WorldWideScience

Sample records for submillimeter wave observation

  1. Observational Approach to Molecular Cloud Evolutation with the Submillimeter-Wave CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.

    Neutral carbon atoms (CI) play important roles both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to obtain information on formation processes and thermal balance of molecular clouds. However, observations of the submillimeter-wave CI lines have been limited to small areas around some representative objects. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter-wave CI lines, 3 P1 -3 P0 (492GHz) and 3 P2 -3 P1 (809 GHz), of atomic carbon. A superconductor-insulator-superconductor (SIS) mixer receiver was equipped on the Nasmyth focus of the telescope. The receiver noise temperatures [Trx(DSB)] are 300 K and 1000 K for the 492 GHz and the 809 GHz mixers, respectively. The intermediate frequency is centered at 2 GHz, having a 700 MHz bandwidth. An acousto-optical spectrometer (AOS) with 1024 channel outputs is used as a receiver backend. The telescope was installed at Nishi-yasugawara (alt. 3725 m), which is 200 m north of the highest peak, Kengamine (3776 m), in July 1998. It has b en operatede successfully during 4 observing seasons in a remote way from the Hongo campus of the University of Tokyo. We have already observed more than 40 square degrees of the sky with the CI 492 GHz line. The distribution of CI emission is found to be different from those of the 13 CO or C1 8 O emission in some clouds. These differences are discussed in relation to formation processes of molecular clouds.

  2. Submillimeter Continuum Observations of Comets

    Science.gov (United States)

    Jewitt, David

    1998-01-01

    The aim of this proposal was to study the submillimeter continuum emission from comets. The study was based mainly on the exploitation of the world's leading submillimeter telescope, the JCMT (James Clerk Maxwell Telescope) on Mauna Kea. Submillimeter wavelengths provide a unique view of cometary physics for one main reason. The cometary size distribution is such that the scattering cross-section is dominated by small dust grains, while the mass is dominated by the largest particles. Submillimeter continuum radiation samples cometary particles much larger than those sampled by more common observations at shorter (optical and infrared) wavelengths and therefore provides a nearly direct measure of the cometary dust mass.

  3. Filters for Submillimeter Electromagnetic Waves

    Science.gov (United States)

    Berdahl, C. M.

    1986-01-01

    New manufacturing process produces filters strong, yet have small, precise dimensions and smooth surface finish essential for dichroic filtering at submillimeter wavelengths. Many filters, each one essentially wafer containing fine metal grid made at same time. Stacked square wires plated, fused, and etched to form arrays of holes. Grid of nickel and tin held in brass ring. Wall thickness, thickness of filter (hole depth) and lateral hole dimensions all depend upon operating frequency and filter characteristics.

  4. Submillimeter Wave Antenna With Slow Wave Feed Line

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Kotiranta, Mikko

    2009-01-01

    Submillimeter wave radiation, which is also referred to as terahertz radiation, has not been extensively explored until recently due to a lack of reliable components and devices in this frequency range. Current advances in technology have made it possible to explore this portion of the electromag...

  5. Millimeter and Submillimeter Observations of Ceres

    Science.gov (United States)

    Kuan, Yi-Jehng; Chuang, Yo-Ling; Tseng, Wei-Ling; Coulson, Iain M.; Chung, Ming-Chi

    2016-07-01

    1 Ceres is the largest celestial body in the Main Asteroid Belt and is also the sole dwarf planet in the inner solar system. Water vapor from small icy solar-system bodies, including Ceres and Europa, was detected by Herschel infrared space telescope recently. Data taken from Dawn spacecraft suggest that a subsurface layer of briny water ice, together with ammonia-rich clays, may exist on Ceres. We hence observed Ceres using the 15-m James Clerk Maxwell Telescope (JCMT) to search for other atmospheric molecules besides H _{2}O. Submillimeter continuum observations employing SCUBA-2 were also carried out. Here we report the tentative detection of hydrogen cyanide in the atmosphere of Ceres. If confirmed, our finding could imply that Ceres may have a comet-like chemical composition. However, further observational confirmation and more detailed analysis is needed.

  6. Linewidth of submillimeter wave flux-flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.

    1996-01-01

    A reliable technique for wide band measurements of the spectral linewidth of superconducting oscillators integrated on-chip with superconductor-insulator-superconductor (SIS) detectors has been, developed, The spectral linewidth of flux-flow oscillators (FFO) based on the unidirectional and visco...... reference source has been demonstrated. The proposed technique may improve the sensitivity, frequency resolution, and stability of the fully superconducting integrated submillimeter wave receiver. (C) 1996 American Institute of Physics....

  7. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-[Tc] microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa[sub 2]Cu[sub 3]0[sub 7-[delta

  8. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, Michael [Univ. of California, Berkeley, CA (United States)

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-Tc microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa2Cu307-δ films was subsequently measured and provided direct evidence for the bolometric response of high-Tc films to fast (ns) laser pulses. The low-Tc microbolometer was developed and used to make the first direct measurements of the frequency dependent optical efficiency of planar lithographed antennas. The hot-electron microbolometer was invented less than a year prior to the writing of this dissertation. Our analysis, presented here, indicates that it should be possible to attain up to two orders of magnitude higher sensitivity than that of the best available direct detectors when operated at the same temperature. The temperature readout scheme for this device could also be used to measure the intrinsic interaction between electrons and phonons in a metal with a sensitivity that is five orders of magnitude better than in previous measurements. Preliminary measurements of quasiparticle trapping effects at the interface between a metal and a superconductor are also presented.

  9. Solar Observations with the Atacama Large Millimeter/submillimeter Array

    Science.gov (United States)

    Wedemeyer, Sven

    2015-08-01

    The interferometric Atacama Large Millimeter/submillimeter Array (ALMA) has already demonstrated its impressive capabilities by observing a large variety of targets ranging from protoplanetary disks to galactic nuclei. ALMA is also capable of observing the Sun and has been used for five solar test campaigns so far. The technically challenging solar observing modes are currently under development and regular observations are expected to begin in late 2016.ALMA consists of 66 antennas located in the Chilean Andes at an altitude of 5000 m and is a true leap forward in terms of spatial resolution at millimeter wavelengths. The resolution of reconstructed interferometric images of the Sun is anticipated to be close to what current optical solar telescopes can achieve. In combination with the high temporal and spectral resolution, these new capabilities open up new parameter spaces for solar millimeter observations.The solar radiation at wavelengths observed by ALMA originates from the chromosphere, where the height of the sampled layer increases with selected wavelength. The continuum intensity is linearly correlated to the local gas temperature in the probed layer, which makes ALMA essentially a linear thermometer. During flares, ALMA can detect additional non-thermal emission contributions. Measurements of the polarization state facilitate the valuable determination of the chromospheric magnetic field. In addition, spectrally resolved observations of radio recombination and molecular lines may yield great diagnostic potential, which has yet to be investigated and developed.Many different scientific applications for a large range of targets from quiet Sun to active regions and prominences are possible, ranging from ultra-high cadence wave studies to flare observations. ALMA, in particular in combination with other ground-based and space-borne instruments, will certainly lead to fascinating new findings, which will advance our understanding of the atmosphere of our Sun

  10. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  11. The role of THz and submillimeter wave technology in DHS

    Science.gov (United States)

    Coty, Thomas; Fuller-Tedeschi, Anna

    2011-06-01

    THz and submillimeter wave technology is of great interest to DHS S&T due to the non-ionizing and clothing penetrating properties of the spectral region. Imaging in the region allows for standoff imaging of concealed threats such as Improvised Explosive Devices (IED) at operationally relevant distances. DHS S&T is investing in this area with the development of components such as detectors and sources for active imaging as well as full sensor systems in the future. The fundamental characterization of the region is also being explored with DHS funding by imaging well-characterized rough surface scattering targets. Analysis of these images will yield data to be used in evaluating assumptions currently made in current performance models. This along with the relevant field applications will be addressed.

  12. Compact Receiver Front Ends for Submillimeter-Wave Applications

    Science.gov (United States)

    Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.

    2012-01-01

    The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.

  13. Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers

    Science.gov (United States)

    Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work

  14. EPR and AFMR of Bi2CuO4 in Submillimeter Wave Region

    Science.gov (United States)

    Ohta, Hitoshi; Yoshida, Kazuhiro; Matsuya, Takashi; Nanba, Takao; Motokawa, Mitsuhiro; Yamada, Kazuyoshi; Endoh, Yasuo; Hosoya, Shoichi

    1992-08-01

    Paramagnetic and antiferromagnetic resonance have been observed in single crystals of Bi2CuO4 in submillimeter wave region using pulsed magnetic fields at temperatures from 4.2 K to 265 K. At the paramagnetic state, g-values have been determined to be g//{=}2.26± 0.01 and g\\bot{=}2.04± 0.01. The angular independent line-widths are 0.37± 0.03 T which is quantitatively explained by the dipole interaction and anisotropic exchange interaction. An antiferromagnetic resonance mode of planer type antiferromagnet has been observed below the Néel temperature and explained by the conventional antiferromagnetic theory.

  15. A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode

    Science.gov (United States)

    Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-10-01

    In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1-10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.

  16. Submillimeter observations of the sun from the James Clerk Maxwell Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.A.; Yee, S.; Roellig, T.L.; Hills, R.; Brock, D. (Hawaii Univ., Honolulu (USA) NASA, Ames Research Center, Moffett Field, CA (USA) Mullard Radio Astronomy Observatory, Cambridge (England) Joint Astronomy Centre, Hilo, HI (USA))

    1990-04-01

    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun. 7 refs.

  17. Submillimeter observations of the sun from the James Clerk Maxwell Telescope

    Science.gov (United States)

    Lindsey, Charles A.; Yee, Selwyn; Roellig, Thomas L.; Hills, Richard; Brock, David

    1990-01-01

    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun.

  18. Novel transmission lines for the submillimeter-wave region

    Science.gov (United States)

    Katehi, Linda P. B.

    1992-01-01

    Accounts are given of the two approaches to the design of low-loss sub-mm-wave transmission lines for intelligent computer control guidance, command systems for space applications, and sensors operating in an optically opaque environment. These are: (1) the extension of the mm-wave monolithic technology to higher frequencies, although this approach is restricted to the lower end of the sub-mm spectrum, up to 500 GHz, due to ohmic losses; and (2) the extension of optical techniques to lower frequencies. This second approach is also limited, to the higher end of the sub-mm spectrum. Available characterizations of these technologies' electrical properties are presented.

  19. SMA Submillimeter Observations of HL Tau: Revealing a Compact Molecular Outflow

    Science.gov (United States)

    Lumbreras, Alba M.; Zapata, Luis A.

    2014-04-01

    We present archival high angular resolution (~2'') 12CO(3-2) line and continuum submillimeter observations of the young stellar object HL Tau made with the Submillimeter Array. The 12CO(3-2) line observations reveal the presence of a compact and wide opening angle bipolar outflow with a northeast to southwest orientation (P.A. = 50°) that is associated with the optical and infrared jet emanating from HL Tau with a similar orientation. On the other hand, the 850 μm continuum emission observations exhibit a strong and compact source in the position of HL Tau that has a spatial size of ~200 × 70 AU with a P.A. = 145° and a dust mass of around 0.1 M ⊙. These physical parameters are in agreement with values obtained recently from millimeter observations. This submillimeter source is therefore related to the disk surrounding HL Tau.

  20. SMA submillimeter observations of HL Tau: revealing a compact molecular outflow

    Energy Technology Data Exchange (ETDEWEB)

    Lumbreras, Alba M.; Zapata, Luis A. [Centro de Radioastronomía y Astrofísica, UNAM, Morelia (Mexico)

    2014-04-01

    We present archival high angular resolution (∼2'') {sup 12}CO(3-2) line and continuum submillimeter observations of the young stellar object HL Tau made with the Submillimeter Array. The {sup 12}CO(3-2) line observations reveal the presence of a compact and wide opening angle bipolar outflow with a northeast to southwest orientation (P.A. = 50°) that is associated with the optical and infrared jet emanating from HL Tau with a similar orientation. On the other hand, the 850 μm continuum emission observations exhibit a strong and compact source in the position of HL Tau that has a spatial size of ∼200 × 70 AU with a P.A. = 145° and a dust mass of around 0.1 M {sub ☉}. These physical parameters are in agreement with values obtained recently from millimeter observations. This submillimeter source is therefore related to the disk surrounding HL Tau.

