WorldWideScience

Sample records for subnanometer size effects

  1. The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection.

    Science.gov (United States)

    Jiang, Chengming; Tang, Chaolong; Song, Jinhui

    2015-02-11

    A chip-size vertically aligned nanowire (NW) resonator arrays (VNRs) device has been fabricated with simple one-step lithography process by using grown self-assembled zinc oxide (ZnO) NW arrays. VNR has cantilever diameter of 50 nm, which breakthroughs smallest resonator record (>100 nm) functioning in atmosphere. A new atomic displacement sensing method by using atomic force microscopy is developed to effectively identify the resonance of NW resonator with diameter 50 nm in atmosphere. Size-effect and half-dimensional properties of the NW resonator have been systematically studied. Additionally, VNR has been demonstrated with the ability of detecting nanofilm thickness with subnanometer (<10(-9)m) resolution.

  2. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-03-18

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H₂TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected.

  3. Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications

    KAUST Repository

    Rondelli, Manuel

    2017-05-10

    The use of physicochemical preparation techniques of metal clusters in the ultrahigh vacuum (UHV) allows for high control of cluster nuclearity and size distribution for fundamental studies in catalysis. Surprisingly, the potential of these systems as catalysts for organic chemistry transformations in solution has not been explored. To this end, single Pt atoms and Pt clusters with two narrow size distributions were prepared in the UHV and applied for the hydrogenation of p-chloronitrobenzene to p-chloroaniline in ethanol. Following the observation of very high catalytic turnovers (approaching the million molecules of p-nitroaniline formed per Pt cluster) and of size-dependent activity, this work addresses fundamental questions with respect to the suitability of these systems as heterogeneous catalysts for the conversion of solution-phase reagents. For this purpose, we employ scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS) characterization before and after reaction to assess the stability of the clusters on the support and the question of heterogeneity versus homogeneity in the catalytic process.

  4. Polymer Physics Prize Lecture: Self-assemblies of Giant Molecular Shape Amphiphiles as a New Platform for Engineering Structures with Sub-Nanometer Feature Sizes

    Science.gov (United States)

    Cheng, Stephen Z. D.

    2013-03-01

    Utilizing nano-building blocks rather than atoms to construct and engineer new structures is a fresh approach to design and develop functional materials for the purpose of transferring and amplifying microscopic functionality to macroscopic materials' property. As one of the important elements of these nano-building blocks, giant molecular shape amphiphiles (GMSAs) provide a latest platform for generating self-assembled ordered structures at nanometer scale, which are stabilized by collective physical bonds (such as collective hydrogen bonding). In this talk, two topics will be focused on. First, composed of functionalized hydrophilic molecular nanoparticles as the heads with rigid shape and fixed volume, and tethered polymer chains as the tails (such as giant molecular surfactants and lipids and other topologies), these GMSAs of various architectures can self-assemble into highly diversified, thermodynamically stable microstructures at sub-10 nm length scale in the bulk, thin film and solution states. Second, GMSAs could also be constructed solely from nanoparticles interconnected via different numbers of the rigid linkages in specific symmetry, simulating the overall shapes of small molecules but with sizes that are one-order of magnitude larger in length and three-order of magnitude larger in volume. Giant crystal structures can then be obtained from this class of ``giant molecules'' via supramolecular crystallization. These findings are not only scientifically intriguing in understanding the physical principles underlying their self-assembly, but also technologically relevant in industrial applications.

  5. Complex biomembrane mimetics on the sub-nanometer scale.

    Science.gov (United States)

    Heberle, Frederick A; Pabst, Georg

    2017-08-01

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain-forming lipid mixtures to asymmetric lipid bilayers. Here, we review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. In particular, we focus on: (1) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function of a size transition from nanoscopic to macroscopic domains; (2) membrane-mediated protein partitioning into lipid domains; (3) the role of the aqueous medium in tuning interactions between membranes and domains; and (4) leaflet-specific structure in asymmetric bilayers and passive lipid flip-flop.

  6. The importance of effect sizes

    NARCIS (Netherlands)

    B. Winkens; Dr. Sil Aarts; M. van den Akker

    2013-01-01

    KEY MESSAGE: •  Statistical significance testing alone is not the most adequate manner to evaluate if there is indeed a clinically relevant effect •  Effect sizes should be added to significance testing •  Effect sizes facilitate the decision whether a clinically relevant effect is found, helps

  7. Regenerable Subnanometer Pd Clusters on Zirconia for Highly Selective Hydrogenation of Biomass-Derived Succinic Acid in Water

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2016-07-01

    Full Text Available The size of metal particles is an important factor to determine the performance of the supported metal catalysts. In this work, we report subnanometer Pd clusters supported on zirconia by the microwave-assisted hydrothermal method. The presence of subnanometer Pd clusters on the zirconia surface was confirmed by two-dimensional Gaussian-function fits of the aberration-corrected high-angle annual dark-field images. These subnanometer Pd catalysts exhibit high catalytic performance for the hydrogenation of biomass-derived succinic acid to γ-butyrolactone in water and avoid the formation of overhydrogenated products, such as 1,4-butanediol and tetrahydrofuran. The catalyst with an ultra-low Pd loading of 0.2 wt. % demonstrated high selectivity (95% for γ-butyrolactone using water as a solvent at 473 K and 10 MPa. Moreover, it can be reused at least six times without the loss of catalytic activity, illustrating high performance of the small Pd clusters.

  8. Electron cryomicroscopy of single particles at subnanometer resolution.

    Science.gov (United States)

    Jiang, Wen; Ludtke, Steven J

    2005-10-01

    Electron cryomicroscopy and single-particle reconstruction have advanced substantially over the past two decades. There are now numerous examples of structures that have been solved using this technique to better than 10 A resolution. At such resolutions, direct identification of alpha helices is possible and, often, beta-sheet-containing regions can be identified. The most numerous subnanometer resolution structures are the icosahedral viruses, as higher resolution is easier to achieve with higher symmetry. Important non-icosahedral structures solved to subnanometer resolution include several ribosome structures, clathrin assemblies and, most recently, the Ca2+ release channel. There is now hope that, in the next few years, this technique will achieve resolutions approaching 4 A, permitting a complete trace of the protein backbone without reference to a crystal structure.

  9. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory......Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...

  10. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  11. Sub-nanometer drift correction for super-resolution imaging.

    Science.gov (United States)

    Tang, Y; Wang, X; Zhang, X; Li, J; Dai, L

    2014-10-01

    Spatial resolution of conventional far-field fluorescence microscopy is limited by diffraction of light. Single-molecule localization microscopy (SMLM), such as (direct) stochastic optical reconstruction microscopy (dSTORM/STORM), and (fluorescence) photoactivation localization microscopy (fPALM/PALM), can break this barrier by localizing single emitters and reconstructing super-resolution image with much higher precision. Nevertheless, a SMLM measurement needs to record a large number of image frames and takes considerable recording time. In this process, sample drift becomes a critical problem and cannot be neglected. In this Letter, we present a sub-nanometer precision, low-cost sample drift correction method based on minimizing normalized root-mean-square error (NRMSE) between bright field images. Two optical configurations are suggested for recording bright field and fluorescence images simultaneously or alternately. The method was demonstrated on simulated data, and better than 0.3 nm drift correction precision was achieved. It was also applied on dSTORM imaging of F-actins of 3T3 cell, and the quality of reconstructed super-resolution image was improved observably. This method does not require special hardware, extra labelling or markers, and no precision decline due to photobleaching. It can be applied as an add-on for SMLM setups and achieves sub-nanometer precision drift correction for post-measurement or real time drift compensation.

  12. Size-effect of germanium nanocrystals

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Liu, Chuan

    2011-01-01

    Different sizes of Ge nanocrystals embedded in a SiO2 matrix were formed by PECVD, and analyzed by TEM. Size effect of Ge nanocystals was demonstrated by Raman spectroscopy after excluding the thermal effect....

  13. Cavitation erosion size scale effects

    Science.gov (United States)

    Rao, P. V.; Buckley, D. H.

    1984-01-01

    Size scaling in cavitation erosion is a major problem confronting the design engineers of modern high speed machinery. An overview and erosion data analysis presented in this paper indicate that the size scale exponent n in the erosion rate relationship as a function of the size or diameter can vary from 1.7 to 4.9 depending on the type of device used. There is, however, a general agreement as to the values of n if the correlations are made with constant cavitation number.

  14. School size effects: review and conceptual analysis

    NARCIS (Netherlands)

    Scheerens, Jaap; Hendriks, Maria A.; Luyten, Johannes W.; Luyten, Hans; Hendriks, Maria; Scheerens, Jaap

    2014-01-01

    In this chapter, a review of international review studies on school size effects is presented. Next, ingredients of a more contextualized and tentative causal mediation model of school size effects are discussed. The chapter is completed by a short overview of school size effects as found in

  15. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    Science.gov (United States)

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  16. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    Science.gov (United States)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-01-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure. PMID:24343236

  17. Electron cryomicroscopy of biological machines at subnanometer resolution.

    Science.gov (United States)

    Chiu, Wah; Baker, Matthew L; Jiang, Wen; Dougherty, Matthew; Schmid, Michael F

    2005-03-01

    Advances in electron cryomicroscopy (cryo-EM) have made possible the structural determination of large biological machines in the resolution range of 6-9 angstroms. Rice dwarf virus and the acrosomal bundle represent two distinct types of machines amenable to cryo-EM investigations at subnanometer resolutions. However, calculating the density map is only the first step, and much analysis remains to extract structural insights and the mechanism of action in these machines. This paper will review the computational and visualization methodologies necessary for analysis (structure mining) of the computed cryo-EM maps of these machines. These steps include component segmentation, averaging based on local symmetry among components, density connectivity trace, incorporation of bioinformatics analysis, and fitting of high-resolution component data, if available. The consequences of these analyses can not only identify accurately some of the secondary structure elements of the molecular components in machines but also suggest structural mechanisms related to their biological functions.

  18. Size effects in manufacturing of metallic components

    DEFF Research Database (Denmark)

    Vollertsen, F; Biermann, D; Hansen, Hans Nørgaard

    2009-01-01

    In manufacturing of metallic components, the size of the part plays an important role for the process behaviour. This is due to so called size effects, which lead to changes in the process behaviour even if the relationship between the main geometrical features is kept constant. The aim of this p......In manufacturing of metallic components, the size of the part plays an important role for the process behaviour. This is due to so called size effects, which lead to changes in the process behaviour even if the relationship between the main geometrical features is kept constant. The aim...... of this paper is to give a systematic review on Such effects and their potential use or remedy. First, the typology of size effects will be explained, followed by a description of size effects on strength and tribology. The last three sections describe size effects on formability, forming processes and cutting...

  19. Do class size effects differ across grades?

    DEFF Research Database (Denmark)

    Nandrup, Anne Brink

    size cap that creates exogenous variation in class sizes. Significant (albeit modest) negative effects of class size increases are found for children on primary school levels. The effects on math abilities are statistically different across primary and secondary school. Larger classes do not affect......This paper contributes to the class size literature by analyzing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enroled in Danish public schools. Identification is based on a government-imposed class...

  20. Effective Size of Nonrandom Mating Populations

    OpenAIRE

    Caballero, A.; Hill, W. G.

    1992-01-01

    Nonrandom mating whereby parents are related is expected to cause a reduction in effective population size because their gene frequencies are correlated and this will increase the genetic drift. The published equation for the variance effective size, N(e), which includes the possibility of nonrandom mating, does not take into account such a correlation, however. Further, previous equations to predict effective sizes in populations with partial sib mating are shown to be different, but also in...

  1. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  2. Size effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  3. Effective Population Size of Korean Populations

    Directory of Open Access Journals (Sweden)

    Leeyoung Park

    2014-12-01

    Full Text Available Recently, new methods have been developed for estimating the current and recent changes in effective population sizes. Based on the methods, the effective population sizes of Korean populations were estimated using data from the Korean Association Resource (KARE project. The overall changes in the population sizes of the total populations were similar to CHB (Han Chinese in Beijing, China and JPT (Japanese in Tokyo, Japan of the HapMap project. There were no differences in past changes in population sizes with a comparison between an urban area and a rural area. Age-dependent current and recent effective population sizes represent the modern history of Korean populations, including the effects of World War II, the Korean War, and urbanization. The oldest age group showed that the population growth of Koreans had already been substantial at least since the end of the 19th century.

  4. Effective population size of korean populations.

    Science.gov (United States)

    Park, Leeyoung

    2014-12-01

    Recently, new methods have been developed for estimating the current and recent changes in effective population sizes. Based on the methods, the effective population sizes of Korean populations were estimated using data from the Korean Association Resource (KARE) project. The overall changes in the population sizes of the total populations were similar to CHB (Han Chinese in Beijing, China) and JPT (Japanese in Tokyo, Japan) of the HapMap project. There were no differences in past changes in population sizes with a comparison between an urban area and a rural area. Age-dependent current and recent effective population sizes represent the modern history of Korean populations, including the effects of World War II, the Korean War, and urbanization. The oldest age group showed that the population growth of Koreans had already been substantial at least since the end of the 19th century.

  5. Structural effect of size on interracial friendship.

    Science.gov (United States)

    Cheng, Siwei; Xie, Yu

    2013-04-30

    Social contexts exert structural effects on individuals' social relationships, including interracial friendships. In this study, we posit that, net of group composition, total context size has a distinct effect on interracial friendship. Under the assumptions of (i) maximization of preference in choosing a friend, (ii) multidimensionality of preference, and (iii) preference for same-race friends, we conducted analyses using microsimulation that yielded three main findings. First, increased context size decreases the likelihood of forming an interracial friendship. Second, the size effect increases with the number of preference dimensions. Third, the size effect is diluted by noise, i.e., the random component affecting friendship formation. Analysis of actual friendship data among 4,745 American high school students yielded results consistent with the main conclusion that increased context size promotes racial segregation and discourages interracial friendship.

  6. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  7. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Science.gov (United States)

    Szklarczyk, Marek; Macak, Karol; Roberts, Adam J.; Takahashi, Kazuhiro; Hutton, Simon; Głaszczka, Rafał; Blomfield, Christopher

    2017-07-01

    The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  8. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  9. Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects: Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects

    Energy Technology Data Exchange (ETDEWEB)

    Mammen, Nisha [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India; Spanu, Leonardo [Shell Technology Center, Shell India Markets Private Limited, -560048 Bangalore India; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Yang, Bing [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Halder, Avik [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Institute for Molecular Engineering, The University of Chicago, 60637 Chicago IL USA; Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India

    2017-12-22

    Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases also feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.

  10. Size Effects on the Strength of Metals

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2014-01-01

    The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistance...... to dislocation motion and to dislocation generation, respectively. It is shown that both strengthening mechanisms take place in some nanostructured metals, which leads to a suggestion to use these two mechanisms for optimizing the strength and ductility of nanostructured metals. This suggestion is verified...

  11. Nanocoatings size effect in nanostructured films

    CERN Document Server

    Aliofkhazraei, Mahmood

    2014-01-01

    Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.

  12. Board Size Effects in Closely Held Corporations

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Kongsted, H.C.; Meisner Nielsen, Kasper

    2004-01-01

    Previous work on board size effects in closely held corporationshas established a negative correlation between board size and firm performance.We argue that this work has been incomplete in analysing the causalrelationship due to lack of ownership information and weak identificationstrategies...

  13. The size effect in metal cutting

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The size effect in metal cutting. MILTON C SHAW. Emeritus Professor of Engineering, Arizona State University, Tempe AZ,. 85287-6106, USA. Abstract. When metal is removed by machining there is substantial increase in the specific energy required with decrease in chip size. It is generally believed this is due to the fact ...

  14. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.

    Science.gov (United States)

    Yuan, Zhe; Govind Rajan, Ananth; Misra, Rahul Prasanna; Drahushuk, Lee W; Agrawal, Kumar Varoon; Strano, Michael S; Blankschtein, Daniel

    2017-08-22

    Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO2 and CH4, through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO2 and CH4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO2/CH4 mixture, the graphene nanopores exhibit a trade-off between the CO2 permeance and the CO2/CH4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO2/CH4 separation factors higher than 10(2) have CO2 permeances per pore lower than 10(-22) mol s(-1) Pa(-1), and pores with separation factors of ∼10 have CO2 permeances per pore between 10(-22) and 10(-21) mol s(-1) Pa(-1). Finally, we show that a pore density of 10(14) m(-2) is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric materials

  15. Effective size of nonrandom mating populations.

    Science.gov (United States)

    Caballero, A; Hill, W G

    1992-04-01

    Nonrandom mating whereby parents are related is expected to cause a reduction in effective population size because their gene frequencies are correlated and this will increase the genetic drift. The published equation for the variance effective size, Ne, which includes the possibility of nonrandom mating, does not take into account such a correlation, however. Further, previous equations to predict effective sizes in populations with partial sib mating are shown to be different, but also incorrect. In this paper, a corrected form of these equations is derived and checked by stochastic simulation. For the case of stable census number, N, and equal progeny distributions for each sex, the equation is [formula: see text], where Sk2 is the variance of family size and alpha is the departure from Hardy-Weinberg proportions. For a Poisson distribution of family size (Sk2 = 2), it reduces to Ne = N/(1 + alpha), as when inbreeding is due to selfing. When nonrandom mating occurs because there is a specified system of partial inbreeding every generation, alpha can be substituted by Wright's FIS statistic, to give the effective size as a function of the proportion of inbred mates.

  16. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.

    Science.gov (United States)

    Gong, Bing; Shao, Zhifeng

    2013-12-17

    hydrophilic pores. These self-assembling hydrophilic pores can form ion channels in lipid membranes with very large ion conductances. To control the assembly, we have further introduced multiple hydrogen-bonding side chains to enforce the stacking of rigid macrocycles into self-assembling nanotubes. This strategy has produced a self-assembling, sub-nanometer hydrophobic pore that not only acted as a transmembrane channel with surprisingly high ion selectivity, but also mediated a significant transmembrane water flux. The stacking of rigid macrocycles that can be chemically modified in either the lumen or the exterior surface can produce self-assembling organic nanotubes with inner pores of defined sizes. The combination of our approach with the availability and synthetic tunability of various rigid macrocycles should produce a variety of organic nanopores. Such structures would allow researchers to systematically explore mass transport in the sub-nanometer regime. Further advances should lead to novel applications such as biosensing, materials separation, and molecular purifications.

  17. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning.

    Science.gov (United States)

    Fang, Ming; Ho, Johnny C

    2015-09-22

    Transistors have already been made three-dimensional (3D), with device channels (i.e., fins in trigate field-effect transistor (FinFET) technology) that are taller, thinner, and closer together in order to enhance device performance and lower active power consumption. As device scaling continues, these transistors will require more advanced, fabrication-enabling technologies for the conformal deposition of high-κ dielectric layers on their 3D channels with accurate position alignment and thickness control down to the subnanometer scale. Among many competing techniques, area-selective atomic layer deposition (AS-ALD) is a promising method that is well suited to the requirements without the use of complicated, complementary metal-oxide semiconductor (CMOS)-incompatible processes. However, further progress is limited by poor area selectivity for thicker films formed via a higher number of ALD cycles as well as the prolonged processing time. In this issue of ACS Nano, Professor Stacy Bent and her research group demonstrate a straightforward self-correcting ALD approach, combining selective deposition with a postprocess mild chemical etching, which enables selective deposition of dielectric films with thicknesses and processing times at least 10 times larger and 48 times shorter, respectively, than those obtained by conventional AS-ALD processes. These advances present an important technological breakthrough that may drive the AS-ALD technique a step closer toward industrial applications in electronics, catalysis, and photonics, etc. where more efficient device fabrication processes are needed.

  18. Quantum Size Effects in Nanostructured Material

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 10. Quantum Size Effects in Nanostructured Material ... Author Affiliations. Meera Ramrakhiani1. Department of Post Graduate Studies and Research in Physics and Electronics, Rani Durgavati University, Jabalpur 482 001, India.

  19. Size Effect in Tension Perpendicular to Grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Clorius, Christian Odin; Hoffmeyer, Preben

    2004-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents a hypothesis where ...

  20. Size-effects in porous metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2007-01-01

    The intrinsic size-effect for porous metals is investigated. The analyses are carried out numerically using a finite strain generalization of a higher order strain gradient plasticity model. Results for plane strain growth of cylindrical voids are presented in terms of response curves and curves...

  1. Size-effects in porous metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    The intrinsic size-effect for porous metals is investigated. The analyses are carried out numerically using a finite strain generalization of a higher order strain gradient plasticity model. Results for plane strain growth of cylindrical voids are presented in terms of response curves and curves...

  2. EFFECTS OF EFFECTS OF PARTICLE SIZE DISTRIBUTION ...

    African Journals Online (AJOL)

    eobe

    Bioremediation has been proven to be the most effective method of cleaning up oil contaminated soils through the application of nutrients and ... hydrocarbon content, soil pH, available nitrogen, available phosphorus, total heterotrophic bacteria and fungi count. ..... 2. Arora, K.K .Soil Mechanics and Foundation Engineering,.

  3. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.

    Science.gov (United States)

    Weber, M J; Verheijen, M A; Bol, A A; Kessels, W M M

    2015-03-06

    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.

  4. Structural effect of size on interracial friendship

    OpenAIRE

    Cheng, Siwei; Xie, Yu

    2013-01-01

    Social contexts exert structural effects on individuals’ social relationships, including interracial friendships. In this study, we posit that, net of group composition, total context size has a distinct effect on interracial friendship. Under the assumptions of (i) maximization of preference in choosing a friend, (ii) multidimensionality of preference, and (iii) preference for same-race friends, we conducted analyses using microsimulation that yielded three main findings. First, increased co...

  5. The effect of particle size on fracture properties and size effect of concrete

    NARCIS (Netherlands)

    Schlangen, E.; Lim, H.S.; Weerheijm, J.

    2005-01-01

    In the study the effect of scaling the material structure on the fracture behaviour of concrete is investigated. Next to this the size effect of concrete fracture strength and fracture energy is studied. The fracture mechanism of concrete made with different size aggregates are tested numerically. A

  6. Insight into Ion Transfer through the Sub-Nanometer Channels in Zeolitic Imidazolate Frameworks.

    Science.gov (United States)

    Jiang, Ze-Yu; Liu, Hai-Ling; Ahmed, Saud Asif; Hanif, Sumaira; Ren, Shi-Bin; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua; Wang, Kang

    2017-04-18

    A crack-free sub-nanometer composite structure for the study of ion transfer was constructed by in situ growth of ZIF-90 [Zn(ICA)2 , ICA=Imidazole-2-carboxaldehyde] on the tip of a glass nanopipette. The potential-driven ion transfer through the sub-nanometer channels in ZIF-90 is strongly influenced by the pH of the solution. A rectification ratio over 500 is observed in 1 m KCl solution under alkaline conditions (pH 11.58), which is the highest value reported under such a high salt concentration. Fluorescence experiments show the super-high rectification ratio under alkaline conditions results from the strong electrostatic interaction between ions and the sub-nanometer channels of ZIF-90. In addition to providing a general pathway for further study of mass-transfer process through sub-nanometer channels, the approach enable all kinds of metal-organic frameworks (MOFs) to be used as ionic permselectivity materials in nanopore-based analysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Subnanometer Translation of Microelectromechanical Systems Measured by Discrete Fourier Analysis of CCD Images

    NARCIS (Netherlands)

    Yamahata, Christophe; Sarajlic, Edin; Krijnen, Gijsbertus J.M.; Gijs, Martin A.M.

    2010-01-01

    Abstract—In-plane linear displacements of microelectromechanical systems are measured with subnanometer accuracy by observing the periodic micropatterns with a charge-coupled device camera attached to an optical microscope. The translation of the microstructure is retrieved from the video by

  8. Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Kneipp, Harald

    2013-01-01

    Large metal nanostructures with subnanometer interparticle separations (gaps) can provide extremely high local fields and are of particular interest in surface enhanced spectroscopy, as well as for basic understanding of plasmonics. In this experimental electron energy loss study, we monitor the ...

  9. Epigenetic effects of nano-sized materials.

    Science.gov (United States)

    Stoccoro, Andrea; Karlsson, Hanna L; Coppedè, Fabio; Migliore, Lucia

    2013-11-08

    The term epigenetics includes several phenomena such as DNA methylation, histone tail modifications, and microRNA mediated mechanisms, which are able to mold the chromatin structure and/or gene expression levels, without altering the primary DNA sequence. Environmental agents can exert epigenetic properties and there is increasing evidence of epigenetic deregulation of gene expression in several human diseases, including cancer, cardiovascular diseases, autism spectrum disorders, autoimmune diseases, and neurodegeneration, among others. Given the widespread use and dispersion in the environment of nano-sized materials, this article summarizes the studies performed so far to evaluate their potential epigenetic properties. Those studies highlight the ability of certain nano-sized compounds to induce an impaired expression of genes involved in DNA methylation reactions leading to global DNA methylation changes, as well as changes of gene specific methylation of tumor suppressor genes, inflammatory genes, and DNA repair genes, all potentially involved in cancer development. Moreover, some nano-sized compounds are able to induce changes in the acetylation and methylation of histone tails, as well as microRNA deregulated expression. We also provided a detailed description of currently available methodologies to evaluate epigenetic modifications. Standard protocols are currently available to evaluate cytotoxic and genotoxic effects of nano-sized materials. By contrast, there are at present no available standard protocols to evaluate the epigenetic potential of any given compound. The currently available methodologies offer different, but often complementary information to characterize potential epigenetic changes induced by exposure to nano-sized compounds. Given the widespread use and dispersion in the environment of nano-sized materials, at present and foreseeable in the near future, and in light of the indication of potential epigenetic properties here reviewed, more

  10. Quantum-size effects in semiconductor heterosystems

    Directory of Open Access Journals (Sweden)

    L.A. Matveeva

    2017-07-01

    Full Text Available Created on the basis of Si, GaAs and C60 fullerenes were low-dimensional heterostructures with a surface quantum-size effect at the film-substrate interface. There have been defined technological conditions of its appearance. Using modulation electroreflectance spectroscopy, calculated were spectral broadening parameters, the energy relaxation time of excited light charge carriers, the energy of quantized levels and the width of the quantum wells.

  11. Chemical vapor deposition-prepared sub-nanometer Zr clusters on Pd surfaces: promotion of methane dry reforming.

    Science.gov (United States)

    Mayr, Lukas; Shi, Xue-Rong; Köpfle, Norbert; Milligan, Cory A; Zemlyanov, Dmitry Y; Knop-Gericke, Axel; Hävecker, Michael; Klötzer, Bernhard; Penner, Simon

    2016-11-23

    An inverse Pd-Zr model catalyst was prepared by chemical vapor deposition (CVD) using zirconium-t-butoxide (ZTB) as an organometallic precursor. Pd-Zr interaction was then investigated with focus on the correlation of reforming performance with the oxidation state of Zr. As test reactions, dry reforming of methane (DRM) and methanol steam reforming (MSR) were chosen. Depending on treatments, either ZrOxHy or ZrO2 overlayers or Zr as sub-nanometer clusters could be obtained. Following the adsorption of ZTB on Pd(111), a partially hydroxylated Zr4+-containing layer was formed, which can be reduced to metallic Zr by thermal annealing in ultrahigh vacuum, leading to redox-active Zr0 sub-nanometer clusters. Complementary density functional theoretical (DFT) calculations showed that a single layer of ZrO2 on Pd(111) can be more easily reduced toward the metallic state than a double- and triple layer. Also, the initial and resulting layer compositions greatly depend on gas environment. The lower the water background partial pressure, the faster and more complete the reduction of Zr4+ species to Zr0 on Pd takes place. Under methanol steam reforming conditions, water activation by hydroxylation of Zr occurs. In excess of methanol, strong coking is induced by the Pd/ZrOxHy interface. In contrast, dry reforming of methane is effectively promoted if these initially metallic Zr species are present in the pre-catalyst, leading to a Pd/ZrOxHy phase boundary by oxidative activation under reaction conditions. These reaction-induced active sites for DRM are stable with respect to carbon blocking or coking. In essence, Zr doping of Pd opens specific CO2 activation channels, which are absent on pure metallic Pd.

  12. Size-Effects in Void Growth

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2005-01-01

    The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...

  13. Mechanisms underlying the portion-size effect.

    Science.gov (United States)

    Peter Herman, C; Polivy, Janet; Pliner, Patricia; Vartanian, Lenny R

    2015-05-15

    The portion-size effect (PSE) refers to the fact that people eat more when served larger portions. This effect is neither obvious nor artifactual. We examine the prevailing explanations (or underlying mechanisms) that have been offered for the PSE. The dominant candidate mechanism is "appropriateness"; that is, people accept the portion that they are served as being of an appropriate size and eat accordingly. Because people do not necessarily finish the portion that they are served, variations on the basic appropriateness mechanism have been suggested. We also consider some evidence that is inconsistent with an appropriateness explanation, including the appearance of the PSE in children as young as two years of age. We also examine other mechanisms that do not rely on appropriateness norms. Visual food cues may assist in assessing appropriateness but may also drive food intake in a more mindless fashion. Larger portions induce larger bites, which may increase intake by reducing oral exposure time and sensory-specific satiety. We consider further research questions that could help to clarify the mechanisms underlying the PSE. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Size effects on miniature Stirling cycle cryocoolers

    Science.gov (United States)

    Yang, Xiaoqin; Chung, J. N.

    2005-08-01

    Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.

  15. Publication Bias in Psychology: A Diagnosis Based on the Correlation between Effect Size and Sample Size

    Science.gov (United States)

    Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas

    2014-01-01

    Background The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. Methods We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. Results We found a negative correlation of r = −.45 [95% CI: −.53; −.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. Conclusion The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology. PMID:25192357

  16. Publication bias in psychology: a diagnosis based on the correlation between effect size and sample size.

    Science.gov (United States)

    Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas

    2014-01-01

    The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. We found a negative correlation of r = -.45 [95% CI: -.53; -.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology.

  17. Application of size effect to compressive strength of concrete members

    Indian Academy of Sciences (India)

    It is important to consider the effect of size when estimating the ultimate strength of a concrete member under various loading conditions. Well known as the size effect, the strength of a member tends to decrease when its size increases. Therefore, in view of recent increased interest in the size effect of concrete this research ...

  18. Size effects in ductile cellular solids. Part I : modeling

    NARCIS (Netherlands)

    Onck, P.R.; Andrews, E.W.; Gibson, L.J.

    2001-01-01

    In the mechanical testing of metallic foams, an important issue is the effect of the specimen size, relative to the cell size, on the measured properties. Here we analyze size effects for the modulus and strength of regular, hexagonal honeycombs under uniaxial and shear loadings. Size effects for

  19. Size effects in foams : Experiments and modeling

    NARCIS (Netherlands)

    Tekoglu, C.; Gibson, L. J.; Pardoen, T.; Onck, P. R.

    Mechanical properties of cellular solids depend on the ratio of the sample size to the cell size at length scales where the two are of the same order of magnitude. Considering that the cell size of many cellular solids used in engineering applications is between 1 and 10 mm, it is not uncommon to

  20. Effective size of populations under selection.

    Science.gov (United States)

    Santiago, E; Caballero, A

    1995-02-01

    Equations to approximate the effective size (Ne) of populations under continued selection are obtained that include the possibility of partial full-sib mating and other systems such as assortative mating. The general equation for the case of equal number of sexes and constant number of breeding individuals (N) is Ne = 4N/[2(1 - alpha I) + (Sk2 + 4Q2C2) (1 + alpha I + 2 alpha O)], where Sk2 is the variance of family size due to sampling without selection, C2 is the variance of selective advantages among families (the squared coefficient of variation of the expected number of offspring per family), alpha I is the deviation from Hardy-Weinberg proportions, alpha O is the correlation between genes of male and female parents, and Q2 is the term accounting for the cumulative effect of selection on an inherited trait. This is obtained as Q = 2/[2 - G(1 + r)], where G is the remaining proportion of genetic variance in selected individuals and r is the correlation of the expected selective values of male and female parents. The method is also extended to the general case of different numbers of male and female parents. The predictive value of the formulae is tested under a model of truncation selection with the infinitesimal model of gene effects, where C2 and G are a function of the selection intensity, the heritability and the intraclass correlation of sibs. Under random mating r = alpha I = -1/(N - 1) and alpha O = 0. Under partial full-sib mating with an average proportion beta of full-sib matings per generation, r approximately beta and alpha O approximately alpha I approximately beta/(4 - 3 beta). The prediction equation is compared to other approximations based on the long-term contributions of ancestors to descendants. Finally, based on the approach followed, a system of mating (compensatory mating) is proposed to reduce rates of inbreeding without loss of response in selection programs in which selected individuals from the largest families are mated to those from

  1. Direct sub-nanometer scale electron microscopy analysis of anion incorporation to self-ordered anodic alumina layers

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rovira, L.; Lopez-Haro, M.; Hungria, A.B.; El Amrani, K. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M. [Titania, Ensayos y Proyectos Industriales, S.L. Parque Tecnobahia, Edificio RETSE, Nave 4, 11500 El Puerto de Santa Maria (Cadiz) (Spain); Calvino, J.J. [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Botana, F.J., E-mail: javier.botana@uca.e [Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Cadiz, Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-11-15

    Research highlights: {yields} Morphological and chemical characterization at atomic scale of porous alumina layers anodised in ordered regimes. {yields} Characterization based on the use of FEG-SEM, STEM-HAADF, STEM-EELS and STEM-X-EDS. {yields} Nanoscale distribution of P-, C- and S-bearing species in the pore wall. - Abstract: Ordered porous alumina layers prepared by two-step anodising in phosphoric, oxalic and sulphuric acids have been characterized at sub-nanometer scale using electron microscopy techniques. FEG-SEM and STEM-HAADF images allowed estimating the pore size, cell wall and pore wall thicknesses of the layers. Nanoanalytical characterization has been performed by STEM-EELS and STEM-X-EDS. Detailed features of the spatial distribution of anions in the pore wall of the films have been obtained. Maximum concentration of P-species occurs, approximately, at the middle of the pore wall; adjacent to the pore for C-species, whereas the distribution of S-species appears to be uniform.

  2. The size effect in metal cutting

    Indian Academy of Sciences (India)

    When metal is removed by machining there is substantial increase in the specific energy required with decrease in chip size. It is generally believed this is due to the fact that all metals contain defects (grain boundaries, missing and impurity atoms, etc.), and when the size of the material removed decreases, the probability of ...

  3. Revisiting the size effect in the Bovespa

    Directory of Open Access Journals (Sweden)

    Maria del Mar Miralles-Quiros

    2017-08-01

    Full Text Available The size effect has been analyzed in numerous stock markets using different approaches. However, there are few studies focused on its practical applicability. In this context, the aim of this study is two-fold. First, we examine price and volatility linkages among large, medium, and small firms employing a multivariate VAR-BEKK model. Second, we provide the out-of-sample performance of optimal portfolios constructed on the basis of time-varying return and volatility forecasts from this specification approach. Our overall results show that optimal portfolios are primarily composed of medium and small firms. Moreover, our findings reveal that using this technique, it is possible to reduce risk and outperform the naïve rule, which is usually employed by foreign investors interested in the Brazilian stock market. These findings are relevant not only for academics but also for practitioners because it is important an in-depth knowledge of stock market patterns in order to develop correct trading strategies.

  4. Reporting and Interpreting Effect Size in Quantitative Agricultural Education Research

    National Research Council Canada - National Science Library

    Kotrlik, Joe; Williams, Heather; Jabor, Khata

    2011-01-01

    ... of effect size in the Results section" (APA, 2009, p. 34). Additionally, effect size encourages a meta-analysis perspective thereby leading to the ability to compare between studies and demonstrate repeatability of studies. Starting in January, 2010, the Journal of Agricultural Education (JAE) requires that "Authors MUST report effect sizes w...

  5. The prospects of a subnanometer focused neon ion beam.

    Science.gov (United States)

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H

    2012-01-01

    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress. © Wiley Periodicals, Inc.

  6. The causal effect of board size in the performance of small and medium-sized firms

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Kongsted, Hans Christian; Meisner Nielsen, Kasper

    2008-01-01

    correlation between family size and board size and show this correlation to be driven by firms where the CEO's relatives serve on the board. Second, we find empirical evidence of a small adverse board size effect driven by the minority of small and medium-sized firms that are characterized by having......Empirical studies of large publicly traded firms have shown a robust negative relationship between board size and firm performance. The evidence on small and medium-sized firms is less clear; we show that existing work has been incomplete in analyzing the causal relationship due to weak...... identification strategies. Using a rich data set of almost 7000 closely held corporations we provide a causal analysis of board size effects on firm performance: We use a novel instrument given by the number of children of the chief executive officer (CEO) of the firms. First, we find a strong positive...

  7. Effect of loading condition, specimen geometry, size-effect and ...

    Indian Academy of Sciences (India)

    - men geometry, loading condition, size-effect and softening function of concrete on double-K fracture parameters. The input data needed for computation of the double-. K fracture parameters are obtained from the well-known version of ...

  8. Resurrecting the size effect : Firm size, profitability shocks, and expected stock returns

    NARCIS (Netherlands)

    K. Hou (Kewei); M.A. van Dijk (Mathijs)

    2010-01-01

    textabstractRecent studies report that the size effect in the cross-section of stock returns has disappeared after the early 1980s. This paper shows that the disappearance of the size effect from realized returns can be attributed to unexpected shocks to the profitability of small and big firms. We

  9. Causality in Statistical Power: Isomorphic Properties of Measurement, Research Design, Effect Size, and Sample Size

    Directory of Open Access Journals (Sweden)

    R. Eric Heidel

    2016-01-01

    Full Text Available Statistical power is the ability to detect a significant effect, given that the effect actually exists in a population. Like most statistical concepts, statistical power tends to induce cognitive dissonance in hepatology researchers. However, planning for statistical power by an a priori sample size calculation is of paramount importance when designing a research study. There are five specific empirical components that make up an a priori sample size calculation: the scale of measurement of the outcome, the research design, the magnitude of the effect size, the variance of the effect size, and the sample size. A framework grounded in the phenomenon of isomorphism, or interdependencies amongst different constructs with similar forms, will be presented to understand the isomorphic effects of decisions made on each of the five aforementioned components of statistical power.

  10. Biofuel Manufacturing from Woody Biomass: Effects of Sieve Size Used in Biomass Size Reduction

    Science.gov (United States)

    Zhang, Meng; Song, Xiaoxu; Deines, T. W.; Pei, Z. J.; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes. PMID:22665985

  11. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...

  12. Effects of size congruency on item and size recognition with words or pictures.

    Science.gov (United States)

    Standing, Lionel G; Bertrand, Michelle I

    2008-10-01

    The effect of size changes (8:1 or 1:8) between learning and recognition sessions upon item and size recognition was tested, using either pictures or words as stimuli. Participants (N = 34) viewed color photographs of everyday objects or the corresponding printed words and then performed 160 trials of a recognition task, including 50% new stimuli, for which they had to indicate whether each item had been seen before and whether its size had changed. Item recognition, for pictures only, was improved by size congruency between the learning and test sessions. In contrast, size recognition was raised by learning/test-size congruency for both pictures and words. Both word- and picture-learning stimuli produced higher item and size recognition when large in area rather than small. The data are interpreted as showing the stronger role of spatial coding with pictorial than with verbal stimuli.

  13. Interpreting and Reporting Effect Sizes in Research Investigations.

    Science.gov (United States)

    Tapia, Martha; Marsh, George E., II

    Since 1994, the American Psychological Association (APA) has advocated the inclusion of effect size indices in reporting research to elucidate the statistical significance of studies based on sample size. In 2001, the fifth edition of the APA "Publication Manual" stressed the importance of including an index of effect size to clarify…

  14. The pack size effect: Influence on consumer perceptions of portion sizes.

    Science.gov (United States)

    Hieke, Sophie; Palascha, Aikaterini; Jola, Corinne; Wills, Josephine; Raats, Monique M

    2016-01-01

    Larger portions as well as larger packs can lead to larger prospective consumption estimates, larger servings and increased consumption, described as 'portion-size effects' and 'pack size effects'. Although related, the effects of pack sizes on portion estimates have received less attention. While it is not possible to generalize consumer behaviour across cultures, external cues taken from pack size may affect us all. We thus examined whether pack sizes influence portion size estimates across cultures, leading to a general 'pack size effect'. We compared portion size estimates based on digital presentations of different product pack sizes of solid and liquid products. The study with 13,177 participants across six European countries consisted of three parts. Parts 1 and 2 asked participants to indicate the number of portions present in a combined photographic and text-based description of different pack sizes. The estimated portion size was calculated as the quotient of the content weight or volume of the food presented and the number of stated portions. In Part 3, participants stated the number of food items that make up a portion when presented with packs of food containing either a small or a large number of items. The estimated portion size was calculated as the item weight times the item number. For all three parts and across all countries, we found that participants' portion estimates were based on larger portions for larger packs compared to smaller packs (Part 1 and 2) as well as more items to make up a portion (Part 3); hence, portions were stated to be larger in all cases. Considering that the larger estimated portions are likely to be consumed, there are implications for energy intake and weight status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect size as a supplement to statistical significance testing

    Directory of Open Access Journals (Sweden)

    Gašper Cankar

    2003-06-01

    Full Text Available Researchers in the field of psychology often face the situation that the statistical significance depends largely on the sample size and its statistical power. Effect size is a statistical measure that can offer some solutions for constructive research, since it can overcome the problems that are connected to the sample size. This article presents statistical significance testing we meet in psychology and the usage of smaller group of the effect size measures – measures of the standardised differences between means.

  16. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  17. Effect Size Calculations and Single Subject Designs

    Science.gov (United States)

    Olive, Melissa L.; Smith, Benjamin W.

    2005-01-01

    This study compared visual analyses with five alternative methods for assessing the magnitude of effect with single subject designs. Each method was successful in detecting intervention effect. When rank ordered, each method was consistent in identifying the participants with the largest effect. We recommend the use of the standard mean difference…

  18. Size effects on the fatigue behavior of bulk metallic glasses

    Science.gov (United States)

    Wang, G. Y.; Liaw, P. K.; Yokoyama, Y.; Inoue, A.

    2011-12-01

    Size effects on bending fatigue characteristics are investigated on Zr-based bulk-metallic glasses (BMGs). The fatigue lifetimes and endurance limits of the large-size samples are greater than those of the small-size samples. The results suggest that although a BMG exhibits good ductility due to the formation of multiple shear bands when its size decreases, the fatigue resistance of BMGs might degrade when the specimen size becomes smaller. The current study finds that small-size BMG samples under bending fatigue could fail in the flexural or fracture mode.

  19. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  20. Finite size effects of a pion matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Guagnelli, M. [Dipartimento di Fisica, Universita di Roma Tor Vergata and INFN, Sezione di Roma II, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Jansen, K. [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany); Palombi, F. [Dipartimento di Fisica, Universita di Roma Tor Vergata and INFN, Sezione di Roma II, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); E. Fermi Research Center, c/o Compendio Viminale, pal. F, I-00184 Rome (Italy); Petronzio, R. [Dipartimento di Fisica, Universita di Roma Tor Vergata and INFN, Sezione di Roma II, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Shindler, A. [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany); Wetzorke, I. [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany)]. E-mail: ines.wetzorke@desy.de

    2004-09-09

    We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation.

  1. Effective population size and genetic conservation criteria for bull trout

    Science.gov (United States)

    Bruce E. Rieman; F. W. Allendorf

    2001-01-01

    Effective population size (Ne) is an important concept in the management of threatened species like bull trout Salvelinus confluentus. General guidelines suggest that effective population sizes of 50 or 500 are essential to minimize inbreeding effects or maintain adaptive genetic variation, respectively....

  2. Density-dependent effects on growth, body size, and clutch size in Black Brant

    Science.gov (United States)

    Sedinger, James S.; Lindberg, Mark S.; Person, Brian T.; Eichholz, Michael W.; Herzog, Mark P.; Flint, Paul L.

