleton that matches the target-distractor size relation, captures attention when it is outside of the attentional window. Thus, a size-relation-matched distractor is much weaker than a color-matched distractor in capturing attention and cannot capture attention when the distractor appears outside of the attentional window.

  12. Beliefs about penis size: validation of a scale for men ashamed about their penis size.

    Science.gov (United States)

    Veale, David; Eshkevari, Ertimiss; Read, Julie; Miles, Sarah; Troglia, Andrea; Phillips, Rachael; Echeverria, Lina Maria Carmona; Fiorito, Chiara; Wylie, Kevan; Muir, Gordon

    2014-01-01

    No measures are available for understanding beliefs in men who experience shame about the perceived size of their penis. Such a measure might be helpful for treatment planning, and measuring outcome after any psychological or physical intervention. Our aim was to validate a newly developed measure called the Beliefs about Penis Size Scale (BAPS). One hundred seventy-three male participants completed a new questionnaire consisting of 18 items to be validated and developed into the BAPS, as well as various other standardized measures. A urologist also measured actual penis size. The BAPS was validated against six psychosexual self-report questionnaires as well as penile size measurements. Exploratory factor analysis reduced the number of items in the BAPS from 18 to 10, which was best explained by one factor. The 10-item BAPS had good internal consistency and correlated significantly with measures of depression, anxiety, body image quality of life, social anxiety, erectile function, overall satisfaction, and the importance attached to penis size. The BAPS was not found to correlate with actual penis size. It was able to discriminate between those who had concerns or were dissatisfied about their penis size and those who were not. This is the first study to develop a scale for measurement of beliefs about penis size. It may be used as part of an assessment for men who experience shame about the perceived size of their penis and as an outcome measure after treatment. The BAPS measures various manifestations of masculinity and shame about their perceived penis size including internal self-evaluative beliefs; negative evaluation by others; anticipated consequences of a perceived small penis, and extreme self-consciousness. © 2013 International Society for Sexual Medicine.

  13. Preliminary characterization of glass fiber sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2013-01-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus...... the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had...

  14. Relation between the ion size and pore size for an electric double-layer capacitor.

    Science.gov (United States)

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-05

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.

  15. Soft chemical synthesis of silicon nanosheets and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Hideyuki; Ikuno, Takashi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2016-12-15

    Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat and smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.

  16. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  17. Nanoscale Phenomena Occurring during Pyrolysis of Salix viminalis Wood

    Directory of Open Access Journals (Sweden)

    Aleksandra W. Cyganiuk

    2013-01-01

    Full Text Available Selective utilisation of unique properties of Salix viminalis wood enables preparation of materials of nanotechnologic properties. Thermal decomposition of lignin-cellulose organic matter results in the formation of a nanostructured porous carbon matrix (charcoal. Narrowed pore size distribution (PSD in the subnanometer range allows to consider the charcoals as carbon molecular sieves (CMSs, which are capable of separating even chemically inert gases like neon, krypton, and nitrogen. High tolerance of Salix viminalis to heavy metal ions enables enriching living plant tissues with metal ions like lanthanum and manganese. Such ions may later form LaMnO3 with parallel transformation of plant tissues (organic matter to carbon matrix using a heat treatment. In this way, one gets a hybrid material: a porous carbon matrix with uniformly suspended nanocrystallites of LaMoO3. The crystallites are in the catalytically active phase during the conversion of n-butanol to heptanone-4 with high yield and selectivity.

  18. Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei; Mei, Donghai; Xiong, Haifeng; Peng, Bo; Ren, Zhibo; Pereira Hernandez, Xavier I.; DelaRiva, Andrew; Wang, Meng; Engelhard, Mark H.; Kovarik, Libor; Datye, Abhaya K.; Wang, Yong

    2017-12-14

    While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sized Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.

  19. Materialised Ideals Sizes and Beauty

    Directory of Open Access Journals (Sweden)

    Kirsi Laitala

    2011-04-01

    Full Text Available Today’s clothing industry is based on a system where clothes are made in ready-to-wear sizes and meant to fit most people. Studies have pointed out that consumers are discontent with the use of these systems: size designations are not accurate enough to find clothing that fits, and different sizes are poorly available. This article discusses in depth who these consumers are, and which consumer groups are the most dissatisfied with today’s sizing systems. Results are based on a web survey where 2834 Nordic consumers responded, complemented with eight in-depth interviews, market analysis on clothing sizes and in-store trouser size measurements. Results indicate that higher shares of the consumers who have a body out of touch with the existing beauty ideals express discontentment with the sizing systems and the poor selection available. In particular, large women, very large men, and thin, short men are those who experience less priority in clothing stores and have more difficulties in finding clothes that fit. Consumers tend to blame themselves when the clothes do not fit their bodies, while our study points out that the industry is to blame as they do not produce clothing for all customers.

  20. Education, Birth Order, and Family Size

    OpenAIRE

    Bagger, Jesper; Birchenall, Javier A.; Mansour, Hani; Urzua, Sergio

    2013-01-01

    We introduce a general framework to analyze the trade-off between education and family size. Our framework incorporates parental preferences for birth order and delivers theoretically consistent birth order and family size effects on children's educational attainment. We develop an empirical strategy to identify these effects. We show that the coefficient on family size in a regression of educational attainment on birth order and family size does not identify the family size effect as defined...

  1. 7 CFR 51.1903 - Size classification.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Size classification. 51.1903 Section 51.1903... STANDARDS) United States Consumer Standards for Fresh Tomatoes Size and Maturity Classification § 51.1903 Size classification. The following terms may be used for describing the size of the tomatoes in any lot...

  2. Size makes a difference

    DEFF Research Database (Denmark)

    Matthiessen, Jeppe; Fagt, Sisse; Biltoft-Jensen, Anja Pia

    2003-01-01

    Objective: To elucidate status and trends in portion size of foods rich in fat and/or added sugars during the past decades, and to bring portion size into perspective in its role in obesity and dietary guidelines in Denmark. Data sources: Information about portion sizes of low-fat and full-fat food...... nation-wide dietary surveys and official sales statistics (Study 3). Results: Study 1: Subjects ate and drank significantly more when they chose low-fat food and meal items (milk used as a drink, sauce and sliced cold meat), compared with their counterparts who chose food and meal items with a higher fat...... content. As a result, almost the same amounts of energy and fat were consumed both ways, with the exception of sliced cold meat (energy and fat) and milk (fat). Study 2: Portion sizes of commercial energy-dense foods and beverages, and fast food meals rich in fat and/or added sugars, seem to have...

  3. Cell Size Regulation in Bacteria

    Science.gov (United States)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  4. Causality in Statistical Power: Isomorphic Properties of Measurement, Research Design, Effect Size, and Sample Size

    Directory of Open Access Journals (Sweden)

    R. Eric Heidel

    2016-01-01

    Full Text Available Statistical power is the ability to detect a significant effect, given that the effect actually exists in a population. Like most statistical concepts, statistical power tends to induce cognitive dissonance in hepatology researchers. However, planning for statistical power by an a priori sample size calculation is of paramount importance when designing a research study. There are five specific empirical components that make up an a priori sample size calculation: the scale of measurement of the outcome, the research design, the magnitude of the effect size, the variance of the effect size, and the sample size. A framework grounded in the phenomenon of isomorphism, or interdependencies amongst different constructs with similar forms, will be presented to understand the isomorphic effects of decisions made on each of the five aforementioned components of statistical power.

  5. 7 CFR 51.1402 - Size classification.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Size classification. 51.1402 Section 51.1402... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Size Classification § 51.1402 Size classification. Size of pecans may be specified in connection with the grade in accordance with one of the...

  6. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    Science.gov (United States)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  7. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  8. 75 FR 81788 - Revocation of Requirements for Full-Size Baby Cribs and Non-Full-Size Baby Cribs

    Science.gov (United States)

    2010-12-28

    ...-Size Baby Cribs and Non-Full- Size Baby Cribs AGENCY: Consumer Product Safety Commission. ACTION: Final... Safety Specification for Full-Size Baby Cribs,'' and ASTM F 406-10a, ``Standard Consumer Safety Specification for Non-Full-Size Baby Cribs/Play Yards.'' The crib standards that the CPSC is publishing...

  9. Fluctuations in email size

    Science.gov (United States)

    Matsubara, Yoshitsugu; Musashi, Yasuo

    2017-12-01

    The purpose of this study is to explain fluctuations in email size. We have previously investigated the long-term correlations between email send requests and data flow in the system log of the primary staff email server at a university campus, finding that email size frequency follows a power-law distribution with two inflection points, and that the power-law property weakens the correlation of the data flow. However, the mechanism underlying this fluctuation is not completely understood. We collected new log data from both staff and students over six academic years and analyzed the frequency distribution thereof, focusing on the type of content contained in the emails. Furthermore, we obtained permission to collect "Content-Type" log data from the email headers. We therefore collected the staff log data from May 1, 2015 to July 31, 2015, creating two subdistributions. In this paper, we propose a model to explain these subdistributions, which follow log-normal-like distributions. In the log-normal-like model, email senders -consciously or unconsciously- regulate the size of new email sentences according to a normal distribution. The fitting of the model is acceptable for these subdistributions, and the model demonstrates power-law properties for large email sizes. An analysis of the length of new email sentences would be required for further discussion of our model; however, to protect user privacy at the participating organization, we left this analysis for future work. This study provides new knowledge on the properties of email sizes, and our model is expected to contribute to the decision on whether to establish upper size limits in the design of email services.

  10. Spatial variation in egg size of a top predator: Interplay of body size and environmental factors?

    Science.gov (United States)

    Louzao, Maite; Igual, José M.; Genovart, Meritxell; Forero, Manuela G.; Hobson, Keith A.; Oro, Daniel

    2008-09-01

    It is expected that nearby populations are constrained by the same ecological features shaping in turn similarity in their ecological traits. Here, we studied the spatio-temporal variability in egg size among local populations of the critically endangered Balearic shearwater Puffinus mauretanicus, a top marine predator endemic to the western Mediterranean region. Specifically we assessed whether this trait was influenced by maternal body size, as an indicator of a genetic component, and feeding ecology (through stable-carbon and nitrogen-isotope measurements), as an indicator of environmental factors. We found that egg size varied among local populations, an unexpected result at such a small spatial scale. Body size differences at the local population level only partially explained such differences. Blood isotope measurements also differed among local populations. Values of δ 15N suggested inter-population differences in trophic level, showing a similar general pattern with egg size, and suggesting a nutritional link between them whereby egg size was affected by differences in feeding resources and/or behaviour. Values of δ 13C suggested that local populations did not differ in foraging habits with respect to benthic- vs. pelagic-based food-webs. Egg size did not vary among years as did breeding performance, suggesting that a differential temporal window could affect both breeding parameters in relation to food availability. The absence of a relationship between breeding performance and egg size suggested that larger eggs might only confer an advantage during harsh conditions. Alternatively parental quality could greatly affect breeding performance. We showed that inter-population differences in egg size could be influenced by both body size and environmental factors.

  11. 75 FR 43107 - Revocation of Requirements for Full-Size Baby Cribs and Non-Full-Size Baby Cribs

    Science.gov (United States)

    2010-07-23

    ...] Revocation of Requirements for Full-Size Baby Cribs and Non-Full- Size Baby Cribs AGENCY: Consumer Product... standards, and include ASTM F 1169-10, ``Standard Consumer Safety Specification for Full-Size Baby Cribs,'' and ASTM F 406-10, ``Standard Consumer Safety Specification for Non-Full-Size Baby Cribs/Play Yards...

  12. The development and manufacture of size for size feeder pipe for feeder replacement

    International Nuclear Information System (INIS)

    Legate, G.; Schreiter, D.; Townley, N.

    2008-01-01

    The recently recognised problem of feeder pipe thinning created a unique sourcing problem. Operators require relatively small quantities of nuclear class 1 seamless feeder pipe for such replacement which prior to the introduction of this product in 2006 was not available. It was desired that the pipe be produced at the exact size of the pipe currently in use at the specific reactor site (feeder pipe size varies from site to site). Secondly the pipe had to be made in conformance to the original code year of issue and to conform to the intent of the original material specifications. Finally a supply strategy had to be implemented allowing for timely manufacture of replacement piping. This presentation will report upon how replacement size for size feeder tube was developed and is currently manufactured at Nu-Tech Precision Metals. The paper will also detail the current supply strategy to ensure timely manufacture of the product.

  13. Visual exposure to large and small portion sizes and perceptions of portion size normality: Three experimental studies

    OpenAIRE

    Robinson, Eric; Oldham, Melissa; Cuckson, Imogen; Brunstrom, Jeffrey M.; Rogers, Peter J.; Hardman, Charlotte A.

    2016-01-01

    Portion sizes of many foods have increased in recent times. In three studies we examined the effect that repeated visual exposure to larger versus smaller food portion sizes has on perceptions of what constitutes a normal-sized food portion and measures of portion size selection. In studies 1 and 2 participants were visually exposed to images of large or small portions of spaghetti bolognese, before making evaluations about an image of an intermediate sized portion of the same food. In study ...

  14. Size Matters: Penis Size and Sexual Position in Gay Porn Profiles.

    Science.gov (United States)

    Brennan, Joseph

    2018-01-01

    This article combines qualitative and quantitative textual approaches to the representation of penis size and sexual position of performers in 10 of the most visited gay pornography Web sites currently in operation. Specifically, in excess of 6,900 performer profiles sourced from 10 commercial Web sites are analyzed. Textual analysis of the profile descriptions is combined with a quantitative representation of disclosed penis size and sexual position, which is presented visually by two figures. The figures confirm that these sites generally market themselves as featuring penises that are extraordinarily large and find a sample-wide correlation between smaller penis sizes (5-6.5 inches) and receptive sexual acts (bottoming), and larger (8.5-13 inches) with penetrative acts (topping). These observations are supported through the qualitative textual readings of how the performers are described on these popular sites, revealing the narratives and marketing strategies that shape the construction of popular porn brands, performers, and profitable fantasies.

  15. Sample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys.

    Science.gov (United States)

    Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R

    2017-09-14

    While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.

  16. Comparing fishers' and scientific estimates of size at maturity and maximum body size as indicators for overfishing.

    Science.gov (United States)

    Mclean, Elizabeth L; Forrester, Graham E

    2018-04-01

    We tested whether fishers' local ecological knowledge (LEK) of two fish life-history parameters, size at maturity (SAM) at maximum body size (MS), was comparable to scientific estimates (SEK) of the same parameters, and whether LEK influenced fishers' perceptions of sustainability. Local ecological knowledge was documented for 82 fishers from a small-scale fishery in Samaná Bay, Dominican Republic, whereas SEK was compiled from the scientific literature. Size at maturity estimates derived from LEK and SEK overlapped for most of the 15 commonly harvested species (10 of 15). In contrast, fishers' maximum size estimates were usually lower than (eight species), or overlapped with (five species) scientific estimates. Fishers' size-based estimates of catch composition indicate greater potential for overfishing than estimates based on SEK. Fishers' estimates of size at capture relative to size at maturity suggest routine inclusion of juveniles in the catch (9 of 15 species), and fishers' estimates suggest that harvested fish are substantially smaller than maximum body size for most species (11 of 15 species). Scientific estimates also suggest that harvested fish are generally smaller than maximum body size (13 of 15), but suggest that the catch is dominated by adults for most species (9 of 15 species), and that juveniles are present in the catch for fewer species (6 of 15). Most Samaná fishers characterized the current state of their fishery as poor (73%) and as having changed for the worse over the past 20 yr (60%). Fishers stated that concern about overfishing, catching small fish, and catching immature fish contributed to these perceptions, indicating a possible influence of catch-size composition on their perceptions. Future work should test this link more explicitly because we found no evidence that the minority of fishers with more positive perceptions of their fishery reported systematically different estimates of catch-size composition than those with the more

  17. Portion size and intended consumption. Evidence for a pre-consumption portion size effect in males?

    Science.gov (United States)

    Robinson, Eric; te Raa, Wesselien; Hardman, Charlotte A

    2015-08-01

    Larger portions increase energy intake (the 'portion size effect'); however, the mechanisms behind this effect are unclear. Although pre-meal intentions are thought to be an important determinant of energy intake, little research has examined how much of a meal individuals intend to eat when served standard versus larger portion sizes. Three studies examined the effect of manipulating portion size on intended food consumption. In Studies 1 (spaghetti bolognese) and 2 (curry and rice) male participants were shown an image of either a standard or a larger meal and indicated how much of the meal they intended to consume. In Study 3 male and female participants were served either a standard or a larger portion of ice cream for dessert, they indicated how much they intended to consume and then ate as much of the ice cream as they desired. Regardless of being shown standard or large portion sizes, in Studies 1 and 2 participants reported that they intended to eat the majority of the meal, equating to a large difference in intended energy consumption between portion size conditions (a 'pre-consumption portion size effect'). This finding was replicated in male participants in Study 3, although females intended to eat a smaller proportion of the larger portion of ice cream, compared to the standard portion. Both male and female participants tended to eat in accordance with their pre-meal intentions and a portion size effect on actual consumption was subsequently observed in males, but not in females. The portion size effect may be observed when measuring pre-meal intended consumption in males. Copyright © 2015. Published by Elsevier Ltd.

  18. Portion size

    Science.gov (United States)

    ... of cards One 3-ounce (84 grams) serving of fish is a checkbook One-half cup (40 grams) ... for the smallest size. By eating a small hamburger instead of a large, you will save about 150 calories. ...

  19. Prognostic value of nucleolar size and size pleomorphism in choroidal melanomas

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Gamel, J W; Jensen, O A

    1993-01-01

    Morphometric estimates of nucleolar size have been shown to possess a high prognostic value in patients with uveal melanomas. The authors investigated various quantitative estimators of the mean size and pleomorphism of nucleoli in choroidal melanomas from a consecutive series of 95 Danish patients...... of melanoma, and largest macroscopic tumor dimension (LTD), the following histomorphometric estimates were obtained: mean diameter of the 10 largest nucleoli (MLN), point-sampled mean nucleolar profile area (nucleolar ao) and the associated standard deviation of nucleolar ao, the volume-weighted mean...

  20. Food aroma affects bite size

    Directory of Open Access Journals (Sweden)

    de Wijk René A

    2012-03-01

    Full Text Available Abstract Background To evaluate the effect of food aroma on bite size, a semisolid vanilla custard dessert was delivered repeatedly into the mouth of test subjects using a pump while various concentrations of cream aroma were presented retronasally to the nose. Termination of the pump, which determined bite size, was controlled by the subject via a push button. Over 30 trials with 10 subjects, the custard was presented randomly either without an aroma, or with aromas presented below or near the detection threshold. Results Results for ten subjects (four females and six males, aged between 26 and 50 years, indicated that aroma intensity affected the size of the corresponding bite as well as that of subsequent bites. Higher aroma intensities resulted in significantly smaller sizes. Conclusions These results suggest that bite size control during eating is a highly dynamic process affected by the sensations experienced during the current and previous bites.

  1. Interfacial Studies of Sized Carbon Fiber

    International Nuclear Information System (INIS)

    Shahrul, S. N.; Hartini, M. N.; Hilmi, E. A.; Nizam, A.

    2010-01-01

    This study was performed to investigate the influence of sizing treatment on carbon fiber in respect of interfacial adhesion in composite materials, Epolam registered 2025. Fortafil unsized carbon fiber was used to performed the experiment. The fiber was commercially surface treated and it was a polyacrylonitrile based carbon fiber with 3000 filament per strand. Epicure registered 3370 was used as basic sizing chemical and dissolved in two types of solvent, ethanol and acetone for the comparison purpose. The single pull out test has been used to determine the influence of sizing on carbon fiber. The morphology of carbon fiber was observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The apparent interfacial strength IFSS values determined by pull out test for the Epicure registered 3370/ethanol sized carbon fiber pointed to a good interfacial behaviour compared to the Epicure registered 3370/acetone sized carbon fiber. The Epicure registered 3370/ethanol sizing agent was found to be effective in promoting adhesion because of the chemical reactions between the sizing and Epolam registered 2025 during the curing process. From this work, it showed that sized carbon fiber using Epicure registered 3370 with addition of ethanol give higher mechanical properties of carbon fiber in terms of shear strength and also provided a good adhesion between fiber and matrix compared to the sizing chemical that contain acetone as a solvent.

  2. Effect of meal size and body size on specific dynamic action and gastric processing in decapod crustaceans.

    Science.gov (United States)

    McGaw, Iain J; Curtis, Daniel L

    2013-11-01

    Meal size and animal size are important factors affecting the characteristics of the specific dynamic action (SDA) response across a variety of taxa. The effects of these two variables on the SDA of decapod crustaceans are based on just a couple of articles, and are not wholly consistent with the responses reported for other aquatic ectotherms. Therefore, the effects of meal size and animal size on the characteristics of SDA response were investigated in a variety of decapod crustaceans from different families. A 6 fold increase in meal size (0.5%-3% body mass) resulted a pronounced increase in the duration of increased oxygen consumption, resulting in an increase in the SDA of Callinectes sapidus, Cancer gracilis, Hemigrapsus nudus, Homarus americanus, Pugettia producta and Procambarus clarkii. Unlike many other aquatic ectotherms a substantial increase between meal sizes was required, with meal size close to their upper feeding limit (3% body mass), before changes were evident. In many organisms increases in both duration and scope contribute to the overall SDA, here changes in scope as a function of meal size were weak, suggesting that a similar amount of energy is required to upregulate gastric processes, regardless of meal size. The SDA characteristics were less likely to be influenced by the size of the animal, and there was no difference in the SDA (kJ) as a function of size in H. americanus or Cancer irroratus when analysed as mass specific values. In several fish species characteristics of the SDA response are more closely related to the transit times of food, rather than the size of a meal. To determine if a similar trend occurred in crustaceans, the transit rates of different sized meals were followed through the digestive system using a fluoroscope. Although there was a trend towards larger meals taking longer to pass through the gut, this was only statistically significant for P. clarkii. There were some changes in transit times as a function of animal

  3. Evidence for the Higher Importance of Signal Size Over Body Size in Aposematic Signaling in Insects

    OpenAIRE

    Remmel, Triinu; Tammarub, Toomas

    2011-01-01

    To understand the evolution of warning coloration, it is important to distinguish between different aspects of conspicuous color patterns. As an example, both pattern element size and body size of prey have been shown to enhance the effectiveness of warning signals. However, it is unclear whether the effect of body size is merely a side effect of proportionally increasing pattern elements, or if there is an effect of body size per se. These possibilities were evaluated by offering different s...