  1. Observational Approach to Molecular Cloud Evolution with the Submillimeter CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.; Mt. Fuji Submillimeter-Wave Telescope Group

    Neutral carbon atoms (CI) play important role both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to investigate formation processes and thermal balance of molecular clouds. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter CI lines, 3P1--3P0 (492 GHz) and 3P2--3P1 (809 GHz), of atomic carbon. It has been operated successfully during 4 observing seasons since July 1998 in a remote way from the Hongo campus of the University of Tokyo. We have already revealed large-scale CI 492 GHz distributions of many giant molecular clouds, including Orion MC, Taurus MC, DR15, DR21, NGC2264, M17, W3, W44, W51, Rosette MC, covering more than 40 square degrees of the sky. The distribution of CI 492 GHz emission is found to be different from those of the 13CO or C18O emission in some clouds. We found the spatial order of C+/CO/C from UV sources. This is the general property of the cloud illuminated by intense UV radiation, whereas it is apparently inconsistent with the standard photodissociation region (PDR) picture. We also found CI-rich areas (C/CO˜1) in several dark clouds without strong UV sources. These results are discussed in relation to formation processes of molecular clouds and dense cloud cores.

  2. Study of optical output couplers for submillimeter wavelength backward-wave oscillators (BWO's)

    Science.gov (United States)

    Cook, Jerry D.; Stankiewicz, Norbert; Podany, Mark

    1989-01-01

    Several scaled experiments of optical output couplers for submillimeter backward-wave oscillators (BWOs). Various designs of planar antennas (Vivaldi horns) lens-feed systems (hyperhemispherical lens) were constructed and tested between 20 and 100 GHz using a spectrum analyzer. The lens system was also tested at 337 GHz using a CO2 pumped FIR laser. It is found that Vivaldi horns have unsatisfactory resonances, perhaps because the horns studied were relatively short. Several techniques to maximize and flatten the frequency response of these horns are presented. The results suggest that alternate coupling schemes are superior to Vivaldi horns.

  3. Faint submillimeter galaxies revealed by multifield deep ALMA observations: number counts, spatial clustering, and a dark submillimeter line emitter

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshiaki; Ouchi, Masami; Momose, Rieko [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kurono, Yasutaka, E-mail: ono@icrr.u-tokyo.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile)

    2014-11-01

    We present the statistics of faint submillimeter/millimeter galaxies (SMGs) and serendipitous detections of a submillimeter/millimeter line emitter (SLE) with no multi-wavelength continuum counterpart revealed by the deep ALMA observations. We identify faint SMGs with flux densities of 0.1-1.0 mJy in the deep Band-6 and Band-7 maps of 10 independent fields that reduce cosmic variance effects. The differential number counts at 1.2 mm are found to increase with decreasing flux density down to 0.1 mJy. Our number counts indicate that the faint (0.1-1.0 mJy, or SFR{sub IR} ∼ 30-300 M {sub ☉} yr{sup –1}) SMGs contribute nearly a half of the extragalactic background light (EBL), while the remaining half of the EBL is mostly contributed by very faint sources with flux densities of <0.1 mJy (SFR{sub IR} ≲ 30 M {sub ☉} yr{sup –1}). We conduct counts-in-cells analysis with multifield ALMA data for the faint SMGs, and obtain a coarse estimate of galaxy bias, b {sub g} < 4. The galaxy bias suggests that the dark halo masses of the faint SMGs are ≲ 7 × 10{sup 12} M {sub ☉}, which is smaller than those of bright (>1 mJy) SMGs, but consistent with abundant high-z star-forming populations, such as sBzKs, LBGs, and LAEs. Finally, we report the serendipitous detection of SLE-1, which has no continuum counterparts in our 1.2 mm-band or multi-wavelength images, including ultra deep HST/WFC3 and Spitzer data. The SLE has a significant line at 249.9 GHz with a signal-to-noise ratio of 7.1. If the SLE is not a spurious source made by the unknown systematic noise of ALMA, the strong upper limits of our multi-wavelength data suggest that the SLE would be a faint galaxy at z ≳ 6.

  4. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  5. Metal-mesh achromatic half-wave plate for use at submillimeter wavelengths.

    Science.gov (United States)

    Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic

    2008-11-20

    A metal-mesh achromatic half-wave plate (HWP) has been designed, manufactured, and tested for potential use in millimeter and submillimeter astronomical instruments. The prototype device presented here is based on a 12-grid Shatrow [IEEE Trans. Antennas Propag. 43, 109 (1995)] recipe to operate over the frequency range of 120-180 GHz. Transmission line modeling and finite-element analysis [Ansoft HFSS website: http://www.ansoft.com/hfss/] were used to optimize the design geometrical parameters in terms of the device transmission, reflection, absorption, phase-shift, and cross-polarization as a function of frequency. The resulting prototype device was constructed and characterized using incoherent radiation from a polarizing Fourier transform spectrometer to explore its frequency and polarization behavior. These measurements are shown to be in excellent agreement with the models. Lists of the achieved HWP performance characteristics are reported.

  6. A submillimeter VLBI array

    Energy Technology Data Exchange (ETDEWEB)

    Weintroub, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)], E-mail: jweintroub@cfa.harvard.edu

    2008-10-15

    A VLBI array operating at {lambda} 1.3 mm and 0.8 mm is being designed using existing submillimeter telescopes as ad-hoc stations. Initial three station {lambda} = 1.3 mm observations of SgrA* and other AGN have produced remarkable results, which are reported by Doeleman elsewhere in this proceedings. Future observations are planned with an enhanced array which has longer baselines, more stations, and greater sensitivity. At {lambda} = 0.8 mm and on the long baselines, the array will have about a 20 {mu}as angular resolution which equals the diameter of the event horizon of the massive black hole in SgrA*. Candidate single dish facilities include the Arizona Radio Observatory Submillimeter Telescope (SMT) in Arizona, the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell telescope (JCMT) in Hawaii, the Large Millimeter Telescope (LMT) in Mexico, ASTE and APEX in Chile, and the IRAM 30 m in Spain; interferometers include the Submillimeter Array (SMA) in Hawaii, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) in California, IRAM PdB Interferometer in France, and the Atacama Large Millimeter Array (ALMA) in Chile. I will discuss the techniques we have developed for phasing interferometric arrays to act as single VLBI station. A strategy for detection of short (10s) time-scale source variability using VLBI closure phase will be described.

  7. Advanced Amplifier Based Receiver Front Ends for Submillimeter-Wave-Sounders Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop high electron mobility transistor (HEMT) amplifier based heterodyne radiometers to provide high sensitivity at millimeter and submillimeter wavelengths with...

  8. A deeply embedded young protoplanetary disk around L1489 IRS observed by the Submillimeter Array

    DEFF Research Database (Denmark)

    Brinch, C.; Crapsi, A.; Jørgensen, J. K.

    2007-01-01

    aim to identify whether an embedded Keplerian protoplanetary disk resides in the L1489 IRS system. Given the amount of envelope material still present, such a disk would respresent a very young example of a protoplanetary disk. Methods. Using the Submillimeter Array we have observed the HCO + J = 3......-2 line with a resolution of about 1". At this resolution a protoplanetary disk with a radius of a few hundred AUs should be detectable, if present. Radiative transfer tools are used to model the emission from both continuum and line data. Results. We find that these data are consistent with theoretical...

  9. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  10. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications

    Science.gov (United States)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger

    2004-01-01

    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  11. Demonstration of a phase-lockable microwave to submillimeter wave sweeper

    Science.gov (United States)

    Waltman, Steve B.; Hollberg, Leo W.; McIntosh, Alexander K.; Brown, Elliott R.

    1996-12-01

    The development of low-temperature-grown GaAs photomixers enables the construction of a microwave to submillimeter- wave source capable of large frequency sweeps. By utilizing semiconductor diode lasers to drive the photomixer, this source is all solid-state and compact, and has small power consumption. Frequency stabilization of the semiconductor diode lasers allows this source to be phase-locked to an external microwave reference. Two 805 nm extended-cavity- diode lasers are mixed in a low-temperature-grown GaAs photoconductive photomixer. The difference-frequency mixing product is radiated by a planar spiral antenna and collimated by a Si lens. This output is phase-locked to a microwave reference by downconverting it in a whisker- contacted Schottky-barrier diode harmonic mixer and using the output to offset-phase-lock one laser to the other. The photomixer output power is 300 nW at 200 GHz and 10 nW at 1.6 THz, as measured by a 4 K InSb bolometer calibrated with a methanol laser and a power meter at 526 and 812 GHz.

  12. Rapid Sintering of Silica Xerogel Ceramic Derived from Sago Waste Ash Using Sub-millimeter Wave Heating with a 300 GHz CW Gyrotron

    Science.gov (United States)

    Aripin, Haji; Mitsudo, Seitaro; Sudiana, I. Nyoman; Tani, Shinji; Sako, Katsuhide; Fujii, Yutaka; Saito, Teruo; Idehara, Toshitaka; Sabchevski, Sliven

    2011-06-01

    In this paper, we present and discuss experimental results from a microwave sintering of a silica-glass ceramic, produced from a silica xerogel extracted from a sago waste ash. As a radiation source for the microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of silica xerogel have been dry pressed and then sintered at temperatures ranging from 300°C to 1500°C. The influence of the sintering temperature on the technological properties such as porosity and bulk density was studied in detail. Furthermore, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy have been used in order to study the structure of the produced silica glass-ceramics. It has been found that the silica xerogel crystallizes at a temperature of 800°C, which is about 200°C lower than the one observed in the conventional process. The silica xerogel samples sintered by their irradiation with a sub-millimeter wave at 900°C for 18 minutes are fully crystallized into a silica glass-ceramic with a density of about 2.2 g/cm3 and cristobalite as a major crystalline phase. The results obtained in this study allow one to conclude that the microwave sintering with sub-millimeter waves is an appropriate technological process for production of silica glass-ceramics from a silica xerogel and is characterized with such advantages as shorter times of the thermal cycle, lower sintering temperatures and higher quality of the final product.

  13. Superconducting Resonator Spectrometer for Millimeter- and Submillimeter-Wave Astrophysics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to develop a novel ultra-compact spectrograph-on-a-chip for the submillimeter and millimeter waveband. SuperSpec uses planar lithographed superconducting...

  14. A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer

    Science.gov (United States)

    Liu, Yuli; Buehler, Stefan; Liu, Heguang

    2017-04-01

    Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.

  15. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): High-Resolution Interferometric Imaging

    Science.gov (United States)

    Shimojo, M.; Bastian, T. S.; Hales, A. S.; White, S. M.; Iwai, K.; Hills, R. E.; Hirota, A.; Phillips, N. M.; Sawada, T.; Yagoubov, P.; Siringo, G.; Asayama, S.; Sugimoto, M.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; de Gregorio-Monsalvo, I.; Corder, S. A.; Hudson, H. S.; Wedemeyer, S.; Gary, D. E.; De Pontieu, B.; Loukitcheva, M.; Fleishman, G. D.; Chen, B.; Kobelski, A.; Yan, Y.

    2017-07-01

    Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low-contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3-mm band (Band 3) and the 1.25-mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar-commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.

  16. Laboratory and observational studies of transient molecules at microwave and millimeter/submillimeter wavelengths

    Science.gov (United States)

    Zack, Lindsay Nicole

    In this dissertation, techniques of high-resolution rotational spectroscopy have been used to measure the spectra of molecules in both laboratory and astronomical settings. In the laboratory, small metal-bearing molecules containing zinc, iron, nickel, titanium, yttrium, and scandium have been studied at microwave and millimeter/submillimeter wavelengths in order to determine their rotational, fine, and hyperfine constants. These molecules were synthesized in situ in direct-absorption and Fourier-transform microwave spectrometers using Broida-type ovens and laser ablation methods. From the spectroscopic parameters, information about fundamental physical properties and electronic character could be obtained. Radio telescopes were used to measure the spectra of molecules in different interstellar environments. A new molecule, FeCN, was detected toward the circumstellar envelope of the carbon-rich asymtotic giant branch star, IRC+10216, marking the first iron-bearing molecule detected in the interstellar medium. The telescopes were also used to conduct a study of the evolved planetary nebula, NGC 7293, or the Helix Nebula. In the Helix, CO, HCO+, and H2CO were observed at several positions offset from the central star to obtain densities and kinetic temperatures throughout the Helix. A map of the HCO+ J = 1→ 0 transition was also constructed, showing that HCO+ is widespread throughout the Helix, instead of being photodissociated and destroyed, as theoretical models of planetary nebulae predict.