    1998-01-01

    We documented gosling size in late summer, adult body size, and clutch size of known-age Black Brant (Branta bernicla nigricans) females nesting on the Tutakoke River colony between 1986 and 1995. During this period, the colony increased from 1,100 to >5,000 nesting pairs. Gosling mass at 30 days of age declined from 764 ± SE of 13 g and 723 ± 15 g for males and females, respectively, in the 1986 cohort, to 665 ± 18 g and 579 ± 18 g in the 1994 cohort. Gosling size was directly negatively correlated with number of Black Brant broods. We detected no trend in adult body size for individuals from these cohorts; in fact, adults from the 1992 and 1994 cohorts had the largest overall masses. Clutch size increased with age from 3.4 eggs for 2-year-old females to 4.4 eggs for 5-year-old females. Clutch size declined during the study by 0.20 (3-year-old females) to 0.45 (2-year-old females) eggs. Clutch size did not decline between the 1986 and 1990 cohorts for females that were >5 years old. Our results for clutch size and gosling size are similar to those recorded for Lesser Snow Geese (Chen caerulescens caerulescens). Our failure to detect a trend in adult body size, however, differs from the response of other geese to increasing population density. We interpret this difference in effects of density on adult size between Black Brant and other geese as an indication of stronger selection against the smallest individuals in Black Brant relative to other species of geese.

  3. Effect of cystacanth body size on adult success.

    Science.gov (United States)

    Steinauer, Michelle L; Nickol, Brent B

    2003-04-01

    Laboratory-reared cystacanths of Leptorhynchoides thecatus (Acanthocephala: Rhadinorhynchidae) were used to study the effect of cystacanth size on adult success and the factors that influence cystacanth size within the intermediate host. To assess how host size and intensity of infection influence cystacanth size, infected amphipods (Hyalella azteca) were measured, and sex, length, and width of cystacanths were determined. After a subset of cystacanths was measured, small- and large-size classes of cystacanths were designated. To determine how cystacanth size relates to adult size, green sunfish (Lepomis cyanellus) were fed 10 large or small cystacanths. Fish were dissected 6 wk after infection, and worms were removed. After adult worms were permanently mounted on slides, their length and width were measured. Intensity of infection and amphipod size significantly influenced cystacanth size in that large amphipods harbored larger cystacanths than did small amphipods and heavy infections produced smaller cystacanths than did light infections. Adult worms from the small and large cystacanth-size classes showed no significant difference in size; however, large cystacanths had a significantly higher establishment and survival than did small cystacanths: 40% of large worms and 14% of small worms were recovered. The results of this study indicate that host size and host sharing influence cystacanth size and that cystacanth size is an important factor in determining adult success.

  4. Portion size and intended consumption. Evidence for a pre-consumption portion size effect in males?

    Science.gov (United States)

    Robinson, Eric; te Raa, Wesselien; Hardman, Charlotte A

    2015-08-01

    Larger portions increase energy intake (the 'portion size effect'); however, the mechanisms behind this effect are unclear. Although pre-meal intentions are thought to be an important determinant of energy intake, little research has examined how much of a meal individuals intend to eat when served standard versus larger portion sizes. Three studies examined the effect of manipulating portion size on intended food consumption. In Studies 1 (spaghetti bolognese) and 2 (curry and rice) male participants were shown an image of either a standard or a larger meal and indicated how much of the meal they intended to consume. In Study 3 male and female participants were served either a standard or a larger portion of ice cream for dessert, they indicated how much they intended to consume and then ate as much of the ice cream as they desired. Regardless of being shown standard or large portion sizes, in Studies 1 and 2 participants reported that they intended to eat the majority of the meal, equating to a large difference in intended energy consumption between portion size conditions (a 'pre-consumption portion size effect'). This finding was replicated in male participants in Study 3, although females intended to eat a smaller proportion of the larger portion of ice cream, compared to the standard portion. Both male and female participants tended to eat in accordance with their pre-meal intentions and a portion size effect on actual consumption was subsequently observed in males, but not in females. The portion size effect may be observed when measuring pre-meal intended consumption in males. Copyright © 2015. Published by Elsevier Ltd.

  5. Size- and shape-selective isostructural microporous metal-organic frameworks with different effective aperture sizes.

    Science.gov (United States)

    Liu, Xinfang; Oh, Minhak; Lah, Myoung Soo

    2011-06-06

    Two isostructural metal-organic frameworks (MOFs) having micropores of the same "static aperture size" but different "effective aperture size" have been prepared using 5-(pyridin-3-ylethynyl)isophthalic acid as a ligand having two different types of functional units, an isophthalate (iph) unit and a pyridyl unit, simultaneously in a single ligand. The combination of iph unit and Cu (or Zn) ion led to two-dimensional layers of Kagomé (kgm) net topology, the layers being further pillared by the internal auxiliary pyridyl unit to form a three-dimensional microporous framework having two different types of cage-like pores, cage A and cage B, with different aperture sizes and shapes. (1) The MOFs can distinguish the adsorbates (N(2)/Ar) not based on the widely used kinetic diameters of the adsorbates but based on the minimum diameters of the adsorbates, which are more shape dependent. While cage A with a sufficiently large aperture size compared with the size of the adsorbates does not show any size selectivity, cage B with an approximate size match between the adsorbates and the pore apertures shows shape selectivity for the adsorbates. The smaller but spherically shaped Ar atom is not allowed into the pore with the oval-shaped aperture; however, the larger linear N(2) molecule is allowed into the pore with the oval-shaped aperture. (2) Even though the two isostructural MOFs have the same static aperture size of cage B, they show different size selectivity for the adsorbates based on the effective aperture size, which reflects the different extents of the framework flexibility. © 2011 American Chemical Society

  6. Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy.

    Science.gov (United States)

    Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A

    2017-07-14

    Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.

  7. Effects of particle size distribution in thick film conductors

    Science.gov (United States)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  8. Quantum size effects in InP inner film fiber

    Science.gov (United States)

    Wang, Ting-Yun; Wang, Ke-Xin; Lu, Jun

    2005-07-01

    Based on the semiconductor amplifiing properties and the structure of optical fiber wave guide an InP inner fiber is developed. The InP inner film fiber can be employed as a small size, broadband, and ultra-short fiber amplifier. The quantum size effects of the fiber are emphatically investigated in the work. Using the experimental data, we compare the effective mass approximation (EMA) with effective parameterization within the tight binding (EPTB) models for the accurate description of the quantum size effects in InP. The results show that the EPTB model provides an excellent description of band gap variation over a wide range of sizes. The Bohr diameter and the effective Rydberg energy of InP are calculated. Finally, the amplifiing properties of the InP inner film fiber are discussed due to the quantum size effects.

  9. Friction related size-effect in microforming – a review

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2014-01-01

    Full Text Available This paper presents a thorough literature review of the size effects of friction in microforming. During miniaturization, the size effects of friction occur clearly. The paper first introduces experimental research progress on size effects of friction in both micro bulk and sheet forming. The effects of several parameters are discussed. Based on the experimental results, several approaches have been performed to develop a model or functions to analyse the mechanism of size effects of friction, and simulate the micro deep drawing process by integrating them into an FE program. Following this, surface modification, e.g. a DLC film and a micro structure/textured surface, as a method to reduce friction are presented. Finally, the outlook for the size effect of friction in the future is assessed, based on the understanding of the current research progress.

  10. Evaluation of size effect on shear strength of reinforced concrete ...

    Indian Academy of Sciences (India)

    The generic form of the size effect law has been retained considering the merits of Siao's model and modified Bazant's size effect law using the large experimental data base reported in the literature. The proposed equation for predicting the shear strength of deep beams incorporates the compressive strength of concrete, ...

  11. Application of size effect to compressive strength of concrete members

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Ba˘zant Z P, Xiang Y 1994 Compression failure of quasibrittle materials and size effect.AMD Symp. Ser. ASME Appl. Mech. Div., 185, Damage Mechanics in Composites, ASME Winter Annual Meeting,. Chicago (eds) D H Allen, J W Ju pp 143–148. Ba˘zant Z P, Xiang Y 1997 Size effect in compression fracture: Splitting crack ...

  12. Cohesive stresses and size effect in quasi-brittle materials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. A novel approach to the derivation of Ba˘zant's size effect law is pre- sented. Contrarily to the original Lagrangian derivation which hinged on energetic consideration, a Newtonian approach based on local stress intensity factors is pre- sented. Through this approach, it is shown that Ba˘zant's size effect law is the ...

  13. Size-effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  14. Effect of biochar particle size on hydrophobic organic compound sorption kinetics: Applicability of using representative size.

    Science.gov (United States)

    Kang, Seju; Jung, Jihyeun; Choe, Jong Kwon; Ok, Yong Sik; Choi, Yongju

    2017-11-16

    Particle size of biochar may strongly affect the kinetics of hydrophobic organic compound (HOC) sorption. However, challenges exist in characterizing the effect of biochar particle size on the sorption kinetics because of the wide size range of biochar. The present study suggests a novel method to determine a representative value that can be used to show the dependence of HOC sorption kinetics to biochar particle size on the basis of an intra-particle diffusion model. Biochars derived from three different feedstocks are ground and sieved to obtain three daughter products each having different size distributions. Phenanthrene sorption kinetics to the biochars are well described by the intra-particle diffusion model with significantly greater sorption rates observed for finer grained biochars. The time to reach 95% of equilibrium for phenanthrene sorption to biochar is reduced from 4.6-17.9days for the original biochars to biochars with biochar particle radius obtained using particle size distribution analysis and the apparent phenanthrene sorption rates determined by the sorption kinetics experiments and normalized to account for the variation of the sorption rate-determining factors other than the biochar particle radius. The results suggest that the representative biochar particle radius reasonably describes the dependence of HOC sorption rates on biochar particle size. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of Titanium Dioxide Nanoparticle Aggregate Size on Gene Expression

    Directory of Open Access Journals (Sweden)

    Junko Okuda-Shimazaki

    2010-06-01

    Full Text Available Titanium dioxide (titania nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis. The aggregate particle sizes of small and large aggregated titania were 166 nm (PDI = 0.291 and 596 nm (PDI = 0.417, respectively. These two size groups were separated by centrifugation from the same initial nanoparticle sample. We analyzed the gene expression of biomarkers focused on stress, inflammation, and cytotoxicity. Large titania aggregates show a larger effect on cell viability and gene expression when compared with the small aggregates. This suggests that particle aggregate size is related to cellular effects.

  16. Effects of Titanium Dioxide Nanoparticle Aggregate Size on Gene Expression

    Science.gov (United States)

    Okuda-Shimazaki, Junko; Takaku, Saiko; Kanehira, Koki; Sonezaki, Shunji; Taniguchi, Akiyohshi

    2010-01-01

    Titanium dioxide (titania) nanoparticle aggregation is an important factor in understanding cytotoxicity. However, the effect of the aggregate size of nanoparticles on cells is unclear. We prepared two sizes of titania aggregate particles and investigated their biological activity by analyzing biomarker expression based on mRNA expression analysis. The aggregate particle sizes of small and large aggregated titania were 166 nm (PDI = 0.291) and 596 nm (PDI = 0.417), respectively. These two size groups were separated by centrifugation from the same initial nanoparticle sample. We analyzed the gene expression of biomarkers focused on stress, inflammation, and cytotoxicity. Large titania aggregates show a larger effect on cell viability and gene expression when compared with the small aggregates. This suggests that particle aggregate size is related to cellular effects. PMID:20640159

  17. Effective population size and evolutionary dynamics in outbred ...

    Indian Academy of Sciences (India)

    Census population size, sex-ratio and female reproductive success were monitored in 10 laboratory populations of Drosophila melanogaster selected for different ages of reproduction. With this demographic information, we estimated eigenvalue, variance and probability of allele loss effective population sizes. We conclude ...

  18. Effect of directional selection for body size on fluctuating asymmetry ...

    Indian Academy of Sciences (India)

    Madhsudhan

    and its relationship with stress. [Vishalakshi C and Singh B N 2009 Effect of directional selection for body size on fluctuating asymmetry in certain morphological traits in. Drosophila ananassae; J. Biosci. 34 275–285]. Keywords. Body size; directional selection; Drosophila ananassae; fluctuating asymmetry; hybridisation; ...

  19. EFFECT OF BROOD STOCK SIZE ON EGG FERTILIZATION ...

    African Journals Online (AJOL)

    USER

    ABSTRACT. This experiment was conducted to investigate the effect of size of brood stock on egg fertilization, hatchability and fry survival rate of Clarias gariepinus in an intensive culture system, for a period of four weeks. Larger brood stock size (1200-1500g) produced larger eggs and bigger fry while moderate brood ...

  20. Effects of sample size on the second magnetization peak in ...

    Indian Academy of Sciences (India)

    8+ crystals are observed at low temperatures, above the temperature where the SMP totally disappears. In particular, the onset of the SMP shifts to lower fields as the sample size decreases - a result that could be interpreted as a size effect in ...

  1. Origin of size effect on efficiency of organic photovoltaics

    DEFF Research Database (Denmark)

    Manor, Assaf; Katz, Eugene A.; Tromholt, Thomas

    2011-01-01

    cells of various sizes and suggest that the origin of both the size and the light intensity effects should include underlying physical mechanisms other than conventional series resistance dissipation. In particular, we conclude that the distributed nature of the ITO resistance and its influence...

  2. Effects of Seed Size on Germination and Early Morphorlogical and ...

    African Journals Online (AJOL)

    A research was carried out to determine the effects of seed size on germination and early growth rate of Gmelina arborea. Mature seeds of. Gmelina arborea were collected from the mother trees in Uyo Local Government Area, Akwa Ibom State. They were grouped into 3 categories as large seed size (LSS), medium seed ...

  3. Size effects in the mechanical behavior of cellular materials

    NARCIS (Netherlands)

    Tekoglu, C; Onck, PR

    2005-01-01

    Effective mechanical properties of cellular materials depend strongly on the specimen size to the cell size ratio. Experimental studies performed on aluminium foams show that under uniaxial compression, the stiffness of these materials falls below the corresponding bulk value, when the ratio of the

  4. Plasticity size effects in tension and compression of single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2005-01-01

    The effect of size and loading conditions on the tension and compression stress-strain response of micron-sized planar crystals is investigated using discrete dislocation plasticity. The crystals are taken to have a single active slip system and both small-strain and finite-strain analyses are

  5. Right sizing prevention. Food portion size effects on children's eating and weight.

    Science.gov (United States)

    Birch, Leann L; Savage, Jennifer S; Fisher, Jennifer Orlet

    2015-05-01

    Experimental findings provide consistent evidence that increasing the portion size of palatable, energy dense entrees relative to an age appropriate reference portion increases children's energy intake of the entree and the meal. Most of these studies have been conducted on preschool aged children between 2 and 6 years of age, in childcare or laboratory settings, using repeated measures designs. In these studies, children's intake is compared across a series of meals, where the size of the entrée portion is varied and other aspects of the meal, including the portion size of other items on the menu, are held constant. This paper provides an overview of what we know from this research, what is not known about the effects of portion size on children's intake and weight status, and points to some of the important unanswered questions and gaps in the literature. Lastly, we discuss how individual characteristics may make someone more or less susceptible to large portions of foods and how the palatability of foods may moderate observed associations among portion size, children's intake, and weight status. Future studies that address the gaps identified in this paper are needed to inform policy and to develop effective and efficient interventions to prevent childhood obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Size, Function, and Structure: Jurisdictional Size Effects on Public Sector Performance.

    Science.gov (United States)

    Oakerson, Ronald J.

    Jurisdictional consolidation of local governments and school districts is a controversial and persistent subject for rural communities. Consolidation proposals are usually based on the assumption that larger jurisdictions are necessary to capture economies of scale. This paper argues that the effect of size depends on the function that a…

  7. Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation

    Directory of Open Access Journals (Sweden)

    George Z. Voyiadjis

    2017-10-01

    Full Text Available Nanoindentation is a well-stablished experiment to study the mechanical properties of materials at the small length scales of micro and nano. Unlike the conventional indentation experiments, the nanoindentation response of the material depends on the corresponding length scales, such as indentation depth, which is commonly termed the size effect. In the current work, first, the conventional experimental observations and theoretical models of the size effect during nanoindentation are reviewed in the case of crystalline metals, which are the focus of the current work. Next, the recent advancements in the visualization of the dislocation structure during the nanoindentation experiment is discussed, and the observed underlying mechanisms of the size effect are addressed. Finally, the recent computer simulations using molecular dynamics are reviewed as a powerful tool to investigate the nanoindentation experiment and its governing mechanisms of the size effect.

  8. Cohesive stresses and size effect in quasi-brittle materials

    Indian Academy of Sciences (India)

    Keywords. Size effect; fracture mechanics; cohesive stresses; cementitious material. ... D Natekar2. Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 803090427, USA; Department of Mechanical Engineering, University of Colorado, Boulder, CO 803090427, USA ...

  9. The use of effect size indices to determine practical significance

    Directory of Open Access Journals (Sweden)

    H. S. Styn jr.

    2006-09-01

    Full Text Available The determination of significance of differences in means and of relationships between variables is of importance in many empirical studies. Usually only statistical significance is reported, which does not necessarily indicate an important (practically significant difference or relationship. With studies based on probability samples, effect size indices should be reported in addition to statistical significance tests in order to comment on practical significance. Where complete populations or convenience samples are worked with, the determination of statistical significance is strictly speaking no longer relevant, while the effect size indices can be used as a basis to judge significance. In this article attention is paid to the use of effect size indices in order to establish practical significance. It is also shown how these indices are utilized in a few fields of statistical application and how it receives attention in statistical literature and computer packages. The use of effect sizes is illustrated by a few examples from the research literature.

  10. Economic Effects of Increased Control Zone Sizes in Conflict Resolution

    Science.gov (United States)

    Datta, Koushik

    1998-01-01

    A methodology for estimating the economic effects of different control zone sizes used in conflict resolutions between aircraft is presented in this paper. The methodology is based on estimating the difference in flight times of aircraft with and without the control zone, and converting the difference into a direct operating cost. Using this methodology the effects of increased lateral and vertical control zone sizes are evaluated.

  11. Effects of Mesh Size on Sieved Samples of Corophium volutator

    Science.gov (United States)

    Crewe, Tara L.; Hamilton, Diana J.; Diamond, Antony W.

    2001-08-01

    Corophium volutator (Pallas), gammaridean amphipods found on intertidal mudflats, are frequently collected in mud samples sieved on mesh screens. However, mesh sizes used vary greatly among studies, raising the possibility that sampling methods bias results. The effect of using different mesh sizes on the resulting size-frequency distributions of Corophium was tested by collecting Corophium from mud samples with 0·5 and 0·25 mm sieves. More than 90% of Corophium less than 2 mm long passed through the larger sieve. A significantly smaller, but still substantial, proportion of 2-2·9 mm Corophium (30%) was also lost. Larger size classes were unaffected by mesh size. Mesh size significantly changed the observed size-frequency distribution of Corophium, and effects varied with sampling date. It is concluded that a 0·5 mm sieve is suitable for studies concentrating on adults, but to accurately estimate Corophium density and size-frequency distributions, a 0·25 mm sieve must be used.

  12. Determining the effective sample size of a parametric prior.

    Science.gov (United States)

    Morita, Satoshi; Thall, Peter F; Müller, Peter

    2008-06-01

    We present a definition for the effective sample size of a parametric prior distribution in a Bayesian model, and propose methods for computing the effective sample size in a variety of settings. Our approach first constructs a prior chosen to be vague in a suitable sense, and updates this prior to obtain a sequence of posteriors corresponding to each of a range of sample sizes. We then compute a distance between each posterior and the parametric prior, defined in terms of the curvature of the logarithm of each distribution, and the posterior minimizing the distance defines the effective sample size of the prior. For cases where the distance cannot be computed analytically, we provide a numerical approximation based on Monte Carlo simulation. We provide general guidelines for application, illustrate the method in several standard cases where the answer seems obvious, and then apply it to some nonstandard settings.

  13. Problem size effect and processing strategies in mental arithmetic.

    Science.gov (United States)

    Núñez-Peña, María Isabel; Cortiñas, Miriam; Escera, Carles

    2006-03-20

    We investigated the event-related brain potentials elicited by arithmetical operations whose solution requires direct memory retrieval or non-retrieval strategies. The problem size effect--the increment in reaction time for arithmetical problems with large operands--appears to be due to the selective use of non-retrieval procedures, and studies with event-related potentials have demonstrated an amplitude modulation of a late positive slow wave (range between 400-800 ms) related to the problem size effect. Two arithmetic operations (additions and subtractions) and three levels of problem size (adding or subtracting 2, 4 or 6) were used. We found an amplitude modulation of the late positive slow wave in subtractions, where non-retrieval procedures are mainly used. This amplitude modulation was not evident in additions, where direct retrieval strategies are believed to be used. Our results suggest that the problem size effect is related to non-retrieval procedures of calculation.

  14. Interviewer Effects on a Network-Size Filter Question

    Directory of Open Access Journals (Sweden)

    Josten Michael

    2016-06-01

    Full Text Available There is evidence that survey interviewers may be tempted to manipulate answers to filter questions in a way that minimizes the number of follow-up questions. This becomes relevant when ego-centered network data are collected. The reported network size has a huge impact on interview duration if multiple questions on each alter are triggered. We analyze interviewer effects on a network-size question in the mixed-mode survey “Panel Study ‘Labour Market and Social Security’” (PASS, where interviewers could skip up to 15 follow-up questions by generating small networks. Applying multilevel models, we find almost no interviewer effects in CATI mode, where interviewers are paid by the hour and frequently supervised. In CAPI, however, where interviewers are paid by case and no close supervision is possible, we find strong interviewer effects on network size. As the area-specific network size is known from telephone mode, where allocation to interviewers is random, interviewer and area effects can be separated. Furthermore, a difference-in-difference analysis reveals the negative effect of introducing the follow-up questions in Wave 3 on CAPI network size. Attempting to explain interviewer effects we neither find significant main effects of experience within a wave, nor significantly different slopes between interviewers.

  15. The effects of meal size, body size and temperature on gastric evacuation in pikeperch

    DEFF Research Database (Denmark)

    Koed, Anders

    2001-01-01

    Prey size had no effect on the gastric evacuation rate of pikeperch Stizostedion lucioperca. The gastric evacuation was adequately described applying an exponent of 0.5 in the power model. Applying length instead of weight of pikeperch in the gastric evacuation model resulted in a change of estim......Prey size had no effect on the gastric evacuation rate of pikeperch Stizostedion lucioperca. The gastric evacuation was adequately described applying an exponent of 0.5 in the power model. Applying length instead of weight of pikeperch in the gastric evacuation model resulted in a change...... of estimated parameters, in accordance with the weight-length relationship of pikeperch. (C) 2001 The Fisheries Society of the British Isles....

  16. Zernike Phase Contrast Cryo-Electron Microscopy and Tomography for Structure Determination at Nanometer and Subnanometer Resolutions

    OpenAIRE

    Murata, Kazuyoshi; Liu, Xiangan; Danev, Radostin; Jakana, Joanita; Schmid, Michael F; King, Jonathan; Nagayama, Kuniaki; Chiu, Wah

    2010-01-01

    Zernike phase contrast cryo-electron microscopy (ZPC-cryoEM) is an emerging technique which is capable of producing higher image contrast than conventional cryoEM. By combining this technique with advanced image processing methods, we achieved subnanometer resolution for two biological specimens: 2-D bacteriorhodopsin crystal and epsilon15 bacteriophage. For an asymmetric reconstruction of epsilon15 bacteriophage, ZPC-cryoEM can reduce the required amount of data by a factor of ~3 compared to...

  17. Effective population size and inbreeding depression on litter size in rabbits. A case study.

    Science.gov (United States)

    Ragab, M; Sánchez, J P; Baselga, M

    2015-02-01

    The purpose of this study is to use demographic and litter size data on four Spanish maternal lines of rabbits (A, V, H and LP), as a case study, in order to: (i) estimate the effective population size of the lines, as a measure of the rate of increase of inbreeding, and (ii) study whether the inbreeding effect on litter size traits depends on the pattern of its accumulation over time. The lines are being selected for litter size at weaning and are kept closed at the same selection nucleus under the same selection and management programme. The study considered 47,794 l and a pedigree of 14,622 animals. Some practices in mating and selection management allow an increase of the inbreeding coefficient lower than 0.01 per generation in these lines of around 25 males and 125 females. Their effective population size (Ne) was around 57.3, showing that the effect of selection, increasing the inbreeding, was counterbalanced by the management practices, intended to reduce the rate of inbreeding increase. The inbreeding of each individual was broken down into three components: old, intermediate and new inbreeding. The coefficients of regression of the old, intermediate and new inbreeding on total born (TB), number born alive (NBA) and number weaned (NW) per litter showed a decreasing trend from positive to negative values. Regression coefficients significantly different from zero were those for the old inbreeding on TB (6.79 ± 2.37) and NBA (5.92 ± 2.37). The contrast between the coefficients of regression between the old and new inbreeding were significant for the three litter size traits: 7.57 ± 1.72 for TB; 6.66 ± 1.73 for NBA and 5.13 ± 1.67 for NW. These results have been interpreted as the combined action of purging unfavourable genes and artificial selection favoured by the inbreeding throughout the generations of selection. © 2014 Blackwell Verlag GmbH.

  18. Two measures of effective population size for graphs.

    Science.gov (United States)

    Broom, Mark; Voelkl, Bernhard

    2012-05-01

    Effective population size is a key parameter in population ecology because it allows prediction of the dynamics of genetic variation and the rate of genetic drift and inbreeding. It is important for the definition of "nearly neutral" mutations and, hence, has consequences for the fixation or extinction probabilities of advantageous and deleterious mutations. As graph-based population models become increasingly popular for studying evolution in spatially or socially structured populations, a neutral theory for evolution on graphs is called for. Here, we derive formulae for two alternative measures of effective population size, the variance effective and inbreeding effective size of general unweighted and undirected graphs. We show how these two quantities relate to each other and we derive effective sizes for the complete graph the cycle and bipartite graphs. For one-dimensional lattices and small-world graphs, we estimate the inbreeding effective size using simulations. The presented method is suitable for any structured population of haploid individuals with overlapping generations. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  19. Confidence Intervals for Standardized Effect Sizes: Theory, Application, and Implementation

    Directory of Open Access Journals (Sweden)

    Ken Kelley

    2007-02-01

    Full Text Available The behavioral, educational, and social sciences are undergoing a paradigmatic shift in methodology, from disciplines that focus on the dichotomous outcome of null hypothesis significance tests to disciplines that report and interpret effect sizes and their corresponding confidence intervals. Due to the arbitrariness of many measurement instruments used in the behavioral, educational, and social sciences, some of the most widely reported effect sizes are standardized. Although forming confidence intervals for standardized effect sizes can be very beneficial, such confidence interval procedures are generally difficult to implement because they depend on noncentral t, F, and x2 distributions. At present, no main-stream statistical package provides exact confidence intervals for standardized effects without the use of specialized programming scripts. Methods for the Behavioral, Educational, and Social Sciences (MBESS is an R package that has routines for calculating confidence intervals for noncentral t, F, and x2 distributions, which are then used in the calculation of exact confidence intervals for standardized effect sizes by using the confidence interval transformation and inversion principles. The present article discusses the way in which confidence intervals are formed for standardized effect sizes and illustrates how such confidence intervals can be easily formed using MBESS in R.

  20. Effect of vehicular size on chain-reaction crash

    Science.gov (United States)

    Nagatani, Takashi

    2015-11-01

    We present the dynamic model of the chain-reaction crash to take account of the vehicular size. Drivers brake according to taillights of the forward vehicle. We investigate the effect of the vehicular size on the chain-reaction crash (multiple-vehicle collision) in the traffic flow controlled by taillights. In the multiple-vehicle collision, the first crash induces more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in the traffic flow of vehicles with finite sizes. We clarify the effect of the vehicular size on the multiple-vehicle collision.

  1. Long-Term Effects of School Size on Students' Outcomes

    DEFF Research Database (Denmark)

    Humlum, Maria Knoth; Smith, Nina

    We estimate the effect of school size on students' long-term outcomes such as high school completion, being out of the labor market, and earnings at the age of 30. We use rich register data on the entire population of Danish children attending grade 9 in the period 1986-2004. This allows us...... school size and alternative measures of long-term success in the educational system and the labor market. The positive impact of school size seems mainly to be driven by boys, students from families with a low educational level and students attending schools in urban areas....

  2. Effect of small mapping population sizes on reliability of quantitative ...

    African Journals Online (AJOL)

    A limitation of quantitative trait loci (QTL) mapping is that accuracy of determining QTL position and effects are largely determined by population size. Despite the importance of this concept, known as the "Beavis effect there has generally been a lack of understanding by molecular geneticists and breeders. One possible ...

  3. Size Effects on the Bending Behaviour of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Brincker, Rune; Henriksen, M. S.; Christensen, F. A.

    1999-01-01

    Load-deformation curves for reinforced concrete beams subjected to bending show size effects due to tensile failure of the concrete at early stages in the failure process and due to compression failure of the concrete when the final failure takes place. In this paper these effects are modelled...

  4. Size Effect and Deformation Mechanism in Twinned Copper Nanowires

    Directory of Open Access Journals (Sweden)

    Jiapeng Sun

    2017-10-01

    Full Text Available Molecular dynamics simulations were performed to demonstrate the synergistic effects of the extrinsic size (nanowire length and intrinsic size (twin boundary spacing on the failure manner, yield strength, ductility and deformation mechanism of the twinned nanowires containing high density coherent twin boundaries CTBs paralleled to the nanowires’ axis. The twinned nanowires show an intense extrinsic size effect, i.e., shorter is stronger and more ductile, and an intense intrinsic size effect, i.e., thinner is stronger. Notably, the strengthening effect degradation of CTBs in the twinned nanowires is observed with an increase in nanowire length: remarkable strengthening effect can be obtained for the short nanowires, but the strengthening effect becomes less pronounced for the long nanowires. The twinned nanowires fail via a ductile manner or via a brittle manner depending on the synergistic effect of the nanowire length and twin boundary spacing. By atomic-level observation of the plastic deformation, we found that the emission of a trailing 30° partial from the free surface controls the yield behavior of the twinned nanowires. We also found that the special zigzag extended dislocations are formed by the dislocation–CTBs interactions, and propagate to sustain the plastic deformation.

  5. Modeling the Effect of Tumor Size in Early Breast Cancer

    Science.gov (United States)

    Verschraegen, Claire; Vinh-Hung, Vincent; Cserni, Gábor; Gordon, Richard; Royce, Melanie E.; Vlastos, Georges; Tai, Patricia; Storme, Guy

    2005-01-01

    Summary Background Data: The purpose of this study was to determine the type of relationship between tumor size and mortality in early breast carcinoma. Methods: The data was abstracted from 83,686 cases registered in the Surveillance, Epidemiology, and End Results Program of women diagnosed with primary breast carcinoma between 1988 and 1997 presenting with a T1–T2 lesion and no metastasis in whom axillary node dissection was performed: 58,070 women were node-negative (N0) and 25,616 were node-positive (N+). End point was death from any cause. Tumor size was modeled as a continuous variable by proportional hazards using a generalized additive models procedure. Results: Functionally, a Gompertzian expression exp(-exp(-(size-15)/10)) provided a good fit to the effect of tumor size (in millimeters) on mortality, irrespective of nodal status. Quantitatively, for tumor size between 3 and 50 mm, the increase of crude cumulative death rate (number of observed deaths divided by the number of patients at risk) increased with size from 10% to 25% for N0 and from 20% to 40% for N+. Conclusions: The functional relationship of tumor size with mortality is concordant with current knowledge of tumor growth. However, its qualitative and quantitative independence of nodal status is in contradiction with the prevailing concept of sequential disease progression from primary tumor to regional nodes. This argues against the perception that nodal metastases are caused by the primary tumor. PMID:15650642

  6. Experimental Effects on IR Reflectance Spectra: Particle Size and Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Beiswenger, Toya N.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Ertel, Alyssa B.; Tonkyn, Russell G.; Szecsody, James E.; Johnson, Timothy J.; Smith, Milton; Lanker, Cory

    2016-05-23

    For geologic and extraterrestrial samples it is known that both particle size and morphology can have strong effects on the species’ infrared reflectance spectra. Due to such effects, the reflectance spectra cannot be predicted from the absorption coefficients alone. This is because reflectance is both a surface as well as a bulk phenomenon, incorporating both dispersion as well as absorption effects. The same spectral features can even be observed as either a maximum or minimum. The complex effects depend on particle size and preparation, as well as the relative amplitudes of the optical constants n and k, i.e. the real and imaginary components of the complex refractive index. While somewhat oversimplified, upward-going amplitude in the reflectance spectrum usually result from surface scattering, i.e. rays that have been reflected from the surface without penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. While the effects are well known, we report seminal measurements of reflectance along with quantified particle size of the samples, the sizing obtained from optical microscopy measurements. The size measurements are correlated with the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. We report results for both sodium sulfate Na2SO4 as well as ammonium sulfate (NH4)2SO4; the optical constants have been measured for (NH4)2SO4. To go a step further from the field to the laboratory we explore our understanding of particle size effects on reflectance spectra in the field using standoff detection. This has helped identify weaknesses and strengths in detection using standoff distances of up 160 meters away from the Target. The studies have

  7. The effect of particle shape and size on cellular uptake.

    Science.gov (United States)

    Zheng, M; Yu, J

    2016-02-01

    Particle shape and size have been well-recognized to exhibit important effect on drug delivery and as an excellent candidate for drug delivery applications. The recent advances in the "top-down" and "bottom-up" approaches make it possible to develop different shaped and sized polymeric nanostructures, which provide a chance to tailor the shape of the nanostructures as a drug carrier. Presently, a large amount of cellular uptake data is available for particle shape and size effect on drug delivery. However, the effect has not been well formulated or described quantitatively. In the present paper, the dynamic process of the effects of particle shape and size on cellular uptake is analyzed, quantitative expression for the influence of particle shape and size on cellular uptake is proposed on the basis of local geometric feature of particle shape and diffusion approach of a particle in a medium rationally, and the relevant parameters in the formulation are determined by the available test data. The results indicate the validity of the present formulations.

  8. Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide.

    Science.gov (United States)

    Gourdon, Delphine; Lin, Qi; Oroudjev, Emin; Hansma, Helen; Golan, Yuval; Arad, Shoshana; Israelachvili, Jacob

    2008-02-19

    Using a surface forces apparatus, we have investigated the adhesive and lubrication forces of mica surfaces separated by a molecularly thin, subnanometer film of a high-molecular-weight (2.3 MDa) anionic polysaccharide from the algae Porphyridium sp. adsorbed from aqueous solution. The adhesion and friction forces of the confined biopolymer were monitored as a function of time, shearing distance, and driving velocity under a large range of compressive loads (pressures). Although the thickness of the dilute polysaccharide was friction was low (coefficient of friction = 0.015), and no wear was ever observed even at a pressure of 110 atm over 3 decades of velocity, so long as the shearing distances were less than twice the contact diameter. Atomic force microscopy in solution shows that the biopolymer is able to adsorb to the mica surface but remains mobile and easily dragged upon shearing. The adhesion (adsorption) of this polysaccharide even to negatively charged surfaces, its stable low friction, its robustness (high-load carrying capacity and good wear protection), and the weak (logarithmic) dependence of the friction force on the sliding velocity make this class of polyelectrolytes excellent candidates for use in water-based lubricant fluids and as potential additives to synovial fluid in joints and other biolubricating fluids. The physical reasons for the remarkable tribological properties of the ultrathin polysaccharide monolayer are discussed and appear to be quite different from those of other polyelectrolytes and proteins that act as thick "polymer brush" layers.

  9. The Hippocratic Oath, effect size, and utility theory.

    Science.gov (United States)

    Bordley, Robert F

    2009-01-01

    To be consistent with the Hippocratic Oath, this article proposes that a physician choose that treatment that has the greatest chance of giving the patient an outcome no worse than the uncertain outcome an untreated patient would experience. As this article shows, this specifies the utility function that the physician should use in choosing among treatments. This utility function, although varying with the life circumstances of the patient, need not reflect the patient's utility function. This Hippocratic utility function can be estimated with an effect size measure similar to the stochastic superiority and common language effect size measures used in the statistical analysis of experiments.

  10. Modelling of micro vibration energy harvester considering size effect

    Science.gov (United States)

    Li, Chuangye; Huo, Rui; Wang, Weike

    2017-09-01

    Considering increase of stiffness caused by size effect, equivalent Young's modulus was introduced for futher analysis. Experimental platform was established to test vibration characteristics. Dynamic equation for micro piezoelectric cantilever beam considering size effect was studied with finite element analysis and experiment. Results shows it is accurate. Based on that, dynamic model for micro vibration energy harvester was improved, a T-type micro vibration energy harvester was designed and fabricated. Resonant frequency, tip displacement and output voltage of the harvester were obtained. Comparing with macroscopic model for vibration harvester, improved one reduces errors by 13%, 35% and 22%.

  11. Mesh Size Effects on Fracture Toughness Estimation by Damage Model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Beom; Chang, Yoon Suk; Kim, Young Jin [School of Mechanical Engineering, Sungkyunkwan Univ., Suwon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The objective of this paper is to investigate mesh size effects on fracture toughness of SA508 carbon steel by damage model. To achieve this goal, a series of finite element analyses are carried out for CT (compact tension) and PCVN (pre-cracked V-notch) specimens. And Weibull stress model are adopted to derive toughness scale diagram. Finally, toughness scale diagram, which considered crack-tip mesh size effects, is derived from comparing estimated fracture toughness data between CT and PCVN specimens under -60 .deg. C and -80 .deg. C.

  12. Size effect of welded thin-walled tubular joints

    OpenAIRE

    Mashiri, Fidelis Rutendo; Zhao, Xiao-Ling; Hirt, Manfred A.; NUSSBAUMER, Alain

    2007-01-01

    This paper clarifies the terminologies used to describe the size effect on fatigue behaviour of welded joints. It summarizes the existing research on size effect in the perspective of newly defined terminologies. It identifies knowledge gaps in designing tubular joints using the hot spot stress method, i.e. thin-walled tubular joints with wall thickness less than 4 mm and thick-walled tubular joints with wall thickness larger than 50 mm or diameter to thickness ratio less than 24. It is the t...

  13. Core size effects on safety performances of LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Hahn, Do Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). In the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow (ULOF) and the unprotected transient overpower (UTOP). Margins to fuel melting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events. 6 refs., 4 figs., 2 tabs. (Author)

  14. Size effect in the strength of concrete structures

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    It would therefore seem appropriate to conduct dedicated experiments in order to establish the range of applicability of the several fracture mechanical size effect formulae available in the literature (Ba˘zant 1984, 1997; Carpinteri 1994a; Karihaloo 1999). Ba˘zant (1984), using the energy release rate concept, proposed the ...

  15. Effect Size for Single-Subject Design in Phonological Treatment

    Science.gov (United States)

    Gierut, Judith A.; Morrisette, Michele L.; Dickinson, Stephanie L.

    2015-01-01

    Purpose: The purpose of this study was to document, validate, and corroborate effect size (ES) for single­-subject design in treatment of children with functional phonological disorders; to evaluate potential child-­specific contributing variables relative to ES; and to establish benchmarks for interpretation of ES for the population. Method: Data…

  16. The effect of surface albedo and grain size distribution on ...

    African Journals Online (AJOL)

    Sand dams are very useful in arid and semi arid lands (ASALs) as facilities for water storage and conservation. Soils in ASALs are mainly sandy and major water loss is by evaporation and infiltration. This study investigated the effect of sand media characteristics, specifically surface albedo, grain size and stratification on ...

  17. Size effect in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars

    1999-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is an explanation relying on an increased probability of encountering a strength reducing flaw when the volume...

  18. Effect Sizes in Single Case Research: How Large is Large?

    Science.gov (United States)

    Parker, Richard I.; Brossart, Daniel F.; Vannest, Kimberly J.; Long, James R.; De-Alba, Roman Garcia; Baugh, Frank G.; Sullivan, Jeremy R.

    2005-01-01

    This study examined the problem of interpreting effect sizes in single case research. Nine single case analytic techniques were applied to a convenience sample of 77 published interrupted time series (AB) datasets, and the results were compared by technique across the datasets. Reanalysis of the published data helped answer questions about the…

  19. Sampling strategies for estimating brook trout effective population size

    Science.gov (United States)

    Andrew R. Whiteley; Jason A. Coombs; Mark Hudy; Zachary Robinson; Keith H. Nislow; Benjamin H. Letcher

    2012-01-01

    The influence of sampling strategy on estimates of effective population size (Ne) from single-sample genetic methods has not been rigorously examined, though these methods are increasingly used. For headwater salmonids, spatially close kin association among age-0 individuals suggests that sampling strategy (number of individuals and location from...

  20. Distinguishing crystallite size effects from those of structural disorder ...

    Indian Academy of Sciences (India)

    Stacking faults, in particular, are ubiquitous in layered materials and aside from broadening also induce peaks due to select reflections to shift away from the Bragg positions. The effect of structural disorder has to be suitably discounted before the application of the Scherrer formula for the estimation of crystallite size.

  1. Polytocus focus: Uterine position effect is dependent upon horn size.

    Science.gov (United States)

    McLaurin, Kristen A; Mactutus, Charles F

    2015-02-01

    Understanding the variability caused by uterine position effects in polytocus species, such as rats, may enhance prenatal animal models for the study of drug and environmental agents. The primiparous litters of 42 intact female Sprague-Dawley rats were studied. Uterine position, fetal body weight, and fetal brain (wet) weight were recorded on gestation day (GD) 20 (GD 0=sperm positive). Uterine position effect for brain and body weight varied depending upon horn size. Furthermore, an inverse relationship between horn size (and, to a lesser extent, litter size) and fetal weight applied to both body and brain weight measures. There were no statistical differences in brain and body weights between the left and right uterine horns. The position of the uterine horn (left vs. right) and litter size did not influence the uterine position effect in the rat. Collectively, the present data suggest the presence of a significant uterine position effect. Prenatal differences based on uterine position provide an untapped opportunity to increase our understanding of developmental neurotoxicological and teratological studies that employ a polytocus species as an animal model. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Marine reserve effects on population density and size structure of ...

    African Journals Online (AJOL)

    Marine reserves are commonly used to conserve living resources, but their effectiveness where policing is difficult is unclear. We compared monthly population density and size structure data collected over 20 months for two rarely and two commonly exploited intertidal limpets inside and outside reserves in South Africa.

  3. Size effect in the strength of concrete structures

    Indian Academy of Sciences (India)

    In particular, the failure loads of three point bend (TPB) beams are analysed according to the size effect formulae of Ba z ˘ ant and of Karihaloo for notched beams and according to those of Ba z ... Division of Civil Engineering, School of Engineering, Cardiff University, PO Box 925, Queen's Buildings, Cardiff CF24 0YF, UK ...

  4. Comparing N = 1 Effect Size Indices in Presence of Autocorrelation

    Science.gov (United States)

    Manolov, Rumen; Solanas, Antonio

    2008-01-01

    Generalization from single-case designs can be achieved by replicating individual studies across different experimental units and settings. When replications are available, their findings can be summarized using effect size measurements and integrated through meta-analyses. Several procedures are available for quantifying the magnitude of…

  5. Short communication Effective population size and inbreeding rate ...

    African Journals Online (AJOL)

    201010100

    2013-05-30

    May 30, 2013 ... Effective population size and inbreeding rate of indigenous Nguni cattle under ... Abstract. Nineteen rural Nguni cattle enterprises managed at communal and small-scale level were used in a study to ..... mothering ability, and tick and disease resistance (Muchenje et al., 2008; Marufu et al., 2009). Though ...

