WorldWideScience

Sample records for submodels ash physics

  1. The sympletic collective model and its submodels

    International Nuclear Information System (INIS)

    Santos Avancini, S. dos.

    1986-01-01

    A review the sympletic collective model (SCM), emphasizing the mathematical and physical content of the model is done. Since the SCM is not computationally viable, a detailed discussion of the properties and relationships of the SCM submodels both, in a spherical and in a deformed harmonic oscillator basis is presented. It is shown that the deformed basis is an optimal one, from an analysis of the variational models, variation before projection (VBP) and variation after projection (VAP). To demonstrate that a calculation in the deformed basis is feasible, the submodel Sp paral. (1,R) x Sp perpend. (1,R) to calculate matrix elements of the operators of physical interest in 8 Be is considered. The Sp (1,R) x Sp 1 (1,R) is the simplest submodel which contains the states of VBP and VAP. (author) [pt

  2. BPS submodels of the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)

    2017-06-10

    We show that the standard Skyrme model without pion mass term can be expressed as a sum of two BPS submodels, i.e., of two models whose static field equations, independently, can be reduced to first order equations. Further, these first order (BPS) equations have nontrivial solutions, at least locally. These two submodels, however, cannot have common solutions. Our findings also shed some light on the rational map approximation. Finally, we consider certain generalisations of the BPS submodels.

  3. BPS submodels of the Skyrme model

    Directory of Open Access Journals (Sweden)

    C. Adam

    2017-06-01

    Full Text Available We show that the standard Skyrme model without pion mass term can be expressed as a sum of two BPS submodels, i.e., of two models whose static field equations, independently, can be reduced to first order equations. Further, these first order (BPS equations have nontrivial solutions, at least locally. These two submodels, however, cannot have common solutions. Our findings also shed some light on the rational map approximation. Finally, we consider certain generalisations of the BPS submodels.

  4. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Y. Wu

    2004-01-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11

  5. Software life cycle dynamic simulation model: The organizational performance submodel

    Science.gov (United States)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  6. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  7. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    Science.gov (United States)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  8. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    Science.gov (United States)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  9. Investigation of the submodels for combustion; Polton osamallien kaeytettaevyys

    Energy Technology Data Exchange (ETDEWEB)

    Kjaeldman, L.; Huttunen, M.; Kyttaelae, J. [VTT Energy, Espoo (Finland)

    1997-10-01

    The capability for numerical analysis of flow, combustion and heat transfer in furnaces has been developed by improving the knowledge of the sensitivity of computed results on submodels recently implemented to the computational environment Ardemus owned by VTT Energy and Imatran Voima Oy. The submodels studied include models for combustion of gaseous (pyrolysed) fuel and for nitric oxide. The cases investigated included a gas flame and pulverized coal and peat combustion in single burner furnaces. The effect of grid refinement on the results was investigated for a corner fired power station furnace. (orig.)

  10. Sub-Model Partial Least Squares for Improved Accuracy in Quantitative Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Anderson, R. B.; Clegg, S. M.; Frydenvang, J.

    2015-12-01

    One of the primary challenges faced by the ChemCam instrument on the Curiosity Mars rover is developing a regression model that can accurately predict the composition of the wide range of target types encountered (basalts, calcium sulfate, feldspar, oxides, etc.). The original calibration used 69 rock standards to train a partial least squares (PLS) model for each major element. By expanding the suite of calibration samples to >400 targets spanning a wider range of compositions, the accuracy of the model was improved, but some targets with "extreme" compositions (e.g. pure minerals) were still poorly predicted. We have therefore developed a simple method, referred to as "submodel PLS", to improve the performance of PLS across a wide range of target compositions. In addition to generating a "full" (0-100 wt.%) PLS model for the element of interest, we also generate several overlapping submodels (e.g. for SiO2, we generate "low" (0-50 wt.%), "mid" (30-70 wt.%), and "high" (60-100 wt.%) models). The submodels are generally more accurate than the "full" model for samples within their range because they are able to adjust for matrix effects that are specific to that range. To predict the composition of an unknown target, we first predict the composition with the submodels and the "full" model. Then, based on the predicted composition from the "full" model, the appropriate submodel prediction can be used (e.g. if the full model predicts a low composition, use the "low" model result, which is likely to be more accurate). For samples with "full" predictions that occur in a region of overlap between submodels, the submodel predictions are "blended" using a simple linear weighted sum. The submodel PLS method shows improvements in most of the major elements predicted by ChemCam and reduces the occurrence of negative predictions for low wt.% targets. Submodel PLS is currently being used in conjunction with ICA regression for the major element compositions of ChemCam data.

  11. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model

  12. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  13. Modelling, databases and the P submodel

    International Nuclear Information System (INIS)

    Heng, L.K.

    2000-01-01

    This paper provides a brief overview of computer-simulation decision-support systems, and describes the data necessary for their generation and validation, their role in modern agricultural research and their potential utility for researchers and growers. Data from field experiments in Venezuela and Thailand were used to test the P submodel within DSSAT (Decision Support Systems for Agrotechnology Transfer), and close agreements in the maize grain yields were obtained between measured and simulated numbers for various P treatments including phosphate rocks. (author)

  14. Bolted Ribs Analysis for the ITER Vacuum Vessel using Finite Element Submodelling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zarzalejos, José María, E-mail: jose.zarzalejos@ext.f4e.europa.eu [External at F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019, Barcelona (Spain); Fernández, Elena; Caixas, Joan; Bayón, Angel [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019, Barcelona (Spain); Polo, Joaquín [Iberdrola Ingeniería y Construcción, Avenida de Manoteras 20, 28050 Madrid (Spain); Guirao, Julio [Numerical Analysis Technologies, S L., Marqués de San Esteban 52, Entlo, 33209 Gijon (Spain); García Cid, Javier [Iberdrola Ingeniería y Construcción, Avenida de Manoteras 20, 28050 Madrid (Spain); Rodríguez, Eduardo [Mechanical Engineering Department EPSIG, University of Oviedo, Gijon (Spain)

    2014-10-15

    Highlights: • The ITER Vacuum Vessel Bolted Ribs assemblies are modelled using Finite Elements. • Finite Element submodelling techniques are used. • Stress results are obtained for all the assemblies and a post-processing is performed. • All the elements of the assemblies are compliant with the regulatory provisions. • Submodelling is a time-efficient solution to verify the structural integrity of this type of structures. - Abstract: The ITER Vacuum Vessel (VV) primary function is to enclose the plasmas produced by the ITER Tokamak. Since it acts as the first radiological barrier of the plasma, it is classified as a class 2 welded box structure, according to RCC-MR 2007. The VV is made of an inner and an outer D-shape, 60 mm-thick double shell connected through thick massive bars (housings) and toroidal and poloidal structural stiffening ribs. In order to provide neutronic shielding to the ex-vessel components, the space between shells is filled with borated steel plates, called In-Wall Shielding (IWS) blocks, and water. In general, these blocks are connected to the IWS ribs which are connected to adjacent housings. The development of a Finite Element model of the ITER VV including all its components in detail is unaffordable from the computational point of view due to the large number of degrees of freedom it would require. This limitation can be overcome by using submodelling techniques to simulate the behaviour of the bolted ribs assemblies. Submodelling is a Finite Element technique which allows getting more accurate results in a given region of a coarse model by generating an independent, finer model of the region under study. In this paper, the methodology and several simulations of the VV bolted ribs assemblies using submodelling techniques are presented. A stress assessment has been performed for the elements involved in the assembly considering possible types of failure and including stress classification and categorization techniques to analyse

  15. Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels.

    Science.gov (United States)

    Kaneko, Hiromasa

    2018-02-26

    To develop a new ensemble learning method and construct highly predictive regression models in chemoinformatics and chemometrics, applicability domains (ADs) are introduced into the ensemble learning process of prediction. When estimating values of an objective variable using subregression models, only the submodels with ADs that cover a query sample, i.e., the sample is inside the model's AD, are used. By constructing submodels and changing a list of selected explanatory variables, the union of the submodels' ADs, which defines the overall AD, becomes large, and the prediction performance is enhanced for diverse compounds. By analyzing a quantitative structure-activity relationship data set and a quantitative structure-property relationship data set, it is confirmed that the ADs can be enlarged and the estimation performance of regression models is improved compared with traditional methods.

  16. Physical-chemical characterization of bovine bone ash for evaluating its potential agricultural use

    Directory of Open Access Journals (Sweden)

    Eduardo Pacca Luna Mattar

    2014-03-01

    Full Text Available The manufacturing of bovine bone ash is a low cost and easy production process which can be adopted for making good use of animal residues, in locations without infrastructure, such as the family production units. This study aimed at describing the manufacturing process of bone ash and characterizing the physical and chemical parameters of the resulting material for organic fertilization. The experiment was performed with three replications, being evaluated the bovine bone ash manufacturing process yield, as well as its density, water retention capacity, pH of the resulting material after burning and contents of total calcium, calcium soluble in water, total phosphorus and phosphorus soluble in citric acid and in ammonium citrate. The process resulted in an average yield of 24.4% and the bovine bone ash presented 33.07% of total calcium, 15.6% of total phosphorus, 10.4% of phosphorus soluble in citric acid, pH of 9.94, density of 0.89 g cm-3 and water retention capacity of 73.3%. The bovine bone ash showed promising characteristics, with potential for being used as source of phosphorus and calcium in the organic fertilization process.

  17. The influence of coal bottom ash and tincal (boron mineral) additions on the physical and microstructures of ceramic bodies

    Energy Technology Data Exchange (ETDEWEB)

    Bayca, S.U.; Batar, T.; Sayin, E.; Solak, O.; Kahraman, B. [Celal Bayar University, Manisa (Turkey). Soma Vocational School

    2008-07-01

    In this paper, the influence of coal bottom ash and tincal additions on the physical properties and microstructures of the standard wall tile body composition was investigated. Water absorption, fang strength, dry and fired shrinkage tests of the incorporated ceramic bodies and reference body were done. Microstructures of sintered tiles were analyzed using a scanning electron microscope (SEM). The results show that tincal additions to the ceramic body improved the physical properties of the tiles. As a result, tincal can be used as a flux material in the ceramic bodies due to its favorable effects on the water absorption and fired strength. The results revealed that bottom ash can be used in the ceramic tile body composition. When bottom ash was used in the ceramic industry, environmental hazards of bottom ash are inhibited. Furthermore, bottom ash is transformed to an economic product.

  18. Contribution of emissions to concentrations: the TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52)

    Science.gov (United States)

    Grewe, Volker; Tsati, Eleni; Mertens, Mariano; Frömming, Christine; Jöckel, Patrick

    2017-07-01

    Questions such as what is the contribution of road traffic emissions to climate change? or what is the impact of shipping emissions on local air quality? require a quantification of the contribution of specific emissions sectors to the concentration of radiatively active species and air-quality-related species, respectively. Here, we present a diagnostics package, implemented in the Modular Earth Submodel System (MESSy), which keeps track of the contribution of source categories (mainly emission sectors) to various concentrations. The diagnostics package is implemented as a submodel (TAGGING) of EMAC (European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/MESSy Atmospheric Chemistry). It determines the contributions of 10 different source categories to the concentration of ozone, nitrogen oxides, peroxyacytyl nitrate, carbon monoxide, non-methane hydrocarbons, hydroxyl, and hydroperoxyl radicals ( = tagged tracers). The source categories are mainly emission sectors and some other sources for completeness. As emission sectors, road traffic, shipping, air traffic, anthropogenic non-traffic, biogenic, biomass burning, and lightning are considered. The submodel obtains information on the chemical reaction rates, online emissions, such as lightning, and wash-out rates. It then solves differential equations for the contribution of a source category to each of the seven tracers. This diagnostics package does not feed back to any other part of the model. For the first time, it takes into account chemically competing effects: for example, the competition between NOx, CO, and non-methane hydrocarbons (NMHCs) in the production and destruction of ozone. We show that the results are in-line with results from other tagging schemes and provide plausibility checks for concentrations of trace gases, such as OH and HO2, which have not previously been tagged. The budgets of the tagged tracers, i.e. the contribution from individual source categories (mainly emission

  19. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators.

    Science.gov (United States)

    Ni, Peng; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the alkalinity and high concentration of potentially hazardous heavy metals, fly ash from a municipal solid waste (MSW) incinerator is classified as hazardous waste, which should be of particular concern. Physical and chemical characterizations of the contrasted fly ashes were investigated to explore the relation between leaching characteristics of heavy metals and physical properties of fly ashes. The results showed that CaClOH, NaCl, Ca(OH) 2 , KCl and SiO 2 were primary mineral compositions in the MSWI fly ashes, and the particle size distribution of fly ash ranged between 10 μm and 300 μm. The smaller the particle size distribution of fly ash, the larger the BET-specific surface area, which was beneficial to the leaching of heavy metals. As a result of various pores, it easily accumulated heavy metals as well. The leaching tests exhibited a high leachability of heavy metals and the leaching concentration of Pb in almost all of the fly ash samples went far beyond the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Thereupon, it is necessary to establish proper disposal systems and management strategies for environmental protection based on the characteristics of MSW incineration (MSWI) fly ash in China.

  20. Physical, chemical and mineralogical properties of fly ash

    International Nuclear Information System (INIS)

    Khairul Nizar Ismail; Kamaruddin Hussin; Mohd Sobri Idris

    2007-01-01

    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO 2 ), aluminium oxide (Al 2 O 3 ) and iron oxide (Fe 2 O 3 ). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F. (Author)

  1. Technical Note: The Modular Earth Submodel System (MESSy - a new approach towards Earth System Modeling

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2005-01-01

    Full Text Available The development of a comprehensive Earth System Model (ESM to study the interactions between chemical, physical, and biological processes, requires coupling of the different domains (land, ocean, atmosphere, .... One strategy is to link existing domain-specific models with a universal coupler, i.e. an independent standalone program organizing the communication between other programs. In many cases, however, a much simpler approach is more feasible. We have developed the Modular Earth Submodel System (MESSy. It comprises (1 a modular interface structure to connect to a , (2 an extendable set of such for miscellaneous processes, and (3 a coding standard. MESSy is therefore not a coupler in the classical sense, but exchanges data between a and several within one comprehensive executable. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling. Note that the MESSy and the coupler approach can be combined. For instance, an atmospheric model implemented according to the MESSy standard could easily be coupled to an ocean model by means of an external coupler. The vision is to ultimately form a comprehensive ESM which includes a large set of submodels, and a base model which contains only a central clock and runtime control. This can be reached stepwise, since each process can be included independently. Starting from an existing model, process submodels can be reimplemented according to the MESSy standard. This procedure guarantees the availability of a state-of-the-art model for scientific applications at any time of the development. In principle, MESSy can be implemented into any kind of model, either global or regional. So far, the MESSy concept has been applied to the general circulation model ECHAM5 and a number of process boxmodels.

  2. Physical and chemical characterization of 50 pulverized coal ashes with respect to partial cement replacement in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H A; Weijers, E G

    1986-04-01

    Physical and chemical characterization of 50 pulverized coal ashes from Dutch, Belgian and German installations has been carried out to identify the parameters that have to be kept under control, when pulverized coal ashes are to be used as partial cement replacement in concrete. For a good workability of fly ash/cement mortars the particle size and the carbon content are important. By performing a mortar flow test (Heagermann) upon delivery exterme ashes can be easily eliminated. The compressive strength is largely determined by the fineness of the ash (weight fraction below 20 micron). A direct effect of carbon content on strength development is not observed, but a reduction in mortar slow due to carbon leads to loss in strength, while the workability has to be adjusted. Size distribution measurement by optical methods is recommended as the relevant part of the ash size distribution cannot be properly assessed by sieve methods. The net contribution of fly ash to the compressive strength of a fly ash/cement (20/80) mortar exhibits a minimum at 14 days curing, which is common to all 50 ashes studied. Improvements in ash quality as obtained from pulverized-coal fired installations can be achieved by improvements in coal milling and optimizing ash collection. 6 figs., 4 tabs., 19 refs.

  3. Analysis of Physical Properties and Mineralogical of Pyrolysis Tires Rubber Ash Compared Natural Sand in Concrete material

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Izzati Raihan Ramzi Hannan, Nurul

    2016-11-01

    Waste tires pose significant health and environmental concerns if not recycled or discarded properly. At the same time, natural sand is becoming scarcer and costlier due to its non-availability. Waste tires as fine aggregate can be an economical and sustainable alternative to the natural sand. Recent years, the interest on recycling waste tires into civil engineering applications by the researchers has increased. In this research, the chemical and physical properties of the tires rubber ash and the natural sand have been analysed. The densities of the rubber ash are lower than the natural sand. Rubber ash had finer particle size compared to the natural sand. Almost all chemical in the natural sand had in rubber ash with the additional sulphur trioxide and zinc oxide in the rubber ash, made the rubber ash better than natural sand. Rubber ash seems to be a suitable material to use in concrete as sand replacement.

  4. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  5. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    Science.gov (United States)

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  6. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    International Nuclear Information System (INIS)

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs

  7. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  8. Temperature effects on ash physical and chemical properties. A laboratory study.

    Science.gov (United States)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Fire temperatures have different impacts on ash physical and chemical properties that depend mainly of the specie affected and time of exposition. In a real prescribed or wildland fire, the temperatures produce ash with different characteristics. Know the impacts of a specific temperature or a gradient on a certain element and specie is very difficult in real fires, especially in wildland fires, where temperatures achieve higher values and the burning conditions are not controlled. Hence, laboratory studies revealed to be an excellent methodology to understand the effects of fire temperatures in ash physical and chemical. The aim of this study is study the effects of a temperature gradient (150, 200, 250, 300, 350, 400, 450, 500 and 550°C) on ash physical and chemical properties. For this study we collected litter of Quercus suber, Pinus pinea and Pinus pinaster in a plot located in Portugal. The selected species are the most common in the ecosystem. We submitted samples to the mentioned temperatures throughout a time of two hours and we analysed several parameters, namely, Loss on Ignition (LOI%), ash colour - through the Croma Value (CV) observed in Munsell color chart - CaCO3, Total Nitrogen (TN), Total Carbon (TC), C/N ratio, ash pH, Electrical Conductivity (EC), extractable Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+), Zinc (Zn2+), Total Phosphorous (TP), Sulphur (S) and Silica (SiO2). Since we considered many elements, in order to obtain a better explanation of all dataset, we applied a Factorial Analysis (FA), based on the correlation matrix and the Factors were extracted according to the Principle Components method. To obtain a better relation between the variables with a specific Factor we rotated the matrix according to the VARIMAX NORMALIZED method. FA identified 5 Factors that explained a total of 95% of the variance. We retained in each Factor the variables that presented an eigenvalue

  9. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.

    Science.gov (United States)

    Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing

    2014-05-06

    Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of

  10. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  11. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  12. On the sub-model errors of a generalized one-way coupling scheme for linking models at different scales

    Science.gov (United States)

    Zeng, Jicai; Zha, Yuanyuan; Zhang, Yonggen; Shi, Liangsheng; Zhu, Yan; Yang, Jinzhong

    2017-11-01

    Multi-scale modeling of the localized groundwater flow problems in a large-scale aquifer has been extensively investigated under the context of cost-benefit controversy. An alternative is to couple the parent and child models with different spatial and temporal scales, which may result in non-trivial sub-model errors in the local areas of interest. Basically, such errors in the child models originate from the deficiency in the coupling methods, as well as from the inadequacy in the spatial and temporal discretizations of the parent and child models. In this study, we investigate the sub-model errors within a generalized one-way coupling scheme given its numerical stability and efficiency, which enables more flexibility in choosing sub-models. To couple the models at different scales, the head solution at parent scale is delivered downward onto the child boundary nodes by means of the spatial and temporal head interpolation approaches. The efficiency of the coupling model is improved either by refining the grid or time step size in the parent and child models, or by carefully locating the sub-model boundary nodes. The temporal truncation errors in the sub-models can be significantly reduced by the adaptive local time-stepping scheme. The generalized one-way coupling scheme is promising to handle the multi-scale groundwater flow problems with complex stresses and heterogeneity.

  13. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  14. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  15. Novel intrinsic-based submodel for char particle gasification in entrained-flow gasifiers: Model development, validation and illustration

    International Nuclear Information System (INIS)

    Schulze, S.; Richter, A.; Vascellari, M.; Gupta, A.; Meyer, B.; Nikrityuk, P.A.

    2016-01-01

    Highlights: • Model resolving intra-particle species transport for char conversion was formulated. • TGA experiments of char particle conversion in gas flow were conducted. • The experimental results for char conversion validated the model. • CFD simulations of endothermic reactor with developed model were carried out. - Abstract: The final carbon conversion rate is of critical importance in the efficiency of gasifiers. Therefore, comprehensive modeling of char particle conversion is of primary interest for designing new gasifiers. This work presents a novel intrinsic-based submodel for the gasification of a char particle moving in a hot flue gas environment considering CO 2 and H 2 O as inlet species. The first part of the manuscript describes the model and its derivation. Validations against experiments carried out in this work for German lignite char are reported in the second part. The comparison between submodel predictions and experimental data shows good agreement. The importance of char porosity change during gasification is demonstrated. The third part presents the results of CFD simulations using the new submodel and a surface-based submodel for a generic endothermic gasifier. The focus of CFD simulations is to demonstrate the crucial role of intrinsic based heterogeneous reactions in the adequate prediction of carbon conversion rates.

  16. The surface water submodel for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1992-12-01

    A requirement in assessing the safety of Canada's nuclear fuel waste management concept is the prediction of radiological doses to humans and other biota, which may occur far in the future as a result of releases of nuclides to the biosphere. A biosphere model has been developed, consisting of four integrated submodels describing surface water, soil, atmosphere, and food-dose components. This report documents the surface water submodel, which is a simple, generic mass balance model of a Canadian Shield lake. Nuclide input to the lake is the time-dependent mass output from the geosphere model. Nuclides enter the lake from compacted sediments. The surface water submodel calculates nuclide concentrations in lake water and sediment. These concentrations are used in the other biosphere submodels to predict the radiological dose to biota. Selection of parameter values for the model is based on the literature, our own data, and conservative assumptions to ensure that doses are not underestimated. MOst parameters are represented by log normal. This probabilistic approach of using distributed parameter values accounts for variability and uncertainty in parameter values, and short-term environmental fluctuations. Long-term environmental changes, such as glaciation, are not considered in the model. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing, with lake catchment area being the most important parameter. When catchment area is held constant, as would occur at a specific site, lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. Sediment accumulation rate also strongly influences sediment nuclide concentrations. Validation of model predictions using published studies and other data demonstrates that our model is realistic and suitable for assessing Canada's disposal concept. (Author)

  17. Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2010-09-01

    Full Text Available We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8. The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004.

    The main developments in this work are: (i the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium, (ii the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry.

    Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations. The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2. In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.

  18. Ash'arite's atomistic conception of the physical world: A restatement

    International Nuclear Information System (INIS)

    Pozi, Firdaus; Othman, Mohd Yusof; Mohamed, Faizal

    2013-01-01

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21 st century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them

  19. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  20. Fly ash: Chemical-physical and mineralogical characterization

    International Nuclear Information System (INIS)

    Paoletti, L.; Diociaiuti, M.; Ziemacki, G.; Viviano, G.; Gianfagna, A.

    1992-01-01

    Fly ash from fossil fuel power plants, municipal waste incinerators and refuse fueled boilers is now being utilized as road construction material. With the aim of facilitating health risk assessments of this practice by providing a sound basis for thorough toxicological examinations, this paper reports on a study in which the crystalline and amorphous constituents of fly ash, according to type of combustion plant and fuel, were identified and analyzed by the use of various analytical techniques which included: scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and absorption, X-ray, and energy loss spectroscopy

  1. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  2. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  3. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  4. Vault submodel for the second interim assessment of the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1986-02-01

    The consequences to man and the environment of the disposal of nuclear fuel waste are being studied within the Canadian Nuclear Fuel Waste Management Program. The concept being assessed is that of a sealed disposal vault at a depth of 1000 m in plutonic rock in the Canadian Shield. To determine the consequences, the vault and its environment are simulated using a SYstem Variability Analysis Code (SYVAC), a stochastic model of the disposal system. SYVAC contains three submodels that represent the three major parts of the disposal system: the vault, the geosphere and the biosphere. This report documents the conceptual and mathematical framework of the vault submodel

  5. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  6. Prospects for ash pond reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Shyyam, A.K.; Shukla, K.S.; Agrawal, D. (National Thermal Power Corporation Ltd., New Delhi (India))

    1993-01-01

    A typical modern coal fired station in India burns 0.7 t/MWh of coal and consequently generates ash at 0.245 t/MWh. The physical nature of ash, low available concentrations of certain plant nutrients and the presence of phytotoxic trace elements render fly ash marginally adequate for plant growth. As fly ash itself was thought to be an inappropriate growth medium for plants, regulators decided that a soil cover is mandatory. There is ample data to suggest that the attributes of fly ash detrimental to plant growth can be ameliorated, allowing the establishment of vegetation directly on fly ash surfaces. The natural revegetation of fly ash disposal sites has been reported in the world. The natural vegetation pioneered by Cynodon at different stages of ecological succession and comprising of species such as [ital Calotropis gigantea], [ital Lippia nodiflora], [ital Ipomea, cornea], [ital Xanthium parviflorum] has been noted at one of the NTPC projects, in Badarpur Thermal Power Station. Since natural reclamation is a time-consuming process, experimental trials of growing some species over the temporary ash lagoon directly (without soil cover) were carried out at Ramagundam Super Thermal Power Project (RSTPP) of NTPC, in South India to achieve faster results than the natural process. 6 refs., 8 figs.

  7. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  8. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  9. Possibilities for the Use of Wood Ashes in Agriculture

    OpenAIRE

    Barbara Symanowicz; Marcin Becher; Dawid Jaremko; Korneliusz Skwarek

    2018-01-01

    The aim of the study was to determine the agricultural usefulness of the ashes obtained following the combustion of wood of fourteen tree species (pear tree, apple tree, aspen, ash, alder, birch, poplar, hornbeam, pine, common walnut, oak, hazel, bird cherry and spruce) in home fireplaces. The following physical properties of the ashes were determined: colour, solubility, porosity, absorbability, compression strength, degree of fineness, moisture content and spreadability. In the ashes...

  10. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  11. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber)

    Science.gov (United States)

    Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.

    2009-01-01

    Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.

  12. On the hierarchy of partially invariant submodels of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru

    2008-07-04

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  13. On the hierarchy of partially invariant submodels of differential equations

    Science.gov (United States)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  14. On the hierarchy of partially invariant submodels of differential equations

    International Nuclear Information System (INIS)

    Golovin, Sergey V

    2008-01-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given

  15. Development of a pre-ignition submodel for hydrogen engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Sadiq [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2005-10-15

    In hydrogen-fuelled spark ignition engine applications, the onset of pre-ignition remains one of the prime limitations that needs to be addressed to avoid its incidence and achieve superior performance. This paper describes a new pre-ignition submodel for engine modelling codes. The effects of changes in key operating variables, such as compression ratio, spark timing, intake pressure, and temperature on pre-ignition limiting equivalence ratios are established both analytically and experimentally. With the established pre-ignition model, it is possible not only to investigate whether pre-ignition is observed with changing operating and design parameters, but also to evaluate those parameters' effects on the maximum possible pre-ignition intensity. (author)

  16. Geotechnical and Physico-Chemical Characterization of Low Lime Fly Ashes

    Directory of Open Access Journals (Sweden)

    Arif Ali Baig Moghal

    2013-01-01

    Full Text Available In order to explore the possibility of using low-lime fly ashes, the physical and chemical properties which have a direct bearing on their geotechnical and geoenvironmental behaviors have been investigated. In this paper, two types of low-lime fly ashes, originating from India, have been used. A brief account of various methods adopted in characterizing their physical, chemical, and geotechnical properties is presented. The relative importance of each of these properties in enhancing the bulk applicability of fly ashes has been brought out.

  17. Physical and Mechanical Properties of Compressed Earth Brick (CEB Containing Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Ali Noorwirdawati

    2016-01-01

    Full Text Available The use of brick in construction is commonly used, especially in the construction of buildings and infrastructure. Various studies have been conducted to produce methods that can increase the strength of brick at the same time can reduce the cost of manufacturing bricks. In order to reduce cost of manufacturing, one of the solution applied was by using waste as part of bricks production materials. In this study, sugarcane bagasse (SuCaB ash was used as a part of compressed earth brick (CEB by replacing the quantity of cement for SuCaB ash. The study focused on the physical and mechanical properties of CEB containing SuCaB and the optimum percentage of SuCaB ash as partial cement replacement in CEB. There are 4 types of percentages used; 0%, 20%, 25% and 30% from cement content. All mixed use the same water content of 30% of cement content by weight and the ratio for cement: laterite soil used was 1: 6. A total of 72 specimen with size of 100mm × 50mm × 40mm was produced. The test conducted were Initial Rate Absorption Test (IRA, Density Test, Dimensions Test, Compression Test and Water Absorption Test. From the experimental results, the optimum SuCaB ash percentage as cement replacement in CEB was 20%. It recorded the highest compressive strength of 16.23 MPa at 28 days while for the Initial Rate Absorption test, it lies within the range specified. The density of CEB containing 20% of SuCaB shows slightly lower value where it decreased for about 0.4% from the control specimen. From this study, it can be concluded that waste materials such as sugarcane bagasse can be used as part of construction materials. However, further study needs to be conducted such as on the energy consumption, chemical properties and others to enhance the knowledge on this area before it can be applied into the brick production.

  18. Development of Road Traffic Assignment and Assessment Sub-Model Applied in the Traffic Study ...

    Directory of Open Access Journals (Sweden)

    Dražen Topolnik

    2012-10-01

    Full Text Available The described sub-model is just one small segment of theTraffic Study of the City of Zagreb, in the development of whichnumerous foreign and national experts and institutions tookpart. After comprehensive collection and processing of inputdata, the traffic experts, using the software package "MVATRIPS" for the analysis and search for optimal solutions to theproblem of traffic system, provided the models of public urbantransit for the future.This paper describes the analysis and assessment of sub-models in road traffic assignment for the morning peak, afternoonpeak and average off-peak hours. The principles of assignmentprocedure have been described as well as the convergencetests. The following has been specified: the users categories,the public transit pre-load, and the passenger car unit(PC U. The key guideline in selecting the route is a generalisedformulation of costs presented in the paper. The procedures ofcalibration and the assessment of the finite model have alsobeen defined according to the screenline flows, link flows, andtravelling times. In the end, the summary is given of the basiccharacteristics of the finite travelling matrices.

  19. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  20. Cement technology for borehole plugging: interim report on the effects of fly ash and salt on the physical properties of cementitious solids

    International Nuclear Information System (INIS)

    Moore, J.G.; Morgan, M.T.; McDaniel, E.W.; Greene, H.B.; West, W.A.