  17. SUBMILLIMETER ARRAY AND SPITZER OBSERVATIONS OF BOK GLOBULE CB 17: A CANDIDATE FIRST HYDROSTATIC CORE?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng; Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas, E-mail: xuepeng.chen@yale.edu [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We present high angular resolution Submillimeter Array (SMA) and Spitzer observations toward the Bok globule CB 17. SMA 1.3 mm dust continuum images reveal within CB 17 two sources with an angular separation of {approx}21'' ({approx}5250 AU at a distance of {approx}250 pc). The northwestern continuum source, referred to as CB 17 IRS, dominates the infrared emission in the Spitzer images, drives a bipolar outflow extending in the northwest-southeast direction, and is classified as a low-luminosity Class 0/I transition object (L{sub bol} {approx} 0.5 L{sub Sun }). The southeastern continuum source, referred to as CB 17 MMS, has faint dust continuum emission in the SMA 1.3 mm observations ({approx}6{sigma} detection; {approx}3.8 mJy), but is not detected in the deep Spitzer infrared images at wavelengths from 3.6 to 70 {mu}m. Its bolometric luminosity and temperature, estimated from its spectral energy distribution, are {<=}0.04 L{sub Sun} and {<=}16 K, respectively. The SMA CO (2-1) observations suggest that CB 17 MMS may drive a low-velocity molecular outflow ({approx}2.5 km s{sup -1}), extending in the east-west direction. Comparisons with prestellar cores and Class 0 protostars suggest that CB 17 MMS is more evolved than prestellar cores but less evolved than Class 0 protostars. The observed characteristics of CB 17 MMS are consistent with the theoretical predictions from radiative/magnetohydrodynamical simulations of a first hydrostatic core, but there is also the possibility that CB 17 MMS is an extremely low luminosity protostar deeply embedded in an edge-on circumstellar disk. Further observations are needed to study the properties of CB 17 MMS and to address more precisely its evolutionary stage.

  18. Millimeter and submillimeter wave ESR measurement of Ho{sub 2}Cu{sub 2}O{sub 5} aligned powder sample

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, S. [Kobe Univ., Graduate School of Science and Technology, Kobe, Hyogo (Japan); Goto, T.; Tanaka, T.; Ohta, H. [Kobe Univ. (Japan). Dept. of Physics; Mogi, I.; Watanabe, K.; Motokawa, M. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1999-07-01

    To gain information of anisotropy of Ho{sub 2}Cu{sub 2}O{sub 5} the aligned powder sample was prepared under the static high magnetic field of 5T. Millimeter and submillimeter wave ESR measurements of aligned Ho{sub 2}Cu{sub 2}O{sub 5} samples have been performed for the first time in the frequency region from 50 to 430 GHz using the pulsed magnetic field up to 16T at 1.8K. Antiferromagnetic resonances were observed clearly at 1.8K. AFMR modes of easy axis change at two critical fields. The temperature dependence measurements were also performed and the Neel temperature of the system is discussed. (author)

  19. Mapping the thermal structure and minor species of Venus mesosphere with ALMA submillimeter observations

    Science.gov (United States)

    Piccialli, A.; Moreno, R.; Encrenaz, T.; Fouchet, T.; Lellouch, E.; Widemann, T.

    2017-10-01

    Context. Water vapor and sulfur compounds are key species in the photochemistry of Venus mesosphere. These species, together with mesospheric temperatures, exhibit drastic temporal variations, both on short timescales (diurnal and day-to-day) as well on long timescales, far from being understood. Aims: We targeted CO, SO, HDO and SO2 transitions in the submillimeter range using the Atacama Large Millimeter Array (ALMA) to study their spatial and temporal variations. Methods: Four sets of observations were acquired on different dates in November 2011 during the first ALMA Early Science observation Cycle 0. Venus angular diameter was about 11'' with an illumination factor of 92%, so that mostly the day side of the planet was mapped. Assuming a nominal CO abundance profile, we retrieved vertical temperature profiles over the entire disk as a function of latitude and local time. Temperature profiles were later used to retrieve SO, SO2, and H2O. We used HDO as a tracer for water assuming a D/H enrichment of 200 times the terrestrial value. Results: We derived 3D maps of mesospheric temperatures in the altitude range 70-105 km. SO, SO2, and H2O are characterized by a negligible abundance below 85 km followed by an increase with altitude in the upper mesosphere. Disk-averaged SO abundances present a maximum mixing ratio of 15.0 ± 3.1 ppb on November 26 followed the next day by a minimum value of 9.9 ± 1.2 ppb. Due to a very low S/N, SO2 could only be derived from the disk-averaged spectrum on the first day of observation revealing an abundance of 16.5 ± 4.6 ppb. We found a SO2/SO ratio of 1.5 ± 0.4. Global maps of SO reveal strong variations both with latitude and local time and from day to day with abundance ranging from < 1 to 15 ppb. H2O disk-averages retrievals reveal a steady decrease from November 14 to 27, with the abundance varying from 3.6 ± 0.6 ppm on the first day to 2.9 ± 0.7 ppm on the last day. H2O maps reveal a slightly higher abundance on the evening

  20. A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging

    Science.gov (United States)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter H.

    2006-01-01

    The design of a complete vector measurement system being tested over 560-635 GHz is presented. The topics include: 1) Current State-of-the-Art in Vector Measurements; 2) Submillimeter Active Imaging Requirements; 3) 600 GHz Vector Measurement System; 4) 450 MHz IF Signal; 5) 450 MHz IF signal @ 1 kHz Res. BW; 6) 450 MHz IF Signal Mixed with Shifted 450 MHz Reference Signal; 7) Reference Signal Offset Generator; 8) Cavity Bandpass Filter; 9) Miniature Multistage Helical Filter; 10) X36 450 MHz Multiplier; 11) 600 GHz Test Setup; 12) 600 GHz Transmit Module; 13) 600 GHz Receive Module; 14) Performance Tests: Amplitude Stability & Dynamic Range; 15) Performance Tests: Phase Stability; 16) Stability at Imaging Bandwidths; 17) Phase Measurement Verification; and 18) The Next Step: Imaging.

  1. SUB-MILLIMETER TELESCOPE CO (2-1) OBSERVATIONS OF NEARBY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xue-Jian; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Zhong [Harvard-Smithsonian Center for Astrophysics, MS 66, 60 Garden Street, Cambridge, MA 02138 (United States); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhi-Yu, E-mail: xjjiang@nju.edu.cn [The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2015-01-20

    We present CO J = 2-1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M {sub *} galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV – r, and WISE color W3 – W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M {sub *} ≤10{sup 10} M {sub ☉}, the H I fraction (f {sub H} {sub I} ≡ M {sub H} {sub I}/M {sub *}) is significantly higher than that of more massive galaxies, while the H{sub 2} gas fraction (f{sub H{sub 2}} ≡ M{sub H{sub 2}}/M {sub *}) remains nearly unchanged. (2) Compared to f{sub H{sub 2}}, f {sub H} {sub I} correlates better with both M {sub *} and NUV – r. (3) A new parameter, WISE color W3 – W2 (12-4.6 μm), is introduced, which is similar to NUV – r in tracing star formation activity, and we find that W3 – W2 has a tighter anti-correlation with log f{sub H{sub 2}} than the anti-correlation of (NUV – r)-f {sub H} {sub I}, (NUV – r)-f{sub H{sub 2}}, and (W3 – W2)-f {sub H} {sub I}. This indicates that W3 – W2 can trace the H{sub 2} fraction in galaxies. For the gas ratio M{sub H{sub 2}}/M {sub H} {sub I} , only in the intermediate-M {sub *} galaxies it appears to depend on M {sub *} and NUV – r. We find a tight correlation between the molecular gas mass M{sub H{sub 2}} and 12 μm (W3) luminosities (L {sub 12} {sub μm}), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H{sub 2} mass for star-forming galaxies.

  2. Juno Waves observations at Jupiter

    Science.gov (United States)

    Kurth, W. S.; Hospodarsky, G. B.; Imai, M.; Tetrick, S. S.; Gurnett, D. A.; Ye, S.-Y.; Louarn, P.; Valek, P.; Allegrini, F.; Connerney, J. E. P.; Mauk, B. H.; Bolton, S. J.; Levin, S. M.; Adriani, A.; Gladstone, G. R.; McComas, D. J.; Zarka, P.

    2017-09-01

    The Juno spacecraft successfully entered Jupiter orbit on 5 July 2016. One of Juno's primary objectives is to explore Jupiter's polar magnetosphere. An obvious major aspect of this exploration includes remote and in situ observations of Jupiter's auroras and the processes responsible for them. To this end, Juno carries a suite of particle, field, and remote sensing instruments. One of these instruments is a radio and plasma wave instrument called Waves, designed to detect one electric field component of waves in the frequency range of 50 Hz to 41 MHz and one magnetic field component of waves in the range of 50 Hz to 20 kHz. Juno has now made scientific observations on several perijove passes beginning with Perijove 1 on 27 August 2016. This paper presents some of the early observations of the Juno Waves instrument.

  3. SUBMILLIMETER LIGHTCURVES OF ASTEROIDS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Submillimeter lightcurves of large asteroids Ceres, Davida, Io, Juno, Pallas, Vesta, and Victoria, observed at the Heinrich-Hertz Submillimeter Telescope from...

  4. Detection of Submillimeter-wave [C i] Emission in Gaseous Debris Disks of 49 Ceti and β Pictoris

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Aya E.; Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Sato, Aki; Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Iwasaki, Kazunari [Department of Environmental Systems Science, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe City, Kyoto 610-0394 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Watanabe, Sakae; Kaneda, Hidehiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Yamamoto, Satoshi, E-mail: aya.higuchi@riken.jp [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    We have detected [C i] {sup 3} P {sub 1}–{sup 3} P {sub 0} emissions in the gaseous debris disks of 49 Ceti and β Pictoris with the 10 m telescope of the Atacama Submillimeter Telescope Experiment, which is the first detection of such emissions. The line profiles of [C i] are found to resemble those of CO( J = 3–2) observed with the same telescope and the Atacama Large Millimeter/submillimeter Array. This result suggests that atomic carbon (C) coexists with CO in the debris disks and is likely formed by the photodissociation of CO. Assuming an optically thin [C i] emission with the excitation temperature ranging from 30 to 100 K, the column density of C is evaluated to be (2.2 ± 0.2) × 10{sup 17} and (2.5 ± 0.7) × 10{sup 16} cm{sup −2} for 49 Ceti and β Pictoris, respectively. The C/CO column density ratio is thus derived to be 54 ± 19 and 69 ± 42 for 49 Ceti and β Pictoris, respectively. These ratios are higher than those of molecular clouds and diffuse clouds by an order of magnitude. The unusually high ratios of C to CO are likely attributed to a lack of H{sub 2} molecules needed to reproduce CO molecules efficiently from C. This result implies a small number of H{sub 2} molecules in the gas disk, i.e., there is an appreciable contribution of secondary gas from dust grains.

  5. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  6. Submillimeter wave GaAs Schottky diode application based study and optimization for 0.1-1.5 THz

    Science.gov (United States)

    Jenabi, Sarvenaz; Malekabadi, Ali; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-08-01

    In this paper, a design and optimization method for submillimeter-wave Schottky diode is proposed. Parasitic capacitance is significantly reduced to under 20% of the total capacitance of the diode. The parasitic capacitance value is measured to be 0.6 fF for 1 μm anode radius which increased the cut-off frequency to 1.5 THz. A corresponding microfabrication process that provides higher degrees of freedom for the anode diameter, air-bridge dimensions and distance to the substrate is introduced and implemented. The DC and RF measurements are provided and compared with the simulations. In order to provide a better understanding of the diode behavior, the limiting factors of the cut-off frequency for different applications are studied and compared. For the mixer/multiplier mode, an improved and expanded formulation for calculation of the cut-off frequency is introduced. It is shown that the usable voltage bias range (with acceptable cut-off frequency) is limited by the exponential reduction of junction resistance, Rj , in mixer/multiplier mode.