  6. On size-effects in single crystal wedge indentation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2012-01-01

    Wedge indentation in single crystals is studied numerically, with emphasis on size-effects on the micron scale. Under the assumption of a perfectly sharp wedge indenter, a linear relationship between indentation force and indentation depth would be predicted from conventional theories lacking con...

  7. Size Effect Of Glulam Beams In Tension Perpendicular To Grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Odin Clorius, Christian; Damkilde, Lars

    2007-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents the hypothesis that...

  8. Effect of preparation temperature and ions doping on size ...

    African Journals Online (AJOL)

    Binary and quaternary amorphous nano powders are prepared by wet reduction method. Cobalt boride nano catalyst is synthesized at 10 and 60 ºC. Effect of preparation temperature on size and morphology was studied. Co-M-Zr-B (M: Cr, Mo and W) as quaternary catalysts are also prepared in order to studying ions ...

  9. Effect size, confidence intervals and statistical power in psychological research.

    Directory of Open Access Journals (Sweden)

    Téllez A.

    2015-07-01

    Full Text Available Quantitative psychological research is focused on detecting the occurrence of certain population phenomena by analyzing data from a sample, and statistics is a particularly helpful mathematical tool that is used by researchers to evaluate hypotheses and make decisions to accept or reject such hypotheses. In this paper, the various statistical tools in psychological research are reviewed. The limitations of null hypothesis significance testing (NHST and the advantages of using effect size and its respective confidence intervals are explained, as the latter two measurements can provide important information about the results of a study. These measurements also can facilitate data interpretation and easily detect trivial effects, enabling researchers to make decisions in a more clinically relevant fashion. Moreover, it is recommended to establish an appropriate sample size by calculating the optimum statistical power at the moment that the research is designed. Psychological journal editors are encouraged to follow APA recommendations strictly and ask authors of original research studies to report the effect size, its confidence intervals, statistical power and, when required, any measure of clinical significance. Additionally, we must account for the teaching of statistics at the graduate level. At that level, students do not receive sufficient information concerning the importance of using different types of effect sizes and their confidence intervals according to the different types of research designs; instead, most of the information is focused on the various tools of NHST.

  10. An Introductory Summary of Various Effect Size Choices.

    Science.gov (United States)

    Cromwell, Susan

    This paper provides a tutorial summary of some of the many effect size choices so that members of the Southwest Educational Research Association would be better able to follow the recommendations of the American Psychological Association (APA) publication manual, the APA Task Force on Statistical Inference, and the publication requirements of some…

  11. Effect of limestone particle size on bone quality characteristics of ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of different limestone particle sizes in layer diets on bone quality characteristics at end-of-lay hens. Calcitic limestone (360 g Ca/kg DM) that is extensively used in commercial poultry diets was obtained from a specific South African source. Limestone particles were graded as ...

  12. effect of limestone particle size on bone quality of layers

    African Journals Online (AJOL)

    UFS

    Abstract. A study was conducted to determine the effect of different limestone particle sizes in layer diets on bone quality characteristics at end-of-lay hens. Calcitic limestone (360 g Ca/kg DM) that is extensively used in commercial poultry diets was obtained from a specific South African source. Limestone particles were.

  13. EFFECT OF FARM SIZE AND FREQUENCY OF CUTTING ON ...

    African Journals Online (AJOL)

    The study was carried out to ascertain the effect of farm size and frequency of cutting on the output of fluted pumpkin (Telfeiria sp) through a survey of some farms in Itu Local Government Area of Akwa Ibom State. Thirty-two farmers were selected and interview schedules administered to them to obtain the relevant ...

  14. Effects of reaction temperature on size and optical properties of ...

    Indian Academy of Sciences (India)

    Effects of reaction temperature on size and optical properties of CdSe nanocrystals. Shutang Chen ... The diameter of the CdSe nanocrystals is tuned from 4–11.0 nm by varying the reaction temperatures. The growth ... Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081, P.R. China ...

  15. Particle size effects in colloidal gelatin particle suspensions

    NARCIS (Netherlands)

    Riemsdijk, van L.E.; Snoeren, J.P.M.; Goot, van der A.J.; Boom, R.M.; Hamer, R.J.

    2010-01-01

    This paper describes the effects of simple shear flow on the formation and properties of colloidal gelatin particle suspensions. Microscopy and light scattering show that simple shear flow of a phase-separating gelatin–dextran mixture gave smaller particles with a narrower size distribution. Upon

  16. The Effects of Crowding Stress, Different Diets and Different Size ...

    African Journals Online (AJOL)

    The Effects of Crowding Stress, Different Diets and Different Size Classes on the Growth Rate of Clarias gariepinus. ... showed that: at constant area, growth rate of Clarias gariepinus reduced by as much as 75% when the density was increased from one to three individuals per square metre - regardless of food supplied.

  17. Reporting Confidence Intervals and Effect Sizes: Collecting the Evidence

    Science.gov (United States)

    Zientek, Linda Reichwein; Ozel, Z. Ebrar Yetkiner; Ozel, Serkan; Allen, Jeff

    2012-01-01

    Confidence intervals (CIs) and effect sizes are essential to encourage meta-analytic thinking and to accumulate research findings. CIs provide a range of plausible values for population parameters with a degree of confidence that the parameter is in that particular interval. CIs also give information about how precise the estimates are. Comparison…

  18. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  19. Surface and Size Effects in Spin-Crossover Nanocrystals.

    Science.gov (United States)

    Gudyma, Iurii; Ivashko, Victor; Bobák, Andrej

    2017-12-01

    We perform Monte Carlo simulations to analyze the surface and size effects in spin-crossover nanocrystals using an Ising-like model including surface and core intermolecular interactions. The consequences of downsizing effect on the transition temperature and the width of hysteresis as finger of the system cooperativity are discussed. The critical temperature is calculated using the real-space renormalization method. The obtained results are in agreement with the experimental data.

  20. Effect of particle size in composite materials on radiative properties

    Science.gov (United States)

    Lee, Siu-Chun; White, Susan; Grzesik, Jan

    1993-01-01

    A numerical model for the radiative properties of a composite material composed of ceramic oxide fibers and particles was developed and used to determine the effect of the size parameters of the two components. Results include the computed phase functions for the zirconia and silica composite materials, showing the location and strength of the strong forward-scattering peak. The phase function and the optical properties of the composite are strongly influenced by the particle size parameter through the fiber or particle diameter and the wavelength, the material, and the mixture fraction.

  1. Effect of particle size in composite materials on radiative properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Siuchun; White, S.; Grzesik, J. (Applied Sciences Lab., Inc., City of Industry, CA (United States) NASA, Ames Research Center, Moffett Field, CA (United States))

    1993-01-01

    A numerical model for the radiative properties of a composite material composed of ceramic oxide fibers and particles was developed and used to determine the effect of the size parameters of the two components. Results include the computed phase functions for the zirconia and silica composite materials, showing the location and strength of the strong forward-scattering peak. The phase function and the optical properties of the composite are strongly influenced by the particle size parameter through the fiber or particle diameter and the wavelength, the material, and the mixture fraction. 16 refs.

  2. Effect of Ammonium Nitrate on Nanoparticle Size Reduction

    Directory of Open Access Journals (Sweden)

    Kalyana C. Pingali

    2008-01-01

    Full Text Available Ammonium nitrate was added to the spraying solution as a foaming agent to reduce the particle size of nanoparticles synthesized in the spray-pyrolysis process. Ammonium nitrate was effective in breaking the aerosol droplet size and generating nanoparticles that were of approximately one order-of-magnitude (from 200 to 20 nm smaller diameter than those created in the absence of ammonium nitrate in the feed solution. This technique makes it possible to control the particle diameter of metallic nanoparticles below 20 nm.

  3. Size effects and characteristic lengths in superconducting films and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovic, B.P.; Valls, O.T. (Center for the Science and Application of Superconductivity, School of Physics and Astronomy, University of Minnesota, 116 Church St. S.E., Minneapolis, Minnesota 55455-0149 (United States))

    1994-02-01

    We examine geometric and finite-size effects in supeconductors, using a purely microscopic method. The case where the coherence length [xi][sub 0] is short and phenomenological methods cannot be used is emphasized. We focus on the single-particle density of states, the energy gap, and the order parameter, and obtain results as a function of temperature, coherence length, system size, distance to the boundary, and pair-breaking impurity mean free path. We discuss the roles of all of the relevant lengths and the experimental implications of our results, in particular, how data from surface probes can yield information on bulk properties.

  4. Size effects on insect hovering aerodynamics: an integrated computational study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H [Graduate School of Engineering, Chiba University, Chiba, 263-8522 (Japan); Aono, H [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI48109 (United States)], E-mail: hliu@faculty.chiba-u.jp, E-mail: aonoh@umich.edu

    2009-03-01

    Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10{sup 4}) to O(10{sup 1}) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.

  5. An effect size index for comparing two independent alpha coefficients.

    Science.gov (United States)

    Liu, Hsin-Yun; Weng, Li-Jen

    2009-05-01

    Since Cronbach proposed the alpha coefficient in 1951, researchers have contributed to the derivation of its sampling distribution and the testing of related statistical hypotheses. Yet, there has been no research on effect size index relevant to coefficient alpha to our knowledge. Considering the importance of effect size in understanding quantitative research findings, we therefore developed an effect size index Delta for the comparison of two independent alphas with equal test length based on the asymptotic distribution of (1/2)ln(1 - alphahat) under the assumptions of normality and compound symmetry. Simulations indicated that the index was applicable when the sample size was at least 100. The robustness of the derived index when the required assumptions were violated was also explored. It is suggested that the index should be applicable in most cases of unequal test lengths and could be extended to non-normally distributed component scores. Moreover, a small simulation was conducted to explore the behaviour of Delta with correlated errors, a frequently studied situation violating the assumption of compound symmetry. The proposed index was found to be robust unless a large number of highly correlated errors were present in the data.

  6. Size effects on insect hovering aerodynamics: an integrated computational study.

    Science.gov (United States)

    Liu, H; Aono, H

    2009-03-01

    Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.

  7. The Effect of Size and Ecology on Extinction Susceptibility

    Science.gov (United States)

    Huynh, C.; Yuan, A.; Heim, N.; Payne, J.

    2015-12-01

    Although life on Earth first emerged as prokaryotic organisms, it eventually evolved into billions of different species. However, extinctions on Earth, especially the five mass extinctions, have decimated species. So what leads to a species survival or demise during a mass extinction? Are certain species more susceptible to extinctions based on their size and ecology? For this project, we focused on the data of marine animals. To examine the impact of size and ecology on a species's likelihood of survival, we compared the sizes and ecologies of the survivors and victims of the five mass extinctions. The ecology, or life mode, of a genus consists of the combination of tiering, motility, and feeding mechanism. Tiering refers to the animal's typical location in the water column and sediments, motility refers to its ability to move, and feeding mechanism describes the way the organism eats; together, they describe the animal's behavior. We analyzed the effect of ecology on survival using logistic regression, which compares life mode to the success or failure of a genus during each mass extinction interval. For organism size, we found the extinct organisms' mean size (both volume and length) and compared it with the average size of survivors on a graph. Our results show that while surviving genera of mass extinctions tended to be slightly larger than those that went extinct, there was no significant difference. Even though the Permian (Changhsingian) and Triassic (Rhaetian) extinctions had larger surviving species, likewise the difference was small. Ecology had a more obvious impact on the likelihood of survival; fast-moving, predatory pelagic organisms were the most likely to go extinct, while sedentary, infaunal suspension feeders had the greatest chances of survival. Overall, ecology played a greater role than size in determining the survival of a species. With this information, we can use ecology to predict which species would survive future extinctions.

  8. System size effect on the critical behavior in nuclear multifragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, B., E-mail: bb_22@rediffmail.com [Department of Physics, Gauhati University, Guwahati-781014 (India); Talukdar, R. [Department of Physics, Gauhati University, Guwahati-781014 (India)

    2011-08-01

    Attempt has been made to examine the role of system size on the traditional signatures of critical behavior from a comparative study of Mg-Em at 4.5 A GeV and Kr-Em at 0.95 A GeV interactions. A number of relevant observables such as fluctuation in the sizes of the largest cluster, reduced variance and the mean value of second moment of charge distribution were estimated with the experimental data. From a comparison of our results with that of EOS collaboration for Au, La and Kr on carbon at 1 A GeV, a definite systematic variation in the heights and positions of the peaks could be observed with the change of fragmenting nuclei thereby confirming the effect of system size on MF mechanism.

  9. The Effect of Class Size on Teacher Attrition: Evidence from Class Size Reduction Policies in New York State

    OpenAIRE

    Emily Pas Isenberg

    2010-01-01

    Starting in 1999, New York State implemented class size reduction policies targeted at early elementary grades, but due to funding limitations, most schools reduced class size in some grades and not others. I use class size variation within a school induced by the policies to construct instrumental variable estimates of the effect of class size on teacher attrition. Teachers with smaller classes were not significantly less likely to leave schools in the full sample of districts but were less ...

  10. Effect of pupil size on dynamic visual acuity.

    Science.gov (United States)

    Ueda, Tetsuo; Nawa, Yoshiaki; Okamoto, Masahiro; Hara, Yoshiaki

    2007-02-01

    This study was conducted to assess the effect of pupil size on dynamic visual acuity (DVA). 60 young healthy men (M = 28.1 yr., SD = 3.9) with normal vision were divided into three age-matched groups by pupil size: dilated (n=20), unchanged (n=20), and constricted (n=20). DVA was measured binocularly with freehead viewing before and at 30 min. after each drop was instilled. Each of the three groups got a different amount. The sizes of the constricted, unchanged, and dilated pupils were 2.8 mm (SD = 0.5), 4.1 mm (SD = 0.3), and 7.8 mm (SD = 0.5), respectively. The pupil size x DVA interaction was significant (F(2,114)= 6.07). DVA in the constricted pupil decreased, but that in the dilated pupil increased (paired t test). DVA in the unchanged pupil did not change significantly (paired t test). Pupil size is possibly one of the factors which may affect DVA measurement.

  11. Why herd size matters - mitigating the effects of livestock crashes.

    Science.gov (United States)

    Næss, Marius Warg; Bårdsen, Bård-Jørgen

    2013-01-01

    Analysing the effect of pastoral risk management strategies provides insights into a system of subsistence that have persevered in marginal areas for hundreds to thousands of years and may shed light into the future of around 200 million households in the face of climate change. This study investigated the efficiency of herd accumulation as a buffer strategy by analysing changes in livestock holdings during an environmental crisis in the Saami reindeer husbandry in Norway. We found a positive relationship between: (1) pre- and post-collapse herd size; and (2) pre-collapse herd size and the number of animals lost during the collapse, indicating that herd accumulation is an effective but costly strategy. Policies that fail to incorporate the risk-beneficial aspect of herd accumulation will have a limited effect and may indeed fail entirely. In the context of climate change, official policies that incorporate pastoral risk management strategies may be the only solution for ensuring their continued existence.

  12. Bayesian evaluation of effect size after replicating an original study

    Science.gov (United States)

    van Aert, Robbie C. M.; van Assen, Marcel A. L. M.

    2017-01-01

    The vast majority of published results in the literature is statistically significant, which raises concerns about their reliability. The Reproducibility Project Psychology (RPP) and Experimental Economics Replication Project (EE-RP) both replicated a large number of published studies in psychology and economics. The original study and replication were statistically significant in 36.1% in RPP and 68.8% in EE-RP suggesting many null effects among the replicated studies. However, evidence in favor of the null hypothesis cannot be examined with null hypothesis significance testing. We developed a Bayesian meta-analysis method called snapshot hybrid that is easy to use and understand and quantifies the amount of evidence in favor of a zero, small, medium and large effect. The method computes posterior model probabilities for a zero, small, medium, and large effect and adjusts for publication bias by taking into account that the original study is statistically significant. We first analytically approximate the methods performance, and demonstrate the necessity to control for the original study’s significance to enable the accumulation of evidence for a true zero effect. Then we applied the method to the data of RPP and EE-RP, showing that the underlying effect sizes of the included studies in EE-RP are generally larger than in RPP, but that the sample sizes of especially the included studies in RPP are often too small to draw definite conclusions about the true effect size. We also illustrate how snapshot hybrid can be used to determine the required sample size of the replication akin to power analysis in null hypothesis significance testing and present an easy to use web application (https://rvanaert.shinyapps.io/snapshot/) and R code for applying the method. PMID:28388646

  13. Effect Size Analyses of Souvenaid in Patients with Alzheimer's Disease.

    Science.gov (United States)

    Cummings, Jeffrey; Scheltens, Philip; McKeith, Ian; Blesa, Rafael; Harrison, John E; Bertolucci, Paulo H F; Rockwood, Kenneth; Wilkinson, David; Wijker, Wouter; Bennett, David A; Shah, Raj C

    2017-01-01

    Souvenaid® (uridine monophosphate, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium), was developed to support the formation and function of neuronal membranes. To determine effect sizes observed in clinical trials of Souvenaid and to calculate the number needed to treat to show benefit or harm. Data from all three reported randomized controlled trials of Souvenaid in Alzheimer's disease (AD) dementia (Souvenir I, Souvenir II, and S-Connect) and an open-label extension study were included in analyses of effect size for cognitive, functional, and behavioral outcomes. Effect size was determined by calculating Cohen's d statistic (or Cramér's V method for nominal data), number needed to treat and number needed to harm. Statistical calculations were performed for the intent-to-treat populations. In patients with mild AD, effect sizes were 0.21 (95% confidence intervals: -0.06, 0.49) for the primary outcome in Souvenir II (neuropsychological test battery memory z-score) and 0.20 (0.10, 0.34) for the co-primary outcome of Souvenir I (Wechsler memory scale delayed recall). No effect was shown on cognition in patients with mild-to-moderate AD (S-Connect). The number needed to treat (6 and 21 for Souvenir I and II, respectively) and high number needed to harm values indicate a favorable harm:benefit ratio for Souvenaid versus control in patients with mild AD. The favorable safety profile and impact on outcome measures converge to corroborate the putative mode of action and demonstrate that Souvenaid can achieve clinically detectable effects in patients with early AD.

  14. Effects of childhood body size on breast cancer tumour characteristics

    Science.gov (United States)

    2010-01-01

    Introduction Although a role of childhood body size in postmenopausal breast cancer risk has been established, less is known about its influence on tumour characteristics. Methods We studied the relationships between childhood body size and tumour characteristics in a Swedish population-based case-control study consisting of 2,818 breast cancer cases and 3,111 controls. Our classification of childhood body size was derived from a nine-level somatotype. Relative risks were estimated by odds ratios with 95% confidence intervals, derived from fitting unconditional logistic regression models. Association between somatotype at age 7 and tumour characteristics were evaluated in a case-only analysis where P values for heterogeneity were obtained by performing one degree of freedom trend tests. Results A large somatotype at age 7 was found to be associated with decreased postmenopausal breast cancer risk. Although strongly associated with other risk factors such as age of menarche, adult body mass index and mammographic density, somatotype at age 7 remained a significant protective factor (odds ratio (OR) comparing large to lean somatotype at age 7 = 0.73, 95% confidence interval (CI) = 0.58-0.91, P trend = 0.004) after adjustment. The significant protective effect was observed within all subgroups defined by estrogen receptor (ER) and progesterone receptor (PR) status, with a stronger effect for ER-negative (0.40, 95% CI = 0.21-0.75, P trend = 0.002), than for ER-positive (0.80, 95% CI = 0.62-1.05, P trend = 0.062), tumours (P heterogeneity = 0.046). Somatotype at age 7 was not associated with tumour size, histology, grade or the presence or absence of metastatic nodes. Conclusions Greater body size at age 7 is associated with a decreased risk of postmenopausal breast cancer, and the associated protective effect is stronger for the ER-negative breast cancer subtype than for the ER-positive subtype. PMID:20398298

  15. Does screen size matter for smartphones? Utilitarian and hedonic effects of screen size on smartphone adoption.

    Science.gov (United States)

    Kim, Ki Joon; Sundar, S Shyam

    2014-07-01

    This study explores the psychological effects of screen size on smartphone adoption by proposing an extended Technology Acceptance Model (TAM) that integrates an empirical comparison between large and small screens with perceived control, affective quality, and the original TAM constructs. A structural equation modeling analysis was conducted on data collected from a between-subjects experiment (N=130) in which users performed a web-based task on a smartphone with either a large (5.3 inches) or a small (3.7 inches) screen. Results show that a large screen, compared to a small screen, is likely to lead to higher smartphone adoption by simultaneously promoting both the utilitarian and hedonic qualities of smartphones, which in turn positively influence perceived ease of use of-and attitude toward-the device respectively. Implications and directions for future research are discussed.

  16. Study on the Size Effect of Auxetic Cellular Materials

    Science.gov (United States)

    Janus-Michalska, M.

    2017-08-01

    The objective of this paper is to investigate the effects of scale of an auxetic cellular material sample on the evaluation of elastic properties. Size and boundary effects are studied in detail. This is achieved by conducting computer simulations of the auxetic structure under the typical loading exerted by the compression and simple shearing test performed by means of ABAQUS FEA. The material microstructure is discretized by the plane network of Timoshenko beam elements. The results of the studies give insight to the scale effects. Structures with designed properties can be potentially used for engineering applications.

  17. Synaptic size dynamics as an effectively stochastic process.

    Science.gov (United States)

    Statman, Adiel; Kaufman, Maya; Minerbi, Amir; Ziv, Noam E; Brenner, Naama

    2014-10-01

    Long-term, repeated measurements of individual synaptic properties have revealed that synapses can undergo significant directed and spontaneous changes over time scales of minutes to weeks. These changes are presumably driven by a large number of activity-dependent and independent molecular processes, yet how these processes integrate to determine the totality of synaptic size remains unknown. Here we propose, as an alternative to detailed, mechanistic descriptions, a statistical approach to synaptic size dynamics. The basic premise of this approach is that the integrated outcome of the myriad of processes that drive synaptic size dynamics are effectively described as a combination of multiplicative and additive processes, both of which are stochastic and taken from distributions parametrically affected by physiological signals. We show that this seemingly simple model, known in probability theory as the Kesten process, can generate rich dynamics which are qualitatively similar to the dynamics of individual glutamatergic synapses recorded in long-term time-lapse experiments in ex-vivo cortical networks. Moreover, we show that this stochastic model, which is insensitive to many of its underlying details, quantitatively captures the distributions of synaptic sizes measured in these experiments, the long-term stability of such distributions and their scaling in response to pharmacological manipulations. Finally, we show that the average kinetics of new postsynaptic density formation measured in such experiments is also faithfully captured by the same model. The model thus provides a useful framework for characterizing synapse size dynamics at steady state, during initial formation of such steady states, and during their convergence to new steady states following perturbations. These findings show the strength of a simple low dimensional statistical model to quantitatively describe synapse size dynamics as the integrated result of many underlying complex processes.

  18. Size Effect on the Mechanical Properties of CF Winding Composite

    Science.gov (United States)

    Cui, Yuqing; Yin, Zhongwei

    2017-12-01

    Mechanical properties of filament winding composites are usually tested by NOL ring samples. Few people have studied the size effect of winding composite samples on the testing result of mechanical property. In this research, winding composite thickness, diameter, and geometry of NOL ring samples were prepared to investigate the size effect on the mechanical strength of carbon fiber (CF) winding composite. The CF T700, T1000, M40, and M50 were adopted for the winding composite, while the matrix was epoxy resin. Test results show that the tensile strength and ILSS of composites decreases monotonically with an increase of thickness from 1 mm to 4 mm. The mechanical strength of composite samples increases monotonically with the increase in diameter from 100 mm to 189 mm. The mechanical strength of composite samples with two flat sides are higher than those of cyclic annular samples.

  19. Ionic size effects on the Poisson-Boltzmann theory.

    Science.gov (United States)

    Colla, Thiago; Nunes Lopes, Lucas; Dos Santos, Alexandre P

    2017-07-07

    In this paper, we develop a simple theory to study the effects of ionic size on ionic distributions around a charged spherical particle. We include a correction to the regular Poisson-Boltzmann equation in order to take into account the size of ions in a mean-field regime. The results are compared with Monte Carlo simulations and a density functional theory based on the fundamental measure approach and a second-order bulk expansion which accounts for electrostatic correlations. The agreement is very good even for multivalent ions. Our results show that the theory can be applied with very good accuracy in the description of ions with highly effective ionic radii and low concentration, interacting with a colloid or a nanoparticle in an electrolyte solution.

  20. Effect of eating rate on binge size in Bulimia Nervosa

    Science.gov (United States)

    Kissileff, Harry R; Zimmerli, Ellen J; Torres, Migdalia I; Devlin, Michael J; Walsh, B Timothy

    2008-01-01

    Effect of eating rate on binge size in bulimia nervosa. Bulimia Nervosa (BN) is an eating disorder characterized by recurrent episodes of binge eating. During binge eating episodes, patients often describe the rapid consumption of food, and laboratory studies have shown that during binges patients with BN eat faster than normal controls (NC), but the hypothesis that a rapid rate of eating contributes to the excessive intake of binge meals has not yet been experimentally tested. The aim of this study was to assess the effect of eating rate on binge size in BN, in order to determine whether binge size is mediated, in part, by rate of eating. Thirteen BN and 14 NC subjects were asked to binge eat a yogurt shake that was served at a fast rate (140g/min) on one occasion and at a slow rate (70g/min) on another. NC subjects consumed 169 g more when eating at the fast rate than when eating at the slow rate. In contrast, consumption rates failed to influence binge size in patients with BN (fast: 1205 g; slow: 1195 g). Consequently, there was a significant group by rate interaction. As expected, patients with BN consumed more overall than NC subjects (1200 g vs. 740 g). When instructed to binge in the eating laboratory, patients with BN ate equally large amounts of food at a slow rate as at a fast rate. NC subjects ate less at a slow rate. These findings indicate that in a structured laboratory meal paradigm binge size is not affected by rate of eating. PMID:17996257

  1. Response to recurrent selection under small effective population size

    Directory of Open Access Journals (Sweden)

    Souza Jr. Cláudio Lopes de

    2000-01-01

    Full Text Available A formula was derived for the prediction of the response to recurrent selection when the effective population size (Ne is small. Usually, responses to selection have been estimated by Rs = icsigma²A/sigmaPh, where i, c, sigma²A, and sigmaPh stand for standardized selection differential, parental control, additive variance, and phenotypic standard deviation, respectively. This expression, however, was derived under the assumption of infinite population size. By introducing the effects of finite population size, the expression derived was Rs = [ic(sigma²A + deltaFD1/sigmaPh] - DFID, where deltaF, ID and D1 are the changes in the inbreeding coefficient, the inbreeding depression, and the covariance of additive and homozygous dominance effects, respectively. Thus, the predicted responses to selection based on these expressions will be smaller than those based on the standard procedures for traits with a high level of dominance such as yield. Responses to five cycles of half-sib selection were predicted for maize by both expressions, considering that 100 progenies were evaluated and 10 S1 progenies were recombined, which corresponds to Ne = 10 for each cycle. The accumulated response to selection estimated with the new expression was about 47 and 28% smaller than that based on the standard expression for yield and plant height, respectively. Thus, the expression usually used overestimates the responses to selection, which is in agreement with reported results, because it does not take into account the effective population size that is generally small in recurrent selection programs

  2. Effects of sample size on the second magnetization peak in ...

    Indian Academy of Sciences (India)

    *E-mail: yeshurun@mail.biu.ac.il. Abstract. Effects of sample size on the second magnetization peak (SMP) in. Bi2Sr2CaCuO8+δ crystals are ... a termination of the measured transition line at Tl, typically 17–20 K (see figure 1). The obscuring and eventual disappearance of the SMP with decreasing tempera- tures has been ...

  3. Size effect and cylinder test on several commercial explosives

    Science.gov (United States)

    Souers, P. Clark; Lauderbach, Lisa; Moua, Kou; Garza, Raul

    2012-03-01

    Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.

  4. Size effects on magnetoelectric response of multiferroic composite with inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Y.M. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Department of Mechanics, Shanghai University, Shanghai 200072 (China); Xu, K.Y., E-mail: kyxu@shu.edu.cn [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Department of Mechanics, Shanghai University, Shanghai 200072 (China); Chen, T. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Department of Mechanics, Shanghai University, Shanghai 200072 (China); Aifantis, E.C. [Laboratory of Mechanics and Materials (LMM), Aristotle University of Thessaloniki, Thessaloniki GR-54124 (Greece); Michigan Technological University, Houghton, MI 49931 (United States); King Abdulaziz University, Jeddah 21589 (Saudi Arabia); School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); International Laboratory for Modern Functional Materials, ITMO University, St. Petersburg 191002 (Russian Federation)

    2015-12-01

    This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO{sub 3}), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe{sub 2}O{sub 3}). In a composite consisiting of a piezomagnetic matrix (CoFe{sub 2}O{sub 3}) reinforced with piezoelectric nanofibers (BaTiO{sub 3}), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.

  5. CO Oxidation by Subnanometer AgxAu3–x Supported Clusters via Density Functional Theory Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R.; Sementa, Luca; Barcaro, Giovanni; Vajda, S.; Apra, Edoardo; Fortunelli, Alessandro

    2012-09-07

    The activity of AgxAu3–x/MgO(100) clusters in CO oxidation is investigated computationally via systematic sampling techniques. It is found that these subnanometer species transform after ligand adsorption into reaction complexes which catalyze CO oxidation through a variety of different mechanisms, occurring via both Langmuir–Hinshelwood and Eley–Rideal paths and in some cases directly involving the oxide support. The alloyed Ag2Au1 cluster is proposed as the best catalyst in terms of efficiency and robustness.

  6. Effect of geometric base roughness on size segregation

    Science.gov (United States)

    Jing, L.; Kwok, C. Y.; Leung, Y. F.; Sobral, Y. D.

    2017-06-01

    The geometric roughness at boundaries has a profound impact on the dynamics of granular flows. For a bumpy base made of fixed particles, two major factors have been separately studied in the literature, namely, the size and spatial distribution of base particles. A recent work (Jing et al. 2016) has proposed a roughness indicator Ra, which combines both factors for any arbitrary bumpy base comprising equally-sized spheres. It is shown in mono-disperse flows that as Ra increases, a transition occurs from slip (Ra 0.62) conditions. This work focuses on such a phase transition in bi-disperse flows, in which Ra can be a function of time. As size segregation takes place, large particles migrate away from the bottom, leading to a variation of size ratio between flow- and base-particles. As a result, base roughness Ra evolves with the progress of segregation. Consistent with the slip/non-slip transition in mono-disperse flows, basal sliding arises at low values of Ra and the development of segregation might be affected; when Ra increases to a certain level (Ra > 0.62), non-slip condition is respected. This work extends the validity of Ra to bi-disperse flows, which can be used to understand the geometric boundary effect during segregation.

  7. Effects of sample size on KERNEL home range estimates

    Science.gov (United States)

    Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.

    1999-01-01

    Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.

  8. Size effects on free vibration of heterogeneous beams

    Directory of Open Access Journals (Sweden)

    Hassanati Bahman

    2018-01-01

    Full Text Available In this paper the influence of microstructure on the free vibration of geometrically similar heterogeneous beams with free-free boundary conditions was numerically investigated by detailed finite element analysis (FEA to identify and quantify any effect of beam size on transverse modal frequencies when the microstructural scale is comparable to the overall size. ANSYS Mechanical APDL was used to generate specific unit cells at the microstructural scale comprised of two isotropic materials with different material properties. Unit cell variants containing voids and inclusions were considered. At the macroscopic scale, four beam sizes consisting of one, two, three or four layers of defined unit cells were represented by repeatedly regenerating the unit cell as necessary. In all four beam sizes the aspect ratio was kept constant. Changes to the volume fractions of each material were introduced while keeping the homogenized properties of the beam fixed. The influence of the beam surface morphology on the results was also investigated. The ANSYS results were compared with the analytical results from solution to Timoshenko beam and nonlocal Timoshenko beam as well as numerical results for a Micropolar beam. In nonlocal Timoshenko beams the Eringen’s small length scale coefficients were estimated for some of the studied models. Numerical analyses based on Micropolar theory were carried out to study the modal frequencies and a method was suggested to estimate characteristic length in bending and coupling number via transverse vibration which verifies the use of Micropolar elasticity theory in dynamic analysis.

  9. Size-dependent nonlocal effects in plasmonic semiconductor particles

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...

  10. Size-effects on yield surfaces for micro reinforced composites

    DEFF Research Database (Denmark)

    Azizi, Reza; Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2011-01-01

    Size effects in heterogeneous materials are studied using a rate independent higher order strain gradient plasticity theory, where strain gradient effects are incorporated in the free energy of the material. Numerical studies are carried out using a finite element method, where the components...... of the plastic strain tensor appear as free variables in addition to the displacement variables. Non-conventional boundary conditions are applied at material interfaces to model a constraint on plastic flow due to dislocation blocking. Unit cell calculations are carried out under generalized plane strain...

  11. Size Effects in PbTiO3 nanocrystals: Effect of Particle Size on Spontaneous Polarization and Strains

    Energy Technology Data Exchange (ETDEWEB)

    Akdgan,E.; Rawn, C.; Porter, W.; Payzant, E.; Safari, A.

    2005-01-01

    The spontaneous polarization (P{sub s}) and spontaneous strains (x{sub i}) in mechanically unclamped and surface charge compensated PbTiO{sub 3} nanocrystals were determined as a function of particle size in the range <150 nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P, x{sub i}) have been observed as the particle size decreased below {approx}100 nm. The critical size (r{sub c}) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as {approx}15 nm. The depression in transition temperature with particle size is 14 C at 28 nm. No change in the order of m3m-->4mm ferrodistortive phase transition is observed. A simple analysis showed that {Delta}Htr/(kBT){approx}10{sup 3} at 25 C for r=16 nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r{yields}r{sub c}. The observed size dependence of P{sub S} is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al.

  12. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    Science.gov (United States)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  13. Effective particle size from molecular dynamics simulations in fluids

    Science.gov (United States)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  14. Finite size effects in simulations of protein aggregation.

    Directory of Open Access Journals (Sweden)

    Amol Pawar

    Full Text Available It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis.

  15. Particle shape effects on subvisible particle sizing measurements.

    Science.gov (United States)

    Cavicchi, Richard E; Carrier, Michael J; Cohen, Joshua B; Boger, Shir; Montgomery, Christopher B; Hu, Zhishang; Ripple, Dean C

    2015-03-01

    Particle analysis tools for the subvisible (shape in comparison studies, we have used the methods of photolithography to create rods and disks. Although the rods are highly monodisperse, the instruments produce broadened peaks and report mean size parameters that are different for different instruments. We have fabricated a microfluidic device that simultaneously performs ESZ and FI measurements on each particle to elucidate the causes of discrepancies and broadening. Alignment of the rods with flow causes an oversizing by FI and undersizing by ESZ. FI also oversizes rods because of the incorrect edge definition that results from diffraction and imperfect focus. We present an improved correction algorithm for this effect that reduces discrepancies for rod-shaped particles. Tumbling of particles is observed in the microfluidic ESZ/FI and results in particle oversizing and breadth of size distribution for the monodisperse rods. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Interface Energy and Particle Size Effects on Effective Properties and Damage Energy Dissipation in Nanocomposites

    OpenAIRE

    Chuang, Chung-Wen

    2014-01-01

    Nowadays, since the materials science and technique have been further advanced to the characteristic size of solids in nano-size structures and nanocomposites, the interface/surface energy effect on mechanical and physical properties and damage energy dissipation of a nano-scale material or composite becomes significant and cannot be ignored. Therefore, the interface/surface energy and particle size effects on the effective properties and the damage dissipation in nanocomposites are investiga...

  17. Time-Indexed Effect Size for P-12 Reading and Math Program Evaluation

    Science.gov (United States)

    Lee, Jaekyung; Finn, Jeremy; Liu, Xiaoyan

    2012-01-01

    This study contextualizes an effect-size-like index of educational treatment effects or any group mean differences in academic achievement by referencing time. The new effect size metric can enrich effect size interpretations while serving as a supplement (but not substitute) for conventional standardized effect size measures. Specifically, the…

  18. Sample-Size Planning for More Accurate Statistical Power: A Method Adjusting Sample Effect Sizes for Publication Bias and Uncertainty.

    Science.gov (United States)

    Anderson, Samantha F; Kelley, Ken; Maxwell, Scott E

    2017-11-01

    The sample size necessary to obtain a desired level of statistical power depends in part on the population value of the effect size, which is, by definition, unknown. A common approach to sample-size planning uses the sample effect size from a prior study as an estimate of the population value of the effect to be detected in the future study. Although this strategy is intuitively appealing, effect-size estimates, taken at face value, are typically not accurate estimates of the population effect size because of publication bias and uncertainty. We show that the use of this approach often results in underpowered studies, sometimes to an alarming degree. We present an alternative approach that adjusts sample effect sizes for bias and uncertainty, and we demonstrate its effectiveness for several experimental designs. Furthermore, we discuss an open-source R package, BUCSS, and user-friendly Web applications that we have made available to researchers so that they can easily implement our suggested methods.

  19. Size-selecting effect of water on fluorescent silicon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, G; Akraiam, A; Von Haeften, K, E-mail: kvh6@le.ac.uk [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2011-08-05

    Silicon clusters were produced by gas aggregation in vacuum and co-deposited with water vapour onto a cold target where the water vapour froze. Melting of the ice yielded fluorescent silicon nanoparticles suspended in water which were investigated by photoluminescence spectroscopy (PL) and atomic force microscopy (AFM). The PL spectrum showed a prominent band at 420 nm and other, less intense bands at shorter wavelengths. No fluorescence was observed below 275 nm. The shortest wavelength observed was related to a silicon cluster diameter of 0.9 nm using a simple particle-in-a-box model. Drops of the suspension were also deposited on freshly cleaved HOPG and investigated by AFM. The images showed single and agglomerated clusters with heights of typically 0.6 up to 2 nm. The sizes displayed by our measurements are not correlated to the average sizes that result from gas aggregation, indicating a size-selecting effect of the water suspension. The cluster-cluster interaction in water is governed by repulsion due to thermal energy and attraction due to van der Waals forces. For very small clusters repulsion dominates; at 3 nm diameter the two forces are balanced. We identify this stable phase of small clusters as the origin of exceptionally stable fluorescence.

  20. Primary angioplasty: Effect of deferred stenting on stent size.

    Science.gov (United States)

    Harbaoui, Brahim; Emsellem, Philippe; Cassar, Emmanuel; Besnard, Cyril; Dauphin, Raphael; Motreff, Pascal; Courand, Pierre-Yves; Lantelme, Pierre

    2017-04-01

    Primary angioplasty with immediate stenting (IS) is the gold standard for ST-segment elevation myocardial infarction (STEMI). Deferred stenting (DS) has been proposed to limit periprocedural complications, and may influence stent size because of thrombus and spasm alleviation. We sought to study the effect of DS on stent size. Over the study period, 258 patients underwent primary angioplasty for STEMI (DS, n=84; IS, n=174). An informative coronary angiogram run - i.e. allowing for proper lesion analysis - was selected and anonymized by an independent operator. Two experienced operators randomly analysed these runs, and proposed stent dimensions after having measured vessel diameter and lesion length by quantitative coronary analysis. The primary objective was the variation in stent size between the two coronary angiograms. The median delay between the two coronary angiograms was 2 days. Overall, the stent length was shorter (-1.64mm; P=0.030) and its diameter was larger (+0.13mm; P<0.001) during the second coronary angiogram, especially in the right coronary arteries. DS led to the implantation of a larger and shorter stent; this is probably because DS allows for more accurate assessment of the residual lesion after relief of spasm and thrombus, and may have clinical consequences in terms of stent thrombosis and restenosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. The effect of nanocrystalline magnetite size on arsenic removal

    Directory of Open Access Journals (Sweden)

    J.T. Mayo et al

    2007-01-01

    Full Text Available Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III and As(V. Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4 nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III and As(V. The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III and As(V increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.

  2. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Directory of Open Access Journals (Sweden)

    Gang Bai

    2015-09-01

    Full Text Available A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  3. Material inertia and size effects in the Charpy V-notch test

    DEFF Research Database (Denmark)

    Desandre, D. A.; Benzerga, A. A.; Tvergaard, Viggo

    2004-01-01

    that a quasi-static analysis would predict a size independent response. Sizes ranging from 1/4 to 16 times the ASTM standard size are analyzed and two sets of material properties are considered. No size effect is seen below a critical specimen size. Above this limit, a monotonic increase with specimen size...

  4. Effect Sizes for Research Univariate and Multivariate Applications

    CERN Document Server

    Grissom, Robert J

    2011-01-01

    Noted for its comprehensive coverage, this greatly expanded new edition now covers the use of univariate and multivariate effect sizes. Many measures and estimators are reviewed along with their application, interpretation, and limitations. Noted for its practical approach, the book features numerous examples using real data for a variety of variables and designs, to help readers apply the material to their own data. Tips on the use of SPSS, SAS, R, and S-Plus are provided. The book's broad disciplinary appeal results from its inclusion of a variety of examples from psychology, medicine, educa

  5. The size effects upon shock plastic compression of nanocrystals

    Science.gov (United States)

    Malygin, G. A.; Klyavin, O. V.

    2017-10-01

    For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.

  6. Size effect of glulam beams in tension perpendicular to grain

    DEFF Research Database (Denmark)

    Astrup, Thomas; Clorius, Christian Odin; Damkilde, Lars

    2007-01-01

    The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents the hypothesis...... that the lower strength is caused by stress concentrations. The stress concentrations arise from the anisotropic structure of wood, and are therefore deterministic. The hypothesis is substantiated through extensive FEM-calculations and experiments. A reasonable agreement between ultimate stresses determined...

  7. Transport of dissolved organic matter in Boom Clay: Size effects

    Science.gov (United States)

    Durce, D.; Aertsens, M.; Jacques, D.; Maes, N.; Van Gompel, M.

    2018-01-01

    A coupled experimental-modelling approach was developed to evaluate the effects of molecular weight (MW) of dissolved organic matter (DOM) on its transport through intact Boom Clay (BC) samples. Natural DOM was sampled in-situ in the BC layer. Transport was investigated with percolation experiments on 1.5 cm BC samples by measuring the outflow MW distribution (MWD) by size exclusion chromatography (SEC). A one-dimensional reactive transport model was developed to account for retardation, diffusion and entrapment (attachment and/or straining) of DOM. These parameters were determined along the MWD by implementing a discretisation of DOM into several MW points and modelling the breakthrough of each point. The pore throat diameter of BC was determined as 6.6-7.6 nm. Below this critical size, transport of DOM is MW dependent and two major types of transport were identified. Below MW of 2 kDa, DOM was neither strongly trapped nor strongly retarded. This fraction had an averaged capacity factor of 1.19 ± 0.24 and an apparent dispersion coefficient ranging from 7.5 × 10- 11 to 1.7 × 10- 11 m2/s with increasing MW. DOM with MW > 2 kDa was affected by both retardation and straining that increased significantly with increasing MW while apparent dispersion coefficients decreased. Values ranging from 1.36 to 19.6 were determined for the capacity factor and 3.2 × 10- 11 to 1.0 × 10- 11 m2/s for the apparent dispersion coefficient for species with 2.2 kDa < MW < 9.3 kDa. Straining resulted in an immobilisation of in average 49 ± 6% of the injected 9.3 kDa species. Our findings show that an accurate description of DOM transport requires the consideration of the size effects.