    1980-03-01

    Results of initial studies of a systematic investigation to determine the effects of fly ash and salt on the physical properties of pozzolanic concretes and saltcretes are reported. Addition of fly ash to mortars decreased the set time and bleed characteristics and increased the compressive strength and permeability, but it had very little effect on the density or the thermal conductivity of the solid. The magnitude of these effects was only slightly related to the lime content of the fly ash. In the case of saltcretes, low-lime fly ash slightly decreased the set time and the bleed characteristics of the wet mix. However, a high-lime fly ash doubled the set time and decreased the bleed characteristics to essentially zero. The compressive strength of saltcretes was increased by the addition of fly ash and was independent of the lime content. Such additions had little effect on the thermal conductivity or density. The thermal conductivities of cement pastes containing fly ash showed a near-linear relationship with the density of the resulting solids. In the case of mortars, the thermal conductivity decreased with increasing temperature and showed some hysteresis in the initial heating cycle. After the first cycle, the thermal conductivity decreased from about 1.32 W/m.K at 350 0 K to 1.27 W/m.K at 475 0 K

  1. Possibilities for stabilization of fly ash from REK 'Bitola' dump

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica; Ivanovska, Pavlina; Ilievski, Zlatko; Peeva, Liljana

    2002-01-01

    The Coal Power Plants environmental problems, mainly, arise from deposited fly ash-solid particles which, under the influence of the wind, heavily pollute the atmospheric air. Prevention of the environmental problems, coming from spraying from the energetic dumps, is achieved with technical and biological stabilization of dumped fly ash. The choice of the stabilization means and methods depends on the physical-chemical properties of the ash. Therefore, the stabilization possibilities of REK 'Bitola' fly ash were investigated. (Original)

  2. MICROSTRUCTURE, MINERALOGY AND PHYSICAL PROPERTIES OF GROUND FLY ASH BASED GEOPOLYMERS

    Directory of Open Access Journals (Sweden)

    Ferenc Madai

    2015-03-01

    Full Text Available This paper is focused on the utilization of deposited fly ash as a main component of geopolymer. After determination of particle size distribution, moisture content, real and bulk density and specific surface area of the raw fly ash, mechanical activation was performed by laboratory scale ball mill. This step is introduced for improving the reactivity of raw material. Then test specimens were produced by geopoliomerisation using a caustic spent liquor (NaOH. Compressive strength was determined on cilindrical specimens. Finally, samples of the ground fly ash based geopolymer specimens were analyzed by X-ray diffraction, optical and scanning electron microscopy. Results prove that geopolymer production with proper strength from the investigated F-type deposited fly ash is possible. The uniaxial compressive strength of obtained composites strongly depends on the fineness of the ground fly ash. XRD results show that comparing the crystalline components for different geopolymer samples, zeolite-A appears and its amount increases gradually from 0T sample till 30T and then decreases for 60T sample. The same trend holds for sodalite type structure phases, however its amount is much lower than for zeolite-A. SEM+EDS investigation revealed that Na-content is elevated in the interstitial fine-grained matrix, especially for the 30T sample when highest strength was observed. Si and Al are abundant mainly in anhedral and spherical grains and in rarely occurring grains resembling some crystal shape.

  3. Fire severity effects on ash extractable Total Phosphorous

    Science.gov (United States)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Phosphorous (P) is a crucial element to plant nutrition and limits vegetal production. The amounts of P in soil are lower and great part of this nutrient is absorbed or precipitated. It is well known that fire has important implications on P cycle, that can be lost throughout volatilization, evacuated with the smoke, but also more available to transport after organic matter mineralization imposed by the fire. The release of P depends on ash pH and their chemical and physical characteristics. Fire temperatures impose different severities, according to the specie affected and contact time. Fire severity is often evaluated by ash colour and this is a low-cost and excellent methodology to assess the fire effects on ecosystems. The aim of this work is study the ash properties physical and chemical properties on ash extractable Total Phosphorous (TP), collected in three wildfires, occured in Portugal, (named, (1) Quinta do Conde, (2) Quinta da Areia and (3) Casal do Sapo) composed mainly by Quercus suber and Pinus pinaster trees. The ash colour was assessed using the Munsell color chart. From all three plots we analyzed a total of 102 ash samples and we identified 5 different ash colours, ordered in an increasing order of severity, Very Dark Brown, Black, Dark Grey, Very Dark Grey and Light Grey. In order to observe significant differences between extractable TP and ash colours, we applied an ANOVA One Way test, and considered the differences significant at a p<0.05. The results showed that significant differences in the extractable TP among the different ash colours. Hence, to identify specific differences between each ash colour, we applied a post-hoc Fisher LSD test, significant at a p<0.05. The results obtained showed significant differences between the extractable TP from Very dark Brown and Black ash, produced at lower severities, in relation to Dark Grey, Very Dark Grey and Light Grey ash, generated at higher severities. The means of the first group were higher

  4. Updating Physical and Chemical Characteristics of Fly Ash for Use in Concrete

    Science.gov (United States)

    2017-12-22

    When incorporated in concrete mixtures, fly ashes are known to influence both its fresh and hardened properties. An accurate and quick technique to predict the extent of this influence based on the characteristics of fly ash would be highly beneficia...

  5. Dynamic evaluation of municipal solid waste ash leachate

    International Nuclear Information System (INIS)

    Theis, T.L.; Gardner, K.H.

    1992-01-01

    The incineration of municipal solid waste (MSW) produces ashes which are concentrated in many inorganic species. The release of toxic elements from the ash to the aqueous environment is of concern as present methods of ash disposal consist primarily of landfilling. It was the goal of this paper to achieve an understanding of the mechanisms by which elements are transported from the solid ash phase to the aqueous phase. Twelve ash samples were collected from six different incinerators with varying designs and capacities. The leaching experiments were conducted using small (mini) dynamic columns to investigate the variation of leachate chemical characteristics with time. In analyzing the data, a multicomponent chemical equilibrium model was used to determine chemical speciation and component activities. Auxiliary experiments included an array of physical measurements, and aqueous batch leach tests

  6. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  7. Technical note: Implementation of prescribed (OFFLEM, calculated (ONLEM, and pseudo-emissions (TNUDGE of chemical species in the Modular Earth Submodel System (MESSy

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2006-01-01

    Full Text Available We present the submodels OFFLEM, ONLEM, and TNUDGE for the Modular Earth Submodel System (MESSy. Prescribed emissions from input files are handled by OFFLEM. ONLEM deals with online-calculated emissions, i.e., emissions that are calculated during the simulation. The submodel TNUDGE uses the "tracer nudging" technique for pseudo-sources and -sinks. For species with highly uncertain emission fluxes and/or with sufficiently long lifetimes, e.g., CH4, it is common to create such pseudo-fluxes by prescribing the observed mixing ratio of the species at a given boundary (e.g., the mixing ratio of methane at the surface, or the ozone mixing ratio at the tropopause. All three submodels substantially simplify the inclusion of emissions into a model. Specific emissions can easily be switched on or off. New prescribed emissions can be included without rewriting any code. New online emissions only require one additional subroutine containing the new parameterization. A major advantage is that input fields at arbitrary resolution can be used. The problem of incompatible grids between emission data and model is overcome by utilizing the MESSy data import interface. To further simplify the creation of new offline emission data, the preprocessing program EDGAR2NC is provided. EDGAR2NC transforms files from the EDGAR format into the netCDF format which is required by OFFLEM. The presented routines are a part of the community modeling project MESSy and can be made available for use to the atmospheric modeling community.

  8. Possibilities for the Use of Wood Ashes in Agriculture

    Directory of Open Access Journals (Sweden)

    Barbara Symanowicz

    2018-05-01

    The following physical properties of the ashes were determined: colour, solubility, porosity, absorbability, compression strength, degree of fineness, moisture content and spreadability. In the ashes obtained from the combustion of wood in a fireplace furnace, the following parameters were determined: pH H2O, pHKCl (1 mole dm-3 KCl, pHCaCl2 (0.01 mole dm-3 CaCl2 and total alkalinity in terms of the suitability of ashes as a liming agent. The contents of Ctot. and Ntot. were determined with a CHNS/O elemental analyser by Perkin-Elmer and the contents of other elements (macronutrients and heavy metals were specified using the method of atomic emission spectrometry with inductively coupled plasma ICP-AES. Wood ashes are a source of macronutrients for plants. Their contents can be presented in the following series of decreasing values: Ca > C > K > Mg > P > S > N. Out of 1 t of wood ash, approx. 160 kg C, 6 kg N, 20 kg P, 98 kg K, 302 kg Ca, 39 kg Mg and 18 kg S can be introduced into the soil. The content of heavy metals in the analysed ashes was low, and exceeded the acceptable standards for their content in waste materials intended for liming soils. The analysed ashes exhibit good physical and chemical properties. They can be suitable for use in agriculture as a liming agent to be applied on medium and heavy soils.

  9. Ash'arite's atomistic conception of the physical world: A restatement

    Energy Technology Data Exchange (ETDEWEB)

    Pozi, Firdaus; Othman, Mohd Yusof [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia and Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia); Mohamed, Faizal [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21{sup st} century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them.

  10. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects

    Science.gov (United States)

    Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge

    2014-01-01

    Fire transforms fuels (i.e. biomass, necromass, soil organic matter) into materials with different chemical and physical properties. One of these materials is ash, which is the particulate residue remaining or deposited on the ground that consists of mineral materials and charred organic components. The quantity and characteristics of ash produced during a wildland fire depend mainly on (1) the total burned fuel (i.e. fuel load), (2) fuel type and (3) its combustion completeness. For a given fuel load and type, a higher combustion completeness will reduce the ash organic carbon content, increasing the relative mineral content, and hence reducing total mass of ash produced. The homogeneity and thickness of the ash layer can vary substantially in space and time and reported average thicknesses range from close to 0 to 50 mm. Ash is a highly mobile material that, after its deposition, may be incorporated into the soil profile, redistributed or removed from a burned site within days or weeks by wind and water erosion to surface depressions, footslopes, streams, lakes, reservoirs and, potentially, into marine deposits.Research on the composition, properties and effects of ash on the burned ecosystem has been conducted on material collected in the field after wildland and prescribed fires as well as on material produced in the laboratory. At low combustion completeness (typically T  450 °C), most organic carbon is volatized and the remaining mineral ash has elevated pH when in solution. It is composed mainly of calcium, magnesium, sodium, potassium, silicon and phosphorous in the form of inorganic carbonates, whereas at T > 580 °C the most common forms are oxides. Ash produced under lower combustion completeness is usually darker, coarser, and less dense and has a higher saturated hydraulic conductivity than ash with higher combustion completeness, although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new

  11. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  12. Ash from Straw and Grain - Chemical Composition, Physical Properties and Technique for Spreading; Aska fraan halm och spannmaal - kemisk sammansaettning, fysikaliska egenskaper och spridningsteknik

    Energy Technology Data Exchange (ETDEWEB)

    Marmolin, Christina; Ugander, Joakim; Gruvaeus, Ingemar; Lundin, Gunnar

    2008-07-01

    Ash is a inorganic solid material with physical properties that are highly dependent upon how well the combustion has progressed and where in the furnace the ash is produced (fly ash or bottom ash). Ash samples from 23 heating plants fuelled by mainly grain but also straw were analysed with respect to their content of plant nutrients, heavy metals and organic pollutants such as polyaromatic hydrocarbons (AH), the largest group of carcinogens known today. Overall, the ash samples showed a high content of crop nutrients on a level comparable with artificial fertiliser, with a content of 10% phosphorus (P), 10% potassium (K) and 4% magnesium (Mg). The liming effect was relatively low. The analysis of ash from oats showed consistently low levels of heavy metals and PAH, while 70% of the phosphorus present was in the form of readily soluble phosphate. Ash from barley and wheat grain and oilseed rape and wheat straw showed similar results to those for oats. Ash from straw contained lower levels of phosphorus, which was expected. The low levels of heavy metals and PAH did not impose any restrictions on the use of the ash as a crop fertiliser. However, the plant availability of phosphorus in ash from rape straw needs further investigation. The ash samples contained no undesirable substances that could affect the recycling of ash from grain or straw. The fly ash contained higher levels of heavy metals than the bottom ash but not to such extent that the two fractions would have to be handled separately. Uniform distribution of the ash and relatively low application rates per hectare are prerequisites for a high use efficiency of the crop nutrients available. Doses of ash should not exceed a rate of 1-2 tons/hectare at any one time since that would lead to excessive amounts of phosphorus and potassium in the soil profile. In a long-term perspective, applying an amount of ash equivalent to the amount of grain removed is the most appropriate strategy. For example, five tons of

  13. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    Directory of Open Access Journals (Sweden)

    Marlinda

    2015-08-01

    Full Text Available Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated to a temperature of 550 0C for 3 hours. Results of preparation banana stem ash contains potassium of 36.52 and surface area of 41.901 m2g. This work presents the effect of ultrasonic assisted of waste cooking oil with methanol as solvent using banana stem ash and coal fly ash as catalyst. The diameter of catalyst particles of banana stem ash and coal fly ash varied at 50 100 150 200 and 250 mesh. The transesterification reaction was performed in the presence of ultrasonic operating frequency constant at 40 kHz methanol molar ratio to oil of 9 1 and reaction time of 30 minutes. The methyl ester biodiesel content of product was 93.26 of banana stems ash and 57 of coal fly ash respectively. The physical property was compared with the National Indonesia Standard SNI 2006 with a density viscosity cloud point flash point and cetane number.

  14. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  15. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes

    International Nuclear Information System (INIS)

    Alvarez-Ayuso, E.; Querol, X.; Plana, F.; Alastuey, A.; Moreno, N.; Izquierdo, M.; Font, O.; Moreno, T.; Diez, S.; Vazquez, E.; Barra, M.

    2008-01-01

    The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 o C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut fuer Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80 o C

  16. Protecting black ash from the emerald ash borer

    Science.gov (United States)

    Les Benedict

    2010-01-01

    Black ash (Fraxinus nigra) is an important resource for Tribes in the Northeast and Great Lakes regions of the North American continent. Ash in North America is being threatened with widespread destruction as a result of the introduction of emerald ash borer beetle (Agrilus planipennis) in 2002. Measures are being taken to slow the spread of emerald ash borer beetle....

  17. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  18. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    Science.gov (United States)

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.

  19. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Francisco Grau

    2015-10-01

    Full Text Available Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS, and Scanning Electron Microscope (SEM, and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  20. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  1. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  2. Effect of Alkali Concentration on Fly Ash Geopolymers

    Science.gov (United States)

    Fatimah Azzahran Abdullah, Siti; Yun-Ming, Liew; Bakri, Mohd Mustafa Al; Cheng-Yong, Heah; Zulkifly, Khairunnisa; Hussin, Kamarudin

    2018-03-01

    This paper presents the effect of NaOH concentration on fly ash geopolymers with compressive up to 56 MPa at 12M. The physical and mechanical on fly ash geopolymer are investigated. Test results show that the compressive strength result complied with bulk density result whereby the higher the bulk density, the higher the strength. Thus, the lower water absorption and porosity due to the increasing of NaOH concentration.

  3. Assessing dynamics of ash content formation in coal at a working face in mines

    Energy Technology Data Exchange (ETDEWEB)

    Maidukov, G L; Lobkin, V M

    1983-05-01

    Factors which influence ash content in coal mined at a working face are analyzed: ash content in coal, stability of rock layers surrounding a coal seam, mechanical and physical properties of the direct roof. A mathematical model of ash content formation at a working face is described. On the basis of the model a computer program has been constructed. The program is used for calculating the mean value of ash content in coal and the standardized deviation. The program considers all causes of ash fluctuation in coal such as mining conditions, coal seam thickness, fluctuations in coal seam thickness, mechanical and physical properties of rocks surrounding a coal seam, particularly in the direct roof, mining systems, narrow or wide web shearer loaders, powered supports, hydraulic props, timber friction props with timber roof bars or with steel roof bars. A classification of rocks considering roof stability used by the program is described. A scheme of the program is given. Examples of using the program for forecasting ash content in coal and ash content fluctuations in Donbass mines are evaluated. (In Russian)

  4. Preparation of Fly ash Based Adsorbents for Removal Active Red X-3B from Dying Wastewater

    Directory of Open Access Journals (Sweden)

    Li Jinping

    2016-01-01

    Full Text Available Fly ash with a large number of active sites can occur with the adsorbent chemical and physical adsorption, and therefore have a strong adsorption capacity. The original fly ash and raw fly ash compared to the physical and chemical properties to a significant change. On the fly ash in industrial water treatment application were outlined. The purpose is to focus on the modification methods of fly ash and comparison of raw fly ash and fly ash in the effect of dyeing wastewater. Single factor test method; select the appropriate modifier to study the dosage, pH, stirring time on the modification of adsorption properties of fly ash before and after. The results showed that the modified fly ash was better than the adsorption. Greatly improves on active red X-3B dye wastewater removal capacity, pH = 5, 6, dosage is 5g / L, the mixing time is 30min, COD removal rate reached 73.07%. This modified material can be used as adsorbent for pre-treating dying wastewater.

  5. Uncertainty and sensitivity analyses of the complete program system UFOMOD and of selected submodels

    International Nuclear Information System (INIS)

    Fischer, F.; Ehrhardt, J.; Hasemann, I.

    1990-09-01

    Uncertainty and sensitivity studies with the program system UFOMOD have been performed since several years on a submodel basis to get a deeper insight into the propagation of parameter uncertainties through the different modules and to quantify their contribution to the confidence bands of the intermediate and final results of an accident consequence assessment. In a series of investigations with the atmospheric dispersion module, the models describing early protective actions, the models calculating short-term organ doses and the health effects model of the near range subsystem NE of UFOMOD, a great deal of experience has been gained with methods and evaluation techniques for uncertainty and sensitivity analyses. Especially the influence on results of different sampling techniques and sample sizes, parameter distributions and correlations could be quantified and the usefulness of sensitivity measures for the interpretation of results could be demonstrated. In each submodel investigation, the (5%, 95%)-confidende bounds of the complementary cumulative frequency distributions (CCFDs) of various consequence types (activity concentrations of I-131 and Cs-137, individual acute organ doses, individual risks of nonstochastic health effects, and the number of early deaths) were calculated. The corresponding sensitivity analyses for each of these endpoints led to a list of parameters contributing significantly to the variation of mean values and 99% - fractiles. The most important parameters were extracted and combined for the final overall analysis. (orig.) [de

  6. PURIFICATION AND ENRICHMENT OF BIOGAS IN ASH-WATER MIXTURE

    Directory of Open Access Journals (Sweden)

    Andrzej Brudniak

    2014-10-01

    Full Text Available Biogas, produced in an aerobic digestion process, is a mixture of gases, and that is why its inexpensive and effective valorisation is essential. Research on this process is necessary in order to use biogas as a renewable energy source. The aim of this thesis is to present methods of biogas purification and enrichment in the fly ash - water mixture, that is generated on the base of fly ash produced during burning coal in power industry. Experience presented that the fly ash absorbs CO2 and H2S, even in conventional conditions. The absorption efficiency depends not only on the chemical composition of the ash but also on its physical properties. There was also a strong neutralization of alkaline waste combustion.

  7. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.

    Science.gov (United States)

    Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2011-01-01

    To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.

  8. Ash Utilisation 2012. Ashes in a Sustainable Society. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Conference themes: Risk assessment, Fly ash- Road construction, Recycling and Greenhouse gases, Storage of ashes, Fertilizer, Metal Mining, Support and Barriers, Construction Material, Civil Engineering, and MSWI bottom ash.

  9. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  10. Environmental issues: New techniques for managing and using wood fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Fehrs, J.E.; Donovan, C.T. [C.T. Donovan Associates, Inc., Burlington, VT (United States)

    1993-12-31

    Continued research and development of environmentally-acceptable and cost-effective end uses for wood ash is having a significant affect on the ability to use wood and wood waste for fuel. This is particularly true for ash resulting from treated wood combustion. Concerns about the contents of ash from wood containing paint, stain, preservatives, or other chemicals is one of the largest regulatory barriers to its use as fuel. The purpose of this paper is to: (1) Identify the physical and chemical characteristics of ashes produced from the combustion of untreated and treated wood; (2) Explain the types of {open_quotes}clean, untreated{close_quotes} and {open_quotes}treated{close_quotes} wood that are likely to produce ash that can beneficially used; (3) Describe existing and potential products and end uses for untreated and treated wood ash.

  11. Physical, chemical and agricultural investigations of fly ash originating from oil-fired equipment, with special regard to the damaging effect on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Veres, I; Czibulya, J; Ravasz, T; Boszormenyi, Z

    1972-01-01

    Physical and chemical investigations and green house tests performed with fly ash samples from a large-capacity, oil-fired thermal power plant, are described. The vanadium content determined by a colorimetric method, ranged from 3.82 to 4.14% and the nickel content was determined by a gravimetric method as 0.59-0.62%. The bulk of the fly ash belonged in a fraction of 0.06-0.10 mm. A spherical, soot-like fraction and a mineral fraction with silica, iron oxides, and alkali earth metals as main components were distinguished by morphological investigations. The soot fraction, composed of spheres with smooth surface with limited adhesion, represents minor environmental, including corrosion, hazards, while the mineral fraction which contains hard, abrasive particulates of very irregular shape with large specific surface may produce slight silicosis in man and animals, and plug the stomata in plants. In addition, this fraction represents low-temperature corrosion hazards due to the presence of tetravalent vanacylsulfate and free sulfuric acid. Greenhouse tests with overdosed fly ash revealed white mustard (Brassica hirta) to be most sensitive for fly ash, which thus may be used as an indicator plant. The damage is also dependent on the water supply. The fairly high resistivity of leguminous species, especially of beans may be due to the stimulating effect of vanadium and the increased heat absorption through the fly ash buildups.

  12. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  13. Improvement of BaO:B2O3:Fly ash glasses: Radiation shielding, physical and optical properties

    International Nuclear Information System (INIS)

    Tuscharoen, S.; Kaewkhao, J.; Limkitjaroenporn, P.; Limsuwan, P.; Chewpraditkul, W.

    2012-01-01

    Highlights: ► BaO:B 2 O 3 :Fly ash glasses have been improved in radiation Shielding, physical and optical properties. ► The visible light transmission of RHA glass was better than SiO 2 . ► At all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete. -- Abstract: Rice husk ash glass (RHA-glass) of composition xBaO:(80 − x)B 2 O 3 :20RHA where x = 45, 50, 55, 60, 65 and 70 wt.% have been prepared using melt-quenching method and investigated on their optical, physical and gamma-rays shielding properties. The densities of these glass samples were increased with increasing of BaO content, due to higher molecular weight of BaO comparing with B 2 O 3 . The molar volume of these glasses was increased with increasing content of BaO; BaO acts as modifier to increase the loose packing. The visible light transmission of RHA glass was better than SiO 2 glass prepared in same formula and preparing condition. The experimental values of gamma ray shielding properties such as; mass attenuation coefficients, atomic cross sections and effective atomic numbers, were found in good agreement with the theoretical values as calculated from WinXCom. Moreover the glass system at all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete.

  14. Enhancing the engineering properties of expansive soil using bagasse ash

    Science.gov (United States)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  15. Development of novel ash hybrids to introgress resistance to emerald ash borer into north American ash species

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Mary E. Mason

    2008-01-01

    Currently, there is no evidence that any of the native North American ash species have any resistance to the emerald ash borer (EAB). This means that the entire ash resource of the eastern United States and Canada is at risk of loss due to EAB. In contrast, outbreaks of EAB in Asian ash species are rare and appear to be isolated responses to stress (Bauer et al. 2005,...

  16. Bioextraction of copper and zinc from fly ash from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wilczok, T; Cwalina, B; Chrostowska, D

    1986-02-01

    Results are evaluated of investigations carried out by the Institute of Chemistry and Physics of the Silesia Medical Academy in Sosnowiec into feasibility of bacterial leaching for utilization of fly ash from combustion of black coal. Fly ash separated by electrostatic precipitators in the Dolna Odra power plant fired with black coal was used. Copper content in the fly ash on the average was 0.012%, that of zinc was 0.025%. When Thiobacillus ferroxidans, Thiobacillus thiooxidans and bacteria separated from fly ash were used leaching efficiency after 21 days ranged from 69 to 87% in the case of copper and from 48 to 72% in the case of zinc. Origin of bacteria separated from fly ash was unclear. Autochthonous bacteria in the fly ash being leached increased efficiency of bacterial leaching. Effects of autochthonous bacteria were similar to those of the bacterial culture of Thiobacillus ferroxidans and Thiobacillus thiooxidans. Investigation results were shown in a table and 2 diagrams. 19 references.

  17. The atmosphere submodel for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1992-09-01

    Canada's Nuclear Fuel Waste Management Program is researching a concept for disposal of immobilized nuclear fuel waste in a vault mined deep in stable plutonic rock. When protective barriers are eventually breached, radioactive and chemically toxic nuclides, carried by groundwater, may migrate from the vault to the biosphere. They may cycle through surface waters, soil, the atmosphere and the food chain. One of the objectives of the program is to assess the movement of nuclides using modelling techniques to calculate the radiological dose to humans and concentrations of contaminants in the environment. To achieve these goals a biosphere model, comprising four submodels, has been developed. This report describes the atmosphere submodel and the pathways through which nuclides may move through the atmosphere. The model describes the processes of nuclide suspension, dispersion and deposition. Surface water and soil are considered as primary sources of nuclide fluxes to the atmosphere. Some nuclides may be attached to contaminated suspended particulate matter, whereas others are mobile as gases. The model considers natural phenomena such as wind erosion of soil, forest fires, gaseous emissions from soil, and bubble bursting at lake surfaces. Anthropogenic processes such as wood burning for energy are also modelled, and nuclide concentrations in both outdoor and indoor air are calculated. The model combines a variety of techniques, including mass loading concepts, flux density estimates, numerical dispersion models and specific activity relationships. The model is probabilistic; transport is modelled using simple mass transfer equations, and variability is incorporated by distributing values for parameters. This report documents the model equations, the parameter values, and comparisons of pathways. (Author)

  18. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  19. Characterization and environmental evaluation of Atikokan coal fly ash for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeheyis, M.B.; Shang, J.Q.; Yanful, E.K. [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2008-09-15

    Coal fly ash from thermal power generating stations has become a valuable byproduct in various commercial and environmental applications due to its cementitious, alkaline, and pozzolanic properties. It is used as a raw material in cement production, and also as a replacement for cement in concrete production. This study provided physical, chemical, and mineralogical characterizations of fresh and landfilled coal fly ash from a thermal generation station in Ontario. Fly ash behaviour under various environmental conditions was examined. Tests were conducted to characterize fly ash acid neutralization capacity and heavy metal sorption capacity. The study showed that fresh and landfilled fly ash samples showed significant variations in morphology, mineralogy, and chemical composition. X-ray diffraction studies demonstrated that weathering of the fly ash caused the formation of secondary minerals. The study also showed that the heavy metals from both fresh and landfilled fly ash samples were below leachate criteria set by the provincial government. It was concluded that both fresh and landfilled fly ash are suitable for various environmental and engineering applications. 55 refs., 5 tabs., 11 figs.

  20. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    Livingston, R.J.; Brendel, G.F.; Bruzek, D.A.

    1991-01-01

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC 50 ). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  1. Evaluation and Treatment of Coal Fly Ash for Adsorption Application

    Directory of Open Access Journals (Sweden)

    Samson Oluwaseyi BADA

    Full Text Available Many researchers had investigated fly ash as an adsorbent for the uptake of organic compounds from petrochemical waste effluents. The availability, inexpensive and its adsorption characteristic had made it an alternative media for the removal of organic compounds from aqueous solution. The physical property of South African Coal Fly Ash (SACFA was investigated to determine its adsorption capability and how it can be improved. Chemical treatment using 1M HCl solution in the ratio of (1 g fly ash to (2 ml of acid was used and compared with untreated heat-treated samples. The chemically treated fly ash has a higher specific surface area of 5.4116 m2/g than the heat-treated fly ash with 2.9969 m2/g. More attention had to be given to the utilization of SACFA for the treatment of wastewaters containing organic compounds through the application of Liquid phase adsorption process that was considered as an inexpensive and environmentally friendly technology.

  2. Considerations on comprehensive risk assessment and mitigation planning of volcanic ash-fall

    International Nuclear Information System (INIS)

    Toshida, Kiyoshi

    2010-01-01

    Volcanic ash-fall is inevitable hazard throughout Japan, and causes wide range of effects due to its physical and chemical properties. Nuclear power plants in Japan face the necessity to assess the risk from volcanic ash-fall. Risk assessment of the volcanic ash-fall should include engineering solution and mitigation planning as well as the ash-fall hazard. This report points out the characteristics for reducing the various effects of volcanic ash-fall as follows. Large-scale eruptions produce prominent volcanic ash-falls that can approach power plants at a great distance. Aftermath hazards of ash-fall events, such as remobilization of fine ash particles and generation of lahars, require further assessments. The kind and extent of damages becomes greater whenever ash is wet. Wet ash requires separate assessments in contrast to dry ash. The mitigation and recovery measures at power plants involve quick cleanup operations of volcanic ash. Those operations should be prepared through comprehensive risk assessment, and by cooperation with authorities, during pre-eruption repose period. The comprehensive assessment for volcanic ash-fall hazards, however, has yet to be conducted. Development of risk communication method may result in increased implementation mitigation planning. Numerical analysis of the ash-fall hazards provides quantitative data on particle motions that can be used in the risk assessment. In order to implement the quantitative assessment method, the verification on the effect of ambient air condition to the altitude of volcanic ash cloud is necessary. We need to develop a three-dimensional model of volcanic ash cloud, and calculate motions of ash clouds under multiple conditions of ambient air. (author)

  3. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  4. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  5. Use of ash from the incineration of firewood and sawdust into clayey ceramic

    International Nuclear Information System (INIS)

    Rossi, D.P.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This work has as its objective to evaluate the effect of the incorporation of a type of waste, ash obtained from burning eucalyptus firewood and sawdust, in the physical and mechanical properties of red ceramic. The waste was characterized by DTA/TG and XRF. Formulations were prepared with incorporation of the waste in amounts up to 10 wt.%, into a kaolinitic clayey body. Rectangular specimens were prepared by uniaxial mold-press at 20 MPa and then fired at 650 and 950 deg C. The evaluated physical and mechanical properties were: linear shrinkage, water absorption and flexural rupture strength. The microstructure of the fired ceramics was evaluated by optical microscopy. The results showed that the ash has an high amount of weight loss during the firing, being predominantly composed of quartz and calcium compounds. The incorporation of the ash increased the water absorption and abruptly decreased the mechanical strength of the ceramic at the investigated temperatures for all amount of incorporated ash. (author)

  6. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash

    Science.gov (United States)

    In many parts of North America, ash stands have been reduced by the emerald ash borer (Agrilus planipennis) invasion to a few surviving mature trees and young basal sprouts, saplings, and seedlings. Without a seed bank, ash tree recovery will require survival and maturation of these younger cohorts...

  7. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  8. Experimental Study on Rise Husk Ash & Fly Ash Based Geo-Polymer Concrete Using M-Sand

    Science.gov (United States)

    Nanda Kishore, G.; Gayathri, B.

    2017-08-01

    Serious environmental problems by means of increasing the production of Ordinary Portland cement (OPC), which is conventionally used as the primary binder to produce cement concrete. An attempt has been made to reduce the use of ordinary Portland cement in cement concrete. There is no standard mix design of geo-polymer concrete, an effort has been made to know the physical, chemical properties and optimum mix of geo-polymer concrete mix design. Concrete cubes of 100 x 100 x 100 mm were prepared and cured under steam curing for about 24 hours at temperature range of 40°C to 60°C. Fly ash is replaced partially with rice husk ash at percentage of 10%, 15% and 25%. Sodium hydroxide and sodium silicate are of used as alkaline activators with 5 Molar and 10 Molar NaOH solutions. Natural sand is replaced with manufacture sand. Test results were compared with controlled concrete mix of grade M30. The results shows that as the percentage of rice husk ash and water content increases, compressive strength will be decreases and as molarity of the alkaline solution increases, strength will be increases.