  4. Chefs' opinions of restaurant portion sizes.

    Science.gov (United States)

    Condrasky, Marge; Ledikwe, Jenny H; Flood, Julie E; Rolls, Barbara J

    2007-08-01

    The objectives were to determine who establishes restaurant portion sizes and factors that influence these decisions, and to examine chefs' opinions regarding portion size, nutrition information, and weight management. A survey was distributed to chefs to obtain information about who is responsible for determining restaurant portion sizes, factors influencing restaurant portion sizes, what food portion sizes are being served in restaurants, and chefs' opinions regarding nutrition information, health, and body weight. The final sample consisted of 300 chefs attending various culinary meetings. Executive chefs were identified as being primarily responsible for establishing portion sizes served in restaurants. Factors reported to have a strong influence on restaurant portion sizes included presentation of foods, food cost, and customer expectations. While 76% of chefs thought that they served "regular" portions, the actual portions of steak and pasta they reported serving were 2 to 4 times larger than serving sizes recommended by the U.S government. Chefs indicated that they believe that the amount of food served influences how much patrons consume and that large portions are a problem for weight control, but their opinions were mixed regarding whether it is the customer's responsibility to eat an appropriate amount when served a large portion of food. Portion size is a key determinant of energy intake, and the results from this study suggest that cultural norms and economic value strongly influence the determination of restaurant portion sizes. Strategies are needed to encourage chefs to provide and promote portions that are appropriate for customers' energy requirements.

  5. Spacesuit Soft Upper Torso Sizing Systems

    Science.gov (United States)

    Graziosi, David; Splawn, Keith

    2011-01-01

    The passive sizing system consists of a series of low-profile pulleys attached to the front and back of the shoulder bearings on a spacesuit soft upper torso (SUT), textile cord or stainless steel cable, and a modified commercial ratchet mechanism. The cord/cable is routed through the pulleys and attached to the ratchet mechanism mounted on the front of the spacesuit within reach of the suited subject. Upon actuating the ratchet mechanism, the shoulder bearing breadth is changed, providing variable upper torso sizing. The active system consists of a series of pressurizable nastic cells embedded into the fabric layers of a spacesuit SUT. These cells are integrated to the front and back of the SUT and are connected to an air source with a variable regulator. When inflated, the nastic cells provide a change in the overall shoulder bearing breadth of the spacesuit and thus, torso sizing. The research focused on the development of a high-performance sizing and actuation system. This technology has application as a suit-sizing mechanism to allow easier suit entry and more accurate suit fit with fewer torso sizes than the existing EMU (Extravehicular Mobility Unit) suit system. This advanced SUT will support NASA s Advanced EMU Evolutionary Concept of a two-sizes-fit-all upper torso for replacement of the current EMU hard upper torso (HUT). Both the passive and nastic sizing system approaches provide astronauts with real-time upper torso sizing, which translates into a more comfortable suit, providing enhanced fit resulting in improved crewmember performance during extravehicular activity. These systems will also benefit NASA by reducing flight logistics as well as overall suit system cost. The nastic sizing system approach provides additional structural redundancy over existing SUT designs by embedding additional coated fabric and uncoated fabric layers. Two sizing systems were selected to build into a prototype SUT: one active and one passive. From manned testing, it

  6. Finite size effects in the intermittency analysis of the fragment-size correlations

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.; Tucholski, A.

    1991-01-01

    An influence of the finite size effect on the fragment-size correlations in the nuclear multifragmentation is studied using the method of scaled factorial moments for a 1 - dim percolation model and for a statistical model of the fragmentation process, which for a certain value of a tuning parameter yields the power-law behaviour of the fragment-size distribution. It is shown that the statistical models of this type contain only repulsive correlations due to the conservation laws. The comparison of the results with those obtained in the non-critical 1 - dim percolation and in the 3 - dim percolation at around the critical point is presented. Correlations in the 1 - dim percolation model are analysed analytically and the mechanism of the attractive correlations in 1 - dim and 3 - dim is identified. (author) 30 refs., 7 figs

  7. Family size and effective population size in a hatchery stock of coho salmon (Oncorhynchus kisutch)

    Science.gov (United States)

    Simon, R.C.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    Means and variances of family size measured in five year-classes of wire-tagged coho salmon (Oncorhynchus kisutch) were linearly related. Population effective size was calculated by using estimated means and variances of family size in a 25-yr data set. Although numbers of age 3 adults returning to the hatchery appeared to be large enough to avoid inbreeding problems (the 25-yr mean exceeded 4500), the numbers actually contributing to the hatchery production may be too low. Several strategies are proposed to correct the problem perceived. Argument is given to support the contention that the problem of effective size is fairly general and is not confined to the present study population.

  8. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    Science.gov (United States)

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  9. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    Energy Technology Data Exchange (ETDEWEB)

    Injumpa, Wishulada [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ritprajak, Patcharee [Department of Microbiology, and RU in Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 (Thailand); Insin, Numpon, E-mail: Numpon.I@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-01

    Iron oxides nanoparticles have been utilized in biological systems and biomedical applications for many years because they are relatively safe and stable comparing to other magnetic nanomaterials. In some applications, iron oxide nanoparticles were modified with silica in order to be more stable in biological systems and able to be functionalized with various functional groups. Moreover, poly(ethylene glycol) (PEG) was one on the most used polymer to graft onto the nanoparticles in order to increase their biocompatibility, dispersibility and stability in aqueous solutions. Therefore, the nanocomposites comprising iron oxide nanoparticles, silica, and PEG could become multifunctional carriers combining superparamagnetic character, multi-functionality and high stability in biological environments. Herein, we reported the preparation of the nanocomposites and effects of their sizes on cytotoxicity and inflammatory responses. The PEGylated silica-iron oxide nanocomposites were prepared by coating of poly(poly(ethylene glycol) monomethyl ether methacrylate) (PPEGMA) on magnetic nanoparticle-silica nanocomposites via Atom Transfer Radical Polymerization (ATRP). The iron oxide nanoparticles were synthesized using a thermal decomposition method. The silica shells were then coated on iron oxides nanoparticles using reverse microemulsion and sol-gel methods. The size series of the nanocomposites with the diameter of 24.86±4.38, 45.24±5.00, 98.10±8.88 and 202.22±6.70 nm as measured using TEM were obtained. Thermogravimetric analysis (TGA) was used for the determination of % weight of PPEGMA on the nanocomposites showing the weight loss of ranging from 65% for smallest particles to 30% for largest particles. The various sizes (20, 40, 100, 200 nm) and concentrations (10, 100, 1000 μg/mL) of the nanocomposites were tested for their cytotoxicity in fibroblast and macrophage cell lines using MTT assay. The different sizes did not affect cell viability of fibroblast, albeit

  10. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods.

    Science.gov (United States)

    Varenne, Fanny; Makky, Ali; Gaucher-Delmas, Mireille; Violleau, Frédéric; Vauthier, Christine

    2016-05-01

    Evaluation of particle size distribution (PSD) of multimodal dispersion of nanoparticles is a difficult task due to inherent limitations of size measurement methods. The present work reports the evaluation of PSD of a dispersion of poly(isobutylcyanoacrylate) nanoparticles decorated with dextran known as multimodal and developed as nanomedecine. The nine methods used were classified as batch particle i.e. Static Light Scattering (SLS) and Dynamic Light Scattering (DLS), single particle i.e. Electron Microscopy (EM), Atomic Force Microscopy (AFM), Tunable Resistive Pulse Sensing (TRPS) and Nanoparticle Tracking Analysis (NTA) and separative particle i.e. Asymmetrical Flow Field-Flow Fractionation coupled with DLS (AsFlFFF) size measurement methods. The multimodal dispersion was identified using AFM, TRPS and NTA and results were consistent with those provided with the method based on a separation step prior to on-line size measurements. None of the light scattering batch methods could reveal the complexity of the PSD of the dispersion. Difference between PSD obtained from all size measurement methods tested suggested that study of the PSD of multimodal dispersion required to analyze samples by at least one of the single size particle measurement method or a method that uses a separation step prior PSD measurement.

  11. Size effects in shear interfaces

    OpenAIRE

    GARNIER, J

    2001-01-01

    In physical modelling (centrifuge tests, calibration chambers, laboratory tests), the size of the soil particles may not be negligible when compared to the dimensions of the models. Size effects may so disturb the response of the models and the experimental data obtained on these cannot be extended to true scale conditions. Different tests have been performed to study and quantify the size effects that may happen in shear interfaces between soils and structures : modified shear box tests, pul...

  12. 77 FR 22564 - Proposed Collection; Comment Request; Safety Standards for Full-Size Baby Cribs and Non-Full-Size...

    Science.gov (United States)

    2012-04-16

    ... CONSUMER PRODUCT SAFETY COMMISSION [Docket No. CPSC-2012-0019] Proposed Collection; Comment Request; Safety Standards for Full- Size Baby Cribs and Non-Full-Size Baby Cribs; Compliance Form AGENCY... safety standards for full-size and non-full-size baby cribs in response to the direction under section...

  13. Genetic size and growth in goats

    NARCIS (Netherlands)

    Ogink, N.W.M.

    1993-01-01

    Since the last century, many biologists have studied the effects of size differences between species on the rate of their metabolic processes. in 1980, Taylor published the genetic size-scaling theory which incorporated the existing knowledge on size effects, and introduced two formal

  14. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  15. Correlations Between Degree of Petal Fusion, Leaf Size and Fruit Size: A Case in Syzygium (Myrtaceae

    Directory of Open Access Journals (Sweden)

    PUDJI WIDODO

    2009-07-01

    Full Text Available Syzygium is one of large genera of the flowering plants. In order to simplify the identification, a classification is required, e.g. based on degree of petal fusion, leaf size and fruit size. Due to variations of vegetative and generative characters, a correlation analysis was carried out. The aim of this research is to know the correlation between degree of petal fusion, leaf length and fruit diameter. The result of this research showed that there is positive correlation between those three variables. The increase of leaf size will increase fruit size and petal lobe depth.

  16. A Critique of Size-Related Anomalies.

    OpenAIRE

    Berk, Jonathan B

    1995-01-01

    This article argues that the size-related regularities in asset prices should not be regarded as anomalies. Indeed, the opposite result is demonstrated. Namely, a truly anomalous regularity would be if an inverse relation between size and return was not observed. We show theoretically (1) that the size-related regularities should be observed in the economy and (2) why size will in general explain the part of the cross-section of expected returns left unexplained by an incorrectly specified as...

  17. The Effect of Plant Supplements on the Development of Artificially Weaken Bee Families

    Directory of Open Access Journals (Sweden)

    Liviu Al. Mărghitaş

    2010-05-01

    Full Text Available In this study, infusions from nettle, thyme and Echinacea, fresh juice of onion and garlic, and Protofil (alcoholic extract of different plants enriched with vitamins and mineral elements, were used in supplementary feeding of artificially weaken bee families. Correlation between total phenolic content, total flavonoid content and antioxidant activity of the supplements used in honeybee feeding and uncapped, capped and total brood surface of experimental groups were established. The highest content of biologically active compounds exhibit nettle infusion, which present the most effective growth in field experiments.

  18. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  19. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  20. 7 CFR 51.2284 - Size classification.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Size classification. 51.2284 Section 51.2284... Size classification. The following classifications are provided to describe the size of any lot... shall conform to the requirements of the specified classification as defined below: (a) Halves. Lot...

  1. X-ray tube focal spot sizes: comprehensive studies of their measurement and effect of measured size in angiography

    International Nuclear Information System (INIS)

    Doi, K.; Loo, L.N.; Chan, H.P.

    1982-01-01

    Thirty-two focal spot sizes of four x-ray tubes were measured by the pinhole, star pattern, slit, and root-mean-square (RMS) methods under various exposure conditions. The modulation transfer functions (MTFs) and line spread functions (LSFs) were also determined. The star pattern focal spot sizes agreed with the effective sizes calculated from the frequencies at the first minimum of the MTF within 0.04 mm for large focal spots and within 0.01 mm for small focal spots. The focal spot size determined by the slit method was approximately equal to the width of the LSF at the cutoff level of 0.15 +/- 0.06 of the peak value. The RMS method provided the best correlation between the measured focal spot sizes and the corresponding image distributions of blood vessels. The pinhole and slit methods tended to overestimate the focal spot size, but the star pattern method tended to underestimate it. For approximately 90% of the focal spots, the average of the star and slit (or pinhole) focal spot sizes agreed with the RMS focal spot size within +/- 0.1 mm

  2. Estimating Search Engine Index Size Variability

    DEFF Research Database (Denmark)

    Van den Bosch, Antal; Bogers, Toine; De Kunder, Maurice

    2016-01-01

    One of the determining factors of the quality of Web search engines is the size of their index. In addition to its influence on search result quality, the size of the indexed Web can also tell us something about which parts of the WWW are directly accessible to the everyday user. We propose a novel...... method of estimating the size of a Web search engine’s index by extrapolating from document frequencies of words observed in a large static corpus of Web pages. In addition, we provide a unique longitudinal perspective on the size of Google and Bing’s indices over a nine-year period, from March 2006...... until January 2015. We find that index size estimates of these two search engines tend to vary dramatically over time, with Google generally possessing a larger index than Bing. This result raises doubts about the reliability of previous one-off estimates of the size of the indexed Web. We find...

  3. Sizing a PACS

    Science.gov (United States)

    Wilson, Dennis L.; Glicksman, Robert A.

    1994-05-01

    A Picture Archiving and Communications System (PACS) must be able to support the image rate of the medical treatment facility. In addition the PACS must have adequate working storage and archive storage capacity required. The calculation of the number of images per minute and the capacity of working storage and of archiving storage is discussed. The calculation takes into account the distribution of images over the different size of radiological images, the distribution between inpatient and outpatient, and the distribution over plain film CR images and other modality images. The support of the indirect clinical image load is difficult to estimate and is considered in some detail. The result of the exercise for a particular hospital is an estimate of the average size of the images and exams on the system, of the number of gigabytes of working storage, of the number of images moved per minute, of the size of the archive in gigabytes, and of the number of images that are to be moved by the archive per minute. The types of storage required to support the image rates and the capacity required are discussed.

  4. Selective permeability of uranyl peroxide nanocages to different alkali ions: influences from surface pores and hydration shells

    International Nuclear Information System (INIS)

    Gao, Yunyi; Haso, Fadi; Zhou, Jing; Hu, Lang; Liu, Tianbo; Szymanowski, Jennifer E.S.; Burns, Peter C.

    2015-01-01

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li_4_8_+_mK_1_2(OH)_m[UO_2(O_2)(OH)]_6_0_-(H_2O)_n (m∼20 and n∼310) (U_6_0) shows selective permeability to different alkali ions. The subnanometer pores on the water-ligand-rich surface of U_6_0 are able to block Rb"+ and Cs"+ ions from passing through, while allowing Na"+ and K"+ ions, which possess larger hydrated sizes, to enter the interior space of U_6_0. An interestingly high entropy gain during the binding process between U_6_0 and alkali ions suggests that the hydration shells of Na"+/K"+ and U_6_0 are damaged during the interaction. The ion selectivity of U_6_0 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Promotion of alternative-sized personal protective equipment.

    Science.gov (United States)

    Flynn, Michael A; Keller, Brenna; DeLaney, Sheli C

    2017-12-01

    With more diversity in the workforce, companies are producing PPE such as hard hats, safety glasses, coveralls, foot protection, and safety harnesses for a larger range of body shapes and sizes. However, gray literature reports suggest that barriers exist to getting alternate sized PPE from the manufacturer to the workers who need it. The purpose of this study is to determine the extent to which alternative-sized PPE is marketed. A web-based review of seven major manufacturers of PPE was conducted to determine: (a) whether or not they offer alternative-sized products, (b) if these products are clearly labeled, and (c) if images used to display PPE are representative of a diverse workforce. Of the seven PPE manufacturers investigated, six had at least one product that was marketed as gender and/or size alternatives however, alternative sizes were more common for larger body types. Alternative-sized products rarely included size charts, and the models used to display PPE were overwhelmingly white males of average size. Despite the growing availability of alternative-sized PPE, it can be difficult to find these products, which suggests that they are rarely promoted or labeled as alternative-sized. Our study indicates that companies should expand their product lines and more aggressively market and promote these items. Guidance on how to properly fit their products would also be extremely helpful to the end-user. Manufacturers could improve the availability of alternative-sized PPE and increase their promotion of these products on their websites and in their catalogs. Individual companies and safety professionals may assist in this process by demonstrating demand for alternative-sized PPE. Published by Elsevier Ltd.

  6. Why get big in the cold? Size-fecundity relationships explain the temperature-size rule in a pulmonate snail (Physa).

    Science.gov (United States)

    Arendt, J

    2015-01-01

    Most ectotherms follow a pattern of size plasticity known as the temperature-size rule where individuals reared in cold environments are larger at maturation than those reared in warm environments. This pattern seems maladaptive because growth is slower in the cold so it takes longer to reach a large size. However, it may be adaptive if reaching a large size has a greater benefit in a cold than in a warm environment such as when size-dependent mortality or size-dependent fecundity depends on temperature. I present a theoretical model showing how a correlation between temperature and the size-fecundity relationship affects optimal size at maturation. I parameterize the model using data from a freshwater pulmonate snail from the genus Physa. Nine families were reared from hatching in one of three temperature regimes (daytime temperature of 22, 25 or 28 °C, night-time temperature of 22 °C, under a 12L:12D light cycle). Eight of the nine families followed the temperature-size rule indicating genetic variation for this plasticity. As predicted, the size-fecundity relationship depended upon temperature; fecundity increases steeply with size in the coldest treatment, less steeply in the intermediate treatment, and shows no relationship with size in the warmest treatment. Thus, following the temperature-size rule is adaptive for this species. Although rarely measured under multiple conditions, size-fecundity relationships seem to be sensitive to a number of environmental conditions in addition to temperature including local productivity, competition and predation. If this form of plasticity is as widespread as it appears to be, this model shows that such plasticity has the potential to greatly modify current life-history theory. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Sibship Size and Educational Attainment

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    2009-01-01

    have a negative effect on educational attainment most studies cannot distinguish empirically between the CM and the RDH. In this paper I use the different theoretical predictions in the CM and RDH on the role of cognitive ability as a partial or complete mediator of the effect of sibship size......Studies on family background often explain the negative effect of sibship size on educational attainment by one of two theories: the Confluence Model (CM) or the Resource Dilution Hypothesis (RDH). However, as both theories - for substantively different reasons - predict that sibship size should...... to distinguish the two theories and to identify a unique RDH effect on educational attainment. Using sibling data from the Wisconsin Longitudinal Study (WLS) and a random effect Instrumental Variable model I find that, in addition to a negative effect on cognitive ability, sibship size also has a strong negative...

  8. Effect Sizes in Gifted Education Research

    Science.gov (United States)

    Gentry, Marcia; Peters, Scott J.

    2009-01-01

    Recent calls for reporting and interpreting effect sizes have been numerous, with the 5th edition of the "Publication Manual of the American Psychological Association" (2001) calling for the inclusion of effect sizes to interpret quantitative findings. Many top journals have required that effect sizes accompany claims of statistical significance.…

  9. Prevention of the Portion Size Effect

    NARCIS (Netherlands)

    I. Versluis (Iris)

    2016-01-01

    markdownabstractAn increase in the portion size leads to an increase in energy intake, a phenomenon which is also referred to as the portion size effect. The increase in portion sizes in recent years is regarded as an important contributor to the increase in the prevalence of obesity. Hence, the aim

  10. Size-change termination and bound analysis

    DEFF Research Database (Denmark)

    Avery, James Emil

    2006-01-01

    . The extended size-change principle is realized through combining abstract interpretation over the domain of convex polyhedra with the use of size-change graphs. In the cases when data types are well founded, the method handles every case that is handled by LJB size-change termination. The method has been...

  11. Jurisdiction Size and Local Democracy

    DEFF Research Database (Denmark)

    Lassen, David Dreyer; Serritslew, Søren

    2011-01-01

    and problems of endogeneity. We focus on internal political efficacy, a psychological condition that many see as necessary for high-quality participatory democracy. We identify a quasiexperiment, a large-scale municipal reform in Denmark, which allows us to estimate a causal effect of jurisdiction size......Optimal jurisdiction size is a cornerstone of government design. A strong tradition in political thought argues that democracy thrives in smaller jurisdictions, but existing studies of the effects of jurisdiction size, mostly cross-sectional in nature, yield ambiguous results due to sorting effects...