  7. Measurement of stratospheric and mesospheric winds with a submillimeter wave limb sounder: results from JEM/SMILES and simulation study for SMILES-2

    Science.gov (United States)

    Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Irimajiri, Yoshihisa; Murtagh, Donal; Uzawa, Yoshinori; Ochiai, Satoshi; Shiotani, Masato; Suzuki, Makoto

    2015-10-01

    Satellite missions for measuring winds in the troposphere and thermosphere will be launched in a near future. There is no plan to observe winds in the altitude range between 30-90 km, though middle atmospheric winds are recognized as an essential parameter in various atmospheric research areas. Sub-millimetre limb sounders have the capability to fill this altitude gap. In this paper, we summarize the wind retrievals obtained from the Japanese Superconducting Submillimeter Wave Limb Emission Sounder (SMILES) which operated from the International Space Station between September 2009 and April 2010. The results illustrate the potential of such instruments to measure winds. They also show the need of improving the wind representation in the models in the Tropics, and globally in the mesosphere. A wind measurement sensitivity study has been conducted for its successor, SMILES-2, which is being studied in Japan. If it is realized, sub-millimeter and terahertz molecular lines suitable to determine line-of-sight winds will be measured. It is shown that with the current instrument definition, line-of-sight winds can be observed from 20 km up to more than 160 km. Winds can be retrieved with a precision better than 5 ms-1 and a vertical resolution of 2-3 km between 35-90 km. Above 90 km, the precision is better than 10 ms-1 with a vertical resolution of 3-5 km. Measurements can be performed day and night with a similar sensitivity. Requirements on observation parameters such as the antenna size, the satellite altitude are discussed. An alternative setting for the spectral bands is examined. The new setting is compatible with the general scientific objectives of the mission and the instrument design. It allows to improve the wind measurement sensitivity between 35 to 90 km by a factor 2. It is also shown that retrievals can be performed with a vertical resolution of 1 km and a precision of 5-10 ms-1 between 50 and 90 km.

  8. The JCMT Transient Survey: Identifying Submillimeter Continuum Variability over Several Year Timescales Using Archival JCMT Gould Belt Survey Observations

    Science.gov (United States)

    Mairs, Steve; Johnstone, Doug; Kirk, Helen; Lane, James; Bell, Graham S.; Graves, Sarah; Herczeg, Gregory J.; Scicluna, Peter; Bower, Geoffrey C.; Chen, Huei-Ru Vivien; Hatchell, Jennifer; Aikawa, Yuri; Chen, Wen-Ping; Kang, Miju; Kang, Sung-Ju; Lee, Jeong-Eun; Morata, Oscar; Pon, Andy; Scholz, Aleks; Takahashi, Satoko; Yoo, Hyunju; The JCMT Transient Team

    2017-11-01

    Investigating variability at the earliest stages of low-mass star formation is fundamental in understanding how a protostar assembles mass. While many simulations of protostellar disks predict non-steady accretion onto protostars, deeper investigation requires robust observational constraints on the frequency and amplitude of variability events characterized across the observable SED. In this study, we develop methods to robustly analyze repeated observations of an area of the sky for submillimeter variability in order to determine constraints on the magnitude and frequency of deeply embedded protostars. We compare 850 μm JCMT Transient Survey data with archival JCMT Gould Belt Survey data to investigate variability over 2-4 year timescales. Out of 175 bright, independent emission sources identified in the overlapping fields, we find seven variable candidates, five of which we classify as Strong, and the remaining two we classify as Extended to indicate that the latter are associated with larger-scale structure. For the Strong variable candidates, we find an average fractional peak brightness change per year of | 4.0| % {{yr}}-1, with a standard deviation of 2.7 % {{yr}}-1. In total, 7% of the protostars associated with 850 μm emission in our sample show signs of variability. Four of the five Strong sources are associated with a known protostar. The remaining source is a good follow-up target for an object that is anticipated to contain an enshrouded, deeply embedded protostar. In addition, we estimate the 850 μm periodicity of the submillimeter variable source, EC 53, to be 567 ± 32 days, based on the archival Gould Belt Survey data.

  9. The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES

    Directory of Open Access Journals (Sweden)

    P. Baron

    2011-10-01

    Full Text Available This paper describes the algorithms of the level-2 research (L2r processing chain developed for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES. The chain has been developed in parallel to the operational chain for conducting researches on calibration and retrieval algorithms. L2r chain products are available to the scientific community. The objective of version 2 is the retrieval of the vertical distribution of trace gases in the altitude range of 18–90 km. A theoretical error analysis is conducted to estimate the retrieval feasibility of key parameters of the processing: line-of-sight elevation tangent altitudes (or angles, temperature and ozone profiles. While pointing information is often retrieved from molecular oxygen lines, there is no oxygen line in the SMILES spectra, so the strong ozone line at 625.371 GHz has been chosen. The pointing parameters and the ozone profiles are retrieved from the line wings which are measured with high signal to noise ratio, whereas the temperature profile is retrieved from the optically thick line center. The main systematic component of the retrieval error was found to be the neglect of the non-linearity of the radiometric gain in the calibration procedure. This causes a temperature retrieval error of 5–10 K. Because of these large temperature errors, it is not possible to construct a reliable hydrostatic pressure profile. However, as a consequence of the retrieval of pointing parameters, pressure induced errors are significantly reduced if the retrieved trace gas profiles are represented on pressure levels instead of geometric altitude levels. Further, various setups of trace gas retrievals have been tested. The error analysis for the retrieved HOCl profile demonstrates that best results for inverting weak lines can be obtained by using narrow spectral windows.

  10. Microwave to Submillimeter Observations of Molecules in the Laboratory and in Space

    Science.gov (United States)

    Halfen, DeWayne

    2013-06-01

    The primary method of identifying molecular species in interstellar space is radio astronomy. Observations performed at radio telescopes are based on high-resolution laboratory measurements of the pure rotational spectrum of a molecule. With this technique, over 150 different chemical compounds have been securely detected in interstellar gas. High-resolution rotational spectra have accuracies of one part in 107 - 108, and provide the characteristic frequencies that are used to search for these species. Rotational spectra are typically recorded using direct absorption methods, Fourier transform microwave/millimeter-wave spectroscopy, and velocity modulation techniques. Also exotic synthesis methods, such as DC and AC glow discharges, pulsed supersonic jet expansions, laser ablation, and Broida-type ovens, are often required to produce these molecules. Recent laboratory and astronomical studies have expanded set of molecules that are now known in interstellar/circumstellar gas. The first negative molecular ions have been detected in cold, dark clouds and circumstellar envelopes. The iron-bearing species FeCN was also recently measured in the laboratory and discovered in the gas surrounding a carbon-rich AGB star, the first iron-containing species found in space. New observations of oxygen-rich stars have shown that metal-bearing oxides and hydroxides are also abundant circumstellar species in these environments. These new discoveries, as well as recent laboratory results for other potential interstellar species, will also be presented, in particular those for ScO, ScC2, and AlC2. In addition, the need for more measurements of metal-containing molecules will be discussed.

  11. Millimeter and Submillimeter Observations of Comet 67P's Nucleus, Gas, and Dust with the Rosetta/MIRO Instrument

    Science.gov (United States)

    Hofstadter, Mark

    2016-04-01

    The Microwave Instrument for the Rosetta Orbiter (MIRO) has been making measurements of comet 67P/C-G since June 2014, when the comet was 3.92 AU from the Sun and Rosetta was approximately 400,000 km from the nucleus. Those first observations were spatially unresolved measurements of the 556 GHz water line, used to infer the abundance and velocity of water vapor in the coma (Gulkis et al. 2015, Science 347). In the almost two years since that time, as the spacecraft has moved closer to the nucleus and the comet has become more active (perihelion at 1.2 AU from the Sun occurred in August 2015), MIRO's submillimeter spectrometer (working at frequencies near 550 GHz, or wavelengths near 0.5 mm) has been used to determine the velocity, abundance, and spatial distribution of H216O, H217O, H218O, CH3OH, NH3, and CO in the coma as a function of time (e.g. water is discussed by Biver et al. 2015 and Lee et al. 2015, Astron. and Astrophys. 583). In addition to its submillimeter spectrometer, MIRO has two broad band continuum channels operating at wavelengths near 0.5 and 1.6 millimeter. These channels are designed to probe the nucleus ˜1 millimeter to 10 cm below the surface. Data have been used to infer properties such as thermal inertia, porosity, and ice content as functions of location, depth, and time (e.g. Schloerb et al. 2015 and Choukroun et al. 2015, Astron. and Astrophys. 583). These channels have also been used to map the distribution of relatively large dust grains (radius > ˜1 mm) in the inner coma of the comet, with the potential to constrain models of dust acceleration, cooling, and fragmentation. This talk will review the latest results from MIRO's measurements of the nucleus, coma, and dust, and discuss some of the processes that couple these components of the comet.

  12. Comprehensive Submillimeter Wave Studies of the Isotopic Species of a Major Weed: Methyl Formate

    Science.gov (United States)

    Margulès, L.; Motiyenko, R.; Huet, T. R.; Coudert, L. H.; Kleiner, I.; Carvajal, M.; Mollendal, H.; Guillemin, J.-C.

    2010-06-01

    Complex organic molecules are relatively heavy, their maximum absorption is in the millimetric domain at about 300 GHz. But the most abondant, like methyl formate, could be detected in the ISM up to 900 GHz. We will present here the last results obtained about the two 18O and the doubly-deuterated species of methyl formate. This concludes the systematic investigation up to 660 GHz for the mono-substituted isotopic species with either 13C, 18O, or D, which began in 2006. The lines from these isotopic species will certainly be present in the spectra which will be recorded in the next years with the very sensitive telescope ALMA, HERSHEL and SOFIA. The detection of isotopic species is very important for the astrophysical community to improve the interstellar chemical modeling and to understand the formation mechanism of these complex organic molecules. Our interest was also on the theoretical aspects. Like other complex organic molecules, methyl formate displays a large amplitude motion. Here it is the rotation of the methyl group with respect to the rest of the molecule. Theoretical models were developed to reproduce accurately the observed frequencies for large quantum numbers values as J-values as high as 70 could be reached. Similarly the investigation of the doubly-deuterated HCOOCHD_2 was undertaken to test the model developed for mono-deuterated HCOOCH_2D. This work is supported by ANR-08-BLAN-0054 and ANR-08-BLAN-0225. C. Comito, P. Schilke, T. G. Phillips, et al., Astrophys. J. Supp. 156 (2005) 127. L. Margulès, L. H. Coudert, H. Mollendal, et al., J. Mol. Spec. 254 (2009) 55.

  13. Millimeter/submillimeter-wave spectrum of the VCl(+) radical in its X (4)Sigma(-) ground state.

    Science.gov (United States)

    Halfen, D T; Ziurys, L M

    2009-11-26

    The pure rotational spectrum of the molecular ion VCl(+) (X (4)Sigma(-)) has been recorded from 274 to 419 GHz using a combination of millimeter direct absorption and velocity modulation spectroscopy. This study is the first spectroscopic measurement of this species in the laboratory, which has also enabled the determination of the ground state term, (4)Sigma(-). VCl(+) was produced in an AC discharge of VCl(4) and argon. Fifteen and eleven rotational transitions were recorded for the V(35)Cl(+) and V(37)Cl(+) isotopologues, respectively. The fine structure splittings of the (4)Sigma(-) state were found to deviate significantly from a case (b) pattern. Specifically, spin components from adjacent rotational transitions were found to overlap in frequency. Unusual vanadium hyperfine splittings were also observed in the VCl(+) spectra; the expected vanadium octet was clearly present for the F(2) and F(3) spin components but was partially collapsed and reversed in frequency ordering in the F(1) and F(4) cases. The data were analyzed in a global fit, and rotational, fine structure, and hyperfine constants were determined. For VCl(+), the values of both the spin-spin and spin-rotation parameters are extremely large, as were the third-order hyperfine and spin-rotation terms, b(s) and gamma(s). For example, the spin-spin constant is lambda = 417 900(22 700) MHz, while gamma = 6567(51) MHz. The values of these constants indicate a high density of excited electronic states close to the ground state, which contribute to second and third-order spin-orbit coupling. The hyperfine constants suggest a sigma(1)pi(2) electron configuration, as opposed to sigma(1)delta(2), as found in VS and VO. The bond length of VCl(+), r(0) = 2.119(2) A, is shorter than that of VCl by 0.1 A, which has r(0) = 2.219 A. The decrease in bond length is attributed to an increase in the electrostatic attraction between V(2+) and Cl(-), as opposed to V(+) and Cl(-) for VCl.

  14. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Science.gov (United States)

    White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.