  8. Effects of Kurozu concentrated liquid on adipocyte size in rats

    Directory of Open Access Journals (Sweden)

    Nakamura Kumi

    2010-11-01

    Full Text Available Abstract Background Kurozu concentrated liquid (KCL is used as a health-promoting supplement for the treatment of disorders such as cancer, hyperlipidemia, and hypertension in Japan. We investigated the possible anti-obesity effects of KCL in rats. Methods Male Sprague Dawley rats were fed American Institute of Nutrition 76 formula diet and were orally administrated KCL or acetic acid at a dose of 100 mg/kg body weight or deionized water for 4 weeks. Adipocyte size, DNA content in subcutaneous adipose tissue, lipid levels in the serum and liver, and the rate of fatty acid excretion were determined. Effects of KCL on pancreatic lipase activity and 3T3-L1 preadipocyte differentiation were investigated in vitro. Results In the KCL group, the average adipocyte size in subcutaneous and perirenal adipose tissues was significantly reduced. The KCL-administered rats displayed greater numbers of small adipocytes in the subcutaneous, perirenal and mesenteric adipose tissues than did rats from the other groups. In the KCL group, the DNA content in subcutaneous adipose tissue was significantly increased. The rate of fatty acid excretion was significantly increased in the KCL group. Furthermore, KCL significantly inhibited pancreatic lipase activity in vitro, and also significantly inhibited fat accumulation and mRNA expression of fatty acid binding protein 2 (aP2 and peroxisome proliferator-activated γ (PPARγ in 3T3-L1 preadipocyte. The levels of serum and liver lipids, the concentration of serum glucose, and the levels of adiponectin were similar among the 3 groups. Conclusion Oral administration of KCL decreases the adipocyte size via inhibition of dietary fat absorption and reductions of PPARγ and aP2 mRNA expression levels in adipocytes.

  9. Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness.

    Science.gov (United States)

    Welch, H Gilbert; Prorok, Philip C; O'Malley, A James; Kramer, Barnett S

    2016-10-13

    The goal of screening mammography is to detect small malignant tumors before they grow large enough to cause symptoms. Effective screening should therefore lead to the detection of a greater number of small tumors, followed by fewer large tumors over time. We used data from the Surveillance, Epidemiology, and End Results (SEER) program, 1975 through 2012, to calculate the tumor-size distribution and size-specific incidence of breast cancer among women 40 years of age or older. We then calculated the size-specific cancer case fatality rate for two time periods: a baseline period before the implementation of widespread screening mammography (1975 through 1979) and a period encompassing the most recent years for which 10 years of follow-up data were available (2000 through 2002). After the advent of screening mammography, the proportion of detected breast tumors that were small (invasive tumors measuring <2 cm or in situ carcinomas) increased from 36% to 68%; the proportion of detected tumors that were large (invasive tumors measuring ≥2 cm) decreased from 64% to 32%. However, this trend was less the result of a substantial decrease in the incidence of large tumors (with 30 fewer cases of cancer observed per 100,000 women in the period after the advent of screening than in the period before screening) and more the result of a substantial increase in the detection of small tumors (with 162 more cases of cancer observed per 100,000 women). Assuming that the underlying disease burden was stable, only 30 of the 162 additional small tumors per 100,000 women that were diagnosed were expected to progress to become large, which implied that the remaining 132 cases of cancer per 100,000 women were overdiagnosed (i.e., cases of cancer were detected on screening that never would have led to clinical symptoms). The potential of screening to lower breast cancer mortality is reflected in the declining incidence of larger tumors. However, with respect to only these large tumors

  10. Fe magnetic impurity effect in Au atomic sized conductor

    Energy Technology Data Exchange (ETDEWEB)

    Ienaga, Koichiro; Inagaki, Yuji; Kawae, Tatsuya [Department of Applied Quantum Physics, Kyushu University, Moto-oka, Fukuoka 819-0395 (Japan); Tsujii, Hiroyuki, E-mail: te208276@s.kyushu-u.ac.j [Department of Education, Kanazawa University, Kanazawa, 920-1192 (Japan)

    2010-01-01

    We have studied the electrical conductance in Au nanowire containing 0.07 at.%Fe ions (AuFe nanowire) with mechanically controllable break junction technique to investigate the magnetic impurity effects in the atomic-sized conductance. At room temperature, we observe not only conductance steps at the integer multiples of G{sub 0} = 2e{sup 2}/h, but also steps deviating from them in AuFe nanowire. Moreover, these features persist down to T = 4.2 K. The scattering between the conduction electrons and Fe magnetic ions may lift the spin degeneracy of the transmission probability, which is responsible for the deviation. Zero bias anomaly is observed in the AuFe nanowire with the contact diameter larger than {approx}3 nm in the current-voltage (I-V) measurements at T = 4.2 K, which may be caused by Kondo effect.

  11. Effect Size: A guide for researchers and users

    Directory of Open Access Journals (Sweden)

    Robert Coe

    2003-06-01

    Full Text Available The present article describes a method to quantify the magnitude of the differences between two measures and/or the degree of the effect of a variable about criteria, and it is named likethe effect size measure, d. Use it use in research and applied contexts provides a quitedescriptive complementary information, improving the interpretation of the results obtained bythe traditional methods that emphasize the statistical significance. Severa forms there are of interpreting the d, and an example taken of an experimental research, is presented to clarify the concepts and necessary calculations. This method is not robust to sorne conditions that they candistort its interpretation, for example, the non normality of the data; alternative methods are mentioned to the statistical d. We ending with sorne conclusions that will notice about the appropriate use of it.

  12. Cost-effective unilateral climate policy design: Size Matters

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph; Fischer, Carolyn; Rosendahl, Knut Einar

    2011-07-01

    Given the bleak prospects for a global agreement on mitigating climate change, pressure for unilateral abatement is increasing. A major challenge is emissions leakage. Border carbon adjustments and output-based allocation of emissions allowances can increase effectiveness of unilateral action but introduce distortions of their own. We assess antileakage measures as a function of abatement coalition size. We first develop a partial equilibrium analytical framework to see how these instruments affect emissions within and outside the coalition. We then employ a computable general equilibrium model of international trade and energy use to assess the strategies as the coalition grows. We find that full border adjustments rank first in global cost-effectiveness, followed by import tariffs and output-based rebates. The differences across measures and their overall appeal decline as the abatement coalition grows. In terms of cost, the coalition countries prefer border carbon adjustments; countries outside the coalition prefer output-based rebates.(Author)

  13. Pacific salmon and the coalescent effective population size.

    Science.gov (United States)

    Cenik, Can; Wakeley, John

    2010-09-27

    Pacific salmon include several species that are both commercially important and endangered. Understanding the causes of loss in genetic variation is essential for designing better conservation strategies. Here we use a coalescent approach to analyze a model of the complex life history of salmon, and derive the coalescent effective population (CES). With the aid of Kronecker products and a convergence theorem for Markov chains with two time scales, we derive a simple formula for the CES and thereby establish its existence. Our results may be used to address important questions regarding salmon biology, in particular about the loss of genetic variation. To illustrate the utility of our approach, we consider the effects of fluctuations in population size over time. Our analysis enables the application of several tools of coalescent theory to the case of salmon.

  14. Pacific salmon and the coalescent effective population size.

    Directory of Open Access Journals (Sweden)

    Can Cenik

    Full Text Available Pacific salmon include several species that are both commercially important and endangered. Understanding the causes of loss in genetic variation is essential for designing better conservation strategies. Here we use a coalescent approach to analyze a model of the complex life history of salmon, and derive the coalescent effective population (CES. With the aid of Kronecker products and a convergence theorem for Markov chains with two time scales, we derive a simple formula for the CES and thereby establish its existence. Our results may be used to address important questions regarding salmon biology, in particular about the loss of genetic variation. To illustrate the utility of our approach, we consider the effects of fluctuations in population size over time. Our analysis enables the application of several tools of coalescent theory to the case of salmon.

  15. Effects of Na and Ca on particle size; Effect of filtering on UV absorbance

    Data.gov (United States)

    U.S. Environmental Protection Agency — Effects of Na and Ca on particle size; Effect of filtering on UV absorbance. This dataset is associated with the following publication: Bouchard, D., C. Knightes, X....

  16. Effect of specimen size on work-of-fracture measurements.

    Science.gov (United States)

    Rogers, L L; Moyle, D D

    1988-01-01

    It has been suggested that work-of-fracture, which quantifies the ability of a material to resist fracture, is dependent on specimen size. This experiment compared work-of-fracture, calculated as energy per unit area, for different specimen sizes of Plexiglas, bovine tibial bone and aluminum. Three different geometrically similar cross sections were tested for each material for a total of 54 specimens. Work-of-fracture was measured by loading a notched beam (triangular cross section) in three-point bending at a constant deformation rate. The energy necessary to cause fracture was measured from a load-deformation curve. Specimen fracture area was determined using macrophotography. Atomic absorption spectrophotometry was used to determine weight percent calcium of bone specimens and quantitative light microscopy was used to determine fractional void area. Analysis of variance showed no effect of specimen size on work-of-fracture for aluminum or Plexiglas specimens (p greater than 0.05). A significant difference was found, however, between the large (area = 11.7 +/- 1.9 mm2) and small (area = 3.48 +/- 0.68 mm2) bone specimens and between the medium (area = 5.89 +/- 0.69 mm2) and small (area = 3.48 +/- 0.68 mm2) bone specimens. No correlation was found between work-of-fracture and either calcium content (r2 = 0.128) or fractional void area (r2 = 0.0713). The mean work-of-fracture values found are as follows: aluminum, 59.8 +/- 13.7 kJ m-2; Plexiglas, 0.620 +/- 0.074 kJ m-2; bone (area 5.89 +/- 0.69 mm2-11.7 +/- 1.9 mm2), 9.72 +/- 1.93 kJ m-2 and bone (area 3.48 +/- 0.68 mm2), 5.48 +/- 1.79 kJ m-2.

  17. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  18. Effect of Particle Size on Shear Stress of Magnetorheological Fluids

    OpenAIRE

    Chiranjit Sarkar; Harish Hirani

    2015-01-01

    Magnetorheological fluids (MRF), known for their variable shear stress contain magnetisable micrometer-sized particles (few micrometer to 200 micrometers) in a nonmagnetic carrier liquid. To avoid settling of particles, smaller sized (3-10 micrometers) particles are preferred, while larger sized particles can be used in MR brakes, MR clutches, etc. as mechanical stirring action in those mechanisms does not allow particles to settle down. Ideally larger sized particles provide higher shear str...

  19. Finite-size effect on optimal efficiency of heat engines

    Science.gov (United States)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n -particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  20. Interlayer exchange coupling, dipolar coupling and magnetoresistance in Fe/MgO/Fe trilayers with a subnanometer MgO barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kozioł-Rachwał, A. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Skowroński, W.; Frankowski, M. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Chęciński, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ziętek, S.; Rzeszut, P. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Ślęzak, M.; Matlak, K.; Ślęzak, T. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Stobiecki, T. [AGH University of Science and Technology, Department of Electronics, al. Mickiewicza 30, 30-059 Kraków (Poland); Korecki, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków (Poland)

    2017-02-15

    Fe/MgO/Fe trilayers with a subnanometer MgO tunnel barrier were grown by molecular beam epitaxy. Longitudinal magnetooptic Kerr effect measurements confirmed the existence of the antiferromagnetic interlayer exchange coupling (IEC) between the Fe layers for 2 Åeffective coupling between layers, and we determined dependence of the dipolar coupling on the pillar diameter. Finally, magnetoresistance (MR) was measured as a function of MgO thickness (d{sub MgO}), and a non-zero MR was found for the MgO as thin as 3.4 Å. Extrapolation of the MR (d{sub MgO}) dependence to MR=0 allowed us to determine the length of the pinholes in our sample, which was estimated to be (3.2±0.5) Å. - Highlights: • Strong antiferromagnetic (AFM) interlayer exchange coupling (IEC) between Fe layers in Fe/MgO/Fe. • After nanofabrication the effective AFM IEC is enhanced due to the dipolar coupling. • The dipolar coupling that appeared after the nanofabrication process modified the effective coupling between layers. • Non-zero magnetoresistance values registered for the Fe/MgO/Fe trilayers with the MgO spacers as thin as 3.4 Å.

  1. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  2. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Science.gov (United States)

    Kolomenskiy, Dmitry; Maeda, Masateru; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2016-01-01

    Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV) community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  3. Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.

    Science.gov (United States)

    Zoellner, Andreas; Tan, Si; Saraf, Shailendhar; Alfauwaz, Abdul; DeBra, Dan; Buchman, Sasha; Lipa, John A

    2017-10-16

    We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensors. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam's power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87nm/Hz at 1 Hz and 0.39nm/Hz at 10 Hz. We describe the application of the module to the inertial sensor of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.

  4. Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy.

    Science.gov (United States)

    Li, Weixing; Stein, Simon C; Gregor, Ingo; Enderlein, Jörg

    2015-02-09

    We developed a stand-alone cryostat with optical access to the sample which can be adapted to any epi-fluorescence microscope for single-molecule fluorescence spectroscopy and imaging. The cryostat cools the sample to a cryogenic temperature of 89 K, and allows for imaging single molecules using an air objective with a numerical aperture of 0.7. An important property of this system is its excellent thermal and mechanical stability, enabling long-time observations of samples over several hours with negligible drift. Using this system, we performed photo-bleaching studies of Atto647N dye molecules, and find an improvement of the photostability of these molecules by more than two orders of magnitude. The resulting increased photon numbers of several millions allow for single-molecule localization accuracy of sub-nanometer.

  5. Turbulence and Beam Size Effects on Reflectometry Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Sanchez, J.; Zhuravlev, V.; Luna, E. de la; Branas, B. [Ciemat.Madrid (Spain)

    2000-07-01

    A two dimensional code based on the WKB approximation is used to simulate reflectometry measurements in plasmas with turbulence. The work aims to understand, first the role of turbulence in the determination of density profiles with reflectometry and, second, the ability of reflectometry techniques to give reliable information on the characteristics of the turbulence itself. The effects on the profile determination of a rotating turbulence structure with non-perpendicular reflection are analysed. The influence of the turbulence level, fluctuation wavelengths and antenna beam size on the density profile determination has been studied in a static plasma with perpendicular launching. The code has been used to simulate correlation measurements. The results show the correlation of the reflectometry signals for different turbulence parameters. Errors in the correlation length increase when 2-dimensional effects become important, though the homodyne signal works better than the phase. The correlation simulations also show the way for new methods to determine the group delay and therefore the density profile. (Author) 15 refs.

  6. Particle size effects on compositional analyses of Nigerian Tarsands

    Science.gov (United States)

    Ogunsola, Olayinka I.; Williams, Paul C.

    Nigeria is endowed with huge reserves of tarsands from which about 31 billion barrels of heavy oil, a suitable feedstock for the production of lubricating oil, greases, bitumen and asphalt, can be produced. Before utilization of conversion, carbonaceous and or mineral materials are usually ground and sieved to smaller particle sizes. The main objective of this study was to investigate the chemical compositional variations of Nigerian tarsands with variations in particle size. Results of the study show that the chemical properties vary with particle size. For example, the moisture and organic contents decrease with decrease in particle size. The carbon, hydrogen and nitrogen contents of the organic matter of the tarsands also decreased with decrease in particle size. The practical implication of the results obtained from this study is that particle size below 0.85mm should not be recommended for the conversion or processing of the tarsands to liquid and or gas products.

  7. Effects of Meaning and Symmetry on Judgments of Size

    DEFF Research Database (Denmark)

    Reber, Rolf; Christensen, Bo T.; Meier, Beat

    2014-01-01

    showed in Experiment 1 that meaning increased judged size, whereas symmetry decreased judged size. In the next two experiments, we excluded several alternative explanations for the differences in size judgments between meaningful and meaningless materials in earlier studies. This finding contradicts......Research has shown that people judge words as having bigger font size than non-words. This finding has been interpreted in terms of processing fluency, with higher fluency leading to judgments of bigger size. If so, symmetric numbers (e.g., 44) which can be processed more fluently are predicted...... to be judged as larger than asymmetric numbers (e.g., 43). However, recent research found that symmetric numbers were judged to be smaller than asymmetric numbers. This finding suggests that the mechanisms underlying size judgments may differ in meaningful and meaningless materials. Supporting this notion, we...

  8. Critical size effect of particles reinforcing foamed composite materials

    OpenAIRE

    Khidas, Yacine; Haffner, Benjamin; PITOIS, Olivier

    2015-01-01

    International audience; We investigate the shear elastic modulus of soft polymer foams loaded with hardspherical particles and we show that, for constant bubble size and gas volume fraction,strengthening is strongly dependent on the size of those inclusions. Through anaccurate control of the ratio λ that compares the particle size to the thickness of thestruts in the foam structure, we evidence a transition in the mechanical behavior atλ ≈ 1. For λ < 1, every particle loading leads to a stren...

  9. Effects of Mixtures on Liquid and Solid Fragment Size Distributions

    Science.gov (United States)

    2016-05-01

    these will be called Type IV Gamma size distributions. This is a short but opaque definition . Laney (2015b) gives a longer but clearer definition of Type...as described below, the available evidence indicates that, by the definitions introduced here, it may be better described as a compound size...bins, too few size bins, fixed bin widths, or inadequately- varying bin widths. Overpopulated bins – which typically occur for smaller fragments

  10. Grain Constraint and Size Effects in Shape Memory Alloy Microwires

    Science.gov (United States)

    Ueland, Stian Melhus

    Shape memory alloys exhibit interesting and useful properties, such as the shape memory effect and superelasticity. Among the many alloy families that have been shown to exhibit shape memory properties the ones based on copper are interesting because they are relatively inexpensive and show excellent properties when made as single crystals. However, the performance ofthese alloys is severely compromised by the introduction of grain boundaries, to the point where they are too poor for commercial applications. This thesis studies the mechanical properties of fine Cobased wires with a bamboo microstructure, i.e., where triple junctions are absent and grain boundaries run perpendicular to the wire axis. These microwires are not single crystals, but their microstructure is not as complex as that of polycrystals either: we call this new class of shape memory alloys oligocrystals. This thesis seeks to better understand the relationship between microstructure and properties in these alloys through a combination of mechanical testing, in situ experiments and modeling. First, in situ scanning electron microscopy, together with finite element modeling, is used to understand the role of grain constraint on the martensitic transformation. Grain constraints are observed to be much less severe in oligocrystalline wires as compared to polycrystals. Oligocrystalline microwires are then thermomechanically tested and shown to exhibit excellent properties that approach those of single crystals. Next, property evolution during cycling is investigated, revealing training effects as well as fatigue life and fracture. Finally, size effects in damping and transformation morphology are studied and it is shown that a transition from a many-domain to a single domain martensite morphology takes place when the wire diameter is decreased. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  11. Evaluation of size effect on shear strength of reinforced concrete ...

    Indian Academy of Sciences (India)

    been proposed for evaluating the size-dependent shear strength of such beams. Walsh (1972) ... The aim of the proposal of size-dependent models for evaluation of the shear strength of rein- forced concrete .... In the above expression, replacing the product (E10.62) by another constant F1 and rewriting the equation, the ...

  12. Effects of reaction temperature on size and optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. We report experimental results on the reaction temperature dependence of luminescence proper- ties in size-controlled CdSe nanocrystals. Such reaction temperature dependent property is also size- dependent. The diameter of the CdSe nanocrystals is tuned from 4–11⋅0 nm by varying the reaction tempera-.

  13. Practical implementation of channelized hotelling observers: effect of ROI size

    Science.gov (United States)

    Ferrero, Andrea; Favazza, Christopher P.; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H.

    2017-03-01

    Fundamental to the development and application of channelized Hotelling observer (CHO) models is the selection of the region of interest (ROI) to evaluate. For assessment of medical imaging systems, reducing the ROI size can be advantageous. Smaller ROIs enable a greater concentration of interrogable objects in a single phantom image, thereby providing more information from a set of images and reducing the overall image acquisition burden. Additionally, smaller ROIs may promote better assessment of clinical patient images as different patient anatomies present different ROI constraints. To this end, we investigated the minimum ROI size that does not compromise the performance of the CHO model. In this study, we evaluated both simulated images and phantom CT images to identify the minimum ROI size that resulted in an accurate figure of merit (FOM) of the CHO's performance. More specifically, the minimum ROI size was evaluated as a function of the following: number of channels, spatial frequency and number of rotations of the Gabor filters, size and contrast of the object, and magnitude of the image noise. Results demonstrate that a minimum ROI size exists below which the CHO's performance is grossly inaccurate. The minimum ROI size is shown to increase with number of channels and be dictated by truncation of lower frequency filters. We developed a model to estimate the minimum ROI size as a parameterized function of the number of orientations and spatial frequencies of the Gabor filters, providing a guide for investigators to appropriately select parameters for model observer studies.

  14. Revisiting Size Effects in Higher Education Research Productivity

    Science.gov (United States)

    Abramo, Giovanni; Cicero, Tindaro; D'Angelo, Ciriaco Andrea

    2012-01-01

    The potential occurrence of variable returns to size in research activity is a factor to be considered in choices about the size of research organizations and also in the planning of national research assessment exercises, so as to avoid favoring those organizations that would benefit from such occurrence. The aim of the current work is to improve…

  15. Size Effect on Specific Energy Distribution in Particle Comminution

    Science.gov (United States)

    Xu, Yongfu; Wang, Yidong

    A theoretical study is made to derive an energy distribution equation for the size reduction process from the fractal model for the particle comminution. Fractal model is employed as a valid measure of the self-similar size distribution of comminution daughter products. The tensile strength of particles varies with particle size in the manner of a power function law. The energy consumption for comminuting single particle is found to be proportional to the 5(D-3)/3rd order of the particle size, D being the fractal dimension of particle comminution daughter. The Weibull statistics is applied to describe the relationship between the breakage probability and specific energy of particle comminution. A simple equation is derived for the breakage probability of particles in view of the dependence of fracture energy on particle size. The calculated exponents and Weibull coefficients are generally in conformity with published data for fracture of particles.

  16. Investigations on Size Effects of Zerodur®

    Science.gov (United States)

    Behar-Lafenetre, S.; Cornillon, L.; Ait-Zaid, S.; Rancurel, M.

    2014-06-01

    Zerodur® is a well-known glass-ceramic used for optical components because of its unequalled stability under thermal environment (due to its extremely low Coefficient of Thermal Expansion). In particular it has been used since decades in Thales Alenia Space's optical payloads for space telescopes, especially for primary mirrors.The drawback of Zerodur® however is its quite low strength: 10 MPa is historically used as a rule of thumb. However, as performance of space telescopes is increasing, an optimization of the design is necessary and therefore an increase of the strength limit taken into account in the calculations.Thales Alenia Space is therefore currently investigating the so-called "size effect" on Zerodur® (see Weibull theory), under CNES funding, with the aim of re- estimating the lower bound of Zerodur® strength.For this, a complete test campaign has been defined with a high number of samples in order to reduce uncertainties. This article presents the first results obtained.

  17. Effects of primary and secondary morphological family size in monolingual and bilingual word processing

    NARCIS (Netherlands)

    Mulder, K.; Dijkstra, A.F.J.; Schreuder, R.; Baayen, Harald

    2014-01-01

    This study investigated primary and secondary morphological family size effects in monolingual and bilingual processing, combining experimentation with computational modeling. Family size effects were investigated in an English lexical decision task for Dutch-English bilinguals and English

  18. Treatment effect on biases in size estimation in spider phobia.

    Science.gov (United States)

    Shiban, Youssef; Fruth, Martina B; Pauli, Paul; Kinateder, Max; Reichenberger, Jonas; Mühlberger, Andreas

    2016-12-01

    The current study investigates biases in size estimations made by spider-phobic and healthy participants before and after treatment. Forty-one spider-phobic and 20 healthy participants received virtual reality (VR) exposure treatment and were then asked to rate the size of a real spider immediately before and, on average, 15days after the treatment. During the VR exposure treatment skin conductance response was assessed. Prior to the treatment, both groups tended to overestimate the size of the spider, but this size estimation bias was significantly larger in the phobic group than in the control group. The VR exposure treatment reduced this bias, which was reflected in a significantly smaller size rating post treatment. However, the size estimation bias was unrelated to the skin conductance response. Our results confirm the hypothesis that size estimation by spider-phobic patients is biased. This bias is not stable over time and can be decreased with adequate treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of Grain Size on Ultrasonic Fatigue Properties of Ni-Base Super Alloy Inconel 718

    OpenAIRE

    皮籠石, 紀雄; 前村, 英史; 陳, 強; 後藤, 真宏; 森野, 数博

    2008-01-01

    Ultrasonic fatigue tests of plain specimens with different grain sizes were carried out for Ni-base super alloy, Inconel 718, in ambient air in order to investigate the effect of grain size on fatigue properties. Fatigue strength was increased with decrease in grain size. The increase in fatigue strength by refining grain size was mainly caused by the suppression of crack initiation. That is, the effect of grain size on crack growth rate was hardly recognized, though crack morphology was roug...

  20. Effect of size heterogeneity on community identification in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Danon, L.; Diaz-Guilera, A.; Arenas, A.

    2008-01-01

    Identifying community structure can be a potent tool in the analysis and understanding of the structure of complex networks. Up to now, methods for evaluating the performance of identification algorithms use ad-hoc networks with communities of equal size. We show that inhomogeneities in community sizes can and do affect the performance of algorithms considerably, and propose an alternative method which takes these factors into account. Furthermore, we propose a simple modification of the algorithm proposed by Newman for community detection (Phys. Rev. E 69 066133) which treats communities of different sizes on an equal footing, and show that it outperforms the original algorithm while retaining its speed.

  1. Effect of Cobalt Particle Size on Acetone Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  2. The effect of meal size on gastric evacuation in whiting

    DEFF Research Database (Denmark)

    Andersen, Niels Gerner

    1998-01-01

    Gastric evacuation experiments were performed on whiting Merlangius merlangus fed discrete meals of different sizes. Herring Clupea harengus, sandeel Ammodytes tobianus, common goby Pomatoschistus microps, and brown shrimp Crangon crangon were tested as prey. A simple power model to describe...

  3. Shear strength and microstructure of polydisperse packings: The effect of size span and shape of particle size distribution.

    Science.gov (United States)

    Azéma, Emilien; Linero, Sandra; Estrada, Nicolas; Lizcano, Arcesio

    2017-08-01

    By means of extensive contact dynamics simulations, we analyzed the effect of particle size distribution (PSD) on the strength and microstructure of sheared granular materials composed of frictional disks. The PSDs are built by means of a normalized β function, which allows the systematic investigation of the effects of both, the size span (from almost monodisperse to highly polydisperse) and the shape of the PSD (from linear to pronouncedly curved). We show that the shear strength is independent of the size span, which substantiates previous results obtained for uniform distributions by packing fraction. Notably, the shear strength is also independent of the shape of the PSD, as shown previously for systems composed of frictionless disks. In contrast, the packing fraction increases with the size span, but decreases with more pronounced PSD curvature. At the microscale, we analyzed the connectivity and anisotropies of the contacts and forces networks. We show that the invariance of the shear strength with the PSD is due to a compensation mechanism which involves both geometrical sources of anisotropy. In particular, contact orientation anisotropy decreases with the size span and increases with PSD curvature, while the branch length anisotropy behaves inversely.

  4. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles

    DEFF Research Database (Denmark)

    Pérez Alonso, Francisco; McCarthy, David N; Nierhoff, Anders

    2012-01-01

    A matter of size: The particle size effect on the activity of the oxygen reduction reaction of size-selected platinum clusters was studied. The ORR activity decreased with decreasing Pt nanoparticle size, corresponding to a decrease in the fraction of terraces on the surfaces of the Pt nanopartic...

  5. The Effect of Size on the Oxygen Electroreduction Activity of Mass‐Selected Platinum Nanoparticles

    DEFF Research Database (Denmark)

    Pérez Alonso, Francisco; McCarthy, David Norman; Nierhoff, Anders Ulrik Fregerslev

    2012-01-01

    A matter of size: The particle size effect on the activity of the oxygen reduction reaction of size-selected platinum clusters was studied. The ORR activity decreased with decreasing Pt nanoparticle size, corresponding to a decrease in the fraction of terraces on the surfaces of the Pt nanopartic...

  6. Effects of climate on size structure and functioning of aquatic food webs

    NARCIS (Netherlands)

    Lacerot, G.

    2010-01-01

    In aquatic food webs, the role of body size is notoriously strong. It is also well known that temperature has an effect on body size. For instance, Bergmann’s rule states that body size increases from warm to cold climates. This thesis addresses the question how climate shapes the size structure of

  7. Size matters: effects of PLGA-microsphere size in injectable CPC/PLGA on bone formation

    NARCIS (Netherlands)

    Liao, H.; Lanao, R.P.; Beucken, J.J.J.P van den; Zhou, N.; Both, S.K.; Wolke, J.G.C.; Jansen, J.A.

    2016-01-01

    The aim of this study was to evaluate the effect of PLGA microsphere dimensions on bone formation after injection of calcium phosphate cement (CPC)/PLGA in a guinea pig tibial intramedullarly model. To this end, injectable CPC/PLGA formulations were prepared using PLGA microspheres with either a

  8. The consequences of the variance-mean rescaling effect on effective population size

    DEFF Research Database (Denmark)

    Pertoldi, C.; Bach, L. A.; Barker, J. S. F.

    2007-01-01

    The effective population size (N-e), and the ratio between N-e and census population size (N) are often used as measures of population viability. We show that using the harmonic mean of population sizes over time - a common proxy for N-e- has some important evolutionary consequences and implicati...... served as a useful dogma in ecology, genetics and conservation. Nonetheless, due to the intricate relationships among N-e, population viability and the properties of population fluctuations, we suggest that this dogma should be taken only as a rule of thumb....

  9. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  10. Effect of particle size on flip bucket scour

    National Research Council Canada - National Science Library

    Kucukali, Serhat; Kökpinar, Mehmet Ali

    2016-01-01

    ..., and sediment non-uniformity constant. The proposed formula is valid for Fr d = 2.9–29.69, Re = 8.9 × 10 3 –4.2 × 10 5 , and We > 32. Moreover, the scour profiles for different sediment sizes...

  11. Effect of particle size on iron nanoparticle oxidation state

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Jeffrey J.; Lysaght, Andrew C. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, 97 North Eagleville Road, Storrs, CT 06269-3139 (United States); Goberman, Daniel G. [Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Chiu, Wilson K.S., E-mail: wchiu@engr.uconn.edu [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, 97 North Eagleville Road, Storrs, CT 06269-3139 (United States)

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  12. The effects of gold nanoparticles size and concentration on viscosity ...

    African Journals Online (AJOL)

    This study was carried out to investigate viscosity in relation with the temperature, flow activation energy and dielectric properties for 10, 20 and 50 nm gold nanoparticles size (GNPs) in addition to absorption and fluorescence spectra at different concentrations (0.2 × 10-3 to 1 × 10-2%) in an attempt to cover and understand ...

  13. EFFECTS OF FISHING ON THE SIZE AND DOMINANCE ...

    African Journals Online (AJOL)

    A dataset of linefish catch, effort and fish size distribution records has been assembled from archives to cover three short periods over the 100 years from 1897 to 1998 in four regions of the former Cape Colony, South Africa. Linefish catch and effort have increased several-fold over the period. Aggregate catch per unit effort ...

  14. Effects of surfactants on size and structure of amylose nanoparticles ...

    Indian Academy of Sciences (India)

    The present work investigated the influence of surfactants on size and structure of amylose nanoparticles (ANPs) prepared through precipitation. ANPs were fabricated using absolute ethanol containing surfactants (Tween80, Span80 and mixtures of Tween80 and Span80 with ratios of 25/75, 50/50 and 75/25, respectively) ...

  15. Size effects and ductility of Al-based metallic glass

    NARCIS (Netherlands)

    Kuzmin, O.V.; Pei, Y.T.; Hosson, J.T.M. De

    This paper reports the results of compression tests conducted in situ in a transmission electron microscope of taper-free nanosized pillars of Al86Ni9Y5 metallic glass with diameters ranging between 110 and 900 nm. A critical size was found, below which the deformation mode changes from intermittent

  16. Effects of surfactants on size and structure of amylose nanoparticles ...

    Indian Academy of Sciences (India)

    Abstract. The present work investigated the influence of surfactants on size and structure of amylose nanoparticles (ANPs) prepared through precipitation. ANPs were fabricated using absolute ethanol containing surfactants (Tween80, Span80 and mixtures of Tween80 and Span80 with ratios of 25/75, 50/50 and 75/25, ...

  17. Effects of particle size and surrounding media on optical radiation ...

    Indian Academy of Sciences (India)

    sity of SPR are strongly dependent on the size and shape of the nanoparticle as well as the dielectric function of the sur- rounding medium. The metal nanoparticles find useful appli- cations in the area of nanophotonics (Stuart and Hall 1998;. Peyser et al 2001; Cao et al 2002; Fritzsche and Taton 2003;. Andersen et al 2004 ...

  18. Effects of Vocabulary Size on Online Lexical Processing by Preschoolers

    Science.gov (United States)

    Law, Franzo, II; Edwards, Jan R.

    2015-01-01

    This study was designed to investigate the relationship between vocabulary size and the speed and accuracy of lexical processing in preschoolers between the ages of 30 and 46 months using an automatic eye tracking task based on the looking-while-listening paradigm (Fernald, Zangl, Portillo, & Marchman, 2008) and mispronunciation paradigm…

  19. Effects of Particle Size Distribution on Bioremediation of Crude Oil ...

    African Journals Online (AJOL)

    ... microbial characteristics for a period of 42days. The parameters examined were: moisture content, particle size distribution, total hydrocarbon content, soil pH, available nitrogen, available phosphorus, total heterotrophic bacteria and fungi count. The analysis of the soil characteristics throughout the remediation period ...

  20. The effect of animal size and adaptation on defoliation, selective ...

    African Journals Online (AJOL)

    A conceptual model of the veld-herbivore relationship is presented. Large-sized, largely grazing animals feed relatively unselectively on abundant roughage. The carrying capacity of veld for them is high. They are low producers per animal, but high producers per ha. Per unit of metabolic mass they have a relatively minor ...

  1. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  2. Medical Modeling of Particle Size Effects for CB Inhalation Hazards

    Science.gov (United States)

    2015-09-01

    Albuquerque, New Mexico . Roy, C.J., Hale, M., Hartings, J.M., and Pitt, L., (2002). Impact of Inhalation Exposure Modality and Particle Size on the...Politecnico di Torino, Torino, Italy Texas A&M University, College Station, TX Universidade Tecnológica Federal do Paraná, Paraná, Brazil Universitt

  3. Effects of plot size on forest-type algorithm accuracy

    Science.gov (United States)

    James A. Westfall

    2009-01-01

    The Forest Inventory and Analysis (FIA) program utilizes an algorithm to consistently determine the forest type for forested conditions on sample plots. Forest type is determined from tree size and species information. Thus, the accuracy of results is often dependent on the number of trees present, which is highly correlated with plot area. This research examines the...

  4. Results of an Experimental Study of the Effects of Class Size.

    Science.gov (United States)

    Shapson, Stan M.; And Others

    This study examines experimentally the differences among four class sizes ranging from 16 to 37 pupils. Sixty-two grades 4 and 5 classes in 11 schools in Toronto participated in the study. The study investigated the effects of class size on teachers' expectations about the effects of specific class sizes; the attitudes and opinions of students,…

  5. The Role of Social Norms in the Portion Size Effect: Reducing Normative Relevance Reduces the Effect of Portion Size on Consumption Decisions

    Science.gov (United States)

    Versluis, Iris; Papies, Esther K.

    2016-01-01

    People typically eat more from large portions of food than from small portions. An explanation that has often been given for this so-called portion size effect is that the portion size acts as a social norm and as such communicates how much is appropriate to eat. In this paper, we tested this explanation by examining whether manipulating the relevance of the portion size as a social norm changes the portion size effect, as assessed by prospective consumption decisions. We conducted one pilot experiment and one full experiment in which participants respectively indicated how much they would eat or serve themselves from a given amount of different foods. In the pilot (N = 63), we manipulated normative relevance by allegedly basing the portion size on the behavior of either students of the own university (in-group) or of another university (out-group). In the main experiment (N = 321), we told participants that either a minority or majority of people similar to them approved of the portion size. Results show that in both experiments, participants expected to serve themselves and to eat more from larger than from smaller portions. As expected, however, the portion size effect was less pronounced when the reference portions were allegedly based on the behavior of an out-group (pilot) or approved only by a minority (main experiment). These findings suggest that the portion size indeed provides normative information, because participants were less influenced by it if it communicated the behaviors or values of a less relevant social group. In addition, in the main experiment, the relation between portion size and the expected amount served was partially mediated by the amount that was considered appropriate, suggesting that concerns about eating an appropriate amount indeed play a role in the portion size effect. However, since the portion size effect was weakened but not eliminated by the normative relevance manipulations and since mediation was only partial, other

  6. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  7. The Effect of Plot Size on Some Pratylenchus Penetrans ...

    African Journals Online (AJOL)

    Pratylenchus penetrans counts obtained from a rose field, sampled sequentially by decreasing the plot sizes were computed to obtain the respective sample means, variance and k-value of the negative binomial distribution. Plots 21 m x 80 m, 3.6 m x 3.6 m and 0.6 m x 0.6 m were sampled for the nematode. It is reported ...

  8. Dust generation in powders: Effect of particle size distribution

    OpenAIRE

    Chakravarty Somik; Le Bihan Olivier; Fischer Marc; Morgeneyer Martin

    2017-01-01

    This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. Th...

  9. EFFECT OF PARTICLE DIAMETER ON EXCLUSION-ZONE SIZE

    OpenAIRE

    NHAN, D.T.; Pollack, G.H.

    2011-01-01

    Particles and solutes are excluded from the vicinity of hydrophilic surfaces, leaving large microsphere-free regions known as exclusion zones (EZs). Prior work had indicated that EZs could extend to distances of up to several hundred micrometers from the nucleating surface. These observations were made on large, extended surfaces, leaving open the question whether EZ size might depend on the characteristic dimension of the excluding surface. We placed one or few ion-exchange-resin beads whose...

  10. Effect of limestone particle size on egg production and eggshell ...

    African Journals Online (AJOL)

    A study was conducted to determine the influence of different particle size limestone in layer diets on egg production and eggshell quality during the later stages of egg production (>54 weeks of age). Calcitic limestone (360 g Ca/kg), consisting of small (<1.0 mm), medium (1.0 - 2.0 mm) and large (2.0 - 3.8 mm) particles ...

  11. Effect of particle size on Bioglass {sup trademark} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, P.; Jones, J.R.; Hench, L.L. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    2001-07-01

    The dissolution behaviour of melt-derived 45S5 and sol-gel derived 58S Bioglass {sup trademark} powders produced with various particle size ranges was evaluated in this work. The powders were characterized for particle size distribution, specific surface area, porosity and textural features. Dissolution studies were carried out in simulated body fluid (SBF) and in {alpha}-MEM based culture medium, at 37 C under dynamic conditions (1 Hz) for periods of 30 min, 1, 2, 4, 8, 17 and 22 hours. The concentrations of elements dissolved from the glasses were evaluated using induced coupled plasma analysis (ICP). The reacted powders were analysed using FTIR to observe the formation of a hydroxycarbonate layer on the surface, which gives indication of the material bioactivity. The results show that the varying the particle size distribution of bioactive glasses provides a means to control dissolution rates and rate of HCA layer formation. Thereby, it can be conveniently used as a tool to obtain controlled delivery of the bioactive glass components that stimulate osteogenesis. (orig.)

  12. Is level of intuitive eating associated with plate size effects?

    Science.gov (United States)

    Anderson, Drew A; Schaumberg, Katherine; Anderson, Lisa M; Reilly, Erin E

    2015-08-01

    Intuitive eating is an eating approach that emphasizes increased focus on internal hunger and fullness cues to regulate eating behavior; thus, successful intuitive eating should curb the influence of environmental factors such as plate and portion size on consumption. The current study examined whether self-reported levels of intuitive eating moderated the influence of portion size on college students' food consumption during an afternoon meal of pasta and tomato sauce. Participants (N=137, 63.5% female) were randomly assigned to either a large plate (12-inch) or small plate (8-inch) external cue condition. All participants fasted for four daytime hours, completed the Intuitive Eating Scale, and then were asked to rate a meal of pasta and tomato sauce on different dimensions of taste. Participants were told that they could eat as much pasta as they would like. Higher levels of intuitive eating were associated with greater food consumption. At the mean level of intuitive eating, participants ate more pasta in the large plate condition. Furthermore, the influence of plate size on food consumption increased as levels of intuitive eating increased. Individuals who report high levels of intuitive eating may be more likely to eat an objectively larger amount of food in a permissive food environment, and may have implications for eating approaches that promote eating in response to internal hunger and fullness cues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Simple and cost-effective fabrication of size-tunable zinc oxide architectures by multiple size reduction technique

    Directory of Open Access Journals (Sweden)

    Hyeong-Ho Park, Xin Zhang, Seon-Yong Hwang, Sang Hyun Jung, Semin Kang, Hyun-Beom Shin, Ho Kwan Kang, Hyung-Ho Park, Ross H Hill and Chul Ki Ko

    2012-01-01

    Full Text Available We present a simple size reduction technique for fabricating 400 nm zinc oxide (ZnO architectures using a silicon master containing only microscale architectures. In this approach, the overall fabrication, from the master to the molds and the final ZnO architectures, features cost-effective UV photolithography, instead of electron beam lithography or deep-UV photolithography. A photosensitive Zn-containing sol–gel precursor was used to imprint architectures by direct UV-assisted nanoimprint lithography (UV-NIL. The resulting Zn-containing architectures were then converted to ZnO architectures with reduced feature sizes by thermal annealing at 400 °C for 1 h. The imprinted and annealed ZnO architectures were also used as new masters for the size reduction technique. ZnO pillars of 400 nm diameter were obtained from a silicon master with pillars of 1000 nm diameter by simply repeating the size reduction technique. The photosensitivity and contrast of the Zn-containing precursor were measured as 6.5 J cm−2 and 16.5, respectively. Interesting complex ZnO patterns, with both microscale pillars and nanoscale holes, were demonstrated by the combination of dose-controlled UV exposure and a two-step UV-NIL.

  14. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel.

    Science.gov (United States)

    Serysheva, Irina I; Ludtke, Steven J; Baker, Matthew L; Cong, Yao; Topf, Maya; Eramian, David; Sali, Andrej; Hamilton, Susan L; Chiu, Wah

    2008-07-15

    The skeletal muscle Ca(2+) release channel (RyR1), a homotetramer, regulates the release of Ca(2+) from the sarcoplasmic reticulum to initiate muscle contraction. In this work, we have delineated the RyR1 monomer boundaries in a subnanometer-resolution electron cryomicroscopy (cryo-EM) density map. In the cytoplasmic region of each RyR1 monomer, 36 alpha-helices and 7 beta-sheets can be resolved. A beta-sheet was also identified close to the membrane-spanning region that resembles the cytoplasmic pore structures of inward rectifier K(+) channels. Three structural folds, generated for amino acids 12-565 using comparative modeling and cryo-EM density fitting, localize close to regions implicated in communication with the voltage sensor in the transverse tubules. Eleven of the 15 disease-related residues for these domains are mapped to the surface of these models. Four disease-related residues are found in a basin at the interfaces of these regions, creating a pocket in which the immunophilin FKBP12 can fit. Taken together, these results provide a structural context for both channel gating and the consequences of certain malignant hyperthermia and central core disease-associated mutations in RyR1.