  12. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    Science.gov (United States)

    Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon

    2017-04-01

    Iron oxides nanoparticles have been utilized in biological systems and biomedical applications for many years because they are relatively safe and stable comparing to other magnetic nanomaterials. In some applications, iron oxide nanoparticles were modified with silica in order to be more stable in biological systems and able to be functionalized with various functional groups. Moreover, poly(ethylene glycol) (PEG) was one on the most used polymer to graft onto the nanoparticles in order to increase their biocompatibility, dispersibility and stability in aqueous solutions. Therefore, the nanocomposites comprising iron oxide nanoparticles, silica, and PEG could become multifunctional carriers combining superparamagnetic character, multi-functionality and high stability in biological environments. Herein, we reported the preparation of the nanocomposites and effects of their sizes on cytotoxicity and inflammatory responses. The PEGylated silica-iron oxide nanocomposites were prepared by coating of poly(poly(ethylene glycol) monomethyl ether methacrylate) (PPEGMA) on magnetic nanoparticle-silica nanocomposites via Atom Transfer Radical Polymerization (ATRP). The iron oxide nanoparticles were synthesized using a thermal decomposition method. The silica shells were then coated on iron oxides nanoparticles using reverse microemulsion and sol-gel methods. The size series of the nanocomposites with the diameter of 24.86±4.38, 45.24±5.00, 98.10±8.88 and 202.22±6.70 nm as measured using TEM were obtained. Thermogravimetric analysis (TGA) was used for the determination of % weight of PPEGMA on the nanocomposites showing the weight loss of ranging from 65% for smallest particles to 30% for largest particles. The various sizes (20, 40, 100, 200 nm) and concentrations (10, 100, 1000 μg/mL) of the nanocomposites were tested for their cytotoxicity in fibroblast and macrophage cell lines using MTT assay. The different sizes did not affect cell viability of fibroblast, albeit

  13. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  14. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  15. Visuomotor Dissociation in Cerebral Scaling of Size.

    Science.gov (United States)

    Potgieser, Adriaan R E; de Jong, Bauke M

    2016-01-01

    Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.

  16. 36 CFR 13.905 - Group size.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Group size. 13.905 Section 13... § 13.905 Group size. (a) The following are prohibited: (1) Group sizes exceeding 12 individuals on the east side of the park outside the Frontcountry Developed Area as defined by this subpart. (2) Group...

  17. Body size distribution of the dinosaurs.

    Directory of Open Access Journals (Sweden)

    Eoin J O'Gorman

    Full Text Available The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  18. Body size distribution of the dinosaurs.

    Science.gov (United States)

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  19. Body Size Distribution of the Dinosaurs

    Science.gov (United States)

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  20. Size-based predictions of food web patterns

    DEFF Research Database (Denmark)

    Zhang, Lai; Hartvig, Martin; Knudsen, Kim

    2014-01-01

    We employ size-based theoretical arguments to derive simple analytic predictions of ecological patterns and properties of natural communities: size-spectrum exponent, maximum trophic level, and susceptibility to invasive species. The predictions are brought about by assuming that an infinite number...... of species are continuously distributed on a size-trait axis. It is, however, an open question whether such predictions are valid for a food web with a finite number of species embedded in a network structure. We address this question by comparing the size-based predictions to results from dynamic food web...... simulations with varying species richness. To this end, we develop a new size- and trait-based food web model that can be simplified into an analytically solvable size-based model. We confirm existing solutions for the size distribution and derive novel predictions for maximum trophic level and invasion...

  1. Visuomotor Dissociation in Cerebral Scaling of Size.

    Directory of Open Access Journals (Sweden)

    Adriaan R E Potgieser

    Full Text Available Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity. These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8 revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.

  2. Evolution of body size in Galapagos marine iguanas.

    Science.gov (United States)

    Wikelski, Martin

    2005-10-07

    Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward ('pasture') heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better

  3. Recommendations for plutonium colloid size determination

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1984-02-01

    This report presents recommendations for plutonium colloid size determination and summarizes a literature review, discussions with other researchers, and comments from equipment manufacturers. Four techniques suitable for plutonium colloid size characterization are filtration and ultrafiltration, gel permeation chromatography, diffusion methods, and high-pressure liquid chromatography (conditionally). Our findings include the following: (1) Filtration and ultrafiltration should be the first methods used for plutonium colloid size determination because they can provide the most rapid results with the least complicated experimental arrangement. (2) After expertise has been obtained with filtering, gel permeation chromatography should be incorporated into the colloid size determination program. (3) Diffusion methods can be used next. (4) High-pressure liquid chromatography will be suitable after appropriate columns are available. A plutonium colloid size characterization program with filtration/ultrafiltration and gel permeation chromatography has been initiated

  4. Compressors selection and sizing

    CERN Document Server

    Brown, Royce N

    2005-01-01

    This practical reference provides in-depth information required to understand and properly estimate compressor capabilities and to select the proper designs. Engineers and students will gain a thorough understanding of compression principles, equipment, applications, selection, sizing, installation, and maintenance. The many examples clearly illustrate key aspects to help readers understand the ""real world"" of compressor technology.Compressors: Selection and Sizing, third edition is completely updated with new API standards. Additions requested by readers include a new section on di

  5. Firm size and taxes

    OpenAIRE

    Chongvilaivan, Aekapol; Jinjarak, Yothin

    2010-01-01

    The scale dependence in firm growth (smaller firms grow faster) is systematically reflected in the size distribution. This paper studies whether taxes affect the equilibrium firm size distribution in a cross-country context. The main finding is that the empirical association between firm growth and corporate tax (VAT) is positive (negative), with notable differences in the response of manufacturing firms and that of the others. We draw implications for recent debate on the impact of taxes and...

  6. Size-Dictionary Interpolation for Robot's Adjustment

    Directory of Open Access Journals (Sweden)

    Morteza eDaneshmand

    2015-05-01

    Full Text Available This paper describes the classification and size-dictionary interpolation of the three-dimensional data obtained by a laser scanner to be used in a realistic virtual fitting room, where automatic activation of the chosen mannequin robot, while several mannequin robots of different genders and sizes are simultaneously connected to the same computer, is also considered to make it mimic the body shapes and sizes instantly. The classification process consists of two layers, dealing, respectively, with gender and size. The interpolation procedure tries to find out which set of the positions of the biologically-inspired actuators for activation of the mannequin robots could lead to the closest possible resemblance of the shape of the body of the person having been scanned, through linearly mapping the distances between the subsequent size-templates and the corresponding position set of the bioengineered actuators, and subsequently, calculating the control measures that could maintain the same distance proportions, where minimizing the Euclidean distance between the size-dictionary template vectors and that of the desired body sizes determines the mathematical description. In this research work, the experimental results of the implementation of the proposed method on Fits.me's mannequin robots are visually illustrated, and explanation of the remaining steps towards completion of the whole realistic online fitting package is provided.

  7. Effect of display size on visual attention.

    Science.gov (United States)

    Chen, I-Ping; Liao, Chia-Ning; Yeh, Shih-Hao

    2011-06-01

    Attention plays an important role in the design of human-machine interfaces. However, current knowledge about attention is largely based on data obtained when using devices of moderate display size. With advancement in display technology comes the need for understanding attention behavior over a wider range of viewing sizes. The effect of display size on test participants' visual search performance was studied. The participants (N = 12) performed two types of visual search tasks, that is, parallel and serial search, under three display-size conditions (16 degrees, 32 degrees, and 60 degrees). Serial, but not parallel, search was affected by display size. In the serial task, mean reaction time for detecting a target increased with the display size.

  8. A Primer on Basic Effect Size Concepts.

    Science.gov (United States)

    Elmore, Patricia B.; Rotou, Ourania

    The increased interest in reporting effect sizes means that it is necessary to consider what should be included in a primer on effect sizes. A review of papers on effect sizes and commonly repeated statistical analyses suggests that it is important to discuss effect sizes relative to bivariate correlation, t-tests, analysis of variance/covariance,…

  9. Missing portion sizes in FFQ

    DEFF Research Database (Denmark)

    Køster-Rasmussen, Rasmus; Siersma, Volkert Dirk; Halldorson, Thorhallur I.

    2015-01-01

    -nearest neighbours (KNN) were compared with a reference based on self-reported portion sizes (quantified by a photographic food atlas embedded in the FFQ). Setting: The Danish Health Examination Survey 2007–2008. Subjects: The study included 3728 adults with complete portion size data. Results: Compared...

  10. Surfactant-aided size exclusion chromatography

    NARCIS (Netherlands)

    Horneman, D.A.; Wolbers, M.; Zomerdijk, M.; Ottens, M.; Keurentjes, J.T.F.; Wielen, van der L.A.M.

    2004-01-01

    The flexibility and selectivity of size exclusion chromatog. (SEC) for protein purifn. can be modified by adding non-ionic micelle-forming surfactants to the mobile phase. The micelles exclude proteins from a liq. phase similar to the exclusion effect of the polymer fibers of the size exclusion

  11. Small head size after atomic irradiation

    International Nuclear Information System (INIS)

    Miller, R.W.; Mulvihill, J.J.

    1975-01-01

    A study of children exposed to nuclear explosions in Hiroshima and Nagasaki showed small head size and mental retardation when exposure occurred less than 18 weeks of gestational age. Increased frequency of small head size occurred when maternal exposure was 10 to 19 rad. Tables and graphs are presented to show relationships between dose, gestational age, and frequency of small head size

  12. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  13. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhagen, Jason Alan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    functionalized CdS monocrystals. Aggregates of nanospheres were bathed in imaging solution, and ATP bioluminescence was monitored to investigated the release kinetics of the nanosphere drug delivery systems. Addition of disulfide bond-cleaving molecules induced uncapping of the nanospheres and subsequently, the release of ATP. Increasing the concentration of the uncapping molecule decreased the temporal maximum and increased the magnitude of release of encapsulated ATP from the nanospheres. Furthermore, the release kinetics from the nanospheres varied with the size of the particle aggregates.

  14. Do class size effects differ across grades?

    DEFF Research Database (Denmark)

    Nandrup, Anne Brink

    size cap that creates exogenous variation in class sizes. Significant (albeit modest) negative effects of class size increases are found for children on primary school levels. The effects on math abilities are statistically different across primary and secondary school. Larger classes do not affect......This paper contributes to the class size literature by analyzing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enroled in Danish public schools. Identification is based on a government-imposed class...

  15. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species

    DEFF Research Database (Denmark)

    Horne, C.R.; Hirst, Andrew G.; Atkinson, D.

    2015-01-01

    of these gradients to date, and find that their direction and magnitude co-vary among 12 arthropod orders (r2 = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support...... the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T-S and L-S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial......Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) responses and latitude-size (L-S) clines. Yet, the degree to which these co-vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison...

  16. Association between different phases of menstrual cycle and body image measures of perceived size, ideal size, and body dissatisfaction.

    Science.gov (United States)

    Teixeira, André Luiz S; Dias, Marcelo Ricardo C; Damasceno, Vinícius O; Lamounier, Joel A; Gardner, Rick M

    2013-12-01

    The association between phases of the menstrual cycle and body image was investigated. 44 university women (M age = 23.3 yr., SD = 4.7) judged their perceived and ideal body size, and body dissatisfaction was calculated at each phase of the menstrual cycle, including premenstrual, menstrual, and intermenstrual. Participants selected one of nine figural drawings ranging from very thin to obese that represented their perceived size and ideal size. Body dissatisfaction was measured as the absolute difference between scores on perceived and ideal figural drawings. During each menstrual phase, anthropometric measures of weight, height, body mass index, circumference of waist and abdomen, and body composition were taken. There were no significant differences in any anthropometric measures between the three menstrual cycle phases. Perceived body size and body dissatisfaction were significantly different between menstrual phases, with the largest perceived body size and highest body dissatisfaction occurring during the menstrual phase. Ideal body size did not differ between menstrual phases, although participants desired a significantly smaller ideal size as compared to the perceived size.

  17. Unravelling anisogamy: egg size and ejaculate size mediate selection on morphology in free-swimming sperm.

    Science.gov (United States)

    Monro, Keyne; Marshall, Dustin J

    2016-07-13

    Gamete dimorphism (anisogamy) defines the sexes in most multicellular organisms. Theoretical explanations for its maintenance usually emphasize the size-related selection pressures of sperm competition and zygote survival, assuming that fertilization of all eggs precludes selection for phenotypes that enhance fertility. In external fertilizers, however, fertilization is often incomplete due to sperm limitation, and the risk of polyspermy weakens the advantage of high sperm numbers that is predicted to limit sperm size, allowing alternative selection pressures to target free-swimming sperm. We asked whether egg size and ejaculate size mediate selection on the free-swimming sperm of Galeolaria caespitosa, a marine tubeworm with external fertilization, by comparing relationships between sperm morphology and male fertility across manipulations of egg size and sperm density. Our results suggest that selection pressures exerted by these factors may aid the maintenance of anisogamy in external fertilizers by limiting the adaptive value of larger sperm in the absence of competition. In doing so, our study offers a more complete explanation for the stability of anisogamy across the range of sperm environments typical of this mating system and identifies new potential for the sexes to coevolve via mutual selection pressures exerted by gametes at fertilization. © 2016 The Author(s).

  18. Sample size in qualitative interview studies

    DEFF Research Database (Denmark)

    Malterud, Kirsti; Siersma, Volkert Dirk; Guassora, Ann Dorrit Kristiane

    2016-01-01

    Sample sizes must be ascertained in qualitative studies like in quantitative studies but not by the same means. The prevailing concept for sample size in qualitative studies is “saturation.” Saturation is closely tied to a specific methodology, and the term is inconsistently applied. We propose...... the concept “information power” to guide adequate sample size for qualitative studies. Information power indicates that the more information the sample holds, relevant for the actual study, the lower amount of participants is needed. We suggest that the size of a sample with sufficient information power...... and during data collection of a qualitative study is discussed....

  19. Concepts in sample size determination

    Directory of Open Access Journals (Sweden)

    Umadevi K Rao

    2012-01-01

    Full Text Available Investigators involved in clinical, epidemiological or translational research, have the drive to publish their results so that they can extrapolate their findings to the population. This begins with the preliminary step of deciding the topic to be studied, the subjects and the type of study design. In this context, the researcher must determine how many subjects would be required for the proposed study. Thus, the number of individuals to be included in the study, i.e., the sample size is an important consideration in the design of many clinical studies. The sample size determination should be based on the difference in the outcome between the two groups studied as in an analytical study, as well as on the accepted p value for statistical significance and the required statistical power to test a hypothesis. The accepted risk of type I error or alpha value, which by convention is set at the 0.05 level in biomedical research defines the cutoff point at which the p value obtained in the study is judged as significant or not. The power in clinical research is the likelihood of finding a statistically significant result when it exists and is typically set to >80%. This is necessary since the most rigorously executed studies may fail to answer the research question if the sample size is too small. Alternatively, a study with too large a sample size will be difficult and will result in waste of time and resources. Thus, the goal of sample size planning is to estimate an appropriate number of subjects for a given study design. This article describes the concepts in estimating the sample size.

  20. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  1. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    Science.gov (United States)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  2. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids.

    Science.gov (United States)

    Dlubek, G; Shaikh, M Q; Rätzke, K; Paluch, M; Faupel, F

    2010-06-16

    Positron annihilation lifetime spectroscopy (PALS) is employed to characterize the temperature dependence of the free volume in two van der Waals liquids: 1, 1'-bis(p-methoxyphenyl)cyclohexane (BMPC) and 1, 1'-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC). From the PALS spectra analysed with the routine LifeTime9.0, the size (volume) distribution of local free volumes (subnanometer size holes), its mean, [v(h)], and mean dispersion, σ(h), were calculated. A comparison with the macroscopic volume from pressure-volume-temperature (PV T) experiments delivered the hole density and the specific hole free volume and a complete characterization of the free volume microstructure in that sense. These data are used in correlation with structural (α) relaxation data from broad-band dielectric spectroscopy (BDS) in terms of the Cohen-Grest and Cohen-Turnbull free volume models. An extension of the latter model allows us to quantify deviations between experiments and theory and an attempt to systematize these in terms of T(g) or of the fragility. The experimental data for several fragile and less fragile glass formers are involved in the final discussion. It was concluded that, for large differences in the fragility of different glass formers, the positron lifetime mirrors clearly the different character of these materials. For small differences in the fragility, additional properties like the character of bonds and chemical structure of the material may affect size, distribution and thermal behaviour of the free volume.

  3. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dlubek, G [ITA Institute for Innovative Technologies, Koethen/Halle, Wiesenring 4, D-06120 Lieskau (Germany); Shaikh, M Q; Raetzke, K; Faupel, F [Faculty of Engineering, Institute for Materials Science, Christian-Albrechts University of Kiel, Kaiserstrasse 2, D-24143 Kiel (Germany); Paluch, M, E-mail: guenter.dlubek@gmx.d [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2010-06-16

    Positron annihilation lifetime spectroscopy (PALS) is employed to characterize the temperature dependence of the free volume in two van der Waals liquids: 1, 1'-bis(p-methoxyphenyl)cyclohexane (BMPC) and 1, 1'-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC). From the PALS spectra analysed with the routine LifeTime9.0, the size (volume) distribution of local free volumes (subnanometer size holes), its mean, (v{sub h}), and mean dispersion, {sigma}{sub h}, were calculated. A comparison with the macroscopic volume from pressure-volume-temperature (PV T) experiments delivered the hole density and the specific hole free volume and a complete characterization of the free volume microstructure in that sense. These data are used in correlation with structural ({alpha}) relaxation data from broad-band dielectric spectroscopy (BDS) in terms of the Cohen-Grest and Cohen-Turnbull free volume models. An extension of the latter model allows us to quantify deviations between experiments and theory and an attempt to systematize these in terms of T{sub g} or of the fragility. The experimental data for several fragile and less fragile glass formers are involved in the final discussion. It was concluded that, for large differences in the fragility of different glass formers, the positron lifetime mirrors clearly the different character of these materials. For small differences in the fragility, additional properties like the character of bonds and chemical structure of the material may affect size, distribution and thermal behaviour of the free volume.

  4. Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts

    International Nuclear Information System (INIS)

    Lim, Steven S.; Haller, Gary L.

    2013-01-01

    Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically V 5+ , Co 2+ , and Ni 2+ -incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated

  5. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  6. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  7. Vessel size measurements in angiograms: Manual measurements

    International Nuclear Information System (INIS)

    Hoffmann, Kenneth R.; Dmochowski, Jacek; Nazareth, Daryl P.; Miskolczi, Laszlo; Nemes, Balazs; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2003-01-01

    Vessel size measurement is perhaps the most often performed quantitative analysis in diagnostic and interventional angiography. Although automated vessel sizing techniques are generally considered to have good accuracy and precision, we have observed that clinicians rarely use these techniques in standard clinical practice, choosing to indicate the edges of vessels and catheters to determine sizes and calibrate magnifications, i.e., manual measurements. Thus, we undertook an investigation of the accuracy and precision of vessel sizes calculated from manually indicated edges of vessels. Manual measurements were performed by three neuroradiologists and three physicists. Vessel sizes ranged from 0.1-3.0 mm in simulation studies and 0.3-6.4 mm in phantom studies. Simulation resolution functions had full-widths-at-half-maximum (FWHM) ranging from 0.0 to 0.5 mm. Phantom studies were performed with 4.5 in., 6 in., 9 in., and 12 in. image intensifier modes, magnification factor = 1, with and without zooming. The accuracy and reproducibility of the measurements ranged from 0.1 to 0.2 mm, depending on vessel size, resolution, and pixel size, and zoom. These results indicate that manual measurements may have accuracies comparable to automated techniques for vessels with sizes greater than 1 mm, but that automated techniques which take into account the resolution function should be used for vessels with sizes smaller than 1 mm

  8. Size effects in manufacturing of metallic components

    DEFF Research Database (Denmark)

    Vollertsen, F; Biermann, D; Hansen, Hans Nørgaard

    2009-01-01

    In manufacturing of metallic components, the size of the part plays an important role for the process behaviour. This is due to so called size effects, which lead to changes in the process behaviour even if the relationship between the main geometrical features is kept constant. The aim...... of this paper is to give a systematic review on Such effects and their potential use or remedy. First, the typology of size effects will be explained, followed by a description of size effects on strength and tribology. The last three sections describe size effects on formability, forming processes and cutting...... processes. (C) 2009 CIRP....

  9. Genital size: a common adolescent male concern.

    Science.gov (United States)

    Lee, Peter A; Reiter, Edward O

    2002-02-01

    Long before adolescence, males hear insinuations about adequacy of penis size. This concern may heighten during teen years and persist to varying degrees into adulthood. Men tend to underestimate their own penis size. This chapter provides objective information about anatomy and growth of the penis, including data about normal sizes. Published data indicate that, although full growth may be reached at different ages during adolescence, size is similar for most adult males. Hopefully, this information will provide the basis for teenaged males to develop a healthy perspective and to avoid intimidation by unfounded claims about sexual enhancement or size enlargement techniques.

  10. Photocatalytically active colloidal platinum-decorated cadmium sulphide nanorods for hydrogen production; Photokatalytisch Aktive Kolloidale Platindekorierte Cadmiumsulfidnanostaebchen zur Wasserstoffproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Berr, Maximilian Josef

    2012-12-07

    This is the first study to have been successful in producing hydrogen by means of photocatalytically active colloidal semiconductor particles. Specifically, colloidal platinum-decorated cadmium sulphide nanorods were used to reduce water to hydrogen. Oxidation of water to oxygen was substituted by addition of a reducing agent (hole collector), e.g. sulphite, which itself is oxidised to sulphate by the photohole. During photochemical platinum decoration it was discovered that in addition to the expected platinum nanoparticles there had also formed platinum clusters in the subnanometer range. In spite of the small quantity of platinum deposited on the nanorods these clusters showed the same quantum efficiency as the intended product. [German] In dieser Arbeit wurde erstmals mit kolloidalen Halbleiternanopartikeln photokatalytische Wasserstoffproduktion erzielt. Im Detail wurde Wasser mit kolloidalen, platindekorierten Cadmiumsulfidnanostaebchen zu Wasserstoff reduziert. Die Oxidation des Wasser zu Sauerstoff wurde durch Zugabe eines Reduktionsmittels (Lochfaenger) substituiert, z.B. Sulfit, das durch das Photoloch zu Sulfat reduziert wird. Bei der photochemischen Platindekoration wurden neben den erwarteten Platinnanopartikeln mit 4 - 5 nm Durchmesser auch Subnanometer grosse Platincluster entdeckt, die trotz der geringeren Menge an deponierten Platin auf den Nanostaebchen die gleiche Quanteneffizienz demonstrieren.