    2017-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

  15. Detection of Enceladus Torus from Submillimeter Observations with Herschel/HIFI

    NARCIS (Netherlands)

    Lellouch, Emmanuel; Hartogh, P.; Moreno, R.; Bockelée-Morvan, D.; Biver, N.; Jarchow, C.; Rengel, M.; Cavalié, T.; Helmich, F.; HssO Team, [Unknown

    2010-01-01

    The presence of water vapor in the stratospheres of the Giant Planets and Titan has been established from their emission in rotational lines longwards of 30 microns. Emission in the fundamental H2O line at 557 GHz has been spectrally resolved from heterodyne observations with SWAS at Jupiter and

  16. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  17. Far-infrared and submillimeter observations and physical models of the reflection nebula Cederblad 201

    NARCIS (Netherlands)

    Kemper, C; Spaans, M; Jansen, DJ; Hogerheijde, MR; van Dishoeck, EF; Tielens, AGGM

    1999-01-01

    Infrared Space Observatory (ISO) CC nl 158 mu m, [O I] 63 mu m, and H-2 9 and 17 mu m observations are presented of the reflection nebula Ced 201, which is a photon-dominated region (PDR) illuminated by a B9.5 star with a color temperature of 10,000 K (a cool PDR). In combination with ground-based

  18. The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory

    Science.gov (United States)

    Hollister, Matthew I.; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; LeDuc, Henry G.; Maloney, Philip R.; Mazin, Benjamin A.; Nguyen, Hien Trong; Noroozian, Omid; Sayers, Jack; Schlaerth, James; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip; Zmuidzinas, Jonas

    2010-07-01

    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed.

  19. Fast computation of the Narcissus reflection coefficient for the Herschel far-infrared/submillimeter-wave Cassegrain telescope

    Science.gov (United States)

    Lucke, Robert L.; Fischer, Jacqueline; Polegre, Arturo M.; Beintema, Douwe A.

    2005-10-01

    Placement of a scatter cone at the center of the secondary of a Cassegrain telescope greatly reduces Narcissus reflection. To calculate the remaining Narcissus reflection, a time-consuming physical optics code such as GRASP8 is often used to model the effects of reflection and diffraction. Fortunately, the Cassegrain geometry is sufficiently simple that a combination of theoretical analysis and Fourier propagation can yield rapid, accurate results at submillimeter wavelengths. We compare these results with those from GRASP8 for the heterodyne instrument for the far-infrared on the Herschel Space Observatory and confirm the effectiveness of the chosen scatter cone design.

  20. Observations of Obliquely Propagating Electron Bernstein Waves

    DEFF Research Database (Denmark)

    Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.

    1981-01-01

    Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....

  1. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics

    Science.gov (United States)

    Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.

    2011-08-01

    Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims: While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high mass protostars, very little exists on low mass protostars, which are believed to resemble our own Sun's progenitor. To help fill up this gap in our understanding, we carried out a complete spectral survey of the bands at 3, 2, 1, and 0.9 mm towards the solar type protostar IRAS 16293-2422. Methods: The observations covered a range of about 200 GHz and were obtained with the IRAM-30 m and JCMT-15 m telescopes during about 300 h of observations. Particular attention was devoted to the inter-calibration of the acquired spectra with previous observations. All the lines detected with more than 3σ confidence-interval certainty and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Results: More than 4000 lines were detected (with σ ≥ 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (about two-thirds) of the lines are weak and produced by complex organic molecules. The analysis of the profiles of more than 1000 lines belonging to 70 species firmly establishes the presence of two distinct velocity components associated with the two objects, A and B, forming the IRAS 16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 M⊙ object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 M⊙. The difference in the rest velocities

  2. Observing a Gravitational Wave Background With Lisa

    National Research Council Canada - National Science Library

    Tinto, M; Armstrong, J; Estabrook, F

    2000-01-01

    ... formation of several observables. All are independent of lasers and frequency standard phase fluctuations, but have different couplings to gravitational waves and to the various LISA instrumental noises...

  3. Ulysses Observations of Nonlinear Wave-wave Interactions in the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 21; Issue 3-4. Ulysses Observations of Nonlinear Wave-wave Interactions in the Source Regions of Type III Solar Radio Bursts. G. Thejappa R. J. MacDowall. Session XI – Solar Wind & Interplanetary Magnetic Fields Volume 21 Issue 3-4 ...

  4. Resonant transitions between split energy levels triple-barrier nanostructures and their application perspectives in submillimeter-wave devices

    CERN Document Server

    Golant, E I

    2002-01-01

    A mathematical model has been developed for electronic coherent tunneling through the triple-barrier quantum-dimensional semiconductor heterostructures in the terahertz electric field. Using this model the frequency dependences of the negative dynamic conductivity for triple-barrier structures with coherent electron tunneling through the split energy levels are investigated. It has been shown that these structures can be employed in far-infrared coherent quantum lasers, the wave length being 600 mu m (5 THz)

  5. Observation of Phillips' spectrum in Faraday waves

    CERN Document Server

    Castillo, Gustavo

    2016-01-01

    We report the observation of the Phillips' spectrum of gravity surface waves driven by a horizontally moving wave maker interacting with Faraday waves. We measure the temporal fluctuations of the surface wave amplitude at a given location and we show that, for a wide range of forcing parameters, they display a power-law spectrum that greatly differs from the one predicted by the WT theory but coincides with Phillips' spectrum for gravity waves. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power-laws as a function of the time lag, with exponents that are not linear with the order of the structure function, thus showing that the wave field is intermittent. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves, which can be related directly to the P...

  6. Observations of exotic inner core waves

    NARCIS (Netherlands)

    Waszek, Lauren; Deuss, A.F.

    2015-01-01

    The seismic structure of Earth’s inner core is highly complex, displaying strong anisotropy and further regional variations. However, few seismic waves are sensitive to the inner core and fundamental questions regarding the origin of the observed seismic features remain unanswered. Thus, new

  7. Submillimeter Array reveals molecular complexity of dying stars

    Science.gov (United States)

    Tomasz

    2018-01-01

    The unique capabilities of the Submillimeter Array (SMA) have allowed unprecedented studies of cool evolved stars at submillimeter wavelengths. In particular, the SMA now offers the possibility to image multiple molecular transitions at once, owing to the 32-GHz wide instantaneous bandwidth of SWARM, the SMA’s new correlator. Molecular gas located far and very close to the photosphere of an asymptotic-giant branch (AGB) star, a red supergiant, or a pre-planetary nebula can now be examined in transitions observed simultaneously from a wide range of energy levels. This allows a very detailed quantitative investigation of physical and chemical conditions around these variable objects. Several imaging line surveys have been obtained with the SMA to reveal the beautiful complexity of these evolved systems. The surveys resulted in first submillimeter-wave identifications of molecules of prime astrophysical interest, e.g. of TiO, TiO2, and of rotational transitions at excited vibrational states of CO. An overview of recent SMA observations of cool evolved stars will be given with an emphasize on the interferometric line surveys. We will demonstrate their importance in unraveling the mass-loss phenomena, propagation of shocks in the circumstellar medium, and production of dust at elevated temperatures. The SMA studies of these molecular factories have a direct impact on our understanding of the chemical evolution of the Galaxy and stellar evolution at low and high masses.

  8. In Situ Observations of Seismic Wave Propagation

    Science.gov (United States)

    Hudson, Kenneth Stewart

    Instrumented geotechnical field sites are designed to capture the infrequent but critically important in situ case histories of ground response, deformation, and liquefaction during significant earthquakes that generate high intensity ground shaking and large strains. The University of California at Santa Barbara has been monitoring densely instrumented geotechnical array field sites for almost three decades, with continuous recording now for more than a decade. When seismic waves travel into soil with sufficiently large ground motions, the soil behaves nonlinearly meaning the shear modulus of the material decreases from the linear value observed during weak ground motions. The degraded shear modulus can continue to affect a site for a period of time by changing the soil response during smaller ground motions after the large event. Decreased shear modulus is inferred when a decrease of shear wave velocity between two sensors in a vertical downhole array is observed. This velocity is calculated by measuring the difference in shear wave arrival times between the sensors using normalized cross correlation. The trend of decreasing shear wave velocity with increasing peak ground acceleration is observed at multiple geotechnical array field sites. The length of time the decreased velocity remains following stronger shaking is analyzed using more than 450 events over more than a decade at the Wildlife Liquefaction Array (WLA). Using both monthly and yearly velocity averages between sensors, there is evidence that suggests the shear wave velocity remains low over a period of months following larger significant shaking events at the site. In addition, at WLA there is evidence that the decrease in shear wave velocity can be detected at ground motion levels as low as 20 cm/s2. Additionally at the Garner Valley Downhole Array, a permanent cross-hole experiment is used to measure velocity changes in the soil with changing water table height. An underground hammer source swings

  9. SUBMILLIMETER ARRAY OBSERVATIONS OF MAGNETIC FIELDS IN G240.31+0.07: AN HOURGLASS IN A MASSIVE CLUSTER-FORMING CORE

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Liu, Hauyu B.; Tang, Ya-Wen [Academia Sinica Institute of Astronomy and Astrophysics, P. O. Box 23-141, Taipei 106, Taiwan (China); Girart, Josep M., E-mail: kpqiu@nju.edu.cn [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain)

    2014-10-10

    We report the first detection of an hourglass magnetic field aligned with a well-defined outflow rotation system in a high-mass, star-forming region. The observations were performed with the Submillimeter Array toward G240.31+0.07, which harbors a massive, flattened, and fragmenting molecular cloud core and a wide-angle bipolar outflow. The polarized dust emission at 0.88 mm reveals a clear hourglass-shaped magnetic field aligned within 20° of the outflow axis. Maps of high-density tracing spectral lines, e.g., H{sup 13}CO{sup +} (4-3), show that the core is rotating about its minor axis, which is also aligned with the magnetic field axis. Therefore, both the magnetic field and kinematic properties observed in this region are surprisingly consistent with the theoretical predictions of the classic paradigm of isolated low-mass star formation. The strength of the magnetic field in the plane of sky is estimated to be ∼1.1 mG, resulting in a mass-to-magnetic flux ratio of 1.4 times the critical value and a turbulent-to-ordered magnetic energy ratio of 0.4. We also find that the specific angular momentum almost linearly decreases from r ∼ 0.6 pc to 0.03 pc scales, which is most likely attributed to magnetic braking.

  10. Shear Shock Waves Observed in the Brain

    Science.gov (United States)

    Espíndola, David; Lee, Stephen; Pinton, Gianmarco

    2017-10-01

    The internal deformation of the brain is far more complex than the rigid motion of the skull. An ultrasound imaging technique that we have developed has a combination of penetration, frame-rate, and motion-detection accuracy required to directly observe the formation and evolution of shear shock waves in the brain. Experiments at low impacts on the traumatic-brain-injury scale demonstrate that they are spontaneously generated and propagate within the porcine brain. Compared to the initially smooth impact, the acceleration at the shock front is amplified up to a factor of 8.5. This highly localized increase in acceleration suggests that shear shock waves are a previously unappreciated mechanism that could play a significant role in traumatic brain injury.

  11. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick [Oregon State Univ., Corvallis, OR (United States). School of Civil & Construction Engineering; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows: Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable of

  12. Faint Submillimeter Galaxies Behind Lensing Clusters

    Science.gov (United States)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  13. Adaptable radiative transfer innovations for submillimeter telescopes (ARTIST)

    DEFF Research Database (Denmark)

    Padovani, Marco; Jørgensen, Jes Kristian; Bertoldi, Frank

    2011-01-01

    Submillimeter observations are a key for answering many of the big questions in modern-day astrophysics, such as how stars and planets form, how galaxies evolve, and how material cycles through stars and the interstellar medium. With the upcoming large submillimeter facilities ALMA and Herschel...

  14. The millimeter and submillimeter spectrum of CF(+)

    Science.gov (United States)

    Plummer, G. M.; Anderson, T.; Herbst, E.; De Lucia, F. C.

    1986-01-01

    The application of a recently described technique for producing significantly enhanced concentrations of molecular ions for spectroscopic study to the detection and measurement of the millimeter and submillimeter wave spectrum of CF(+) is reported. The experimental procedure is discussed, and the measured absorption frequencies are shown and compared with those calculated from spectral constants. These constants are given together with those from the infrared spectrum by Kawaguchi and Hirota (1985).

  15. Observation of Phillips's spectrum in Faraday waves

    Science.gov (United States)

    Castillo, Gustavo; Falcon, Claudio

    2016-11-01

    We consider the problem of wave turbulence generated by singularities from an experimental point of view. We study a system of Faraday waves interacting with waves generated by a wave-maker driven with a random forcing. We measure the temporal fluctuations of the surface wave amplitude at a given location and we show that for a wide range of forcing parameters the surface height displays a power-law spectra that greatly differs from the one predicted by the WT theory. In the capillary region the power spectrum turns out to be proportional to f-5, which we believe is due to singularities moving across the system. Proyecto Postdoctorado Fondecyt Nro 3160032.