  9. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  10. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    Energy Technology Data Exchange (ETDEWEB)

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  11. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    International Nuclear Information System (INIS)

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility's processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory

  12. On the removal of hexavalent chromium from a Class F fly ash.

    Science.gov (United States)

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. TECHNOLOGY AND EFFICIENCY OF PEAT ASH USAGE IN CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2015-01-01

    Full Text Available One of the main ways to improve physical and mechanical properties of cement concrete is an introduction of ash obtained due to burning of fossil fuels into concrete mix. The concrete mixes with ash are characterized by high cohesion, less water gain and disintegration. At the same time the concrete has high strength, density, water resistance, resistance to sulfate corrosion. The aim of this paper is to explore the possibility to use peat ash and slag of peat enterprises of the Republic of Belarus in the concrete for improvement of its physical and mechanical properties and characteristics of peat ash, slag, micro-silica, cement, superplasticizing agent. Compositions and technology for preparation of concrete mixes have been developed and concrete samples have been have been fabricated and tested in the paper. It has been shown that the concrete containing ash, slag obtained due to burning of peat in the industrial installations of the Usiazhsky and Lidsky Peat Briquette Plants and also MK-85-grade micro-silica NSPKSAUsF-1-grade superplasticizing agent have concrete tensile strength within 78–134 MPa under axial compression and 53 MPa – for the control composition. This index is 1.5–2.5 times more than for the sample containing no additives.The usage of peat ash, slag together with MK-85-grade micro-silica and NSPKSAUsF-1-grade superplasticizing agent for fabrication of concrete and reinforced bridge and tunnel structures will provide the following advantages: reduction of cross-sectional area of structures while maintaining their bearing capacity due to higher value of tensile strength in case of axial compression; higher density, waterand gas tightness due to low water cement ratio; high resistance to aggressive environment due to lower content of capillary pores that ensures bridge structure longevity; achievement of environmental and social impacts.

  14. ECOLOGICAL AND TECHNOLOGYCAL ASPECTS OF ASH AND SLAG WASTES UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrova

    2017-07-01

    Full Text Available The article presents the results of investigation focused on the utilization of ash and slag wastes (ASW in Russia including investigation of chemical and physical properties of ASW and processing products. Many factors influence the technological properties of ash and slag materials: naturals, processes and environments. The integrated treatment of ash and slag wastes of both stored and re-formed types will allow obtaining the following commercial products: coal concentrate, iron concentrate, aluminosilicate cenospheres, aluminosilicate product. In this study we have analyzed the methods for separation of ASW iron-containing part using the different types of the magnetic separation from the ash and slag material from one of the combined heat and power plant (CHPP in the Russian Far East Federal District. The greatest interest is the dry magnetic separation with travelling electromagnetic field. The subject of research was a sample taken from one of ash dump of CHPP in the Far East. In the study iron concentrate containing Fetotal = 64% was obtained recovery 68% in the low intensity (up to 5 kOe travelling magnetic field.

  15. Recycling Jorf Lasfar fly ash as an additive to cement

    Directory of Open Access Journals (Sweden)

    Hamadi A

    2012-09-01

    Full Text Available Recycling fly ash is a good example of valorization of waste. It gives a solution the environmental problem by avoiding land filling, and reducing CO2 emission in the atmosphere. In this work we studied the physical-chemical characteristics of Jorf Lasfar fly ash. The parameters investigated were particle size, density, specific surface Blaine, chemical and mineralogical compositions. The techniques used are scanning electronic microscope (SEM, transmission electronic microscope (TEM, X-rays fluorescence (XRF, X-rays diffraction (XRD and atomic spectrometry emission coupled with inductive plasma ICP. We also conducted a study on the mechanical behavior of type CPJ45 cements produced from a combined grinding of clinker, limestone and gypsum. The substitution of a portion of the clinker by different percentages of fly ash was conducted. We noticed that the compression and bending resistances for these mixtures went through a maximum at 28 days with the addition of 7% (by mass of ash. This result showed that the mineral and chemical compositions of this ash conferred a Pozzoulanic power to the cement studied.

  16. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    Science.gov (United States)

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  17. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    Science.gov (United States)

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.

  18. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  19. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Science.gov (United States)

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  20. Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gregorio, M.R.; Garcia-Falcon, M.S.; Martinez-Carballo, E. [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain); Simal-Gandara, J., E-mail: jsimal@uvigo.es [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain)

    2010-06-15

    Polycyclic aromatic hydrocarbons (PAHs) can be formed during the refinery processes of crude petroleum. Their removal is of great importance. The same happens with other organic solvents used for the extraction of PAHs (hexane, acetonitrile...), which can be polluted with PAHs. Kinetic and equilibrium batch sorption tests were used to investigate the effect of wood ashes wastes as compared to activated carbon on the sorption of three representative PAHs from n-hexane and acetonitrile. Mussel shell ashes were discarded for batch sorption experiments because they were the only ashes containing PAHs. The equilibrium time was reached at 16 h. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the PAHs removal process. Our investigation revealed that wood ashes obtained at lower temperature (300 deg. C) did not show any PAHs sorption, while ashes obtained at higher temperature (>500 deg. C) have adsorbent sites readily available for the PAH molecules. An increase in the molecular weight of PAHs has a strong effect on sorption wood ashes wastes. As low the wood ashes particle size as high the sorption of PAHs, as a result of differences in adsorbent sites. The performance of wood ash wastes vs. activated carbon to remove 10 PAHs from organic solvents is competitive in price, and a good way for waste disposal.

  1. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  2. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  3. FEATURES OF ASH OF THERMAL POWER PLANTS AS AGGREGATE FOR CONCRETES

    Directory of Open Access Journals (Sweden)

    M. A. Storozhuk

    2017-10-01

    are presented. The advantages of ash over traditional aggregate are shown. The research results contribute to the mass application of TPP ash in construction and obtaining the products from the proposed concrete of low cost with high physical-mechanical properties. Ash as an aggregate has a particularly high efficiency in vibrovacuumized concrete.

  4. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  5. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  6. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  7. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  8. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  9. Studies of physical behavior, and mechanical rheological mortar and settlement with addition of coating waste of civil construction and fly ashes

    International Nuclear Information System (INIS)

    Ferreira, K.C.; Cardoso, D.N.P.; Souza, J.A. da S.; Felipe, A.M.P.F.

    2014-01-01

    The use of fly ash generated from the combustion of coal in fluidized bed boilers, is being used in construction in partial replacement of Portland cement, due to their pozzolanic activities, thus minimizing the accumulation of such industrial waste generated. We studied the physical, chemical and rheological six mortars in different proportions of cement, construction waste (RCC) and fly ash (CV). For the rheological torque versus time was used viscometer model VT 550, at a temperature of 28 ° C with constant rate 53.4 s-1. Analyses particle size, X-ray diffraction, X-ray fluorescence and physico-mechanical absorption, porosity, apparent specific gravity and compressive strength. The composition 2 RCC with 90% and 5% CV results showed better resistance and workability. The results revealed an interesting mix in the production of mortars for the construction industry thus minimizing the impacts generated by these wastes. (author)

  10. Glass-ceramic from mixtures of bottom ash and fly ash.

    Science.gov (United States)

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Volcanic ash hazards and aviation risk: Chapter 4

    Science.gov (United States)

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  12. Solid State Multiwavelength LIDAR for Volcanic Ash Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a compact, multiwavelength LIDAR with polarization analysis capability that will be able to identify volcanic ash clouds...

  13. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    Science.gov (United States)

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  14. Effect of Grinding Fineness of Fly Ash on the Properties of Geopolymer Foam

    Directory of Open Access Journals (Sweden)

    Szabó R.

    2017-06-01

    Full Text Available Present paper deals with the development of geopolymer foam prepared from ground F class power station fly ash. The effect of the fly ash fineness on the rheology of the geopolymer paste and the foam properties have been investigated. The raw fly ash was ground in a ball mill for various duration, 5, 10, 20, 30, 60 and 120 min. Geopolymer paste was prepared from the raw and ground fly ash with NaOH – sodium silicate mixture as alkaline activator. Geopolymer foam production was made using H2O2 as foaming agent. Additionally, the geopolymer material structure was investigated by Fourier transform infrared spectrometer, the foam cell structure was monitored using optical microscopy. The rheological behaviour of the geopolymer paste changed due to the grinding of fly ash (from Bingham plastic to Newtonian liquid. Grinding of fly ash has a significant effect on the physical properties as well as on the cell structure of the geopolymer foam.

  15. Studies of lagoon ash from Sarawak to assess the impact on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Prabir Kumar Kolay; Harwant Singh [University Malaysia Sarawak, Sarawak (Malaysia). Dept. of Civil Engineering

    2010-02-15

    Coal utilization, mainly in thermal power plants, has increased significantly from 4.2 to 13 million tonnes within 2000 to 2005, which resulted in the production of approximately 2 million tonnes of coal ash in Malaysia. Of this only a small percentage is used as a cement ingredient, in concrete industry, as a fill material, etc. and with the rest of the amount being disposed in ash ponds or lagoons. If the lagoons are not properly designed with a landfill liner or if there is spillage from the ash pond, the toxic heavy metal present in coal ash can result in the contamination of the subsurface soil and the ground water. The concentration of heavy metals or trace elements in coal residues depends on the composition of a particular parent coal and the bulk utilization of lagoon ash for various purposes requires a complete characterization of the ash. Hence, this paper analyzes the coal ash for its trace element content and characterizes mainly physical, chemical, mineralogical, morphological and thermal properties of the lagoon ash from a local coal based thermal power plant from Sarawak, Malaysia. The results also indicated that, the concentration of some trace elements is quite high from the environmental perspective in this particular lagoon ash. 43 refs., 4 figs., 4 tabs.

  16. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  17. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    Science.gov (United States)

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  18. Exploring the molecular and biochemical basis of ash resistance to emerald ash borer

    Science.gov (United States)

    Justin G.A. Whitehill; Daniel A. Herms; Pierluigi. Bonello

    2010-01-01

    Larvae of the emerald ash borer (EAB) (Agrilus planipennis) feed on phloem of ash (Fraxinus spp.) trees. It is hypothesized that the resistance of Asian species of ash (e.g., Manchurian ash, F. mandshurica) to EAB is due to endogenous defenses present in phloem tissues in the form of defensive proteins and/or...

  19. Disposal of low-level radioactive waste using high-calcium fly ash. Final report

    International Nuclear Information System (INIS)

    Cogburn, C.O.; Hodgson, L.M.; Ragland, R.C.

    1986-04-01

    The feasibility of using calcium-rich fly ash from coal-fired power plants in the disposal of low-level radioactive waste was examined. The proposed areas of use were: (1) fly-ash cement as a trench lining material; (2) fly ash as a backfill material; and (3) fly ash as a liquid waste solidifier. The physical properties of fly-ash cement were determined to be adequate for trench liner construction, with compressive strengths attaining greater than 3000 psi. Hydraulic conductivities were determined to be less than that for clay mineral deposits, and were on the order of 10 -7 cm/sec, with some observed values as low as 10 -9 cm/sec. Removal of radioisotopes from acidified solutions by fly ash was good for all elements tested except cesium. The removal of cesium by fly ash was similar to that of montmorillonite clay. The corrosive effects on metals in fly ash environments was determined to be slight, if not non-existent. Coatings at the fly-ash/metal interfaces were observed which appeared to inhibit or diminish corrosion. The study has indicated that high-calcium fly ash appears to offer considerable potential for improved retention of low-level radioactive wastes in shallow land disposal sites. Further tests are needed to determine optimum methods of use. 8 refs., 4 figs., 7 tabs

  20. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    International Nuclear Information System (INIS)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-01-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  1. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  2. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  3. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    1998-11-01

    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  4. 3D micro-crack propagation simulation at enamel/adhesive interface using FE submodeling and element death techniques.

    Science.gov (United States)

    Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang

    2010-06-01

    This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.

  5. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  6. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  7. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  8. Investigation of rye straw ash sintering characteristics and the effect of additives

    International Nuclear Information System (INIS)

    Wang, Liang; Skreiberg, Øyvind; Becidan, Michael; Li, Hailong

    2016-01-01

    , the chemical reactions and physical restraining effects arose by calcite addition contributed to reduction of ash melts and sintering degree. Upon addition of kaolin, compositions of rye straw ash shifted from low temperature melting K–silicates to high temperature melting K–Al–silicates. The changes of ash chemistry were favorable for reducing sintering of the rye straw ash. As the Ca-sludge was added, reduction of sintering of the rye straw ash was less pronounced. Only K_4CaSi_3O_9 and a small amount of KCaPO_4 were identified in the rye straw ash as Ca-sludge was added.

  9. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, O.N.; Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-11-15

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase ({ge} 50{sup o}C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38{sup o}C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil.

  10. Effect of interfacial properties on mechanical stability of ash deposit

    Directory of Open Access Journals (Sweden)

    A. Ontiveros-Ortega

    2016-04-01

    Full Text Available The paper presents a study on the cohesion of volcanic ash particles using surface free energy determination and zeta potential analyses. This is a subject of great interest in physical volcanology, as many researches on volcanic particle aggregation are frequently reported. In this case, special attention is paid to the role of structural or hydration forces between hydrophilic surfaces, which are a consequence of the electron-donor/electron-acceptor character of the interface. From this point of view, the results are potentially interesting as they could give valuable insights into this process. The results are presented in terms of the total energy of interaction between dispersed particles, computed from the extended DLVO theory. Contributions to the total free energy of interaction were determined from the zeta potential and surface free energy of ash, measured under different experimental conditions. Two samples of basaltic volcanic ash (black and white with silica contents of 44% and 63% respectively are studied. The surface free energy and zeta potential were analysed for ashes immersed in different electrolytes (NaCl, CaCl2, FeCl3. The presence of electrolytes changes the surface properties of the solid materials. The analysis of total interaction energy between the ash particles in aqueous medium shows that soil cohesion strongly depends on ash surface properties, chemical nature, the adsorbed cation on the surface, and pH value.

  11. Chemistry of the direct acid leach, calsinter, and pressure digestion-acid leach methods for the recovery of alumina from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Canon, R.M.; Egan, B.Z.; Felker, L.K.; Gilliam, T.M.; Jones, G.; Owen, G.D.; Seeley, F.G.; Watson, J.S.

    1982-08-01

    The chemistry of three methods for the recovery of alumina from fly ash is reviewed. Fly ashes are characterized with respect to both physical and chemical properties, and differences in ashes derived from eastern and western coals are identified. Aluminum solubilization from fly ashes is explained in terms of the solid phases present, which are related to the basic element content of the ash. The methods used yield high aluminum solubilization from both eastern and western fly ashes. (9 refs.)

  12. Restoration of fly ash dump through biological interventions.

    Science.gov (United States)

    Juwarkar, Asha A; Jambhulkar, Hemlata P

    2008-04-01

    Field experiment on 10 ha area of fly ash dump was conducted to restore and revegetate it using biological interventions, which involves use of organic amendment, selection of suitable plant species along with specialized nitrogen fixing strains of biofertilizer. The results of the study indicated that amendment with farm yard manure at 50 t/ha improved the physical properties of fly ash such as maximum water holding capacity from 40.0 to 62.42% while porosity improved from 56.78 to 58.45%. The nitrogen content was increased by 4.5 times due to addition of nitrogen fixing strains of Bradyrhizobium and Azotobacter species, while phosphate content was increased by 10.0 times due to addition of VAM, which helps in phosphate immobilization. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in fly ash improved to 7.1 x 10(7), 9.2 x 10(7) CFU/g and 35 VAM spores/10 g of fly ash, respectively. Inoculation of biofertilizer and application of FYM helped in reducing the toxicity of heavy metals such as cadmium, copper, nickel and lead which were reduced by 25, 46, 48 and 47%, respectively, due to the increased organic matter content in the fly ash which complexes the heavy metals thereby decreasing the toxicity of metals. Amendment of fly ash with FYM and biofertilizer helped in profuse root development showing 15 times higher growth in Dendrocalamus strictus plant as compared to the control. Thus amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant.

  13. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    Science.gov (United States)

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  14. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    Science.gov (United States)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  15. Physicochemical study of bagasse and bagasse ash from the sugar industries of NWFP, pakistan and its recycling in cement manufacturing

    International Nuclear Information System (INIS)

    Ali, K.; Amin, N.U.; Shah, M.T.

    2009-01-01

    Bagasse and bagasse ash, obtained from the local sugar mills of North West Frontier Province (NWFP), Pakistan, were analyzed for both physical and chemical parameters. Among the physical parameters, the moisture, ash contents, volatile matter, loss on ignition, and calorific value have been determined while the chemical constituents such as SiO/sub 2/, AI/sub 2/O/sub 3/ Fe/sub 2/O/sub 3/ CaO, MgO, Na/sub 2/O, K/sub 2/O, carbon and sulfur were also determined in both baggase and baggase ash. The physicochemical characterization of baggase ash suggests that it can be used as a part of the cement admixture, which could be cost effective and environmentally sustainable. (author)

  16. MSWI boiler fly ashes: magnetic separation for material recovery.

    Science.gov (United States)

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Survey for tolerance to emerald ash borer within North American ash species

    Science.gov (United States)

    Jennifer L. Koch; Mary E. Mason; David W. Carey; Kathleen Knight; Therese Poland; Daniel A. Herms

    2010-01-01

    Since the discovery of the emerald ash borer (EAB) near Detroit, MI, in 2002, more than 40 million ash trees have been killed and another 7.5 billion are at risk in the United States. When the EAB outbreak was initially discovered, our native ash species appeared to have no resistance to the pest.

  18. Cast-concrete products made with FBC ash and wet-collected coal-ash

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D. [University of Wisconsin, Milwaukee, WI (United States)

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  19. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  20. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  1. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  2. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  3. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  4. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  5. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  6. Synergetic use of lignite fly ash and metallurgical converter slag in geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Gábor Mucsi

    2014-08-01

    Full Text Available The application and utilization of the industrial wastes and by-products in the construction industry is a key issue from an environmental and economic point of view. The increased use of lignite has substantially increased the available quantities of lignite fired power plant fly ash, which can be mainly classified as class C fly ash. The utilization of such raw material however has some difficulties. In the present paper lignite fired power station fly ash and metallurgical converter slag were used for the production of geopolymer concrete. The fly ash was used as a geopolymer based binder material, and a converter slag as aggregate, thus created a geopolymer concrete which contains mainly industrial wastes. As preliminary test experimental series were carried out using andesite as aggregate. The optimal aggregate/binder ratio was determined. The effect of the amount of alkaline activator solution in the binder, the aggregate type on the geopolymer concretes’ compressive strength and density was investigated. Furthermore, the physical properties - freeze-thaw resistance and particle size distribution - of the applied aggregates were measured as well. As a result of the experiments it was found that physical properties of the andesite and converter slag aggregate was close. Therefore andesite can be replaced by converter slag in the concrete mixture. Additionally, geopolymer concrete with nearly 20 MPa compressive strength was produced from class C fly ash and converter slag.

  7. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants

    NARCIS (Netherlands)

    Tang, P.; Florea, M.V.A.; Spiesz, P.R.; Brouwers, H.J.H.

    2015-01-01

    This study focuses on municipal solid waste incineration (MSWI) bottom ash characteristics, its heterogeneity, environmental properties, and their stability in time. The physical and chemical characteristics of bottom ashes from two plants were determined over time; results show that their

  8. Wildland fire ash: future research directions

    Science.gov (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  9. First international ash marketing and technology conference

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A total of 42 papers were presented in sessions with the following headings: production and disposal of ash - an international review; environmental, health, safety, and legal aspects of ash handling; marketing of ash; development of new uses for ash; cementitious use of ash; ash in manufactured products; and geotechnical uses of ash.

  10. Determining ash content in flotation wastes by means of the MPOF optical ash meter. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-03-01

    The paper evaluates an experimental unit of the MPOF optical ash meter, developed by the EMAG Research and Production Center for Electrical Engineering and Mining Automation. The MPOF, which is being tested at the coal preparation plant of the 30 lecia PRL mine, is the first system for continuous determination of ash content in flotation tailings developed in Poland. A block scheme of the system is given. It consists of a measuring head and electronic system which processes data supplied by the measuring head and calculates ash content. System operation is based on the principle of determining ash content in a mixture of coal and mineral wastes by measuring mixture reflectivity. Determining ash content in the mixture is possible as reflectivity coefficients for coal and ash are constant. Performance of the MPOF optical ash meter is evaluated; the results are shown in a table and a scheme. Measurement accuracy is satisfactory.

  11. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  12. Phase transformations in synthesis technologies and sorption properties of zeolites from coal fly ash

    Directory of Open Access Journals (Sweden)

    О. Б. Котова

    2016-08-01

    Full Text Available Coal fly ash is generated in the course of combustion of coal at thermal power plants. Environmental problems increase sharply without disposing that industrial waste. Technologies were tested of hydrothermal synthesis of zeolites from fly ash forming during combustion of coal at thermal power plants of the Pechora coal basin and dependences were identified of the experiment conditions on physical and chemical properties of the end product. It is demonstrated that synthesizing zeolites from fly ash is the first stage of forming ceramic materials (ceramic membranes, which defines the fundamental character (importance of that area of studies. It was for the first time that sorption and structural characteristics and cation-exchange properties of fly ash from the Pechora basin coals were studied with respect to, Ba2+ and Sr2+.

  13. Evolution of coal ash solidification properties with disposal site depth and age, 'Gacko' Thermal power plant case

    Directory of Open Access Journals (Sweden)

    Knežević Dinko

    2017-01-01

    Full Text Available Ash with high calcium content is produced by coal combusting in 'Gacko' thermal power plant (Bosnia and Herzegovina. Result of controlled mixture of water and ash is spontaneous ash solidification on disposal site. Speed and solidification efficiency depends on content of calcium-oxide in ash and water: ash mass ratio, which was determined by previous research. Mass ratio that was chosen as the most suitable ratio for industrial usage (roughly was 1:1. Samples of ash of different age were taken after 6.5 years of exploitation and their chemical, physical, mineralogical and geotechnical characteristics were analyzed. Disposed ash was stratified and very heterogeneous. It was shown that great impact on solidification process in practice have climate conditions, proper handling slurry processing, work continuity and disposal site preparation. Great impact of water is noticed which is, because of its water permeability filtrated into lower layers and significantly alters it characteristic.

  14. Ash from a pulp mill boiler--characterisation and vitrification.

    Science.gov (United States)

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial. 2010 Elsevier B.V. All rights reserved.

  15. The effect of fly ash on the sulfate resistance of concrete

    Science.gov (United States)

    1989-08-01

    The durability of concrete is determined by its ability to endure the physical and environmental surroundings without losing the functional properties and structural integrity of the original design. Concrete containing fly ash can be proportioned to...

  16. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Science.gov (United States)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  17. Characterization of metals released from coal fly ash during dredging at the Kingston ash recovery project.

    Science.gov (United States)

    Bednar, A J; Averett, D E; Seiter, J M; Lafferty, B; Jones, W T; Hayes, C A; Chappell, M A; Clarke, J U; Steevens, J A

    2013-09-01

    A storage-pond dike failure occurred on December 22, 2008 at the Tennessee Valley Authority Kingston Fossil Plant resulting in the release of over 4million cubic meters (5million cubic yards) of fly ash. Approximately half of the released ash was deposited in the main channel of the Emory River, Tennessee, USA. Remediation efforts of the Emory River focused on hydraulic dredging, as well as mechanical excavation in targeted areas. However, agitation of the submerged fly ash during hydraulic dredging introduces river water into the fly ash material, which could promote dissolution and desorption of metals from the solid fly ash material. Furthermore, aeration of the dredge slurry could alter the redox state of metals in the fly ash material and thereby change their sorption, mobility, and toxicity properties. The research presented here focuses on the concentrations and speciation of metals during the fly ash recovery from the Emory River. Our results indicate that arsenite [As(III)] released from the fly ash material during dredging was slowly oxidized to arsenate [As(V)] in the slurry recovery system with subsequent removal through precipitation or sorption reactions with suspended fly ash material. Concentrations of other dissolved metals, including iron and manganese, also generally decreased in the ash recovery system prior to water discharge back to the river. Published by Elsevier Ltd.

  18. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  19. Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition

    Science.gov (United States)

    Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.

    2017-04-01

    The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.

  20. Bioleaching of trace metals from coal ash using local isolate from coal ash ponds

    Directory of Open Access Journals (Sweden)

    Pangayao Denvert

    2018-01-01

    Full Text Available Bioleaching of chromium, copper, manganese and zinc from coal ash were investigated using isolates from coal ash ponds particularly Psuedomonas spp. Six (6 different coal ash ponds were examined however, after initial screening Psuedomonas spp. were only present in three (3 coal ash ponds. Among the three coal ash ponds, results showed that eight (8 putative Pseudomonas spp. isolates were present that were identified using the Polymerase Chain Reaction (PCR. Using the eight putative Pseudomonas spp. for bioleaching at optimum conditions and 15 days, the pH value ranges from 8.26 to 8.84 which was basic in nature. Moreover, the maximum metal leached were 8.04% Cr, 12.05% Cu, 4.34% Mn and 10.63% Zn.

  1. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  2. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  3. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  4. Numerical investigation of ash deposition in straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been...... accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...... transfer mechanisms have a pronounced influence on the combustion pattern. The combined set of sub-models has been evaluated using the straw-fired boiler at Masnedø CHP plant as a test case. The predicted grate combustion and KCl release patterns are in qualitative agreement with experimental findings...

  5. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  6. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  7. The Role of Biocontrol of Emerald Ash Borer in Protecting Ash Regeneration after Invasion

    Science.gov (United States)

    Emerald ash borer (EAB) is an invasive Asian beetle that is destroying ash in forests over much of eastern North America because of the high susceptibility of our native ash and a lack of effective natural enemies. To increase mortality of EAB larvae and eggs, the USDA (FS, ARS and APHIS) is carryin...

  8. Study of a large rapid ashing apparatus and a rapid dry ashing method for biological samples and its application

    International Nuclear Information System (INIS)

    Jin Meisun; Wang Benli; Liu Wencang

    1988-04-01

    A large rapid-dry-ashing apparatus and a rapid ashing method for biological samples are described. The apparatus consists of specially made ashing furnace, gas supply system and temperature-programming control cabinet. The following adventages have been showed by ashing experiment with the above apparatus: (1) high speed of ashing and saving of electric energy; (2) The apparatus can ash a large amount of samples at a time; (3) The ashed sample is pure white (or spotless), loose and easily soluble with few content of residual char; (4) The fresh sample can also be ashed directly. The apparatus is suitable for ashing a large amount of the environmental samples containing low level radioactivity trace elements and the medical, food and agricultural research samples

  9. Coal fly ash-slag-based geopolymers: microstructure and metal leaching.

    Science.gov (United States)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernández-Pereira, Constantino

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilize a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  10. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Maria, E-mail: mariaizq@ija.csic.es [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Querol, Xavier [Institute of Earth Sciences ' Jaume Almera' -CSIC, Lluis Sole Sabaris s/n 08028 Barcelona (Spain); Davidovits, Joseph [Cordi-Geopolymere, Espace Creatis, Z.A. Bois de la Chocque 02100 Saint-Quentin (France); Antenucci, Diano [Institut Scientifique de Service Public (ISSeP) 200, rue du Chera, B-4000 Liege (Belgium); Nugteren, Henk [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Particle Technology Group, Julianalaan 136, 2628 BL Delft (Netherlands); Fernandez-Pereira, Constantino [University of Seville, School of Industrial Engineering, Department of Chemical and Environmental Engineering, Camino de los Descubrimientos s/n, 41092 Seville (Spain)

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  11. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching

    International Nuclear Information System (INIS)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernandez-Pereira, Constantino

    2009-01-01

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilise a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  12. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  13. Stabilization of soft clayey soils with sawdust ashes

    Directory of Open Access Journals (Sweden)

    Karim Hussein

    2018-01-01

    Full Text Available The problems of soft clayey soils are taken in considerations by many Iraqi geologists and civil engineers, because about 35% of the Iraqi clay soils (especially southern Iraq are weak. Thus, it is necessary to improve the properties of such soils for road construction by means of using of various stabilizers such as sawdust ash. The main goal of the present study is to stabilize soft clay models with sawdust ash (SDA additive using different percentages (0, 2, 4, 6, 8 and 10% by dry weight of soil. The results revealed that the additive has adverse effects on the property of soil indices by increasing its liquid limit and plasticity index due to clay content. The mixture of sawdust ashes with soft clay soils improves most other physical and mechanical properties of the soil, as expressed by a general reduction in specific gravity and maximum dry density (MDD, as well as a reduction in the compression coefficients (Cc and Cr with an increase in SDA content. While increasing the optimum moisture content (OMC and the undrained shear strength (cu with the increase in SDA content. The stabilized soils (with 4 and 10% ash content resulted in low CBR values (1.6-1.2% which can be used as sub-base. The SDA can be considered as a cheap and acceptable stabilizing agent in road construction for improving most of the geotechnical properties of the soft clayey soil.

  14. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    2011-01-01

    Full Text Available Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem.Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species.The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.

  15. Spectral analysis of white ash response to emerald ash borer infestations

    Science.gov (United States)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.

  16. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  17. Porous Geopolymer Insulating Core from a Metakaolin/Biomass Ash Composite

    Directory of Open Access Journals (Sweden)

    Annalisa Natali Murri

    2017-12-01

    Full Text Available Ashes derived from the combustion of vegetal and animal biomass still represent a mostly unexplored secondary raw material for the production of alkali-activated materials, given their peculiar chemical nature. In this work, calcium phosphate biomass ashes were successfully used as partially reactive fillers in a metakaolin-based geopolymer composite to produce, by direct foaming, sustainable and lightweight boards with thermal insulating properties. The investigated materials were obtained by activating a blend of metakaolin and biomass ash in a weight ratio of 1: 1 and foamed with the addition of H2O2 in measure of 5 wt. %, to maximize the volume of disposed ash and ensure adequate properties to the material at the same time. The obtained geopolymer composite was characterized by microstructural, chemical-physical, mechanical and thermal analysis: the obtained results showed that biomass ash and metakaolin well integrated in the microstructure of the final porous material, which was characterized by a density of about 310 kg/m3 and a thermal conductivity of 0.073 W/mK at a mean test temperature of 30 °C, coupled with an acceptable compressive strength of about 0.6 MPa. Dilatometric and thermogravimetric analysis, performed up to 1000 °C, highlighted the thermal stability of the composite, which could be regarded as a promising material for low-cost, self-bearing thermal insulating partitions or lightweight cores for thermostructural sandwich panels.

  18. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    Science.gov (United States)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine the sensitivity to uncertainty in ash particle characteristics.

  19. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    International Nuclear Information System (INIS)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-01-01

    Highlights: ► Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. ► Means of stabilizing the incinerator ash for use in construction applications. ► Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. ► Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA’s Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson’s ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg

  20. The food chain and dose submodel, CALDOS, for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Zach, R.; Sheppard, S.C.

    1992-12-01

    The food chain and dose submodel, CALDOS, for assessing Canada's nuclear fuel management (NFWM) concept of disposal in a vault deep in the Canadian Shield is presented. Together with the surface water, soil and atmosphere submodels, CALDOS is integrated into a comprehensive, probabilistic biosphere model for post-closure assessment. This model is representative of the Canadian Shield in Ontario and CALDOS is fully generic. CALDOS calculates radionuclide transfer through the environment to make dose predictions for man. It considers 68 radionuclides explicitly and takes into account another 28 short-lived daughters in the dose calculations. Nine potentially toxic elements are also considered. CALDOS is of the multiplicative chain type for most of the radionuclides, but some, such as 3H , 129I and 222R n, are treated specially. The model accounts for all the major internal exposure pathways, including root uptake, leaf deposition, terrestrial animal's drinking water, terrestrial animal soil ingestion, freshwater fish ingestion, human drinking water, human soil ingestion and human inhalation. External exposure from air immersion, water immersion, ground and building materials are also considered. Dose predictions are based on the recommendations of the International Commission on Radiation Protection (ICRP 26) methodologies, ICRP reference man (ICRP 23) and the critical group concept. CALDOS considers ingrowth of some radioactive daughters, radionuclide availability in soil, recycling and depletion. The model has numerous parameters, some element, radionuclide or food type specific. Sensitivity analysis is used to assess parameter importance in dose prediction. Quality assurance is addressed through general literature, model and parameter evaluations, specifically designed for environmental assessment models. This also involves validation and code comparison studies. (author). 43 refs., 36 tabs., 24 figs

  1. Synthesis and characterization of polypropylene/jigsaw wood ash composite

    International Nuclear Information System (INIS)

    Sudirman; Karo Karo, Aloma; Gunawan, Indra; Handayani, Ari; Hertinvyana, Evi

    2002-01-01

    The composite of polypropylene (PP) polymer with jigsaw wood ash as filler is the alternative composite material. The dispersion of the filler in the composite is random with the jigsaw wood ash composition of 10,30, and 50% by volume. The characterization of composite are done to measure its mechanical properties, physical properties and microstructure by using XRD and SEM. From this research, it is concluded that increasing filler content of the composite will decrease its mechanical and physical properties. The comparation of different composites are found that tensile strength of PP MF 10 is higher 4.24% compared with PP MF 2 as a matrix. It is also found that melting temperature of PP MF 10 is higher 4.09% compared with PP MF 2 as a matrices and the decomposition temperature different is 0.17%. The degree of crystallinity of composite with PP MF 10 as a matrices is 2.55% higher compared with PP MF 2. The higher degree of crystallinity is increasing the tensile strength

  2. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    Suomela, J.