  11. On Family Size and Intelligence.

    Science.gov (United States)

    Armor, David J.

    2001-01-01

    Critiques research by Rodgers, et al. (June 2000) on the impact of family size on intelligence, explaining that it applied very simple analytic techniques to a very complex question, leading to unwarranted conclusions about family size and intelligence. Loss of cases, omission of an important ability test, and failure to apply multivariate…

  12. Intercomparison of 15 Aerodynamic Particle Size Spectrometers (APS 3321): Uncertainties in Particle Sizing and Number Size Distribution.

    Czech Academy of Sciences Publication Activity Database

    Pfeifer, S.; Müller, T.; Weinhold, K.; Zíková, Naděžda; dos Santos, S.M.; Marinoni, A.; Bischof, O.F.; Kykal, C.; Ries, L.; Meinhardt, F.; Aalto, P.; Mihalopoulos, N.; Wiedensohler, A.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 1545-1551 ISSN 1867-1381 EU Projects: European Commission(XE) 262254 - ACTRIS Institutional support: RVO:67985858 Keywords : counting efficiency * aerodynamic particle size spectrometers * laboratory study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.089, year: 2016

  13. Children's accuracy of portion size estimation using digital food images: effects of interface design and size of image on computer screen.

    Science.gov (United States)

    Baranowski, Tom; Baranowski, Janice C; Watson, Kathleen B; Martin, Shelby; Beltran, Alicia; Islam, Noemi; Dadabhoy, Hafza; Adame, Su-heyla; Cullen, Karen; Thompson, Debbe; Buday, Richard; Subar, Amy

    2011-03-01

    To test the effect of image size and presence of size cues on the accuracy of portion size estimation by children. Children were randomly assigned to seeing images with or without food size cues (utensils and checked tablecloth) and were presented with sixteen food models (foods commonly eaten by children) in varying portion sizes, one at a time. They estimated each food model's portion size by selecting a digital food image. The same food images were presented in two ways: (i) as small, graduated portion size images all on one screen or (ii) by scrolling across large, graduated portion size images, one per sequential screen. Laboratory-based with computer and food models. Volunteer multi-ethnic sample of 120 children, equally distributed by gender and ages (8 to 13 years) in 2008-2009. Average percentage of correctly classified foods was 60·3 %. There were no differences in accuracy by any design factor or demographic characteristic. Multiple small pictures on the screen at once took half the time to estimate portion size compared with scrolling through large pictures. Larger pictures had more overestimation of size. Multiple images of successively larger portion sizes of a food on one computer screen facilitated quicker portion size responses with no decrease in accuracy. This is the method of choice for portion size estimation on a computer.

  14. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  15. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    Science.gov (United States)

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  16. Plant Size and Competitive Dynamics along Nutrient Gradients.

    Science.gov (United States)

    Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S

    2017-08-01

    Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.

  17. Mesh size in Lichtenstein repair: a systematic review and meta-analysis to determine the importance of mesh size.

    Science.gov (United States)

    Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M

    2013-04-01

    Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely

  18. Being Barbie: The Size of One’s Own Body Determines the Perceived Size of the World

    Science.gov (United States)

    van der Hoort, Björn; Guterstam, Arvid; Ehrsson, H. Henrik

    2011-01-01

    A classical question in philosophy and psychology is if the sense of one's body influences how one visually perceives the world. Several theoreticians have suggested that our own body serves as a fundamental reference in visual perception of sizes and distances, although compelling experimental evidence for this hypothesis is lacking. In contrast, modern textbooks typically explain the perception of object size and distance by the combination of information from different visual cues. Here, we describe full body illusions in which subjects experience the ownership of a doll's body (80 cm or 30 cm) and a giant's body (400 cm) and use these as tools to demonstrate that the size of one's sensed own body directly influences the perception of object size and distance. These effects were quantified in ten separate experiments with complementary verbal, questionnaire, manual, walking, and physiological measures. When participants experienced the tiny body as their own, they perceived objects to be larger and farther away, and when they experienced the large-body illusion, they perceived objects to be smaller and nearer. Importantly, despite identical retinal input, this “body size effect” was greater when the participants experienced a sense of ownership of the artificial bodies compared to a control condition in which ownership was disrupted. These findings are fundamentally important as they suggest a causal relationship between the representations of body space and external space. Thus, our own body size affects how we perceive the world. PMID:21633503

  19. A sub-Mercury-sized exoplanet

    NARCIS (Netherlands)

    Barclay, T.; et al., [Unknown; Hekker, S.

    2013-01-01

    Since the discovery of the first exoplanets1, 2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4, 5, and, since last year, to detect planets that are the size of

  20. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer

    International Nuclear Information System (INIS)

    Gruber, Ines V; Rueckert, Miriam; Kagan, Karl O; Staebler, Annette; Siegmann, Katja C; Hartkopf, Andreas; Wallwiener, Diethelm; Hahn, Markus

    2013-01-01

    Tumour size in breast cancer influences therapeutic decisions. The purpose of this study was to evaluate sizing of primary breast cancer using mammography, sonography and magnetic resonance imaging (MRI) and thereby establish which imaging method most accurately corresponds with the size of the histological result. Data from 121 patients with primary breast cancer were analysed in a retrospective study. The results were divided into the groups “ductal carcinoma in situ (DCIS)”, invasive ductal carcinoma (IDC) + ductal carcinoma in situ (DCIS)”, “invasive ductal carcinoma (IDC)”, “invasive lobular carcinoma (ILC)” and “other tumours” (tubular, medullary, mucinous and papillary breast cancer). The largest tumour diameter was chosen as the sizing reference in each case. Bland-Altman analysis was used to determine to what extent the imaging tumour size correlated with the histopathological tumour sizes. Tumour size was found to be significantly underestimated with sonography, especially for the tumour groups IDC + DCIS, IDC and ILC. The greatest difference between sonographic sizing and actual histological tumour size was found with invasive lobular breast cancer. There was no significant difference between mammographic and histological sizing. MRI overestimated non-significantly the tumour size and is superior to the other imaging techniques in sizing of IDC + DCIS and ILC. The histological subtype should be included in imaging interpretation for planning surgery in order to estimate the histological tumour size as accurately as possible

  1. Hierarchical complexity and the size limits of life.

    Science.gov (United States)

    Heim, Noel A; Payne, Jonathan L; Finnegan, Seth; Knope, Matthew L; Kowalewski, Michał; Lyons, S Kathleen; McShea, Daniel W; Novack-Gottshall, Philip M; Smith, Felisa A; Wang, Steve C

    2017-06-28

    Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases. © 2017 The Author(s).

  2. On the relationships between electron spot size, focal spot size, and virtual source position in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Sterpin, E.; Chen, Y.; Lu, W.; Mackie, T. R.; Olivera, G. H.; Vynckier, S.

    2011-01-01

    Purpose: Every year, new radiotherapy techniques including stereotactic radiosurgery using linear accelerators give rise to new applications of Monte Carlo (MC) modeling. Accurate modeling requires knowing the size of the electron spot, one of the few parameters to tune in MC models. The resolution of integrated megavoltage imaging systems, such as the tomotherapy system, strongly depends on the photon spot size which is closely related to the electron spot. The aim of this article is to clarify the relationship between the electron spot size and the photon spot size (i.e., the focal spot size) for typical incident electron beam energies and target thicknesses. Methods: Three electron energies (3, 5.5, and 18 MeV), four electron spot sizes (FWHM=0, 0.5, 1, and 1.5 mm), and two tungsten target thicknesses (0.15 and 1 cm) were considered. The formation of the photon beam within the target was analyzed through electron energy deposition with depth, as well as photon production at several phase-space planes placed perpendicular to the beam axis, where only photons recorded for the first time were accounted for. Photon production was considered for ''newborn'' photons intersecting a 45x45 cm 2 plane at the isocenter (85 cm from source). Finally, virtual source position and ''effective'' focal spot size were computed by backprojecting all the photons from the bottom of the target intersecting a 45x45 cm 2 plane. The virtual source position and focal spot size were estimated at the plane position where the latter is minimal. Results: In the relevant case of considering only photons intersecting the 45x45 cm 2 plane, the results unambiguously showed that the effective photon spot is created within the first 0.25 mm of the target and that electron and focal spots may be assumed to be equal within 3-4%. Conclusions: In a good approximation photon spot size equals electron spot size for high energy X-ray treatments delivered by linear accelerators.

  3. Does Sibship Size Affect Educational Attainment?

    DEFF Research Database (Denmark)

    Jæger, Mads Meier

    This paper implements a test of the Resource Dilution Hypothesis (RDH) stating that sibship size has a negative causal effect on educational attainment. Most existing studies using conventional methods support the RDH. This paper implements an Instrumental Variable (IV) approach to testing...... the claim of a negative causal relationship between sibship size and educational attainment. Analyzing data from the Wisconsin Longitudinal Study, the empirical analysis demonstrates, first, that conventional OLS regression estimates sibship size to have a negative effect on educational attainment equal...... to about one-tenth of a year of schooling per sibling. Second, when applying the IV method to account for potential endogeneity, the negative effect of sibship size increases substantially to about one-third of a year of schooling per sibling....

  4. Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

    Science.gov (United States)

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  5. Mapping sleeping bees within their nest: spatial and temporal analysis of worker honey bee sleep.

    Directory of Open Access Journals (Sweden)

    Barrett Anthony Klein

    Full Text Available Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.. Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns.

  6. Body Size Distribution of the Dinosaurs

    OpenAIRE

    O?Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutiona...

  7. An electromechanical material testing system for in situ electron microscopy and applications

    OpenAIRE

    Zhu, Yong; Espinosa, Horacio D.

    2005-01-01

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution...

  8. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3

    International Nuclear Information System (INIS)

    Sun, Juan; Pantoya, Michelle L.; Simon, Sindee L.

    2006-01-01

    The oxidation reaction of aluminum nanoparticles with oxygen gas and the thermal behavior of a metastable intermolecular composite (MIC) composed of the aluminum nanoparticles and molybdenum trioxide are studied with differential scanning calorimetry (DSC) as a function of the size and size distribution of the aluminum particles. Both broad and narrow size distributions have been investigated with aluminum particle sizes ranging from 30 to 160 nm; comparisons are also made to the behavior of micrometer-size particles. Several parameters have been used to characterize the reactivity of aluminum nanoparticles, including the fraction of aluminum that reacts prior to aluminum melting, heat of reaction, onset and peak temperatures, and maximum reaction rates. The results indicate that the reactivity of aluminum nanoparticles is significantly higher than that of the micrometer-size samples, but depending on the measure of reactivity, it may also depend strongly on the size distribution. The isoconversional method was used to calculate the apparent activation energy, and the values obtained for both the Al/O 2 and Al/MoO 3 reaction are in the range of 200-300 kJ/mol

  9. Synthesis of nanometer-size inorganic materials for the examination of particle size effects on heterogeneous catalysis

    Science.gov (United States)

    Emerson, Sean Christian

    The effect of acoustic and hydrodynamic cavitation on the precipitation of inorganic catalytic materials, specifically titania supported gold, was investigated. The overall objective was to understand the fundamental factors involved in synthesizing nanometer-size catalytic materials in the 1--10 nm range in a cavitating field. Materials with grain sizes in this range have been associated with enhanced catalytic activity compared to larger grain size materials. A new chemical approach was used to produce titania supported gold by co-precipitation with higher gold yields compared to other synthesis methods. Using this approach, it was determined that acoustic cavitation was unable to influence the gold mean crystallite size compared to non-sonicated catalysts. However, gold concentration on the catalysts was found to be very important for CO oxidation activity. By decreasing the gold concentration from a weight loading of 0.50% down to approximately 0.05%, the rate of reaction per mole of gold was found to increase by a factor of 19. Hydrodynamic cavitation at low pressures (6.9--48 bar) was determined to have no effect on gold crystallite size at a fixed gold content for the same precipitation technique used in the acoustic cavitation studies. By changing the chemistry of the precipitation system, however, it was found that a synergy existed between the dilution of the gold precursor solution, the orifice diameter, and the reducing agent addition rate. Individually, these factors were found to have little effect and only their interaction allowed gold grain size control in the range of 8--80 nm. Further modification of the system chemistry and the use of hydrodynamic cavitation at pressures in excess of 690 bar allowed the systematic control of gold crystallite size in the range of 2--9 nm for catalysts containing 2.27 +/- 0.17% gold. In addition, it was shown that the enhanced mixing due to cavitation led to larger gold yields compared to classical syntheses. The

  10. Effect size estimates: current use, calculations, and interpretation.

    Science.gov (United States)

    Fritz, Catherine O; Morris, Peter E; Richler, Jennifer J

    2012-02-01

    The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis.

  11. Explaining body size beliefs in anorexia.

    Science.gov (United States)

    Gadsby, Stephen

    2017-11-01

    Cognitive neuropsychiatry has had much success in providing theoretical models for the causal origins of many delusional beliefs. Recently, it has been suggested that some anorexia nervosa patients' beliefs about their own body size should be considered delusions. As such, it seems high time the methods of cognitive neuropsychiatry were turned to modelling the false body size beliefs of anorexics. In this paper, I adopt an empiricist approach to modelling the causal origins of false body size beliefs in anorexia. Within the background of cognitive neuropsychiatry, empiricist models claim that abnormal beliefs are grounded by abnormal experiences bearing similar content. I discuss the kinds of abnormal experiences of body size anorexics suffer from which could ground their false beliefs about body size. These oversized experiences come in three varieties: false self-other body comparisons, spontaneous mental imagery of a fat body and distorted perception of affordances. Further theoretical and empirical research into the oversized experiences which anorexics suffer from presents a promising avenue for understanding and treating the disorder.

  12. Analysis of Noise Mechanisms in Cell-Size Control.

    Science.gov (United States)

    Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai

    2017-06-06

    At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and

  13. Life cycle size dynamics in Didymosphenia geminata (Bacillariophyceae).

    Science.gov (United States)

    Bishop, Ian W; Spaulding, Sarah A

    2017-06-01

    Didymosphenia geminata has received a great deal of attention in the last 25 years, and considerable effort has gone into determining the origin, ecological impact, and economic consequences of its invasive behavior. While environmental conditions are a controlling influence in distribution, the extreme success of the species may be tied to its basic biology and life history. Little is known, however, about population dynamics, size restoration and reproduction of D. geminata. The objective of this study was to determine the temporal patterns in cell size frequency, size restoration strategy, and synchronization of life cycles between populations in close proximity. We implemented FlowCam technology to measure the length of more than 100,000 D. geminata cells from two sites in South Boulder Creek, Colorado over 1 year. We applied finite mixture modeling to uncover temporal patterns in size distribution. Our results show that collections of D. geminata exhibited a complex, multimodal size distribution, almost always containing four overlapping age cohorts. We failed to observe direct visual evidence of the sexual phase. Multiple abrupt and directional shifts in size distribution, however, were documented providing conclusive evidence of cell size restoration. Lastly, nodules in close proximity were asynchronous with respect to size frequency profiles and size diminution, highlighting the relevance of spatial heterogeneity in in situ diatom size dynamics. This study is the first to document the complexity of diatom cell size distribution in a lotic system, size restoration in D. geminata, and the variability in rates of size reduction at microhabitat spatial scales. © 2017 Phycological Society of America.

  14. Atomistic Structure of Mineral Nano-aggregates from Simulated Compaction and Dewatering.

    Science.gov (United States)

    Ho, Tuan Anh; Greathouse, Jeffery A; Wang, Yifeng; Criscenti, Louise J

    2017-11-10

    The porosity of clay aggregates is an important property governing chemical reactions and fluid flow in low-permeability geologic formations and clay-based engineered barrier systems. Pore spaces in clays include interlayer and interparticle pores. Under compaction and dewatering, the size and geometry of such pore spaces may vary significantly (sub-nanometer to microns) depending on ambient physical and chemical conditions. Here we report a molecular dynamics simulation method to construct a complex and realistic clay-like nanoparticle aggregate with interparticle pores and grain boundaries. The model structure is then used to investigate the effect of dewatering and water content on micro-porosity of the aggregates. The results suggest that slow dewatering would create more compact aggregates compared to fast dewatering. Furthermore, the amount of water present in the aggregates strongly affects the particle-particle interactions and hence the aggregate structure. Detailed analyses of particle-particle and water-particle interactions provide a molecular-scale view of porosity and texture development of the aggregates. The simulation method developed here may also aid in modeling the synthesis of nanostructured materials through self-assembly of nanoparticles.

  15. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and CryoEM modeling.

    Science.gov (United States)

    Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M

    2014-06-10

    Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Spatially resolved band alignments at Au-hexadecanethiol monolayer-GaAs(001) interfaces by ballistic electron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.; Delhaye, G.; Lépine, B.; Tricot, S.; Ababou-Girard, S.; Solal, F. [Département Matériaux-Nanosciences, Institut de Physique de Rennes, UMR 6251, CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 11E, 35042 Rennes Cedex (France)

    2015-08-28

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buried interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.

  17. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback

    Science.gov (United States)

    Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    2018-06-01

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  18. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    Science.gov (United States)

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  19. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.

    Science.gov (United States)

    Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V

    2018-06-22

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  20. Sub-nanometer emittance monitor for high brightness synchrotron radiation source

    International Nuclear Information System (INIS)

    Nakajima, K.

    1991-01-01

    Method of measuring a very small beam emittance in electron storage rings is presented. The monitor can sense an intrinsic emittance of beam particles by detecting the angular distribution of Compton scatterings of laser photons on beam electrons. It is possible to achieve measurement resolution smaller than 10 -9 m-rad without difficulty. (author)

  1. Specimen size effects in Charpy impact testing

    International Nuclear Information System (INIS)

    Alexander, D.J.; Klueh, R.L.

    1989-01-01

    Full-size , half-size, and third-size specimens from several different steels have been tested as part of an ongoing alloy development program. The smaller specimens permit more specimens to be made from small trail heats and are much more efficient for irradiation experiments. The results of several comparisons between the different specimen sizes have shown that the smaller specimens show qualitatively similar behavior to large specimens, although the upper-shelf energy level and ductile-to-ductile transition temperature are reduced. The upper-shelf energy levels from different specimen sizes can be compared by using a simple volume normalization method. The effect of specimen size and geometry on the ductile-to-ductile transition temperature is more difficult to predict, although the available data suggest a simple shift in the transition temperature due to specimen size changes.The relatively shallower notch used in smaller specimens alters the deformation pattern, and permits yielding to spread back to the notched surface as well as through to the back. This reduces the constraint and the peak stresses, and thus the initiation of cleavage is more difficult. A better understanding of the stress and strain distributions is needed. 19 refs., 3 figs., 3 tabs

  2. Modelling of Size Effect with Regularised Continua

    Directory of Open Access Journals (Sweden)

    H. Askes

    2004-01-01

    Full Text Available A nonlocal damage continuum and a viscoplastic damage continuum are used to model size effects. Three-point bending specimens are analysed, whereby a distinction is made between unnotched specimens, specimens with a constant notch and specimens with a proportionally scaled notch. Numerical finite element simulations have been performed for specimen sizes in a range of 1:64. Size effects are established in terms of nominal strength and compared to existing size effect models from the literature. 

  3. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  4. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    International Nuclear Information System (INIS)

    Han, H.-S.; Chen, D.-R.; Pui, David Y.H.; Anderson, Bruce E.

    2000-01-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po 210 ), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below

  5. 7 CFR 51.2559 - Size classifications.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2559 Size classifications. (a) The size of pistachio kernels may be specified in connection with the grade in accordance with one of...

  6. The size of the labor wards

    DEFF Research Database (Denmark)

    Milland, Maria; Christoffersen, Jens; Hedegaard, Morten

    2013-01-01

    To assess possible associations between the size of labor units and the frequency of approved obstetric claims.......To assess possible associations between the size of labor units and the frequency of approved obstetric claims....

  7. The relations between forest fragmentation and bird community body size and biodiversity and bird community body size.

    OpenAIRE

    Hopman, F.

    2017-01-01

    Bachelor thesis Future Planet Studies, major biologie ABSTRACT Animal species with a larger body-size tend to have larger home ranges than small-bodied animals. Therefore it is likely that they are more affected by habitat fragmentation than small-bodied species. Body size of birds also seems to have a negative relation with species richness. This research has therefore looked into whether birds with a larger body-size are more sensitive to habitat fragmentation caused by forest...

  8. Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee Megachile rotundata.

    Science.gov (United States)

    O'Neill, Kevin M; Delphia, Casey M; O'Neill, Ruth P

    2014-01-01

    Females of solitary, nest-provisioning bees have relatively low fecundity, but produce large eggs as part of their overall strategy of investing substantially in each offspring. In intraspecific comparisons of several species of solitary, nest-provisioning bees and wasps, the size of the mature eggs produced increases with female body size. We further examined oocyte size-body size correlations in the solitary bee Megachile rotundata (F.), an important crop pollinator. We hypothesized that larger females carry larger basal oocytes (i.e., those next in line to be oviposited) but that body size-oocyte size correlations would be absent soon after emergence, before their first eggs fully matured. Because egg production is likely affected by the quantity of stored lipids carried over from the bees' immature stages, we also tested the hypothesis that female body size is correlated with the body lipid content at adult emergence, the time during which oocyte growth accelerates. We found significant correlations of body size with oocyte size variables chosen to reflect: (1) the magnitude of the investment in the next egg to be laid (i.e., the length and volume of the basal oocyte) and (2) the longer term potential to produce mature oocytes (i.e., the summed lengths and volumes of the three largest oocytes in each female). Positive correlations existed throughout the nesting season, even during the first week following adult emergence. The ability to produce and carry larger oocytes may be linked to larger females starting the nesting season with greater lipid stores (which we document here) or to greater space within the abdomen of larger females. Compared to other species of solitary bees, M. rotundata appears to have (1) smaller oocytes than solitary nest-provisioning bees in general, (2) comparable oocyte sizes relative to congeners, and (3) larger oocytes than related brood parasitic megachilids.