  16. Data analysis techniques for gravitational wave observations

    Indian Academy of Sciences (India)

    Abstract. Astrophysical sources of gravitational waves fall broadly into three categories: (i) transient and bursts, (ii) periodic or continuous wave and (iii) stochastic. Each type of source requires a different type of data analysis strategy. In this talk various data analysis strategies will be reviewed. Optimal filtering is used for ...

  17. Data analysis techniques for gravitational wave observations

    Indian Academy of Sciences (India)

    Astrophysical sources of gravitational waves fall broadly into three categories: (i) transient and bursts, (ii) periodic or continuous wave and (iii) stochastic. Each type of source requires a different type of data analysis strategy. In this talk various data analysis strategies will be reviewed. Optimal filtering is used for extracting ...

  18. Ulysses Observations of Nonlinear Wave-wave Interactions in the ...

    Indian Academy of Sciences (India)

    tribpo

    Department of Astronomy, University of Maryland, College Park, MD 20742. 2. NASA, Goddard Space Flight Center, Greenbelt, MD 20771. *e-mail: .... power law type energetic electrons present in the solar wind plasmas, provided it is less than the Langmuir wave growth rate γb due to beam plasma instability by an order of ...

  19. Wave Height Distribution Observed by Ships in the North Atlantic

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup; Schrøter, Carsten; Jensen, Jørgen Juncher

    2005-01-01

    The analysis of almost 25000 observation of the wave height from ships in the North Atlantic shows that the encountered wave height distribution is significantly lower than the distribution provided by the classification societies for structural assessment. The joint probability distribution...... for the significant wave height, the relative speed and the ship heading relative to the wave direction is given. This distribution shows that for higher waves the crews avoid sailing in following sea and as expected the speed is decreased in higher waves. There is, however, still a relatively high probability...

  20. Manifestations of wave packet revivals in the moments of observables

    Science.gov (United States)

    Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.

    2004-08-01

    Using a generic Hamiltonian that models wave packet propagation in a Kerr-like medium, matter wave field dynamics in Bose-Einstein condensation, etc., we show that distinctive signatures of wave packet revivals and fractional revivals are displayed by the time evolution of the expectation values of appropriate observables, enabling selective identification of different fractional revivals.

  1. Observation of Gravitational Waves from a Binary Black Hole Merger

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M.A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, R.M.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.A.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10−21. It matches

  2. HERTZ, A Submillimeter Polarimeter

    Science.gov (United States)

    Schleuning, D. A.; Dowell, C. D.; Hildebrand, R. H.; Platt, S. R.; Novak, G.

    1997-03-01

    We describe a 32 pixel polarimeter, Hertz, for use at the Caltech Submillimeter Observatory. We present polarization maps of the Orion molecular cloud (OMC-1) at 350 \\mum (46 detections) and 450 \\mum (19 detections) with 3\\sigma or better statistical significance. The 350 \\mum polarization ranges from 1.4 to 6.8% with a median value of 3.3%. The position angles are fairly uniform across the souce at an angle of \\sim30 degrees (east of north). We describe the design and performance characteristics of the polarimeter and discuss systematic effects due to telescope and instrumental polarization, atmospheric fluctuations, and reference beam flux. (SECTION: Astronomical Instrumentation)

  3. Observation and control of shock waves in individual nanoplasmas.

    Science.gov (United States)

    Hickstein, Daniel D; Dollar, Franklin; Gaffney, Jim A; Foord, Mark E; Petrov, George M; Palm, Brett B; Keister, K Ellen; Ellis, Jennifer L; Ding, Chengyuan; Libby, Stephen B; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M; Xiong, Wei

    2014-03-21

    Using an apparatus that images the momentum distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas. We demonstrate that the introduction of a heating pulse prior to the main laser pulse increases the intensity of the shock wave, producing a strong burst of quasimonoenergetic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves and provide a mechanism for the generation and control of these shock waves. This observation of distinct shock waves in dense plasmas enables the control, study, and exploitation of nanoscale shock phenomena with tabletop-scale lasers.

  4. Observations and Modeling of Plasma Waves in the Solar Atmosphere

    Science.gov (United States)

    Liu, W.; Ofman, L.; Downs, C.

    2016-12-01

    The solar atmosphere, especially the extended corona, provides rich observations of magnetohydrodynamic (MHD) waves and plasma waves in general. Such waves can be used as seismological tools to probe the physical conditions of the medium in which they travel, such as the coronal magnetic field and plasma parameters. Recent high-resolution imaging and spectroscopic observations in extreme ultraviolet (EUV) by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and in UV by the Interface Region Imaging Spectrograph (IRIS) have opened a new chapter in understanding these waves and in utilizing them for coronal seismology. We will review such new observations of two intimately related phenomena - global EUV waves (so-called "EIT waves") associated with coronal mass ejections (CMEs) and quasi-periodic, fast-mode magnetosonic wave trains associated with flares. We will focus on the generation and propagation of global EUV waves and their interaction with coronal structures, as well as the correlation of AIA-detected fast-mode wave trains with flare pulsations seen from radio to hard X-ray wavelengths. We will also present recent MHD modeling efforts in reproducing these waves using realistic, observationally-driven simulations. We will discuss the roles of such waves in energy transport within the solar atmosphere and in their associated CME/flare eruptions.

  5. Observation of the Dyakonov-Tamm Wave

    CERN Document Server

    Pulsifer, Drew Patrick; Lakhtakia, Akhlesh

    2013-01-01

    A surface electromagnetic wave called the Dyakonov-Tamm wave has been theoretically predicted to exist at the interface of two dielectric materials at least one of which is both anisotropic and periodically nonhomogeneous. For experimental confirmation, a prism-coupled configuration was used to excite the Dyakonov-Tamm wave guided by the interface of a dense thin film of magnesium fluoride and a chiral sculptured thin film of zinc selenide. The excitation was indicated by a reflection dip (with respect to the angle of incidence in the prism-coupled configuration) that is independent of the polarization state of the incident light as well as the thicknesses of both partnering materials beyond some thresholds. Applications to optical sensing and long-range on-chip communication are expected.

  6. ULF waves in other magnetospheres - observations and possible source mechanisms

    Science.gov (United States)

    Khurana, K. K.

    1993-12-01

    Five other planets besides the Earth (Mercury, Jupiter, Saturn, Uranus and Neptune) in our solar system are now known to possess internal magnetic fields. The exploration of these planets by the Mariner, Pioneer, Voyager and Ulysses spacecraft has revealed that all of them possess fully expressed magnetospheres which share several similarities in their structures with the Earth's magnetosphere. This paper presents an overview of the work done so far in the field of the ULF waves in the magnetospheres of Mercury, Jupiter, Saturn and Uranus. To give an idea of the expected wave periods, gyroperiods of the dominant ion species and the fundamental periods of the standing Alfven waves are presented as functions of L parameter in these magnetospheres. In the magnetosphere of Mercury, ULF waves were observed in the vicinity of the magnetopause and in the inner magnetosphere with frequencies in the range of 0.1-0.5 Hz. In the magnetosphere of Jupiter, at least three different types of wave sources are observed. Near the dayside and the dawn magnetopause, waves with periods 5-20 min and amplitudes between 5 and 10 nT are observed which may be caused by an interaction between the corotating outflowing plasma and the antisunward moving plasma from the magnetosheath. In Saturn's magnetosphere, ULF waves have been observed to be strongly confined to the plasma sheet and have wave periods in the range of 5-60 minutes. The calculated fundamental has a wave period of 5-6 hours in the region where these waves were observed. The ULF waves have extremely small amplitudes (approximately = 0.3 nT) in the magnetosphere of Uranus. These waves were also seen to be confined to the low magnitude latitudes and have periods much shorter than that of the fundamental of a standing Alfven wave.

  7. Validation of Visually Observed Waves with the Recorded Waves on the Southwest Coast of India

    Science.gov (United States)

    Abdulla, P. K.; James, E. J.

    2017-11-01

    The wave climate, pre-requisite information for planning and design of coastal engineering structures, can be obtained by different methods. Coastal protection works require wave climate in the nearshore region; deployment of wave sensors and visual observation of the waves from the shore are among the methods that can be adopted for collecting the wave data. On the southwest coast of India (Kerala), wave data have been collected by visual observation from the shore, at 18 stations located along the entire coastline since 1973. The pressure type wave sensors were installed in the nearshore region at four stations, almost equally spaced along the coast and data acquired for a period of 4 years. Of the four instrument stations, two were located at the visual observation station itself, the third one was about 7 km from the nearest visual observation station and the fourth station midway between two visual observation stations—the distance between the instrument station and the visual observation stations being about 20 km. Study revealed that the visually observed wave parameters are comparable with the wave parameters acquired by the instrument, particularly with respect to the wave height.

  8. Ion cyclotron waves observed in the polar cusp.

    Science.gov (United States)

    Fredricks, R. W.; Russell, C. T.

    1973-01-01

    During the penetration by Ogo 5 of the low-latitude disturbed polar cusp region on Nov. 1, 1968, while a major magnetic storm was in progress, a variety of plasma wave activity was observed. Observations of waves with amplitudes less than 2% of the background magnetic field intensity and having frequencies between approximately 0.67 and 0.87 times the local proton gyrofrequency are described. The polarization of these waves indicates that they are propagating at an appreciable angle to the local geomagnetic field line direction. The source of these waves has not been determined, but currents and gradient drifts are suggested as possible agents.

  9. Impulsive plasma waves observed by DE-1 in the magnetosphere

    Science.gov (United States)

    Ondoh, T.; Nakamura, Y.; Watanabe, S.

    Impulsive plasma waves (1-9 kHz) with durations less than 100 msec have been found in DE-1 wide-band electric field data (650 Hz - 40 kHz) received at Kashima, Japan. The waves are associated with a strong narrow-band ELF hiss, and were observed at geocentric distances from 3.1 to 4.9 Re (earth's radius) in the low-latitude nightside magnetosphere. Local electron densities and plasmapause locations estimated suggest that the waves were observed outside the nightside plasmapause. The waves are discussed in terms of Landau resonant trapping of magnetospheric electrons by the associated whistler-mode ELF hiss.

  10. Shear-coupled PL waves observed at the Kerguelen Isles

    Science.gov (United States)

    Pettersen, O.; Maupin, V.

    2003-04-01

    S-waves generated by earthquakes in Indonesia and recorded at the seismological broadband station PAF on the Kerguelen Isles are usually followed by particularly large, long and monochromatic wavetrains. These wavetrains are not observed, or are not as prominent, for events at comparable epicentral distances in other source regions. They have a clear dominant period of about 20 seconds and last usually for more than 100s. They show slight normal dispersion, and have a prograde elliptical motion in the vertical propagation plane with largest amplitude on the radial component. These characteristics suggest that the observed waves are shear-coupled PL-waves, i.e., a phase which propagates partly as a mantle S-wave and partly as P-waves trapped in the crust. The P-wave portion of the propagation may occur close to the source, close to the receiver, or at both ends of the wavepath, over a significant portion of the epicentral distance. Observations at Kerguelen of strong shear-coupled PL waves from Indonesian earthquakes suggest a special crust and upper mantle structure in the region between the Kerguelen hotspot and the South-East Indian Ridge, 1000 km away. This includes the region where a special upper mantle anisotropic structure has been detected from surface wave polarisation anomalies. We analyse which implications the strong shear-coupled PL waves may have on the structure between the hotspot and the ridge.

  11. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  12. Mesoscale simulations of the gravity waves observed during VOROCRE

    Science.gov (United States)

    Arsac, A.; Plougonven, R.; Hertzog, A.; Guez, L.; Vial, F.

    2009-04-01

    The VORCORE campaign (September 2005-February 2006) has provided aunique dataset for the investigation of gravity waves and the associated momentum fluxes in the lower stratosphere (16-19km) above Antarctica. Because the measurements were made with superpressure balloons that behave as quasi-Lagrangian tracers, they provide direct estimates of key quantities such as the intrinsic frequencies of the gravity waves. In order to investigate further the gravity wave field, numerical simulations with the mesoscale meteorological model Weather Research and Forecast have been conducted on a domain covering the Antarctic continent, for several periods during the VORCORE campaign. The VORCORE dataset provides a unique opportunity to test several modelling issues: 1) what part of the gravity wave spectrum can we simulate with available resolutions (typically 15 to 20 km in the horizontal, and more than a hundred levels in the vertical, up to the mid-stratosphere)? 2) How does the agreement between model and observations vary for different types of gravity waves (e.g. orographic waves / non-orographic waves, low-frequency / high frequency)? 3) How sensitive are the simulated waves to different parameters of the model setting (length of simulation, height of model top, sponge layer, parameterizations for boundary layer)? Simulations have been conducted in different settings to bring answers to these questions and determine how close an agreement we can expect to find between observations and simulations. To the extent that such simulations reproduce quantitatively well the gravity wave field in the locations where observations are available, they can be used to investigate other aspects of the wave field. For example, a more global view of the momentum fluxes, their variability and their evolution with height can be obtained. Also, the sources of the gravity waves, in particular of non-oographic inertia-gravity waves, can be investigated.