    1985-01-01

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  3. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  4. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  5. An improved ashing procedure for biologic sample

    Energy Technology Data Exchange (ETDEWEB)

    Zongmei, Wu [Zhejiang Province Enviromental Radiation Monitoring Centre (China)

    1992-07-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches.

  6. An improved ashing procedure for biologic sample

    International Nuclear Information System (INIS)

    Wu Zongmei

    1992-01-01

    The classical ashing procedure in muffle was modified for biologic samples. In the modified procedure the door of muffle was open in the duration of ashing process, the ashing was accelerated and the ashing product quality was comparable to that the classical procedure. The modified procedure is suitable for ashing biologic samples in large batches

  7. STUDY ON POZZOLANA ACTIVITY OF WHEAT STRAW ASH AS POTENTIAL ADMIXTURE FOR BLENDED CEMENTS

    Directory of Open Access Journals (Sweden)

    Ondrej Jankovsky

    2017-09-01

    Full Text Available Wheat straw ash coming from combustion of packed wheat straw was studied as a potential pozzolana active admixture for blended cements. X-Ray fluorescence, X-Ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were used to examine chemical and mineralogical composition, morphology and elemental distribution of a raw untreated ash. Due to high carbon content, the wheat straw ash was thermally treated for 2 hours at 700 °C and analyzed again using the same analytic techniques. Thermal treatment process was monitored using simultaneous thermal analysis and Fourier Transform infrared spectroscopy. The pozzolana activity was assessed using Chapelle and Frattini tests. In the next step, wheat straw ash was used for preparation of blended cement pastes. The content of ash in the blends was 10, 15, and 20% by mass. For the hardened pastes, basic physical properties, mechanical parameters, and pore size distribution were measured. For fresh past mixes, workability was tested. Moreover, leachability of chlorides, nitrates, sulfates and alkalis from paste samples was studied. The experimentally obtained data pointed to the high pozzolana activity of wheat straw ash and sufficient mechanical properties of cement pastes with the ash content up to 20 mass% of cement. In summary, the analyzed waste product from biomass combustion was found to be applicable as a part of cement-based blended binder providing economic and environmental benefits for concrete industry.

  8. Sugarcane bagasse ash: new filler to natural rubber composite

    Directory of Open Access Journals (Sweden)

    Renivaldo José dos Santos

    2014-12-01

    Full Text Available Waste recycling has been the subject of numerous scientific researches regarding the environmental care. This paper reports the redirecting of sugarcane bagasse ash (SBA as new filler to natural rubber (NR/SBA. The NR/SBA composites were prepared using an opened cylinder mixer to incorporate the vulcanization agents and different proportions of residue (SBA. The ash contains about 70-90% of inorganic compounds, with silica (SiO2 being the main compound. The SBA incorporation improved the mechanical properties of the vulcanized rubber. Based on these results, a new use is proposed for the agro-industry organic waste to be implemented in the rubber vulcanization process, aimed at improving the rubber physical properties as well as decreasing the prices of natural rubber composites.

  9. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  10. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  11. Treatment of fly ash for use in concrete

    Science.gov (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  12. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  13. A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24

    Science.gov (United States)

    Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.

    2012-01-01

    Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.

  14. Evaluating the use of waste-to-energy bottom ash as road construction materials.

    Science.gov (United States)

    2014-02-01

    Current management practice, existing regulations, and environmental consequences of municipal solid : waste incineration (MSWI) ash utilization were comprehensively reviewed worldwide and nationwide : in the U.S. Efforts were made to physically and ...

  15. Determining the ash content of coal flotation tailings using an MPOF optical ash meter

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-01-01

    The block layout, a description of the design and principles of operation of an automatic optical, continuous action MPOF type ash meter are presented. The difference in the optical properties of coal and rock is used in the ash meter. The identification of the ash content is conducted on the basis of the spectral characteristics of reflection of a finely dispersed aqueous coal and rock suspension.

  16. Utilization of zeolites synthesized from coal ash for methylene blue removal from water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2008-12-01

    Full Text Available The adsorption of methylene blue from aqueous solution was carried out using zeolites synthesized from coal ash as low-cost adsorbents. The coal ash sample was converted to zeolites by hydrothermal treatment using different synthesis parameters. The materials were characterized by physical-chemical analysis, XRD and SEM studies. The adsorption isotherms can be fitted by Freundlich model. The values of the adsorption capacity of adsorbents were similar for adsorbents. Kinetic studies indicate that the adsorption follows pseudo-second-order kinetic model.

  17. Development of bricks with incorporation of coal ash and sludge from water treatment plant

    International Nuclear Information System (INIS)

    Silva, Mauro Valerio da

    2011-01-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  18. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  19. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  20. Elaboration of vitreous and vitrocrystalline basalt materials containing simulated radioactive ash wastes. Study of some physical properties and leaching behaviour

    International Nuclear Information System (INIS)

    Lebeau, M.J.

    1988-01-01

    This work is a preliminary study of a matrix for containment of incinerator ashes. Basalt presents a good capacity for ash incorporation (up to 50%), glasses obtained are homogeneous and the low viscosity at 1300 0 C allows an industrial preparation. Vitrocrystalline products have a dendritic texture which can be controlled by cooling rate and are composed of magnesioferrite, pyroxene, plagioclase and vitreous fraction depending on the filling material ratio. Uranium and thorium, for actinide simulation in ashes, are localized in the glass. Glass leaching decrease with ash content and the alteration film presents a better retention of some elements, such as uranium and thorium. Vitrocrystalline materials are less leachable than glasses. Interesting possibilities are shown for use of basalt as filling material in underground storage, since basalt decrease glass deterioration [fr

  1. Hazards Associated With Recent Popocatepetl Ash Emissions

    Science.gov (United States)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  2. Analysis list: ash2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash2 Larvae + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2.1.tsv ...http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/ash2....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/ash2.Larvae.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Larvae.gml ...

  3. Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding

    Science.gov (United States)

    Deborah McCullough; Therese Poland; David. Cappaert

    2009-01-01

    New infestations of emerald ash borer, Agrilus planipennis Fairmaire, an invasive pest native to Asia, are difficult to detect until densities build and symptoms appear on affected ash (Fraxinus spp). We compared the attraction of A. planipennis to ash trees stressed by girdling (bark and phloem removed...

  4. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  5. Decolorization of a textile vat dye by adsorption on waste ash

    Directory of Open Access Journals (Sweden)

    MIODRAG ŠMELCEROVIĆ

    2010-06-01

    Full Text Available An adsorption process using cheap adsorbents could be described as a simple, selective and low cost alternative for the treatment of colored waste water compared to conventional physical and chemical processes. In this study the use of a natural waste adsorbent–ash was investigated for the removal of a textile vat dye Ostanthren blue GCD remaining after the dyeing of cotton textile. The ash obtained as a waste material during the burning of brown coal in the heating station of Leskovac (Serbia was used for the treatment of waste waters from the textile industry, i.e., waste water after the dyeing process. The effect of ash quantity, initial dye concentration, pH and agitation time on adsorption was studied. The Langmuir model was used to describe the adsorption isotherm. Based on the analytical expression of the Langmuir model, the adsorption constants, such as adsorption capacity and adsorption energy, were found. Pseudo first and second order kinetic models were studied to evaluate the kinetic data.

  6. Sewage sludge ash (SSA in high performance concrete: characterization and application

    Directory of Open Access Journals (Sweden)

    C. M. A. Fontes

    Full Text Available ABSTRACT Sewage sludge originated from the process of treatment of wastewater has become an environmental issue for three main reasons: contains pathogens, heavy metals and organic compounds that are harmful to the environmental and human health; high volumes are daily generated; and shortage of landfill sites for proper disposal. This research deals with the viability study of sewage sludge utilization, after calcination process, as mineral admixture in the production of concrete. High-performance concretes were produced with replacement content of 5% and 10% by weight of Portland cement with sewage sludge ash (SSA. The influence of this ash was analyzed through physical and mechanical tests. Analysis showed that the mixtures containing SSA have lower values of compressive strength than the reference. The results of absorptivity, porosity and accelerated penetration of chloride ions, presents that mixtures containing ash showed reductions compared to the reference. This indicates that SSA provided refinement of the pore structure, which was confirmed by mercury intrusion porosimetry test.

  7. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  8. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  9. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview.

    Science.gov (United States)

    Demeyer, A; Voundi Nkana, J C; Verloo, M G

    2001-05-01

    Wood industries and power plants generate enormous quantities of wood ash. Disposal in landfills has been for long a common method for removal. New regulations for conserving the environment have raised the costs of landfill disposal and added to the difficulties for acquiring new sites for disposal. Over a few decades a number of studies have been carried out on the utilization of wood ashes in agriculture and forestry as an alternative method for disposal. Because of their properties and their influence on soil chemistry the utilization of wood ashes is particularly suited for the fertility management of tropical acid soils and forest soils. This review principally focuses on ash from the wood industry and power plants and considers its physical, chemical and mineralogical characteristics, its effect on soil properties, on the availability of nutrient elements and on the growth and chemical composition of crops and trees, as well as its impact on the environment.

  10. Effect of Lignite Fly Ash on the Growth and Reproduction of Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    S. Sarojini

    2009-01-01

    Full Text Available Fly ash is an amorphous ferroalumino silicate, an important solid waste around thermal power plants. It creates problems leading to environmental degradation due to improper utilization or disposal. However, fly ash is a useful ameliorant that may improve the physical, chemical and biological properties of soils and is a source of readily available plant macro and micronutrients when it is used with biosolids. Supply of nutrients from fly ash with biosolids may enhance their agricultural use. The growth and reproduction of Eisenia fetida was studied during vermicomposting of fly ash with cowdung and pressmud in four different proportions (T1,T2,T3 & T4 and one control i.e., cow dung and pressmud alone. The growth, cocoon and hatchlings production were observed at the interval of 15 days over a period of 60 days. The maximum worm growth and reproduction was observed in bedding material alone. Next to that the T1 was observed as the best mixture for vermiculture.

  11. Collaborative efforts in the characterization of stack-collected fly ash

    International Nuclear Information System (INIS)

    Fisher, G.L.; Prentice, B.A.; Silberman, D.; Ondov, J.M.; Ragaini, R.C.; Bierman, A.H.

    1976-01-01

    A collaborative study with Lawrence Livermore Laboratory (LLL) has been initiated to characterize the physical and chemical properties of stack-collected fly ash. The expertise of the two laboratories with respect to chemical analysis and particle sizing is complementary and allows for comparison and extension of analytical results not possible with independent analysis

  12. Modified coal fly ash as low cost adsorbent for removal reactive dyes from batik industry

    Directory of Open Access Journals (Sweden)

    Taufiq Agus

    2018-01-01

    Full Text Available The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET surface area analysis, X-ray powder diffraction (XRD, Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. The effects of operational parameters such as initial dye concentration (50–200 mg/L, solution pH (4–10 and adsorbent dosage (50–200 mg/L were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.

  13. Associative properties of 137Cs in biofuel ashes

    International Nuclear Information System (INIS)

    Ravila, A.; Holm, E.

    1999-01-01

    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash

  14. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  15. Review of ecosystem level impacts of emerald ash borer on black ash wetlands: What does the future hold?

    Science.gov (United States)

    Randall K. Kolka; Anthony W. D' Amato; Joseph W. Wagenbrenner; Robert A. Slesak; Thomas G. Pypker; Melissa B. Youngquist; Alexis R. Grinde; Brian J. Palik

    2018-01-01

    The emerald ash borer (EAB) is rapidly spreading throughout eastern North America and devastating ecosystems where ash is a component tree. This rapid and sustained loss of ash trees has already resulted in ecological impacts on both terrestrial and aquatic ecosystems and is projected to be even more severe as EAB invades black ash-dominated wetlands of the western...

  16. The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives

    Directory of Open Access Journals (Sweden)

    Gökhan Kaplan

    2018-01-01

    Full Text Available This is an experimental study which explores the physical, mechanical, and economic factors involved in the production of type CEM II A-B/W cement. In this context, 4 cement additives were used in two different dosages (200 and 800 g/t. Class C fly ash was used for composite cement production at ratios of 5%, 20%, and 35%. It was shown that Blaine fineness increases with the increasing fly ash content. The use of fly ash at ratios of 5% and 20% was not found to have any unfavorable effects on the compressive strength at the early days. It is found that the use of additive for improving the early-age strength is preferable when fly ash is used. It is possible to produce Class 52.5 N cement using additives to improve early strength and 20% fly ash. Loss in strength was observed in cement mortars produced using glycol-based grinding aid. Increasing the dosage of chemical additive also led to loss in strength due to nonhomogeneous distribution of hydration products. As a result, grinding fly ash with clinker and the use of cement chemicals contribute to the cement sector in terms of sustainability. It is possible to produce cements with improved mechanical properties especially with the use of 20% fly ash.

  17. Wet-dry cycles effect on ash water repellency. A laboratory experiment.

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio

    2014-05-01

    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences

  18. Variation in the Volatile Profiles of Black and Manchurian Ash in Relation to Emerald Ash Borer Oviposition Preferences.

    Science.gov (United States)

    Rigsby, Chad M; McCartney, Nathaniel B; Herms, Daniel A; Tumlinson, James H; Cipollini, Don

    2017-08-01

    Emerald ash borer (EAB; Agrilus planipennis) is a devastating pest of ash (Fraxinus spp.) in its invaded range in North America. Its coevolved Asian hosts are more resistant and less preferred for oviposition than susceptible North American species. We compared EAB oviposition preferences and bark and canopy volatile organic compound (VOC) emissions of resistant Manchurian ash and susceptible black ash, and examined relationships between VOC profiles and oviposition. In the field, black ash was highly preferred for oviposition while no eggs were laid on Manchurian ash, and we found clear differences in the VOC profiles of Manchurian and black ash. We detected 78 compounds emitted from these species, including 16 compounds that elicited EAB antennal activity in prior studies. Four compounds were unique to black and 11 to Manchurian ash. Emission rates of 14 canopy and 19 bark volatiles varied among the two species, including four previously reported as antennally active. Specifically, 7-epi-sesquithujene (bark) emissions were greater from black ash, while β-caryophyllene (canopy), linalool (bark), and α-cubebene (bark) were emitted at higher rates by Manchurian ash. No relationships were found between the emission rate of any single compound or group of compounds (e.g. monoterpenes) suggesting that preference may be based on complex profile combinations. This is the first study to directly compare VOCs of black and Manchurian ash as well as the first to examine bark- and canopy-specific VOCs. The unique bark and canopy VOC profiles of these two species implicates potentially important variation in VOCs between a closely related resistant and susceptible species that provides a foundation for future studies of host preferences of EAB.

  19. Quality criteria for bottom ashes for civil construction. Part II Technical characteristics of bottom ashes; Kvalitetskriterier foer bottenaskor till vaegoch anlaeggningsbyggnad. Etapp II Bottenaskors tekniska egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, Bo von; Loorents, Karl-Johan; Ekvall, Annika; Arvidsson, Haakan [SP Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-01-15

    This report is the presentation of the second of two stages. This stage deals mainly with the testing of three different types of ashes and the evaluation and suitability of the chosen test methods. The project only relates to the technical aspects of ashes. The report is written in such a way that both ash owners (e.g. Energy companies) and those who build roads and constructions will find it meaningful. All test methods that are used for traditional materials (gravel and crushed rock) is not fitting for ashes. New test methods for some properties that will be tested must therefore be presented, tested practically and evaluated. The project encompasses both road and construction building but has a focus on road construction since there the highest and comprising demands are defined. Three bottom ashes of different types have been studied regarding some tenfold mechanical/physical parameters, essential for the functionality of the ash as a construction material. An important conclusion is that ash is from a functionality and characterisation point of view, an undefined concept that encloses materials with widely different properties. Despite that only three ashes have been looked into the range of results are varying large for some properties. This is especially true for the loose bulk density, water absorption and grain size distribution. It is also clear that some of the standard test methods for aggregates need to be exchanged by other methods, which are more adapted to alternative materials. One such example is water absorption, a property that further influences frost resistance, frost heave and such. All the proposed test methods that been used in the project is considered fitting for its purpose. The test methods can be divided into two categories the ones that yield easy assessable results and those that yield results hard to appraise. To the first group belong grain size distribution, loose bulk density, thermal conductivity, permeability and frost heave

  20. The food chain and dose submodel, CALDOS, for the assessment of Canada`s nuclear fuel waste management concept

    Energy Technology Data Exchange (ETDEWEB)

    Zach, R; Sheppard, S C

    1992-12-01

    The food chain and dose submodel, CALDOS, for assessing Canada`s nuclear fuel management (NFWM) concept of disposal in a vault deep in the Canadian Shield is presented. Together with the surface water, soil and atmosphere submodels, CALDOS is integrated into a comprehensive, probabilistic biosphere model for post-closure assessment. This model is representative of the Canadian Shield in Ontario and CALDOS is fully generic. CALDOS calculates radionuclide transfer through the environment to make dose predictions for man. It considers 68 radionuclides explicitly and takes into account another 28 short-lived daughters in the dose calculations. Nine potentially toxic elements are also considered. CALDOS is of the multiplicative chain type for most of the radionuclides, but some, such as {sup 3H}, {sup 129I} and {sup 222R}n, are treated specially. The model accounts for all the major internal exposure pathways, including root uptake, leaf deposition, terrestrial animal`s drinking water, terrestrial animal soil ingestion, freshwater fish ingestion, human drinking water, human soil ingestion and human inhalation. External exposure from air immersion, water immersion, ground and building materials are also considered. Dose predictions are based on the recommendations of the International Commission on Radiation Protection (ICRP 26) methodologies, ICRP reference man (ICRP 23) and the critical group concept. CALDOS considers ingrowth of some radioactive daughters, radionuclide availability in soil, recycling and depletion. The model has numerous parameters, some element, radionuclide or food type specific. Sensitivity analysis is used to assess parameter importance in dose prediction. Quality assurance is addressed through general literature, model and parameter evaluations, specifically designed for environmental assessment models. This also involves validation and code comparison studies. (author). 43 refs., 36 tabs., 24 figs.

  1. Natural radioactivity of coal and fly ash at the Nikola Tesla B TPP

    Directory of Open Access Journals (Sweden)

    Kisić Dragica M.

    2013-01-01

    Full Text Available Serbian thermal power plants (TPPs produce siliceous fly ash from lignite in the quantity of approximately 6 million tons per year. The potential market for the use of fly ash is operational, but for the time being, only used by cement producers. Fly ash radioactivity could be one of the major points of concern when larger use of fly ash is planned, particularly in the Serbian construction industry. Radioactivity measurements have been conducted regularly for decades. This paper presents the results of a ten-year fly ash radioactivity measurements at the Nikola Tesla B TPP located in Obrenovac. In addition, the paper compares the natural radionuclides coal content data combusted by the Nikola Tesla B TPP boilers coming from the Kolubara Basin and ash created during coal combustion. Fly ash created in the Nikola Tesla TPPs boilers is characterised by the increased concentration of the natural radionuclides content compared to coal. This is the so-called technologically enhanced natural radioactivity (Technologically Enhanced Occurring Radioactive Material - TENORM of industrial waste, whereas the average specific activities: 232Th in coal amount to 25.2 Bq/kg, and in fly ash and coal 84.2 Bq/kg and 238U 38.3 Bq/kg, respectively. Following the obtained natural radionuclides content results it may be concluded that the Nikola Tesla B TPP ash may be disposed into the environment. Ash may be used also in the construction industry (civil engineering. In building construction applications, ash share as the additive to other building materials depends from its physical and chemical characteristics, as well as from the radionuclides activity: 266Ra, 232Th and 40K. Unlike the thermal power plants regularly (once a year testing the specific natural radionuclides activity in the combusted coal and boiler fly ash, Electric Power Industry of Serbia has not performed large-scale investigations of the natural radionuclides content in coal within the Kolubara

  2. Optimizing Use of Girdled Ash Trees for Management of Low-Density Emerald Ash Borer (Coleoptera: Buprestidae) Populations.

    Science.gov (United States)

    Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L

    2017-06-01

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  3. Volcanic ash dosage calculator: A proof-of-concept tool to support aviation stakeholders during ash events

    Science.gov (United States)

    Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.

    2017-12-01

    The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during

  4. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  5. Proceedings of symposium on ash in North America

    Science.gov (United States)

    Charles H. Michler; Matthew D., eds. Ginzel

    2010-01-01

    Includes 5 papers and 30 abstracts covering topics related to the biology and ecology of the ash species, ash utilization and management, emerald ash borer, and other threats to ash, and genetics and conservation of ash species. A paper titled "Population-level variation of Fraxinus americana L. is influenced by climate...

  6. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis)

    Science.gov (United States)

    Kathleen S. Knight; John P. Brown; Robert P. Long

    2013-01-01

    Emerald ash borer (Agrilus planipennis) (EAB), an Asian woodboring beetle accidentally introduced in North America, has killed millions of ash (Fraxinus spp.) trees and is spreading rapidly. This study examined the effects of tree- and site-level factors on the mortality of ash trees in stands infested by EAB in OH, USA. Our data...

  7. Use of unwounded ash trees for the detection of emerald ash borer adults: EAB landing behavior

    Science.gov (United States)

    Jordan M. Marshall; Melissa J. Porter; Andrew J. Storer

    2011-01-01

    Incorporation of multiple trapping techniques and sites within a survey program is essential to adequately identify the range of emerald ash borer (EAB) (Agrilus planipennis Fairmaire) infestation. Within natural forests, EAB lands on stick band traps wrapped around girdled ash trees at a rate similar to that on unwounded ash trees. The objective of...

  8. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.

    Science.gov (United States)

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi

    2014-04-01

    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability. © 2013 John Wiley & Sons Ltd.

  9. The use of coal fines fly ash for the improvement of soils in hydrophobic grounds

    International Nuclear Information System (INIS)

    Janssen-Mommen, J.P.M.; Bestebroer, S.I.

    1992-01-01

    New NO x reducing combustion techniques result in a different physical and morphological quality of fly ash, which makes the use of fly ash less attractive for the building and road construction industries. Attention is paid to the possibility of using low-NO x fly ash for the improvement of the properties of hydrophobic agricultural land. Such an application also depends on the environmental impacts of the leaching of elements to the ground water and the accumulation of hazardous compounds in crops. A literature study of hydrophobic grounds was carried out. Also attention is paid to the legal aspects. No juridical constraints could be found in the Dutch legislation concerning the use of fly ash from coal powder, although it seems that the use of such fly ash is not in agreement with the tenor of possibly to be applied legislation. However, a small-scale investigation was carried out to gain insight into the environmental impacts. The uptake in lettuce and the leaching of the elements As, B, Mo and Se was studied by means of lysimeters. Hydrophobic soils with 5%, 10% and 15% coal fines fly ash were used. Also an experiment with the use of coal gasification slags was performed

  10. Review of Ecosystem Level Impacts of Emerald Ash Borer on Black Ash Wetlands: What Does the Future Hold?

    Directory of Open Access Journals (Sweden)

    Randall K. Kolka

    2018-04-01

    Full Text Available The emerald ash borer (EAB is rapidly spreading throughout eastern North America and devastating ecosystems where ash is a component tree. This rapid and sustained loss of ash trees has already resulted in ecological impacts on both terrestrial and aquatic ecosystems and is projected to be even more severe as EAB invades black ash-dominated wetlands of the western Great Lakes region. Using two companion studies that are simulating short- and long-term EAB infestations and what is known from the literature, we synthesize our current limited understanding and predict anticipated future impacts of EAB on black ash wetlands. A key response to the die-back of mature black ash will be higher water tables and the potential for flooding and resulting changes to both the vegetation and animal communities. Although seedling planting studies have shown some possible replacement species, little is known about how the removal of black ash from the canopy will affect non-ash species growth and regeneration. Because black ash litter is relatively high in nitrogen, it is expected that there will be important changes in nutrient and carbon cycling and subsequent rates of productivity and decomposition. Changes in hydrology and nutrient and carbon cycling will have cascading effects on the biological community which have been scarcely studied. Research to address these important gaps is currently underway and should lead to alternatives to mitigate the effects of EAB on black ash wetland forests and develop management options pre- and post-EAB invasion.

  11. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO 2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  12. Softening behaviour of brown coal ashes. Influence of ash components and gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hegermann, R; Huettinger, K J [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Chemische Technik

    1990-03-01

    The softening behaviour of brown coal ashes during gasification is important for three reasons: (1) Formation of large agglomerates, (2) inactivation of catalytically active ash components, (3) encapsulation of parts of the coal. The softening behaviour of the ashes was studied with a high temperature dilatometer at ambient pressure in various atmospheres (air, CO{sub 2}, Ar/H{sub 2}O, Ar, H{sub 2}/H{sub 2}O, H{sub 2}) using a push-rod with a conical tip. The heating rate was 5 Kmin{sup -1}, the final temperature 1000deg C, the residence time 1 h. (orig.).

  13. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.G.; Park, S.M.; Lee, H.K., E-mail: haengki@kaist.ac.kr

    2016-11-15

    Highlights: • Physical immobilization of radionuclides in geopolymer was quantitatively assessed. • Fly ash-based geopolymer showed excellent immobilization performance. • Diffusivity of soluble Cs and Sr was highly correlated with critical pore diameter. - Abstract: The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10{sup 3} and 10{sup 4}, respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior.

  14. Effects of rice husk ash and termite hill types on the physical and ...

    African Journals Online (AJOL)

    This waste can be recycled through inclusion as stabilizer in brick making, thereby eliminating the hazard posed to the environment. This paper examined the effects of rice husk ash (RHA) on the two termite clay soils in brick making. The two termite clay soils obtained from red and gray anthills were stabilized with rice husk ...

  15. Drycon dry ash conveyor: dry bottom ash handling system with reduced operating costs and improved plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Drycon dry bottom ash extraction system is designed to remove bottom ash beneath the furnace, cooling it without any need of water. Fresh air in countercurrent flow to the ash is used for the ash cooling. Data presented show how savings of time and costs can be achieved with this system and how a boiler efficiency can be increased using this technology. Considerable advantages in the reliability of operation with new improvements of the design are described. 7 figs.

  16. Characterization of ash pond ashes from 3rd thermal power plant by SEM/EDX and XRD methods

    OpenAIRE

    A Minjigmaa; Ts Zolzaya; E Bayanjargal; B Davaabal; J Temuujin

    2014-01-01

      Coal combustion by products from ash pond of 3rdthermal power plant of Ulaanbaatar city have been collected in 2010 and 2013 years. The ash samples have been characterized by XRD, XRF and SEM-EDX methods in order to evaluate their chemical and mineralogical composition changes with disposed times. The mineralogical composition of ash varies with time though the chemical composition of the ashes were close each other. Possibly, inefficient operating condition of the TPS shows influence on th...

  17. Project ash cultch: A report on optimal oyster cultch based on a prepared fly ash substratum

    International Nuclear Information System (INIS)

    Price, K.S.; Hansen, K.M.; Schlekat, C.E.

    1991-01-01

    Based on a three year study involving setting, growth, mortality, oyster condition, and metals accumulation, the evidence is extensive and convincing that stabilized coal ash is an acceptable oyster growing cultch (substratum). Oyster larvae are attracted to set on coal ash cultch at commercial fishery densities, tend to grow as well as on natural substrata (oyster shell), and are moderately more exposed to predators on the puck shaped ash materials as produced for this study. Oysters grown for one to two years on coal ash do not accumulate heavy metals and generally are in good health as measured by several biological condition indexes

  18. Effects of Wood Ash on Soil Fungi

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla

    ), copper (Cu) and nickel (Ni), is a major environmental concern. This work is part of the project ASHBACK (www.ashback.dk) which addresses the potentials and possible problems in re-distributing wood ash to the forest. The aim of this thesis was to determine the effects of biomass ash application...... in a Norway spruce forest where different amounts of wood ash were spread on the soil to study the effects on ectomycorrhizal (ECM) fungi, bioaccumulation of metals in sporocarps, and microbial communities. Laboratory microcosm experiments were run in parallel to the field studies, to compare the effects...... of wood ash with factorial additions of lime and Cd to disentangle the pH and Cd effects of wood ash amendments using community trait distributions. Barley yield, P content, and Cd content were not affected by biomass ashes. Some arbuscular mycorrhizal (AM) fungal species were reduced when biomass ashes...

  19. Life cycle adaption of biofuel ashes. Evaluation of new techniques for pelletizing of biofuel ashes, especially regarding operational properties and environmental effects in the forest after ash recycling. Stage 1

    International Nuclear Information System (INIS)

    Loevgren, Linnea; Lundmark, Jan-Erik; Jansson, Charlotta

    2000-11-01

    The aim of the project 'Adaptation of Wood Ashes to Recycling' is to evaluate a new technique - roll pelleting - for making wood ash suitable for reuse as a fertiliser for woodland. The project is being carried out at the forest product companies AssiDomaen and Stora Enso. The main financier is the Swedish National Energy Administration. Other financiers are AssiDomaen, Stora Enso, The Thermal Engineering Research Institute and The Forestry Research Institute of Sweden. The project has involved the construction of a full-scale roll pelleter in a mobile container and its trial operation at two Swedish pulp and paper mills. The leaching properties of the ash products were studied with a laboratory method. In addition, the effects of ash fertilisation with these products are being studied in a four-year field trial. Effects on soil pH, nutrient supply, soil water chemistry and ground vegetation are being evaluated by The Forestry Research Institute of Sweden and will be reported separately in the year 2003. In a laboratory prestudy, the leaching properties of pellets from twelve different ash products made in a laboratory prototype machine were evaluated. The ash products were made from residues from the AssiDomaen Froevi mill and the Stora Enso Fors mill. Fly ash from Froevi was used alone and mixed with green liquor sludge and lime sludge respectively. Fly ash from Fors was also used alone and mixed with coating colour. The laboratory method used for the evaluation of leaching properties is the method developed by IVL The Swedish Environmental Research Institute Ltd. The results show that the progress of the leaching of roll pelleted ash is significantly slower than for the corresponding crushed product and a reference lime product. The speed of leaching, measured as acid neutralisation capacity, ANC, was significantly lower for the roll pelleted ash compared to self-hardened and crushed ash products. Because of the high content of calcium, lime has on the whole, a

  20. Briquetting fly ash from power plants for use as a charge in production of FeSiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sosnowski, R.; Jastrzebski, R.; Podbiol, S.; Mendecki, K.