  16. Particle size and concentration effects in laboratory debris flow mixtures

    Science.gov (United States)

    Queiroz de Oliveira, Gustavo; Baselt, Ivo; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2017-04-01

    Large scale chute experiments, as considered here, are essential for the proper understanding of the complex dynamic behavior of debris flow mixtures consisting of solid particles and viscous fluid. Main flow features that are measured on a laboratory scale are the debris flow front velocity, flow depth and mass evolution. We estimate the debris front position by image analysis technique, which in turn allows to evaluate the respective front velocity. Flow depths are determined by ultrasonic pulse reflections, and the masses are estimated with sensors measuring the normal forces. We investigate the influence of the two phase mixture material composition, including different fluid fractions. The laboratory set up consists of a large rectangular channel, 1.3 m wide and 7 m long. These dimensions allow also a lateral expansion of the debris flow when it moves down the inclined channel. Experiments on debris mixtures with different particle sizes and solid concentrations but same total mass are performed to evaluate the difference in spatial evolution of the debris flow dynamics with the same initial potential energy. The experiments reveal that the debris front with large particle size is faster than with the small ones for all solid volume concentrations. The increase of solid volume fraction shows a decrease of flow velocity, which was observed only in the experiments with the small particle. The flow depth and mass measurements at multiple locations along the downslope direction of the chute indicate different dynamical behavior for different particles sizes. The debris flow depth and mass showed no significant differences for large particles with varying initial solid volume concentrations. In contrast, low solid volume concentration resulted in low debris flow depth and mass in the experiments with small particles. This indicates that the particle size plays an important role in the debris flow transport in different solid volume concentration. So, the initial

  17. Electric field engineering using quantum-size-effect-tuned heterojunctions

    KAUST Repository

    Adinolfi, V.

    2013-07-03

    A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.

  18. Endotoxins in cotton: washing effects and size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Olenchock, S.A.; Mull, J.C.; Jones, W.G.

    1983-01-01

    Endotoxin contamination was measured in washed and unwashed cottons from three distinct growing areas, California, Mississippi, and Texas. The data show differences in endotoxin contamination based upon the geographic source of the cotton. It is also shown that washing bulk cotton before the carding process results in lower endotoxin in the cotton dust. Washing conditions can affect the endotoxin levels, and all size fractions of the airborne dust contain quantifiable endotoxin contamination. Endotoxin analyses provide a simple and reliable method for monitoring the cleanliness of cotton or airborne cotton dusts.

  19. Nature of size effects in compact models of field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Torkhov, N. A., E-mail: trkf@mail.ru [Tomsk State University, Tomsk 634050 (Russian Federation); Scientific-Research Institute of Semiconductor Devices, Tomsk 634050 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Babak, L. I.; Kokolov, A. A.; Salnikov, A. S.; Dobush, I. M. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Novikov, V. A., E-mail: novikovvadim@mail.ru; Ivonin, I. V. [Tomsk State University, Tomsk 634050 (Russian Federation)

    2016-03-07

    Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of the equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.

  20. Optical Forces at the Nanoscale: Size and Electrostatic Effects.

    Science.gov (United States)

    Rodríguez-Sevilla, Paloma; Prorok, Katarzyna; Bednarkiewicz, Artur; Marqués, Manuel I; García-Martín, Antonio; García Solé, José; Haro-González, Patricia; Jaque, Daniel

    2017-12-13

    The reduced magnitude of the optical trapping forces exerted over sub-200 nm dielectric nanoparticles complicates their optical manipulation, hindering the development of techniques and studies based on it. Improvement of trapping capabilities for such tiny objects requires a deep understanding of the mechanisms beneath them. Traditionally, the optical forces acting on dielectric nanoparticles have been only correlated with their volume, and the size has been traditionally identified as a key parameter. However, the most recently published research results have shown that the electrostatic characteristics of a sub-100 nm dielectric particle could also play a significant role. Indeed, at present it is not clear what optical forces depend. In this work, we designed a set of experiments in order to elucidate the different mechanism and properties (i.e., size and/or electrostatic properties) that governs the magnitude of optical forces. The comparison between experimental data and numerical simulations have shown that the double layer induced at nanoparticle's surface, not considered in the classical description of nanoparticle's polarizability, plays a relevant role determining the magnitude of the optical forces. Here, the presented results constitute the first step toward the development of the dielectric nanoparticle over which enhanced optical forces could be exerted, enabling their optical manipulation for multiples purposes ranging from fundamental to applied studies.

  1. Effect of genome size on AAV vector packaging.

    Science.gov (United States)

    Wu, Zhijian; Yang, Hongyan; Colosi, Peter

    2010-01-01

    Adeno-associated virus (AAV) vector genomes have been limited to 5 kilobases (kb) in length because their packaging limit was thought to be similar to the size of the parent AAV genome. Recent reports claim that significantly larger vector genomes can be packaged intact. We examined the packaged vector genomes from plasmid-encoded AAV vectors that ranged from 4.7 to 8.7 kb in length, using AAV types 2, 5, and 8 capsids. Southern blot analysis indicated that packaged AAV vector genomes never exceeded 5.2 kb in length irrespective of the size of the plasmid-encoded vector or the capsid type. This result was confirmed by vector genome probing with strand-specific oligonucleotides. The packaged vector genomes derived from plasmid-encoded vectors exceeding 5 kb were heterogeneous in length and truncated on the 5' end. Despite their truncated genomes, vector preparations produced from plasmid-encoded vectors exceeding 5.2 kb mediated reporter gene expression in vitro at high multiplicity of infection (MOI). The efficiency of expression was substantially lower than that of reporter vectors with genomes <5 kb in length. We propose that transcriptionally functional, intact vector genomes are generated in cells transduced at high MOI from the fragmentary genomes of these larger vectors, probably by recombination.

  2. Climatic Effects of Medium-Sized Asteroid Impacts on Land

    Science.gov (United States)

    Bardeen, C.; Garcia, R. R.; Toon, O. B.; Otto-Bliesner, B. L.; Wolf, E. T.

    2015-12-01

    Using the Community Earth System Model (CESM), a three-dimensional coupled climate model with interactive chemistry, we have simulated the climate response to a medium-sized (1 km) asteroid impact on the land. An impact of this size would cause local fires and may also generate submicron dust particles. Dust aerosols are injected into the upper atmosphere where they persist for ~3 years. Soot aerosols from fires are injected into the troposphere and absorb solar radiation heating the air which helps loft the soot into the stratosphere where it persists for ~10 years. Initially, these aerosols cause a heating of over 240 K in the stratosphere and up to a 70% reduction in downwelling solar radiation at the surface. Global average surface temperature cools by as much as -8.5 K, ocean temperature cools by -4.5 K, precipitation is reduced by 50%, and the ozone column is reduced by 55%. The surface UV Index exceeds 20 in the tropics for several years. These changes represent a significant hazard to life on a global scale. These results extend the work of Pierazzo et al. (2010), also using CESM, which found a significant impact on stratospheric ozone, but little change in surface temperature or precipitation, from a 1 km asteroid impact in the ocean.

  3. "PowerUp"!: A Tool for Calculating Minimum Detectable Effect Sizes and Minimum Required Sample Sizes for Experimental and Quasi-Experimental Design Studies

    Science.gov (United States)

    Dong, Nianbo; Maynard, Rebecca

    2013-01-01

    This paper and the accompanying tool are intended to complement existing supports for conducting power analysis tools by offering a tool based on the framework of Minimum Detectable Effect Sizes (MDES) formulae that can be used in determining sample size requirements and in estimating minimum detectable effect sizes for a range of individual- and…

  4. New Evidence of the Causal Effect of Family Size on Child Quality in a Developing Country

    Science.gov (United States)

    Ponczek, Vladimir; Souza, Andre Portela

    2012-01-01

    This paper presents new evidence of the causal effect of family size on child quality in a developing-country context. We estimate the impact of family size on child labor and educational outcomes among Brazilian children and young adults by exploring the exogenous variation of family size driven by the presence of twins in the family. Using the…

  5. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    Directory of Open Access Journals (Sweden)

    S. Parr

    2017-09-01

    Full Text Available The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB pulse, which constitutes a typical intentional electromagnetic interference (IEMI scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  6. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    Science.gov (United States)

    Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin

    2017-09-01

    The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  7. LES of certain droplet size effects in fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, V. A.

    2010-07-01

    This thesis belongs to the field of mechanical engineering, more precisely to computational fluid dynamics and fuel injection modelling. This type of problems have been extensively studied because of their practical importance, for example, in combustion processes of automotive industry. Novel challenges are reduction of exhaust gas emissions in the present diesel fuel-based and also in bio diesel-based concepts. The problem studied in this work is of generic nature and it can be related to many real world problems. A model problem of droplet-laden jet is studied to emulate a fuel spray. The most essential parameter that is studied is fuel droplet size. More precisely, the ratio of droplet timescale and fluid timescale i.e. the Stokes number. Mathematically, the studied system can be formulated in terms of the Navier-Stokes equation with a spray momentum source term at low Mach number regime. A feature characteristic to this study is to use large scale computer simulation to simulate the system. For adequate modelling, this work makes use of a method called Large-Eddy Simulation (LES) to simulate the motion of the turbulent gas and Lagrangian Particle Tracking (LPT) to simulate the motion of the droplets. The main computational tool used in this work is the OpenFOAM software. In fact, the present work is one of the first computational studies on LES/LPT diesel spray modeling in which droplet-level phenomena are discussed in light of the global behavior of the spray jet in an extensive manner. In view of the literature on this topic the results of the work seem to be realistic. The dependence of spray shape on droplet size (Stokes number) is studied and differences between the shapes are consistently explained. It is noted that mixing inside the spray depends significantly on the fuel droplet size. Quantitative and statistical analysis methods are developed in order to explain the connection between spray shape and mixing. The presented analysis explains the results

  8. Evaluation of the Company Size Effect on Latin American Stock Markets

    Directory of Open Access Journals (Sweden)

    Juan Benjamín Duarte Duarte

    2013-11-01

    Full Text Available This paper assesses the existence of the size effect on the most important stock markets in Latin America (Argentina, Brazil, Chile, Colombia, Mexico and Peru for the period between 2002 and 2012, using the cross-section contrast methodology of the size effect in the CAPM context. Results show that there is reversed effect in some of the Latin American markets.

  9. Beyond Cohen's "d": Alternative Effect Size Measures for Between-Subject Designs

    Science.gov (United States)

    Peng, Chao-Ying Joanne; Chen, Li-Ting

    2014-01-01

    Given the long history of discussion of issues surrounding statistical testing and effect size indices and various attempts by the American Psychological Association and by the American Educational Research Association to encourage the reporting of effect size, most journals in education and psychology have witnessed an increase in effect size…

  10. Numerical Evaluation of Size Effect on the Stress-Strain Behaviour of Geotextile-Reinforced Sand

    DEFF Research Database (Denmark)

    Hosseinpour, I.; Mirmoradi, S.H.; Barari, Amin

    2010-01-01

    This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers...

  11. Effects of provenance and seed size on seedling survival and mophology of Quercus pontica

    Directory of Open Access Journals (Sweden)

    Yusuf Aksu

    2015-11-01

    Full Text Available This study was designed to investigate the effect of provenance and seed size on seedling survival and growth of Quercus pontica. The study showed that seed parameters showed significant differences among provenances. Provenance and seed size affected seedling survival and seedling morphology. Bigger seed size increased seedling survival, and also the large sized seed showed significant higher seedling height, root dry weight, shoot dry weight, and Dickson Quality Index in 1+0 seedlings.

  12. Effect of particle size on kinetics crystallization of an iron-rich glass

    OpenAIRE

    Romero, Maximina; Kovacova, Milota; Rincón López, Jesús María

    2008-01-01

    The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent of the glass particle size, being 100µm the critical size. Glass fractions with particle size >100µm sho...

  13. Phytoplankton cell size: intra- and interspecific effects of warming and grazing.

    Directory of Open Access Journals (Sweden)

    Kalista Higini Peter

    Full Text Available Decreasing body size has been suggested as the third universal biological response to global warming after latitudinal/altitudinal range shifts and shifts in phenology. Size shifts in a community can be the composite result of intraspecific size shifts and of shifts between differently sized species. Metabolic explanations for the size shifts dominate in the literature but top down effects, i.e. intensified size-selective consumption at higher temperatures, have been proposed as alternative explanation. Therefore, we performed phytoplankton experiments with a factorial combination of warming and consumer type (protist feeding mainly on small algae vs. copepods mainly feeding on large algae. Natural phytoplankton was exposed to 3 (1(st experiment or 4 (2(nd experiment temperature levels and 3 (1(st experiment: nano-, microzooplankton, copepods or 2 (2(nd experiment: microzooplankton, copepods types of consumers. Size shifts of individual phytoplankton species and community mean size were analyzed. Both, mean cell size of most of the individual species and mean community cell size decreased with temperature under all grazing regimes. Grazing by copepods caused an additional reduction in cell size. Our results reject the hypothesis, that intensified size selective consumption at higher temperature would be the dominant explanation of decreasing body size. In this case, the size reduction would have taken place only in the copepod treatments but not in the treatments with protist grazing (nano- and microzooplankton.

  14. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  15. Phytodegradation of Ethanolamines by Cyperus alternifolius: Effect of Molecular Size.

    Science.gov (United States)

    Dolphen, R; Thiravetyan, P

    2015-01-01

    Our screening of plants showed that Cyperus alternifolius (Umbrella papyrus) had the highest efficiency removal in real wastewater containing monoethanolamine-higher than Echinodorus cordifolius (Creeping Burrhead), Thalia geniculata (Alligator Flag), Acorus calamus (Sweet Flag), and Dracaena sanderiana (Lucky Bamboo). Therefore, this research studied the degradation of monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) by C. alternifolius. Plants could degrade TEA into DEA, then into MEA, and then further into acetic acid. The accumulation of ethanolamines was found mainly in plant stems, which had the highest biomass. This demonstrated that the molecular size is closely related to a diffusion coefficient that affects the removal rate through plant bodies. A smaller molecular weight-MEA (MW = 61.08 g mol(-1))-was taken up the fastest, followed by DEA (MW = 105.14 g mol(-1)) and TEA (MW = 149.19 g mol(-1)), the highest molecular weight. The plants' toxicity when exposed to ethanolamines elucidated that MEA had the highest toxicity, followed by DEA and TEA. In addition, the application of C. alternifolius in monoethanolamine-contaminated wastewater revealed that plant could completely uptake MEA at day 5 from an initial MEA concentration of 18 mM. The result indicated that C. alternifolius has the potential to remove ethanolamines and can be applied to ethanolamine-contaminated wastewater.

  16. Effects of Vocabulary Size on Online Lexical Processing by Preschoolers.

    Science.gov (United States)

    Law, Franzo; Edwards, Jan R

    This study was designed to investigate the relationship between vocabulary size and the speed and accuracy of lexical processing in preschoolers between the ages of 30-46 months using an automatic eye tracking task based on the looking-while-listening paradigm (Fernald, Zangl, Portillo, & Marchman, 2008) and mispronunciation paradigm (White & Morgan, 2008). Children's eye gaze patterns were tracked while they looked at two pictures (one familiar object, one unfamiliar object) on a computer screen and simultaneously heard one of three kinds of auditory stimuli: correct pronunciations of the familiar object's name, one-feature mispronunciations of the familiar object's name, or a nonword. The results showed that children with larger expressive vocabularies, relative to children with smaller expressive vocabularies, were more likely to look to a familiar object upon hearing a correct pronunciation and to an unfamiliar object upon hearing a novel word. Results also showed that children with larger expressive vocabularies were more sensitive to mispronunciations; they were more likely to look toward the unfamiliar object rather than the familiar object upon hearing a one-feature mispronunciation of a familiar object-name. These results suggest that children with smaller vocabularies, relative to their larger-vocabulary age peers, are at a disadvantage for learning new words, as well as for processing familiar words.

  17. Effects of portland cement particle size on heat of hydration.

    Science.gov (United States)

    2013-12-01

    Following specification harmonization for portland cements, FDOT engineers reported signs of : deterioration in concrete elements due to temperature rise effects. One of the main factors that affect : concrete temperature rise potential is the heat g...

  18. Metastable structures and size effects in small group dynamics

    Directory of Open Access Journals (Sweden)

    Rosapia eLauro Grotto

    2014-07-01

    Full Text Available In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: 1 they emerge as a consequence of the natural tendency of (both conscious and unconscious emotions to combine into structured group patterns; 2 they have a certain degree of stability in time; 3 they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; 4 they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical 'leadership’ pattern, and in 'cognitive’ terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e. the group behaves 'as if’ it was assuming that…. Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: 1 are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? 3 can these states be differentiated in structural terms? 3 to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical

  19. Metastable structures and size effects in small group dynamics.

    Science.gov (United States)

    Lauro Grotto, Rosapia; Guazzini, Andrea; Bagnoli, Franco

    2014-01-01

    In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: (1) they emerge as a consequence of the natural tendency of (both conscious and unconscious) emotions to combine into structured group patterns; (2) they have a certain degree of stability in time; (3) they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; (4) they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical "leadership" pattern, and in "cognitive" terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e., the group behaves "as if" it was assuming that). Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical setting.

  20. Characterization of Marcellus Shale Fracture Properties through Size Effect Tests and Computations

    OpenAIRE

    Li, Weixin; Jin, Zhefei; Cusatis, Gianluca

    2017-01-01

    Mechanical characterization of shale-like rocks requires understanding the scaling of the measured properties to enable the extrapolation from small scale laboratory tests to field study. In this paper, the size effect of Marcellus shale was analyzed, and the fracture properties were obtained through size effect tests. A number of fracture tests were conducted on Three-Point-Bending (TPB) specimens with increasing size. Test results show that the nominal strength decreases with increasing spe...

  1. Rolling induced size effects in elastic–viscoplastic sheet metals

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2015-01-01

    presented revolves around the rolling induced effect of visco-plasticity (ranging hot and cold rolling) in combination with strain gradient hardening – including both dissipative and energetic contributions. To bring out first order effects on rolling at small scale, the modeling efforts are limited to flat...... sheet rolling, where a non-homogeneous material deformation takes place between the rollers. Large strain gradients develop where the rollers first come in contact with the sheet, and a higher order plasticity model is employed to illustrate their influence at small scales. The study reveals...

  2. Effect Size Measure and Analysis of Single Subject Designs

    Science.gov (United States)

    Society for Research on Educational Effectiveness, 2013

    2013-01-01

    One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…

  3. Reporting effect sizes as a supplement to statistical significance ...

    African Journals Online (AJOL)

    Successful efforts to improve reading achievement emphasise identification and implementation of evidence-based practices that promote high rates of achievement. Behind the concept of evidencebased instruction lies the notion of scientifically valid and replicable research that can help educators make effective choices.

  4. Aerodynamic ground effect in fruitfly sized insect takeoff

    CERN Document Server

    Kolomenskiy, Dmitry; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2015-01-01

    Flapping-wing takeoff is studied using numerical modelling, considering the voluntary takeoff of a fruitfly as reference. The parameters of the model are then varied to explore the possible effects of interaction between the flapping-wing model and the ground plane. The numerical method is based on a three-dimensional Navier-Stokes solver and a simple flight dynamics solver that accounts for the body weight, inertia, and the leg thrust. Forces, power and displacements are compared for takeoffs with and without ground effect. Natural voluntary takeoff of a fruitfly, modified takeoffs and hovering are analyzed. The results show that the ground effect during the natural voluntary takeoff is negligible. In the modified takeoffs, the ground effect does not produce any significant increase of the vertical force neither. Moreover, the vertical force even drops in most of the cases considered. There is a consistent increase of the horizontal force, and a decrease of the aerodynamic power, if the rate of climb is suff...

  5. Size effects in ductile cellular solids. Part II : experimental results

    NARCIS (Netherlands)

    Andrews, E.W.; Gioux, G.; Onck, P.; Gibson, L.J.

    2001-01-01

    There is increasing interest in the use of metallic foams in a variety of applications, including lightweight structural sandwich panels and energy absorption devices. In such applications, the mechanical response of the foams is of critical importance. In this study, we have investigated the effect

  6. The effect of changing size on vergence is mediated by changing disparity.

    Science.gov (United States)

    Wismeijer, Dagmar A; Erkelens, Casper J

    2009-12-09

    In this study, we investigated the effect of changing size on vergence. Erkelens and Regan (1986) proposed that this cue to motion in depth affects vergence in a similar way as it affects perception. The measured effect on vergence was small and we wondered why the vergence system would use changing size as an additional cue to changing disparity. To elucidate the effect of changing size on vergence, we used an annulus carrying both changing size and changing disparity signals to motion in depth. The cues were either congruent or signaled a different depth. The results showed that vergence was affected by changing size, however in an opposite way than that perception was affected. These results were incongruent with those reported by Erkelens and Regan (1986). We therefore additionally measured the effects on vergence of the individual parameters associated with changing size, i.e., stimulus area, retinal eccentricity, and luminance. Stimulus (retinal) eccentricity was inversely related to vergence gain. Luminance, on the other hand, had a smaller but positive relation to vergence gain. Thus, changing size affected the disparity signal two-fold: it changed the retinal location of the disparity signal and it changed the strength of the disparity signal (luminance change). These effects of changing size on disparity can explain both our results (change in retinal location of the disparity signal) and those of Erkelens and Regan (1986; change in luminance). We thus conclude that changing size did not in itself contribute to vergence, rather its effect on vergence was mediated by disparity.

  7. A Visitor's Guide to Effect Sizes--Statistical Significance versus Practical (Clinical) Importance of Research Findings

    Science.gov (United States)

    Hojat, Mohammadreza; Xu, Gang

    2004-01-01

    Effect Sizes (ES) are an increasingly important index used to quantify the degree of practical significance of study results. This paper gives an introduction to the computation and interpretation of effect sizes from the perspective of the consumer of the research literature. The key points made are: (1) "ES" is a useful indicator of the…

  8. A Bio-Informational Theory of Emotion: Motion and Image Size Effects on Viewers.

    Science.gov (United States)

    Detenber, Benjamin H.; Reeves, Byron

    1996-01-01

    Argues that the human brain is not specialized to deal with 20th-century media. Measures effects of image size and motion on college students' emotional responses. Finds that image size positively affects the arousal and dominates dimensions of emotional responses, but has no significant effect on valance evaluations. Finds that still pictures…

  9. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    Science.gov (United States)

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  10. Micromechanics of Size Effect in Failure Due to Distributed Cracking

    Science.gov (United States)

    1990-02-26

    and a higher percentage of mortar: hence it is more homogeneous, which should promote localization. Another difference is due to the effect of Poisson ...11 fracture Dube ar , henergy G," obtained from the preceding tests of notched Doubs aose hoeve, wen dnamc tstsof er- beams, although still larger...possible to obtain any value of elastic Poisson ratio between -1 and 0.5 and, more importantly, has been found by experience to be essential for al

  11. Pacific Salmon and the Coalescent Effective Population Size

    OpenAIRE

    Can Cenik; John Wakeley

    2010-01-01

    Pacific salmon include several species that are both commercially important and endangered. Understanding the causes of loss in genetic variation is essential for designing better conservation strategies. Here we use a coalescent approach to analyze a model of the complex life history of salmon, and derive the coalescent effective population (CES). With the aid of Kronecker products and a convergence theorem for Markov chains with two time scales, we derive a simple formula for the CES and th...

  12. Effect size measurement in functional milk product marketing

    Directory of Open Access Journals (Sweden)

    Karmen Pažek

    2011-12-01

    Full Text Available The paper presents the application possibility of “Effect size” and Cohen’s-d index in the case of introduction of new milk products on the market. The field and online survey were used to establish the potential interest of final consumers for new functional food product of dairy company in Slovenia - milk with phytosterols additives. Two techniques possibilities of Cohen-d index were calculated; manual and using the Cohen’s-d calculator. Further, the application is focused on two main questions in survey regarding observed problem: 1 Would you buy milk with phytosterols additives, which scientifically proven lowers concentration of cholesterol in blood? 2 Would you pay for it at a higher price? The sample includes 419 surveys, 150 surveys were conducted on field (control group and 269 surveys were provided online (experimental group. The Cohen’s-d index (d results show by using manual and Cohen’s-d calculator for both groups “small” effect (d=0.35, i.e. d=0.34 , and “zero or near zero” effect (d=0.15, i.e.= 0.15 when deciding to buy new milk product.

  13. Quantum size effects in amorphous Si superlattice solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Varonides, Argyrios C. [Department of Physics and Electrical Engineering, University of Scranton, A Jesuit University, Scranton, PA 18510 (United States)

    2008-02-15

    Amorphous silicon/alloy superlattices provide advantages in solar cell design, such as (a) effective band gap widening (b) effective mass separation (c) increased open-circuit voltage. The latter increases via Fermi level control, due to p-doping of potential barriers, pushing EF towards the valence bands, with simultaneous widening of the effective band gap, thus leading to potentially higher collection incident wavelengths. The density of gap states in the heavily doped layer is modeled as an exponential whose parameter kT* can be varied by the doping concentrations, while its activation energy saturates at some value. This communication provides (i) a general formulation of the problem at finite temperatures as well as numerical results for specific realizable contacts (ii) detailed treatment of gap states (iii) the neutrality condition (iv) a relation between Fermi level position and open-circuit voltage in the nitride region (superlattice p-region). For a p-(a-SiN: H/a-Si: H)-i (a-Si: H)-n (a-Si: H) sample, we compute the Fermi level position relative to the a-Si: H valence band edge. For low and wide gap thin layers of the order of 2.5-3.5 nm, open-circuit voltage values are predicted in excess of 1.05 V, and efficiencies are predicted in excess of 12%. (author)

  14. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles

    National Research Council Canada - National Science Library

    Warrier, Pramod; Teja, Amyn

    2011-01-01

    .... Although literature data could be correlated well using the model, the effect of the size of the particles on the effective thermal conductivity of the nanofluid could not be elucidated from these data...

  15. Debonding failure and size effects in micro reinforced composites

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2010-01-01

    Failure in micro-reinforced composites is investigated numerically using the strain-gradient plasticity theory of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52 (6) 1379–1406] in a plane strain visco-plastic...... a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one...

  16. Egg size effects across multiple life-history stages in the marine annelid Hydroides diramphus.

    Directory of Open Access Journals (Sweden)

    Richard M Allen

    Full Text Available The optimal balance of reproductive effort between offspring size and number depends on the fitness of offspring size in a particular environment. The variable environments offspring experience, both among and within life-history stages, are likely to alter the offspring size/fitness relationship and favor different offspring sizes. Hence, the many environments experienced throughout complex life-histories present mothers with a significant challenge to optimally allocate their reproductive effort. In a marine annelid, we tested the relationship between egg size and performance across multiple life-history stages, including: fertilization, larval development, and post-metamorphosis survival and size in the field. We found evidence of conflicting effects of egg size on performance: larger eggs had higher fertilization under sperm-limited conditions, were slightly faster to develop pre-feeding, and were larger post-metamorphosis; however, smaller eggs had higher fertilization when sperm was abundant, and faster planktonic development; and egg size did not affect post-metamorphic survival. The results indicate that egg size effects are conflicting in H. diramphus depending on the environments within and among life-history stages. We suggest that offspring size in this species may be a compromise between the overall costs and benefits of egg sizes in each stage and that performance in any one stage is not maximized.

  17. The characteristics of Chinese orthographic neighborhood size effect for developing readers.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Orthographic neighborhood size (N size effect in Chinese character naming has been studied in adults. In the present study, we aimed to explore the developmental characteristics of Chinese N size effect. One hundred and seventeen students (40 from the 3(rd grade with mean age of 9 years; 40 from the 5(th grade with mean age of 11 years; 37 from the 7(th grade with mean age of 13 years were recruited in the study. A naming task of Chinese characters was adopted to elucidate N-size- effect development. Reaction times and error rates were recorded. Results showed that children in the 3(rd grade named characters from large neighborhoods faster than named those from small neighborhoods, revealing a facilitatory N size effect; the 5(th graders showed null N size effect; while the 7(th graders showed an inhibitory N size effect, with longer reaction times for the characters from large neighborhoods than for those from small neighborhoods. The change from facilitation to inhibition of neighborhood size effect across grades suggested the transition from broadly tuned to finely tuned lexical representation in reading development, and the possible inhibition from higher frequency neighbors for higher graders.

  18. Finite-size and shape effects on vortex configurations in superconducting isosceles right triangles

    Science.gov (United States)

    Wu, Wenjuan; Zhao, H. J.; Li, B.; Shi, Z. X.

    2017-12-01

    We numerically studied vortex configurations in superconducting isosceles right triangles. We found the solution of the London equation using Green’s function method. Then the Gibbs free energy for an arbitrary configuration was obtained. Using molecular dynamic simulation, we calculated the stable configurations for specific vorticities. The filling rulers were revealed by analyzing these states. Moreover, by changing the sample size, we found that many configurations are sensitive to sample size, which shows a very strong size effect. Lastly, general rules of the size effect were summarized.

  19. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between an increa......A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three...

  20. GENEALOGICAL DECOMPOSITION OF THE EFFECTIVE POPULATION SIZE: A CASE STUDY ON CROATIAN AUTOCHTHONOUS CATTLE BREEDS

    Directory of Open Access Journals (Sweden)

    Martin Reljanović

    2015-09-01

    Full Text Available Effective population size (Ne is one of the most important tools used to assess genetic diversity for conservation purposes. Using pedigree data of three Croatian autochthonous cattle breeds (Buša, Istrian and Slavonian Syrmian Podolian the effective maternal (NeF, paternal (NeM and combined maternal-paternal (NeFM population size was estimated. Additionally, we estimated the effective population size based on the census population sex ratio (Nes, the effective population size from the individual increase in inbreeding (NeFi and the effective population size from individual increase in coancestry (NeCi. We compared these sizes with the values obtained for 20 additional cattle populations, as well as with the newly calculated NeFM. The effective population sizes calculated for three autochthonous breeds were consistently the lowest in amongst all the considered cattle breeds. Utilisation of extremely small numbers of breeding males is the main reason for the observed reduction in the effective population size. The decomposition of effective population size into maternal and paternal components is shown to be an informative parameter in detecting the reduction of the effective population size as a consequence of unequal sex contribution. Still, the impact of the pedigree depth and completeness on the NeF, NeM and NeFM estimation remain to be analysed. A large deviation between Nes and all other methods of Ne estimation was observed and it is our recommendation that breeders and stakeholders should consider using alternative methods of Ne estimation when planning breeding programmes as well as in the determination of the endangered status of animal populations.

  1. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  2. Calculated Grain Size-Dependent Vacancy Supersaturation and its Effect on Void Formation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J. E.

    1974-01-01

    In order to study the effect of grain size on void formation during high-energy electron irradiations, the steady-state point defect concentration and vacancy supersaturation profiles have been calculated for three-dimensional spherical grains up to three microns in size. In the calculations...... of vacancy supersaturation as a function of grain size, the effects of internal sink density and the dislocation preference for interstitial attraction have been included. The computations show that the level of vacancy supersaturation achieved in a grain decreases with decreasing grain size. The grain size...... dependence of the maximum vacancy supersaturation in the centre of the grains is found to be very similar to the grain size dependence of the maximum void number density and void volume swelling measured in the central regions of austenitic stainless steel grains. This agreement reinforces the interpretation...

  3. The Banking Bailout of the Subprime Crisis: Size and Effects

    Directory of Open Access Journals (Sweden)

    Michele Fratianni

    2010-01-01

    Full Text Available This paper examines government policies aimed at rescuing banks from the effects of the great financial crisis of 2007-2009. To delimit the scope of the analysis, we concentrate on the fiscal side of interventions and ignore, by design, the monetary policy reaction to the crisis. The policy response to the subprime crisis started in earnest after Lehman's failure in mid September 2008, accelerated after February 2009, and has become very large by September 2009. Governments have relied on a portfolio of intervention tools, but the biggest commitments and outlays have been in the form of debt and asset guarantees, while purchases of bad assets have been very limited. We employ event study methodology to estimate the benefits of government interventions on banks and their shareholders. Announcements directed at the banking system as a whole (general and at specific banks (specific were priced by the markets as cumulative abnormal rates of return over the selected window periods. General announcements tend to be associated with positive cumulative abnormal returns and specific announcements with negative ones. General announcements exert cross-area spillovers but are perceived by the home-country banks as subsidies boosting the competitive advantage of foreign banks. Specific announcements exert spillovers on other banks. Our results are also sensitive to the information environment. Specific announcements tend to exert a positive impact on rates of return in the pre-crisis sub-period, when announcements are few and markets have relative confidence in the "normal" information flow. The opposite takes place in the turbulent crisis sub-period when announcements are the order of the day and markets mistrust the "normal" information flow. These results appear consistent with the observed reluctance of individual institutions to come forth with requests for public assistance.

  4. The effects of surfactant and electrolyte concentrations on the size of nanochitosan during storage

    Science.gov (United States)

    Primaningtyas, Annisa; Budhijanto, Wiratni; Fahrurrozi, Mohammad; Kusumastuti, Yuni

    2017-05-01

    The nano-sized particle of chitosan (nanochitosan) is a potential natural preservative agent for fresh fish and fish product preservation. Theoretically, nano-sized particles exert strong van der Waals force to each other so that the problem associated with nanochitosan is agglomeration that leads to size instability during storage. Size stability is of importance in the application of nanochitosan as an antimicrobial agent because it considerably affects the antimicrobial activity of chitosan. In this study, the formulation of nanochitosan was optimized with respect to the two major factors in colloid dispersion theory, which were the presence of surfactant and electrolyte. Polysorbate-80 was chosen as the representative of food grade surfactant while NaCl was used as the electrolyte. The purposes of this study were to evaluate the effect of polysorbate-80 concentration and to determine the effect of NaCl ions on the particle size of nanochitosan for at least one month storage period. Data were analyzed using Analysis of Variance (ANOVA) to identify the factors significantly affect the size stability. The dynamics of particle size distribution during storage was measured by Particle Size Analyzer (PSA). The result showed that surfactant did not significantly affect the particle size stability. On the other hand, the addition of electrolyte into the colloidal dispersion of nanochitosan consistently stabilized and also narrowed the particle size distribution during storage in the range of 175-391 nm.

  5. The permeability of poly-disperse porous media and effective particle size

    Science.gov (United States)

    Markicevic, B. I.; Preston, C.; Osterroth, S.; Iliev, O.; Hurwitz, M.

    2015-11-01

    The interactions between the fluid and solid phases in porous media account for the openness and length of the flow path that the fluid needs to travel within. The same reasoning applies for both mono- and poly-disperse media, and is reflected in the adoption of the same permeability models. The only difference is that an effective particle size diameter has to be used for the poly-disperse samples. A filtration experiment is used to form a particle layer, filter cake, consisting of particles of different sizes. Both inflow and outflow particle size distribution are measured by particle counting method, and from their difference, the particle size distribution in the cake is determined. In a set of experiments, the filtration history is altered by changing (i) filtration medium; (ii) suspension flow rate; and (iii) particle concentration, where in all cases investigated the cake permeability remains constant. In order to predict the permeability of poly-disperse cake from the analytical models, the particle size distribution moments are calculated, and the permeability is found for each moment. Comparing the experimental to the analytical permeability values the effective particle size is found, where the permeability calculated by using the harmonic mean of the particle size distribution reproduces the permeability experimental value best. Finally, in the parametric study, reducing the cake porosity and/or lowering the particle retention shifts effective particle size used in the permeability model toward higher moments of the particle size distribution function.

  6. Effects of Spray Mixtures on Droplet Size Under Aerial Application Conditions and Implications on Drift

    Science.gov (United States)

    2010-01-01

    Applied Engineering in Agriculture Vol. 26(1): 21‐29 2010 American Society of Agricultural and Biological Engineers ISSN 0883-8542 21 EFFECTS OF...trends in effects of droplet size from changes in airspeed, active ingredients can have a significant effect on the atomization of spray solutions...Keywords. Aerial application, Glyphosate , Spray adjuvant, Droplet size, Spray drift, AGDISP. pray drift, which the Environmental Protection Agency (EPA

  7. Effects of oil and drug concentrations on droplets size of palm oil esters (POEs) nanoemulsion.

    Science.gov (United States)

    Sakeena, M H F; Elrashid, S M; Munavvar, A S; Azmin, M N

    2011-01-01

    Aim of the present work is to study the effects of oil and drug concentrations on droplets size of a nanoemulsion. Newly introduced oil, palm oil esters (POEs) by Universiti Putra Malaysia researchers was selected for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Nanoemulsions were prepared with different concentrations of oil and drug and their effects on droplets size were studied by laser scattering spectroscopy (Nanophox). The results of droplets size analysis shows the droplets size increase with increasing concentration of oil and drug concentrations. It can be concluded from this study, that oil and drug concentrations have an effect on the droplets size of POEs nanoemulsion system.

  8. An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies

    DEFF Research Database (Denmark)

    Thompson, Wesley K.; Wang, Yunpeng; Schork, Andrew J.

    2015-01-01

    for discovery, and polygenic risk prediction. To this end, previous work has used effect-size models based on various distributions, including the normal and normal mixture distributions, among others. In this paper we propose a scale mixture of two normals model for effect size distributions of genome...... minimizing discrepancies between the parametric mixture model and resampling-based nonparametric estimates of replication effect sizes and variances. We describe in detail the implications of this model for estimation of the non-null proportion, the probability of replication in de novo samples, the local...

  9. Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size

    NARCIS (Netherlands)

    Borggreve, R.J.M.; Gaymans, R.J.; Schuijer, J.; Ingen Housz, J.F.

    1987-01-01

    Blends of nylon-6 and EPDM-rubber were prepared with various rubber contents (0–20 wt%) and particle sizes (0.3–1.6 μm). The effects of rubber concentration and particle size on the tensile modulus, torsion modulus, yield stress and notched impact strength of the blends were studied. Blend

  10. Effects of size and defects on the elasticity of silicon nanocantilevers

    NARCIS (Netherlands)

    Sadeghian, H.; Yang, C.K.; Goosen, J.F.L.; Bossche, A.; Staufer, U.; French, P.J.; Van Keulen, F.

    2010-01-01

    The size-dependent elastic behavior of silicon nanocantilevers and nanowires, specifically the effective Young’s modulus, has been determined by experimental measurements and theoretical investigations. The size dependence becomes more significant as the devices scale down from micro- to

  11. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches

    Science.gov (United States)

    Gordon Luikart; Nils Ryman; David A. Tallmon; Michael K. Schwartz; Fred W. Allendorf

    2010-01-01

    Population census size (NC) and effective population sizes (Ne) are two crucial parameters that influence population viability, wildlife management decisions, and conservation planning. Genetic estimators of both NC and Ne are increasingly widely used because molecular markers are increasingly available, statistical methods are improving rapidly, and genetic estimators...

  12. Effects of Group Size on Students Mathematics Achievement in Small Group Settings

    Science.gov (United States)

    Enu, Justice; Danso, Paul Amoah; Awortwe, Peter K.

    2015-01-01

    An ideal group size is hard to obtain in small group settings; hence there are groups with more members than others. The purpose of the study was to find out whether group size has any effects on students' mathematics achievement in small group settings. Two third year classes of the 2011/2012 academic year were selected from two schools in the…

  13. The effect of laser beam size in a zig-zag collimator on transverse ...

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser ...

  14. Firm Size and Growth Rate Variance: the Effects of Data Truncation

    NARCIS (Netherlands)

    Capasso, M.; Cefis, E.

    2010-01-01

    This paper discusses the effects of the existence of natural and/or exogenously imposed thresholds in firm size distributions, on estimations of the relation between firm size and variance in firm growth rates. We explain why the results in the literature on this relationship are not consistent. We

  15. Paying attention to attention: evidence for an attentional contribution to the size congruity effect.

    Science.gov (United States)

    Risko, Evan F; Maloney, Erin A; Fugelsang, Jonathan A

    2013-08-01

    Understanding the mechanisms supporting our comprehension of magnitude information represents a key goal in cognitive psychology. A major phenomenon employed in the pursuit of this goal has been the physical size congruity effect-namely, the observation that comparing the relative numerical sizes of two numbers is influenced by their relative physical sizes. The standard account of the physical size congruity effect attributes it to the automatic influence of the comparison of irrelevant physical magnitudes on numerical judgments. Here we develop an alternative account of this effect on the basis of the operation of attention in the typical size congruity display and the temporal dynamics of number comparison. We also provide a test of a number of predictions derived from this alternative account by combining a physical size congruity manipulation with a manipulation designed to alter the operation of attention within the typical size congruity display (i.e., a manipulation of the relative onsets of the digits). This test provides evidence consistent with an attentional contribution to the size congruity effect. Implications for our understanding of magnitude and the interactions between attention and magnitude are discussed.

  16. Effects of Particle Size, Applied Pressure and Pressing Time on the ...

    African Journals Online (AJOL)

    Effects of Particle Size, Applied Pressure and Pressing Time on the Yield of Oil Expressed from Almond Seed. ... The results obtained can be used in the design of a suitable process and machine for the expression of oil from almond seed. Keywords: Almond oil, almond seed, applied pressure, particle size, pressing time.

  17. Effect of particle size of granules on some mechanical properties of ...

    African Journals Online (AJOL)

    Solid dosage forms are invariably multiparticulate systems of heterogenous particle size distribution. The purpose of this study was to investigate the effect of particle size distribution of paracetamol granules on some tablet mechanical properties of paracetamol tablets. Granules were formed by wet massing paracetamol ...

  18. Identifying Class Size Effects in Developing Countries: Evidence from Rural Schools in Bolivia.

    Science.gov (United States)

    Urquiola, Miguel

    Although great interest surrounds class size as a policy instrument, inferences on its effects are controversial. Recent work highlights a particular way to consider the endogeneity issues that affect this variable: class size is often correlated with enrollment, which in turn may be related to socioeconomic status (SES). This paper shows why such…

  19. Revised title: Effect size as the essential statistic in developing methods for mTBI diagnosis.

    Directory of Open Access Journals (Sweden)

    Douglas Brandt Gibson

    2015-06-01

    Full Text Available Abstract: The descriptive statistic known as effect size measures the distinguishability of two sets of data. Distingishability is at the core of diagnosis. This article is intended to point out the importance of effect size in the development of effective diagnostics for mild Traumatic Brain Injury and to point out the applicability of the effect size statistic in comparing diagnosic efficiency across the main proposed TBI diagnostic methods: psychological, physiological, biochemical and radiologic. Comparing diagnostic approaches is difficult because different researcher in different fields have different approaches to measuring efficacy. Converting diverse measures to effect sizes, as is done in meta-analysis, is a relatively easy way to make studies comparable.

  20. The effect of seasonality and body size on the sensitivity of marine amphipods to toxicants.

    Science.gov (United States)

    Pérez-Landa, Víctor; Belzunce, María Jesús; Franco, Javier

    2008-12-01

    Two factors, seasonality and body size, were studied to determine their influence on the sensitivity of the amphipods Corophium urdaibaiense and Corophium multisetosum to toxicants. Seasonality was studied by comparing LC50 values for cadmium and ammonia toxicity to both species over a year. Body size effect was studied by comparing LC50 values of ammonia in three size categories of C. urdaibaiense. Except for the case of C. urdaibaiense with ammonia as a toxicant, the sensitivity was maximum during summer and minimum during winter. Furthermore, differences in sensitivities were found among the three body size groups studied.

  1. Effect of Void Size on the Detonation Pressure of Emulsion Explosives

    Science.gov (United States)

    Hirosaki, Yoshikazu; Murata, Kenji; Kato, Yukio; Itoh, Shigeru

    2002-07-01

    To study the effect of void size, detonation pressure as well as detonation velocity was measured using PVDF pressure gauge for the emulsion explosives sensitized with plastic balloons of five different size ranging from 0.05mm to 2.42mm. The experimental results were compared with the detonation pressure and velocity calculated using KHT code. The experimental results showed that the detonation pressure and velocity were strongly affected by void size, and that the fraction of ammonium nitrate reacted in the reaction zone was strongly dependent on void size.

  2. The effects of class size on English learning at a Thai university

    OpenAIRE

    Watson Todd, Richard

    2013-01-01

    Large classes are the norm and a cause for concern for many language teachers.  Most previous research into large classes has surveyed teachers’ beliefs about the size and problems of large classes.  Surprisingly, there has been no previous research in English language teaching into the effects of class size on learning.  This study examines the relationship between class size and learning for 984 classes of students ranging in size from 10 to 103 students for four fundamental English courses...