  9. Offspring fitness and individual optimization of clutch size

    Science.gov (United States)

    Both, C.; Tinbergen, J. M.; Noordwijk, A. J. van

    1998-01-01

    Within-year variation in clutch size has been claimed to be an adaptation to variation in the individual capacity to raise offspring. We tested this hypothesis by manipulating brood size to one common size, and predicted that if clutch size is individually optimized, then birds with originally large clutches have a higher fitness than birds with originally small clutches. No evidence was found that fitness was related to the original clutch size, and in this population clutch size is thus not related to the parental capacity to raise offspring. However, offspring from larger original clutches recruited better than their nest mates that came from smaller original clutches. This suggests that early maternal or genetic variation in viability is related to clutch size.

  10. Size Effects on the Strength of Metals

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2014-01-01

    The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistanc...

  11. 7 CFR 958.9 - Grade and size.

    Science.gov (United States)

    2010-01-01

    ... thereon. The term size also includes any of the sizes recognized by the onion trade in the production area. ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ONIONS GROWN IN CERTAIN DESIGNATED.... Grade means any of the officially established grades of onions, and size means any of the officially...

  12. What big size you have! Using effect sizes to determine the impact of public health nursing interventions.

    Science.gov (United States)

    Johnson, K E; McMorris, B J; Raynor, L A; Monsen, K A

    2013-01-01

    The Omaha System is a standardized interface terminology that is used extensively by public health nurses in community settings to document interventions and client outcomes. Researchers using Omaha System data to analyze the effectiveness of interventions have typically calculated p-values to determine whether significant client changes occurred between admission and discharge. However, p-values are highly dependent on sample size, making it difficult to distinguish statistically significant changes from clinically meaningful changes. Effect sizes can help identify practical differences but have not yet been applied to Omaha System data. We compared p-values and effect sizes (Cohen's d) for mean differences between admission and discharge for 13 client problems documented in the electronic health records of 1,016 young low-income parents. Client problems were documented anywhere from 6 (Health Care Supervision) to 906 (Caretaking/parenting) times. On a scale from 1 to 5, the mean change needed to yield a large effect size (Cohen's d ≥ 0.80) was approximately 0.60 (range = 0.50 - 1.03) regardless of p-value or sample size (i.e., the number of times a client problem was documented in the electronic health record). Researchers using the Omaha System should report effect sizes to help readers determine which differences are practical and meaningful. Such disclosures will allow for increased recognition of effective interventions.

  13. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    Science.gov (United States)

    Kleinhammes, Alfred; Wagner, George W.; Kulkarni, Harsha; Jia, Yuanyuan; Zhang, Qi; Qin, Lu-Chang; Wu, Yue

    2005-08-01

    Titanate nanoscrolls, a recently discovered variant of TiO 2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination. The large surface area of the uncapped tubules provides the desired rapid absorption of the contaminant while water molecules, intrinsic constituents of titanate nanoscrolls, provide the necessary chemistry for hydrolytic reaction. In this study the decomposition of 2-chloroethyl ethylsulfide (CEES), a simulant for the CWA mustard, was monitored using 13C NMR. The NMR spectra reveal reaction products as expected from the hydrolysis of CEES. This demonstrates that titanate nanoscrolls could potentially be employed as a decontaminant for CWAs.

  14. Size-dependent mortality rate profiles.

    Science.gov (United States)

    Roa-Ureta, Ruben H

    2016-08-07

    Knowledge of mortality rates is crucial to the understanding of population dynamics in populations of free-living fish and invertebrates in marine and freshwater environments, and consequently to sustainable resource management. There is a well developed theory of population dynamics based on age distributions that allow direct estimation of mortality rates. However, for most cases the aging of individuals is difficult or age distributions are not available for other reasons. The body size distribution is a widely available alternative although the theory underlying the formation of its shape is more complicated than in the case of age distributions. A solid theory of the time evolution of a population structured by any physiological variable has been developed in 1960s and 1970s by adapting the Hamilton-Jacobi formulation of classical mechanics, and equations to estimate the body size-distributed mortality profile have been derived for simple cases. Here I extend those results with regards to the size-distributed mortality profile to complex cases of non-stationary populations, individuals growing according to a generalised growth model and seasonally patterned recruitment pulses. I apply resulting methods to two cases in the marine environment, a benthic crustacean population that was growing during the period of observation and whose individuals grow with negative acceleration, and a sea urchin coastal population that is undergoing a stable cycle of two equilibrium points in population size whose individuals grow with varying acceleration that switches sign along the size range. The extension is very general and substantially widens the applicability of the theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Seasonal variations in size distribution, water-soluble ions, and carbon content of size-segregated aerosols over New Delhi.

    Science.gov (United States)

    Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh

    2018-02-01

    Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.

  16. Board Size Effects in Closely Held Corporations

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Kongsted, H.C.; Meisner Nielsen, Kasper

    2004-01-01

    of board size by using a new instrument given bythe number of children of the founders of the firms. Our analysis shows thatboard size can be taken as exogenous in the performance equation. Furthermore,based on a flexible model specification we find that there is noempirical evidence of adverse board size...

  17. Do detailed simulations with size-resolved microphysics reproduce basic features of observed cirrus ice size distributions?

    Science.gov (United States)

    Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.

    2017-12-01

    It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the

  18. Immobilization thresholds of electrofishing relative to fish size

    Science.gov (United States)

    Dolan, C.R.; Miranda, L.E.

    2003-01-01

    Fish size and electrical waveforms have frequently been associated with variation in electrofishing effectiveness. Under controlled laboratory conditions, we measured the electrical power required by five electrical waveforms to immobilize eight fish species of diverse sizes and shapes. Fish size was indexed by total body length, surface area, volume, and weight; shape was indexed by the ratio of body length to body depth. Our objectives were to identify immobilization thresholds, elucidate the descriptors of fish size that were best associated with those immobilization thresholds, and determine whether the vulnerability of a species relative to other species remained constant across electrical treatments. The results confirmed that fish size is a key variable controlling the immobilization threshold and further suggested that the size descriptor best related to immobilization is fish volume. The peak power needed to immobilize fish decreased rapidly with increasing fish volume in small fish but decreased slowly for fish larger than 75-100 cm 3. Furthermore, when we controlled for size and shape, different waveforms did not favor particular species, possibly because of the overwhelming effect of body size. Many of the immobilization inconsistencies previously attributed to species might simply represent the effect of disparities in body size.

  19. An almost general theory of mean size perception.

    Science.gov (United States)

    Allik, Jüri; Toom, Mai; Raidvee, Aire; Averin, Kristiina; Kreegipuu, Kairi

    2013-05-03

    A general explanation for the observer's ability to judge the mean size of simple geometrical figures, such as circles, was advanced. Results indicated that, contrary to what would be predicted by statistical averaging, the precision of mean size perception decreases with the number of judged elements. Since mean size discrimination was insensitive to how total size differences were distributed among individual elements, this suggests that the observer has a limited cognitive access to the size of individual elements pooled together in a compulsory manner before size information reaches awareness. Confirming the associative law of addition means, observers are indeed sensitive to the mean, not the sizes of individual elements. All existing data can be explained by an almost general theory, namely, the Noise and Selection (N&S) Theory, formulated in exact quantitative terms, implementing two familiar psychophysical principles: the size of an element cannot be measured with absolute accuracy and only a limited number of elements can be taken into account in the computation of the average size. It was concluded that the computation of ensemble characteristics is not necessarily a tool for surpassing the capacity limitations of perceptual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A sub-Mercury-sized exoplanet.

    Science.gov (United States)

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  1. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  2. Grain size dependence of wear in ceramics

    International Nuclear Information System (INIS)

    Wu, C.C.; Rice, R.W.; Johnson, D.; Platt, B.A.

    1985-01-01

    Pin-On-Disk (POD), microwear tests of Al 2 O 3 , MgO, MgAl 2 O 4 , and ZrO 2 , most being dense and essentially single phase, showed the reciprocal of wear following a hall-petch type relationship. However, extrapolation to infinite grain size always gave a lower intercept than most or all single-crystal values; in particular, Al 2 O 3 data projects to a negative intercept. Initial macro wear tests of some of the same Al 2 O 3 materials also indicate a hall-petch type grain-size dependence, but with a greatly reduced grain-size dependence, giving a positive hall-petch intercept. Further, the macrowear grain-size dependence appears to decrease with increased wear. It is argued that thermal expansion anisotropy (of Al 2 O 3 ) significantly affects the grain size dependence of POD wear, in particular, giving a negative intercept, while elastic anisotropy is suggested as a factor in the grain-size dependence of the cubic (MgO, MgAl 2 O 4 , and ZrO 2 ) materials. The reduced grain-size dependence in the macrowear tests is attributed to overlapping wear tracks reducing the effects of enhanced wear damage, e.g., from elastic and thermal expansion anisotropies

  3. Do Class Size Effects Differ across Grades?

    Science.gov (United States)

    Nandrup, Anne Brink

    2016-01-01

    This paper contributes to the class size literature by analysing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enrolled in Danish public schools. Identification is based on a government-imposed class size cap that creates exogenous variation in…

  4. Grain size refinement of inconel 718 thermomechanical processing

    International Nuclear Information System (INIS)

    Okimoto, P.C.

    1988-01-01

    Inconel 718 is a Ni-Fe precipitation treated superalloy. It presents good thermal fatigue properties when the material has small grain size. The aim of this work is to study the grain size refinement by thermomechanical processing, through observations of the microstructural evolution and the influence of some of the process variables in the final grain size. The results have shown that this refinement occured by static recrystallization. The presence of precipitates have influenced the final grain size if the deformations are below 60%. For greater deformations the grain size is independent of the precipitate distribution in the matrix and tends to a limit size of 5 μm. (author)

  5. Bank Size and Small- and Medium-sized Enterprise (SME) Lending: Evidence from China

    Science.gov (United States)

    SHEN, YAN; SHEN, MINGGAO; XU, ZHONG; BAI, YING

    2014-01-01

    Summary Using panel data collected in 2005, we evaluate how bank size, discretion over credit, incentive schemes, competition, and the institutional environment affect lending to small- and medium-sized enterprises in China. We deal with the endogeneity problem using instrumental variables, and a reduced-form approach is also applied to allow for weak instruments in estimation. We find that total bank asset is an insignificant factor for banks’ decision on small- and medium-enterprise (SME) lending, but more local lending authority, more competition, carefully designed incentive schemes, and stronger law enforcement encourage commercial banks to lend to SMEs. PMID:26052179

  6. Bank Size and Small- and Medium-sized Enterprise (SME) Lending: Evidence from China.

    Science.gov (United States)

    Shen, Yan; Shen, Minggao; Xu, Zhong; Bai, Ying

    2009-04-01

    Using panel data collected in 2005, we evaluate how bank size, discretion over credit, incentive schemes, competition, and the institutional environment affect lending to small- and medium-sized enterprises in China. We deal with the endogeneity problem using instrumental variables, and a reduced-form approach is also applied to allow for weak instruments in estimation. We find that total bank asset is an insignificant factor for banks' decision on small- and medium-enterprise (SME) lending, but more local lending authority, more competition, carefully designed incentive schemes, and stronger law enforcement encourage commercial banks to lend to SMEs.

  7. Project size and common pool size: An empirical test using Danish municipal mergers

    DEFF Research Database (Denmark)

    Hansen, Sune Welling

    The paper examines the proposition that project size tends to increase with common pool size from the law of 1 over n (Weingast et al, 1981). This remains under-investigated and a recent study conducted by Primo & Snyder (2008) argues, and empirically substantiates, a reverse law of 1 over n...... across two research designs, two outcome variables, two subsamples, and several model specifications The implications of the findings, combined with the limited potential for empirically testing Primo & Snyder’s alternative model, suggest a re-appreciation of the law of 1 over n as it was originally...

  8. Effects of anion size and concentration on electrolyte invasion into molecular-sized nanopores

    International Nuclear Information System (INIS)

    Liu Ling; Chen Xi; Kim, Taewan; Han Aijie; Qiao Yu

    2010-01-01

    When an electrolyte solution is pressurized into a molecular-sized nanopore, oppositely charged ions are strongly inclined to aggregate, which effectively reduces the ion solubility to zero. Inside the restrictive confinement, a unique quasi-periodic structure is formed where the paired ion couples are periodically separated by a number of water molecules. As the anion size or ion concentration varies, the geometrical characteristics of the confined ion structure would change considerably, leading to a significant variation in the transport pressure. Both experimental and simulation results indicate that, contradictory to the prediction of conventional theory, infiltration pressure decreases as the anions become larger.

  9. Structural effect of size on interracial friendship.

    Science.gov (United States)

    Cheng, Siwei; Xie, Yu

    2013-04-30

    Social contexts exert structural effects on individuals' social relationships, including interracial friendships. In this study, we posit that, net of group composition, total context size has a distinct effect on interracial friendship. Under the assumptions of (i) maximization of preference in choosing a friend, (ii) multidimensionality of preference, and (iii) preference for same-race friends, we conducted analyses using microsimulation that yielded three main findings. First, increased context size decreases the likelihood of forming an interracial friendship. Second, the size effect increases with the number of preference dimensions. Third, the size effect is diluted by noise, i.e., the random component affecting friendship formation. Analysis of actual friendship data among 4,745 American high school students yielded results consistent with the main conclusion that increased context size promotes racial segregation and discourages interracial friendship.

  10. Size effects in foams : Experiments and modeling

    NARCIS (Netherlands)

    Tekoglu, C.; Gibson, L. J.; Pardoen, T.; Onck, P. R.

    Mechanical properties of cellular solids depend on the ratio of the sample size to the cell size at length scales where the two are of the same order of magnitude. Considering that the cell size of many cellular solids used in engineering applications is between 1 and 10 mm, it is not uncommon to

  11. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  12. Discrete hierarchical organization of social group sizes.

    Science.gov (United States)

    Zhou, W-X; Sornette, D; Hill, R A; Dunbar, R I M

    2005-02-22

    The 'social brain hypothesis' for the evolution of large brains in primates has led to evidence for the coevolution of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size that depends, in some way, on the volume of neural material available for processing and synthesizing information on social relationships. More recently, work on both human and non-human primates has suggested that social groups are often hierarchically structured. We combine data on human grouping patterns in a comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continuous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometrical series approximating 3-5, 9-15, 30-45, etc. Such discrete scale invariance could be related to that identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing of social nearness by human brains.

  13. Biodistribution of Different Sized Nanodiamonds in Mice.

    Science.gov (United States)

    Purtov, Konstantin; Petunin, Alexey; Inzhevatkin, Evgeny; Burov, Andrey; Ronzhin, Nikita; Puzyr, Alexey; Bondar, Vladimir

    2015-02-01

    The particle size is one of critical parameters influencing the biodistribution of detonation nanodiamonds (DND) after their administration into the body. As DNDs are prone to aggregation, the difference between their sizes in aqueous and physiological solutions has to be taken into account. Radioactive I125-BSA molecules were covalently immobilized on DNDs divided in three fractions of different average size. The DND-BSAI125 conjugates were intravenously administrated into adult mice and the particle allocation in the animal's organs and blood was evaluated based on the radioactivity distribution. We conclude that most of the conjugates were taken from the bloodstream and trapped in the liver and spleen. The short-term distribution pattern for all DNDs was similar regardless of size and practically unchanged with time. No significant clearance of the particles was observed for 4 h, but the presence of DNDs was detected in the blood. It was found that the largest particles tend to accumulate more into the liver as compared to the smaller ones. However, the size effect was not well pronounced for the studied size range.

  14. Assessment and Mapping of Forest Parcel Sizes

    Science.gov (United States)

    Brett J. Butler; Susan L. King

    2005-01-01

    A method for analyzing and mapping forest parcel sizes in the Northeastern United States is presented. A decision tree model was created that predicts forest parcel size from spatially explicit predictor variables: population density, State, percentage forest land cover, and road density. The model correctly predicted parcel size for 60 percent of the observations in a...

  15. Particle sizes in slash fire smoke.

    Science.gov (United States)

    David V. Sandberg; Robert E. Martin

    1975-01-01

    Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.

  16. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  17. Humeral head size in shoulder arthroplasty

    DEFF Research Database (Denmark)

    Vaesel, M T; Olsen, Bo Sanderhoff; Søjbjerg, Jens Ole

    1998-01-01

    Changes in kinematics after hemiarthroplasty of the glenohumeral joint were investigated in nine cadaveric specimens. During experiments the influence of the humeral head size on glenohumeral kinematics was evaluated. A modular prosthesis with five different head sizes and press-fit stems was use...

  18. Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?

    Science.gov (United States)

    Sayar, Mehmet

    2005-03-01

    Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.

  19. Factors associated with tumor size of hepatocellular carcinoma

    Science.gov (United States)

    Siregar, G. A.; Buulolo, B. A.

    2018-03-01

    Determining the association of age and laboratory parameters with tumor size of hepatocellular carcinoma (HCC). The study was at Adam Malik Hospital Medan from June- December 2016. 100 HCC patients were enrolled; those with excluding liver metastatic. Baseline characteristics of gender, age, obtaining etiology of HCC. Liver function tests, viral marker, and INR were done. Based on tumor size from abdomen CT, patients were three groups: tumor size below 3 cm, 3-5 cm, and above 5 cm size. Patients were also divided based on Child-Pugh class. Correlation of age and laboratory results with tumor size of HCC patients were analyzed. Age have negative correlation with tumor size in HCC patients (r=-0.297, p=0.032) while AFP have positive correlation with tumor size (r0.446, p=<0.001). Total bilirubin, AST, and ALT have negative correlation but non-significant (r=-0.045, -0.078, - 0.126 respectively). Albumin and INR have positive correlation but non-significant (r=0.021, 0.112 respectively). Our study suggests that older age correlates with smaller tumor size, while AFP level has a significant correlation with tumor size in HCC patients. AFP level may be a useful marker for determining the prognosis of HCC patients.

  20. The discrepancy between emotional vs. rational estimates of body size, actual size, and ideal body ratings: theoretical and clinical implications.

    Science.gov (United States)

    Thompson, J K; Dolce, J J

    1989-05-01

    Thirty-two asymptomatic college females were assessed on multiple aspects of body image. Subjects' estimation of the size of three body sites (waist, hips, thighs) was affected by instructional protocol. Emotional ratings, based on how they "felt" about their body, elicited ratings that were larger than actual and ideal size measures. Size ratings based on rational instructions were no different from actual sizes, but were larger than ideal ratings. There were no differences between actual and ideal sizes. The results are discussed with regard to methodological issues involved in body image research. In addition, a working hypothesis that differentiates affective/emotional from cognitive/rational aspects of body size estimation is offered to complement current theories of body image. Implications of the findings for the understanding of body image and its relationship to eating disorders are discussed.

  1. Size Matters, if You Control Your Junk

    DEFF Research Database (Denmark)

    Asness, Clifford S.; Frazzini, Andrea; Israel, Ronen

    that do not rely on market prices, is weak internationally, and is subsumed by proxies for illiquidity. We find, however, that these challenges are dismantled when controlling for the quality, or the inverse "junk", of a firm. A significant size premium emerges, which is stable through time, robust...... to the specification, more consistent across seasons and markets, not concentrated in microcaps, robust to non-price based measures of size, and not captured by an illiquidity premium. Controlling for quality/junk also explains interactions between size and other return characteristics such as value and momentum.......The size premium has been challenged along many fronts: it has a weak historical record, varies significantly over time, in particular weakening after its discovery in the early 1980s, is concentrated among microcap stocks, predominantly resides in January, is not present for measures of size...

  2. Optimum body size of Holstein replacement heifers.

    Science.gov (United States)

    Hoffman, P C

    1997-03-01

    Criteria that define optimum body size of replacement heifers are required by commercial dairy producers to evaluate replacement heifer management programs. Historically recommended body size criteria have been based on live BW measurements. Numerous research studies have observed a positive relationship between BW at first calving and first lactation milk yield, which has served as the impetus for using live BW to define body size of replacement heifers. Live BW is, however, not the only available measurement to define body size. Skeletal measurements such as wither height, length, and pelvic area have been demonstrated to be related to first lactation performance and (or) dystocia. Live BW measurements also do not define differences in body composition. Differences in body composition of replacement heifers at first calving are also related to key performance variables. An updated research data base is available for the modern Holstein genotype to incorporate measures of skeletal growth and body composition with BW when defining body size. These research projects also lend insight into the relative importance of measurements that define body size of replacement heifers. Incorporation of these measurements from current research into present BW recommendations should aid commercial dairy producers to better define replacement heifer growth and management practices. This article proposes enhancements in defining optimum body size and growth characteristics of Holstein replacement heifers.

  3. Conceptual size in developmental dyscalculia and dyslexia.

    Science.gov (United States)

    Gliksman, Yarden; Henik, Avishai

    2018-02-01

    People suffering from developmental dyscalculia (DD) are known to have impairment in numerical abilities and have been found to have weaker processing of countable magnitudes. However, not much research was done on their abilities to process noncountable magnitudes. An example of noncountable magnitude is conceptual size (e.g., mouse is small and elephant is big). Recently, we found that adults process conceptual size automatically. The current study examined automatic processing of conceptual size in students with DD and developmental dyslexia. Conceptual and physical sizes were manipulated orthogonally to create congruent (e.g., a physically small apple compared to a physically large violin) and incongruent (e.g., a physically large apple compared to a physically small violin) conditions. Participants were presented with 2 objects and had to choose the larger one. Each trial began with an instruction to respond to the physical or to the conceptual dimension. Control and the dyslexic groups presented automatic processing of both conceptual and physical sizes. The dyscalculic group presented automatic processing of physical size but not automaticity of processing conceptual size. Our results fit with previous findings of weaker magnitude representation in those with DD, specifically regarding noncountable magnitudes, and support theories of a shared neurocognitive substrate for different types of magnitudes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  5. Nanocoatings size effect in nanostructured films

    CERN Document Server

    Aliofkhazraei, Mahmood

    2014-01-01

    Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.