    1983-02-01

    The paper discusses waste product utilization of fly ash from black coal combustion for production of alloys consisting of iron, silicon and aluminium under laboratory conditions. Proportion of fly ash and coal reducing agent was 60% and 40%, grain size distribution of fly ash and coal ranged from 0 to 0.4 mm. Coal pitch and waste products from the cellulose industry were used as binders (resin soap, waste sulfite liquor etc.). Briquetting pressure was 400 kG/cm/sup 2/. Fly ash briquets were stabilized 168 h long and dried from 0.5 h to 1.0 h at 373 to 523 C. Effects of briquet composition, binders, briquetting pressure, stabilizing and drying on physical and mechanical properties of fly ash briquets are analyzed. The results of analyses are shown in 4 diagrams. Shatter test was used for determining briquet properties. The test shows that fly ash briquets with coal pitch, resin soap and waste sulfite liquor used as binders are characterized by compression strength not lower than 245 x 10/sup 4/ Pa and produce less than 5% fines in the shatter test. The tested fly ash briquets are a suitable charge for metallurgy. Effects of fly ash utilization on environmental protection are discussed. (8 refs.)

  1. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  2. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Tomikawa, Hiroki [Laboratory of Solid Waste Disposal Engineering, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan)

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  3. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  4. Utilization of Hospital Waste Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2013-01-01

    Full Text Available Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement.

  5. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  6. The UZPI ash content monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.P.; Bezverkhii, E.A.; Mozhaev, L.G.

    1987-07-01

    This paper describes the results of industrial trials (in coal preparation plants) to establish the accuracy of the UZPI device which determines coal ash content using X-ray detection. It is designed to monitor ash content in the 4-40% range in coal with a grain size of 0-100 mm and a coal layer thickness of 50-150 mm (depending on the ash content and grain size). The ash frequently contains oxides, and although variations in magnesium, aluminium, silicon and sulfur oxides have virtually no effect on accuracy of the UZPI, changes in the levels of calcium oxides and particularly iron oxides have a considerable influence on measurement accuracy (caused by changes in their gamma ray scattering cross section values and atomic numbers). The overall sensitivity to ash content in coal varies from 1.6 to 2.4% abs./% while that to iron oxides in ash is 0.4% abs./%. Concludes that this device is suitable for use in coal preparation plants on thin layers of coal, but its efficiency is affected by external influences, e.g. fluctuations in conveyor loading.

  7. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  8. Breeding strategies for the development of emerald ash borer - resistant North American ash

    Science.gov (United States)

    Jennifer L. Koch; David W. Carey; Kathleen S. Knight; Therese Poland; Daniel A. Herms; Mary E. Mason

    2012-01-01

    The emerald ash borer (Agrilus plannipennis; EAB) is a phloem-feeding beetle that is endemic to Asia. It was discovered in North America in 2002, found almost simultaneously near Detroit, Michigan and Windsor, Ontario, Canada. Adult beetles feed on ash (Fraxinus spp.) foliage, but larval feeding on phloem, cambium, and...

  9. Outlook for ash in your forest: results of emerald ash borer research and implications for management

    Science.gov (United States)

    Kathleen S. Knight

    2014-01-01

    Since its accidental introduction near Detroit, Michigan, in the mid-1990s, emerald ash borer (EAB) has rapidly spread through much of the U.S. and adjacent Canada, leaving millions of dead ash trees in Midwestern states (4,11). Unfortunately, EAB attacks trees as small as an inch in stem diameter and it attacks all five ash species native to the region - white, green...

  10. Analysis list: ash-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash-2 Adult,Embryo + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/as...h-2.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/ash-2.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/ce10/target/ash-2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/ash-2.Adult.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/ce10/colo/ash-2.Embryo.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/ce10/colo/Adult.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Embryo.gml ...

  11. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  12. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  13. Hydraulic activity of belite cement from class C coal fly ash. Effect of curing and admixtures

    OpenAIRE

    Goñi, S., Guerrero, A.

    2006-01-01

    [EN] The effect of curing method and a water-reducing additive on the hydraulic activity of high lime content (ASTM type C) fly ash belite cement (FABC-2-W) is reported. A class C fly ash was subjected to hydrothermal treatment and subsequent calcination to synthesize FABC. Hydraulic activity was evaluated in the cement paste over 180 days from the physically bound water content as determined by thermogravimetric analysis and the degree of hydration, in turn found with...

  14. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    Science.gov (United States)

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  15. Use of high ash fuel in diesel power plants II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Vestergren, R; Normen, E; Hellen, G [Wartsila Diesel International Ltd Oy, Vaasa (Finland); and others

    1997-10-01

    Heavy fuel oils containing a large amount of ash are used in some geographically restricted areas. The ash components can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The LIEKKI 2 programs Use of high ash fuel in diesel power plants, Part I and II, have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuels with a very high ash content. The chemistry during combustion has been studied. The chemical and physical properties of the particles in the exhaust gas, of the deposits, and of exhaust valves have been investigated. Exhaust gas particle measurements have been performed when running on high ash fuel, both with and without deposit modifying fuel additive. Theories for the mechanisms mentioned above have been developed. On the practical side two long time field tests are going on, one with an ash/deposit modifying fuel additive (vanadium chemistry alteration), one with fuel water washing (sodium removal). Seven different reports have been written. (orig.)

  16. Ash Stabilization Campaign Blend Plan

    International Nuclear Information System (INIS)

    Winstead, M.L.

    1995-01-01

    This Stabilization Blend Plan documents the material to be processed and the processing order for the FY95 Ash Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing ash. The source of the ash is from Rocky Flats and the 232-Z incinerator at the Plutonium Finishing Plant (PFP). The ash is currently being stored in Room 235B and Vault 174 in building 234-5Z. The sludge is to be thermally stabilized in a glovebox in room 230A of the 234-5Z building and material handling for the process will be done in room 230B of the same building. The campaign is scheduled for approximately 12--16 weeks. A total of roughly 4 kg of Pu will be processed

  17. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  18. Failure to phytosanitize ash firewood infested with emerald ash borer in a small dry kiln using ISPM-15 standards.

    Science.gov (United States)

    Goebel, P Charles; Bumgardner, Matthew S; Herms, Daniel A; Sabula, Andrew

    2010-06-01

    Although current USDA-APHIS standards suggest that a core temperature of 71.1 degrees C (160 degrees F) for 75 min is needed to adequately sanitize emerald ash borer, Agrilus planipennis Fairmaire-infested firewood, it is unclear whether more moderate (and economical) treatment regimes will adequately eradicate emerald ash borer larvae and prepupae from ash firewood. We constructed a small dry kiln in an effort to emulate the type of technology a small- to medium-sized firewood producer might use to examine whether treatments with lower temperature and time regimes successfully eliminate emerald ash borer from both spilt and roundwood firewood. Using white ash (Fraxinus americana L.) firewood collected from a stand with a heavy infestation of emerald ash borer in Delaware, OH, we treated the firewood using the following temperature and time regime: 46 degrees C (114.8 degrees F) for 30 min, 46 degrees C (114.8 degrees F) for 60 min, 56 degrees C (132.8 degrees F) for 30 min, and 56 degrees C (132.8 degrees F) for 60 min. Temperatures were recorded for the outer 2.54-cm (1-in.) of firewood. After treatment, all firewood was placed under mesh netting and emerald ash borer were allowed to develop and emerge under natural conditions. No treatments seemed to be successful at eliminating emerald ash borer larvae and perpupae as all treatments (including two nontreated controls) experienced some emerald ash borer emergence. However, the 56 degrees C (132.8 degrees F) treatments did result in considerably less emerald ash borer emergence than the 46 degrees C (114.8 degrees F) treatments. Further investigation is needed to determine whether longer exposure to the higher temperature (56 degrees C) will successfully sanitize emerald ash borer-infested firewood.

  19. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.

    Science.gov (United States)

    Haque, Md Obaidul; Sharif, Ahmed

    2014-05-01

    Informal incineration or open pit burning of waste materials is a common practice in the peripheral area of Dhaka, one of the fastest growing mega-cities in the world. This study deals with the effect of open pit burned (i.e. open burned) household waste bottom ash on fired clay bricks. Between 0 to 50% (by weight) of open pit burned household waste bottom ash was mixed with clay to make bricks. The molded specimens were air-dried at room temperature for 24 h and then oven dried at 100 °C for another 24 h to remove the water. The raw bricks were fired in a muffle furnace to a designated temperature (800, 900 and 1000 °C, respectively). The firing behaviour (mechanical strength, water absorption and shrinkage) was determined. The microstructures, phase compositions and leachates were evaluated for bricks manufactured at different firing temperatures. These results demonstrate that open pit burned ash can be recycled in clay bricks. This study also presents physical observations of the incinerated ash particles and determination of the chemical compositions of the raw materials by wet analysis. Open pit burned ash can be introduced easily into bricks up to 20% wt. The concentrations of hazardous components in the leachates were below the standard threshold for inert waste category landfill and their environmental risk during their use-life step can be considered negligible.

  20. Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer

    Science.gov (United States)

    Nicholas Bolton; Joseph Shannon; Joshua Davis; Matthew Grinsven; Nam Noh; Shon Schooler; Randall Kolka; Thomas Pypker; Joseph Wagenbrenner

    2018-01-01

    Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations...

  1. EFFECT OF PALM EMPTY BUNCH ASH ON TRANSESTERIFICATION OF PALM OIL INTO BIODIESEL

    Directory of Open Access Journals (Sweden)

    Johan Sibarani

    2010-06-01

    Full Text Available Biodiesel conversion from transesterification reaction palm oil with methanol was studied by using an ash of palm empty bunch as a base catalyst. Atomic absorption spectroscopy (AAS and indicator titration analysis were used as tools for characterization of ash sample. Chemical structure of biodiesel was analyzed by GC-MS. The effects of ash sample weight (5, 10, 15, 20 and 25 g immersed in 75 mL methanol and the methanol-palm oil mol ratio (3:1; 6:1; 9:1 and 12:1 toward the conversion of biodiesel were investigated. Biodiesel was prepared by refluxing palm oil and methanol containing ash sample. The reflux was done at room temperature for 2 h. Ester layer was distillated at 74 oC, extracted with aquadest and then dried using Na2SO4 anhydrous. The product was characterized by GC-MS, ASTM D 1298 (specific gravity 60/60 °F, ASTM D 97 (pour point, ASTM D 2500 (cloud point, ASTM D 93 (flash point, ASTM D 445 (kinematics viscosity 40 °C and ASTM D 482 (ash content. The result of GC-MS analysis showed that methyl palmitate is primary content of biodiesel product. A 15 g weight of ash sample gave the maximum biodiesel conversion. By increasing methanol mole quantity, biodiesel conversion increased progressively and maximum at 9:1 methanol-palm oil ratio (84.12 % and decreased on 12:1 ratio (75.58 %. Most of the biodiesel products were similar to those of the diesel physical characters.   Keywords: Biodiesel conversion, transesterification, palm oil, palm empty bunch

  2. JV Task 6 - Coal Ash Resources Research Consortium Research

    Energy Technology Data Exchange (ETDEWEB)

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01

    , development of expanded information on the environmental performance of CCBs in utilization settings included the following: (1) Development of information on physical properties and engineering performance for concrete, soil-ash blends, and other products. (2) Training of students through participation in CARRC research projects. (3) Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

  3. Changes in growth characters and nutrient acquisition of guava (psidium guajava l.) in response to coal ash

    International Nuclear Information System (INIS)

    Swain, S.C.; Padhi, S.K.

    2012-01-01

    Coal ash management would remain a great concern all over the world. Several studies proposed that there is an ample scope for safe utilization of coal ash as a soil ameliorant that may improve physical, chemical and biological properties of the soil and is a source of readily available plant micro and macro nutrient. With this concept a pot culture experiment was carried out in the eastern ghat high land zone of Odisha, India under open condition in the nursery. Different levels of coal ash and soil mixture were used in different combinations to check their effect on the physio-morphological and biochemical parameters of guava. The study on the effect of varying levels of coal ash on guava revealed that the combination of 50:50 and 25:75 coal ash and soil mixture increased the seed germination, seedling characteristics, biomass, vegetative growth and chlorophyll content of the seedlings. The increase in growth traits was attributed to increase in nutrient acquisition of plants grown under above combinations. On contrary 100% coal ash in the growing medium reduced seed germination, seedling vigour, growth and biomass per plant. The leaf nutrient status of N, P, K, Ca, Mg, S and the micro nutrients Zn, Mn, B, Mo, Fe and Cu were found to be higher in the treatments having higher proportion of coal ash in the growing medium than other treatments and the lowest was recorded in control ( no coal ash). The findings suggest that application of coal ash in certain proportion is beneficial in terms of growth parameters and nutrient acquisition in guava. (author)

  4. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  5. Revegetation on a coal fine ash disposal site in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, L.; De Sousa Correia, R.I.; Booysen, J. [Potchefstroom Univ. for Christian Higher Education (South Africa). Research Inst. for Reclamation Ecology; Ginster, M. [Sastech Research and Development, Sasolburg (South Africa)

    1998-11-01

    Eight medium amendments were conducted on top of a fine ash coal dump (i) to evaluate a few cost-effective treatments that could determine the minimum fertility status required for the local ash to support the establishment of a viable vegetation cover, and (ii) to select suitable grass species that would establish on the ash and could serve as a foundation for long-term rehabilitation. Degree and success of grass establishment per medium amelioration treatment is expressed in terms of total biomass, percentage basal cover, and in terms of a condition assessment model. Both the chemical and physical nature of the ash medium before and after amendment was characterized, as were the concentrations of some essential and potentially toxic elements in leaf samples. In terms of medium amelioration 5000 kg ha{sup {minus}1} compost, or 500 kg ha{sup {minus}1} kraal manure or 480 kg 2:3:2 ha{sup {minus}1} proved to be most effective. The grass species that occurred with the highest frequency, irrespective of treatment, were the perennials bermudagrass [Cynodon dactylon (L.) pers. var dactylon], weeping lovegrass [Eragrostis curvula (Schrader) Nees], and the annual teff [Eragrostis tef (Zuccagni) Trotter]. Of the potentially toxic extractable metals monitored in the leaves of vegetation on the dump, only Se accumulated to an average level of 4.4 mg kg{sup {minus}1} that could be toxic to livestock.

  6. Crowdsourcing genomic analyses of ash and ash dieback – power to the people

    Directory of Open Access Journals (Sweden)

    MacLean Dan

    2013-02-01

    Full Text Available Abstract Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to ‘crowdsource’ analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at oadb.tsl.ac.uk and a public GitHub repository.

  7. Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber

    International Nuclear Information System (INIS)

    Huang, W.H.

    1997-01-01

    A detailed laboratory study was conducted to investigate the properties of cement-fly ash grout mixtures as barriers for isolation of hazardous and low-level radioactive wastes. In the grout studied, fly ash was used to replace 30 percent by mass of cement. Three additives including bentonite, silica fume, and polypropylene fiber were used individually in the grout mixes to improve the properties of the grouts in different aspects. The flowability, bleeding, and setting time of freshly mixed grouts were determined; and the unconfined compressive strength, pore size distribution, and water permeability were determined for hardened grouts at various curing durations up to 120 days. Finally, the durability of cement-fly ash grouts was carefully examined in terms of the changes in their physical properties after different levels of exposure to sulfate attack and wet-dry cycles

  8. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  9. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  10. Soil quality in a cropland soil treated with wood ash containing charcoal

    Science.gov (United States)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil aggregate distribution, hydraulic conductivity and available water contente were also determined

  11. Characterization of red ceramic pastes incorporated with sugarcane bagasse ash wastes

    International Nuclear Information System (INIS)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F.

    2010-01-01

    The alcohol industry is one sector that stands out most in the Brazilian agribusiness. Currently there is an increasing demand for sugar and ethanol for use as fuel. The processes of manufacturing these products generate large amounts of waste, the sugarcane bagasse ash waste one of the most abundant. For its chemical and mineralogical characteristics, this waste has aroused the interest of its reuse in the field of red ceramic. This study analyzes the characteristics of a red ceramic paste incorporated with up to 20 wt.% of waste. The following characteristics were performed: chemical composition, X-ray diffraction, particle size, morphology, and Atterberg limits. The results show that the incorporation of sugarcane bagasse ash waste influences the physical-chemical and mineralogical characteristics of red ceramic paste. (author)

  12. Analysis list: Ash2l [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Ash2l Blood + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ash2l.1.tsv... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ash2l.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ash2...l.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ash2l.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Blood.gml ...

  13. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  14. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  15. Method of reversibly immobilizing sulfate ash

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1984-01-01

    A sulphate ash at least 20% by weight of which consists of sulphates of transuranic elements is immobilised by heating to melting a mixture of the ash, a metal, and a fluxing agent; the metal used is Al, Ce, Sm, Eu or mixtures thereof and it is used in an amount sufficient to reduce the transuranic sulphates in the ash to metal and form an alloy with the metal so produced; sufficient of the fluxing agent is used to reduce the percentage of transuranic sulphates in the mix to form 1% to 10% of the mix and the molten mixture is cooled and the alloy containing the immobilised ash separated. (author)

  16. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  17. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  18. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  19. Physico-chemical characterisation of Indian biomass ashes

    Energy Technology Data Exchange (ETDEWEB)

    K. Umamaheswaran; Vidya S. Batra [Energy and Resources Institute (TERI), New Delhi (India)

    2008-05-15

    India stands fourth in biomass utilisation for various purposes like domestic, commercial and industrial applications. While extensive studies have been made for coal ash characterisation and utilisation, studies on characterisation of biomass ash and its utilisation has not been addressed. In this paper, biomass ash from five sources i.e. rice husk, bagasse, groundnut shell, cashewnut shell, and arecanut shell have been characterised. Chemical composition analysis, particle size analysis, thermal analysis, and microstructure analysis were carried out. Results show that in all ashes silica is the major compound with particle size ranging from 15 to 30 {mu}m and having irregular shape. Ash powders originating from cashewnut shell, arecanut shell and groundnut shell also have compounds of calcium, magnesium and potassium. Bagasse and cashewnut shell ashes have high LOI due to presence of unburnt carbon, P{sub 2}O{sub 5} and other volatiles. 16 refs., 22 figs., 3 tabs.

  20. Design of a hydraulic ash transport system

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1990-04-01

    Discusses general design of a hydraulic ash removal system to be employed at the reconstructed six 225 MW blocks of the Mironov State Regional Power Plant in the USSR. The blocks burn low-grade solid fuel with an ash content of up to 40.5%. Large quantities of ash have to be moved from the plant (total ash production 60 t/h, using 570 t/h of water for cooling and moistening). An optimum hydraulic ash transportation system would include a two-section airlift pumping system, shown in a diagram. Technological advantages of using this airlift system are enumerated, including short pipes, reduction in required water quantity and the possibility of siting hydraulic pumps at zero level.

  1. Prospects for long-term ash survival in the core emerald ash borer mortality zone

    Science.gov (United States)

    Jordan M. Marshall; Andrew J. Storer; Roger Mech; Steven A. Katovich

    2011-01-01

    Attacking all North American ash species (Fraxinus spp.), emerald ash borer (EAB) (Agrilus planipennis Fairmaire) has caused significant mortality within its introduced range. For other forest pests, host bark plays an important role in infestation density and oviposition behavior. The objectives of this study were to (1) locate...

  2. Synthesis of geopolymer from biomass-coal ash blends

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  3. Characterization of ash pond ashes from 3rd thermal power plant by SEM/EDX and XRD methods

    Directory of Open Access Journals (Sweden)

    A Minjigmaa

    2014-10-01

    Full Text Available   Coal combustion by products from ash pond of 3rdthermal power plant of Ulaanbaatar city have been collected in 2010 and 2013 years. The ash samples have been characterized by XRD, XRF and SEM-EDX methods in order to evaluate their chemical and mineralogical composition changes with disposed times. The mineralogical composition of ash varies with time though the chemical composition of the ashes were close each other. Possibly, inefficient operating condition of the TPS shows influence on the mineralogical composition.DOI: http://dx.doi.org/10.5564/mjc.v14i0.201Mongolian Journal of Chemistry 14 (40, 2013, p61-65

  4. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  5. Improved prediction and tracking of volcanic ash clouds

    Science.gov (United States)

    Mastin, Larry G.; Webley, Peter

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  6. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  7. Future fly ash marketing; Flugaschevermarktung in der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Mauder, R.; Hugot, A. [Evonik Power Minerals GmbH, Dinslaken (Germany)

    2008-07-01

    It can be assumed that the fly ash production volumes will undergo a marked increase over the next few years. The conditions of fly ash production will improve as a result of modern and refurbished power plants, yielding a positive effect on the quality of fly ashes. Other vital parameters of future fly ash marketing are fly ash logistics and the infrastructure of power plants. Basically, economic utilisation of the increased production volumes is possible; however, new and long-term strategies are necessary. (orig.)

  8. Recirculation of biomass ashes onto forest soils: Ash composition, mineralogy and leaching properties

    DEFF Research Database (Denmark)

    Maresca, Alberto; Hyks, J.; Astrup, Thomas Fruergaard

    2017-01-01

    In Denmark, increasing amounts of wood ashes are generated from biomass combustion for energy production. The utilisation of ashes on top of forest soil for liming purposes has been proposed asan alternative to landfilling. Danish wood ash samples were collected and characterised with respect......, minor and trace elements were affected significantly by pH: high releases of PO4 3-, Mg, Zn, Cu and Cd were found for acidic conditions relevant to forest soils, while the highest releases of Mo and Cr were observed in alkaline conditions. Mineral phases were selected based on XRD analyses...... critical element compared with soil quality criteria, whereas the maximum theoretical loads of Ba, Cd, Cr, Sr, Mo, Ni, Pb, Sb, Se, Sn and V were relatively low....

  9. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    International Nuclear Information System (INIS)

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-01-01

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured

  10. Production of mineral ash-wool

    International Nuclear Information System (INIS)

    Micevic, Z.; Djekic, S.

    1996-01-01

    The project entitled 'Production of Mineral Ash-Wool' presents a new technology of possible use of the fly ash, generated as a waste product from the fossil fueled power plants, as a basic raw material for manufacturing of different products from a new mineral ash-wool. The wide area of mineral ash-wool application (civil engineering, industry, power generation, etc.) and the advantages of this new technology (important raw material obtained free of charge, substitution of expensive silicate stone, use of electric energy for melting instead for coke, vicinity of factory location close to the fossil fueled power plant, lower product price, reduction of environmental pollution, etc.) have resulted in the performance of the bench scale tests. Positive results have been obtained, as a good initial base for the realization of this project. The named study as an detailed analysis has been carried out for the assessment of: supply and sales market, analysis of possible and selection of an optimal location of the factory in the frame of fossil fueled power plant 'Kosovo', selection of the production capacity and alternative preliminary technical designs of the factory for the mineral ash-wool production. For the studied alternatives, specifications and capital investments evaluations for equipment and works (mechanical, civil engineering and electromechanical part) have been made as well as assessments of production costs. Based on the performed economical and financial analyses, as well as the sensitivity analyses one could be concluded that the investments in the factory for the mineral ash-wool production is highly economically acceptable. (author). 1 fig., 1 tab., 3 refs

  11. Coal ash parameters by neutron activation

    International Nuclear Information System (INIS)

    Chrusciel, Edward; Chau, N.D.; Niewodniczanski, J.W.

    1994-01-01

    The coal parameters, ash content and ash slagging index, may be strongly related to the chemical composition of mineral impurities in coal. Based on this assumption the authors have examined the feasibility of neutron activation techniques, both as a laboratory and a well logging method, by recording induced γ-rays in the two energy intervals with the help of a scintillation γ-ray spectrometer. Results from the Upper Silesiab Coal Basin have shown that the method can be used to evaluate the ash content and ash fusion temperature, both in the laboratory and in well logging; the corresponding mean standard deviations being 1.5 wt% and 35 o C; and 3 wt% and 45 o C respectively. (author)

  12. Basic soil benefits from ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Martens, D.C.; Plank, C.O.

    1970-01-01

    The beneficial effects of fly ash application shown herein are expected to encourage future disposal of the material in agricultural soils. It is foreseen, however, that fly ash disposal in agricultural soils would be unsuccessful if adverse effects on crop production result from its misuse. It seems evident, therefore, that quality control measures will be required to insure proper disposal of the material in agricultural soils. It will be necessary to consider differences in chemical properties of various samples of fly ash and in chemical reactions of samples of fly ash and soils. Differences in tolerances of plants to soluble salt damage and to specific nutrient deficiencies and toxicities will also have to be taken into account. 9 tables.

  13. Plant growth on 'fly ash'

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R; Hodgson, D R; Townsend, W N; Wood, J W

    1958-04-12

    Plants were grown in plot and pot experiments to assess the toxicity of the fly ash. It was found that plants grouped into three classes: tolerant, moderately tolerant, and sensitive. Boron was found to be a major compoent of the toxic principle of fly ash.

  14. Measuring ash content of coal

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1980-01-01

    An apparatus for measuring the ash content of coal is claimed. It comprises a means for irradiating a known quantity of coal in a transport container with a known dose of neutrons, a means for detecting γ-rays having a predetermined energy emitted by the irradiated coal, the γ-rays being indicative of the presence of an ash-forming element in the coal, a means for producing a signal related to the intensity of the γ-ray emission and a means responsive to the signal to provide an indication of the concentration of the ash-forming element in the coal

  15. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Science.gov (United States)

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  16. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.

    Science.gov (United States)

    Skoglund, Nils; Grimm, Alejandro; Ohman, Marcus; Boström, Dan

    2014-02-20

    This is the first in a series of three papers describing combustion of biosolids in a 5-kW bubbling fluidized bed, the ash chemistry, and possible application of the ash produced as a fertilizing agent. This part of the study aims to clarify whether the distribution of main ash forming elements from biosolids can be changed by modifying the fuel matrix, the crystalline compounds of which can be identified in the raw materials and what role the total composition may play for which compounds are formed during combustion. The biosolids were subjected to low-temperature ashing to investigate which crystalline compounds that were present in the raw materials. Combustion experiments of two different types of biosolids were conducted in a 5-kW benchscale bubbling fluidized bed at two different bed temperatures and with two different additives. The additives were chosen to investigate whether the addition of alkali (K 2 CO 3 ) and alkaline-earth metal (CaCO 3 ) would affect the speciation of phosphorus, so the molar ratios targeted in modified fuels were P:K = 1:1 and P:K:Ca = 1:1:1, respectively. After combustion the ash fractions were collected, the ash distribution was determined and the ash fractions were analyzed with regards to elemental composition (ICP-AES and SEM-EDS) and part of the bed ash was also analyzed qualitatively using XRD. There was no evidence of zeolites in the unmodified fuels, based on low-temperature ashing. During combustion, the biosolid pellets formed large bed ash particles, ash pellets, which contained most of the total ash content (54%-95% (w/w)). This ash fraction contained most of the phosphorus found in the ash and the only phosphate that was identified was a whitlockite, Ca 9 (K,Mg,Fe)(PO 4 ) 7 , for all fuels and fuel mixtures. With the addition of potassium, cristobalite (SiO 2 ) could no longer be identified via X-ray diffraction (XRD) in the bed ash particles and leucite (KAlSi 2 O 6 ) was formed. Most of the alkaline-earth metals

  17. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  18. Distribution of trunk-injected 14C-imidacloprid in ash trees and effects on emerald ash borer (Coleoptera: Buprestidae) adults

    Science.gov (United States)

    David Mota-Sánchez; Bert M. Cregg; Deborah G. McCullough; Therese M. Poland; Robert M. Hollingworth

    2009-01-01

    The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae) is a destructive exotic pest of North American ash (Fraxinus sp.) trees. Trunk injection of imidacloprid is commonly used to protect landscape ash trees from A. planipennis damage. Efficacy can vary and little is known about the...

  19. Bottom ash handling: why the outlook is dry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The author believes that dry systems are the way forward for bottom ash handling at coal fired power plants. The first two commercial installations of Clyde Bergemann's DRYCON system, in China, are due to enter operation shortly. The DRY ash CONveyor (DRYCON) employs fresh air flow to cool the ash, returning reheat energy to the boiler. It also addresses some problems encountered with previous dry technologies whilst increasing ash capacity and enhancing ash cooking. The advantages of the DRYCON over the wet submerged scraper conveyor are listed. 7 figs.

  20. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  1. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  2. Emerald ash borer life cycle

    Science.gov (United States)

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Toby R. Petrice; Houping Liu

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was discovered in southeastern Michigan and nearby Ontario in June of 2002. EAB was identified as the cause of extensive ash (Fraxinus spp.) mortality in approximately 2,500 mi2, and...

  3. Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  4. Management methods ash from combustion of biomass. Review of productions and associated methods. Extended abstract

    International Nuclear Information System (INIS)

    Boulday, D.; Marcovecchio, F.

    2016-02-01

    The study deals with the management of biomass ashes from industrial and collective facilities (wood log excluded) and provides a state of the art, in France and in Europe, flows, methods of recovery and post-treatment, physico-chemical characteristics and programs for new opportunities. Currently, flows of biomass ash are estimated at 110 kt-330 kt in France and 1 500 kt - 4 500 kt in Europe and should amount respectively 330 kt-1000 kt and 3100 kt-8000 kt in 2020. The physical and chemical composition of biomass ash is influenced by many factors: fuel, pretreatment, post-treatment, additives, fly and bottom ash, power installation, type of combustion equipment, extraction mode...However, these ashes have characteristics which are commonly accepted: liming / neutralizing power, fertilizer, pozzolanic behavior generally almost zero. In France and Europe, a distinction is made between fly and bottom ashes, usually less polluted. However, this separation does not always make sense according to the valuation mode, the type of equipment (including fluidized bed or grid) or mixtures of ash made in the plant (e.g. mix of bottom and coarse ash). Currently, the main outlet is ash landfill, followed by agricultural and forestry recycling. The other identified opportunities concern a few countries and marginal flows: brick-works, road engineering... The development of biomass energy, coupled with a reduction in landfill options, has given rise to many research and demonstration programs in recent years, particularly in France, with some promising solutions. Many limiting factors, which can be different according to opportunities, have been identified. More or less advanced solutions aimed at reducing the harmful effects of these factors (slaking lime, sorting, grinding...).However to date, the most robust and massive solution for ash recycling material remains undoubtedly the agricultural recycling. According to the study, it's necessary to consolidate the agricultural

  5. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  6. Volcanic Ash fall Impact on Vegetation, Colima 2005

    Science.gov (United States)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  7. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  8. Coal fly ash based carbons for SO2 removal from flue gases.

    Science.gov (United States)

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Ashéninka y asháninka : ¿de cuántas lenguas hablamos?

    NARCIS (Netherlands)

    Pedrós, Caballero T.

    2018-01-01

    Este artículo intenta esclarecer cuántas lenguas hay en todo el complejo ashéninka-asháninka, en el cual el Ethnologue y el Glottolog distinguen siete o seis lenguas respectivamente, algo que resulta evidentemente erróneo cuando se estudia la escasa bibliografía existente de las distintas

  10. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  11. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang

    2012-07-01

    formation of low temperature melting potassium rich silicates and phosphates, causing severe sintering of the WCob ash at elevated temperatures. In contrast, both the Pioneer corn cob (PCob) and Surcin corn cob (SCob) contained high contents of Cl, Ca and Mg that promote K release from the ashes to a certain extent and inhibit formation of low temperature melting K rich silicates and phosphates. In addition, abundance of Ca and Mg in the PCob and SCob facilitated formation of high temperature melting Ca/Mg-K-silicates and Ca/Mg-K-phosphates, reducing sintering degrees of ashes derived from these two corn cobs. Utilizing additives is an efficient way to mitigate ash related operational problems in biomass combustion applications. The useful additives can be proximately categorized into Al-Si-based, S-based, calcium-based and phosphorus-based, according to the major chemical composition in the additives. After fed into biomass combustion systems with different approaches, the additives can decrease amounts of problematic ash species through five possible mechanisms, which prevent and/or abate ash related problems consequently. It is interesting to exploit additives from waste materials, which are normally characterized with rather high chemical reactivity, physical adsorption capacity, abundance of refractory compounds themselves and low costs. More detailed studies are needed to clarify effects of these additives on ash transformation during biomass combustion processes. Sintering characteristics of biomass ashes and effects of additives were investigated. The work revealed that severe fusion of wheat straw ash was associated with intensive formation and melting of potassium silicates under heating. Whereas, sintering of wood waste ash was caused by generation of low temperature melting potassium/sodium aluminum silicates and potassium/sodium calcium silicates. The best anti-sintering effect was achieved by using the marble sludge as additive. The dilution effect from the

  12. Geotechnical properties of ash deposits near Hilo, Hawaii

    Science.gov (United States)

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  13. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes.