  3. Size effect of concrete column retrofitted by fiber-reinforced polymer (FRP)

    Science.gov (United States)

    Zhang, Pengpeng; Xu, Xinsheng

    2017-04-01

    At present, the research on the size effect of fiber-reinforced polymer (FRP) reinforced concrete members is not enough, besides the conclusions about size effect are different. It is of great theoretical significance and engineering application value to study the size effect of FRP reinforced concrete members in this field. In this paper, the study status from two aspects containing plain concrete columns and reinforced concrete columns for the retrofitted effect were analyzed and some new problems were put forward in this field. Also the paper mainly discussed the size effect of FRP constraint ratio and column slenderness ratio on FRP retrofitted concrete columns, and the effects of different load forms of FRP reinforced concrete columns under eccentric loading, repeated loading and unloading, and horizontal cyclic loading on the size effect of FRP reinforced concrete columns, and the influence of the single factor change of FRP paste way, type, package type and the concrete strength on the FRP reinforced concrete column. Besides, the changing tendency and regularity of the size effect of FRP strengthened concrete columns under the condition of muti-factors were given.

  4. Particle size effect for cobalt Fischer-Tropsch catalysts based on in situ CO chemisorption

    Science.gov (United States)

    Yang, Jia; Frøseth, Vidar; Chen, De; Holmen, Anders

    2016-06-01

    The cobalt particle size effect on activity and selectivity for CO hydrogenation was revisited on cobalt catalysts supported on a large variety of supports at 483 K, 1.85 bar, and H2/CO/Ar = 15/1.5/33.5 Nml/min. The size dependence of the activity and selectivity was analyzed in terms of site coverage and rate constants based on SSITKA experimental results. It was found that the Co particle size index estimated by the conventional method, namely, ex situ hydrogen chemisorption, could not correlate well the activity and selectivity as a function of the particle size index. The same holds for the site coverage of CO and intermediates leading to methane formation. However, the cobalt particle size index based on in situ CO chemisorption measured at 373 K provides a good correlation for turnover frequencies (TOFs) at reaction conditions. It was observed that TOF for CO conversion (TOFCO) increased with increasing particle size index of cobalt and SSITKA experiments showed that this was possibly due to increased site coverage of CO. The TOF for methane formation (TOFCH4) increased with particle size and remained constant at higher particle sizes possibly due to combined effect from the site coverage of intermediates leading to methane (θCHx) and the pseudo-first-order rate constant (kt). The results suggest that the support can play an important role for the size dependence of the activity and selectivity of CO hydrogenation on Co catalysts.

  5. Effect of Particle Size and Grinding Time on Gold Dissolution in Cyanide Solution

    Directory of Open Access Journals (Sweden)

    Jessica Egan

    2016-07-01

    Full Text Available The recovery of gold by ore leaching is influenced by the size of the particles and the chemical environment. The effect of particle size on the dissolution of gold is usually studied using mono-size particles as the gold in solution comes from the ore of a unique leached particle size. This paper proposes a method to estimate the gold dissolution as a function of particle size using a bulk ore sample, i.e., with the dissolved gold coming from the various sizes of particles carried by the ore. The results are consistent with the fact that gold dissolution increases with the decreasing particle size but results also indicate that gold dissolution of the ore within a size interval is not significantly affected by the grinding time used for the ore size reduction. Results also show a good dissolution of the gold contained in the fine-size fractions without oxidation and lead nitrate pre-treatment for an ore that is known to require such pre-treatment.

  6. Antler and Body Size in Black-Tailed Deer: An Analysis of Cohort Effects

    Directory of Open Access Journals (Sweden)

    Johanna C. Thalmann

    2015-01-01

    Full Text Available For long-lived species, environmental factors experienced early in life can have lasting effects persisting into adulthood. Large herbivores can be susceptible to cohort-wide declines in fitness as a result of decreases in forage availability, because of extrinsic factors, including extreme climate or high population densities. To examine effects of cohort-specific extrinsic factors on size of adults, we performed a retrospective analysis on harvest data of 450 male black-tailed deer (Odocoileus hemionus columbianus over 19 years in central California, USA. We determined that population density of females had a more dominant effect than did precipitation on body size of males. Harvest of female deer resulted in increases in the overall size of males, even though a 6-year drought occurred during that treatment period. Body size was most influenced by female population density early in life, while antler size was highly affected by both weather early in life and the year directly before harvest. This study provides insights that improve our understanding of the role of cohort effects in body and antler size by cervids; and, in particular, that reduction in female population density can have a profound effect on the body and antler size of male deer.

  7. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport.

    Science.gov (United States)

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad D

    2017-04-18

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.

  8. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  9. A descriptive study of effect-size reporting in research reviews.

    Science.gov (United States)

    Floyd, Judith A

    2017-06-01

    To describe effect-size reporting in research reviews completed in support of evidence-based practice in nursing. Many research reviews report nurses' critical appraisal of level, quality and overall strength of evidence available to address clinical questions. Several studies of research-review quality suggest effect-size information would be useful to include in these reviews, but none focused on reviewers' attention to effect sizes. Descriptive. One hundred and four reviews indexed in CINAHL as systematic reviews and published from July 2012-February 2014 were examined. Papers were required to be peer-reviewed, written in English, contain an abstract and have at least one nurse author. Reviews were excluded if they did not use critical appraisal methods to address evidence of correlation, prediction or effectiveness. Data from remaining papers (N = 73) were extracted by three or more independent coders using a structured coding form and detailed codebook. Data were stored, viewed and analysed using Microsoft Office Excel® spreadsheet functions. Sixteen percent (n = 12) of the sample contained effect-size information. Of the 12, six included all the effect-size information recommended by APA guidelines. Independent of completeness of reporting, seven contained discussion of effect sizes in the paper, but none included effect-size information in abstracts. Research reviews available to practicing nurses often fail to include information needed to accurately assess how much improvement may result from implementation of evidence-based policies, programs, protocols or practices. Manuscript reviewers are urged to hold authors to APA standards for reporting/discussing effect-size information in both primary research reports and research reviews. © 2016 John Wiley & Sons Ltd.

  10. Estimation of the ancestral effective population sizes of African great apes under different selection regimes.

    Science.gov (United States)

    Schrago, Carlos G

    2014-08-01

    Reliable estimates of ancestral effective population sizes are necessary to unveil the population-level phenomena that shaped the phylogeny and molecular evolution of the African great apes. Although several methods have previously been applied to infer ancestral effective population sizes, an analysis of the influence of the selective regime on the estimates of ancestral demography has not been thoroughly conducted. In this study, three independent data sets under different selective regimes were used were composed to tackle this issue. The results showed that selection had a significant impact on the estimates of ancestral effective population sizes of the African great apes. The inference of the ancestral demography of African great apes was affected by the selection regime. The effects, however, were not homogeneous along the ancestral populations of great apes. The effective population size of the ancestor of humans and chimpanzees was more impacted by the selection regime when compared to the same parameter in the ancestor of humans, chimpanzees and gorillas. Because the selection regime influenced the estimates of ancestral effective population size, it is reasonable to assume that a portion of the discrepancy found in previous studies that inferred the ancestral effective population size may be attributable to the differential action of selection on the genes sampled.

  11. Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity.

    Science.gov (United States)

    Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao

    2016-09-01

    The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method.

  12. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature

    National Research Council Canada - National Science Library

    Denes Szucs; John P A Ioannidis

    2017-01-01

    We have empirically assessed the distribution of published effect sizes and estimated power by analyzing 26,841 statistical records from 3,801 cognitive neuroscience and psychology papers published recently...

  13. Effect of the observed pupil size on the amygdala of the beholders

    National Research Council Canada - National Science Library

    Amemiya, Shiori; Ohtomo, Kuni

    2012-01-01

    .... To further address its role, we investigated the response of the amygdala to human and cat faces with varied pupil size, taking into account the effect of the gender and subjective attractiveness ratings...

  14. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial shear strength (IFSS) of its composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.L. [Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology (China); School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao (China); Liu, Y. [School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao (China); Huang, Y.D., E-mail: rlzhit@126.com [School of Chemical Engineering and Technology, State Key laboratory of Urban Water Resource and Environment Department of Applied Chemistry, Harbin Institute of Technology, 150001 Harbin (China); Liu, L. [School of Chemical Engineering and Technology, State Key laboratory of Urban Water Resource and Environment Department of Applied Chemistry, Harbin Institute of Technology, 150001 Harbin (China)

    2013-12-15

    Effect of particle size and distribution of the sizing agent on the performance of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize carbon fiber surface topographies. At the same time, the single fiber strength and Weibull distribution were also studied in order to investigate the effect of coatings on the fibers. The interfacial shear strength and hygrothermal aging of the carbon fiber/epoxy resin composites were also measured. The results indicated that the particle size and distribution is important for improving the surface of carbon fibers and its composites performance. Different particle size and distribution of sizing agent has different contribution to the wetting performance of carbon fibers. The fibers sized with P-2 had higher value of IFSS and better hygrothermal aging resistant properties.

  15. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals.

    Science.gov (United States)

    Martena, Valentina; Shegokar, Ranjita; Di Martino, Piera; Müller, Rainer H

    2014-09-01

    Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions.

  16. A Simple Size Effect Model for Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Pedersen, M. U.; Clorius, Christian Odin; Damkilde, Lars

    2003-01-01

    The strength in tension perpendicular to the grain is known to decrease with an increase in the stressed volume. Usually this size effect is explained on a stochastic basis, that is, an explanation relying on the increased probability of encountering a strength reducing flaw when the volume of th...... on a deterministic basis. Arguments for such a simple deterministic explanation of size effect is found in finite element modelling, using the orthotropic stiffness characteristics in the transverse plane of wood....

  17. Bayesian sample size determination for cost-effectiveness studies with censored data.

    Directory of Open Access Journals (Sweden)

    Daniel P Beavers

    Full Text Available Cost-effectiveness models are commonly utilized to determine the combined clinical and economic impact of one treatment compared to another. However, most methods for sample size determination of cost-effectiveness studies assume fully observed costs and effectiveness outcomes, which presents challenges for survival-based studies in which censoring exists. We propose a Bayesian method for the design and analysis of cost-effectiveness data in which costs and effectiveness may be censored, and the sample size is approximated for both power and assurance. We explore two parametric models and demonstrate the flexibility of the approach to accommodate a variety of modifications to study assumptions.

  18. Effect of system size on the traditional signatures of critical behavior in projectile multifragmentation

    Science.gov (United States)

    Bhattacharjee, B.; Talukdar, R.

    2011-09-01

    The effect of the system size on a number of traditionally accepted signatures of cluster approximation technique of critical behavior have been examined for projectile multifragmenting systems like Mg at 4.5 AGeV and Kr at 0.95 AGeV. The results obtained from analyzing our experimental data on the fluctuation of size of the largest fragments, reduced variance and the mean value of the second moments of charge distribution provide clear evidences of size effect in terms of the height and position of the peaks of the studied parameters.

  19. Finite Size Effects on the Real-Space Pair Distribution Function of Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Benjamin

    2008-10-01

    The pair distribution function (PDF) method is a powerful approach for the analysis of the structure of nanoparticles. An important approximation used in nanoparticle PDF simulations is the incorporation of a form factor describing nanoparticle size and shape. The precise effect of the form factor on the PDF is determined by both particle shape and structure if these characteristics are both anisotropic and correlated. The correct incorporation of finite size effects is important for distinguishing and quantifying the structural consequences of small particle size in nanomaterials.

  20. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction

    Science.gov (United States)

    Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang

    2016-01-01

    Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448

  1. Body Size Predicts Cardiac and Vascular Resistance Effects on Men's and Women's Blood Pressure

    Directory of Open Access Journals (Sweden)

    Joyce M. Evans

    2017-08-01

    Full Text Available Key Points SummaryWe report how blood pressure, cardiac output and vascular resistance are related to height, weight, body surface area (BSA, and body mass index (BMI in healthy young adults at supine rest and standing.Much inter-subject variability in young adult's blood pressure, currently attributed to health status, may actually result from inter-individual body size differences.Each cardiovascular variable is linearly related to height, weight and/or BSA (more than to BMI.When supine, cardiac output is positively related, while vascular resistance is negatively related, to body size. Upon standing, the change in vascular resistance is positively related to size.The height/weight relationships of cardiac output and vascular resistance to body size are responsible for blood pressure relationships to body size.These basic components of blood pressure could help distinguish normal from abnormal blood pressures in young adults by providing a more effective scaling mechanism.Introduction: Effects of body size on inter-subject blood pressure (BP variability are not well established in adults. We hypothesized that relationships linking stroke volume (SV, cardiac output (CO, and total peripheral resistance (TPR with body size would account for a significant fraction of inter-subject BP variability.Methods: Thirty-four young, healthy adults (19 men, 15 women participated in 38 stand tests during which brachial artery BP, heart rate, SV, CO, TPR, and indexes of body size were measured/calculated.Results: Steady state diastolic arterial BP was not significantly correlated with any index of body size when subjects were supine. However, upon standing, the more the subject weighed, or the taller s/he was, the greater the increase in diastolic pressure. Systolic pressure strongly correlated with body weight and height both supine and standing. Diastolic and systolic BP were more strongly related to height, weight and body surface area than to body mass

  2. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse.

    Science.gov (United States)

    Leroy, Grégoire; Mary-Huard, Tristan; Verrier, Etienne; Danvy, Sophie; Charvolin, Eleonore; Danchin-Burge, Coralie

    2013-01-02

    Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied.

  3. Effect of primary emulsions on microsphere size and protein-loading in the double emulsion process.

    Science.gov (United States)

    Maa, Y F; Hsu, C C

    1997-01-01

    Incorporation of a protein drug in microspheres made of a hydrophobic polymer is commonly achieved via double liquid-liquid emulsification (w/o/w) or by dispersing a powdered protein in a polymer solution followed by liquid-liquid emulsification (s/o/w). This study focused on the effect of the first operating step in both processes on the size and protein-loading of the microspheres. Bovine serum albumin (BSA) was used as the model protein and poly(methyl methacrylate) (PMMA) was used as the model polymer. The w/o emulsion was characterized based on the degree of emulsion fineness which was controlled using rotor/stator homogenization. The s/o emulsion was characterized based on protein powder size and shape. Protein powders of different sizes and shapes were produced using different powder preparation methods. In both emulsification processes, the second operating step which produced the microspheres was conducted in either a continuously stirred tank reactor (CSTR) or a static mixer. The size of the microspheres thus prepared was found to increase with increasing size of the protein powder in the s/o/w system but increase with decreasing size of the liquid emulsion droplets in the w/o/w system. Empirical correlations can accurately predict the size of the microspheres if the size of w/o emulsion droplets and protein powder is 10 x less than the microsphere size. Protein loading in the microspheres decreased with respect to increases in w/o emulsion droplet size or in protein powder size. We propose that these phenomena are attributed to two mechanisms, fragmentation along the weak routes in the w/o/w system and particle redistribution as the result of terminal velocity in the s/o/w system. The role of protein powder shape was not significant until the protein powder size exceeded 5 microns. Irregular-shaped protein powders resulted in lower encapsulation efficiency than spherical-shaped protein powders.

  4. The Effect of Stimulus Size on the Reliable Stimulus Range of Perimetry.

    Science.gov (United States)

    Gardiner, Stuart K; Demirel, Shaban; Goren, Deborah; Mansberger, Steven L; Swanson, William H

    2015-03-01

    Automated perimetry uses a 3.5 log unit (35dB) range of stimulus contrasts to assess function within the visual field. Using 'Size III' stimuli (0.43°), presenting stimuli within the highest 15dB of available contrast may not increase the response probability at locations damaged by glaucoma, due to retinal ganglion cell response saturation. This experiment examines the effect of instead using 'Size V' (1.72°) stimuli. Luminance increment thresholds for circular spot stimuli of each stimulus size were measured in 35 participants (mean deviation -20.9 to -3.4 dB, ages 52-87) using the method of constant stimuli, at four locations per participant. Frequency-of-seeing curves were fit at each size and location, with three free parameters: mean, standard deviation, and asymptotic maximum response probability. These were used to estimate the contrasts to which each participant would respond on 25% of presentations (c25). Using segmented orthogonal regression, the maximum observed response probabilities for size III stimuli began to decline at c25 = 25.2 dB (95% confidence interval 23.3-29.0 dB from bootstrap resampling). This decline started at similar contrast for the size V stimulus: c25 = 25.0dB (22.0-26.8 dB). Among locations at which the sensitivity was above these split-points for both stimulus sizes, c25 averaged 5.6 dB higher for size V than size III stimuli. The lower limit of the reliable stimulus range did not differ significantly between stimulus sizes. However, more locations remained within the reliable stimulus range when using the size V stimulus. Size V stimuli enable reliable clinical testing later into the glaucomatous disease process.

  5. The Impact of Effect Size Heterogeneity on Meta-Analysis: A Monte Carlo Experiment

    NARCIS (Netherlands)

    Koetse, Mark J.; Florax, Raymond J.G.M.; Groot, de Henri L.F.

    2007-01-01

    In this paper we use Monte Carlo simulation to investigate the impact of effect size heterogeneity on the results of a meta-analysis. Specifically, we address the small sample behaviour of the OLS, the fixed effects regression and the mixed effects meta-estimators under three alternative scenarios

  6. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  7. Population regulation in the land snail Arianta arbustorum: density effects on adult size, clutch size and incidence of egg cannibalism.

    Science.gov (United States)

    Baur, B

    1988-11-01

    The relationships between local population density and adult size, clutch size and spatial distribution of egg batches were investigated in 11 natural populations of the land snail Arianta arbustorum in a forest near Uppsala, Sweden. Shell size of adults decreased with increasing population density as did clutch size. Within populations, clutch size scaled allometrically with shell size indicating size-specific fecundity. It is hypothesized that food unpalatability caused by mucus deposition slows down juvenile growth rate in high density populations, resulting in small adults and thus reducing their fecundity in subsequent years. The influence of the distance between batches on the incidence of egg cannibalism by hatchlings was examined in a laboratory experiment. In this experiment the number of eggs cannibalized increased with decreasing distance to the batch of hatching snails. Thus, in the field, eggs of highly aggregated batches suffer a high risk of cannibalism. In the 3 populations with the highest snail density, 21-39% of all batches were deposited close to each other (nearest neighbour distance ≤5 cm, i.e. less than hatchlings more within 1 day). These findings indicate that egg cannibalism can act as a population regulating factor.

  8. Estimating Effect Sizes and Expected Replication Probabilities from GWAS Summary Statistics

    DEFF Research Database (Denmark)

    Holland, Dominic; Wang, Yunpeng; Thompson, Wesley K

    2016-01-01

    -scores, as such knowledge would enhance causal SNP and gene discovery, help elucidate mechanistic pathways, and inform future study design. Here we present a parsimonious methodology for modeling effect sizes and replication probabilities, relying only on summary statistics from GWAS substudies, and a scheme allowing......Genome-wide Association Studies (GWAS) result in millions of summary statistics ("z-scores") for single nucleotide polymorphism (SNP) associations with phenotypes. These rich datasets afford deep insights into the nature and extent of genetic contributions to complex phenotypes such as psychiatric...... 9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores and sample sizes, the model accurately predicts expectation estimates of true effect sizes and replication probabilities in multistage GWAS designs. We assess the degree to which effect sizes are over-estimated when...

  9. The arithmetic problem size effect in children: an event-related potential study

    Directory of Open Access Journals (Sweden)

    Leen eVan Beek

    2014-09-01

    Full Text Available This study used for the first time event-related potentials (ERPs to examine the well-known arithmetic problem size effect in children. The electrophysiological correlates of this problem size effect have been well documented in adults, but such information in children is lacking. In the present study, 22 typically developing 12-year-olds were asked to solve single-digit addition problems of small (sum ≤ 10 and large problem size (sum > 10 and to speak the solution into a voice key while ERPs were recorded. Children displayed similar early and late components compared to previous adult studies on the problem size effect. There was no effect of problem size on the early components P1, N1 and P2. The peak amplitude of the N2 component showed more negative potentials on left and right anterior electrodes for large additions compared to small additions, which might reflect differences in attentional and working memory resources between large and small problems. The mean amplitude of the late positivity component (LPC, which follows the N2, was significantly larger for large than for small additions at right parieto-occipital electrodes, in line with previous adult data. The ERPs of the problem size effect during arithmetic might be a useful neural marker for future studies on fact retrieval impairments in children with mathematical difficulties.

  10. Effect of brimonidine tartrate 0.2% ophthalmic solution on pupil size.

    Science.gov (United States)

    Kesler, Anat; Shemesh, Gabi; Rothkoff, Levi; Lazar, Moshe

    2004-08-01

    To evaluate the effect of brimonidine tartrate 0.2% ophthalmic solution on pupil size under scotopic and photopic luminance conditions in persons considering laser refractive surgery. Ophthalmic Health Center, Tel Aviv, Israel. The pupil size was measured in 36 eyes of 36 participants under scotopic and photopic conditions using the Colvard pupillometer (Oasis Medical) before and after brimonidine tartrate drops were administered. The pupil size was subsequently measured after 30 minutes and 4 and 6 hours. No difference was found in pupil size before brimonidine tartrate instillation in eyes with light or dark irides. Before instillation, the mean photopic pupil size was 4.81 mm +/- 0.54 (SD) (range 4.0 to 6.0 mm). At 30 minutes, all pupils became miotic, with a mean size of 3.77 +/- 0.51 mm (range 3.0 to 5.0 mm) (Pbrimonidine tartrate administration, the mean scotopic pupil size was 6.22 +/- 0.73 mm (range 5.0 to 8.0 mm). There was significant miosis to 4.57 +/- 0.84 mm (range 3.0 to 6.5 mm) (Pbrimonidine tartrate was stronger in eyes with light irides. Brimonidine tartrate caused significant miosis, especially under scotopic conditions, most likely from its alpha-2 adrenergic effect. Under photopic luminance conditions, the miotic effect was pronounced.

  11. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    2015-12-15

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  12. The Model Size Effect in SEM: Inflated Goodness-of-Fit Statistics Are due to the Size of the Covariance Matrix

    Science.gov (United States)

    Moshagen, Morten

    2012-01-01

    The size of a model has been shown to critically affect the goodness of approximation of the model fit statistic "T" to the asymptotic chi-square distribution in finite samples. It is not clear, however, whether this "model size effect" is a function of the number of manifest variables, the number of free parameters, or both. It is demonstrated by…

  13. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Ekta; Ritu,; Kumar, Sacheen, E-mail: sacheen3@gmail.com [Department of Electronics science, Kurukshetra University, Kurukshetra, Haryana, India-136119 (India); Kumar, Dinesh

    2016-05-06

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  14. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices

    Science.gov (United States)

    Dhesi, G. S.; Ausloos, M.

    2016-06-01

    Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N ×N matrices to order 1 /N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression.

  15. The effect of precursor powder size on the microstructure and integranular properties of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    I. Abdolhosseini

    2006-09-01

    Full Text Available  We have studied the effect of precursor powder size on the microstructure and intergranular behavior of polycrystalline Bi2223 superconductors using the XRD, SEM, electrical resistivity and AC susceptibility techniques. Polycrystalline Bi2223 superconductors were prepared from the powders with different milling times. The XRD results show that by decreasing the precursor powder size the Bi2223 phase fraction increases. It was found that the grain size and grain connectivity improved by decreasing the precursor powder size. Analysis of the temperature dependence of the AC susceptibility near the transition temperature (Tc has been done employing Beans critical state model. The observed variation of intergranular critical current densities (Jc with temperature indicates that the decreasing of precursor powder size in the Bi2223 system cases an increase in the intergranular critical current density.

  16. Meal size effects on the postprandial metabolic response of Bothrops alternatus (Serpentes: Viperidae

    Directory of Open Access Journals (Sweden)

    Rodrigo S. B. Gavira

    2013-06-01

    Full Text Available We examined the effects of meal size on the postprandial metabolic response of the lancehead Bothrops alternatus (Duméril, Bibron & Duméril, 1894, fed mice equaling to 5, 10, 20, and 40% of the snake's body mass. The maximum O2 consumption rates measured during digestion increased with meal size, reaching levels up to 2.8-7.8-fold higher than the metabolic rate measured during fasting. Specific Dynamic Action (SDA duration also increased with meal size, lasting from 54 to 212 hours to complete. Under our experimental conditions, 30ºC, the majority of our snakes failed to completely digest prey with a relative size of 40%. The SDA coefficient ranged from 17 to 27% of the energy content of the meal and was not affected by meal size.

  17. Automatic analog IC sizing and optimization constrained with PVT corners and layout effects

    CERN Document Server

    Lourenço, Nuno; Horta, Nuno

    2017-01-01

    This book introduces readers to a variety of tools for automatic analog integrated circuit (IC) sizing and optimization. The authors provide a historical perspective on the early methods proposed to tackle automatic analog circuit sizing, with emphasis on the methodologies to size and optimize the circuit, and on the methodologies to estimate the circuit’s performance. The discussion also includes robust circuit design and optimization and the most recent advances in layout-aware analog sizing approaches. The authors describe a methodology for an automatic flow for analog IC design, including details of the inputs and interfaces, multi-objective optimization techniques, and the enhancements made in the base implementation by using machine leaning techniques. The Gradient model is discussed in detail, along with the methods to include layout effects in the circuit sizing. The concepts and algorithms of all the modules are thoroughly described, enabling readers to reproduce the methodologies, improve the qual...

  18. Effects of Particle Size Distribution on the Burn Ability of Limestone

    Directory of Open Access Journals (Sweden)

    Ismaila E. SULEIMAN

    2013-11-01

    Full Text Available The effect of particle size reduction on the burn ability of Limestone was investigated using the limestone obtained from Obajana Cement Mines. Limestone samples were grinded and were classified into following particles size distribution: 90µm, 200µm, 250µm and 500µm graduated in different sieve sizes. The decomposition rates of these samples were monitored under the same temperature condition in a pre-heated furnace of 1000°C and at constant time interval of 0-35 minutes. From the results of the investigation, the material with particle size distribution of 90µm has the fastest reaction rate of 0.1369g/min and highest lime conversion of 52.0 weight percent; loss on ignition being 48 weight percent. This reaction rate increases as the particle size decreases from 500µm to 90µm.

  19. A new look at grain size and load effects in the hardness of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany)

    1998-05-01

    A simple model describes the load effect (size effect) in the hardness, assuming an increasing microplastic deformability, when the further extension of the plastic zone growth and multiplication of pre-existing elements of plasticity are more effective than the generation of new dislocations or twins in the virgin material around the indentation site. The model explains experiments with sintered alumina which indicate a reduced load effect in increasingly fine-grained microstructures due to a grain size effect that is more pronounced at higher testing loads (larger indents) than in the microhardness range. A large difference between the hardness of plastically deformed volumes in single crystals and in polycrystalline microstructures consisting of grains with the same size, respectively, reveals a substantial contribution of the grain boundaries to plastic deformation at the indentation site even at room temperature and even for coarser microstructures. (orig.) 18 refs.

  20. Finite size effects in a model for platicity of amorphous composites

    DEFF Research Database (Denmark)

    Tyukodi, Botond; Lemarchand, Claire A.; Hansen, Jesper Schmidt

    2016-01-01

    flow stress of the amorphous composite. In particular, the departure from the mixing law shows opposite trends associated to the competing effects of the matrix and the reinforcing particles, respectively. The reinforcing mechanisms and their effects on localization are discussed. Plastic strain......We discuss the plastic behavior of an amorphous matrix reinforced by hard particles. A mesoscopic depinning-like model accounting for Eshelby elastic interactions is implemented. Only the effect of a plastic disorder is considered. Numerical results show a complex size dependence of the effective...... is shown to gradually concentrate on the weakest band of the system. This correlation of the plastic behavior with the material structure is used to design a simple analytical model. The latter nicely captures reinforcement size effects in (logN/N)1/2, where N is the linear size of the system, observed...

  1. Size and refinement edge-shape effects of graphene quantum dots on UV–visible absorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruiqiang; Qi, Shifei; Jia, Jianfeng [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China); Torre, Bryna [Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Zeng, Hao [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Wu, Haishun [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China); Xu, Xiaohong, E-mail: xuxiaohong_ly@163.com [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China)

    2015-02-25

    Highlights: • The size effect affects both the visible light absorption and the zigzag edge state. • Zigzag edge state is important than armchair edge state for visible light absorption. • The Seam atoms should be noted for the randomly shaped GQDs. - Abstract: Using the ab initio density-functional theory method, we calculated the size effect and edge shape effect on UV–visible light absorption of different shapes of graphene quantum dots (GQDs). There are two interesting findings in this study. First, the edge shape effect increase with increasing the size of square GQDs. Second, the Seam atoms, located at the boundary between zigzag and armchair edges, hardly contribute to the strongest visible light absorption. This refinement of the edge-shape effect can be found in rectangular, triangular and hexagonal GQDs. This new finding will be useful in applications of GQDs in the visible light absorption nanodevices.

  2. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  3. Prey size structure diminishes cascading effects by increasing interference competition and predation among prey.

    Science.gov (United States)

    Geraldii, Nathan R

    2015-09-01

    The size of an organism can change by orders of magnitude during its lifespan. Size can determine whether an individual consumes, is consumed, competes, or avoids individuals of the same or different species. Two complementary mesocosm experiments with a tri-trophic food chain (top predator, toadfish, Opsanus tau; intermediate prey, mud crab, family Xanthidae; basal resource, oyster, Crassostrea virginica) were conducted to measure how the size of both the top predator and the intermediate prey affects consumptive and behavioral interactions in trophic cascades. In the first experiment, I systematically varied the sizes of predators and prey, respectively. The amount of crab biomass consumed was dependent on crab size and not toadfish size, but the effect of crab size did not cascade to alter oyster survival. Increased oyster survival from crab interference competition in the absence of toadfish was similar to oyster survival,from predator-avoidance behavior in the presence of a toadfish. When all crab size classes were present, crab mortality was similar in the presence and absence of toadfish, highlighting the importance of intraguild predation in food-web dynamics. The second experiment separated crab mortality by other crabs from crab mortality by predatory toadfish and found that crab mortality generally switched from intra- to interguild predation when a toadfish was present. In addition, field surveys indicated mud crab abundance and size was primarily influenced by mud crab recruitment, but not by toadfish abundance, which supports our experimental results that interactions among mud crabs have similar effects to predator-prey interactions. These findings indicate that changes in size or abundance of intermediate prey may be comparable to changes in top predator abundance in terms of trophic interactions and their transmission to lower levels, which suggests that certain types of relatively simple food chains can be resilient to the loss of higher trophic

  4. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  5. Evaluation of granulated lactose as a carrier for DPI formulations 1: effect of granule size.

    Science.gov (United States)

    Du, Ping; Du, Ju; Smyth, Hugh D C

    2014-12-01

    The objective of this study was to investigate the effect of large granulated lactose carrier particle systems on aerosol performance of dry powder inhaler formulations. Granulated lactose carriers with average sizes ranging from 200 to 1,000 μm were prepared and subsequently fractionated into separate narrow size powders. The fractionated granulated lactose (GL) samples were characterized in terms of size, specific surface area, surface roughness, morphology, density, flowability, and solid-state. The in vitro aerosolization performance was performed on the different size fractions of GL samples from a commercial inhaler device (Aerolizer®) with a model formulation (2% w/w salbutamol sulfate). The cascade impaction parameters employed were 60 or 90 L/min with standard (aperture size, 0.6 mm) or modified piercing holes (aperture size, 1.2 mm) of the inhaler loaded capsules. It was shown that the largest size fraction formulation (850-1000 μm) had a slight improvement in the fine particle fraction (FPF) compared to immediately preceding size fractions, explained by a smaller adhesive force between drug and carrier. Compared to commercial piercing holes, enlarged piercing holes generated a slight decreasing trend of FPF as the lactose powder sizes increased from 200-250 μm to 600-850 μm, perhaps due to the reduced detachment force by flow forces. The size, surface roughness, density, and flowability of lactose carrier as well as device design all contributed to the aerosol dispersion performance of granulated lactose-based adhesive mixtures. It was concluded that poorer or enhanced redispersion performance is not an inherent property to the significantly large size of granulated lactose carriers as previously contended.

  6. Heat stress and age induced maternal effects on wing size and shape in parthenogenetic Drosophila mercatorum

    DEFF Research Database (Denmark)

    Andersen, DH; Pertoldi, C; Scali, V

    2005-01-01

    Maternal effects on progeny wing size and shape in a homozygous parthenogenetic strain of Drosophila mercatorum were investigated. The impact of external maternal factors (heat stress) and the impact of internal maternal factors (different maternal and grand maternal age) were studied. The offspr......Maternal effects on progeny wing size and shape in a homozygous parthenogenetic strain of Drosophila mercatorum were investigated. The impact of external maternal factors (heat stress) and the impact of internal maternal factors (different maternal and grand maternal age) were studied....... The offspring developed under identical environmental conditions, and due to lack of genetic variation any phenotypic difference among offspring could be ascribed to maternal effects. Wing size was estimated by centroid size, shape was analysed with the Procrustes geometric morphometric method and variation...... in landmark displacement was visualized by principal component analysis. Both kinds of maternal effects had a significant impact on progeny wing size and shape. Maternal heat stress led to the same pattern of response in size and shape among the progeny, with increased difference between the control group...

  7. Leveraging the happy meal effect: Substituting food with modest nonfood incentives decreases portion size choice.

    Science.gov (United States)

    Reimann, Martin; Bechara, Antoine; MacInnis, Deborah

    2015-09-01

    Despite much effort to decrease food intake by altering portion sizes, "super-sized" meals are the preferred choice of many. This research investigated the extent to which individuals can be subtly incentivized to choose smaller portion sizes. Three randomized experiments (2 in the lab and 1 in the field) established that individuals' choice of full-sized food portions is reduced when they are given the opportunity to choose a half-sized version with a modest nonfood incentive. This substitution effect was robust across different nonfood incentives, foods, populations, and time. Experiment 1 established the effect with children, using inexpensive headphones as nonfood incentives. Experiment 2--a longitudinal study across multiple days--generalized this effect with adults, using the mere chance to win either gift cards or frequent flyer miles as nonfood incentives. Experiment 3 demonstrated the effect among actual restaurant customers who had originally planned to eat a full-sized portion, using the mere chance to win small amounts of money. Our investigation broadens the psychology of food portion choice from perceptual and social factors to motivational determinants. (c) 2015 APA, all rights reserved).

  8. The experimental design of postmortem studies: the effect size and statistical power.

    Science.gov (United States)

    Meurs, Joris

    2016-09-01

    The aim is of this study was to show the poor statistical power of postmortem studies. Further, this study aimed to find an estimate of the effect size for postmortem studies in order to show the importance of this parameter. This can be an aid in performing power analysis to determine a minimal sample size. GPower was used to perform calculations on sample size, effect size, and statistical power. The minimal significance (α) and statistical power (1 - β) were set at 0.05 and 0.80 respectively. Calculations were performed for two groups (Student's t-distribution) and multiple groups (one-way ANOVA; F-distribution). In this study, an average effect size of 0.46 was found (n = 22; SD = 0.30). Using this value to calculate the statistical power of another group of postmortem studies (n = 5) revealed that the average statistical power of these studies was poor (1 - β studies is considerable. In order to enhance statistical power of postmortem studies, power analysis should be performed in which the effect size found in this study can be used as a guideline.

  9. Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin.

    Science.gov (United States)

    Hou, Yanbei; Hu, Weizhao; Gui, Zhou; Hu, Yuan

    2017-07-15

    Cuprous oxide (Cu2O) as an effective catalyst has been applied to enhance the fire safety of unsaturated polyester resin (UPR), but the particle size influence on combustion behaviors has not been previously reported. Herein, the UPR/Cu2O composites (metal oxide particles with average particle-size of 10, 100, and 200nm) were successfully synthesized by thermosetting process. The effects of Cu2O with different sizes on thermostability and combustion behaviors of UPR were characterized by TGA, MCC, TG-IR, FTIR, and SSTF. The results revel that the addition of Cu2O contributes to sufficient decomposition of oxygen-containing compounds, which is beneficial to the release of nontoxic compounds. The smallest-sized Cu2O performs the excellent catalytic decomposition effect and promotes the complete combustion of UPR, which benefits the enhancement of fire safety. While the other additives retard pyrolysis process and yield more char residue, and thus the flame retardancy of UPR composites was improved. Therefore, catalysis plays a major role for smaller-sized particles during thermal decomposition of matrix, while flame retarded effect became gradual distinctly for the larger-sized additives. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Implications of Grain Size Evolution for the Effective Stress Exponent in Ice

    Science.gov (United States)

    Behn, M. D.; Goldsby, D. L.; Hirth, G.

    2016-12-01

    Viscous flow in ice has typically been described by the Glen law—a non-Newtonian, power-law relationship between stress and strain-rate with a stress exponent n 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice is strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding [1], which explicitly incorporates the grain-size dependence of ice rheology. Yet, neither dislocation creep (n 4), nor grain boundary sliding (n 1.8), have stress exponents that match the value of n 3 for the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form cannot be explained by a single deformation mechanism. Here we seek to understand the origin of the n 3 dependence of the Glen law through a new model for grain-size evolution in ice. In our model, grain size evolves in response to the balance between dynamic recrystallization and grain growth. To simulate these processes we adapt the "wattmeter" [2], originally developed within the solid-Earth community to quantify grain size in crustal and mantle rocks. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. The evolution of grain size in turn controls the relative contributions of dislocation creep and grain boundary sliding, and thus the effective stress exponent for ice flow. Using this approach, we first benchmark our grain size evolution model on experimental data and then calculate grain size in two end-member scenarios: (1) as a function of depth within an ice-sheet, and (2) across an ice-stream margin. We show that the calculated grain sizes match ice core observations for the interior of ice sheets. Furthermore, owing to the influence of grain size on strain rate, the

  11. A study on the effect of particle size on coal flotation kinetics using fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Abkhoshk, E.; Kor, M.; Rezai, B. [Shahrood University of Technology, Shahrood (Iran)

    2010-07-15

    This paper investigates the effect of particle size on the flotation kinetics of coal in a batch flotation cell. The relationship between flotation kinetics constant and theoretical flotation recovery with particle size was estimated with nonlinear equations. Analysis of variance shows that varying of particle size is statistically significant on kinetics constant with approximately 96.5% confidence level; however it is not significant on maximum theoretical flotation recovery (RI) in 95% confidence level. Using fuzzy logic method, a multi-input/single-output (MISO) fuzzy model with two input variables: particle size and time and one output variable: cumulative recovery was established to predict the effect of particle size on the flotation kinetics of coal in a batch flotation cell. Application of fuzzy model shows that the results of model fits well to the result of batch flotation and the fuzzy model can be applied to predict cumulative recovery of different coal particle size. The correlation coefficient (R{sup 2}) values of the proposed fuzzy model were 0.986. 0.993, 0.983, 0.977 and 0.972 for 37.5 {mu}m, 112.5 {mu}m, 225 {mu}m, 400 {mu}m and 625 {mu}m average particle sizes, respectively.

  12. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.

    Science.gov (United States)

    Binzer, Amrei; Guill, Christian; Rall, Björn C; Brose, Ulrich

    2016-01-01

    Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors. © 2015 John Wiley & Sons Ltd.

  13. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); Guo, J.W.; Wang, X.S; Zhang, S.F. [State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi’an 710032 (China); He, L., E-mail: helin@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China)

    2016-07-04

    Crystal size of lithium disilicate (LD) phase in a LD glass-ceramic was changed by thermally controlled crystallization of a precursory LD glass at different temperatures. Effects of the crystal size on the mechanical properties of the glass-ceramic were investigated. It was found that the flexural strength presented a hump-like variation trend with increasing the crystal size, the hardness monotonously decreased at the same time. It was further confirmed that micro residual compressive stresses existed inside the LD crystals due to the thermal expansion mismatch between the glass matrix and the crystalline phase. The levels of the residual stresses increased with increasing the crystal size. The crystal size performed dual effects on the flexural strength of the glass-ceramic: an “interlocking effect” caused by larger-sized LD crystals and a “micro residual stress effect” related to the balancing tensile stresses in the glass matrix. Higher residual tensile stresses in the glass matrix induced by larger-sized LD crystals would counteract the “interlocking effect” of the crystals, causing the strength degradation. The hardness of the glass-ceramic was mainly controlled by the “micro residual stress effect”.

  14. The neural bases of the multiplication problem-size effect across countries.

    Science.gov (United States)

    Prado, Jérôme; Lu, Jiayan; Liu, Li; Dong, Qi; Zhou, Xinlin; Booth, James R

    2013-01-01

    Multiplication problems involving large numbers (e.g., 9 × 8) are more difficult to solve than problems involving small numbers (e.g., 2 × 3). Behavioral research indicates that this problem-size effect might be due to different factors across countries and educational systems. However, there is no neuroimaging evidence supporting this hypothesis. Here, we compared the neural correlates of the multiplication problem-size effect in adults educated in China and the United States. We found a greater neural problem-size effect in Chinese than American participants in bilateral superior temporal regions associated with phonological processing. However, we found a greater neural problem-size effect in American than Chinese participants in right intra-parietal sulcus (IPS) associated with calculation procedures. Therefore, while the multiplication problem-size effect might be a verbal retrieval effect in Chinese as compared to American participants, it may instead stem from the use of calculation procedures in American as compared to Chinese participants. Our results indicate that differences in educational practices might affect the neural bases of symbolic arithmetic.

  15. Investigating the effective hydrodynamic size of dextran coated iron oxide nanoparticles

    Science.gov (United States)

    Vaishnava, Prem; Gumber, Vikas; Regmi, Rajesh; Black, Correy; Dixit, Ambesh; Naik, Vaman; Sudakar, Chandran; Naik, Ratna; Lawes, Gavin

    2010-04-01

    We report synthesis and functionalization of magnetite nanoparticles by coating with dextran having 5, 15-20, 60-90, and 670 kDa molecular weights. The hydrodynamic radii of the functionalized nanoparticles suspended in water measured by dynamic light scattering technique assuming the bulk value for viscosity, were 91, 100, 106, and 132 nm, respectively. By measuring the ac magnetic loss, we determined the effective sizes to be 105, 113, 122, and 136 nm, respectively. The sizes measured by these techniques are approximately twice as large as expected given the iron oxide nanoparticle size and surfactant molecular chain length, at least for the lower molecular weight dextran. Comparing the results of hydrodynamic sizes studies, we conclude that the effective viscosity for the coated nanoparticles may be different than the bulk viscosity of the carrier liquid.

  16. Cellulose based nanofabrication; immobilization of silver nanoparticales and its size effect against Escherichia coli

    Science.gov (United States)

    Kalwar, Kaleemullah; Aqeel Bhutto, Muhammad; Dali, Li; Shan, Dan

    2017-10-01

    Herein, cellulose acetate nanofibers were manufactured by electrospinning technique and hydrolyzed by alkaline hydrolysis. Size effect of AgNPs was observed against E. coli. The structure and composition of nanofibers were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR) and Thermal behavior was analyzed by thermogravimetric analyzer (TGA). Furthermore, AgNPs were incorporated on deacetylated nanofibers and then oxidized by KMnO4. AgNPs decorated cellulose nanofibers exhibiting strong bactericide activity against Escherichia coli BH5α. Smaller in size 16.69 nm exhibited higher inhibition activity as compared to larger size 42.33 nm of AgNPs. It was shown that size of AgNPs has an effect on antimicrobial activity.

  17. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.

    Science.gov (United States)

    Mason, Barry S; Van Der Woude, Lucas H V; Tolfrey, Keith; Lenton, John P; Goosey-Tolfrey, Victoria L

    2012-01-01

    This study aimed to investigate the effects of fixed gear ratio wheel sizes on the physiological and biomechanical responses to submaximal wheelchair propulsion. Highly trained wheelchair basketball players (N = 13) propelled an adjustable sports wheelchair in three different wheel sizes (24, 25, and 26 inches) on a motor-driven treadmill. Each wheel was equipped with force-sensing hand-rims (SMARTWheel), which collected kinetic and temporal data. Oxygen uptake (V˙O2) and HR responses were measured with high-speed video footage collected to determine three-dimensional upper body joint kinematics. Mean power output and work per cycle decreased progressively with increasing wheel size (P wheelchair propulsion.