  13. Observation and control of shock waves in individual nanoplasmas

    CERN Document Server

    Hickstein, Daniel D; Gaffney, Jim A; Foord, Mark E; Petrov, George M; Palm, Brett B; Keister, K Ellen; Ellis, Jennifer L; Ding, Chengyuan; Libby, Stephen B; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M; Xiong, Wei

    2014-01-01

    In a novel experiment that images the momentum distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas. We demonstrate that the introduction of a heating pulse prior to the main laser pulse increases the intensity of the shock wave, producing a strong burst of quasi-monochromatic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves, and provide a mechanism for the generation and control of these shock waves. This observation of distinct shock waves in dense plasmas enables the control, study, and exploitation of nanoscale shock phenomena with tabletop-scale lasers.

  14. Improving coastal wave hindcasts by combining offshore buoy observations with global wave models.

    Science.gov (United States)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2014-12-01

    Waves conditions in southern California are sensitive to offshore wave directions. Due to blocking by coastal islands and refraction across complex bathymetry, a transform incident offshore swell-spectra to shallow water buoy locations. A nearly continuous 10 yr data set of approximately 14 buoys is used. Comparisons include standard bulk parameters (e.g. significant wave height, peak period), the frequency-dependent energy spectrum (needed for run-up estimation) and radiation stress component Sxy (needed for alongshore current and sediment transport estimation). Global wave model uncertainties are unknown, complicating the formulation of optimum assimilation constraints. Several plausible models for estimating offshore waves are tested. Future work includes assimilating nearshore buoy observations, with the long-term objective of accurate regional wave hindcasts using an efficient mix of global wave models and buoys. This work is supported by the California Department of Parks and Recreation, Division of Boating and Waterways Oceanography Program.

  15. Characteristics of inertial currents observed in offshore wave records

    Science.gov (United States)

    Gemmrich, J.; Garrett, C.

    2012-04-01

    It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.

  16. Gravitational-wave observations from ground-based detectors

    Science.gov (United States)

    Li, Tjonnie G. F.

    2017-10-01

    Recent detections of gravitational waves by the LIGO detectors herald a new era of observational astronomy. Previously invisible objects and phenomena may now be uncovered through their gravitational interaction. Observation of gravitational waves allows one to explore the extremes of the Universe and study astronomy and fundamental physics like never before. This article gives a brief overview of the detection process, from the production of the data to their physical implications.

  17. Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets.

    Science.gov (United States)

    Kienzler, D; Flühmann, C; Negnevitsky, V; Lo, H-Y; Marinelli, M; Nadlinger, D; Home, J P

    2016-04-08

    We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δα=15.6, corresponding to a distance of 240 nm between the two superposed wave packets.

  18. Conjugate Observations of EMIC Waves and Precipitation of Relativistic Electrons

    Science.gov (United States)

    Wang, Dedong; Shprits, Yuri; Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong

    2017-04-01

    Utilizing data from NOAA Geostationary Operational Environmental Satellite (GOES)-12 and low-altitude Polar Orbiting Environmental Satellites (POES)-15, a well-conjugate observation of Electromagnetic Ion Cyclotron (EMIC) waves and precipitation of ring current ions and relativistic electrons is reported. This event took place in periods without geomagnetic storms at near 21:30 on June 19, 2008. During this interval, GOES-12 observed EMIC waves at geosynchronous orbit in dusk Magnetic Local Time (MLT) sector. Conjugately, low-altitude NOAA POES-15 observed precipitation of ring current ions and relativistic electrons. To our knowledge, this is the best conjugated observation from satellites to illustrate EMIC wave-driven Relativistic Electron Precipitation (REP) in the MLT dusk sector during non-storm periods. The REP was observed by POES-15 at the same L (the radial distance in the equatorial plane under dipolar geomagnetic model) and MLT as where EMIC waves were observed by GOES-12, and the projections along the geomagnetic field line of NOAA GOES-12 and POES-15 at the altitude of 100 km above the Earth are nearly at the same geomagnetic latitude and longitude (△MLAT 0.7°, △MLong 0.6°). The diffusion coefficients of relativistic electrons by the EMIC waves are also calculated. This event suggests that, during the periods without geomagnetic storms, EMIC waves can also cause the loss of ring current ions and relativistic electrons through pitch-angle scattering in the dusk sector.

  19. Scattered P'P' waves observed at short distances

    Science.gov (United States)

    Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine

    2011-01-01

    We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.

  20. Direct Observations of Different Sunspot Waves Influenced by Umbral Flashes

    Science.gov (United States)

    Sharma, Aishawnnya; Gupta, G. R.; Tripathi, Durgesh; Kashyap, V.; Pathak, Amit

    2017-12-01

    We report the simultaneous presence of chromospheric umbral flashes and associated umbral waves, and propagating coronal disturbances, in a sunspot and related active region. We have analyzed time-distance maps obtained using the observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. These maps show the simultaneous occurrence of different sunspot oscillations and waves such as umbral flashes, umbral waves, and coronal waves. Analysis of the original light curves, i.e., without implementing any Fourier filtering on them, shows that the amplitudes of different sunspot waves observed at different atmospheric layers change in synchronization with the light curves obtained from the umbral flash region, thus demonstrating that these oscillations are modulated by umbral flashes. This study provides the first observational evidence of the influence of sunspot oscillations within the umbra on other sunspot waves extending up to the corona. The properties of these waves and oscillations can be utilized to study the inherent magnetic coupling among different layers of the solar atmosphere above sunspots.

  1. VIGOR: Virtual Interaction with Gravitational Waves to Observe Relativity

    Science.gov (United States)

    Kitagawa, Midori; Kesden, Michael; Tranm, Ngoc; Venlayudam, Thulasi Sivampillai; Urquhart, Mary; Malina, Roger

    2017-05-01

    In 2015, a century after Albert Einstein published his theory of general relativity, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves from binary black holes fully consistent with this theory. Our goal for VIGOR (Virtual-reality Interaction with Gravitational waves to Observe Relativity) is to communicate this revolutionary discovery to the public by visualizing the gravitational waves emitted by binary black holes. VIGOR has been developed using the Unity game engine and VR headsets (Oculus Rift DK2 and Samsung Gear VR). Wearing a VR headset, VIGOR users control an avatar to "fly" around binary black holes, experiment on the black holes by manipulating their total mass, mass ratio, and orbital separation, and witness how gravitational waves emitted by the black holes stretch and squeeze the avatar. We evaluated our prototype of VIGOR with high school students in 2016 and are further improving VIGOR based on our findings.

  2. Exploring nonlocal observables in shock wave collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Christian; Grumiller, Daniel; Stanzer, Philipp; Stricker, Stefan A. [Institut für Theoretische Physik, Technische Universität Wien,Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Schee, Wilke van der [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-11-09

    We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: highly efficient initial growth of entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the black hole apparent horizon, while we did not find such cases for the entanglement entropy.

  3. VHF radar observations of gravity waves at a low latitude

    Directory of Open Access Journals (Sweden)

    G. Dutta

    1999-08-01

    Full Text Available Wind observations made at Gadanki (13.5°N by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6 h from the power spectral density (PSD spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  4. Ionospheric conductance distribution and MHD wave structure: observation and model

    Directory of Open Access Journals (Sweden)

    F. Budnik

    Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.

    Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.

  5. Ionospheric conductance distribution and MHD wave structure: observation and model

    Directory of Open Access Journals (Sweden)

    F. Budnik

    1998-02-01

    Full Text Available The ionosphere influences magnetohydrodynamic waves in the magnetosphere by damping because of Joule heating and by varying the wave structure itself. There are different eigenvalues and eigensolutions of the three dimensional toroidal wave equation if the height integrated Pedersen conductivity exceeds a critical value, namely the wave conductance of the magnetosphere. As a result a jump in frequency can be observed in ULF pulsation records. This effect mainly occurs in regions with gradients in the Pedersen conductances, as in the auroral oval or the dawn and dusk areas. A pulsation event recorded by the geostationary GOES-6 satellite is presented. We explain the observed change in frequency as a change in the wave structure while crossing the terminator. Furthermore, selected results of numerical simulations in a dipole magnetosphere with realistic ionospheric conditions are discussed. These are in good agreement with the observational data.Key words. Ionosphere · (Ionosphere · magnetosphere interactions · Magnetospheric physics · Magnetosphere · ionosphere interactions · MHD waves and instabilities.

  6. Cluster Observations of Non-Time Continuous Magnetosonic Waves

    Science.gov (United States)

    Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.

    2016-01-01

    Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.

  7. Observations of apparent superslow wave propagation in solar prominences

    Science.gov (United States)

    Raes, J. O.; Van Doorsselaere, T.; Baes, M.; Wright, A. N.

    2017-06-01

    Context. Phase mixing of standing continuum Alfvén waves and/or continuum slow waves in atmospheric magnetic structures such as coronal arcades can create the apparent effect of a wave propagating across the magnetic field. Aims: We observe a prominence with SDO/AIA on 2015 March 15 and find the presence of oscillatory motion. We aim to demonstrate that interpreting this motion as a magneto hydrodynamic (MHD) wave is faulty. We also connect the decrease of the apparent velocity over time with the phase mixing process, which depends on the curvature of the magnetic field lines. Methods: By measuring the displacement of the prominence at different heights to calculate the apparent velocity, we show that the propagation slows down over time, in accordance with the theoretical work of Kaneko et al. We also show that this propagation speed drops below what is to be expected for even slow MHD waves for those circumstances. We use a modified Kippenhahn-Schlüter prominence model to calculate the curvature of the magnetic field and fit our observations accordingly. Results: Measuring three of the apparent waves, we get apparent velocities of 14, 8, and 4 km s-1. Fitting a simple model for the magnetic field configuration, we obtain that the filament is located 103 Mm below the magnetic centre. We also obtain that the scale of the magnetic field strength in the vertical direction plays no role in the concept of apparent superslow waves and that the moment of excitation of the waves happened roughly one oscillation period before the end of the eruption that excited the oscillation. Conclusions: Some of the observed phase velocities are lower than expected for slow modes for the circumstances, showing that they rather fit with the concept of apparent superslow propagation. A fit with our magnetic field model allows for inferring the magnetic geometry of the prominence. The movie attached to Fig. 1 is available at http://www.aanda.org

  8. High-latitude HF Doppler observations of ULF waves: 2. Waves with small spatial scale sizes

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    1999-07-01

    Full Text Available The DOPE (Doppler Pulsation Experiment HF Doppler sounder located near Tromsø, Norway (geographic: 69.6°N 19.2°E; L = 6.3 is deployed to observe signatures, in the high-latitude ionosphere, of magnetospheric ULF waves. A type of wave has been identified which exhibits no simultaneous ground magnetic signature. They can be subdivided into two classes which occur in the dawn and dusk local time sectors respectively. They generally have frequencies greater than the resonance fundamentals of local field lines. It is suggested that these may be the signatures of high-m ULF waves where the ground magnetic signature has been strongly attenuated as a result of the scale size of the waves. The dawn population demonstrate similarities to a type of magnetospheric wave known as giant (Pg pulsations which tend to be resonant at higher harmonics on magnetic field lines. In contrast, the waves occurring in the dusk sector are believed to be related to the storm-time Pc5s previously reported in VHF radar data. Dst measurements support these observations by indicating that the dawn and dusk classes of waves occur respectively during geomagnetically quiet and more active intervals.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions · Magnetospheric physics (MHD waves and instabilities

  9. Observation of Gravitational Waves from a Binary Black Hole Merger.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  10. Observation of Gravitational Waves from a Binary Black Hole Merger

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  11. Observations of optical aurora modulated by resonant Alfven waves

    Energy Technology Data Exchange (ETDEWEB)

    Xu, B.L.; Samson, C.; Liu, W.W. [Univ. of Alberta (Canada)] [and others

    1993-07-01

    The authors present a study of the modulation behavior of optical aurora, done using the CANOPUS array to look at the optical lines 5577 and 4709{angstrom}, along with magnetometer data. They looked for modulation in the range 1 to 4 mHz, which would be an indication of Alfven wave modulation by resonant waves propagating along field lines. The authors show by several examples that such modulation is seen over an array of latitudes, and that they typically see spectral peaks near 1.3, 1.9, and 3.1 mHz, and in addition large phase shifts are observed when the effects are looked at across the latitude maximum where they are observed. These observations support resonant Alfven waves as the origin of such modulation effects.