    Science.gov (United States)

    Cheng, T W

    2004-07-01

    There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.

  14. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  15. Emerald ash borer flight potential

    Science.gov (United States)

    Robin A. Taylor; Leah S. Bauer; Deborah L. Miller; Robert A. Haack

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) that is rapidly spreading from the probable introduction site in Detroit, Michigan. The rapid spread to areas outside Michigan is undoubtedly due to phoretic transport on nursery stock, logs, and...

  16. Emerald ash borer biological control

    Science.gov (United States)

    Leah Bauer; Juli Gould; Jian Duan; Mike. Ulyshen

    2011-01-01

    Emerald ash borer (EAB) (Agrilus planipennis), an invasive buprestid from northeast Asia, was identified in 2002 as the cause of ash (Fraxinus) tree mortality in southeast Michigan and adjacent areas of Ontario, Canada. This destructive beetle apparently arrived in North America via infested solid wood packaging materials from...

  17. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    Science.gov (United States)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  18. Ash of Bikini and its effects on human body. [In Japanese

    Energy Technology Data Exchange (ETDEWEB)

    Kakehi, H

    1954-01-01

    The physical and chemical composition of radioactive ashes which fell on the fishermen of the Fukuryu Maru are discussed and a clinical study of its effects is presented. Many measurements of activity are made on ship board at various times. Estimated radiation received by the fishermen in a two-week stay on ship as 200 r. The hazards of contaminated tuna are discussed.

  19. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  20. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2004-01-01

    Due to a high concentration of Cd, biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. In this work the potential of using the method Electrodialytic Remediation to reduce the concentration of Cd in different biomass combustion....... The initial Cd concentration in the ashes varied between 8.8 mg Cd/kg DM (co-firing ash) and 64 mg Cd/kg DM (pre-washed straw ash), and pH varied from 3.7 to 13.3. In spite of large differences in ash characteristics, the electrodialytic remediation experiments indicated a good remediation potential for all...... four ashes. Final Cd concentrations below 2.0 mg Cd/kg were reached in all ashes within 14 days of remediation and legislative requirements were met. After further optimization of the remediation process on the pre-washed straw ash, limiting concentrations were reached after only 48 hours...

  1. Bamboo leaf ash as the stabilizer for soft soil treatment

    Science.gov (United States)

    Rahman, A. S. A.; Jais, I. B. M.; Sidek, N.; Ahmad, J.; Rosli, M. I. F.

    2018-04-01

    Soft soil is a type of soil that have the size of particle less than 0.063mm. The strength of the soft soil does not fulfil the requirement for construction. The present of soft soil at the construction site always give a lot of problems and issues to geotechnical sector. Soil settlement is one of the problems that related to soft soil. The determination of the soft soil physical characteristics will provide a detail description on its characteristic. Soft soil need to be treated in order to gain the standard strength for construction. One of the method to strengthen the soft soil is by using pozzolanic material as a treatment method for soft soil. Furthermore bamboo leaf ash is one of the newly founded materials that contain pozzolanic material. Any material that consist of Silicon Dioxide (SiO2) as the main component and followed by Aluminium Oxide (Al2O3) and Iron Oxide (Fe2O3) are consider as pozzolanic material. Bamboo leaf ash is mix with the cement as the treatment material. Bamboo leaf ash will react with the cement to produce additional cement binder. Thus, it will increase the soil strength and will ease the geotechnical sector to achieve high quality of construction product.

  2. The microphysics of ash tribocharging: New insights from laboratory experiments

    Science.gov (United States)

    Joshua, M. S.; Dufek, J.

    2014-12-01

    The spectacular lightning strokes observed during eruptions testify to the enormous potentials that can be generated within plumes. Related to the charging of individual ash particles, large electric fields and volcanic lightning have been observed at Eyjafjallajokull, Redoubt, and Sakurajima, among other volcanoes. A number of mechanisms have been proposed for plume electrification, including charging from the brittle failure of rock, charging due to phase change as material is carried aloft, and triboelectric charging, also known as contact charging. While the first two mechanisms (fracto-emission and volatile charging) have been described by other authors (James et al, 2000 and McNutt et al., 2010, respectively), the physics of tribocharging--charging related to the collisions of particles--of ash are still relatively unknown. Because the electric fields and lightning present in volcanic clouds result from the multiphase dynamics of the plume itself, understanding the electrodynamics of these systems may provide a way to detect eruptions and probe the interior of plumes remotely. In the present work, we describe two sets of experiments designed to explore what controls the exchange of charge during particle collisions. We employ natural material from Colima, Mt. Saint Helens, and Tungurahua. Our experiments show that the magnitude and temporal behavior of ash charging depend on a number of factors, including particle size, shape, chemistry, and collisional energy. The first set of experiments were designed to determine the time-dependent electrostatic behavior of a parcel of ash. These experiments consist of fluidizing an ash bed and monitoring the current induced in a set of ring electrodes. As such, we are able to extract charging rates for ash samples driven by different flow rates. The second experimental setup allows us to measure how much charge is exchanged during a single particle-particle collision. Capable of measuring charges as small as 1 fC, this

  3. Granulated wood ash to forest soil - Ecological effects

    International Nuclear Information System (INIS)

    Rosen, K.; Eriksson, H.; Clarholm, M.; Lundkvist, H.; Rudebeck, A.

    1993-01-01

    This report describes research concerning ecological effects of wood ash recycling to forest soils. The main part of the minerals in the wood fuels are retained in the ashes after combustion. By returning the ashes back to the cleared forest areas, the mineral losses can be reduced. Adding ashes and limestone is a method to vitalize acidified forest soils and restore the production capacity. 48 refs, 26 figs, 8 tabs

  4. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  5. Can pore-clogging by ash explain post-fire runoff?

    Science.gov (United States)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  6. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.

    Science.gov (United States)

    Jang, J G; Park, S M; Lee, H K

    2016-11-15

    The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Reduction of metal leaching in brown coal fly ash using geopolymers

    International Nuclear Information System (INIS)

    Bankowski, P.; Zou, L.; Hodges, R.

    2004-01-01

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60 wt% for fly ash obtained from the electrostatic precipitators and 70 wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition

  8. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete

    International Nuclear Information System (INIS)

    Shi, X.S.; Collins, F.G.; Zhao, X.L.; Wang, Q.Y.

    2012-01-01

    Highlights: ► Sodium silicate solution and sodium hydroxide solution were used to activate fly ash, which substitute cement totally in the concrete. ► Utilizing two kinds of waste materials (fly ash and recycled aggregates) at the same time. ► The mechanical properties and microstructures were studied and compared with different recycled aggregates replacement ratios. ► Such concrete has greater compressive strength and better microstructure than ordinary concrete and also geopolymer concrete. - Abstract: Six mixtures with different recycled aggregate (RA) replacement ratios of 0%, 50% and 100% were designed to manufacture recycled aggregate concrete (RAC) and alkali-activated fly ash geopolymeric recycled concrete (GRC). The physical and mechanical properties were investigated indicating different performances from each other. Optical microscopy under transmitted light and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) were carried out in this study in order to identify the mechanism underlying the effects of the geopolymer and RA on concrete properties. The features of aggregates, paste and interfacial transition zone (ITZ) were compared and discussed. Experimental results indicate that using alkali-activated fly ash geopolymer as replacement of ordinary Portland cement (OPC) effectively improved the compressive strength. With increasing of RA contents in both RAC and GRC, the compressive strength decreased gradually. The microstructure analysis shows that, on one hand, the presence of RA weakens the strength of the aggregates and the structure of ITZs; on the other hand, due to the alkali-activated fly ash in geopolymer concrete, the contents of Portlandite (Ca(OH) 2 ) and voids were reduced, as well as improved the matrix homogeneity. The microstructure of GRC was changed by different reaction products, such as aluminosilicate gel.

  9. Use of ash in the fertilisation of peatland forests

    International Nuclear Information System (INIS)

    Moilanen, M.; Korpilahti, A.

    2000-01-01

    About 100,000 tonnes of bark and other wood-based ash are produced annually by the forest industries and heating plants in Finland. This amount would be sufficient for fertilising about 25,000 hectares of forest. When applied to peatland forests, this would produce extra forest growth of about 75,000 m 3 per a year. When considering the objectives of forestry, the practical benefits and economic profitability of ash fertilisation are at their peak on peatlands rich in nitrogen. Wood ash induces added tree growth (measured in terms of stemwood) in pine stands on herb- and sedge-rich parklands within 2-3 years of application. On nitrogen-deficient dwarf-shrub and Sphagnum-rich peatlands this growth reaction manifests itself only after 7-8 years have passed and even then at a considerably lower level. The application of mere ash does not result in notable increases in tree growth on upland forest sites. However, ash does change the growth conditions by reducing the acidity of the soil and by accelerating microbial decomposition. The phosphorus contained in ash has not been observed to have been leached into drainage waters on drained sites, at least not during the first two years after application, provided that care has been practised when spreading ash. However, the movement of readily-soluble nutrients has been observed and more so on nutrient-poor sites than on nutrient-rich sites. Although the suitability of ash as fertiliser in peatland forests has been recognised on the basis of long-term ash trials established at the Finnish Forest Research Institute, ash fertilisation has not been carried out made on a practical scale mainly because of the dust problem when spreading it. The purpose of pretreatment with ash is first and foremost to transform the ash into sufficiently dust-free form to enable it to be spread readily. An added advantage is that pelletised ash causes a lesser pH shock to plank than ash in dust form. (orig.)

  10. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  11. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  12. The mechanical and physical properties of concrete containing polystyrene beads as aggregate and palm oil fuel ash as cement replacement material

    Science.gov (United States)

    Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah

    2017-10-01

    One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.

  13. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...... ashes. The process, thus, fixates the metals in the solid residues without altering the leaching properties of the bottom ash too significantly. (C) 2001 Elsevier Science Ltd. All rights reserved....... stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 I/kg at a range of pH-values (6-10) quantified with respect...

  14. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    Science.gov (United States)

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ash content of lignites - radiometric analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.; Thuemmel, H.W.

    1986-01-01

    The quality of lignites is governed by the ash content varying in dependence upon the geologic conditions. Setup and function of the radiometric devices being used for ash content analysis in the GDR are briefly described

  16. Effect of different sizes of palm oil fuel ash (POFA) towards physical properties of modified bitumen

    Science.gov (United States)

    Raja Zulkefli, R. N. A.; Yaacob, H.; Putra Jaya, R.; Warid, M. N. M.; Hassan, N.; Hainin, M. R.; Idham, M. K.

    2018-04-01

    In the past decades, numerous numbers of studies have been carried out to find ways enhancing properties of bitumen. Other than using polymer, agricultural waste such as palm oil fuel ash (POFA) is one of the waste products that can be used to modify bitumen. In this study, the physical and rheological properties of POFA modified bitumen were examined based on different grinding hour and different percentage of POFA. The bitumen were mixed with different percentages of POFA (0, 5 and 7%) which passed through 0.075 mm sieve and grinded at different period (1 and 4 hour). The samples were then tested and compared to conventional bitumen. From TEM results, POFA grinded at 1 hour have sizes between 3-7 µm while POFA grinded for 4 hours have finer sizes between 500 nm to 3 µm. The results showed that fineness of POFA affect properties of bitumen significantly. Decreasing in penetration value and decreasing in softening temperature indicates that the modified bitumen becomes harder than conventional bitumen. Modified bitumen gives best results when added with 7% POFA sizes of 500 nm to 3 µm compared to 3 to 7 µm.

  17. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  18. Monitoring ash (Fraxinus spp.) decline and emerald ash borer (Agrilus planipennis) symptoms in infested areas

    Science.gov (United States)

    Kathleen S. Knight; Britton P. Flash; Rachel H. Kappler; Joel A. Throckmorton; Bernadette Grafton; Charles E. Flower

    2014-01-01

    Emerald ash borer (A. planipennis) (EAB) has had a devastating effect on ash (Fraxinus) species since its introduction to North America and has resulted in altered ecological processes across the area of infestation. Monitoring is an important tool for understanding and managing the impact of this threat, and the use of common...

  19. Environmentally friendly use of non-coal ashes in Sweden.

    Science.gov (United States)

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  20. Advanced characterisation of municipal solid waste ashes

    Energy Technology Data Exchange (ETDEWEB)

    Skytte Pedersen, Randi

    2002-12-15

    This report deals with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant Maebjergvaerket, Holstebro. MSW has been used as a fuel since the mid 1960's and since then, the MSW incineration plants have experienced operational problems due to deposit formation and corrosion. Inorganic elements tightly or loosely bound in the waste are the main cause of these problems. The tightly bound elements will mainly stay on the grate during combustion, whereas the loosely bound elements are volatilised and recondensed elsewhere in the furnace. Many of the heavy metals form volatile chlorides during the incineration, and the fly ash fraction thus show enrichment in these elements. Presence of chlorides and heavy metals in deposits may cause severe corrosion due to formation of low-melting eutectics. Chlorine gas in the flue gas is also of major concern with respect to corrosion, due to formation of volatile chlorides when chlorine comes in contact with the tube material. Four different ash fractions (bottom ash, super heater ash, economiser ash and fly ash) taken from Maebjergvaerket have been analysed with respect to particle sizes, structures, shapes and composition. The applied methods were scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDX) and mapping, which were used in order to determine sizes, chemical composition and structure of the particles. X-ray powder diffraction (XRD) was used to provide information about crystallography and mineral phases. Chemical analysis was also performed along with a particle size distribution for the fine-grained fractions (economiser and fly ash). The amount of silicates consisting of Ca, Al and Si, were found to decrease through the furnace, whereas the amount of alkali (Na, K) chlorides and heavy metals (Pb, Zn) increased. The bonding in the waste before incineration is the direct cause of this, since silicates are tightly bound and chlorides are loosely bound. There was a

  1. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  2. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  3. A robust method to forecast volcanic ash clouds

    Science.gov (United States)

    Denlinger, Roger P.; Pavolonis, Mike; Sieglaff, Justin

    2012-01-01

    Ash clouds emanating from volcanic eruption columns often form trails of ash extending thousands of kilometers through the Earth's atmosphere, disrupting air traffic and posing a significant hazard to air travel. To mitigate such hazards, the community charged with reducing flight risk must accurately assess risk of ash ingestion for any flight path and provide robust forecasts of volcanic ash dispersal. In response to this need, a number of different transport models have been developed for this purpose and applied to recent eruptions, providing a means to assess uncertainty in forecasts. Here we provide a framework for optimal forecasts and their uncertainties given any model and any observational data. This involves random sampling of the probability distributions of input (source) parameters to a transport model and iteratively running the model with different inputs, each time assessing the predictions that the model makes about ash dispersal by direct comparison with satellite data. The results of these comparisons are embodied in a likelihood function whose maximum corresponds to the minimum misfit between model output and observations. Bayes theorem is then used to determine a normalized posterior probability distribution and from that a forecast of future uncertainty in ash dispersal. The nature of ash clouds in heterogeneous wind fields creates a strong maximum likelihood estimate in which most of the probability is localized to narrow ranges of model source parameters. This property is used here to accelerate probability assessment, producing a method to rapidly generate a prediction of future ash concentrations and their distribution based upon assimilation of satellite data as well as model and data uncertainties. Applying this method to the recent eruption of Eyjafjallajökull in Iceland, we show that the 3 and 6 h forecasts of ash cloud location probability encompassed the location of observed satellite-determined ash cloud loads, providing an

  4. Acidolysis of coal fly ash by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.; Singh, A.K. (EG and G Idaho Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1993-12-01

    The kinetics of aluminium extraction were investigated, using as-received and calcined fly ash samples and a pure culture of [ital Aspergillus niger]. This fungus metabolized sucrose to citric and oxalic acids, which were involved in the acidolysis of fly ash. Aluminium extraction from as-received fly ash was only 5-8%, whereas from calcined fly ash it was up to 93.5%. The order of reaction and the overall reaction rate constant were determined by the van't Hoff technique with respect to the concentration of calcined fly ash. A linearized form of a modified Monod expression was applied to the experimental data to assess the kinetic constants for the acidolysis process. Statistically designed experiments were carried out with calcined fly ash and synthetic solutions containing citric and oxalic acids to determine the optimum leaching conditions. The acidolysis reaction mechanism is discussed. 28 refs., 6 figs., 3 tabs.

  5. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  6. Ge extraction from gasification fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Font; Xavier Querol; Angel Lopez-Soler; Jose M. Chimenos; Ana I. Fernandez; Silvia Burgos; Francisco Garcia Pena [Institute of Earth Sciences ' Jaume Almera' , Barcelona (Spain)

    2005-08-01

    Water-soluble germanium species (GeS{sub 2}, GeS and hexagonal-GeO{sub 2}) are generated during coal gasification and retained in fly ash. This fact together with the high market value of this element and the relatively high contents in the fly ashes of the Puertollano Integrated Gasification in Combined Cycle (IGCC) plant directed our research towards the development of an extraction process for this element. Major objectives of this research was to find a low cost and environmentally suitable process. Several water based extraction tests were carried out using different Puertollano IGCC fly ash samples, under different temperatures, water/fly ash ratios, and extraction times. High Ge extraction yields (up to 84%) were obtained at room temperature (25{sup o}C) but also high proportions of other trace elements (impurities) were simultaneously extracted. Increasing the extraction temperature to 50, 90 and 150{sup o}C, Ge extraction yields were kept at similar levels, while reducing the content of impurities, the water/fly ash ratio and extraction time. The experimental data point out the influence of chloride, calcium and sulphide dissolutions on the Ge extraction. 16 refs., 9 figs., 6 tabs.

  7. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    Science.gov (United States)

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  8. Coal ash usage in environmental restoration at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, P.L.; Sonnichsen, J.C.; Phillips, S.J.

    1994-08-01

    The ash stockpiled next to the 284E steam plant is mixed fly ash, bottom ash, and slag. The ash consists of (1) baghouse residue and (2) a mixture of bottom ash and slag which is washed out of the bottom of the boilers daily. In 1991, a Toxicity Characteristic Leaching Procedure (TCLP) was performed on several samples of this ash (Hazen Research 1991). This procedure is designed to determine the mobility of organic and inorganic anatytes present in liquid, solid, or multiphasic wastes (EPA 1994). The ash tested came from surge bins, conveyor samples, and bottom ash and fly ash from the boilers at 284E. Antimony, cadmium, germanium, molybdenum, silver, thallium, tungsten, and vanadium were tested for, but on all samples were below detection Limits for the testing method. Analytes present in relatively high concentrations (but less than one part per thousand) included barium, boron, chromium, fluorine, and zinc. The size of ash particles passing through a Taylor sieve series was very evenly distributed from 1 to 200m.

  9. Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash

    Science.gov (United States)

    Thang, Nguyen Hoc; Hoa, Nguyen Ngoc; Quyen, Pham Vo Thi Ha; Tuyen, Nguyen Ngoc Kim; Anh, Tran Vu Thao; Kien, Pham Trung

    2018-04-01

    Geopolymer technology was developed by Joseph Davidovits in 1970s based on reactions among alumino-silicate resources in high alkaline conditions. Geopolymer has been recently gaining attention as an alternative binder for Ordinary Portland cement (OPC) due to its low energy and CO2 burden. The raw materials used for geopolymerization normally contain high SiO2 and Al2O3 in the chemical compositions such as meta-kaoline, rice husk ash, fly ash, bottom ash, blast furnace slag, red mud, and others. Moreover, in this paper, coal bottom ash (CBA) and rice husk ash (RHA), which are industrial and agricultural wastes, respectively, were used as raw materials with high alumino-silicate resources. Both CBA and RHA were mixed with sodium hydroxide (NaOH) solution for 20 minutes to obtain the geopolymer pastes. The pastes were filled in 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room condition for hardening of the geopolymer specimens. After 24 hours, the specimens were removed out of the molds and continuously cured at room condition for 27 days. The geopolymer-based materials were then tested for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). Results indicated that the material can be considered lightweight with volumetric weight from 1192 to 1425 kg/m3; compressive strength at 28 days is in the range of 12.38 to 37.41 MPa; and water absorption is under 189.92 kg/m3.

  10. Greener management practices - ash mound reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, S.L.; Shyam, A.K.; Soni, R. [National Thermal Power Corp. Ltd., New Delhi (India)

    2002-12-01

    The dry ash handling system at Dadri has been pioneered for the first time in India by the National Thermal Power Corporation (NTPC). The system is similar to that at the Drax power station in England. The paper reports the successful experimental trials carried out on vegetation of temporary ash mounds to assess the growth potential of local herbs, shrubs, trees and grasses directly on ash with no soil cover or fertiliser. These were extended to trials directly on the available (completed) mound surfaces. The grass Cynodon dactylon germinated well as did seeds of tree species including the Casurarina and Eucalyptus. It is hoped that efforts at Dadri will ultimately transform the ash into a productive and self sustaining ecosystem, as leaf fall adds additional organic material and the weathering process continues. 6 refs., 6 figs.

  11. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice....... In this study, a fly ash sample from an operating Danish power plant based on wood biomass was collected, chemically characterized and investigated for its leaching release of nutrients and heavy metals. A column leaching test was employed. The strongly alkaline pH of all the collected eluates suggested...

  12. Obtention and characterization of ceramic products with addition of the mineral coal bottom ashes from thermoelectric power plants

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Brys, M.; Martins, G.J.; Riella, H.G.; Bernardin, A.

    2011-01-01

    The physical, chemical and mineralogical properties of mineral coal bottom ash derived from thermoelectric power plants are compatible with various raw materials used in ceramic industries, which indicates a possibility of partial or fully substitution of raw materials by this residue. This work intends to obtain and characterize ceramic products with additions of different percentages of bottom ash coal. For this, was used a commercial ceramic body (CI) made by an industry in the state of Santa Catarina. The formulations of the ceramics products were obtained by the mixture design (planning network Simplex). The byproduct of coal bottom ash was found to be an attractive raw material source of SiO_2 and Al_2O_3 to obtain ceramic materials. Was demonstrated the possibility of developing a ceramic materials classified as semi-porous (6 10) with additions of up to 20% of coal bottom ash in the composition of the ceramic body. (author)

  13. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  14. The influence of using quicklime and volcanic ash as stabilizing materials in clay viewed from CBR value

    Science.gov (United States)

    Hastuty, Ika Puji; Sofyan, Tri Alby; Roesyanto

    2017-11-01

    The condition of the soil in Indonesia in varied, viewed from its bearing capacity. The soil is one of the materials which plays a very important role in a construction or foundation so that it is very necessary to have soil with its adequate technical properties. In reality, often founding inadequate soil properties such as in its compressibility, permeability, and plasticity. The objective of the research was to find out the physical properties, technical properties, CBR value, and stabilization of clay by adding quicklime and volcanic ash as stabilizing materials. The mixing combination is 2%, 4% quicklime, and 2%-24% volcanic ash. The value of Water Content for original soil was 34.33% and Specific Gravity original soil was 2.65. The result of the research showed that the stabilizing materials from quicklime and volcanic ash could improve the physical and mechanical properties of clay. The value of Atterberg Limits decreased from 29.88% to 11.33% in the variation of 4% Q+24% VA, while the most maximal value of CBR was found in the variation of 4% Q+8% VA at 9.01%.

  15. Simulated Impacts of Emerald Ash Borer on Throughfall and Stemflow Inputs of Water and Nitrogen in Black Ash Wetlands in Northern Michigan

    Science.gov (United States)

    Pypker, T. G.; Davis, J.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Kolka, R. K.; Nelson, J.; Wagenbrenner, J. W.

    2014-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated ('Control'), 3 stands had all the black ash trees manually girdled ('Girdled') and 3 had all the black ash trees felled by chainsaw ('Clearcut'). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total

  16. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  17. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  18. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

    2004-02-13

    The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

  19. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  20. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    OpenAIRE

    Marlinda; Ramli; Muh. Irwan

    2015-01-01

    Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated...

  1. Water retention properties of ashes; Vattenretentionsegenskaper hos aska

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Ezziyani, Samir; Bendz, David

    2009-05-15

    The water holding properties of a material can be described with a water retention curve (also called pF curve or characteristic curve). The importance of this material property has until now been neglected in waste and rest products contexts. There is an eminent need for knowledge of the water holding properties of ash and rest products in order to improve the possibility to perform i) assessment of leaching from rest product used in constructions, ii) dimensioning of covers built with rest products and iii) assessment of long term properties of land fill waste concerning leaching, especially for stabilized ash with a monolithic characteristics. The aim of this project was to increase the knowledge of the water holding properties of ashes by determining water retention curves with laboratory methods on four ash materials with the potential to be used in constructions. In the project, four ashes has been studied; one MSWI bottom ash from SYSAV, one aged MSWI bottom ash from Gaerstadverket and two fly ashes from incineration of biofuels; one from SCA Ortviken and one from Jaemtkraft AB. For comparison, data from a silt soil studied in another SGI project is presented. When determining a water retention curve for a specific material water from the examined, beforehand water saturated, sample is eliminated under controlled circumstances in a pressure plate extractor. The sample is exposed to a pressure, with increasing degree, squeezing excess water out of the material. The excess water is measured for each increased pressure step and the remaining volumetric water content in the material can be calculated. The results from such measurements are presented in water retention curves, in which the volumetric water content is plotted as a function of the capillary pressure. The water retention curves shows how various materials differ in water content at the same pressure. The results from the study showed that ashes have great water holding capacity. The study also

  2. Environmental effects of ash application in forest ecosystems

    DEFF Research Database (Denmark)

    Hansen, Mette

    of ashes being produced and the export of nutrients from the forests. This PhD project aims at investigating how ash application in forest ecosystems affects soil and soil solution properties and whether ash application can be used in a Danish context without environmental harm but with positive effects...

  3. Plant nutrition on fly-ash

    Energy Technology Data Exchange (ETDEWEB)

    Rees, W J; Sidrak, G H

    1956-12-01

    Experiments were performed to determine the plant nutritional potential of fly ash. Chemical analysis indicates that it contains all the essential nutrients. It is deficient in nitrogen and only manganese and aluminum appear to be available in quantities toxic to plants. Barley and spinach grown on fly ash accumulate excessive quantities of Al and Mn in their leaves and exhibit symptoms of toxicities of these metals. Atriplex hastata grows vigorously on the ash, has a high Al and Mn leaf content, but does not show toxicity symptoms. Atriplex, barley and spinach grown at reduced N levels gave lower yields than the normal controls, but symptoms of N deficiency which were evident in barley and spinach were not observed in Atriplex. 17 references, 2 figures, 14 tables.

  4. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    Science.gov (United States)

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  5. Preliminary Evaluation of Potassium Extraction from Bamboo Ash

    Directory of Open Access Journals (Sweden)

    Samadhi Tjokorde W.

    2018-01-01

    Full Text Available Bamboo is a potentially economical fuel crop that has not been utilized at a substantial extent for energy generation in Indonesia. As a thermal conversion waste, bamboo ash is particularly interesting due to its high potassium content. This paper discusses the determination of several key parameters of a simple batchwise extraction process to recover potassium in the form of weak solution from bamboo ash. To produce the ash, black bamboo (Gigantochloa atroviolaceae is charred in a fixed bed combustor. The bamboo char is ground and ashed at 500 °C in an electric furnace. The ash yield is 3.3 %-mass relative to as-received ash, with an ash K2O content of 12.9 %-mass. The ash is ground until passing 100-mesh standard sieve, and extracted by deionized water on a 2-stage laboratory-scale batchwise extractor battery. Process variables include extractror battery configuration (counter-current and co-current, temperature (nominal setting at 45-80 °C, and contact period of 1-6 hours. The concentration of extracted K2O increases asymptotically with temperature and contact time. Counter-current extraction yields more than twice the extract K2O concentration compared to cross-current extraction. The optimum conditions for the counter-current extraction is identified as a temperature of 78 °C and contact time of 4 hours, resulting in a 0.70 %-mass K2O solution concentration. Spot sampling of commercial liquid fertilizer products in Indonesia indicates an equivalent K2O content of 0.08-13.6 %-mass, suggesting the potential of the bamboo ash extract as an intermediate for fertilizer product.

  6. Wood ash as a soil additive and liming agent

    International Nuclear Information System (INIS)

    Campbell, A.; Etiegni, L.; Mahler, R.L.

    1991-01-01

    This study evaluated wood ash as an agricultural soil supplement and liming material. Winter wheat (Triticum aestivum) and poplar (Populus sp.) were grown in a greenhouse on six different Idaho soils amended with different ash concentrations. At ash levels equal to or lower than 2%, no detrimental effects were observed. In fact, the biomass of the wheat and the caliper and height of the poplar cuttings increased more at 2% ash 940 metric tons/ha than with the control soil. These results suggest that wood ash could be used in agricultural applications as a low analysis fertilizer containing potassium and as a liming agent. Land application of wood ash could be less expensive and more environmentally sound than present landfilling practices

  7. Clay Stabilization Using the Ash of Mount Sinabung in Terms of the Value of California Bearing Ratio (CBR)

    Science.gov (United States)

    Hastuty, I. P.; Roesyanto, R.; Napitupulu, S. M. A.

    2018-02-01

    Most areas in Indonesia consist of clay soils with high plasticity so that to meet technical requirements the soil needs improvement, which is known as soil stabilization.There are three ways of soil stabilization process, i.e. mechanical, physical and chemical. In this study, chemical stabilization was performed, that was by adding stabilizing agents to the soil. The stabilizing agent used was the ash of Mount Sinabung. Since 2010 until now, Sinabung Mountain is still experiencing eruption that produces a lot of volcanic ash and it inconveniences the environment. So, it is expected that this research will be able to optimize the utilization of Sinabung ash. The purpose of this study was to investigate the effect of the addition of Mount Sinabung ash to CBR (California Bearing Ratio) value, to determine the effect of the curing time of one day and fourteen days mixture on the CBR value, and to find the mixed content with effective curing time to produce the largest CBR value. Based on this study, the soil type CL (Clay - Low Plasticity) was obtained, based on the classification of USCS (Unified Soil Classification System) and categorized as A-6 (6) based on the classification of AASHTO (American Association of State Highway and Transportation officials) with the most effective mixed stabilizer material which was the variation of 10% Mount Sinabung ash with fourteen days of curing time. The CBR value resulted from the mixture of 10% Sinabung ash that was cured within fourteen days was 8.95%. By the increase of the content of the Sinabung ash, the CBR value always improved to the level of 10%, Sinabung ash then decreased and became constant at the mixture of higher volcanic ash mixture but remained above the CBR value of the original soil.

  8. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  9. Trace elements of coal, coal ashes and fly ashes by activation analysis with shor-lived nuclides

    International Nuclear Information System (INIS)

    Boeck, H.; Sarac, I.; Grass, F.

    1981-01-01

    On irradiation with neutrons, some of the interesting trace elements in coal, coal ash and fly ash produce short-lived nuclides which may be determined - together with some of the matrix elements - by activation analysis. This enables the characterization of samples. To find out the distribution of elements in the gaseous or aerosol exhaust of fossil-fired power plants, the authors simulated the combustion in a quartz apparatus containing a cold trap, using the combustion temperature (780 deg C) employed for the standard ash determination. High Se values were found in the cold trap deposits of black coal from Poland. Halogens were also found in the deposits. (authors)

  10. Pemanfaatan limbah abu terbang (fly ash) , abu dasar (bottom ash) batubara dan limbah padat (sludge) industri karet sebagai bahan campuran pada pembuatan batako

    OpenAIRE

    Faisal, Hendri

    2012-01-01

    Brick-making research has been conducted from a mixture of fly ash as a cement mixed with aggregate materials based bottom ash and sludge, and sand, where fly ash and cement used as an adhesive matrix. The percentage addition of fly ash is 10%, 20%, 30%, 40% and 50% of initial weight of cement. The percentage addition of bottom ash and sludge as an aggregate is 5%, 10%, 15%, 20% and 25% of initial weight of sand with the time of hardening for 28 days. Parameter tests performed include: metals...