  18. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, V. N., E-mail: pppnvn@yandex.ru [Moscow State University (Russian Federation); Ignatenko, A. N.; Irkhin, V. Yu. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2017-02-15

    The size effects of magnetite and maghemite nanoparticles on their magnetic properties (magnetic moment, Curie temperature, blocking temperature, etc.) have been investigated. Magnetic separation and centrifugation of an aqueous solution of nanoparticles were used for their separation into fractions; their sizes were measured by atomic force microscopy, dynamic light scattering, and electron microscopy. A change in the size leads to a change in the Curie temperature and magnetic moment per formula unit. Both native nanoparticles and those covered with a bioresorbable layer have been considered. The magnetic properties have been calculated by the Monte Carlo method for the classical Heisenberg model with various bulk and surface magnetic moments.

  19. Effect of particle size of rice flour on physical and sensory properties of Sel-roti.

    Science.gov (United States)

    Subba, Dilip; Katawal, Surendra Bahadur

    2013-02-01

    Sel-roti is a delicious, deep-fat fried, puffed, ring shaped spongy doughnut like Nepalese indigenous food prepared from the batter of rice flour, ghee and sugar. A study was conducted to determine the effect of particle size of rice flour on bulk density, oil uptake and texture of Sel-roti. Rice was soaked in water and ground with the help of iron mortar and pestle and the flour was analyzed for particle size distribution by using standard sieves and separated into three particle size categories as coarse (> 890 u), medium (120-890 u) and fine ( 0.05) were found.

  20. Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.

  1. Introducing Meta-Partition, a Useful Methodology to Explore Factors That Influence Ecological Effect Sizes.

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    Full Text Available The study of the heterogeneity of effect sizes is a key aspect of ecological meta-analyses. Here we propose a meta-analytic methodology to study the influence of moderators in effect sizes by splitting heterogeneity: meta-partition. To introduce this methodology, we performed a meta-partition of published data about the traits that influence species sensitivity to habitat loss, that have been previously analyzed through meta-regression. Thus, here we aim to introduce meta-partition and to make an initial comparison with meta-regression. Meta-partition algorithm consists of three steps. Step 1 is to study the heterogeneity of effect sizes under the assumption of fixed effect model. If heterogeneity is found, we perform step 2, that is, to partition the heterogeneity by the moderator that minimizes heterogeneity within a subset while maximizing heterogeneity between subsets. Then, if effect sizes of the subset are still heterogeneous, we repeat step 1 and 2 until we reach final subsets. Finally, step 3 is to integrate effect sizes of final subsets, with fixed effect model if there is homogeneity, and with random effects model if there is heterogeneity. Results show that meta-partition is valuable to assess the importance of moderators in explaining heterogeneity of effect sizes, as well as to assess the directions of these relations and to detect possible interactions between moderators. With meta-partition we have been able to evaluate the importance of moderators in a more objective way than with meta-regression, and to visualize the complex relations that may exist between them. As ecological issues are often influenced by several factors interacting in complex ways, ranking the importance of possible moderators and detecting possible interactions would make meta-partition a useful exploration tool for ecological meta-analyses.

  2. Introducing Meta-Partition, a Useful Methodology to Explore Factors That Influence Ecological Effect Sizes

    Science.gov (United States)

    Martín-Vallejo, Javier; Mencía, Abraham; Galindo-Villardón, Maria Purificación; Pérez-Mellado, Valentín

    2016-01-01

    The study of the heterogeneity of effect sizes is a key aspect of ecological meta-analyses. Here we propose a meta-analytic methodology to study the influence of moderators in effect sizes by splitting heterogeneity: meta-partition. To introduce this methodology, we performed a meta-partition of published data about the traits that influence species sensitivity to habitat loss, that have been previously analyzed through meta-regression. Thus, here we aim to introduce meta-partition and to make an initial comparison with meta-regression. Meta-partition algorithm consists of three steps. Step 1 is to study the heterogeneity of effect sizes under the assumption of fixed effect model. If heterogeneity is found, we perform step 2, that is, to partition the heterogeneity by the moderator that minimizes heterogeneity within a subset while maximizing heterogeneity between subsets. Then, if effect sizes of the subset are still heterogeneous, we repeat step 1 and 2 until we reach final subsets. Finally, step 3 is to integrate effect sizes of final subsets, with fixed effect model if there is homogeneity, and with random effects model if there is heterogeneity. Results show that meta-partition is valuable to assess the importance of moderators in explaining heterogeneity of effect sizes, as well as to assess the directions of these relations and to detect possible interactions between moderators. With meta-partition we have been able to evaluate the importance of moderators in a more objective way than with meta-regression, and to visualize the complex relations that may exist between them. As ecological issues are often influenced by several factors interacting in complex ways, ranking the importance of possible moderators and detecting possible interactions would make meta-partition a useful exploration tool for ecological meta-analyses. PMID:27409084

  3. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices

    OpenAIRE

    Dhesi, G; Ausloos, M.

    2016-01-01

    © 2016 American Physical Society.Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has...

  4. Finite population size effects in quasispecies models with single-peak fitness landscape

    OpenAIRE

    Saakian, David B.; Deem, Michael W.; Hu, Chin Kun

    2012-01-01

    We consider finite population size effects for Crow-Kimura and Eigen quasispecies models with single peak fitness landscape. We formulate accurately the iteration procedure for the finite population models, then derive Hamilton-Jacobi equation (HJE) to describe the dynamic of the probability distribution. The steady state solution of HJE gives the variance of the mean fitness. Our results are useful for understanding population sizes of virus in which the infinite population models can give r...

  5. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse

    OpenAIRE

    Mary-Huard, Tristan; Verrier, Etienne; Danvy, Sophie; Charvolin Lemaire, Eleonore; Danchin-Burge, Coralie

    2013-01-01

    Background: Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual ...

  6. Effect of particle size on the diffuse reflection coefficient of titanium dioxide powder

    Science.gov (United States)

    Vlasov, V. A.; Astafyev, A. L.; Zarubin, A. N.

    2015-04-01

    In the present work a model of light scattering is shown which explains the result about effect of particle size on the diffuse reflection coefficient of initial titanium dioxide powders. The diffuse reflection coefficient depending on particle size for TiO2 pigment varies on the curve with maximum. The experimental results and the model can be used for technology development of manufacturing pigment for light-reflecting temperature-control coatings of spacecraft

  7. Effect of particle size on the diffuse reflection coefficient of titanium dioxide powder

    OpenAIRE

    Vlasov, Vitaliy Anatolievich; Astafyev, Alexander Leonidovich; Zarubin, A.N.

    2015-01-01

    In the present work a model of light scattering is shown which explains the result about effect of particle size on the diffuse reflection coefficient of initial titanium dioxide powders. The diffuse reflection coefficient depending on particle size for TiO2 pigment varies on the curve with maximum. The experimental results and the model can be used for technology development of manufacturing pigment for light-reflecting temperature-control coatings of spacecraft.

  8. Sample size matters: investigating the effect of sample size on a logistic regression debris flow susceptibility model

    Science.gov (United States)

    Heckmann, T.; Gegg, K.; Gegg, A.; Becht, M.

    2013-06-01

    Predictive spatial modelling is an important task in natural hazard assessment and regionalisation of geomorphic processes or landforms. Logistic regression is a multivariate statistical approach frequently used in predictive modelling; it can be conducted stepwise in order to select from a number of candidate independent variables those that lead to the best model. In our case study on a debris flow susceptibility model, we investigate the sensitivity of model selection and quality to different sample sizes in light of the following problem: on the one hand, a sample has to be large enough to cover the variability of geofactors within the study area, and to yield stable results; on the other hand, the sample must not be too large, because a large sample is likely to violate the assumption of independent observations due to spatial autocorrelation. Using stepwise model selection with 1000 random samples for a number of sample sizes between n = 50 and n = 5000, we investigate the inclusion and exclusion of geofactors and the diversity of the resulting models as a function of sample size; the multiplicity of different models is assessed using numerical indices borrowed from information theory and biodiversity research. Model diversity decreases with increasing sample size and reaches either a local minimum or a plateau; even larger sample sizes do not further reduce it, and approach the upper limit of sample size given, in this study, by the autocorrelation range of the spatial datasets. In this way, an optimised sample size can be derived from an exploratory analysis. Model uncertainty due to sampling and model selection, and its predictive ability, are explored statistically and spatially through the example of 100 models estimated in one study area and validated in a neighbouring area: depending on the study area and on sample size, the predicted probabilities for debris flow release differed, on average, by 7 to 23 percentage points. In view of these results, we

  9. Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows

    Science.gov (United States)

    Heckmann, T.; Gegg, K.; Gegg, A.; Becht, M.

    2014-02-01

    Predictive spatial modelling is an important task in natural hazard assessment and regionalisation of geomorphic processes or landforms. Logistic regression is a multivariate statistical approach frequently used in predictive modelling; it can be conducted stepwise in order to select from a number of candidate independent variables those that lead to the best model. In our case study on a debris flow susceptibility model, we investigate the sensitivity of model selection and quality to different sample sizes in light of the following problem: on the one hand, a sample has to be large enough to cover the variability of geofactors within the study area, and to yield stable and reproducible results; on the other hand, the sample must not be too large, because a large sample is likely to violate the assumption of independent observations due to spatial autocorrelation. Using stepwise model selection with 1000 random samples for a number of sample sizes between n = 50 and n = 5000, we investigate the inclusion and exclusion of geofactors and the diversity of the resulting models as a function of sample size; the multiplicity of different models is assessed using numerical indices borrowed from information theory and biodiversity research. Model diversity decreases with increasing sample size and reaches either a local minimum or a plateau; even larger sample sizes do not further reduce it, and they approach the upper limit of sample size given, in this study, by the autocorrelation range of the spatial data sets. In this way, an optimised sample size can be derived from an exploratory analysis. Model uncertainty due to sampling and model selection, and its predictive ability, are explored statistically and spatially through the example of 100 models estimated in one study area and validated in a neighbouring area: depending on the study area and on sample size, the predicted probabilities for debris flow release differed, on average, by 7 to 23 percentage points. In

  10. Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed.

    Science.gov (United States)

    Silió, L; Barragán, C; Fernández, A I; García-Casco, J; Rodríguez, M C

    2016-04-01

    The complete pedigree of two closed Iberian pig lines (Gamito and Torbiscal), with 798 and 4077 reproducers, has been used to measure the evolution of coancestry (f) and inbreeding (F) for autosomal and X-linked genes along 16 and 28 respective equivalent discrete generations. At the last generation, the mean values of each line were f = 0.41 and 0.22, F = 0.35 and 0.18, fX  = 0.46 and 0.22 and FX  = 0.47 and 0.19, respectively. Other calculated parameters were the effective number of founders (final values, 6.8 and 35.2) and non-founders (1.5 and 2.4), founder genome equivalents (1.2 and 2.3) and effective population size (16.0 and 57.7). Measures of Torbiscal effective size based on rates of coancestry (66.1), inbreeding (65.0) and linkage disequilibrium (71.0) were estimated from whole-genome SNP genotyping data. Values of new and old inbreeding and their respective rates by generation were computed to detect purging effects of natural selection. The analysis of 6854 Torbiscal litters showed significant negative impacts of new and fast inbreeding on litter size, as expected from the purging hypothesis: -0.20 born piglets per litter by a 10% of new inbreeding, and -0.03 and -0.02 piglets by 1% of total and new inbreeding rates, respectively. The analysis performed on 1274 litters of the Gamito line failed to show purging effects. The only significant results were reductions in -0.91 and -0.17 piglets by a 10% of old and X-linked genes inbreeding, respectively. These results may be useful for some practical issues in conservation programs of farm or captive wild animals. © 2015 Blackwell Verlag GmbH.

  11. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature

    OpenAIRE

    Szucs, Denes; Ioannidis, JPA

    2017-01-01

    We have empirically assessed the distribution of published effect sizes and estimated power by analyzing 26,841 statistical records from 3,801 cognitive neuroscience and psychology papers published recently. The reported median effect size was D = 0.93 (interquartile range: 0.64-1.46) for nominally statistically significant results and D = 0.24 (0.11-0.42) for nonsignificant results. Median power to detect small, medium, and large effects was 0.12, 0.44, and 0.73, reflecting no improvement th...

  12. Specimen size effects on the compressive strength and Weibull modulus of nuclear graphite of different coke particle size: IG-110 and NBG-18

    Science.gov (United States)

    Chi, Se-Hwan

    2013-05-01

    The effects of specimen size on the compressive strength and Weibull modulus were investigated for nuclear graphite of different coke particle sizes: IG-110 and NBG-18 (average coke particle size for IG-110: 25 μm, NBG-18: 300 μm). Two types of cylindrical specimens, i.e., where the diameter to length ratio was 1:2 (ASTM C 695-91 type specimen, 1:2 specimen) or 1:1 (1:1 specimen), were prepared for six diameters (3, 4, 5, 10, 15, and 20 mm) and tested at room temperature (compressive strain rate: 2.08 × 10-4 s-1). Anisotropy was considered during specimen preparation for NBG-18. The results showed that the effects of specimen size appeared negligible for the compressive strength, but grade-dependent for the Weibull modulus. In view of specimen miniaturization, deviations from the ASTM C 695-91 specimen size requirements require an investigation into the effects of size for the grade of graphite of interest, and the specimen size effects should be considered for Weibull modulus determination.

  13. The Effect of Solid Constituent Particle Size Distributions on TP-H1148 Propellant Slag

    Science.gov (United States)

    May, Douglas H.; Miles, William L.; Taylor, David S.; Rackham, Jon L.

    1997-01-01

    Special aluminum and ammonium perchlorate (AP) particle size distributions were prepared for a matrix of five-inch diameter, center-perforated (CP) motor tests to measure the aluminum oxide slag response in Space Shuttle Reusable Solid Rocket Motor (RSRM) propellant. Previous tests of TP-H1148 propellant in five-inch CP spin motors have shown a correlation between aluminum particle size and generated slag. The motors for this study were cast from thirteen five-gallon propellant mixes which used five particle size levels of aluminum powder, five of unground AP and three of ground AP. Aluminum had the greatest effect on slag formation, the more coarse fractions causing greater slag quantities and larger slag particles. Unground AP had about half the effect of aluminum with the coarser fractions again producing more and larger sized slag particles. The variation in ground AP did not have a significant effect on slag formation. Quench bomb tests showed the same trends as the spin motors, that is, larger aluminum and AP particle size distributions generated larger slag particles leaving the propellant surface. Cured propellant mechanical properties were also impacted by particle size variation.

  14. Two-phase equilibrium states in individual Cu-Ni nanoparticles: size, depletion and hysteresis effects.

    Science.gov (United States)

    Shirinyan, Aram S

    2015-01-01

    In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature-composition phase diagram occur. Our calculations for individual Cu-Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature-composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu-Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

  15. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

    Science.gov (United States)

    2015-01-01

    Summary In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature–composition phase diagram occur. Our calculations for individual Cu–Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature–composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu–Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram. PMID:26425433

  16. Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

    Directory of Open Access Journals (Sweden)

    Aram S. Shirinyan

    2015-08-01

    Full Text Available In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature–composition phase diagram occur. Our calculations for individual Cu–Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops. For the first time we have calculated and present here on the temperature–composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu–Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

  17. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Cao, Yi; Lu, Yun, E-mail: yunlu@nju.edu.cn [Nanjing University, Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering (China)

    2015-05-15

    The size-controllable polypyrrole (PPy) nanospheres are successfully synthesized by oxidative polymerization of pyrrole using N-methylene phosphonic chitosan (NMPC) as a structure-directing agent. By simply changing the amount of NMPC, the size of the PPy nanospheres can be adjusted from 190 to 50 nm in diameter. The spectrometric results suggest that the electrostatic interactions of phosphate groups in NMPC molecule with pyrrole ring might be a driving force for formation of the uniform and size-controllable PPy nanospheres. The PPy nanospheres with the diameter of 100 nm exhibit the largest capacity and a good cycling stability as electrode materials of supercapacitors. The as-prepared PPy nanospheres also can be combined with carbon dots to form composite nanospheres presenting enhanced fluorescence intensity, which show potential application in fluorescence detection.

  18. The effect of lexical factors on recall from working memory: Generalizing the neighborhood size effect.

    Science.gov (United States)

    Derraugh, Lesley S; Neath, Ian; Surprenant, Aimée M; Beaudry, Olivia; Saint-Aubin, Jean

    2017-03-01

    The word-length effect, the finding that lists of short words are better recalled than lists of long words, is 1 of the 4 benchmark phenomena that guided development of the phonological loop component of working memory. However, previous work has noted a confound in word-length studies: The short words used had more orthographic neighbors (valid words that can be made by changing a single letter in the target word) than long words. The confound is that words with more neighbors are better recalled than otherwise comparable words with fewer neighbors. Two experiments are reported that address criticisms of the neighborhood-size account of the word-length effect by (1) testing 2 new stimulus sets, (2) using open rather than closed pools of words, and (3) using stimuli from a language other than English. In both experiments, words from large neighborhoods were better recalled than words from small neighborhoods. The results add to the growing number of studies demonstrating the substantial contribution of long-term memory to what have traditionally been identified as working memory tasks. The data are more easily explained by models incorporating the concept of redintegration rather than by frameworks such as the phonological loop that posit decay offset by rehearsal. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  20. Bias Corrections for Standardized Effect Size Estimates Used with Single-Subject Experimental Designs

    Science.gov (United States)

    Ugille, Maaike; Moeyaert, Mariola; Beretvas, S. Natasha; Ferron, John M.; Van den Noortgate, Wim

    2014-01-01

    A multilevel meta-analysis can combine the results of several single-subject experimental design studies. However, the estimated effects are biased if the effect sizes are standardized and the number of measurement occasions is small. In this study, the authors investigated 4 approaches to correct for this bias. First, the standardized effect…

  1. The effect of changing size on vergence is mediated by changing disparity

    NARCIS (Netherlands)

    Wismeijer, D.A.; Erkelens, C.J.

    2009-01-01

    In this study, we investigated the effect of changing size on vergence. Erkelens and Regan (1986) proposed that this cue to motion in depth affects vergence in a similar way as it affects perception. The measured effect on vergence was small and we wondered why the vergence system would use changing

  2. Effect of Gap Size on Seasonal Variation of Soil Chemical Properties in Subtropical Forest, Southern China

    National Research Council Canada - National Science Library

    Supaporn Buajan; Liu JinFu; He ZhongSheng; Abrar Muhammad

    2017-01-01

    Gap area has an effect on the soil chemical properties. To find out whatever the effect of gap area on the soil chemical properties, gap area was divided into small, medium, and large gap sizes and under the canopy as control...

  3. Accounting for One-Group Clustering in Effect-Size Estimation

    Science.gov (United States)

    Citkowicz, Martyna; Hedges, Larry V.

    2013-01-01

    In some instances, intentionally or not, study designs are such that there is clustering in one group but not in the other. This paper describes methods for computing effect size estimates and their variances when there is clustering in only one group and the analysis has not taken that clustering into account. The authors provide the effect size…

  4. Reliability, Validity, Effects Sizes, and Confidence Intervals in Multicultural Teaching and Learning Research and Scholarship

    Science.gov (United States)

    Sapp, Marty

    2012-01-01

    Like many journals within education, for "Multicultural Learning and Teaching," this writer found little written on measurement, effect sizes, and confidence intervals; therefore, the purpose of this article is to address these factors. The effect of not addressing these issues is that a basic foundation of science cannot be established…

  5. The long-term effect of the timing of fertility decline on population size

    NARCIS (Netherlands)

    O'Neill, BC; Scherbov, S; Lutz, W

    1999-01-01

    Existing long-range population projections imply that the timing of the fertility transition has a relatively unimportant effect on long-term population size when compared with the impact of the level at which fertility is assumed eventually to stabilize. However, this note shows that the effect of

  6. The Representation of Multiplication Facts: Developmental Changes in the Problem Size, Five, and Tie Effects

    Science.gov (United States)

    De Brauwer, Jolien; Verguts, Tom; Fias, Wim

    2006-01-01

    In this study, we investigated the development of basic effects that have been found in single-digit multiplication arithmetic: the problem size, five, and tie effects. Participants (9-,10-, and 11-year-olds and adults) performed a production task on simple multiplication. The procedure replicated Campbell and Graham's (1985) study ["Canadian…

  7. Effect of exercise training on adipocyte-size-dependent expression of leptin and adiponectin.

    Science.gov (United States)

    Miyazaki, Satoko; Izawa, Tetsuya; Ogasawara, Jun-etsu; Sakurai, Takuya; Nomura, Sachiko; Kizaki, Takako; Ohno, Hideki; Komabayashi, Takao

    2010-04-24

    Our aim was to evaluate the effect of exercise training (TR) on adipocyte-size-dependent expression of leptin and adiponectin. Male Wistar rats were divided into 2 groups, sedentary control (CR) and TR group, and both monitored for 9weeks. Adipocytes isolated from epididymal, retroperitoneal, and inguinal fat depots were independently separated into 3 fractions of different cell size, and the relationships between adipocyte size and either leptin or adiponectin mRNA were determined by real-time RT-PCR analysis. In epididymal and inguinal adipose tissue, positive relationships between adipocyte size and both leptin and adiponectin mRNA expression were found. Comparison of TR and CR rats showed no significant effect of TR on the slopes of the linear regression lines of correlation between leptin mRNA and adipocyte size in either adipose tissue, whereas the slopes of the regression line of correlation between adipocyte size and adiponectin mRNA were greater in TR group. Leptin levels per milliliter of plasma were significantly lower in TR than CR rats, whereas leptin levels adjusted to the 3 fat depots did not differ. TR did not affect adiponectin levels in plasma, whereas adiponectin levels adjusted to the 3 fat depots were significantly greater in TR than CR group. TR-induced reduction in leptin mRNA expression was closely associated with smaller adipocyte size. However, TR amplified the adipocyte-size-dependent expression of adiponectin mRNA, suggesting that TR-induced alterations in adiponectin mRNA may also be mediated by factor(s) other than adipocyte size.

  8. ON THE EFFECT OF PRIOR AUSTENITE GRAIN SIZE ON NEAR-THRESHOLD FATIGUE CRACK GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, M.F.; Ritchie, R.O.

    1977-01-01

    It is generally accepted that the fatigue or endurance strength of planar slip materials, such as steel and brass, is increased by refining the grain size, whereas in wavy slip materials, such as pure copper and pure aluminum, the fatigue strength is unaffected. However, there is little similar evidence of an effect of grain size on fatigue crack propagation. In both wavy and planar slip metals, growth rates appear independent of grain size. For example, variations in grain size from 10 to 200{micro}m in 70/30 brass (6), and from 45 to 480{micro}m in austenitic stainless steel produce no measurable change in fatigue crack propagation rates over a range of growth rates from 10{sup -5} to 10{sup -2} mm/cycle. Recently, however, there have been indications in the literature that grain size may indeed influence crack propagation behavior at growth rates less than 10{sup -5} to 10{sup -6} mm/cycle approaching the threshold for crack propagation, {Delta}K{sub 0}. Robinson and Beevers report an order of magnitude decrease in near-threshold growth rates in {alpha}-titanium after coarsening the grain size from 20 to 200{micro}m. Similar effects have been seen in Ti-6Al-4V. Furthermore, Masounave and BaIlon have observed a marked increase in threshold {Delta}K{sub 0} values in a range of low strength steels by increasing ferrite grain size. In all the above studies however, no attempt was made to control strength; and the effect of coarsening the grain size may well have been caused by a concurrent decrease in material strength, particularly since it is known that, in steels at least, near-threshold fatigue crack growth is markedly decreased by reducing the yield strength. A comparison at constant yield strength between coarse and fine-grained materials has been made in ultra-high strength steel (300-M) where it was found that, on enlarging the (prior austenite) grain size from 20 to l60{micro}m, a small reduction in near-threshold propagation rates below 10{sup -4} to 10

  9. The effects of fixation target size and luminance on microsaccades and square-wave jerks

    Directory of Open Access Journals (Sweden)

    Michael B. McCamy

    2013-02-01

    Full Text Available A large amount of classic and contemporary vision studies require subjects to fixate a target. Target fixation serves as a normalizing factor across studies, promoting the field’s ability to compare and contrast experiments. Yet, fixation target parameters, including luminance, contrast, size, shape and color, vary across studies, potentially affecting the interpretation of results. Previous research on the effects of fixation target size and luminance on the control of fixation position rendered conflicting results, and no study has examined the effects of fixation target characteristics on square-wave jerks, the most common type of saccadic intrusion. Here we set out to determine the effects of fixation target size and luminance on the characteristics of microsaccades and square-wave jerks, over a large range of stimulus parameters. Human subjects fixated a circular target with varying luminance and size while we recorded their eye movements with an infrared video tracker (EyeLink 1000, SR Research. We detected microsaccades and SWJs automatically with objective algorithms developed previously. Microsaccade rates decreased linearly and microsaccade magnitudes increased linearly with target size. The percent of microsaccades forming part of SWJs decreased, and the time from the end of the initial SWJ saccade to the beginning of the second SWJ saccade (SWJ inter-saccadic interval; ISI increased with target size. The microsaccadic preference for horizontal direction also decreased moderately with target size . Target luminance did not affect significantly microsaccades or SWJs, however. In the absence of a fixation target, microsaccades became scarcer and larger, while SWJ prevalence decreased and SWJ ISIs increased. Thus, the choice of fixation target can affect experimental outcomes, especially in human factors and in visual and oculomotor studies. These results have implications for previous and future research conducted under fixation

  10. The effects of fixation target size and luminance on microsaccades and square-wave jerks.

    Science.gov (United States)

    McCamy, Michael B; Najafian Jazi, Ali; Otero-Millan, Jorge; Macknik, Stephen L; Martinez-Conde, Susana

    2013-01-01

    A large amount of classic and contemporary vision studies require subjects to fixate a target. Target fixation serves as a normalizing factor across studies, promoting the field's ability to compare and contrast experiments. Yet, fixation target parameters, including luminance, contrast, size, shape and color, vary across studies, potentially affecting the interpretation of results. Previous research on the effects of fixation target size and luminance on the control of fixation position rendered conflicting results, and no study has examined the effects of fixation target characteristics on square-wave jerks, the most common type of saccadic intrusion. Here we set out to determine the effects of fixation target size and luminance on the characteristics of microsaccades and square-wave jerks, over a large range of stimulus parameters. Human subjects fixated a circular target with varying luminance and size while we recorded their eye movements with an infrared video tracker (EyeLink 1000, SR Research). We detected microsaccades and SWJs automatically with objective algorithms developed previously. Microsaccade rates decreased linearly and microsaccade magnitudes increased linearly with target size. The percent of microsaccades forming part of SWJs decreased, and the time from the end of the initial SWJ saccade to the beginning of the second SWJ saccade (SWJ inter-saccadic interval; ISI) increased with target size. The microsaccadic preference for horizontal direction also decreased moderately with target size . Target luminance did not affect significantly microsaccades or SWJs, however. In the absence of a fixation target, microsaccades became scarcer and larger, while SWJ prevalence decreased and SWJ ISIs increased. Thus, the choice of fixation target can affect experimental outcomes, especially in human factors and in visual and oculomotor studies. These results have implications for previous and future research conducted under fixation conditions, and should

  11. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    Science.gov (United States)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  12. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    Science.gov (United States)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  13. Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size

    Science.gov (United States)

    Li, Lingxiangyu; Fernández-Cruz, María Luisa; Connolly, Mona; Schuster, Michael; Navas, José María

    2015-01-01

    Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, 500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.

  14. Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingxiangyu [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, State Key Laboratory of Environmental Chemistry and Ecotoxicology (China); Fernández-Cruz, María Luisa; Connolly, Mona [Spanish National Institute for Agricultural and Food Research and Technology - INIA, Department of Environment (Spain); Schuster, Michael [Technische Universität München, Department of Chemistry (Germany); Navas, José María, E-mail: jmnavas@inia.es [Spanish National Institute for Agricultural and Food Research and Technology - INIA, Department of Environment (Spain)

    2015-01-15

    Here, the effects of incubation temperature and particle size on the dissolution and aggregation behavior of copper nanoparticles (CuNPs) in culture media were investigated over 96 h, equivalent to the time period for acute cell toxicity tests. Three CuNPs with the nominal sizes of 25, 50, and 100 nm and one type of micro-sized particles (MPs, ∼500 nm) were examined in culture media used for human and fish hepatoma cell lines acute tests. A large decrease in sizes of CuNPs in the culture media was observed in the first 24 h incubation, and subsequently the sizes of CuNPs changed slightly over the following 72 h. Moreover, the decreasing rate in size was significantly dependent on the incubation temperature; the higher the incubation temperature, the larger the decreasing rate in size. In addition to that, we also found that the release of copper ions depended on the incubation temperature. Moreover, the dissolution rate of Cu particles increased very fast in the first 24 h, with a slight increase over the following 72 h.

  15. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    Science.gov (United States)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  16. The Effect of Particle Size on the Erosion of Lunar Regolith from a Spacecraft Landing

    Science.gov (United States)

    Berger, Kyle; Brown, Brendan; Metzger, Philip; Hrenya, Christine

    2014-11-01

    The ejection of regolith from a spacecraft landing on an extraterrestrial body (Moon, Mars, etc.) can be extremely hazardous to anything near or possibly even far from the landing point. Models currently being used to describe this phenomenon use single particle trajectories and thus ignore the effects of inter-particle collisions. We seek to improve those models by incorporating the effects of collisions. We model the system using the discrete element method (DEM), which models the particles individually using Newton's laws and thus explicitly includes inter-particle collisions. The current study focuses on the effect of particle size, both in monodisperse systems, as well as polydisperse systems using binary and continuous particle size distributions (PSDs). While collisions above the surface are rare in the monodisperse case (about 0.0001% of eroded particles), they are relatively frequent in the binary case, particularly between unlike particle species (about 1--5% of eroded large particles). It is expected that as the size disparity becomes larger, which is the case for lunar regolith as it spans at least three orders of magnitude in size, this effect becomes enhanced. Differences in particle size can result in differences in velocity, leading to interesting phenomena.

  17. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao

    2013-09-01

    To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

  18. A review of the findings and theories on surface size effects on visual attention

    DEFF Research Database (Denmark)

    Peschel, Anne Odile; Orquin, Jacob Lund

    2013-01-01

    that large objects are more likely to be fixated, receive more fixations, and are fixated faster than small objects, a comprehensive explanation of this effect is still lacking. To bridge the theoretical gap, we relate the findings from this review to three theories of surface size effects suggested...... in the literature: a linear model based on the assumption of random fixations (Lohse, 1997), a theory of surface size as visual saliency (Pieters et al., 2007), and a theory based on competition for attention (CA; Janiszewski, 1998). We furthermore suggest a fourth model – demand for attention – which we derive...... from the theory of CA by revising the underlying model assumptions. In order to test the models against each other, we reanalyze data from an eye tracking study investigating surface size and saliency effects on attention. The reanalysis revealed little support for the first three theories while...

  19. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations.

    Science.gov (United States)

    Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B

    2013-09-08

    Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver

  20. Effect of particle size in the TL response of natural quartz sensitized with high gamma dose

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A B Jr; Guzzo, P L; Sullasi, H L; Khoury, H J, E-mail: alvarobcjr@yahoo.com.b

    2010-11-01

    The aim of this study is to investigate the effect of particle size in the thermoluminescence (TL) response of natural quartz sensitized with high gamma dose. For this, fragments of a single crystal taken from the Solonopole district (Brazil) were crushed and classified into ten size fractions ranging from 38 {mu}m to 5 mm. Aliquots of each size fraction were sensitized with 25 kGy of gamma dose of {sup 60}Co and heat-treated in a muffle furnace at 400{sup o}C. The non-sensitized samples were exposed to test doses between 50 Gy and 5 kGy and the sensitized samples were exposed to a unique test dose equal to 50 mGy. For non-sensitized samples, the TL peak near 325 {sup 0}C increases with the particle size decreasing. However, in the case of sensitized samples, the TL output near 280 {sup 0}C increases with the increasing of particle size up to mean grain size equal to 308 {mu}m. Above 308 {mu}m, an abrupt reduction in the TL intensity was noticed. These effects are discussed in relation to the specific surface area and the different interaction of high gamma doses with fine and coarse particles of quartz.

  1. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour.

    Science.gov (United States)

    Savlak, Nazlı; Türker, Burcu; Yeşilkanat, Nazlıcan

    2016-12-15

    The objective of this study was to examine the effect of particle size distribution on physical, chemical and functional properties of unripe banana flour for the first time. A pure triploid (AAA group) of Musa acuminata subgroup Cavendish (°Brix;0.2, pH;4.73, titratable acidity; 0.56g/100g malic acid, total solids; 27.42%) which was supplied from Gazipaşa, Antalya, Turkey from October 2014 to October 2015 was used. Size fractions of Particle size significantly effected color, water absorbtion index and wettability. L(∗) value decreased, a(∗) and b(∗) values decreased by increasing particle size (r(2)=-0.94, r(2)=0.72, r(2)=0.73 respectively). Particles under 212μm had the lowest rate of wettability (83.40s). A negative correlation between particle size and wettability (r(2)=-0.75) and positive correlation between particle size and water absorption index (r(2)=0.94) was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The effect of semantic set size on word learning by preschool children.

    Science.gov (United States)

    Storkel, Holly L; Adlof, Suzanne M

    2009-04-01

    The purpose was to determine whether semantic set size, a measure of the number of semantic neighbors, influenced word learning, and whether the influence of semantic set size was broad, showing effects on multiple measures both during and after learning. Thirty-six preschool children were exposed to 10 nonobjects, varying in semantic set size, paired with 10 nonwords, controlling phonotactic probability and neighborhood density. Nonobject-nonword pairs were presented in a game format. Learning was measured in naming and referent identification tasks administered before, during, and 1 week after training. Results showed no differences in naming or identifying the referents of the nonobject-nonword pairs with small versus large semantic set sizes before and during training. However, 1 week after training, children named and identified the referents of nonobject-nonword pairs with small set sizes more accurately than those with large set sizes. Similarity to known representations appears to influence word learning, regardless of whether the similarity involves lexical or semantic representations. However, the direction of the effect of similarity to known representations on word learning varies depending on the specific type of representation involved. Specifically, lexical similarity speeds learning, whereas semantic similarity slows learning.

  3. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

    Science.gov (United States)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M

    2011-07-15

    The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  4. The effect of cluster size variability on statistical power in cluster-randomized trials.

    Directory of Open Access Journals (Sweden)

    Stephen A Lauer

    Full Text Available The frequency of cluster-randomized trials (CRTs in peer-reviewed literature has increased exponentially over the past two decades. CRTs are a valuable tool for studying interventions that cannot be effectively implemented or randomized at the individual level. However, some aspects of the design and analysis of data from CRTs are more complex than those for individually randomized controlled trials. One of the key components to designing a successful CRT is calculating the proper sample size (i.e. number of clusters needed to attain an acceptable level of statistical power. In order to do this, a researcher must make assumptions about the value of several variables, including a fixed mean cluster size. In practice, cluster size can often vary dramatically. Few studies account for the effect of cluster size variation when assessing the statistical power for a given trial. We conducted a simulation study to investigate how the statistical power of CRTs changes with variable cluster sizes. In general, we observed that increases in cluster size variability lead to a decrease in power.

  5. Optical properties of fractal aggregates of nanoparticles: Effects of particle size polydispersity

    Science.gov (United States)

    Naeimi, Zahra; Miri, Mirfaez

    2009-12-01

    We study the effects of particle size dispersion on the absorption spectrum of nonfractal random gas of particles and fractal cluster-cluster aggregates. We use the coupled-dipole equations to describe the interaction of particles with the external electromagnetic wave. We express the absorption in terms of the spectral variable introduced by Bergman [Phys. Rev. B 19, 2359 (1979)]. In the case of nonfractal clusters, the particle size dispersion has no influence on the overall shape of the spectrum. In the case of fractal clusters, the bandwidth of the spectrum decreases as the particle size dispersion increases. Moreover, the maxima and minima of the spectrum vary, shift, and even disappear, as the particle size dispersion increases.

  6. The interactive effect of agitation condition and titania particle size in hydrothermal synthesis of titanate nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Safaei, Maryam; Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.i [Tarbiat Modares University (Iran, Islamic Republic of); Rashidzadeh, Mehdi [Research Institute of Petroleum Industry (Iran, Islamic Republic of)

    2010-10-15

    The nucleation and growth mechanisms of hydrothermal synthesized nanotitanates are proposed based on the interaction effect between agitation condition and pristine titania particle size. TEM examination and N{sub 2} adsorption measurements revealed distinct morphology and textural properties depending on TiO{sub 2} particle size in constant agitation condition. Regarding to the supersaturation degree, heterogeneous nucleation dominates for nanotubes formation from large particle size of raw material. On the other hand, homogeneous nucleation determines nanospheres formation from small particle size of raw material. The nanotubes have an outer diameter ranging from 8 to 10 nm and inner diameter of 2 to 3 nm. The nanospheres have diameters ranging from 50 to 100 nm.

  7. The effect of particle size on coercivity and crystallinity of SmCo5

    Energy Technology Data Exchange (ETDEWEB)

    Chen, CH; Knutson, SJ; Shen, Y; Wheeler, RA; Horwath, JC; Barnes, PN

    2011-07-04

    It is observed a turning point in the particle size for which the coercivity H-ci of a Sm-Co alloy reaches a peak. Using a broad size range from 20 nm to 5 mm, the turning point of the flake thickness for SmCo5 nanoflakes is determined in the range of 100-180 nm with H-ci peak at similar to 20 kOe. A lower coercivity at a particle size well below the turning point is likely related to a more detailed nanoscale morphology that controls coercivity. The effect of particle size on crystallinity for high energy milled powder is also discussed with four observations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3607958

  8. Martensitic transformations in nanostructured nitinol: Finite element modeling of grain size and distribution effects

    DEFF Research Database (Denmark)

    Liu, Hong-Sheng; Mishnaevsky, Leon

    2013-01-01

    transformation are totally suppressed. Graded and localized distributions of grain sizes of nitinol were compared with nitinol samples with homogeneous grain size distribution. In the materials with localized region of small grains, it was observed that the martensite rich regions form first on the border......A computational model of martensitic phase transformation in nanostructured nitinol is developed which takes into account the grain size effect. On the basis of the theoretical analysis of the thermodynamic transformation criterion and the energy barrier for phase transformation......, it was demonstrated that the energy barrier for martensitic phase transformation in nanocrystalline nitinol increase drastically with decreasing the grain size. Finite element simulations of phase transformations and structure evolution in nanocrystalline nitinol under mechanical (tensile) loading are carried out...

  9. The effects of size and geographic focus on the relationships between manufacturing practices and performances

    DEFF Research Database (Denmark)

    Matyusz, Zsolt; Demeter, Krisztina; Boer, Harry

    2009-01-01

    Each company has to invest in manufacturing management programs, methods and technologies in order to remain competitive. Previous studies, however, rarely took into account how the size and geographical focus of a business unit affect the relationship between manufacturing practices and performa......Each company has to invest in manufacturing management programs, methods and technologies in order to remain competitive. Previous studies, however, rarely took into account how the size and geographical focus of a business unit affect the relationship between manufacturing practices...... and performance. This paper analyzes the relationship between size, geographical focus, their effects on the use of manufacturing management programs, and their link to performance. Based on an international survey, we found significant characteristics among companies of different size and scope of operations....

  10. The effect of Nd:YAG laser capsulotomy size on refraction and visual acuity.

    Science.gov (United States)

    Yilmaz, Safiye; Ozdil, Mehmet Ali; Bozkir, Naci; Maden, Ahmet

    2006-09-01

    To determine the effect of Nd:YAG laser posterior capsulotomy size on refraction and visual acuity. A total of 128 pseudophakic eyes (108 patients) were included in this study and divided into two groups by capsulotomy size: 80 eyes had small capsulotomies (pupil and 48 eyes had large capsulotomies (> or = 4 mm and pupil. Visual acuities and refractive errors were measured preoperatively and 1, 14, 30, and 90 days postoperatively. Results were analyzed statistically. The change in spherical equivalent refraction was 0.38 +/- 0.52 diopters (D) in the small capsulotomy group and 0.22 +/- 0.36 D in the large capsulotomy group. No statistically significant differences were noted in spherical equivalent refraction change (P=.47) or capsulotomy size (P=.0387) between the two groups. The size of posterior capsulotomy does not significantly affect refraction and visual acuity.

  11. Size, crystal structure and morphology changes of IATO nanoparticles effect on its optical property

    Science.gov (United States)

    Hu, Te; Su, Yu-Chang; Liu, Si-Dong; Tang, Hong-Bo; Mu, Shi-Jia; Hu, Ze-Xing

    2014-09-01

    Controlling and changing size, crystal structure and morphology of antimony and tin-doped indium oxide (IATO) nanoparticles can effectively influence their specific optical properties. Nanocube-like, nanorod-like and nanosphere-like IATO nanoparticles have been fabricated from 20 to 200 nm in diameter by sintering as-prepared precursors with distinct crystallographic structures and morphologies. These nano-sized precursors are either cubic In(OH)3 or orthorhombic InOOH with different crystallographic sizes and shapes due to the use of different solvents (deionized water, absolute ethyl alcohol and ethylene glycol) in hydrothermal synthesis process. Characterization and comparison of experimental samples have detailedly demonstrated that desired optical properties of IATO nanoparticles should be attained by appropriate change of size, crystal structure and morphology of IATO nanoparticles.

  12. Effects of growth curve plasticity on size-structured population dynamics

    DEFF Research Database (Denmark)

    Zhang, Lai; Lin, Zhigui; Pedersen, Michael

    2011-01-01

    and reproduction. Moreover, the portion of surplus energy for reproduction is size-dependent and increases monotonically with size. Using the newly developed parameter continuation, we demonstrate their disparate effects on population dynamics. Results show that the size-dependent mechanism of energy allocation......The physiological-structured population models assume that a fixed fraction of energy intake is utilized for individual growth and maintenance while the remaining for adult fertility. The assumption results in two concerns: energy loss for juveniles and a reproduction dilemma for adults....... The dilemma results from the possibility that adults have to breed even if metabolic costs fail to be covered.We consider a size-structured population model, where standard metabolism is given top priority for utilizing energy intake and the surplus energy, if there is any, is distributed to individual growth...

  13. The Effects of Transient Emotional State and Workload on Size Scaling in Perspective Displays

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Q. Tran; Kimberly R. Raddatz

    2006-10-01

    Previous research has been devoted to the study of perceptual (e.g., number of depth cues) and cognitive (e.g., instructional set) factors that influence veridical size perception in perspective displays. However, considering that perspective displays have utility in high workload environments that often induce high arousal (e.g., aircraft cockpits), the present study sought to examine the effect of observers’ emotional state on the ability to perceive and judge veridical size. Within a dual-task paradigm, observers’ ability to make accurate size judgments was examined under conditions of induced emotional state (positive, negative, neutral) and high and low workload. Results showed that participants in both positive and negative induced emotional states were slower to make accurate size judgments than those not under induced emotional arousal. Results suggest that emotional state is an important factor that influences visual performance on perspective displays and is worthy of further study.