  6. Perceived face size in healthy adults.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2017-01-01

    Perceptual body size distortions have traditionally been studied using subjective, qualitative measures that assess only one type of body representation-the conscious body image. Previous research on perceived body size has typically focused on measuring distortions of the entire body and has tended to overlook the face. Here, we present a novel psychophysical method for determining perceived body size that taps into implicit body representation. Using a two-alternative forced choice (2AFC), participants were sequentially shown two life-size images of their own face, viewed upright, upside down, or tilted 90°. In one interval, the width or length dimension was varied, while the other interval contained an undistorted image. Participants reported which image most closely matched their own face. An adaptive staircase adjusted the distorted image to hone in on the image that was equally likely to be judged as matching their perceived face as the accurate image. When viewed upright or upside down, face width was overestimated and length underestimated, whereas perception was accurate for the on-side views. These results provide the first psychophysically robust measurements of how accurately healthy participants perceive the size of their face, revealing distortions of the implicit body representation independent of the conscious body image.

  7. Fabrication and size control of Ag nano particles

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M. R.

    2012-01-01

    The objective of this research was to fabricate Ag nanoparticles and control their sizes. Colloidal Ag nanoparticles with particle size of 30 nm were prepared by dissolving AgNO 3 in ethanol and through the chemical reduction of Ag + in alcohol solution. To control the nanoparticle size, different samples were fabricated by changing the AgNO 3 and stabilizer concentrations and the effects of different factors on the shape and size of nanoparticles were investigated. The samples were characterized using Scanning Electron Microscopy and EDX analysis. The results showed that by increasing the AgNO 3 concentration, the average size of nanoparticles increases and nanoparticles lose their spherical shape. Also, we found that by using the stabilizer, it is possible to produce stable nanoparticles but increasing the stabilizer concentration caused an increase in size of nanoparticles. Fabrication of nanoparticles without using stabilizer was achieved but the results showed the nanoparticles size had a growth of 125 nm/h in the alcoholic media.

  8. Size-Dependent Dynamic Behavior of a Microcantilever Plate

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    2012-01-01

    Full Text Available Material length scale considerably affects the mechanical properties of microcantilever components. Recently, cantilever-plate-like structures have been commonly used, whereas the lack of studies on their size effects constrains the design, testing, and application of these structures. We have studied the size-dependent dynamic behavior of a cantilever plate based on a modified couple stress theory and the differential quadrature method in this note. The numerical solutions of microcantilever plate equation involving the size effect have been presented. We have also analyzed the bending and vibration of the microcantilever plates considering the size effect and discussed the dependence of the size effect on their geometric dimensions. The results have shown that (1 the mechanical characteristics of the cantilever plate show obvious size effects; as a result, the bending deflection of a microcantilever plate reduces whereas the natural frequency increases effectively and (2 for the plates with the same material, the size effect becomes more obvious when the plates are thinner.

  9. Epitaxially Grown Ultra-Flat Self-Assembling Monolayers with Dendrimers

    Directory of Open Access Journals (Sweden)

    Takane Imaoka

    2018-02-01

    Full Text Available Mono-molecular films formed by physical adsorption and dendrimer self-assembly were prepared on various substrate surfaces. It was demonstrated that a uniform dendrimer-based monolayer on the subnanometer scale can be easily constructed via simple dip coating. Furthermore, it was shown that an epitaxially grown monolayer film reflecting the crystal structure of the substrate (highly ordered pyrolytic graphite (HOPG can also be formed by aligning specific conditions.

  10. Rhizosphere size

    Science.gov (United States)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We

  11. Comparison of fish-community size spectra based on length ...

    African Journals Online (AJOL)

    Estimates of fish-community size spectra are promising indicators of the impact of fishing on fish assemblages. Size spectra consist of logarithmic graphs of abundance plotted against fish body size. Size spectra may either be constructed from length frequency data or estimated from the mean sizes and abundances of the ...

  12. Estimating Sample Size for Usability Testing

    Directory of Open Access Journals (Sweden)

    Alex Cazañas

    2017-02-01

    Full Text Available One strategy used to assure that an interface meets user requirements is to conduct usability testing. When conducting such testing one of the unknowns is sample size. Since extensive testing is costly, minimizing the number of participants can contribute greatly to successful resource management of a project. Even though a significant number of models have been proposed to estimate sample size in usability testing, there is still not consensus on the optimal size. Several studies claim that 3 to 5 users suffice to uncover 80% of problems in a software interface. However, many other studies challenge this assertion. This study analyzed data collected from the user testing of a web application to verify the rule of thumb, commonly known as the “magic number 5”. The outcomes of the analysis showed that the 5-user rule significantly underestimates the required sample size to achieve reasonable levels of problem detection.

  13. Predicting incident size from limited information

    International Nuclear Information System (INIS)

    Englehardt, J.D.

    1995-01-01

    Predicting the size of low-probability, high-consequence natural disasters, industrial accidents, and pollutant releases is often difficult due to limitations in the availability of data on rare events and future circumstances. When incident data are available, they may be difficult to fit with a lognormal distribution. Two Bayesian probability distributions for inferring future incident-size probabilities from limited, indirect, and subjective information are proposed in this paper. The distributions are derived from Pareto distributions that are shown to fit data on different incident types and are justified theoretically. The derived distributions incorporate both inherent variability and uncertainty due to information limitations. Results were analyzed to determine the amount of data needed to predict incident-size probabilities in various situations. Information requirements for incident-size prediction using the methods were low, particularly when the population distribution had a thick tail. Use of the distributions to predict accumulated oil-spill consequences was demonstrated

  14. Unit size limitations in smaller power systems

    International Nuclear Information System (INIS)

    McConnach, J.S.

    1975-01-01

    The developing nations have generally found it an economic necessity to accept the minimum commercial size limit of 600 MWe. Smaller reactor sizes tendered as 'one off' specials carry high specific cost penalties which considerably weaken the competitiveness of nuclear versus conventional thermal plants. The revised IAEA market survey for nuclear power in developing countries (1974 edition) which takes account of the recent heavy escalation in oil prices, indicates a reasonable market for smaller size reactors in the range 150 MWe to 400 MWe, but until this market is approached seriously by manufacturers, the commercial availability and economic viability of smaller size reactors remains uncertain. (orig.) [de

  15. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  16. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    Science.gov (United States)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  17. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  18. The linear sizes tolerances and fits system modernization

    Science.gov (United States)

    Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.

    2018-04-01

    The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.

  19. Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael

    2012-11-01

    The shakeout in the solar cell and module industry is in full swing. While the number of companies and production locations shutting down in the Western world is increasing, the capacity expansion in the Far East seems to be unbroken. Size in combination with a good sales network has become the key to success for surviving in the current storm. The trade war with China already looming on the horizon is adding to the uncertainties. (orig.)

  20. Sample size calculations for case-control studies

    Science.gov (United States)

    This R package can be used to calculate the required samples size for unconditional multivariate analyses of unmatched case-control studies. The sample sizes are for a scalar exposure effect, such as binary, ordinal or continuous exposures. The sample sizes can also be computed for scalar interaction effects. The analyses account for the effects of potential confounder variables that are also included in the multivariate logistic model.

  1. Size and Reputation

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo; Ringsmose, Jens

    2015-01-01

    American public gratitude than the UK. While London has been accused of losing Basra and Musa Qaleh, Copenhagen has been showered with praise and top-posts in NATO. This article explains why demonstrating how the differences in size and reputation gave rise to different expectations of the special...

  2. Size misperception among overweight and obese families.

    Science.gov (United States)

    Paul, Tracy K; Sciacca, Robert R; Bier, Michael; Rodriguez, Juviza; Song, Sharon; Giardina, Elsa-Grace V

    2015-01-01

    Perception of body size is a key factor driving health behavior. Mothers directly influence children's nutritional and exercise behaviors. Mothers of ethnic minority groups and lower socioeconomic status are less likely to correctly identify young children as overweight or obese. Little evaluation has been done of the inverse--the child's perception of the mother's weight. To determine awareness of weight status among mother-child dyads (n = 506). Cross-sectional study conducted in an outpatient pediatric dental clinic of Columbia University Medical Center, New York, NY. Primarily Hispanic (82.2 %) mothers (n = 253), 38.8 ± 7.5 years of age, and children (n = 253), 10.5 ± 1.4 years of age, responding to a questionnaire adapted from the validated Behavioral Risk Factor Surveillance System. Anthropometric measures-including height, weight, and waist circumference-and awareness of self-size and size of other generation were obtained. 71.4 % of obese adults and 35.1 % of overweight adults underestimated size, vs. 8.6 % of normal-weight (NW) adults (both p < 0.001). Among overweight and obese children, 86.3 % and 62.3 % underestimated their size, vs. 14.9 % NW children (both p < 0.001). Among mothers with overweight children, 80.0 % underestimated their child's weight, vs. 7.1 % of mothers with NW children (p < 0.001); 23.1 % of mothers with obese children also underestimated their child's weight (p < 0.01). Among children with obese mothers, only 13.0 % correctly classified the adult's size, vs. 76.5 % with NW mothers (p < 0.001). Among obese mothers, 20.8 % classified overweight body size as ideal, vs. 1.2 % among NW mothers (p < 0.001). Overweight/obese adults and children frequently underestimate their size. Adults misjudge overweight/obese children as being of normal weight, and children of obese mothers often underestimate the adult's size. Failure to recognize overweight/obesity status among adults and children can lead to prolonged exposure to obesity

  3. ''FUR'' - one size suits all

    International Nuclear Information System (INIS)

    Rutland, M.; Que, L.; Hassan, I.M.

    2000-01-01

    This work used amalgamated data from previous projects in order to test the concept that when organ function is expressed in terms of tracer kinetics, the results are independent of patient size or gender. Dynamic gamma camera studies were analysed by measuring the rate of movement of tracers from the blood into various organs. These rates were expressed as a ''fractional uptake rate'' (FUR), which is the fraction of tracer in the blood taken up by the organ per unit time. As these values were small, it was convenient to express the FUR per million seconds. The FUR was calculated using the expression FUR = SLOPE (of Rutland-Patlak plot), multiplied by B(0) (the blood curve value back-extrapolated to time zero), and divided by the TOTAL amount of tracer injected. Data were used from adult patients between the ages of 20 and 49 years who had normal organ function. Organ/tracer groups studied were the skeletal uptake of 99m Tc-MDP, the renal uptake of 99m Tc-MAG3, the renal uptake of 99m Tc-MDP, the renal uptake of 99m Tc-DTPA, the hepatic uptake of 99m Tc-colloid, the splenic uptake of 99m Tc-colloid, and the hepatic uptake of 99m Tc-DISIDA. Each organ/tracer group was divided into three subgroups according to patient size (smallest, middle and largest), and also into subgroups according to gender. Comparison of these subgroups did not show any significant size- or gender-related differences in FUR values. It is concluded that for patients with normally functioning organs the FUR is independent of patient size or gender. Thus, the FUR is a valuable way of expressing organ function, particularly in patients with unusual or rapidly changing body size, such as children. (orig.)

  4. Evaluation of actual vs expected photodynamic therapy spot size.

    Science.gov (United States)

    Ranchod, Tushar M; Brucker, Alexander J; Liu, Chengcheng; Cukras, Catherine A; Hopkins, Tim B; Ying, Gui-Shuang

    2009-05-01

    To determine the accuracy of the photodynamic therapy (PDT) laser spot size on the retina as generated by 2 Food and Drug Administration (FDA)-approved lasers. Prospective observational case series. Fundus photographs were taken of 1 eye of each of 10 subjects with the WinStation 4000 fundus photography system (OIS; Ophthalmic Imaging Systems, Sacramento, California, USA); disc size was calculated using OIS software. Slit-lamp photographs were taken of the PDT laser spot focused on the retina adjacent to the optic disc, using various spot sizes in combination with 3 different contact lenses and 2 different lasers. Spot size at the retina was determined by measuring the ratio of disc diameter to spot diameter in Adobe Photoshop (San Jose, California, USA) and applying this ratio to the OIS disc measurements. Spot size at the retina averaged 87% of expected spot size for the Coherent Opal laser (Coherent Inc, Santa Clara, California, USA) and 104% of expected spot size for the Zeiss Visulas laser (Carl Zeiss Meditec Inc, Dublin, California, USA)(P = .002). Multivariate analysis demonstrated that percentage of expected spot size decreased with larger spot diameter (P = .01 for Coherent laser; P = .02 for Zeiss laser). PDT spot size at the retina appears to be consistently smaller than expected for the Coherent laser while the spot size was consistently within 10% of expected size for the Zeiss laser. The deviation from expected size increased with larger spot size using the Coherent laser.

  5. Mass size distribution of particle-bound water

    Science.gov (United States)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  6. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules.

    Science.gov (United States)

    Meredith, Alicea N; Harper, Bryan; Harper, Stacey L

    2016-01-01

    Encapsulation technology involves entrapping a chemical active ingredient (a.i.) inside a hollow polymeric shell and has been applied to commercial pesticide manufacturing for years to produce capsule suspension (CS) formulations with average particle sizes in the micron-scale. The few literature sources that investigate the environmental fate and toxicity to non-target organisms of encapsulated commercially available pesticide products with regard to capsule size report on average sizes between 20 and 50 μm. Here, we have identified a CS formulation with an average capsule size of approximately 2 μm with some capsules extending into the nanometer scale (~200 nm). Determining how carrier size influences toxicity is important to understanding if current pesticide risk assessments are sufficient to protect against products that incorporate encapsulation technology. Here, a commercial pyrethroid CS pesticide with lambda-cyhalothrin (λ-Cy) as the a.i. was separated into two suspensions, a fraction consisting of nano-sized capsules (~250 nm) and a fraction of micron-sized capsules (~2200 nm) in order to investigate the influence of capsule size on toxicity to embryonic zebrafish, Danio rerio. Toxicity was evaluated 24h after exposure to equivalent amounts of a.i. by the presence and severity of pyrethroid-specific tremors, 14 sublethal developmental impacts and mortality. Fish exposed to greater than 20 μg a.i. L(-1) technical λ-Cy or formulated product experienced curvature of the body axis, pericardial edema, craniofacial malformations, and mortality. Exposure to the unfractionated formulation, micro fraction, nano fraction and technical a.i. resulted in no significant differences in the occurrence of sublethal impacts or mortality; however, the technical a.i. exposure resulted in significantly less fish experiencing tremors and shorter tremors compared to any of the formulated product exposures. This suggests that the capsule size does not influence the toxic

  7. sizing for ethnicity in multi-cultural societies: validation of the size ...

    African Journals Online (AJOL)

    user

    2012). This challenges manufacturers and retailers in South. Africa to provide black consumers with well- fitting clothes. Muthambi et al. (2015) proposed size ...... 2007. Comparison of body shape between USA and Korean women. International Journal of. Clothing Science and Technology 19(5):374–. 391. MAKHANYA ...

  8. The Influence of the Size, Age and Sex on the Computed Tomographic Measured Size of the Pituitary Gland in Normal Horses.

    Science.gov (United States)

    Crijns, C P; Van Bree, H J; Broeckx, B J G; Schauvliege, S; Van Loon, G; Martens, A; Vanderperren, K; Dingemanse, W B; Gielen, I M

    2017-06-01

    The objective of this study was to examine the influence of the size, age and sex of the horse on the size of the pituitary gland and determine the possibility of using the pituitary gland height-to-brain area ratio (P:B ratio) to allow comparison of different sized and aged horses. Thirty-two horses without pituitary pars inter-media dysfunction that underwent a contrast-enhanced computed tomographic (CT) examination were included in a cross-sectional study. On the CT images, the pituitary gland height was measured and the P:B ratio was calculated. These measurements were correlated to the size, age and sex of the horses. The pituitary gland height was significantly associated with the size (P horses. No significant association was found between the P:B ratio and the size (P = 0.25), the age (P = 0.06) or the sex (P = 0.25) of the horses. In conclusion, the pituitary gland size varies between different sized and aged horses. The use of the P:B ratio is a valuable metric for making comparisons between the pituitary glands of these horses. © 2017 Blackwell Verlag GmbH.

  9. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  10. Disruption effects on the beam size measurement

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-06-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D{sub y} is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10{sup 10} particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 {mu}m horizontally and 0.55 {mu}m vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H{sub D} of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit.

  11. Modeling and optimization of wet sizing process

    International Nuclear Information System (INIS)

    Thai Ba Cau; Vu Thanh Quang and Nguyen Ba Tien

    2004-01-01

    Mathematical simulation on basis of Stock law has been done for wet sizing process on cylinder equipment of laboratory and semi-industrial scale. The model consists of mathematical equations describing relations between variables, such as: - Resident time distribution function of emulsion particles in the separating zone of the equipment depending on flow-rate, height, diameter and structure of the equipment. - Size-distribution function in the fine and coarse parts depending on resident time distribution function of emulsion particles, characteristics of the material being processed, such as specific density, shapes, and characteristics of the environment of classification, such as specific density, viscosity. - Experimental model was developed on data collected from an experimental cylindrical equipment with diameter x height of sedimentation chamber equal to 50 x 40 cm for an emulsion of zirconium silicate in water. - Using this experimental model allows to determine optimal flow-rate in order to obtain product with desired grain size in term of average size or size distribution function. (author)

  12. Disruption effects on the beam size measurement

    International Nuclear Information System (INIS)

    Raimondi, P.; Decker, F.J.; Chen, P.

    1995-01-01

    At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D y is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10 10 particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 μm horizontally and 0.55 μm vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H D of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit

  13. Experimentally reducing clutch size reveals a fixed upper limit to egg size in snakes, evidence from the king ratsnake, Elaphe carinata.

    Science.gov (United States)

    Ji, Xiang; Du, Wei-Guo; Li, Hong; Lin, Long-Hui

    2006-08-01

    Snakes are free of the pelvic girdle's constraint on maximum offspring size, and therefore present an opportunity to investigate the upper limit to offspring size without the limit imposed by the pelvic girdle dimension. We used the king ratsnake (Elaphe carinata) as a model animal to examine whether follicle ablation may result in enlargement of egg size in snakes and, if so, whether there is a fixed upper limit to egg size. Females with small sized yolking follicles were assigned to three manipulated, one sham-manipulated and one control treatments in mid-May, and two, four or six yolking follicles in the manipulated females were then ablated. Females undergoing follicle ablation produced fewer, but larger as well as more elongated, eggs than control females primarily by increasing egg length. This finding suggests that follicle ablation may result in enlargement of egg size in E. carinata. Mean values for egg width remained almost unchanged across the five treatments, suggesting that egg width is more likely to be shaped by the morphological feature of the oviduct. Clutch mass dropped dramatically in four- and six-follicle ablated females. The function describing the relationship between size and number of eggs reveals that egg size increases with decreasing clutch size at an ever-decreasing rate, with the tangent slope of the function for the six-follicle ablation treatment being -0.04. According to the function describing instantaneous variation in tangent slope, the maximum value of tangent slope should converge towards zero. This result provides evidence that there is a fixed upper limit to egg size in E. carinata.

  14. Green Lot-Sizing

    NARCIS (Netherlands)

    M. Retel Helmrich (Mathijn Jan)

    2013-01-01

    textabstractThe lot-sizing problem concerns a manufacturer that needs to solve a production planning problem. The producer must decide at which points in time to set up a production process, and when he/she does, how much to produce. There is a trade-off between inventory costs and costs associated

  15. Labour Costs and the Size of Government

    OpenAIRE

    Facchini, François; Melki, Mickael; Pickering, Andrew Christopher

    2016-01-01

    Given inelastic demand for labour-intensive public services, the size of government depends positively on labour costs. OECD data exhibit a strong statistical association between government size and the business-sector labour share of income. When the labour share is instrumented with measures of technological change, institutional variation and predetermined data it continues to positively impact government size. In contrast, transfer spending is unaffected by the labour share. The evidence ...

  16. Interlinking backscatter, grain size and benthic community structure

    Science.gov (United States)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  17. Towards Optimal Buffer Size in Wi-Fi Networks

    KAUST Repository

    Showail, Ahmad J.

    2016-01-19

    Buffer sizing is an important network configuration parameter that impacts the quality of data traffic. Falling memory cost and the fallacy that ‘more is better’ lead to over provisioning network devices with large buffers. Over-buffering or the so called ‘bufferbloat’ phenomenon creates excessive end-to-end delay in today’s networks. On the other hand, under-buffering results in frequent packet loss and subsequent under-utilization of network resources. The buffer sizing problem has been studied extensively for wired networks. However, there is little work addressing the unique challenges of wireless environment. In this dissertation, we discuss buffer sizing challenges in wireless networks, classify the state-of-the-art solutions, and propose two novel buffer sizing schemes. The first scheme targets buffer sizing in wireless multi-hop networks where the radio spectral resource is shared among a set of con- tending nodes. Hence, it sizes the buffer collectively and distributes it over a set of interfering devices. The second buffer sizing scheme is designed to cope up with recent Wi-Fi enhancements. It adapts the buffer size based on measured link characteristics and network load. Also, it enforces limits on the buffer size to maximize frame aggregation benefits. Both mechanisms are evaluated using simulation as well as testbed implementation over half-duplex and full-duplex wireless networks. Experimental evaluation shows that our proposal reduces latency by an order of magnitude.

  18. Processing vertical size disparities in distinct depth planes.

    Science.gov (United States)

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.

  19. Ultrasonic sizing of fatigue cracks

    International Nuclear Information System (INIS)

    Burns, D.J.