  11. Laboratory rearing of emerald ash borer

    Science.gov (United States)

    Leah S. Bauer; Robert A. Haack; Deborah L. Miller; Houping Liu; Toby Petrice

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), native to several Asian countries, was identified in 2002 as the cause of ash (Fraxinus spp.) mortality throughout southeastern Michigan and southwestern Ontario. More isolated infestations continue to be found throughout Lower Michigan, northern...

  12. Fusibility and sintering characteristics of ash

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. A., E-mail: aots@sti.ttu.ee [Tallinn University of Technology (Estonia)

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  13. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete.

    Science.gov (United States)

    Shi, X S; Collins, F G; Zhao, X L; Wang, Q Y

    2012-10-30

    Six mixtures with different recycled aggregate (RA) replacement ratios of 0%, 50% and 100% were designed to manufacture recycled aggregate concrete (RAC) and alkali-activated fly ash geopolymeric recycled concrete (GRC). The physical and mechanical properties were investigated indicating different performances from each other. Optical microscopy under transmitted light and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) were carried out in this study in order to identify the mechanism underlying the effects of the geopolymer and RA on concrete properties. The features of aggregates, paste and interfacial transition zone (ITZ) were compared and discussed. Experimental results indicate that using alkali-activated fly ash geopolymer as replacement of ordinary Portland cement (OPC) effectively improved the compressive strength. With increasing of RA contents in both RAC and GRC, the compressive strength decreased gradually. The microstructure analysis shows that, on one hand, the presence of RA weakens the strength of the aggregates and the structure of ITZs; on the other hand, due to the alkali-activated fly ash in geopolymer concrete, the contents of Portlandite (Ca(OH)(2)) and voids were reduced, as well as improved the matrix homogeneity. The microstructure of GRC was changed by different reaction products, such as aluminosilicate gel. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Geopolymerisation of fly ashes with waste aluminium anodising etching solutions.

    Science.gov (United States)

    Ogundiran, M B; Nugteren, H W; Witkamp, G J

    2016-10-01

    Combined management of coal combustion fly ash and waste aluminium anodising etching solutions using geopolymerisation presents economic and environmental benefits. The possibility of using waste aluminium anodising etching solution (AES) as activator to produce fly ash geopolymers in place of the commonly used silicate solutions was explored in this study. Geopolymerisation capacities of five European fly ashes with AES and the leaching of elements from their corresponding geopolymers were studied. Conventional commercial potassium silicate activator-based geopolymers were used as a reference. The geopolymers produced were subjected to physical, mechanical and leaching tests. The leaching of elements was tested on 28 days cured and crushed geopolymers using NEN 12457-4, NEN 7375, SPLP and TCLP leaching tests. After 28 days ambient curing, the geopolymers based on the etching solution activator showed compressive strength values between 51 and 84 MPa, whereas the commercial potassium silicate based geopolymers gave compressive strength values between 89 and 115 MPa. Based on the regulatory limits currently associated with the used leaching tests, all except one of the produced geopolymers (with above threshold leaching of As and Se) passed the recommended limits. The AES-geopolymer geopolymers demonstrated excellent compressive strength, although less than geopolymers made from commercial activator. Additionally, they demonstrated low element leaching potentials and therefore can be suitable for use in construction works. Copyright © 2016. Published by Elsevier Ltd.

  15. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2016-06-01

    Full Text Available This paper assesses the feasibility of two industrial wastes, fly ash (FA and rice husk ash (RHA, as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S; (ii halloysite activated with rice husk ash dissolved into KOH solution (HL-R; (iii FA activated with the alkaline solution realized with the rice husk ash (FA-R. Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation.

  16. Methods to Improve Survival and Growth of Planted Alternative Species Seedlings in Black Ash Ecosystems Threatened by Emerald Ash Borer

    Directory of Open Access Journals (Sweden)

    Nicholas Bolton

    2018-03-01

    Full Text Available Emerald ash borer (EAB continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations in depressional black ash wetlands in the Ottawa National Forest in Michigan to mimic the short-term and long-term effects of EAB. These wetlands were planted with 10 alternative tree species in 2013. Based on initial results in the Michigan sites, a riparian corridor in the Superior Municipal Forest in Wisconsin was planted with three alternative tree species in 2015. Results across both locations indicate that silver maple (Acer saccharinum L., red maple (Acer rubrum L., American elm (Ulmus americana L., and northern white cedar (Thuja occidentalis L. are viable alternative species to plant in black ash-dominated wetlands. Additionally, selectively planting on natural or created hummocks resulted in two times greater survival than in adjacent lowland sites, and this suggests that planting should be implemented with microsite selection or creation as a primary control. Regional landowners and forest managers can use these results to help mitigate the canopy and structure losses from EAB and maintain forest cover and hydrologic function in black ash-dominated wetlands after infestation.

  17. Manufacture of lightweight aggregates utilizing coal fly ash. Sekitan bai riyo ni yoru jinko keiryo kotsuzai seizo

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1990-11-20

    Processing of a large amount of coal ash is a serious problem in considering the locational conditions of coal firing power generation plants. 46% of the coal ash was effectively used in 1985, and the remaining 54% was disposed at landfills on land and sea. Positive promotion of the effective use of coal ash is the necessity. A production method for an artificial lightweight aggregate utilizing coal ash was established by a joint research. The history of the research and development of this artificial lightweight aggregate (brand name: FA-lIGHT), outline of the manufacturing facilities, physical properties and result of use are introduced. The lightweight aggregates are used not only for the construction of multistoried buildings but also used as most suitable aggregates for making lightweight large scale panels and concrete secondary products such as lightweight blocks. FA-LIGHT is most suitable for use in the production of concrete lightweight aggregates, and can be used for hydroponic agriculture and for the improvement of drainage of land. Spread of its use is expected. 5 figs., 5 tabs.

  18. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    Science.gov (United States)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  19. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes

    Directory of Open Access Journals (Sweden)

    Malcolm W. Clark

    2017-04-01

    Full Text Available Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α −quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product. Keywords: Materials Science, Civil Engineering

  1. Biomass ash reutilisation as an additive in the composting process of organic fraction of municipal solid waste.

    Science.gov (United States)

    Asquer, Carla; Cappai, Giovanna; De Gioannis, Giorgia; Muntoni, Aldo; Piredda, Martina; Spiga, Daniela

    2017-11-01

    In this work the effects of selected types of biomass ash on the composting process and final product quality were studied by conducting a 96-day long experiment where the source separated organic fraction of municipal waste, mixed with wood prunings that served as bulking agent, was added with 0%, 2%, 4% and 8% wt/wt of biomass ash. The evolution over time of the main process parameters was observed, and the final composts were characterised. On the basis of the results, both the composting process and the quality of the final product were improved by ash addition. Enhanced volatile solids reduction and biological stability (up to 32% and 52%, respectively, as compared to the unamended product) were attained when ash was added, since ash favored the aerobic degradation by acting asa physical conditioner. In the final products, higher humification of organic matter (expressed in terms of the humification index, that was 2.25 times higher in the most-enriched compost than in the unamended one) and total Ca, K, Mg and P content were observed when ash was used. The latter aspect may influence the composts marketability positively, particularly with regards to potassium and phosphorus. The heavy metals content, that is regarded as the main environmental disadvantage when using ash asa composting additive, did not negatively affect the final composts quality. However, some other controversial effects of ash, related to the moisture and temperature values attained during the process, pH (8.8-9.2 as compared to 8.2 of the unamended compost) and electrical conductivity levels (up to 53% higher as compared to the unamended compost) in the final composts, were also observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Relation of ash composition to the uses of coal

    Energy Technology Data Exchange (ETDEWEB)

    Fieldner, A C; Selvig, W A

    1926-02-01

    The effects of coal ash and ash components on the utilization of coal for coke and gas production, steam generation, water gas production, smithing, and domestic uses were described in a review of literature. Calcite, gypsum, and pyrite which occur in high amounts in coal, increase the ash fusibility of the coal and render it unsuitable for many industrial and domestic uses. As a rule, coal ash of high Si content and low Fe content would not be readily fusible. High amounts of ash in coal also have the effect of reducing the heating value of the coal.

  3. The use of shale ash in dry mix construction materials

    Science.gov (United States)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  4. Stream Water, Carbon and Total Nitrogen Load Responses to a Simulated Emerald Ash Borer Infestation in Black Ash Dominated Headwater Wetlands

    Science.gov (United States)

    Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.

    2017-12-01

    The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period

  5. The stability of clay using volcanic ash of Mount Sinabung North Sumatera and sugarcane bagasse ash with cbr and uct value

    Directory of Open Access Journals (Sweden)

    Hastuty Ika Puji

    2017-01-01

    Full Text Available Soil is the fundamental material that is extremely as the place of establishment of a structure or construction, both building and road constructions. However, not all soil is well used in the constructions field, as there are several types of soil that are problematic in terms of both the soil bearing capacity and deformation. The clay with carrying capacity and low shear strength needs to stabilized in order to meet the technical requirements to be used as sub grade. The add materials that are typically used for soil stabilization are cement, lime or a mixture of two or three of the added materials. In this study, the added material use volcanic ash of Mount Sinabung at North Sumatera and sugarcane bagasse ash. The purpose of this study was to determine an index value of properties as the result of the addition of 4% volcanic ash and variations in content of bagasse ash on clay and then to determine the compressive strength for maximum testing UCT (Unconfined Compression Test and understand the value of CBR (California Bearing Capacity as the consequence of the addition of a stabilizing agent, as well as optimum level of addition of bagasse ash. The result showed that the original soil sample has the water content 12.35%, specific gravity of 2.65, liquid limit of 46.73% and plasticity index of 26.44%. The compressive strength value of 1.38 kg/cm2. Base on the USCS classification, the soil sample including the type CL while base on AASHTO classification, soil samples are include this A-7-6 type. After the soil is stabilized with a wide variety of sugarcane bagasse ash content value obtained the largest unconfined compression test in 4% addition level volcanic ash + 10% sugarcane bagasse ash is equal to 5.1kg/cm2 and the result California Bearing capacity value on the optimal mix of 4% volcanic ash + 4% sugarcane bagasse ash is equal to 13.91%.

  6. Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst

    International Nuclear Information System (INIS)

    Chouhan, Ashish Pratap Singh; Sarma, Anil Kumar

    2013-01-01

    Refined Jatropha curcas L. oil (JCO) and methanol were used as the reactants for the transesterification reactions in a Radleys reactor in the presence of a heterogeneous ash catalyst derived from the waste aquatic plant Lemna perpusilla Torrey. Physical characterization of the catalyst showed partly crystalline behaviour and a moderate surface area 9.622 m 2 g −1 . The L. perpusilla Torrey ashes obtained from traditional combustion method were further calcined at 550 ± 5 °C before use. In addition to other non-metal and metallic constitutes the ash contains 11.3% potassium which attributed to its catalytic behaviour. The cumulative mass fraction of 89.43% of the oil was converted to biodiesel at 65 ± 5 °C in 5 h at 1:9 M ratio of oil to alcohol with 5% of the ash as catalyst. The biodiesel (FAME) so obtained were characterized using appropriate ASTM methods and found within the defined standard limits. The catalyst could be reused upto 3-times but there is a reduction of efficacy by about 25% for 3rd consecutive batch reaction. The activation energy was calculated for FAME and found to be 29.49 kJ mol −1 . -- Highlights: ► Lemna perpusilla Torrey ash is a potential heterogeneous catalyst. ► The catalyst has moderately good surface area and pores. ► The ash contain 11.3% potassium which is attributed to its catalytic behaviour. ► 89.43% of the refined Jatropha curcas oil could be converted to FAME in a Radleys reactor. ► The activation energy for FAME was calculated and found to be 29.49 kJ mol −1

  7. Biology of emerald ash borer parasitoids

    Science.gov (United States)

    Leah S. Bauer; Jian J. Duan; Jonathan P. Lelito; Houping Liu; Juli R. Gould

    2015-01-01

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive beetle introduced from China (Bray et al., 2011), was identified as the cause of ash (Fraxinus spp.) mortality in southeast Michigan and nearby Ontario in 2002 (Haack et al., 2002; Federal Register, 2003; Cappaert et al., 2005)....

  8. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  9. Large-scale ash recycling in Central Sweden; Storskalig askhantering i mellansverige

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Mats [Stora Skog (Sweden)

    1998-08-01

    When logging residues (tops, branches) are withdrawn from the forest, most of the nutrient content of the trees is also lost. Some of the nutrient content of the soil is restored by weathering, but not all. When biomass is burnt as fuel most of the nutrients will be found in the ash. By recycling wood ash, in similar amounts as was withdrawn with the biomass, it is possible to compensate for the nutrient losses. This project was initiated to study how a rational recycling of wood ash could be performed under conditions valid for Stora, a large forest company in the middle of Sweden. A second aim was to give guiding principles for Stora`s own ash recycling while awaiting instructions from the authorities. In the project both theoretical studies and practical field studies were carried out. Studied areas are production of a stabilised ash product and different systems for transport and spreading of the ash product. The costs and results of spreading have also been monitored. The project showed that spreading of the ash can normally only take place when there is no snow. If production or transport is carried out during another time of the year, the ash has to be stored, either at the industry, in an intermediate storage, or in the forest. One important conclusion from the test period was that the result of the spreading depends heavily on the quality of the ash. Some of the ashes hardened in the spreading equipment, causing a complete stop of the spreading. It also caused problems if the ash was too wet. Plate-spreaders led to unequal quality of spreading, where some areas got more ash and some got less. Granulated ash was most easy to spread. Recommended system for spreading ash is: granulated ash transported unpacked in separate transports with lorries with exchangeable platforms. A large fores tractor spreads the ash in clearings, in the summer. The project has shown that large-scale ash recycling is possible to realize 22 figs, 5 tabs, 13 appendices

  10. SLAM: A multi-agency pilot project to SL.ow A.sh M.ortality caused by emerald ash borer in outlier sites

    Science.gov (United States)

    Therese M. Poland; Deborah G. McCullough

    2010-01-01

    Since its discovery in southeast Michigan in 2002, the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has continued to spread and kill ash (Fraxinus) trees at an alarming rate. As of February 2010, EAB has killed tens of millions of ash trees in Michigan, at least 12 additional U.S. states, and the...

  11. Electrodialytic removal of Cd from biomass combustion fly ash suspensions

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor M.; Ottosen, Lisbeth M.; Damoe, Anne J.

    2013-01-01

    was investigated with the aim of enabling reuse of the ashes. The ashes originated from combustion of straw (two ashes), wood chips, and co-firing of wood pellets and fuel oil, respectively. A series of laboratory scale electrodialytic remediation experiments were conducted with each ash. The initial Cd...

  12. Stabilization of Fly Ash Deposits through Selected Cereal Crops

    Directory of Open Access Journals (Sweden)

    Florica Morariu

    2012-10-01

    Full Text Available Fly ash, a waste product from burning coal in power plants, occupies important spaces and is a major harm forenvironment: water, air, soil and associated ecosystems. New deposits do not have available nutrients for plantgrowth. The study presents a process of stimulating growth of oats in deposits of fly ash, which eliminates listed.Phytostabilization of new deposit is fast after fertilization with sewage sludge-based compost in the presence/absence of native or modified volcanic tuff with grain species, Avena sativa L., and variety Lovrin 1. Experimentalstudies have shown the species adaptability to climatic conditions and a growth rate until the maturity correlated withtype of treatment of upper layers of fly ash deposit. Fly ash with sewage sludge compost treatment 50 t/hadetermined the growth with 75% of the amount of grains vs. the amount of grains harvested from untreated fly ash.Fly ash with sewage sludge compost mixed with modified indigenous volcanic tuff 2.5 t/ha treatment determined thegrowth with 80% vs. the amount of grains harvested from untreated fly ash. If oat straw harvested from fertilizedvariant without modified indigenous volcanic tuff increases in weight are 30% and for fertilized variant in thepresence of tuff increases in weight are 39.8% vs. quantities harvested from untreated fly ash.

  13. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  14. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  15. Emerald Ash Borer Threat Reveals Ecohydrologic Feedbacks in Northern U.S. Black Ash Wetlands

    Science.gov (United States)

    Diamond, J.; Mclaughlin, D. L.; Slesak, R.

    2016-12-01

    Hydrology is a primary driver of wetland structure and process that can be modified by abiotic and biotic feedbacks, leading to self-organization of wetland systems. Large-scale disturbance to these feedbacks, such as loss of vegetation, can thus be expected to impact wetland hydrology. The Emerald Ash Borer is an invasive beetle that is expected to cause widespread-loss of ash trees throughout the northern U.S. and Canada. To predict ecosystem response to this threat of vegetation loss, we ask if and how Black Ash (Fraxinus nigra), a ubiquitous facultative-wetland ash species, actively controls wetland hydrology to determine if Black Ash creates favorable hydrologic regimes for growth (i.e., evidence for ecohydrologic feedbacks). We do this by taking advantage of plot-level tree removal experiments in Black Ash-dominated (75-100% basal area) wetlands in the Chippewa National Forest, Minnesota. The monospecies dominance in these systems minimizes variation associated with species-specific effects, allowing for clearer interpretation of results regarding ecohydrologic feedbacks. Here, we present an analysis of six years of water table and soil moisture time series in experimental plots with the following treatments: 1) clear cut, 2) girdling, 3) group-selection thinning, and 4) control. We also present evapotranspiration (ET) time series estimates for each experimental plot using analysis of diel water level variation. Results show elevated water tables in treatment plots relative to control plots for all treatments for several years after treatments were applied, with differences as great as 50 cm. Some recovery of water table to pre-treatment levels was observed over time, but only the group-selection thinning treatment showed near-complete recovery to pre-treatment levels, and clear-cut treatments indicate sustained elevated water tables over five years. Differences among treatments are directly attributed to variably reduced ET relative to controls. Results also

  16. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  18. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  19. Characterization of North American lignite fly ashes. II. XRD Mineralogy

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Johansen, D.M.; Thedchanamoorthy, A.; Steinwand, S.J.; Swanson, K.D.

    1988-01-01

    X-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al/sub 2/O/sub 3/ ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C/sub 3/A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7-14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash

  20. Ash wettability conditions splash erosion in the postfire

    Science.gov (United States)

    Gordillo-Rivero, Ángel J.; de Celis, Reyes; García-Moreno, Jorge; Jiménez-Compán, Elizabeth; Alanís, Nancy; Cerdà, Artemi; Pereira, Paulo; Zavala, Lorena M.; Jordán, Antonio

    2015-04-01

    1. INTRODUCTION Soil sustainability and recovery after fire depend on physical, chemical and biological processes and fire severity (Neary et al., 1999; Mataix-Solera and Guerrero, 2007). Fire effects on soils are divided in two types: direct effects, as a consequence of combustion and temperature reached and indirect effects (Neary et al., 1999) as consequence of changes in other ecosystem components, such as decrease in vegetal coverage or ash and partially burned litter contribution including changes in flora (Pausas and Verdú, 2005; Trabaud, 2000). Low intensity fires, during which high temperatures are not reached, affect vegetal coverage but will not cause major impacts on soil. In contrast, prolonged, recurrent, or high-intensity fires may cause important impacts on the soil system functioning (De Celis et al., 2013; DeBano, 1991; Mataix-Solera et al., 2009; Zavala et al., 2014), aggregation (Mataix-Solera et al., 2011), organic matter content and quality (Sevink et al., 1989), water repellency (DeBano, 2000; Doerr et al., 2000), soil nutrients (Stark, 1977), soil erosion (Larsen et al., 2009) and others. In these cases, the restoration period of the initial conditions can be very long and changes may become permanent (DeBano, 1991). During combustion, fuel (biomass, necromass and soil organic matter) is transformed in materials with new physical and chemical properties. After burn, the soil surface is covered by a layer of ash and charred organic residues. Ash has important ecological, hydrological and geomorphological effects, even after being rearranged or mobilized by runoff or wind (Bodí et al., 2014). Ash properties will depend on the burned species, the amount of affected biomass, fuel flammability and structure, temperature and the residence time of thermal peaks (Pereira et al., 2009). Some studies have emphasized the role of ash on soil protection during the after fire period, in which the vegetable coverage could be drastically decreased (Cerd

  1. evaluation of atomic absorption spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    cistvr

    1Department of Agricultural and Food Science and 2Department of ... used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and ..... fact that more preparation steps were involved in the Ashing procedure and thus.

  2. Optimization of soil stabilization with class C fly ash.

    Science.gov (United States)

    1987-01-01

    Previous Iowa DOT sponsored research has shown that some Class : C fly ashes are cementitious (because calcium is combined as calcium : aluminates) while other Class C ashes containing similar amounts of : elemental calcium are not (1). Fly ashes fro...

  3. Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors

    Science.gov (United States)

    Marti, Alejandro; Folch, Arnau

    2018-03-01

    Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally

  4. Comparison of emerald ash borer preference for ash of different species, sun exposure, age, and stress treatments in relation to foliar volatiles and nutrition

    Science.gov (United States)

    Therese M. Poland; Deepa S. Pureswaran; Yigen Chen

    2009-01-01

    We investigated the host selection behavior and feeding preference of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) on six different species of ash including Manchurian ash (F...

  5. Progress and challenges of protecting North American ash trees from the emerald ash borer using biological control

    Science.gov (United States)

    Jian Duan; Leah Bauer; Roy van Driesche; Juli. Gould

    2018-01-01

    After emerald ash borer (EAB), Agrilus planipennis Fairmaire, was discovered in the United States, a classical biological control program was initiated against this destructive pest of ash trees (Fraxinus spp.). This biocontrol program began in 2007 after federal regulatory agencies and the state of Michigan approved release of...

  6. Energetical fly ashes – separation and utilization of metallic valuable components

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2000-12-01

    Full Text Available In the contribution, methods of separating metals – Fe, Al, Ge from energetic wastes – fly ashes are presented along with further possibilities of utilization of particular valuable components for industrial purposes.In the contribution, properties of energetic wastes are presented influencing the contents, separability, and utilizability of metal-bearing valuable components. From among physical properties these are grain size distribution and surface area. Chemical properties are characterized by elements contained in combusted coal whose content after combustion is increased 2 to 4 times, depending on the content of ash and combustible matters in original coal. Mineralogical properties of energetic wastes are determined by the combustion process conditions in the course of which mineral novelties are produced in concentrations suitable for separation.In the contribution, methods of separation and utilization of metals such as Fe, Al, Ge are described. From literature information on the processing of Fe component, as well as from results of experiments made at the Department of Mineral Processing and Environmental Protection, Technical University of Kosice follows that the highest concentration and mass yield of the component can be obtained from black coal fly ashes produced in smelting boilers. The content of Al in Slovak energetic wastes is lower than the 30 % Al2O3 limit that conditions an economic technological processing. Only in the case of black coal fly ash from TEKO Kosice and EVO Vojany was the Al2O3 content of 32.93 %. Therefore, in an indirect way – by separating the residues of uncombusted coal and magnetite Fe – the content of Al in fly ash was increased.For Ge, a principle of selective sizing has been utilized.A complex utilization of energetic wastes, that is the separation of metallic components, elimination of particular metals and the subsequent treatment of nonmetallic residue, should be an effective solution in various

  7. Producing New Composite Materials by Using Tragacanth and Waste Ash

    OpenAIRE

    Yasar Bicer; Serif Yilmaz

    2013-01-01

    In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conduct...

  8. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  9. Emerald ash borer survival in firewood

    Science.gov (United States)

    Robert A. Haack; Toby R. Petrice

    2005-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is native to Asia and was first discovered in Michigan and Ontario in 2002. As of October 2004, EAB was only found to breed in ash (Fraxinus) trees in North America. EAB is spreading naturally through adult flight as well as artificially through...

  10. Upgrading and recovery of fertilizer value of ash from PYRONEER gasification

    DEFF Research Database (Denmark)

    Pares Viader, Raimon; Haugaard-Nielsen, Henrik

     leaching in the two ashes from gasification of sewage sludge with chemically precipitated P. In contrast, a considerable lower proportion of Al/Fe(III)-phosphates were found for the incineration sewage sludge ashes, whereas Ca was found to control P solubility at low pH for the ash with biologically precipitated P....... Using a 2-compartment electrodialytic cell, in which the ash suspension was acidified, over 80% of P could be recovered from both the Pyroneer ashes with biologically precipitated P and the incineration sewage sludge ashes. However, P recovery was limited to a 40% for the other two ashes using the same...

  11. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    Science.gov (United States)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  12. Prediction of ash deposition using CFD simulation combined to thermodynamic calculation

    Energy Technology Data Exchange (ETDEWEB)

    Takeshi Muratani; Takashi Hongo [UBE Industries, Ltd., Yamaguchi (Japan). Coal Department, Energy and Environment Division

    2007-07-01

    This study focused on the advanced ash deposition prediction using computational fluid dynamics (CFD) analysis combined to thermodynamic calculation, considering both combustion characteristics and ash fusibility. Combustion field in pulverised coal-fired boiler was calculated through the normal CFD process. As the post process of combustion calculation, ash particles were injected into the combustion field to calculate ash deposition by CFD, in which particle sticking sub-program was newly employed. In this post process, ash deposition condition for CFD calculation was defined with the ash fusibility data obtained from thermodynamic analysis. These results of ash deposition on the furnace wall showed good agreement with the plant observation. Furthermore, in order to improve the plant operation, some virtual cases were simulated, which might reduce ash deposition. 7 refs., 14 figs., 6 tabs.

  13. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  14. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  15. On-conveyor belt determination of ash in coal

    International Nuclear Information System (INIS)

    Sowerby, B.; Lim, C.S.; Abernethy, D.A.; Liu, Y.; Maguire, P.A.

    1997-01-01

    A laboratory feasibility study has been carried out on new and advanced neutron and gamma-ray analysis systems for the direct on-conveyor belt analysis of ash in coal without the need for sample by-lines. Such an analysis system could deliver the combined advantages of a direct on-conveyor configuration with new and accurate analysis techniques. An industry survey of 18 coal companies carried out in early 1996 indicated that accurate on-belt ash analysis is of the highest priority. Subsequent laboratory work has focussed on the investigation of methods with the potential for improving the accuracy of ash content measurement relative to existing on-belt ash analysers, the most widely-used of which are based on dual energy gamma-ray transmission (DUET), which is sensitive to variations in ash composition. The current work indicates that on-belt neutron/gamma-ray techniques combined with advanced spectral analysis techniques show promise for development into an on-belt ash analysis system which is significantly less sensitive to composition changes than DUET and which analyses a much larger proportion of coal on the belt, thus eliminating some key sources of analysis error

  16. Water permeabilities of pulverized fuel ash; Bifuntan sekitanbai no tosui tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, T [Center for Coal Utilization, Japan, Tokyo (Japan); Nagataki, S [Niigata University, Niigata (Japan); Hosoda, N [Kumagai Gumi Co. Ltd., Tokyo (Japan); Utsuki, T [The Coal Mining Research Center, Japan, Tokyo (Japan); Kubo, H [Obayashi Corp., Tokyo (Japan)

    1996-09-01

    It is intended to establish a technology to utilize coal ash in bulk to deal with its increasing production. In order to expand its use into earth engineering materials, two kinds of combustion ashes produced from dust coal burning power plants were used for studies using different kinds of tests. The tests were carried out on strength properties, water permeability, and characteristics of dissolving trace amounts of chemical constituents, with regard to addition effects of cement into compacted and slurry-state dust coal burned ashes. The derived findings may be summarized as follows: as the strength properties, the strength for both of the compacted and slurry-state ashes increases as the cement addition ratio is increased; growth of the strength due to the cement addition ratio and material age varies depending on the kinds of dust coal burned ash; comparison of strengths of the compacted and the slurry-state ashes indicates the strength of the latter ash is about one-third to quarter of that of the former ash; water permeability of the ashes decreases both in the compacted and slurry- state ashes as the cement addition ratio is increased; and the cement addition ratio gives greater impact to the water permeability than the density of the ashes. 28 figs., 5 tabs.

  17. Leaching of assimilable silicon species from fly ash

    International Nuclear Information System (INIS)

    Piekos, R.; Paslawska, S.

    1998-01-01

    The objective of this study was to investigate the leaching of assimilable silicon species from coal fly ash with distilled water, sea waterand synthetic sea water at various fly ash/water ratios, pHs and temperatures. At the 1 g/100 ml fly ash/water ratio, less than 1 mg Si was found in 11 of aqueous slurries over the pH range 4-8 after 2 h at ambient temperature. The leaching was most effective at pH 10.5. At the fly ash/waterratio indicated, the pH of the suspensions decreased from 10.4 to 8.4 after 5days. The pH of fly ash slurries in sea water varied only slightly over time as compared with that in distilled water. Generally, the leaching of assimilable silicon species with distilled water was more intense than that with the sea water. 27 refs., 6 figs., 3 tabs

  18. Hypocotyl derived in vitro regeneration of pumpkin ash (Fraxinus profunda)

    Science.gov (United States)

    Micah E. Stevens; Paula M. Pijut

    2012-01-01

    Pumpkin ash (Fraxinus profunda (Bush) Bush) is at risk for extirpation by an exotic insect, the emerald ash borer (EAB). Pumpkin ash is limited to wetland areas of the Eastern United States, and has been listed as an endangered species because of EAB activity. Pumpkin ash provides many benefits to the ecosystem, and its wood is used in the...

  19. Ash after forest fires. Effects on soil hydrology and erosion

    Science.gov (United States)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially

  20. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    Science.gov (United States)

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  1. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    International Nuclear Information System (INIS)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In

    2016-01-01

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II

  2. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II.

  3. Can ash communities and their dependent species be partially protected through biological control of emerald ash borer

    Science.gov (United States)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of the emerald ash borer (EAB), Agrilus planipennis Fairmaire, which was first detected in North America in Michigan in 2002 and has been detected in 32 U.S. states and two Canadian pro...

  4. AL(0) in municipal waste incinerator ash

    Science.gov (United States)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  5. Utilization of pulverized fuel ash in Malta

    International Nuclear Information System (INIS)

    Camilleri, Josette; Sammut, Michael; Montesin, Franco E.

    2006-01-01

    In Malta all of the waste produced is mixed and deposited at various sites around the island. None of these sites were purpose built, and all of the waste is above groundwater level. The landfills are not engineered and do not contain any measures to collect leachate and gases emanating from the disposal sites. Another waste, which is disposed of in landfills, is pulverized fuel ash (PFA), which is a by-product of coal combustion by the power station. This has been disposed of in landfill, because its use has been precluded due to the radioactivity of the ashes. The aim of this study was to analyze the chemical composition of the pulverized fuel ash and to attempt to utilize it as a cement replacement in normal concrete mixes in the construction industry. The levels of radiation emitted from the ashes were measured by gamma spectrometry. The results of this study revealed that although at early ages cement replacement by PFA resulted in a reduction in compressive strength (P = 0), when compared to the reference concrete at later ages the strengths measured on concrete cores were comparable to the reference concrete (P > 0.05). The utilization of PFA up to 20% cement replacement in concrete did not raise the radioactivity of the concrete. In conclusion, utilization of PFA in the construction industry would be a better way of disposing of the ashes rather than controlling the leachate and any radioactivity emitted by the landfilled ashes

  6. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  7. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.J.; Hower, J.C.; Mastalerz, M.; Vassilev, S.V. [University of Kentucky, Lexington, KY (United States). Center of Applied Energy Research

    2011-01-15

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.