  14. Mean stress sensitivity of ductile iron with respect to technological and statistical size effect considering defects

    Directory of Open Access Journals (Sweden)

    Kainzinger Paul

    2014-06-01

    Full Text Available Specimens of two sizes have been taken from two sampling locations within a wind turbine hub made of nodular cast iron (EN-GJS-400-18-LT for constant amplitude fatigue testing. The sampling positions exhibit varying cooling conditions, resulting in different microstructures. Fatigue tests have been carried out at R-ratios of R = −1 and R = 0. The coarse microstructure as well as the larger specimens yielded in lower fatigue strengths. No effect of the microstructure or the specimen size on the mean stress sensitivity has been found. Fractographic analysis of the fractured specimen's surface revealed micro-shrinkages to be the source of crack initiation for all specimens. Micro-shrinkage size increases from fine to coarse microstructure and with increasing specimen size. The El-Haddad equation using the √area parameter was used to describe the fatigue limit. The results were in good agreement with the experiments.

  15. Particle size distribution effects on gas-particle mass transfer within electrostatic precipitators.

    Science.gov (United States)

    Clack, Herek L

    2006-06-15

    Varying degrees of mercury capture and transformation have been reported across electrostatic precipitators (ESPs). Previous analyses have shown that the dominant mass transfer mechanism responsible for mercury capture within ESPs is gas-particle mass transfer during particulate collection. Whereas previous analyses assumed dispersions of uniform size, the present analysis reveals the effects of polydispersity on both gas-particle mass transfer and particle collection within an ESP. The analysis reveals that the idealized monodisperse particle size distribution provides the highest gas-particle mass transfer but results in the lowest particle collection efficiency (% mass). As the particle size distribution broadens, gas-particle mass transfer decreases and particle collection efficiency increases. The results suggest that more than just reporting mean particle diameter provided by the sorbent manufacturer, pilot- and field-tests of sorbent injection for mercury emissions control need to experimentally measure the particle size distribution of the sorbent as it is injected in order to facilitate interpretation of their results.

  16. Effect of microorganism characteristics on leak size critical to predicting package sterility.

    Science.gov (United States)

    Keller, Scott; Marcy, Joseph; Blakistone, Barbara; Hackney, Cameron; Carter, W Hans; Lacy, George

    2003-09-01

    The effects of microorganism size and motility on the leak size critical to the sterility of a package, along with the imposed pressure required to initiate liquid flow for the critical leak size, were measured. Pseudomonas fragi Lacy-1052, Bacillus atrophaeus ATCC 49337, and Enterobacter aerogenes ATCC 29007 were employed to assess package sterility. One hundred twenty-six 7-mm-long microtubes with interior diameters of 5, 10, and 20 microm were used to simulate package defects. Forty-two solid microtubes were used as controls. No significant differences were found between sizes or motility statuses of test organisms with respect to loss of sterility as a result of microbial ingress into test cells with microtube interior diameters of 5, 10, and 20 microm (P > 0.05). Interactions between the initiation of liquid flow as a result of applied threshold pressures and sterility loss for test cells were significant (P < 0.05).

  17. Subnanometer Ga 2 O 3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga 2O 3, the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO 2 conduction band and the hole injection into the electrolyte are characterized in detail. © 2012 American Chemical Society.

  18. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  19. SI-traceable absolute distance measurement over more than 800 meters with sub-nanometer interferometry by two-color inline refractivity compensation

    Science.gov (United States)

    Meiners-Hagen, Karl; Meyer, Tobias; Mildner, Jutta; Pollinger, Florian

    2017-11-01

    In this work, we demonstrate two-color inline refractivity compensation in a heterodyne synthetic wavelength interferometer for a measurement of absolute distances over several hundred meters with sub-millimeter accuracy. Two frequency-doubled Nd:YAG lasers with a coherence length of more than 1 km are used as light sources. Direct SI traceability is achieved by controlling the lasers' frequency difference in the radio frequency regime. The resulting synthetic wavelengths at 532 nm and 1064 nm are used for the absolute distance measurement and dispersion-based inline refractive index compensation. A standard deviation of 50 μm is achieved for distances up to 864 m. This performance corresponds to a standard deviation of the observable, the difference of the four optical wavelengths, on a sub-nanometer level. Comparison against white light interferometry confirms sub-millimeter accuracy over this distance. Temporally resolved data over 864 m provide quantitative insights into the influence of chromatic beam paths.

  20. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Microstructure of MMC with larger particles becomes completely uniform, sooner. {yields} When the number of cycles increased, tensile strength for both samples improved. {yields} Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. {yields} First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 {mu}m were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 {mu}m particle size was more salient compared to the MMCs with 2 {mu}m particle size. Also, the composite strip with 40 {mu}m particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 {mu}m particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 {mu}m particle size was more than the composite strip with 2 {mu}m up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 {mu}m particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 {mu}m particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  1. The Effect of pH and High-Pressure Homogenization on Droplet Size

    Directory of Open Access Journals (Sweden)

    Ah Pis Yong

    2017-12-01

    Full Text Available The aims of this study are to revisit the effect of high pressure on homogenization and the influence of pH on the emulsion droplet sizes. The high-pressure homogenization (HPH involves two stages of processing, where the first stage involves in blending the coarse emulsion by a blender, and the second stage requires disruption of the coarse emulsion into smaller droplets by a high-pressure homogenizer. The pressure range in this review is in between 10-500 MPa. The homogenised droplet sizes can be reduced by increasing the homogenization recirculation, and there is a threshold point beyond that by applying pressure only, the size cannot be further reduced. Normally, homogenised emulsions are classified by their degree of kinetic stability. Dispersed phase present in the form of droplets while continuous phase also known as suspended droplets. With a proper homogenization recirculation and pressure, a more kinetically stable emulsion can be produced. The side effects of increasing homogenization pressure are that it can cause overprocessing of the emulsion droplets where the droplet sizes become larger rather than the expected smaller size. This can cause kinetic instability in the emulsion. The droplet size is usually measured by dynamic light scattering or by laser light scattering technique. The type of samples used in this reviews are such as chocolate and vanilla based powders; mean droplet sizes samples; basil oil; tomato; lupin protein; oil; skim milk, soymilk; coconut milk; tomato homogenate; corn; egg-yolk, rapeseed and sunflower; Poly(4-vinylpyridine/silica; and Complex 1 until complex 4 approaches from author case study. A relationship is developed between emulsion size and pH. Results clearly show that lower pH offers smaller droplet of emulsion and the opposite occurs when the pH is increased.

  2. Balancing the dilution and oddity effects: decisions depend on body size.

    Directory of Open Access Journals (Sweden)

    Gwendolen M Rodgers

    Full Text Available BACKGROUND: Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack. Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the 'oddity' effect. Thus, animals should choose group mates close in appearance to themselves (eg. similar size, whilst also choosing a large group. METHODOLOGY AND PRINCIPAL FINDINGS: We used the Trinidadian guppy (Poecilia reticulata, a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. CONCLUSIONS AND SIGNIFICANCE: Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size

  3. Formation of "Steady Size" State for Accurate Size Control of CdSe and CdS Quantum Dots.

    Science.gov (United States)

    Liu, Xinyue; Liu, Yixuan; Xu, Shu; Geng, Chong; Xie, Yangyang; Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang

    2017-08-03

    We report on the formation of a "steady size" state for the growth of CdSe and CdS quantum dots (QDs), in which the size of the QDs remains constant and independent of reaction time. Kinetic study reveals that this state exists only when certain coordinating ligands are within a range between NS and NV + NS. NS and NV represent the number of atoms on the surface of the QDs and the total amount of atoms in the QDs, respectively. Under this condition, the size R of the QDs can be controlled solely by the reaction temperature T with a relationship of 1/R2 ∼ T. More importantly, a highly reproducible and accurate linear control of the emission wavelength of QDs on a subnanometer scale by the reaction temperature is achieved. The discovery enables large-scale synthesis of QDs with minimum size variation that meets critical demands on wavelength accuracy for QD-based optoelectronic applications.

  4. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO{sub 2} transformation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Ramasamy [Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu 625 009 (India); National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India); Thamaraichelvan, Arunachalam [Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Kelambakkam, Tamilnadu 603 103 (India); Ganesan, Tharumeya Kuppusamy [Department of Chemistry, The American College, Madurai, Tamilnadu 625 002 (India); Viswanathan, Balasubramanian, E-mail: bvnathan@iitm.ac.in [National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India)

    2017-02-28

    Highlights: • On interaction with adsorbate CO{sub 2,} the adsorbent changes its configuration around the metal. • Electron transfer is faster in low coordinative environment of Cu. • CO formation is more favorable on Cu sites with even coordination number. • Cu at coordination number two has a over potential of −0.35 V. - Abstract: Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO{sub 2} to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO{sub 2} to CO at an applied potential of −0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO{sub 2} to various value added chemicals.

  5. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents.

    Science.gov (United States)

    Smolensky, Eric D; Park, Hee-Yun E; Zhou, Yue; Rolla, Gabriele A; Marjańska, Małgorzata; Botta, Mauro; Pierre, Valérie C

    2013-06-14

    The magnetic properties of iron oxide nanoparticles govern their relaxivities and efficacy as contrast agents for MRI. These properties are in turn determined by their composition, size and morphology. Herein we present a systematic study of the effect of particle size and shape of magnetite nanocrystals synthesized by thermal decompositions of iron salts on both their magnetism and their longitudinal and transverse relaxivities, r 1 and r 2 , respectively. Faceted nanoparticles demonstrate superior magnetism and relaxivities than spherical nanoparticles of similar size. For faceted nanoparticles, but not for spherical ones, r 1 and r 2 further increase with increasing particle size up to a size of 18 nm. This observation is in accordance with increasing saturation magnetization for nanoparticles increasing in size up to 12 nm, above which a plateau is observed. The NMRD (Nuclear Magnetic Resonance Dispersion) profiles of MIONs (Magnetic Iron Oxide Nanoparticles) display an increase in longitudinal relaxivity with decreasing magnetic field strength with a plateau below 1 MHz. The transverse relaxivity shows no dependence on the magnetic field strength between 20 MHz and 500 MHz. These observations translate to phantom MR images: in T 1 -weighted SWIFT (SWeep imaging with Fourier Transform) images MIONs have a positive contrast with little dependence on particle size, whereas in T 2 -weighted gradient-echo images MIONs create a negative contrast which increases in magnitude with increasing particle size. Altogether, these results will enable the development of particulate MRI contrast agents with enhanced efficacy for biomedical and clinical applications.

  6. Predictors of Citation Rate in Psychology: Inconclusive Influence of Effect and Sample Size.

    Science.gov (United States)

    Hanel, Paul H P; Haase, Jennifer

    2017-01-01

    In the present article, we investigate predictors of how often a scientific article is cited. Specifically, we focus on the influence of two often neglected predictors of citation rate: effect size and sample size, using samples from two psychological topical areas. Both can be considered as indicators of the importance of an article and post hoc (or observed) statistical power, and should, especially in applied fields, predict citation rates. In Study 1, effect size did not have an influence on citation rates across a topical area, both with and without controlling for numerous variables that have been previously linked to citation rates. In contrast, sample size predicted citation rates, but only while controlling for other variables. In Study 2, sample and partly effect sizes predicted citation rates, indicating that the relations vary even between scientific topical areas. Statistically significant results had more citations in Study 2 but not in Study 1. The results indicate that the importance (or power) of scientific findings may not be as strongly related to citation rate as is generally assumed.

  7. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles

    Science.gov (United States)

    Ager-Wick Ellingsen, Linda; Singh, Bhawna; Hammer Strømman, Anders

    2016-05-01

    The primary goal of this study is to investigate the effect of increasing battery size and driving range to the environmental impact of electric vehicles (EVs). To this end, we compile cradle-to-grave inventories for EVs in four size segments to determine their climate change potential. A second objective is to compare the lifecycle emissions of EVs to those of conventional vehicles. For this purpose, we collect lifecycle emissions for conventional vehicles reported by automobile manufacturers. The lifecycle greenhouse gas emissions are calculated per vehicle and over a total driving range of 180 000 km using the average European electricity mix. Process-based attributional LCA and the ReCiPe characterisation method are used to estimate the climate change potential from the hierarchical perspective. The differently sized EVs are compared to one another to find the effect of increasing the size and range of EVs. We also point out the sources of differences in lifecycle emissions between conventional- and electric vehicles. Furthermore, a sensitivity analysis assesses the change in lifecycle emissions when electricity with various energy sources power the EVs. The sensitivity analysis also examines how the use phase electricity sources influences the size and range effect.

  8. Investigation of the Effect of Pipeline Size on the Cross Flow Injection Process

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2016-06-01

    Full Text Available Injection pumps constitute an essential component for many industrial applications. The main focus of this study is to predict the effect of the size of the pipeline on the cross flow injection process. A test-rig was designed, built and equipped with three different pipelines, 1½", ¾" and ½" diameters. Comparison was made under constant line pressure of 40-bar and line flow rate of 5 liter/min, with a fixed injection pump rotational speed of 100 rpm. The main parameter tested was the injection dose capacity at different pump displacements. Cross flow mixing process is also theoretically studied using 3D-CFD analysis to show the injection cross flow behavior for the same geometry and parameters used for experimental test. Results show that increasing the size of the pipeline increases injection pump doses ability. This effect is insignificant at lower injection pump displacements, while the effect of the size of the pipeline becomes dominant when increasing the displacement. By changing the size of the pipeline from ½" to 1½" diameter injection pump dose capacity increases by 3.24% at 100% pump displacement. Selecting larger pipe sizes for injection ports is recommended whenever possible.

  9. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    Science.gov (United States)

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-09

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  10. Contact behavior modelling and its size effect on proton exchange membrane fuel cell

    Science.gov (United States)

    Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner

    2017-10-01

    Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.

  11. Neuronal correlates of the set-size effect in monkey lateral intraparietal area.

    Directory of Open Access Journals (Sweden)

    Puiu F Balan

    2008-07-01

    Full Text Available It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with each other, but the loci and mechanisms of this interference are unknown. Here we show that the set-size effect has a neural correlate in competitive visuo-visual interactions in the lateral intraparietal area, an area related to spatial attention and eye movements. Monkeys performed a covert visual search task in which they discriminated the orientation of a visual target surrounded by distractors. Neurons encoded target location, but responses associated with both target and distractors declined as a function of distractor number (set size. Firing rates associated with the target in the receptive field correlated with reaction time both within and across set sizes. The findings suggest that competitive visuo-visual interactions in areas related to spatial attention contribute to capacity limitations in visual searches.

  12. Grain size evolution in the mantle and its effect on geodynamics and seismic observables

    Science.gov (United States)

    Myhill, R.; Dannberg, J.; Eilon, Z.; Gassmoeller, R.; Moulik, P.; Faul, U.; Asimow, P. D.

    2014-12-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth and recrystallisation at phase transitions. Further expressions account for slow growth in multiphase assemblages resulting from pinning. Grain size variations also affect seismic properties of mantle materials. We use several formulations from the literature to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing seismic observables such as body wave travel times, ray paths, and attenuation (t*) as well as mode eigenfrequencies and quality factors at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. This work is based on a project started at the CIDER 2014 summer program. References: Bangerth, W. et al., 2014, ASPECT: Advanced Solver for Problems in Earth's ConvecTion. Computational

  13. Durability of Wood in Ground Contact – Effects of Specimen Size

    Directory of Open Access Journals (Sweden)

    Christian BRISCHKE

    2017-06-01

    Full Text Available The durability of wood in ground contact is affected by its material resistance on the one hand, and the exposure situation in the ground on the other hand. The latter is considered to be one of the most severe not at least due to permanent wetting and direct contact to a well-established microbial flora. In addition to physical, chemical, biological, and ecological soil parameters, the design of a wooden commodity which is in contact with the ground can have an effect on its durability. This study examined the effect of size of specimens used for in-ground durability tests. Standard EN 252 specimens, smaller mini-stake specimens, and larger double-size specimens were made from Scots pine sapwood and heartwood (Pinus sylvestris L., Norway spruce (Picea abies Karst., beech (Fagus sylvatica L., and English oak (Quercus robur L. and exposed in ground in a test field in Hannover-Herrenhausen, Germany. In addition, standard size specimens were exposed on the ground. Decay rates and corresponding durability classes according to European standards were determined. Decay proceeded slightly faster with decreasing specimen size, but for the majority of the tested materials no significant effect became apparent. However, the most durable material tested was English oak, for which durability was clearly affected by the specimen size. It was classified ‚durable’ (durability class DC 2 using double size stakes, ‚moderately durable’ (DC 3 using standard specimens, and ‚less durable’ (DC 4 using mini-stake specimens. Specimens exposed on-ground decayed significantly less rapidly compared to specimens buried in the ground to half of their length. The findings from this study recommend to use also test specimens, which are bigger dimensioned than standard specimens and thus closer in dimension to real size commodities. Otherwise, one might accept to underestimate the durability of particular wood-based materials.

  14. Effect of heliostat size on the levelized cost of electricity for power towers

    Science.gov (United States)

    Pidaparthi, Arvind; Hoffmann, Jaap

    2017-06-01

    The objective of this study is to investigate the effects of heliostat size on the levelized cost of electricity (LCOE) for power tower plants. These effects are analyzed in a power tower with a net capacity of 100 MWe, 8 hours of thermal energy storage and a solar multiple of 1.8 in Upington, South Africa. A large, medium and a small size heliostat with a total area of 115.56 m2, 43.3 m2 and 15.67 m2 respectively are considered for comparison. A radial-staggered pattern and an external cylindrical receiver are considered for the heliostat field layouts. The optical performance of the optimized heliostat field layouts has been evaluated by the Hermite (analytical) method using SolarPILOT, a tool used for the generation and optimization of the heliostat field layout. The heliostat cost per unit is calculated separately for the three different heliostat sizes and the effects due to size scaling, learning curve benefits and the price index is included. The annual operation and maintenance (O&M) costs are estimated separately for the three heliostat fields, where the number of personnel required in the field is determined by the number of heliostats in the field. The LCOE values are used as a figure of merit to compare the different heliostat sizes. The results, which include the economic and the optical performance along with the annual O&M costs, indicate that lowest LCOE values are achieved by the medium size heliostat with an area of 43.3 m2 for this configuration. This study will help power tower developers determine the optimal heliostat size for power tower plants currently in the development stage.

  15. Comparison of the effects of two bongo net mesh sizes on the estimation of abundance and size of Engraulidae eggs

    Directory of Open Access Journals (Sweden)

    Jana Menegassi del Favero

    2015-06-01

    Full Text Available Abstract Studies of ichthyoplankton retention by nets of different mesh sizes are important because they help in choosing a sampler when planning collection and the establishment of correction factors. These factors make it possible to compare studies performed with nets of different mesh sizes. In most studies of mesh retention of fish eggs, the taxonomic identification is done at the family level, resulting in the loss of detailed information. We separated Engraulidae eggs, obtained with 0.333 mm and 0.505 mm mesh bongo nets at 172 oceanographic stations in the southeastern Brazilian Bight, into four groups based on their morphometric characteristics. The difference in the abundance of eggs caught by the two nets was not significant for those groups with highest volume, types A and B, but in type C (Engraulis anchoita, the most eccentric, and in type D, of the smallest volume, the difference was significant. However, no significant difference was observed in the egg size sampled with each net for E. anchoita and type D, which exhibited higher abundance in the 0.333 mm mesh net and minor axis varying from 0.45-0.71 mm, smaller than the 0.505 mm mesh aperture and the mesh diagonal.

  16. Why what we teach depends on when: grade and reading intervention modality moderate effect size.

    Science.gov (United States)

    Suggate, Sebastian Paul

    2010-11-01

    Despite impressive advances in the science of reading intervention, how to best help at-risk readers remains a point of contention. Because reading represents the synthesis of background factors and language and reading skills-all of which develop with age and experience-this meta-analysis investigated whether development (as approximated by grade) and intervention modality are key moderators of intervention effect size for disadvantaged readers. Eighty-five experimental or quasi-experimental studies with 116 treatment-control groups (N = 7,522) were selected from preschool to Grade 7. Analyses accounted for intervention length, instructor-to-student ratio, measure design, experimental design, attrition, intervention language, and publication bias. Between-group comparisons suggested that effect sizes were larger for older students, comprehension interventions, quasi-experimental studies, and samples at greater risk. In hierarchical regression analyses, intervention modality alone did not explain additional variance in effect size; however, when interacting with grade, intervention modality did explain additional variance. Phonics interventions were more effective until Grade 1, after which comprehension and mixed interventions, in particular, tended to be associated with greater effect sizes. These results highlight the importance of a developmental understanding of reading remediation.

  17. Finite-size effects on molecular dynamics interfacial thermal-resistance predictions

    Science.gov (United States)

    Liang, Zhi; Keblinski, Pawel

    2014-08-01

    Using molecular dynamics simulations, we study the role of finite size effects on the determination of interfacial thermal resistance between two solids characterized by high phonon mean free paths. In particular, we will show that a direct, heat source-sink method leads to strong size effect, associated with ballistic phonon transport to and from, and specular reflections at the simulation domain boundary. Lack of proper account for these effects can lead to incorrect predictions about the role of interfacial bonding and structure on interfacial thermal resistance. We also show that the finite size effect can be dramatically reduced by introduction of rough external boundaries leading to diffuse phonon scattering, as explicitly demonstrated by phonon wave-packet simulations. Finally, we demonstrate that when careful considerations are given to the effects associated with the finite heat capacity of the simulation domains and phonon scattering from the external surfaces, a size-independent interfacial resistance can be properly extracted from the time integral of the correlation function of heat power across the interface. Our work demonstrates that reliable and consistent values of the interfacial thermal resistance can be obtained by equilibrium and nonequilibrium methods with a relatively small computational cost.

  18. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  19. Controlling atomistic processes on Pb films via quantum size effects and lattice rotation

    Energy Technology Data Exchange (ETDEWEB)

    Binz, Steven [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The two main techniques used to record the data in this dissertation were Spot Profile Analysis - Low Energy Electron Diffraction (SPA-LEED) and Scanning Tunneling Microscopy (STM). A specific data analysis technique for LEED data called G(S) curves is described in depth. G(S) curves can provide a great deal of structural information about the surface; including step heights, island size, and island separation. The effects of quantum size effects (QSE) on the diffusion and critical island sizes of Pb and In on Pb films are reported. Pb depositions on the 2D In phases {radical}3 and {radical}31 to see how the phases affect the Pb growth and its strong QSE are reported.

  20. Combustion synthesis of nano-sized tungsten carbide powder and effects of sodium halides

    Science.gov (United States)

    Won, H. I.; Nersisyan, H. H.; Won, C. W.

    2010-02-01

    The synthesis of nano-size tungsten carbide powder has been investigated with a WO3 + Mg + C + carbonate system using alkali halides. The effects of different types of alkali halides on combustion temperature and tungsten carbide formation were discussed. Sodium fluoride had a notable effect on the particle size of the product and the degree of transformation from the initial mixture. A small amount of ammonium carbonate activated the carburization of tungsten carbide by the gas phase carbon transportation. X-ray diffraction data and particle analysis showed that the final product synthesized from a WO3-Mg-C-(NH4)2CO3-NaF system contains pure-phase tungsten carbide with a particle size of 50-100 nm.

  1. Effect of Salinity and Seed Size on Lentil (Lens culinaris Medik Germination and Seedling Growth Properties

    Directory of Open Access Journals (Sweden)

    Y Alizadeh

    2012-02-01

    Full Text Available Both soil and water salinity is one of the main reasons in decreasing germination, seedling growth and establishment in many arid and semiarid parts of world especially in our country. For this reason in order to evaluate the effect of lentil seed size on germination and seedling growth properties that was under effect of salinity stress, a completely randomized design with factorial arrangement and 3 replications conducted using two lentils genotypes (Robatt and Gachsaran, two small and large seed sizes (34.8 and 59 mg in Robatt and 41.5 and 69 mg in Gachsaran per seed, respectively and five drought levels (0, 0.5, 0.8, 1.2 and 1.7 percent of NaCl in 2008s. Results showed that Robatt genotype had higher germination rate and salinity tolerance than Gachsaran. In addition seed size had significant different (P

  2. Ion size effects on the electrokinetics of salt-free concentrated suspensions in ac fields

    Science.gov (United States)

    Roa, Rafael; Carrique, Félix; Ruiz-Reina, Emilio

    2012-12-01

    We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged colloidal particles and the added counterions released by the particles to the solution, that counterbalance their surface charge. In the frequency domain, we study the dynamic electrophoretic mobility of the particles and the dielectric response of the suspension. We find that the Maxwell-Wagner-O'Konski process associated with the counterions condensation layer, is enhanced for moderate to high particle charges, yielding an increment of the mobility for such frequencies. We also find that the increment of the mobility grows with ion size and particle charge. All these facts show the importance of including ion size effects in any extension attempting to improve standard electrokinetic models.

  3. Effect of nano-oxide particle size on radiation resistance of iron–chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weizong; Li, Lulu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Valdez, James A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Saber, Mostafa [Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201 (United States); Zhu, Yuntian, E-mail: ytzhu@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-02-15

    Radiation resistance of Fe–14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700–1500 He bubbles at the depth of about 150–700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5–4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  4. Size effects and strain localization in atomic-scale cleavage modeling

    Science.gov (United States)

    Elsner, B. A. M.; Müller, S.

    2015-09-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics.

  5. Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes.

    Directory of Open Access Journals (Sweden)

    Sven Stringer

    Full Text Available Complex diseases are often highly heritable. However, for many complex traits only a small proportion of the heritability can be explained by observed genetic variants in traditional genome-wide association (GWA studies. Moreover, for some of those traits few significant SNPs have been identified. Single SNP association methods test for association at a single SNP, ignoring the effect of other SNPs. We show using a simple multi-locus odds model of complex disease that moderate to large effect sizes of causal variants may be estimated as relatively small effect sizes in single SNP association testing. This underestimation effect is most severe for diseases influenced by numerous risk variants. We relate the underestimation effect to the concept of non-collapsibility found in the statistics literature. As described, continuous phenotypes generated with linear genetic models are not affected by this underestimation effect. Since many GWA studies apply single SNP analysis to dichotomous phenotypes, previously reported results potentially underestimate true effect sizes, thereby impeding identification of true effect SNPs. Therefore, when a multi-locus model of disease risk is assumed, a multi SNP analysis may be more appropriate.

  6. Effect of size polydispersity versus particle shape in dense granular media.

    Science.gov (United States)

    Nguyen, Duc-Hanh; Azéma, Emilien; Radjai, Farhang; Sornay, Philippe

    2014-07-01

    We present a detailed analysis of the morphology of granular systems composed of frictionless pentagonal particles by varying systematically both the size span and particle shape irregularity, which represent two polydispersity parameters of the system. The microstructure is characterized in terms of various statistical descriptors such as global and local packing fractions, radial distribution functions, coordination number, and fraction of floating particles. We find that the packing fraction increases with the two parameters of polydispersity, but the effect of shape polydispersity for all the investigated structural properties is significant only at low size polydispersity where the positional and/or orientational ordering of the particles prevail. We focus in more detail on the class of side/side contacts, which is the interesting feature of our system as compared to a packing of disks. We show that the proportion of such contacts has weak dependence on the polydispersity parameters. The side- side contacts do not percolate but they define clusters of increasing size as a function of size polydispersity and decreasing size as a function of shape polydispersity. The clusters have anisotropic shapes but with a decreasing aspect ratio as polydispersity increases. This feature is argued to be a consequence of strong force chains (forces above the mean), which are mainly captured by side-side contacts. Finally, the force transmission is intrinsically multiscale, with a mean force increasing linearly with particle size.

  7. Effect of particle size on the thermal expansion of nanostructured lead sulfide films

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, S.I.; Gusev, A.I., E-mail: gusev@ihim.uran.ru

    2014-10-15

    Highlights: • PbS nanofilms prepared by chemical deposition have a D0{sub 3}-type crystal structure. • Thermal expansion coefficient α of PbS nanofilm is twice as large as that of bulk PbS. • Large difference in the coefficients α is due to the small particle size in PbS film. • Small size of particles in PbS film increases the anharmonicity of atomic vibrations. - Abstract: The effect of particle size on the thermal expansion of nanostructured lead sulfide films produced by hydrochemical deposition has been studied. The coherent scattering region size and thermal expansion coefficients of PbS nanofilm have been measured depending on the annealing temperature in the interval 293–473 K and on the duration of annealing at a constant temperature of 423 K. It is found that the thermal expansion coefficient α of nanostructured PbS film is nearly twice as large as that of bulk lead sulfide. It is shown that the observed large difference in the coefficients α is due to the small size of PbS particles in the film that leads to the change of the phonon spectrum boundaries and to the growth of anharmonicity of atomic vibrations. The additional contribution to the thermal expansion coefficient caused by the small particle size in PbS nanofilm is estimated theoretically.

  8. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation

    Science.gov (United States)

    Liu, Dandan; Pan, Hao; He, Fengwei; Wang, Xiaoyu; Li, Jinyu; Yang, Xinggang; Pan, Weisan

    2015-01-01

    The purpose of this work was to explore the particle size reduction effect of carvedilol on dissolution and absorption. Three suspensions containing different sized particles were prepared by antisolvent precipitation method or in combination with an ultrasonication process. The suspensions were characterized for particle size, surface morphology, and crystalline state. The crystalline form of carvedilol was changed into amorphous form after antisolvent precipitation. The dissolution rate of carvedilol was significantly accelerated by a reduction in particle size. The intestinal absorption of carvedilol nanosuspensions was greatly improved in comparison with microsuspensions and solution in the in situ single-pass perfusion experiment. The in vivo evaluation demonstrated that carvedilol nanosuspensions and microsuspensions exhibited markedly increased Cmax (2.09- and 1.48-fold) and AUC0−t (2.11- and 1.51-fold), and decreased Tmax (0.34- and 0.48-fold) in contrast with carvedilol coarse suspensions. Moreover, carvedilol nanosuspensions showed good biocompatibility with the rat gastric mucosa in in vivo gastrointestinal irritation test. The entire results implicated that the dissolution rate and the oral absorption of carvedilol were significantly affected by the particle size. Particle size reduction to form nanosized particles was found to be an efficient method for improving the oral bioavailability of carvedilol. PMID:26508852

  9. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    Science.gov (United States)

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  10. Effect of particle size distribution on the rheology of oil-coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hao, L.; Wang, Y.; Xiong, C. [China University of Mining and Technology, Beijing (China)

    2007-02-15

    The rheological behaviour of Shenhua coal-oil slurry was studied as a function of solids concentration, particle size and size distribution. At a certain particle size distribution the apparent viscosity of coal slurry increases with the increase of solid concentration. Coal slurries were found to exhibit a wide spectrum of flow behaviour ranging from Newtonian at low concentrations to shear-thinning and pseudoplastic with a yield stress at higher concentrations. By adding a narrow-sized coarse coal fraction to the finer coal slurry, a flow characteristics optimum coarse-to-fine particle ratio of 40:60 exists at which the slurry is Newtonian. The significant improvement in the rheological behavior with changing the particle size distribution may be explained in terms of spatial rearrangement of the particles and apparent dilution effect. The results indicate that, with a careful control of the particle size distribution, it is possible to prepare an optimum oil-coal slurry which has a low viscosity but with high solids loadings. 10 refs., 4 figs., 3 tabs.

  11. The Effect of Grain Size on Fatigue Growth of Short Cracks

    Science.gov (United States)

    Zurek, A. K.; James, M. R.; Morris, W. L.

    1983-08-01

    The influence of alloy grain size on growth rates of surface cracks 20 to 500 μm in length was studied in Al 7075-T6 specimens prepared in 12 and 130 μn grain sizes. Grain boundaries temporarily interrupt the propagation of cracks shorter than several grain diameters in length. Linear elastic fracture mechanics is inadequate to describe resulting average growth rates which must instead be characterized as a function of cyclic stress amplitude, σa, and alloy grain size as well as stress intensity range, σ K. These observations are rationalized using two models, one that relates crack closure stress to alloy grain size, and a second that relates the development of microplasticity in a new grain in the crack path to grain size. In addition, growth rates were found to be faster in fully reversed loading than in tension-tension loading, especially in the large grained material. Evidence is presented to demonstrate that this is a consequence of the fatigue induced development of a compressive residual surface stress during tension-tension loading. These complex effects, and the role of grain size in determining short crack growth, are discussed.

  12. Effects of varying gravity levels in parabolic flight on the size-mass illusion.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available When an observer lifts two objects with the same weight but different sizes, the smaller object is consistently reported to feel heavier than the larger object even after repeated trials. Here we explored the effect of reduced and increased gravity on this perceptual size-mass illusion. Experiments were performed on board the CNES Airbus A300 Zero-G during parabolic flights eliciting repeated exposures to short periods of zero g, 0.16 g, 0.38 g, one g, and 1.8 g. Subjects were asked to assess perceived heaviness by actively oscillating objects with various sizes and masses. The results showed that a perceptual size-mass illusion was clearly present at all gravity levels. During the oscillations, the peak arm acceleration varied as a function of the gravity level, irrespective of the mass and size of the objects. In other words we did not observe a sensorimotor size-mass illusion. These findings confirm dissociation between the sensorimotor and perceptual systems for determining object mass. In addition, they suggest that astronauts on the Moon or Mars with the eyes closed will be able to accurately determine the relative difference in mass between objects.

  13. The effect of mastication muscular tone on facial size in patients with Down syndrome

    Directory of Open Access Journals (Sweden)

    Margaretha Suharsini

    2006-12-01

    Full Text Available Muscular hypotonia is one of the clinical signs in patients with Down syndrome. As a characteristic of patients with Down syndrome, hypotonia is clearly evident in face expression and oral dysfunction. Dentocraniofacial growth abnormalities in patients with Down syndrome may be influenced by genetic and environmental factors. Stomatognathic system musculature as an environmental factor (factor outside the bone can affect dentocraniofacial growth by orofacial muscles activities when chewing, swallowing, breathing, and speaking. Oral dysfunctions commonly seen in patients with Down syndrome are open mouth, protruding tongue posture, difficulties when chewing, swallowing, and speaking, drooling, and mouth breathing. The purpose of this study was to observe how the mastication muscular tone affecting the facial size of Down syndrome patient. Twenty five of 14–18 years old children with Down syndrome were diagnosed by clinical characteristic and cytogenetic examination. Mastication muscular tone was described by masseter and temporalis muscle synergy and oral function, whereas the facial size consisted of facial size of lateral, anteroposterior and vertical growth. The result of regression test revealed that the degree of mastication muscular tone has a significant effect on facial size of the anteroposterior growth and facial size of vertical growth, but did not significantly influence the facial size of lateral growth.

  14. Information overload or search-amplified risk? Set size and order effects on decisions from experience.

    Science.gov (United States)

    Hills, Thomas T; Noguchi, Takao; Gibbert, Michael

    2013-10-01

    How do changes in choice-set size influence information search and subsequent decisions? Moreover, does information overload influence information processing with larger choice sets? We investigated these questions by letting people freely explore sets of gambles before choosing one of them, with the choice sets either increasing or decreasing in number for each participant (from two to 32 gambles). Set size influenced information search, with participants taking more samples overall, but sampling a smaller proportion of gambles and taking fewer samples per gamble, when set sizes were larger. The order of choice sets also influenced search, with participants sampling from more gambles and taking more samples overall if they started with smaller as opposed to larger choice sets. Inconsistent with information overload, information processing appeared consistent across set sizes and choice order conditions, reliably favoring gambles with higher sample means. Despite the lack of evidence for information overload, changes in information search did lead to systematic changes in choice: People who started with smaller choice sets were more likely to choose gambles with the highest expected values, but only for small set sizes. For large set sizes, the increase in total samples increased the likelihood of encountering rare events at the same time that the reduction in samples per gamble amplified the effect of these rare events when they occurred-what we call search-amplified risk. This led to riskier choices for individuals whose choices most closely followed the sample mean.

  15. Effects of habitat features on size-biased predation on salmon by bears.

    Science.gov (United States)

    Andersson, Luke C; Reynolds, John D

    2017-05-01

    Predators can drive trait divergence among populations of prey by imposing differential selection on prey traits. Habitat characteristics can mediate predator selectivity by providing refuge for prey. We quantified the effects of stream characteristics on biases in the sizes of spawning salmon caught by bears (Ursus arctos and U. americanus) on the central coast of British Columbia, Canada by measuring size-biased predation on spawning chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in 12 streams with varying habitat characteristics. We tested the hypotheses that bears would catch larger than average salmon (size-biased predation) and that this bias toward larger fish would be higher in streams that provide less protection to spawning salmon from predation (e.g., less pools, wood, undercut banks). We then we tested for how such size biases in turn translate into differences among populations in the sizes of the fish. Bears caught larger-than-average salmon as the spawning season progressed and as predicted, this was most pronounced in streams with fewer refugia for the fish (i.e., wood and undercut banks). Salmon were marginally smaller in streams with more pronounced size-biased predation but this predictor was less reliable than physical characteristics of streams, with larger fish in wider, deeper streams. These results support the hypothesis that selective forces imposed by predators can be mediated by habitat characteristics, with potential consequences for physical traits of prey.

  16. Effect of pore size on performance of monolithic tube chromatography of large biomolecules.

    Science.gov (United States)

    Podgornik, Ales; Hamachi, Masataka; Isakari, Yu; Yoshimoto, Noriko; Yamamoto, Shuichi

    2017-11-01

    Effect of pore size on the performance of ion-exchange monolith tube chromatography of large biomolecules was investigated. Radial flow 1 mL polymer based monolith tubes of different pore sizes (1.5, 2, and 6 μm) were tested with model samples such as 20 mer poly T-DNA, basic proteins, and acidic proteins (molecular weight 14 000-670 000). Pressure drop, pH transient, the number of binding site, dynamic binding capacity, and peak width were examined. Pressure drop-flow rate curves and dynamic binding capacity values were well correlated with the nominal pore size. While duration of the pH transient curves depends on the pore size, it was found that pH duration normalized on estimated surface area was constant, indicating that the ligand density is the same. This was also confirmed by the constant number of binding site values being independent of pore size. The peak width values were similar to those for axial flow monolith chromatography. These results showed that it is easy to scale up axial flow monolith chromatography to radial flow monolith tube chromatography by choosing the right pore size in terms of the pressure drop and capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluating the Effect of Dataset Size on Predictive Model Using Supervised Learning Technique

    Directory of Open Access Journals (Sweden)

    A. R. Ajiboye

    2015-02-01

    Full Text Available Learning models used for prediction purposes are mostly developed without paying much cognizance to the size of datasets that can produce models of high accuracy and better generalization. Although, the general believe is that, large dataset is needed to construct a predictive learning model. To describe a data set as large in size, perhaps, is circumstance dependent, thus, what constitutes a dataset to be considered as being big or small is vague. In this paper, the ability of the predictive model to generalize with respect to a particular size of data when simulated with new untrained input is examined. The study experiments on three different sizes of data using Matlab program to create predictive models with a view to establishing if the size of data has any effect on the accuracy of a model. The simulated output of each model is measured using the Mean Absolute Error (MAE and comparisons are made. Findings from this study reveals that, the quantity of data partitioned for the purpose of training must be of good representation of the entire sets and sufficient enough to span through the input space. The results of simulating the three network models also shows that, the learning model with the largest size of training sets appears to be the most accurate and consistently delivers a much better and stable results.

  18. Effect of Grain Size on the Corrosion Behavior of 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    M. Atapour

    2016-03-01

    Full Text Available In this investigation, the effect of grain size on the corrosion behavior of 304L stainless steel has been studied. Samples with grain sizes of 0.5, 3 and 12 micrometers were fabricated through formation of strain-induced martensite by 80% cold rolling of the stainless steel sheets at -15 °C and its reversion to austenite during annealing at 900 °C for 1, 5 and 180 min. The corrosion behavior of samples with different grain sizes was investigated by cyclic polarization experiments and  immersion tests in 0.1 M hydrochloric acid (HCl. The polarisation tests showed no differences in uniform corrosion rates of the samples. The results of the cyclic polarisation and immersion tests showed that decreasing the grain size improved the pitting corrosion resistance from 290 mVAg/Agcl for grain size of 12 micrometers to 420 mVAg/Agcl for grain size of 0.5 micrometers.

  19. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    El Wahabi, M. [Centre SMS, CNRS UMR 5146, Ecole Nationale Superieure des Mines de Saint-Etienne, 158, cours Fauriel-42023, Saint-Etienne Cedex 2 (France); Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB - Universidad Politecnica de Cataluna, Av. Diagonal 647, 08028-Barcelona (Spain); Gavard, L. [Centre SMS, CNRS UMR 5146, Ecole Nationale Superieure des Mines de Saint-Etienne, 158, cours Fauriel-42023, Saint-Etienne Cedex 2 (France); Montheillet, F. [Centre SMS, CNRS UMR 5146, Ecole Nationale Superieure des Mines de Saint-Etienne, 158, cours Fauriel-42023, Saint-Etienne Cedex 2 (France); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB - Universidad Politecnica de Cataluna, Av. Diagonal 647, 08028-Barcelona (Spain)]. E-mail: jose.maria.cabrera@upc.edu; Prado, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB - Universidad Politecnica de Cataluna, Av. Diagonal 647, 08028-Barcelona (Spain)

    2005-10-15

    The influence of initial microstructure on discontinuous dynamic recrystallization (DDRX) has been investigated by using high purity and ultra high purity austenitic stainless steels with various initial grain sizes. After uniaxial compression tests at constant strain rates and various temperatures, the steady state microstructure or the state corresponding to the maximum strain ({epsilon} = 1) attained in the test was analyzed by scanning electron microscopy aided with automated electron back scattering diffraction. Recrystallized grain size d {sub rec} and twin boundary fraction f {sub TB} measurements were carried out. The mechanical behavior was also investigated by comparing experimental stress-strain curves with various initial grain sizes. DDRX kinetics was described by the classical Avrami equation. It was concluded that larger initial grain sizes promoted a delay in the DDRX onset in the two alloys. It was also observed that the softening process progressed faster for smaller initial grain sizes. The effect of initial grain size is larger in the HP material and becomes more pronounced at low temperature.

  20. DIRECT AND INDIRECT ESTIMATES OF NEIGHBORHOOD AND EFFECTIVE POPULATION SIZE IN A TROPICAL PALM, ASTROCARYUM MEXICANUM.

    Science.gov (United States)

    Eguiarte, Luis E; Búrquez, Alberto; Rodríguez, Jorge; Martínez-Ramos, Miguel; Sarukhán, José; Pinero, Daniel

    1993-02-01

    To estimate the relative importance of genetic drift, the effective population size ∗∗∗(Ne ) can be used. Here we present estimates of the effective population size and related measures in Astrocaryum mexicanum, a tropical palm from Los Tuxtlas rain forest, Veracruz, Mexico. Seed and pollen dispersal were measured. Seeds are primarily dispersed by gravity and secondarily dispersed by small mammals. Mean primary and secondary dispersal distances for seeds were found to be small (0.78 m and 2.35 m, respectively). A. mexicanum is beetle pollinated and pollen movements were measured by different methods: a) using fluorescent dyes, b) as the minimum distance between active female and male inflorescences, and c) using rare allozyme alleles as genetic markers. All three estimates of pollen dispersal were similar, with a mean of approximately 20 m. Using the seed and pollen dispersal data, the genetic neighborhood area (A) was estimated to be 2,551 m(2) . To obtain the effective population size, three different overlapping generation methods were used to estimate an effective density with demographic data from six permanent plots. The effective density ranged from 0.040 to 0.351 individuals per m(2) . The product of effective density and neighborhood area yields a direct estimate of the neighborhood effective population size (Nb ). Nb ranged from 102 to 895 individuals. Indirect estimates of population size and migration rate (Nm) were obtained using Fst for five different allozymic loci for both adults and seeds. We obtained a range of Nm from 1.2 to 19.7 in adults and a range of Nm from 4.0 to 82.6 for seeds. We discuss possible causes of the smaller indirect estimates of Nm relative to the direct and compare our estimates with values from other plant populations. Gene dispersal distances, neighborhood size, and effective population size in A. mexicanum are relatively high, suggesting that natural selection, rather than genetic drift, may play a dominant role in