    1983-12-01

    Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed

  20. Achieving temperature-size changes in a unicellular organism

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Esteban, Genoveva F

    2013-01-01

    The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature. PMID:22832346

  1. Multi-Criteria Model for Determining Order Size

    Directory of Open Access Journals (Sweden)

    Katarzyna Jakowska-Suwalska

    2013-01-01

    Full Text Available A multi-criteria model for determining the order size for materials used in production has been presented. It was assumed that the consumption rate of each material is a random variable with a known probability distribution. Using such a model, in which the purchase cost of materials ordered is limited, three criteria were considered: order size, probability of a lack of materials in the production process, and deviations in the order size from the consumption rate in past periods. Based on an example, it has been shown how to use the model to determine the order sizes for polyurethane adhesive and wood in a hard-coal mine. (original abstract

  2. Determination of Flaw Size from Thermographic Data

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  3. Model catalysis by size-selected cluster deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  4. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  5. Equal Susceptibility and Size-selective Mobility in Aeolian Saltation

    Science.gov (United States)

    Martin, R. L.; Kok, J. F.

    2017-12-01

    Natural wind-eroded soils generally contain a mixture of particle sizes. However, models for aeolian saltation are typically derived for sediment bed surfaces containing only a single particle size. To treat natural mixed beds, models for saltation and associated dust aerosol emission have typically simplified aeolian transport either as a series of non-interacting single particle size beds or as a bed containing only the median or mean particle size. Here, we test these common assumptions underpinning aeolian transport models using measurements of size-resolved saltation fluxes at three natural field sites. We find that a wide range of sand size classes experience "equal susceptibility" to saltation at a single common threshold wind shear stress, contrary to the "selective susceptibility" expected for treatment of a mixed bed as multiple single particle size beds. Furthermore, we observe strong size-selectivity in the mobility of different particle sizes, which is not adequately accounted for in current models. At all field sites, mobility is enhanced for particles that are 0.4-0.8 times the median bed particle diameter, while mobility declines rapidly with increasing particle size above this range. We further observe that the most mobile particles also experience the largest saltation heights, which helps to explain variations in size-selective mobility. These observations refute the common simplification of saltation as a series of non-interacting single particle sizes. Sand transport and dust emission models that use this incorrect assumption can be both simplified and improved by instead using a single particle size representative of the mixed bed.

  6. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule.

    Science.gov (United States)

    Knouft, Jason H; Page, Lawrence M

    2003-03-01

    Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.

  7. Portion size me : Plate-size induced consumption norms and education futility

    NARCIS (Netherlands)

    Wansink, B.; van Ittersum, Koert

    2013-01-01

    Research on the self-serving of food has empirically ignored the role that visual consumption norms play in determining how much food we serve on different sized dinnerware. We contend that dinnerware provides a visual anchor of an appropriate fill-level, which in turn, serves as a consumption norm

  8. Size matters: Installed maximal unit size predicts market life cycles of electricity generation technologies and systems

    International Nuclear Information System (INIS)

    Li, N.

    2008-01-01

    The electricity generation technologies and systems are complex and change in very dynamic fashions, with a multitude of energy sources and prime movers. Since an important concept in generator design is the 'economies of scale', we discover that the installed maximal unit size (capacity) of the generators is a key 'envelope-pushing' characteristic with logistical behaviors. The logistical wavelet analysis of the max unit sizes for different fuels and prime movers, and the cumulative capacities, reveals universal quantitative features in the aggregate evolution of the power industry. We extract the transition times of the max sizes (spanning 10-90% of the saturation limits) for different technologies and systems, and discover that the max size saturation in the 90-99% range precedes the saturation of cumulative capacities of the corresponding systems in the US. While these universal laws are still empirical, they give us a simple yet elegant framework to examine the evolution of the power industry and markets in predictive, not just descriptive, terms. Such laws give us a quantitative tool to spot trends and predict future development, invaluable in planning and resource allocation based on intrinsic technology and system market life cycles

  9. Size effect in the strength of concrete structures

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The fracture mechanics size effect, as opposed to the Weibull statistical size effect, is a .... Solutions for TPB beam and a typical wedge-splitting geometry have been ..... Bazant Z P 1984 Size effect in blunt fracture: Concrete, rock, metal. J. Eng.

  10. Tumor size measured by preoperative ultrasonography and postoperative pathologic examination in papillary thyroid carcinoma: relative differences according to size, calcification and coexisting thyroiditis.

    Science.gov (United States)

    Yoon, Young Hoon; Kwon, Ki Ryun; Kwak, Seo Young; Ryu, Kyeung A; Choi, Bobae; Kim, Jin-Man; Koo, Bon Seok

    2014-05-01

    Ultrasonography (US) is a useful diagnostic modality for evaluation of the size and features of thyroid nodules. Tumor size is a key indicator of the surgical extent of thyroid cancer. We evaluated the difference in tumor sizes measured by preoperative US and postoperative pathologic examination in papillary thyroid carcinoma (PTC). We reviewed the medical records of 172 consecutive patients, who underwent thyroidectomy for PTC treatment. We compared tumor size, as measured by preoperative US, with that in postoperative specimens. And we analyzed a number of factors potentially influencing the size measurement, including cancer size, calcification and coexisting thyroiditis. The mean size of the tumor measured by preoperative US was 11.4, and 10.2 mm by postoperative pathologic examination. The mean percentage difference (US-pathology/US) of tumor sizes measured by preoperative US and postoperative pathologic examination was 9.9 ± 19.3%, which was statistically significant (p 20.0 mm) and the presence of calcification or coexisting thyroiditis on the tumor size discrepancy between the two measurements was analyzed, the mean percentage differences according to tumor size (9.1 vs. 11.2% vs. 9.8%, p = 0.842), calcification (9.2 vs. 10.2%, p = 0.756) and coexisting thyroiditis (17.6 vs. 9.5%, p = 0.223) did not show statistical significance. Tumor sizes measured in postoperative pathology were ~90% of those measured by preoperative US in PTC; this was not affected by tumor size, the presence of calcification or coexisting thyroiditis. When the surgical extent of PTC treatment according to tumor size measured by US is determined, the relative difference between tumor sizes measured by preoperative US and postoperative pathologic examination should be considered.

  11. Size matters: a meta-analysis on the impact of hospital size on patient mortality.

    Science.gov (United States)

    Fareed, Naleef

    2012-06-01

    This paper seeks to understand the relationship between hospital size and patient mortality. Patient mortality has been used by several studies in the health services research field as a proxy for measuring healthcare quality. A systematic review is conducted to identify studies that investigate the impact of hospital size on patient mortality. Using the findings of 21 effect sizes from 10 eligible studies, a meta-analysis is performed using a random effects model. Subgroup analyses using three factors--the measure used for hospital size, type of mortality measure used and whether mortality was adjusted or unadjusted--were utilised to investigate their moderating influence on the study's primary relationship. Results from this analysis indicate that big hospitals have lower odds of patient mortality versus small hospitals. Specifically, the probability of patient mortality in a big hospital, in reference to a small hospital, is 11% less. Subgroup analyses show that studies with unadjusted mortality rates have an even lower overall odds ratio of mortality versus studies with adjusted mortality rates. Aside from some limitations in data reporting, the findings of this paper support theoretical notions that big hospitals have lower mortality rates than small hospitals. Guidelines for better data reporting and future research are provided to further explore the phenomenon. Policy implications of this paper's findings are underscored and a sense of urgency is called for in an effort to help improve the state of a healthcare system that struggles with advancing healthcare quality. © 2012 The Author. International Journal of Evidence-Based Healthcare © 2012 The Joanna Briggs Institute.

  12. Energetic tradeoffs control the size distribution of aquatic mammals

    Science.gov (United States)

    Gearty, William; McClain, Craig R.; Payne, Jonathan L.

    2018-04-01

    Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.

  13. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    OpenAIRE

    Chepape, Kgobudi Frans; Mofokeng, Thapelo Prince; Nyamukamba, Pardon; Mubiayi, Kalenga Pierre; Moloto, Makwena Justice

    2017-01-01

    Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP) in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM) analysis of the samples showed that 50% PVP-capped Cd...

  14. Body size correlates with fertilization success but not gonad size in grass goby territorial males.

    Directory of Open Access Journals (Sweden)

    Jose Martin Pujolar

    Full Text Available In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003-2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995-1996 in the same area (61 territorial males and 65 sneakers. Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males.

  15. Body size correlates with fertilization success but not gonad size in grass goby territorial males.

    Science.gov (United States)

    Pujolar, Jose Martin; Locatello, Lisa; Zane, Lorenzo; Mazzoldi, Carlotta

    2012-01-01

    In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003-2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995-1996 in the same area (61 territorial males and 65 sneakers). Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males.

  16. Critical Parametric Study on Final Size of Magnetite Nanoparticles

    Science.gov (United States)

    Yusoff, A. H. M.; Salimi, M. N.; Jamlos, M. F.

    2018-03-01

    The great performance of magnetite nanoparticle in varsity field are mainly depended on their size since size determine the saturation magnetisation and also the phase purity. Magnetite nanoparticles were prepared using a simple co-precipitation method in order to study the influence of synthesis condition on the final size. Variable parameters include stirring rate, reaction temperature and pH of the solution can finely tuned the size of the resulting nanoparticles. Generally, any increase in these parameters had a gently reduction on particle size. But, the size was promoted to increase back at certain point due to the specific reason. Nucleation and growth processes are involved to clarify the impact of synthesis condition on the particle sizes. The result obtained give the correct conditions for pure magnetite synthesis at nanoscale size of dimensions less than 100 nm.

  17. Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee Megachile rotundata

    Directory of Open Access Journals (Sweden)

    Kevin M. O’Neill

    2014-03-01

    Full Text Available Females of solitary, nest-provisioning bees have relatively low fecundity, but produce large eggs as part of their overall strategy of investing substantially in each offspring. In intraspecific comparisons of several species of solitary, nest-provisioning bees and wasps, the size of the mature eggs produced increases with female body size. We further examined oocyte size–body size correlations in the solitary bee Megachile rotundata (F., an important crop pollinator. We hypothesized that larger females carry larger basal oocytes (i.e., those next in line to be oviposited but that body size–oocyte size correlations would be absent soon after emergence, before their first eggs fully matured. Because egg production is likely affected by the quantity of stored lipids carried over from the bees’ immature stages, we also tested the hypothesis that female body size is correlated with the body lipid content at adult emergence, the time during which oocyte growth accelerates. We found significant correlations of body size with oocyte size variables chosen to reflect: (1 the magnitude of the investment in the next egg to be laid (i.e., the length and volume of the basal oocyte and (2 the longer term potential to produce mature oocytes (i.e., the summed lengths and volumes of the three largest oocytes in each female. Positive correlations existed throughout the nesting season, even during the first week following adult emergence. The ability to produce and carry larger oocytes may be linked to larger females starting the nesting season with greater lipid stores (which we document here or to greater space within the abdomen of larger females. Compared to other species of solitary bees, M. rotundata appears to have (1 smaller oocytes than solitary nest-provisioning bees in general, (2 comparable oocyte sizes relative to congeners, and (3 larger oocytes than related brood parasitic megachilids.

  18. Volumes Learned: It Takes More Than Size to "Size Up" Pulmonary Lesions.

    Science.gov (United States)

    Ma, Xiaonan; Siegelman, Jenifer; Paik, David S; Mulshine, James L; St Pierre, Samantha; Buckler, Andrew J

    2016-09-01

    This study aimed to review the current understanding and capabilities regarding use of imaging for noninvasive lesion characterization and its relationship to lung cancer screening and treatment. Our review of the state of the art was broken down into questions about the different lung cancer image phenotypes being characterized, the role of imaging and requirements for increasing its value with respect to increasing diagnostic confidence and quantitative assessment, and a review of the current capabilities with respect to those needs. The preponderance of the literature has so far been focused on the measurement of lesion size, with increasing contributions being made to determine the formal performance of scanners, measurement tools, and human operators in terms of bias and variability. Concurrently, an increasing number of investigators are reporting utility and predictive value of measures other than size, and sensitivity and specificity is being reported. Relatively little has been documented on quantitative measurement of non-size features with corresponding estimation of measurement performance and reproducibility. The weight of the evidence suggests characterization of pulmonary lesions built on quantitative measures adds value to the screening for, and treatment of, lung cancer. Advanced image analysis techniques may identify patterns or biomarkers not readily assessed by eye and may also facilitate management of multidimensional imaging data in such a way as to efficiently integrate it into the clinical workflow. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  19. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size.

    Science.gov (United States)

    Liu, Jing-Xia; Höglund, Anna-Stina; Karlsson, Patrick; Lindblad, Joakim; Qaisar, Rizwan; Aare, Sudhakar; Bengtsson, Ewert; Larsson, Lars

    2009-01-01

    This comparative study of myonuclear domain (MND) size in mammalian species representing a 100,000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the beta/slow (type I; r = 0.84, P fast IIA MyHC isoform (r = 0.90; P muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.

  20. The economics of urban size.

    Science.gov (United States)

    Alonso, W

    1971-01-01

    An aggregative economic approach to the theory of city size is presented along with some empirical findings which suggest that even the largest cities have not yet reached excessive sizes from the point of view of growth and productivity. Urban magnitude is no simple 1 dimensional phenomenon. Modern urban centers are surrounded by very large, diffuse zonal boundaries, within which there are marked variations in the proportion of firms and people associated with that center, and in the intensity of the association. In sum, population does not constitute a conventional, countable set. In general, population will be considered as the basic magnitude and as a conventionally definable number. Most approaches to city size have emphasized the presumed diseconomy of urban scale and have sought to establish that population at which costs per capita are least, regarding this as optimal. It is argued here that both the logic and the factual basis of this approach are faulty. The argument of minimum costs is insufficient in its own terms. Such an objective is reasonable only if output per capita is constant, but it appears that output per capita is an increasing function of urban size. In that case, a more sensible objective of public policy would deal with the relation of outputs and inputs, rather than only with inputs. In every country for which evidence was found, local product per capita (or some index for it, such as income or wages) rises with urban size, and where comparable figures on cost are available, these rise far more slowly if at all. Although all of the data desirable are not available for any single country, the overall pattern is clear. Possibly the most surprising element in the data is the marked decline with increasing density in Social Overhead Captial Stocks (SOCS) per capita. This runs counter to common belief that the bigger the city the more infrastructure per capita is needed and may be the result of such effects as the greater linear quantities of

  1. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Noor Azman, N.Z. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Siddiqui, S.A. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); Low, I.M., E-mail: j.low@curtin.edu.au [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia)

    2013-12-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2–10 vol% WO{sub 3} loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10–40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO{sub 3}-epoxy composites in the energy range of 10–25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30–40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO{sub 3}-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25–49 kV) were in the range of 15–25 keV. Similarly, for a radiology unit operating at 40–60 kV, the equivalent energy range was 25–40 keV, and for operating voltages greater than 60 kV (i.e., 70–100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO{sub 3} loading resulted in deterioration of flexural strength, modulus and hardness. - Highlights: • Nano-sized WO{sub 3}-epoxy composites have superior x-ray shielding capability. • No size effect in x-ray attenuation was observed at 30–40 keV. • An optimum filler loading for improving the mechanical properties of WO{sub 3}-epoxy composites.

  2. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  3. Nodules size: An important factor in nodule mining?

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    A study of about 850 different sized nodules from 234 sites in the Central Indian Basin (CIB) showed a clear inverse relationship between size and grade of nodules. Among the different sized nodules, only the small (less than 2 cm) and medium (2...

  4. A sub-Mercury-sized exoplanet

    OpenAIRE

    Barclay, Thomas; Ciardi, David; Howard, Andrew W.

    2013-01-01

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the inner...

  5. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  6. Effects of exposure to bodies of different sizes on perception of and satisfaction with own body size: two randomized studies.

    Science.gov (United States)

    Bould, Helen; Carnegie, Rebecca; Allward, Heather; Bacon, Emily; Lambe, Emily; Sapseid, Megan; Button, Katherine S; Lewis, Glyn; Skinner, Andy; Broome, Matthew R; Park, Rebecca; Harmer, Catherine J; Penton-Voak, Ian S; Munafò, Marcus R

    2018-05-01

    Body dissatisfaction is prevalent among women and associated with subsequent obesity and eating disorders. Exposure to images of bodies of different sizes has been suggested to change the perception of 'normal' body size in others. We tested whether exposure to different-sized (otherwise identical) bodies changes perception of own and others' body size, satisfaction with body size and amount of chocolate consumed. In Study 1, 90 18-25-year-old women with normal BMI were randomized into one of three groups to complete a 15 min two-back task using photographs of women either of 'normal weight' (Body Mass Index (BMI) 22-23 kg m -2 ), or altered to appear either under- or over-weight. Study 2 was identical except the 96 participants had high baseline body dissatisfaction and were followed up after 24 h. We also conducted a mega-analysis combining both studies. Participants rated size of others' bodies, own size, and satisfaction with size pre- and post-task. Post-task ratings were compared between groups, adjusting for pre-task ratings. Participants exposed to over- or normal-weight images subsequently perceived others' bodies as smaller, in comparison to those shown underweight bodies ( p  < 0.001). They also perceived their own bodies as smaller (Study 1, p  = 0.073; Study 2, p  = 0.018; mega-analysis, p  = 0.001), and felt more satisfied with their size (Study 1, p  = 0.046; Study 2, p  = 0.004; mega-analysis, p  = 0.006). There were no differences in chocolate consumption. This study suggests that a move towards using images of women with a BMI in the healthy range in the media may help to reduce body dissatisfaction, and the associated risk of eating disorders.

  7. Estimating software development project size, using probabilistic ...

    African Journals Online (AJOL)

    Estimating software development project size, using probabilistic techniques. ... of managing the size of software development projects by Purchasers (Clients) and Vendors (Development ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  8. XRD characterisation of nanoparticle size and shape distributions

    International Nuclear Information System (INIS)

    Armstrong, N.; Kalceff, W.; Cline, J.P.; Bonevich, J.

    2004-01-01

    Full text: The form of XRD lines and the extent of their broadening provide useful structural information about the shape, size distribution, and modal characteristics of the nanoparticles comprising the specimen. Also, the defect content of the nanoparticles can be determined, including the type, dislocation density, and stacking faults/twinning. This information is convoluted together and can be grouped into 'size' and 'defect' broadening contributions. Modern X-ray diffraction analysis techniques have concentrated on quantifying the broadening arising from the size and defect contributions, while accounting for overlapping of profiles, instrumental broadening, background scattering and noise components. We report on a combined Bayesian/Maximum Entropy (MaxEnt) technique developed for use in the certification of a NIST Standard Reference Material (SRM) for size-broadened line profiles. The approach used was chosen because of its generality in removing instrumental broadening from the observed line profiles, and its ability to determine not only the average crystallite size, but also the distribution of sizes and the average shape of crystallites. Moverover, this Bayesian/MaxEnt technique is fully quantitative, in that it also determines uncertainties in the crystallite-size distribution and other parameters. Both experimental and numerical simulations of size broadened line-profiles modelled on a range of specimens with spherical and non-spherical morphologies are presented to demonstrate how this information can be retrieved from the line profile data. The sensitivity of the Bayesian/MaxEnt method to determining the size distribution using varying a priori information are emphasised and discussed

  9. Dynamic code block size for JPEG 2000

    Science.gov (United States)

    Tsai, Ping-Sing; LeCornec, Yann

    2008-02-01

    Since the standardization of the JPEG 2000, it has found its way into many different applications such as DICOM (digital imaging and communication in medicine), satellite photography, military surveillance, digital cinema initiative, professional video cameras, and so on. The unified framework of the JPEG 2000 architecture makes practical high quality real-time compression possible even in video mode, i.e. motion JPEG 2000. In this paper, we present a study of the compression impact using dynamic code block size instead of fixed code block size as specified in the JPEG 2000 standard. The simulation results show that there is no significant impact on compression if dynamic code block sizes are used. In this study, we also unveil the advantages of using dynamic code block sizes.

  10. Tsunami sediments and their grain size characteristics

    Science.gov (United States)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  11. 76 FR 63216 - Small Business Size Standards: Information

    Science.gov (United States)

    2011-10-12

    ... Federal small business assistance, SBA establishes small business definitions (referred to as size... business definition or size standard established by the SBA Administrator. The SBA considers as part of its... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG26 Small Business Size Standards...

  12. Hierarchical modeling of cluster size in wildlife surveys

    Science.gov (United States)

    Royle, J. Andrew

    2008-01-01

    Clusters or groups of individuals are the fundamental unit of observation in many wildlife sampling problems, including aerial surveys of waterfowl, marine mammals, and ungulates. Explicit accounting of cluster size in models for estimating abundance is necessary because detection of individuals within clusters is not independent and detectability of clusters is likely to increase with cluster size. This induces a cluster size bias in which the average cluster size in the sample is larger than in the population at large. Thus, failure to account for the relationship between delectability and cluster size will tend to yield a positive bias in estimates of abundance or density. I describe a hierarchical modeling framework for accounting for cluster-size bias in animal sampling. The hierarchical model consists of models for the observation process conditional on the cluster size distribution and the cluster size distribution conditional on the total number of clusters. Optionally, a spatial model can be specified that describes variation in the total number of clusters per sample unit. Parameter estimation, model selection, and criticism may be carried out using conventional likelihood-based methods. An extension of the model is described for the situation where measurable covariates at the level of the sample unit are available. Several candidate models within the proposed class are evaluated for aerial survey data on mallard ducks (Anas platyrhynchos).

  13. The influence of personal BMI on body size estimations and sensitivity to body size change in anorexia spectrum disorders.

    OpenAIRE

    Cornelissen, Katri; Bester, Andre; Cairns, Paul; Tovee, Martin; Cornelissen, Piers

    2015-01-01

    In this cross-sectional study, we investigated the influence of personal BMI on body size estimation in 42 women who have symptoms of anorexia (referred to henceforth as anorexia spectrum disorders, ANSD), and 100 healthy controls. Low BMI control participants over-estimate their size and high BMI controls under-estimate, a pattern which is predicted by a perceptual phenomenon called contraction bias. In addition, control participants' sensitivity to size change declines as their BMI increase...