  8. Reuse of Partially Sulphated CFBC Ash as an SO2 Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yinghai; Jia, Lufei; Anthony, E.J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A1M1 (Canada); Nobili, M.; Telesca, A. [Department of Environmental Engineering and Physics, University of Basilicata, Viale dell' Ateneo, Lucano 10, 85100 Potenza (Italy); Montagnaro, F. [Department of Chemistry, University of Naples ' Federico II' , Monte Sant' Angelo, 80126 Naples (Italy)

    2010-06-15

    Ashes produced from fluidized bed combustors (FBC) burning high-sulphur fuels often contain 20-30 % unreacted CaO because of the limestone added to remove SO2 in situ. This paper presents the results from experiments into reactivating partially sulphated FBC ash (both bed ash and fly ash) with liquid water, steam and sodium carbonate. The water- or steam-hydrated ashes were subsequently re-sulphated in a thermogravimetric analyzer (TGA) with simulated flue gas. The TGA results show that, while liquid water and steam successfully hydrate and reactivate the unreacted CaO in the bed ash, the treated ashes sulphated to widely different extents. Attempts to reactivate fly ash with hydration failed, although fly ash by itself is extremely reactive. A pilot-scale mini-circulating FBC (CFBC) was also used to evaluate the results of reactivation on the bed ash by hydrating with liquid water and admixtures of inorganic salt (Na2CO3) in the form of either powder or solution. When the treated ash was re-injected into the combustor with the fuel, the effect on SO2 removal efficiency was negligible if Na2CO3 was added as powder. Doping with aqueous solution resulted in enhanced SO2 removal; however, the extent was lower than the level achieved if only water hydration was employed. Increasing the amount of water (from 10% to 30%) to reactivate the ash did not improve the sulphur capture capacity in the mini-CFBC. Overall, this study suggests that the most practical way for re-use of the partially sulphated bed ash as a sulphur sorbent is reactivation by water. A proposal for utilization of the fly ash in an economically reasonable way is also discussed.

  9. Effects of the emerald ash borer invasion on the community composition of arthropods associated with ash tree boles

    Science.gov (United States)

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire is an invasive non-native wood-boring beetle that has killed hundreds of millions of ash trees (Fraxinus spp.) in North America, and threatens to extirpate the ecological services provided by the genus. Identifying the arthropod community assoc...

  10. Improving volcanic ash forecasts with ensemble-based data assimilation

    NARCIS (Netherlands)

    Fu, Guangliang

    2017-01-01

    The 2010 Eyjafjallajökull volcano eruption had serious consequences to civil aviation. This has initiated a lot of research on volcanic ash forecasting in recent years. For forecasting the volcanic ash transport after eruption onset, a volcanic ash transport and diffusion model (VATDM) needs to be

  11. Quantification of fusion in ashes from solid fuel combustion

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Frandsen, Flemming; Dam-Johansen, Kim

    1999-01-01

    The fusion of ashes produced during solid fuel combustion greatly affects the tendency of these ashes to cause operational problems in utility boilers. In this paper, a new and quantitative laboratory method for assessing the fusion of ashes based on simultaneous thermal analysis, STA, is described...

  12. Ash dust co-centration in the vicinity of the ash disposal site depending on the size of the pond (“Water Mirror”

    Directory of Open Access Journals (Sweden)

    Zoran Gršić

    2010-09-01

    Full Text Available Thermal power plants Nikola Tesla “A” and “B” are large sources of ash from their ashes/slag deposit sites. Total sizes of ashes/slag depots are 600ha and 382ha, with active cassettes having dimensions ∼200 ha and ∼130 ha. The active cassettes of the disposal sites are covered by rather large waste ponds, the sizes of vary depending on the working condition of a sluice system and on meteorological conditions. Modeling of ash lifting was attempted using results from the dust lifting research. The relation between sizes of ponds and air dust concentration in the vicinity of ash disposal sites was analyzed. As expected, greater sizes of dried disposal site surfaces in combination with stronger winds gave greater dust emission and greater air dust concentration.

  13. Partial oxidation of methane to methanol over catalyst ZSM-5 from coal fly ash and rice husk ash

    Directory of Open Access Journals (Sweden)

    Mirda Yanti Fusia

    2017-01-01

    Full Text Available Methane is one of the greenhouse gases that can be converted into liquid fuels such as methanol to retain most of the energy of methane and produce a cleaner environment. The conversion of methane to methanol using ZMS-5 represents a breakthrough in the utilization of methane. However, material sources for zeolite synthesis as catalyst usually are pro-analysis grade materials, which are expensive. Therefore, in this research, coal fly ash and rice husk ash were used as raw materials for mesoporous ZSM-5 zeolite synthesis. First, coal fly ash and rice husk were subjected to pre-treatment to extract silicate (SiO44− and aluminate (AlO45− and impurities separation. The ZSM-5 zeolite was synthesized through hydrothermal treatment using two types of templates. After ZSM-5 was synthesized, it was modified with Cobalt through impregnation method. The catalytic activity of both ZSM-5 and Co/ZSM-5 zeolites as heterogeneous catalysts in partial oxidation of methane were preliminary tested and compared with that commercial one. The result showed that the zeolite catalyst ZSM-5 from fly ash coal and rice husk ash has the potential to be used as catalysts in the partial oxidation of methane to methanol.

  14. Sap flow of black ash in wetland forests of northern Minnesota, USA: Hydrologic implications of tree mortality due to emerald ash borer

    Science.gov (United States)

    Andrew C. Telander; Robert A. Slesak; Anthony W. D' Amato; Brian J. Palik; Kenneth N. Brooks; Christian F. Lenhart

    2015-01-01

    Black ash (Fraxinus nigra) mortality caused by the invasive emerald ash borer (EAB) is of concern to land managers in the upper Great Lakes region, given the large areas of ash-dominated forest and potential alteration of wetland hydrology following loss of this foundation tree species. The importance of changes in evapotranspiration (ET) following...

  15. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  16. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  17. Temporal evolution of wildfire ash and its implications for water pollution

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan H.; Otero, Xose L.; Chafer, Chris J.

    2015-04-01

    Ash, the burnt residue generated from combustion of vegetation, litter and surface soil, covers the ground after every wildfire. The effects of wildfire ash on the post-fire landscape are many and very diverse. It is a source of nutrients and can, therefore, help the recovery of vegetation after fire. Furthermore, in its initial state, the ash layer on the ground can protect the bare soil from rain splash erosion and can act as an adsorbent layer, preventing or delaying post-fire water erosion by runoff. However, when the adsorbent capability of the ash layer is exceeded, this highly erodible material can be transported into the hydrological network and be a major contributor to water contamination. Most previous studies on post-fire erosion and water contamination have focused on soil erosion and associated sediment transfer and overlooked the ash component or, when considered, ash has been included as an unidentified part of the eroded sediment. One of the reasons for overlooking this key post-fire component is the difficulty of ash sampling before it is lost by wind or water erosion or altered by aging on-site. Here we compare the water contamination potential of ash obtained from two fires in the dry eucalyptus forest environment of the Sydney tablelands, Australia: i) 'aged ash' produced during the severe Balmoral wildfire and sampled two months after the event (Jan. 2014) and ii) 'fresh ash' sampled immediately after a high-intensity experimental fire in the same region (Sept. 2014). At the time of sampling, neither of the ash types had been affected by water erosion, however, the aged ash had been subjected to rainfall events and, potentially, to wind erosion during the two months of exposure. Vegetation type, fuel loads and fire severity, determined using remote sensing and on-site observations, were comparable between both areas sampled. Ash physicochemical properties differed, with 'fresh ash' having higher pH and EC values and higher concentration of

  18. Incineration ashes conditioning by isostatic pressing and melting

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Alpha-bearing solid incineration wastes are conditioned for two principal reasons: to enhance the quality of the finished product for long-term storage, and to reduce the total waste volume. Isostatic pressing parameters were defined using containers 36 mm in diameter; the physicochemical properties of the compacted ashes were determined with 140 mm diameter containers and industrial feasibility was demonstrated with a large (300 mm diameter) container. Two types of ashes were used: ashes fabricated at Marcoule (either in devices developed by the CEA for the MELOX project with a standard MELOX composition, or by direct incineration at COGEMA's UP1 plant) and fly ash from a domestic waste incinerator. A major engineering study was also undertaken to compare the three known ash containment processes: isostatic pressing, melting, and cement-resin matrix embedding. The flowsheet, operational chronology and control principles were detailed for each process, and a typical plant layout was defined to allow comparisons of both investment and operating costs

  19. Managing ash from the combustion of solid waste

    International Nuclear Information System (INIS)

    Hauser, R.

    1992-01-01

    This paper reports that with millions of tons of refuse being combusted each year, increasing concern over the environment impact of the residue produced has caused both regulators and the resource recovery industry to address the technical and regulatory issues relating to the safe handling and disposal of ash. The basic issue concerning solid waste combustion ash management in this country is how, based on past, recent, and ongoing scientific research, solid waste combustion ash should be handled. Typically, refuse contains approximately 20 to 25 percent residue, which is collected either on grates at the bottom of the combustion chamber or filtered from the exhaust gases by the air pollution control equipment. The fly ash component of the total residue stream is between 10 and 30 percent of the total residue while the bottom ash content ranges from 70 to 90 percent of the total weight, depending upon the air pollution control equipment utilized, especially acid gas scrubbing equipment

  20. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material.

    Science.gov (United States)

    del Valle-Zermeño, R; Formosa, J; Chimenos, J M; Martínez, M; Fernández, A I

    2013-03-01

    The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    Science.gov (United States)

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  2. Evaluation of the mechanical properties of class-F fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.; Prezzi, M. [Purdue University, West Lafayette, IN (United States)

    2008-07-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  3. KINETICS OF FLY ASH BENEFICIATION BY CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph N.D. Dodoo; Dr. Joseph M. Okoh

    2000-11-01

    Surface area analyses performed on fly ash samples reveal that the surface area is controlled by carbon content. The higher surface areas found in large particles are due to the presence of highly porous carbonaceous particles. Adsorption-desorption isotherms and t-plots of fly ash samples indicate that fly ash is porous. BJH Adsorption/Desorption pore size analysis reveal that pore diameters are independent of sieve size. They appear to be dependent only on the nature of the material which confers porosity. Based on the results of Brown and Dykstra (41) it is reasonable to assume that calculations of reaction rates at temperatures above 550 C were confounded by weight losses from processes other than carbon oxidation and, therefore, are not useful in determination of the temperature dependence of carbon oxidation in fly ash. The results of the present study indicate that temperatures below 550 C should be used for future studies in order to satisfactorily assess the temperature dependence of carbon oxidation in fly ash. Furthermore, it is also advisable that percent carbon determinations be performed on fly ash samples after the oxidation reactions to determine whether all carbon present in fly ash is oxidized. This will ensure that reaction rates are representative of the complete oxidation of carbon. An inverse relationship was determined between reaction rates and oxygen concentration for this study. As discussed, this may be due to volatilization of volatiles from fly ash and ease of transport of products away from the reaction sites by the action of the vacuum applied to the samples. A more accurate determination of oxygen dependence of carbon oxidation can be accomplished by the use of specialty gases containing different concentrations of oxygen which could eliminate the need to apply vacuum to the samples.

  4. The aggregation efficiency of very fine volcanic ash

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution

  5. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  6. The processing of bed ashes of fluidized bed boilers to an applicable ingredient for building materials. Het bewerken van bedassen van wervelbedketels tot een geschikte grondstof voor toepassing in bouwprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, W

    1988-01-01

    A study- and test program has been carried out to determine in what way bed ashes of fluidized bed boilers can be processed to applicate the products in building products. The program consisted of selecting applicable ashes; physical-chemical research; slack lime, present in the ashes; grinding and wind-sifting of the ashes; evaluation of the quality of the acquired samples for application in calcium-silicate brick and in mortar; the making of flow-sheets of the processing in the potential demonstration projects. The used sample was a bed ash with active CaO content of 21%. Conclusions were stated and recommendations were made. 6 figs., 6 refs., 9 tabs., 2 app.

  7. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  8. Effects of cutting time, stump height, and herbicide application on ash (Fraxinus spp.) stump sprouting and colonization by emerald ash borer (Agrilus planipennis)

    Science.gov (United States)

    Toby R. Petrice; Robert A. Haack

    2011-01-01

    Efforts to eradicate or slow the spread of emerald ash borer (EAB) (Agrilus planipennis Fairmaire [Coleoptera: Buprestidae]) include cutting infested and nearby uninfested ash (Fraxinus spp.) trees. However, ash trees readily sprout after they have been cut, providing potential host material for EAB. In 2004-2005, we conducted...

  9. Characterization of ash in algae and other materials by determination of wet acid indigestible ash and microscopic examination

    Science.gov (United States)

    Algae are known for high ash content. It is important to properly characterize their ash for value added utilization of algae as food, feed, and feedstock for biofuels. In this study, 12 algae of different sources were measured for proximate composition and mineral profile. Results showed that the r...

  10. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend....

  11. Genetic transformation of Fraxinus spp. for resistance to the emerald ash borer

    Science.gov (United States)

    Paula M. Pijut; Rochelle R. Beasley; Kaitlin J. Palla

    2010-01-01

    The emerald ash borer (EAB; Agrilus planipennis Fairmaire) (Coleoptera; Buprestidae) is a wood-boring beetle that poses substantial risk to the ash resource in North America. Ash species native to the United States and known to be susceptible to EAB are Fraxinus pennsylvanica (green ash), F. americana (white ash...

  12. Mutagenicity and genotoxicity of coal fly ash water leachate.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2009-03-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals-sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significant (Ppercentage (%), tail length (mum), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  13. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  14. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  15. The Use of Rice Husk Ash in Low - Cost Sandcrete Block Production

    Directory of Open Access Journals (Sweden)

    M. ABDULLAHI

    2006-01-01

    Full Text Available The compressive strength of some commercial sandcrete blocks in Minna, Nigeria was investigated. Rice Husk Ash (RHA was prepared using Charcoal from burning firewood. Preliminary analysis of the Constituent materials of the ordinary Portland Cement (OPC / Rice Husk Ash (RHA hollow sandcrete blocks were conducted to confirm their suitability for block making. Physical test of the freshly prepared mix was also carried out. 150mm´450mm hollow sandcrete blocks were cast cured and crushed for 1, 3, 7, 14, 21, and 28 days at 0, 10, 20, 30, 40 and 50 percent replacement levels. Test results indicate that most commercial sandcrete blocks in Minna town are below standard. The compressive strength of the OPC/RHA sandcrete blocks increases with age at curing and decreases as the percentage of RHA content increases. The study arrived at an optimum replacement level of 20%

  16. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  17. Mapping ash properties using principal components analysis

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Ubeda, Xavier; Novara, Agata; Francos, Marcos; Rodrigo-Comino, Jesus; Bogunovic, Igor; Khaledian, Yones

    2017-04-01

    In post-fire environments ash has important benefits for soils, such as protection and source of nutrients, crucial for vegetation recuperation (Jordan et al., 2016; Pereira et al., 2015a; 2016a,b). The thickness and distribution of ash are fundamental aspects for soil protection (Cerdà and Doerr, 2008; Pereira et al., 2015b) and the severity at which was produced is important for the type and amount of elements that is released in soil solution (Bodi et al., 2014). Ash is very mobile material, and it is important were it will be deposited. Until the first rainfalls are is very mobile. After it, bind in the soil surface and is harder to erode. Mapping ash properties in the immediate period after fire is complex, since it is constantly moving (Pereira et al., 2015b). However, is an important task, since according the amount and type of ash produced we can identify the degree of soil protection and the nutrients that will be dissolved. The objective of this work is to apply to map ash properties (CaCO3, pH, and select extractable elements) using a principal component analysis (PCA) in the immediate period after the fire. Four days after the fire we established a grid in a 9x27 m area and took ash samples every 3 meters for a total of 40 sampling points (Pereira et al., 2017). The PCA identified 5 different factors. Factor 1 identified high loadings in electrical conductivity, calcium, and magnesium and negative with aluminum and iron, while Factor 3 had high positive loadings in total phosphorous and silica. Factor 3 showed high positive loadings in sodium and potassium, factor 4 high negative loadings in CaCO3 and pH, and factor 5 high loadings in sodium and potassium. The experimental variograms of the extracted factors showed that the Gaussian model was the most precise to model factor 1, the linear to model factor 2 and the wave hole effect to model factor 3, 4 and 5. The maps produced confirm the patternd observed in the experimental variograms. Factor 1 and 2

  18. Wood ash to treat sewage sludge for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    White, R.K. [Clemson Univ., SC (United States)

    1993-12-31

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for land application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.

  19. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview

    Directory of Open Access Journals (Sweden)

    Swaptik Chowdhury

    2015-06-01

    Full Text Available With increasing industrialization, the industrial byproducts (wastes are being accumulated to a large extent, leading to environmental and economic concerns related to their disposal (land filling. Wood ash is the residue produced from the incineration of wood and its products (chips, saw dust, bark for power generation or other uses. Cement is an energy extensive industrial commodity and leads to the emission of a vast amount of greenhouse gases, forcing researchers to look for an alternative, such as a sustainable building practice. This paper presents an overview of the work and studies done on the incorporation of wood ash as partial replacement of cement in concrete from the year 1991 to 2012. The aspects of wood ash such as its physical, chemical, mineralogical and elemental characteristics as well as the influence of wood ash on properties such as workability, water absorption, compressive strength, flexural rigidity test, split tensile test, bulk density, chloride permeability, freeze thaw and acid resistance of concrete have been discussed in detail.

  20. Effect of municipal solid waste ash on comprehensive strength ...

    African Journals Online (AJOL)

    The blocks were moulded in a CINVA-Ram machine by replacing 0%, 2%, 5% and 10% of municipal solid waste ash (MSW ash) as a stabilizing agent. The compressive strengths of individual blocks were obtained after curing for 7, 14 and 28 days. The 2%MSW ash replacement gave the highest compressive strength and ...

  1. Characterization of fly ash from bio and municipal waste

    DEFF Research Database (Denmark)

    Lima, Ana T.; Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2008-01-01

    the co-combustion of wood and oil. The focus is laid on differences in ash characteristics and on the mobility of Cd and Cr. These two heavy metals are chosen because Cd is the problematic heavy metal in bio ashes and Cr is problematic in many ash stabilization methods (in the Cr(VI) state). Based...

  2. Design and implementation of a field pilot study on using coal fly ash to prevent oxidation of reactive mine tailings

    International Nuclear Information System (INIS)

    Wang, H.L.; Shang, J.Q.; Xu, Y.Q.; Yanful, E.K.

    2009-01-01

    This paper reported on a pilot scale study that investigated the feasibility of using coal fly ash in mine tailings management and acid mine drainage (AMD) treatment at Goldcorp's Musselwhite Mine site in northern Ontario. The principles and key aspects of the fly ash application in mine tailings management were described. Fly ash from the Atikokan coal-fired power generating plant was added to the Musselwhite tailings as a mixture as well as intermediate and top layers. The physical, chemical and hydrogeological effects of the two approaches were monitored. The paper provided details of the design, implementation, monitoring, sampling and testing over 2 years. The objectives were to evaluate the optimum mass ratio of coal fly ash and mine tailings, effectiveness in reducing the infiltration of precipitation, and projected long-term durability and performance on tailings oxidation prevention. The pilot study was designed based on the principles of cementitious materials formation and secondary mineral formation by the reactions of coal fly ash and water/AMD. Calcium oxide, aluminum oxide, silicon oxide, and ferric oxide are major components of coal fly ash. The preliminary test results revealed that water did not accumulate and cracks did not form on top of 4 tanks. The settlements of the mixing approaches were lower than that of the stratified approach and the temperature distributions in the 4 tanks were comparable. 9 refs., 3 tabs., 11 figs.

  3. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  4. Effect of mechanical activation of fly ash added to Moroccan Portland cement

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.

  5. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    Science.gov (United States)

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  6. Influence of fly-ashes on properties of ordinary concretes

    Directory of Open Access Journals (Sweden)

    Rutkowska Gabriela

    2016-03-01

    Full Text Available Influence of fly-ashes on properties of ordinary concretes. Care of the environment in accordance with the principles of sustainable development introduces the possibility and need for waste recycling. The construction and building materials industry has the greatest potential for reuse of waste. The article presents the results of investigations of selected properties (consistency, water absorbability, compressive strength and tensile strength after 28 and 56 days of curing, depth of penetration of ordinary concretes and concretes containing fly-ashes - calcareous and siliceous ash − in their composition. To make the samples, the Portland cement CEM I 42.5 R and natural aggregate with graining of 0-16 mm were used. The concrete with siliceous and calcareous admixtures was made in three lots where the ash was added in the quantity of 15, 20 and 30% of the cement mass. After the tests, it was stated that the fly-ash admixture does not increase the air content in the mix, it increases the compressive strength in time and the siliceous ash improves the splitting tensile strength.

  7. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    Energy Technology Data Exchange (ETDEWEB)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  8. Corrosion of Modified Concrete with Sugar Cane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    R. E. Núñez-Jaquez

    2012-01-01

    Full Text Available Concrete is a porous material and the ingress of water, oxygen, and aggressive ions, such as chlorides, can cause the passive layer on reinforced steel to break down. Additives, such as fly ash, microsilica, rice husk ash, and cane sugar bagasse ash, have a size breakdown that allows the reduction of concrete pore size and, consequently, may reduce the corrosion process. The objective of this work is to determine the corrosion rate of steel in reinforced concrete by the addition of 20% sugar cane bagasse ash by weight of cement. Six prismatic specimens (7×7×10 cm with an embedded steel rod were prepared. Three contained 20% sugar cane bagasse ash by weight of cement and the other three did not. All specimens were placed in a 3.5% NaCl solution and the corrosion rate was determined using polarization resistance. The results showed that reinforced concrete containing sugar cane bagasse ash has the lowest corrosion rates in comparison to reinforced concrete without the additive.

  9. Utilization technology on slurried ash

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Yoshio; Yasuda, Minoru; Furuki, Yasuhiko [The Coal Mining Research Centre, Japan, Tokyo, Japan; Electric Power Development Co., Ltd., Tokyo (Japan))

    1987-08-01

    Three research results of the utilization technology on slurried ash were reported. As for the utilization as the fly ash quick setting (FQS) backfill grout for tail void in shield works of tunneling, grout blending was simplified, the blended solution of cement, clay, additives and water was stabilized, and a favorable workability and long term durability were obtained. As for the utilization as the material of a SMW (soil mixing wall) method for continuous walls in long shaft digging, a fly ash-gypsum-cement (FGC) stabilizer showed an excellent workability and remarkably high water-tightness as compared with conventional cement bentonite. As for the utilization as the material of an injection method of overlay mats in foundation works of light weight structures on the sea bed mud foundation, since a FGC concrete weight in water was remarkably light as 0.7t/m{sup 3}, no both large mold form strength and vibration compacting were required. 10 figs., 8 tabs.

  10. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  11. Ashes from biofuels and mixed fuels - amount and qualities

    International Nuclear Information System (INIS)

    Bjurstroem, Henrik; Ilskog, Elisabeth; Berg, Magnus

    2003-04-01

    In this study, ashes from biofuels used in the energy utilities, the pulp and paper industry and the wood-working industries have been inventoried. The selection of plants to which enquiries were addressed consists of about 50 utilities, all pulp and paper plants and about 20 wood-working industries (e.g. sawmills). The purpose of the study was to estimate the quantities of bio ashes that are recycled to the forests and those that could be recycled. The background to this study is that logging slash is harvested from ca 30,000 ha per year, while ash is recycled only to 2 to 4,000 ha per year. A working hypothesis has been that logging slash or clean wooden fuels are mixed with other fuels to such an extent that the ash is too contaminated to be recycled. The consequence would be that there is a shortage of suitable ash. Therefore, it was desirable that motives for mixing fuels be chartered. In Sweden, approximately one million ton ashes are produced each year and the share of the three industries that have been studied is estimated as: 200 - 340,000 tons from utilities about 275,000 tons from the pulp and paper industry and 100,000 tons from the woodworking industry. These quantities include unburned carbon, water added when the ash is extracted from the boilers etc. Additional quantities of ash are those produced by waste combustion (447,000 tons), wood-burning in residential buildings (50 - 100,000 tons) etc. In all, ash that may be recycled should total about 300,000 tons (Recyclable ash in t/a: Utilities - 80,000; Pulp and Paper Industry - 100-130,000; Woodworking Industry 100,000). Logging slash is seldom burned alone in the boilers at the utilities, but are almost always mixed with other wood fuel fractions such as waste from sawmills. The mixtures can be very complex. Clean mixtures of wood fuel fractions represent ca 4,500 GWh of the ca 7,800 GWh in this study. Other fuels that are often used in mixtures are peat and Salix, which does not necessarily lead

  12. Utilization of ash fractions from alternative biofuels used in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Hinge, J.; Christensen, I. (Danish Technological Inst., Aarhus (Denmark)); Dahl, J. (Force Technology, Broendby (Denmark)); Arendt Jensen, P. (DTU-CHEC, Kgs. Lyngby (Denmark)); Soendergaard Birkmose, T. (Dansk Landbrugsraadgivning, Landscentret, Aarhus (Denmark)); Sander, B. (DONG Energy, Fredericia (Denmark)); Kristensen, O. (Kommunekemi A/S, Nyborg (Denmark))

    2008-07-15

    It is expected, that demand for the traditional biomass resources wood and straw will increase over the next years. In other projects a number of agro industrial waste products has been tested and characterized as fuels for power plants. The annual production in Denmark of these fuels is estimated at roughly 400.000 tons of Dry Matter per year, so the potential is substantial. The agro industrial biomass products include: Grain screening waste, pea shells, soy waste, cocoa waste, sugar beet waste, sunflower waste, shea waste, coffee waste, olive waste, rice shell waste, potato waste, pectin waste, carrageen waste, tobacco waste, rape seed waste and mash from breweries. In the PSO project 5075, 5 different types of fuel pellets was produced, which were rendered suitable for combustion in power plants. In this project, ash is produced from the above mentioned 5 mixtures together with another 2 mixtures produced especially for this project. From the 5 mixtures from PSO 5075, ash is produced at Danish Technological Institute's slag analyzer. These ash products are rendered comparable to ash from grate fired boilers at power plants. The ash/slag from the combustion in the slag analyzer was then grinded - thus resulting in a total of 5 ash products. At DTU CHEC's Entrained Flow Reactor, ash products from the 5+2 mixtures were produced. These ash products are rendered comparable to ash produced form suspension fired boilers at power plants. For each of the 7 mixtures, bottom-, cyclone and filter ash was taken out separately resulting in a total of 21 ash samples. The produced ashes have been evaluated for their properties as directly applied fertilizer. Furthermore, scenarios have been set up to assess the feasibility in producing artificial fertilizer from the ash products, based on known processes. In the main components the content of Na, S, Cl and K is significantly higher in filter ashes, whereas the content of Mg, Al, Si and Ca is significantly lower. The

  13. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  14. Composition and reactivity of ash from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Willems, M; Pedersen, B; Jorgensen, S S

    1976-01-01

    Sewage sludge and sludge ash produced at 450 to 1050/sup 0/C in the laboratory or in a multiple hearth incinerator were analyzed by chemical and X-ray diffraction methods. Among the ash components were 23 to 32 percent calcium and magnesium phosphates and the following percentages of heavy metals: Zn 0.9, Cu 0.2, Pb 0.1, Cr 0.07, Ni 0.02, and Cd 0.006. As shown by EDTA-extraction, the reactivity of heavy metals was higher in ash produced at 450/sup 0/C than in dry sludge, but lower in ash produced above 800/sup 0/C. Phosphate in the 800 to 900/sup 0/C samples was dissolved in citric acid but not in citrate.

  15. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  16. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  17. Electrodialytic removal of Cd from straw ash in a pilot plant

    DEFF Research Database (Denmark)

    Lima, Ana Teresa; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2008-01-01

    Ashes from biomass combustion contain many macro and micro nutrients and its reuse in agricultural fields could be beneficial. In the case of straw ash, however, the content of Cd is often too high for the ash to be utilized this way. In Denmark the limiting concentration for spreading the ash...

  18. Re-burning of ash in grate boilers; Omfoerbraenning av askor i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, Kristina; Myringer, Aase; Nordgren, Daniel; Rydberg, Stina [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-03-01

    High contents of unburnt carbon in ashes that are dumped or recycled, is questionable from both an economical and an environmental point of view. The content of unburnt carbon in bottom and fly ash from grate boilers varies greatly between different plants but can sometimes exceed 50 %. Re-burning of ash that is separated before a final dust separation, is a relatively cheep and simple method for reducing the content of unburnt carbon in ash, which both reduces the fuel cost and the deposit cost, i.e. the cost of landfilling or recycling. As from 2005 it is prohibited to deposit ash with a too high content of unburnt organic material; the content is limited to 18 weight % of unburnt carbon. The study was carried out in two phases. The aim of the first phase was to map the different techniques used for re-burning ash that are used in grate boilers today. The mapping was done through telephone interviews and comprises technical descriptions of the systems, gathering of operational know-how, installations costs and the effect of the systems on the amount of ash generated at the plants and the content of unburnt carbon in the ash. In order to accomplish a deeper technical and economical evaluation of ash re-burning systems, the second phase involved field studies at two plants. In addition screening tests were done to investigate the connection between the content of unburnt carbon and particle size. The potential of reducing the amount of circulated inorganic material by sieving the ash before bringing it back to the furnace could thereby be determined. 13 plants that utilize re-burning of ash were identified, of which two plants re-burn the bottom ash that floats up to the surface in the wet ash removal system. The remaining 11 plants re-burn fly ash. At three plants the fly ash is first separated in a mesh sieve or similar equipment and only the coarser fly ash is re-burnt. As the amount of bottom ash that surfaces in the wet ash-removal is relatively small

  19. Flight potential of the emerald ash borer

    Science.gov (United States)

    Leah S. Bauer; Deborah L. Miller; Robin A.J. Taylor; Robert A. Haack

    2004-01-01

    The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive pest of ash trees (Fraxinus spp.) in North America. Native to several Asian countries, EAB was discovered in six southeastern Michigan counties and southwestern Ontario in 2002. EAB presumably emerged from infested solid wood...

  20. Binding of DEAD-box helicase Dhh1 to the 5'-untranslated region of ASH1 mRNA represses localized translation of ASH1 in yeast cells.

    Science.gov (United States)

    Zhang, Qianjun; Meng, Xiuhua; Li, Delin; Chen, Shaoyin; Luo, Jianmin; Zhu, Linjie; Singer, Robert H; Gu, Wei

    2017-06-09

    Local translation of specific mRNAs is regulated by dynamic changes in their subcellular localization, and these changes are due to complex mechanisms controlling cytoplasmic mRNA transport. The budding yeast Saccharomyces cerevisiae is well suited to studying these mechanisms because many of its transcripts are transported from the mother cell to the budding daughter cell. Here, we investigated the translational control of ASH1 mRNA after transport and localization. We show that although ASH1 transcripts were translated after they reached the bud tip, some mRNAs were bound by the RNA-binding protein Puf6 and were non-polysomal. We also found that the DEAD-box helicase Dhh1 complexed with the untranslated ASH1 mRNA and Puf6. Loss of Dhh1 affected local translation of ASH1 mRNA and resulted in delocalization of ASH1 transcript in the bud. Forcibly shifting the non-polysomal ASH1 mRNA into polysomes was associated with Dhh1 dissociation. We further demonstrated that Dhh1 is not recruited to ASH1 mRNA co-transcriptionally, suggesting that it could bind to ASH1 mRNA within the cytoplasm. Of note, Dhh1 bound to the 5'-UTR of ASH1 mRNA and inhibited its translation in vitro These results suggest that after localization to the bud tip, a portion of the localized ASH1 mRNA becomes translationally inactive because of binding of Dhh1 and Puf6 to the 5'- and 3'-UTRs of ASH1 mRNA. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.