  14. DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum

    Science.gov (United States)

    Yang, Shiliang; Zhang, Liangqi; Luo, Kun; Chew, Jia Wei

    2017-12-01

    Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared to the binary-size mixture, the presence of the medium particles leads to (i) higher purity of small particles in the innermost of the radial core, causing a decrease of the translational velocity of small particles; (ii) decrease and increase of the collision forces exerted on, respectively, the large and small particles in both regions; and (iii) increase in the relative ratio of the active-passive exchange rates of small to large particles. The results obtained in the current study therefore provide valuable insights regarding the size-segregation dynamics of granular mixtures with constituents of different sizes.

  15. Automated measurement of diatom size

    Science.gov (United States)

    Spaulding, Sarah A.; Jewson, David H.; Bixby, Rebecca J.; Nelson, Harry; McKnight, Diane M.

    2012-01-01

    Size analysis of diatom populations has not been widely considered, but it is a potentially powerful tool for understanding diatom life histories, population dynamics, and phylogenetic relationships. However, measuring cell dimensions on a light microscope is a time-consuming process. An alternative technique has been developed using digital flow cytometry on a FlowCAM® (Fluid Imaging Technologies) to capture hundreds, or even thousands, of images of a chosen taxon from a single sample in a matter of minutes. Up to 30 morphological measures may be quantified through post-processing of the high resolution images. We evaluated FlowCAM size measurements, comparing them against measurements from a light microscope. We found good agreement between measurement of apical cell length in species with elongated, straight valves, including small Achnanthidium minutissimum (11-21 µm) and largeDidymosphenia geminata (87–137 µm) forms. However, a taxon with curved cells, Hannaea baicalensis (37–96 µm), showed differences of ~ 4 µm between the two methods. Discrepancies appear to be influenced by the choice of feret or geodesic measurement for asymmetric cells. We describe the operating conditions necessary for analysis of size distributions and present suggestions for optimal instrument conditions for size analysis of diatom samples using the FlowCAM. The increased speed of data acquisition through use of imaging flow cytometers like the FlowCAM is an essential step for advancing studies of diatom populations.

  16. Size Does Matter: Implied Object Size is Mentally Simulated During Language Comprehension

    NARCIS (Netherlands)

    de Koning, Bjorn B.; Wassenburg, Stephanie I.; Bos, Lisanne T.; Van der Schoot, Menno

    2017-01-01

    Embodied theories of language comprehension propose that readers construct a mental simulation of described objects that contains perceptual characteristics of their real-world referents. The present study is the first to investigate directly whether implied object size is mentally simulated during

  17. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Johan Eklöf

    2017-01-01

    Full Text Available Background Organism biomass is one of the most important variables in ecological studies, making biomass estimations one of the most common laboratory tasks. Biomass of small macroinvertebrates is usually estimated as dry mass or ash-free dry mass (hereafter ‘DM’ vs. ‘AFDM’ per sample; a laborious and time consuming process, that often can be speeded up using easily measured and reliable proxy variables like body size or wet (fresh mass. Another common way of estimating AFDM (one of the most accurate but also time-consuming estimates of biologically active tissue mass is the use of AFDM/DM ratios as conversion factors. So far, however, these ratios typically ignore the possibility that the relative mass of biologically active vs. non-active support tissue (e.g., protective exoskeleton or shell—and therefore, also AFDM/DM ratios—may change with body size, as previously shown for taxa like spiders, vertebrates and trees. Methods We collected aquatic, epibenthic macroinvertebrates (>1 mm in 32 shallow bays along a 360 km stretch of the Swedish coast along the Baltic Sea; one of the largest brackish water bodies on Earth. We then estimated statistical relationships between the body size (length or height in mm, body dry mass and ash-free dry mass for 14 of the most common taxa; five gastropods, three bivalves, three crustaceans and three insect larvae. Finally, we statistically estimated the potential influence of body size on the AFDM/DM ratio per taxon. Results For most taxa, non-linear regression models describing the power relationship between body size and (i DM and (ii AFDM fit the data well (as indicated by low SE and high R2. Moreover, for more than half of the taxa studied (including the vast majority of the shelled molluscs, body size had a negative influence on organism AFDM/DM ratios. Discussion The good fit of the modelled power relationships suggests that the constants reported here can be used to quickly estimate

  18. Size dependence of non-magnetic thickness in YIG nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.

    2016-07-01

    This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.

  19. Constraints on the adult-offspring size relationship in protists.

    Science.gov (United States)

    Caval-Holme, Franklin; Payne, Jonathan; Skotheim, Jan M

    2013-12-01

    The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single-celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100-fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size-fecundity trade-off and/or from cell-biological constraints that limit the range of reproductive strategies available to single-celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. Accuracy of endoscopic intraoperative assessment of urologic stone size.

    Science.gov (United States)

    Patel, Nishant; Chew, Ben; Knudsen, Bodo; Lipkin, Michael; Wenzler, David; Sur, Roger L

    2014-05-01

    Endoscopic treatment of renal calculi relies on surgeon assessment of residual stone fragment size for either basket removal or for the passage of fragments postoperatively. We therefore sought to determine the accuracy of endoscopic assessment of renal calculi size. Between January and May 2013, five board-certified endourologists participated in an ex vivo artificial endoscopic simulation. A total of 10 stones (pebbles) were measured (mm) by nonparticipating urologist (N.D.P.) with electronic calibers and placed into separate labeled opaque test tubes to prevent visualization of the stones through the side of the tube. Endourologists were blinded to the actual size of the stones. A flexible digital ureteroscope with a 200-μm core sized laser fiber in the working channel as a size reference was placed through the ureteroscope into the test tube to estimate the stone size (mm). Accuracy was determined by obtaining the correlation coefficient (r) and constructing an Altman-Bland plot. Endourologists tended to overestimate actual stone size by a margin of 0.05 mm. The Pearson correlation coefficient was r=0.924, with a p-valuestones (stones (≥4 mm), r=0.911 vs r=0.666. Altman-bland plot analysis suggests that surgeons are able to accurately estimate stone size within a range of -1.8 to +1.9 mm. This ex vivo simulation study demonstrates that endoscopic assessment is reliable when assessing stone size. On average, there was a slight tendency to overestimate stone size by 0.05 mm. Most endourologists could visually estimate stone size within 2 mm of the actual size. These findings could be generalized to state that endourologists are accurately able to intraoperatively assess residual stone fragment size to guide decision making.

  1. A Longitudinal Analysis of Search Engine Index Size

    DEFF Research Database (Denmark)

    Van den Bosch, Antal; Bogers, Toine; De Kunder, Maurice

    2015-01-01

    One of the determining factors of the quality of Web search engines is the size of their index. In addition to its influence on search result quality, the size of the indexed Web can also tell us something about which parts of the WWW are directly accessible to the everyday user. We propose a novel...... method of estimating the size of a Web search engine’s index by extrapolating from document frequencies of words observed in a large static corpus of Web pages. In addition, we provide a unique longitudinal perspective on the size of Google and Bing’s indexes over a nine-year period, from March 2006...... until January 2015. We find that index size estimates of these two search engines tend to vary dramatically over time, with Google generally possessing a larger index than Bing. This result raises doubts about the reliability of previous one-off estimates of the size of the indexed Web. We find...

  2. Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules

    International Nuclear Information System (INIS)

    Wang, L; Rastelli, A; Kiravittaya, S; Atkinson, P; Schmidt, O G; Ding, F; Bufon, C C Bof; Hermannstaedter, C; Witzany, M; Beirne, G J; Michler, P

    2008-01-01

    We report on the fabrication, detailed characterization and modeling of lateral InGaAs quantum dot molecules (QDMs) embedded in a GaAs matrix and we discuss strategies to fully control their spatial configuration and electronic properties. The three-dimensional morphology of encapsulated QDMs was revealed by selective wet chemical etching of the GaAs top capping layer and subsequent imaging by atomic force microscopy (AFM). The AFM investigation showed that different overgrowth procedures have a profound consequence on the QDM height and shape. QDMs partially capped and annealed in situ for micro-photoluminescence spectroscopy consist of shallow but well-defined quantum dots (QDs) in contrast to misleading results usually provided by surface morphology measurements when they are buried by a thin GaAs layer. This uncapping approach is crucial for determining the QDM structural parameters, which are required for modeling the system. A single-band effective-mass approximation is employed to calculate the confined electron and heavy-hole energy levels, taking the geometry and structural information extracted from the uncapping experiments as inputs. The calculated transition energy of the single QDM shows good agreement with the experimentally observed values. By decreasing the edge-to-edge distance between the two QDs within a QDM, a splitting of the electron (hole) wavefunction into symmetric and antisymmetric states is observed, indicating the presence of lateral coupling. Site control of such lateral QDMs obtained by growth on a pre-patterned substrate, combined with a technology to fabricate gate structures at well-defined positions with respect to the QDMs, could lead to deterministically controlled devices based on QDMs

  3. Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo

    Science.gov (United States)

    Gnanadhas, Divya Prakash; Ben Thomas, Midhun; Thomas, Rony; Raichur, Ashok M.

    2013-01-01

    The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes. PMID:23877702

  4. Determination of size distribution function

    International Nuclear Information System (INIS)

    Teshome, A.; Spartakove, A.

    1987-05-01

    The theory of a method is outlined which gives the size distribution function (SDF) of a polydispersed system of non-interacting colloidal and microscopic spherical particles, having sizes in the range 0-10 -5 cm., from a gedanken experimental scheme. It is assumed that the SDF is differentiable and the result is obtained for rotational frequency in the order of 10 3 (sec) -1 . The method may be used independently, but is particularly useful in conjunction with an alternate method described in a preceding paper. (author). 8 refs, 2 figs

  5. Modeling and Sizing of Supercapacitors

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2008-06-01

    Full Text Available Faced with numerous challenges raised by the requirements of the modern industries for higher power and higher energy, supercapacitors study started playing an important role in offering viable solutions for some of these requirements. This paper presents the surface redox reactions based modeling in order to study the origin of high capacity of EDLC (electrical double-layer capacitor for better understanding the working principles of supercapacitors. Some application-dependent sizing methods are also presented since proper sizing can increase the efficiency and the life cycle of the supercapacitor based systems.

  6. Class size versus class composition

    DEFF Research Database (Denmark)

    Jones, Sam

    Raising schooling quality in low-income countries is a pressing challenge. Substantial research has considered the impact of cutting class sizes on skills acquisition. Considerably less attention has been given to the extent to which peer effects, which refer to class composition, also may affect...... bias from omitted variables, the preferred IV results indicate considerable negative effects due to larger class sizes and larger numbers of overage-for-grade peers. The latter, driven by the highly prevalent practices of grade repetition and academic redshirting, should be considered an important...

  7. Particle size determination

    International Nuclear Information System (INIS)

    Burr, K.J.

    1979-01-01

    A specification is given for an apparatus to provide a completely automatic testing cycle to determine the proportion of particles of less than a predetermined size in one of a number of fluid suspensions. Monitoring of the particle concentration during part of the process can be carried out by an x-ray source and detector. (U.K.)

  8. Portion sizes and obesity: responses of fast-food companies.

    Science.gov (United States)

    Young, Lisa R; Nestle, Marion

    2007-07-01

    Because the sizes of food portions, especially of fast food, have increased in parallel with rising rates of overweight, health authorities have called on fast-food chains to decrease the sizes of menu items. From 2002 to 2006, we examined responses of fast-food chains to such calls by determining the current sizes of sodas, French fries, and hamburgers at three leading chains and comparing them to sizes observed in 1998 and 2002. Although McDonald's recently phased out its largest offerings, current items are similar to 1998 sizes and greatly exceed those offered when the company opened in 1955. Burger King and Wendy's have increased portion sizes, even while health authorities are calling for portion size reductions. Fast-food portions in the United States are larger than in Europe. These observations suggest that voluntary efforts by fast-food companies to reduce portion sizes are unlikely to be effective, and that policy approaches are needed to reduce energy intake from fast food.

  9. Determination of a novel size proxy in comparative morphometrics

    Directory of Open Access Journals (Sweden)

    Andrew Gallagher

    2015-09-01

    Full Text Available Absolute size is a critical determinant of organismal biology, yet there exists no real consensus as to what particular metric of ‘size’ is empirically valid in assessments of extinct mammalian taxa. The methodological approach of JE Mosimann has found extensive favour in ‘size correction’ in comparative morphometrics, but not ‘size prediction’ in palaeontology and palaeobiology. Analyses of five distinct mammalian data sets confirm that a novel size variate (GMSize derived from k=8 dimensions of the postcranial skeleton effectively satisfies all expectations of the Jolicoeur–Mosimann theorem of univariate and multivariate size. On the basis of strong parametric correlations between the k=8 variates and between scores derived from the first principal component and geometric mean size (GMSize in all series, this novel size variable has considerable utility in comparative vertebrate morphometrics and palaeobiology as an appropriate descriptor of individual size in extant and extinct taxa.

  10. Photometric estimation of defect size in radiation direction

    International Nuclear Information System (INIS)

    Zuev, V.M.

    1993-01-01

    Factors, affecting accuracy of photometric estimation of defect size in radiation transmission direction, are analyzed. Experimentally obtained dependences of contrast of defect image on its size in radiation transmission direction are presented. Practical recommendations on improving accuracy of photometric estimation of defect size in radiation transmission direction, are developed

  11. Stochastic synchronization in finite size spiking networks

    Science.gov (United States)

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  12. Birth Order, Family Size and Educational Attainment

    OpenAIRE

    Monique de Haan

    2005-01-01

    This paper investigates the effect of sibship size and birth order on educational attainment, for the United States and the Netherlands. An instrumental variables approach is used to identify the effect of sibship size. Instruments for the number of children are twins at last birth and the sex mix of the first two children. The effect of birth order is identified, by examining the relation with years of education for different family sizes separately; this avoids the problem that estimated ef...

  13. Phase size distribution in WC/Co hardmetal

    International Nuclear Information System (INIS)

    Roebuck, B.; Bennett, E.G.

    1986-01-01

    A high-resolution field emission scanning electron microscope was used to perform accurate quantitative metallography on a variety of WC/Co hardmetals. Particular attention was paid to obtaining the mean size and size distribution of the cobalt phase by linear analysis. Cobalt regions are frequently submicron and difficult to resolve adequately by conventional methods. The WC linear intercept distributions, and contiguity were also measured at the same time. The results were used to examine the validity of theoretic derivations of cobalt intercept size

  14. The evolution of genome size in ants

    Directory of Open Access Journals (Sweden)

    Spagna Joseph C

    2008-02-01

    Full Text Available Abstract Background Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta, and the two published estimates for this species differ by 146.7 Mb (0.15 pg. Results Here, we report the genome size for 40 species of ants distributed across 10 of the 20 currently recognized subfamilies, thus making Formicidae the 4th most surveyed insect family and elevating the Hymenoptera to the 5th most surveyed insect order. Our analysis spans much of the ant phylogeny, from the less derived Amblyoponinae and Ponerinae to the more derived Myrmicinae, Formicinae and Dolichoderinae. We include a number of interesting and important taxa, including the invasive Argentine ant (Linepithema humile, Neotropical army ants (genera Eciton and Labidus, trapjaw ants (Odontomachus, fungus-growing ants (Apterostigma, Atta and Sericomyrmex, harvester ants (Messor, Pheidole and Pogonomyrmex, carpenter ants (Camponotus, a fire ant (Solenopsis, and a bulldog ant (Myrmecia. Our results show that ants possess small genomes relative to most other insects, yet genome size varies three-fold across this insect family. Moreover, our data suggest that two whole-genome duplications may have occurred in the ancestors of the modern Ectatomma and Apterostigma. Although some previous studies of other taxa have revealed a relationship between genome size and body size, our phylogenetically-controlled analysis of this correlation did not reveal a significant relationship. Conclusion This is the first analysis of genome size in ants (Formicidae and the first across multiple species of social insects. We show that genome size is a variable trait that can evolve gradually over long time spans, as well as rapidly, through processes that may

  15. [Influence of slot size on torque control].

    Science.gov (United States)

    Tian, Jun; Liu, Zhong-Hao; Zhang, Ding; Wu, Chuan-Jun

    2009-12-01

    To study the influence of two slot size brackets on torque control when teeth interacted in the same arch. After the upper arch was aligned and leveled in Typodont study, the inclinations of upper teeth 5 +/- 5 were measured when 0.457 2 mm x 0.635 0 mm OPA-K brackets and 0.558 8 mmx0.711 2 mm OPA-K brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire. This experiment was duplicated 10 times. The inclin of each tooth were transformed to the absolute values of the torque play angle psi by computing program, and paired-t test was used. The two kinds of slot size brackets were different with statistical significance on torque control. When the brackets were filled with 0.431 8 mm x 0.635 0 mm stainless steel wire, the absolute values of the angle psi in 0.558 8 mm x 0.711 2 mm and 0.457 2 mm x 0.635 0 mm slot size brackets were 6.140 degrees +/- 3.758 degrees and 2.608 degrees +/- 1.479 degrees respectively, and the average difference of that between the two slot size brackets was 3.532 degrees. The absolute values of the angle psi in the upper left and right canine brackets were 2.560 degrees +/- 2.605 degrees, 4.230 degrees +/- 2.817 degrees, 1.260 degrees +/- 0.747 degrees and 2.070 degrees +/- 0.663 degrees respectively, and average differences between them were smaller than that in the other teeth. There was difference between the two kinds of slot size brackets on torque control, and 0.457 2 mm x 0.635 0 mm slot size bracket controls torque better when filled with the same size wire. In this study, the teeth interaction in the same arch probably caused the result that the difference of two slot size brackets on torque control was less than the study results of the theory calculations and material studys before.

  16. Size effects in ductile cellular solids. Part I : modeling

    NARCIS (Netherlands)

    Onck, P.R.; Andrews, E.W.; Gibson, L.J.

    2001-01-01

    In the mechanical testing of metallic foams, an important issue is the effect of the specimen size, relative to the cell size, on the measured properties. Here we analyze size effects for the modulus and strength of regular, hexagonal honeycombs under uniaxial and shear loadings. Size effects for

  17. BODY SIZE AND HAREM SIZE IN MALE RED-WINGED BLACKBIRDS: MANIPULATING SELECTION WITH SEX-SPECIFIC FEEDERS.

    Science.gov (United States)

    Rohwer, Sievert; Langston, Nancy; Gori, Dave

    1996-10-01

    We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort. © 1996 The Society for the Study of Evolution.

  18. Portion distortion: typical portion sizes selected by young adults.

    Science.gov (United States)

    Schwartz, Jaime; Byrd-Bredbenner, Carol

    2006-09-01

    The incidence of obesity has increased in parallel with increasing portion sizes of individually packaged and ready-to-eat prepared foods as well as foods served at restaurants. Portion distortion (perceiving large portion sizes as appropriate amounts to eat at a single eating occasion) may contribute to increasing energy intakes and expanding waistlines. The purpose of this study was to determine typical portion sizes that young adults select, how typical portion sizes compare with reference portion sizes (based in this study on the Nutrition Labeling and Education Act's quantities of food customarily eaten per eating occasion), and whether the size of typical portions has changed over time. Young adults (n=177, 75% female, age range 16 to 26 years) at a major northeastern university. Participants served themselves typical portion sizes of eight foods at breakfast (n=63) or six foods at lunch or dinner (n=62, n=52, respectively). Typical portion-size selections were unobtrusively weighed. A unit score was calculated by awarding 1 point for each food with a typical portion size that was within 25% larger or smaller than the reference portion; larger or smaller portions were given 0 points. Thus, each participant's unit score could range from 0 to 8 at breakfast or 0 to 6 at lunch and dinner. Analysis of variance or t tests were used to determine whether typical and reference portion sizes differed, and whether typical portion sizes changed over time. Mean unit scores (+/-standard deviation) were 3.63+/-1.27 and 1.89+/-1.14, for breakfast and lunch/dinner, respectively, indicating little agreement between typical and reference portion sizes. Typical portions sizes in this study tended to be significantly different from those selected by young adults in a similar study conducted 2 decades ago. Portion distortion seems to affect the portion sizes selected by young adults for some foods. This phenomenon has the potential to hinder weight loss, weight maintenance, and

  19. Droplet size in a rectangular Venturi scrubber

    Directory of Open Access Journals (Sweden)

    M. A. M. Costa

    2004-06-01

    Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.

  20. Simple and cost-effective fabrication of size-tunable zinc oxide architectures by multiple size reduction technique

    Directory of Open Access Journals (Sweden)

    Hyeong-Ho Park, Xin Zhang, Seon-Yong Hwang, Sang Hyun Jung, Semin Kang, Hyun-Beom Shin, Ho Kwan Kang, Hyung-Ho Park, Ross H Hill and Chul Ki Ko

    2012-01-01

    Full Text Available We present a simple size reduction technique for fabricating 400 nm zinc oxide (ZnO architectures using a silicon master containing only microscale architectures. In this approach, the overall fabrication, from the master to the molds and the final ZnO architectures, features cost-effective UV photolithography, instead of electron beam lithography or deep-UV photolithography. A photosensitive Zn-containing sol–gel precursor was used to imprint architectures by direct UV-assisted nanoimprint lithography (UV-NIL. The resulting Zn-containing architectures were then converted to ZnO architectures with reduced feature sizes by thermal annealing at 400 °C for 1 h. The imprinted and annealed ZnO architectures were also used as new masters for the size reduction technique. ZnO pillars of 400 nm diameter were obtained from a silicon master with pillars of 1000 nm diameter by simply repeating the size reduction technique. The photosensitivity and contrast of the Zn-containing precursor were measured as 6.5 J cm−2 and 16.5, respectively. Interesting complex ZnO patterns, with both microscale pillars and nanoscale holes, were demonstrated by the combination of dose-controlled UV exposure and a two-step UV-NIL.