  12. Extreme-ultraviolet observations of global coronal wave rotation

    Energy Technology Data Exchange (ETDEWEB)

    Attrill, G. D. R. [Defence Science and Technology Laboratory, Dstl Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom); Long, D. M.; Green, L. M.; Harra, L. K.; Van Driel-Gesztelyi, L., E-mail: gdrattrill@dstl.gov.uk [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2014-11-20

    We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration of the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.

  13. Observation of terahertz radiation coherently generated by acoustic waves

    Science.gov (United States)

    Armstrong, Michael R.; Reed, Evan J.; Kim, Ki-Yong; Glownia, James H.; Howard, William M.; Piner, Edwin L.; Roberts, John C.

    2009-04-01

    Over the past decade, pioneering and innovative experiments using subpicosecond lasers have demonstrated the generation and detection of acoustic and shock waves in materials with terahertz frequencies, the highest possible frequency acoustic waves. In addition to groundbreaking demonstrations of acoustic solitons, these experiments have led to new techniques for probing the structure of thin films. Terahertz-frequency electromagnetic radiation has been used in applications as diverse as molecular and material excitations, charge transfer, imaging and plasma dynamics. However, at present, existing approaches to detect and measure the time dependence of terahertz-frequency strain waves in materials use direct optical probes-time-resolved interferometry or reflectrometry. Piezoelectric-based strain gauges have been used in acoustic shock and strain wave experiments for decades, but the time resolution of such devices is limited to ~100ps and slower, the timescale of electronic recording technology. We have recently predicted that terahertz-frequency acoustic waves can be detected by observing terahertz radiation emitted when the acoustic wave propagates past an interface between materials of differing piezoelectric coefficients. Here, we report the first experimental observation of this fundamentally new phenomenon and demonstrate that it can be used to probe structural properties of thin films.

  14. Black Hole Kicks as New Gravitational Wave Observables.

    Science.gov (United States)

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  15. Black-hole kicks as new gravitational-wave observables

    CERN Document Server

    Gerosa, Davide

    2016-01-01

    Generic black-hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick velocity to the merger remnant. If a component of the kick along the line-of-sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler-shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational-wave experiments will be able to perform direct measurements, not only of the black-hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black-hole kick velocities as low as ~500 km/s, which are expected to be a common outcome of black-hole binary coalescence following galaxy mergers. Black-hole kicks thus constitute a promising new observable in the growing field of gravitational-wave astronomy.

  16. Observation of three dimensional optical rogue waves through obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Leonetti, Marco, E-mail: marco.leonetti@roma1.infn.it [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291 00161 Roma (RM) (Italy); Conti, Claudio [ISC-CNR and Department of Physics, University Sapienza, P.le Aldo Moro 5, I-00185 Roma (Italy)

    2015-06-22

    We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.

  17. Cluster observations of surface waves on the dawn flank magnetopause

    Directory of Open Access Journals (Sweden)

    C. J. Owen

    2004-03-01

    Full Text Available On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 RE and move at an average speed of ~65km s-1 in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE Z=0 plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions

  18. Plasma wave observations at Uranus from Voyager 2

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.; Scarf, F. L.; Poynter, R. L.

    1986-03-01

    Radio emissions from Uranus were detected by the Voyager 2 plasma wave instrument about 5 days before closest approach at frequencies of 31.1 and 56.2 khz. The bow shock was identified by an abrupt broadband burst of electrostatic turbulence about 10 hours before closest approach at a radial distance of 23.5 ru. Once inside of the magnetosphere strong whistler mode hiss and chorus emissions were observed at radial distances less than about 8 Ru, in the same region where the energetic particle instruments detected intense fluxes of energetic electrons. A variety of other plasma waves, such as (fc) electron cyclotron waves, were also observed in this same region. At the ring plane crossing the plasma wave instrument detected a large number of impulsive events that are interpreted as impacts of micron sized dust particles on the spacecraft. The maximum impact rate was about 20 to 30 impacts/sec, and the north-south thickness of the impact region was about 4,000 km. This paper presents an overview of the principal results from the plasma wave instrument, starting with the first detection of radio emissions from Uranus, and ending a few days after closest approach.

  19. Properties of Submillimeter Galaxies in the CANDELS GOODS-South Field

    NARCIS (Netherlands)

    Wiklind, Tommy; Conselice, Christopher J.; Dahlen, Tomas; Dickinson, Mark E.; Ferguson, Henry C.; Grogin, Norman A.; Guo, Yicheng; Koekemoer, Anton M.; Mobasher, Bahram; Mortlock, Alice; Fontana, Adriano; Davé, Romeel; Yan, Haojing; Acquaviva, Viviana; Ashby, Matthew L. N.; Barro, Guillermo; Caputi, Karina I.; Castellano, Marco; Dekel, Avishai; Donley, Jennifer L.; Fazio, Giovanni G.; Giavalisco, Mauro; Grazian, Andrea; Hathi, Nimish P.; Kurczynski, Peter; Lu, Yu; McGrath, Elizabeth J.; de Mello, Duilia F.; Peth, Michael; Safarzadeh, Mohammad; Stefanon, Mauro; Targett, Thomas

    We derive physical properties of 10 submillimeter galaxies located in the CANDELS coverage of the GOODS-S field. The galaxies were first identified as submillimeter sources with the LABOCA bolometer and subsequently targeted for 870 μm continuum observation with ALMA. The high angular resolution of

  20. A Black Hole Mass-Variability Timescale Correlation at Submillimeter Wavelengths

    NARCIS (Netherlands)

    Bower, G.C.; Dexter, J.; Markoff, S.; Gurwell, M.A.; Rao, R.; McHardy, I.

    2015-01-01

    We analyze the light curves of 413 radio sources at submillimeter wavelengths using data from the Submillimeter Array calibrator database. The database includes more than 20,000 observations at 1.3 and 0.8 mm that span 13 years. We model the light curves as a damped random walk and determine a

  1. Testing General Relativity Using Gravitational-Wave Observations

    Indian Academy of Sciences (India)

    Testing General Relativity Using Gravitational-Wave. Observations. Parameswaran Ajith ICTS-TIFR, Bangalore. On behalf of the LIGO Scientific Collaboration and. Virgo Collaboration. 27th Mid-Year Meeting of the Indian Academy of Sciences. 1 July 2016, IISc Bangalore. LIGO-G1601410-v2 indig ...

  2. Fermi GBM Observations of LIGO Gravitational Wave event GW150914

    OpenAIRE

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Zhang, B.-B.; Van Camp, J.; Christensen, N.; Hui, C. M.; Jenke, P.; Littenberg, T.; McEnery, J. E.; Racusin, J.; Shawhan, P.; Singer, L

    2016-01-01

    With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4~s after the GW event, with a false alarm probability of 0.0022 (2.9$\\sigma$). This weak transient lasting 1 s was not detected by any oth...

  3. Inferences about binary stellar populations using gravitational wave observations

    Science.gov (United States)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel

    2018-01-01

    With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.

  4. Observation of Accelerating Wave Packets in Curved Space

    Directory of Open Access Journals (Sweden)

    Anatoly Patsyk

    2018-01-01

    Full Text Available We present the first experimental observation of accelerating beams in curved space. More specifically, we demonstrate, experimentally and theoretically, shape-preserving accelerating beams propagating on spherical surfaces: closed-form solutions of the wave equation manifesting nongeodesic self-similar evolution. Unlike accelerating beams in flat space, these wave packets change their acceleration trajectory due to the interplay between interference effects and the space curvature, and they focus and defocus periodically due to the spatial curvature of the medium in which they propagate.

  5. Gamma-ray-burst beaming and gravitational-wave observations.

    Science.gov (United States)

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  6. Arrays of Bolometers for Far-infrared and Submillimeter Astronomy

    Science.gov (United States)

    Chuss, D. T.; Allen, C. A.; Babu, S.; Benford, D. J.; Dotson, J. L.; Dowell, C. D.; Jhabvala, M.; Harper, D. A.; Moseley, S. Harvey; Silverberg, R. F.; Staguhn, J. G.; Voellmer, G.; Wollack, E. J.

    We describe 12 x 32 arrays of semiconducting cryogenic bolometers designed for use in far-infrared and submillimeter cameras. These 12 x 32 arrays are constructed from 1 x 32 monolithic pop-up detectors developed at NASA Goddard Space Flight Center. The pop-up technology allows the construction of large arrays with high filling factors that provide efficient use of space in the focal planes of far-infrared and submillimeter astronomical instruments. This directly leads to a significant decrease in integration time. The prototype array is currently operating in the second generation Submillimeter High Angular Resolution Camera (SHARC II), a facility instrument in use at the Caltech Submillimeter Observatory (CSO). The elements of this array employ a bismuth absorber coating and quarter wave backshort to optimize the bolometer absorption for passbands centered at 350 and 450 microns. A second array is to be installed in the High-resolution Airborne Widebandwidth Camera (HAWC), a far-infrared imaging camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). This array has been completed and is now awaiting integration into the HAWC test cryostat. HAWC is scheduled for commissioning in 2005. The HAWC array employs titanium-gold absorbers and is optimized for uniform absorption from 40 to 300 microns to accommodate all four of its far-infrared passbands. We describe the details of the HAWC array construction including the mechanical design and electrical characterization of the constituent linear arrays.

  7. Observation of Gravitational Waves from a Binary Black Hole Merger

    CERN Document Server

    ,

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \\times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\\odot$ and $29^{+4}_{-4} M_\\odot$, and the final black hole mass is $62^{+4}_{-4} M_\\odot$, with $3.0^{+0.5}_{-0.5} M_\\odot c^2$ radiated in gravitational waves. ...

  8. Probing Galaxy Formation and Submillimeter Surveys

    Science.gov (United States)

    Dwek, Eli; Arendt, Richard G.; Benford, Dominic J.; Moseley, Harvey S.; Shafer, Richard A.; Staguhn, Johannes G.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    Multiwavelength observations of galaxies have revealed that a significant fraction of the their stellar or accretion luminosity is absorbed and reradiated by dust at far-infrared (FIR) and submillimeter (submm) wavelengths. Submillimeter (850 micron) surveys conducted by the SCUBA instrument on the JCMT have detected a population of high redshift (z approximately equal to 1-4) ultraluminous infrared galaxies, that dominate the luminosity densities at those redshifts. Their cumulative contribution to the cosmic infrared background (CIB) detected by the COBE satellite is comparable to the observations, suggesting that at 850 microns the CIB is resolved into its constituent sources. This suggests that the early universe was much more dust enshrouded than the present one. FIR and submm surveys can therefore address fundamental questions regarding the early processes of galaxy formation and their evolution in number and luminosity over cosmic history. The scientific information that can be obtained from such surveys depend on a number of parameters, the most important of which are the diameter of the telescope and the wavelengths of the survey. We summarize the effect of these parameters on the scientific return from such surveys.

  9. Polarization properties of Gendrin mode waves observed in the Earth's magnetosphere: observations and theory

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2009-12-01

    Full Text Available We show a case of an outer zone magnetospheric electromagnetic wave propagating at the Gendrin angle, within uncertainty of the measurements. The chorus event occurred in a "minimum B pocket". For the illustrated example, the measured angle of wave propagation relative to the ambient magnetic field θkB was 58°±4°. For this event the theoretical Gendrin angle was 62°. Cold plasma model is used to demonstrate that Gendrin mode waves are right-hand circularly polarized, in excellent agreement with the observations.

  10. Theoretical physics implications of gravitational wave observation with future detectors

    Science.gov (United States)

    Chamberlain, Katie; Yunes, Nicolás

    2017-10-01

    Gravitational waves encode invaluable information about the nature of the relatively unexplored extreme gravity regime, where the gravitational interaction is strong, nonlinear and highly dynamical. Recent gravitational wave observations by advanced LIGO have provided the first glimpses into this regime, allowing for the extraction of new inferences on different aspects of theoretical physics. For example, these detections provide constraints on the mass of the graviton, Lorentz violation in the gravitational sector, the existence of large extra dimensions, the temporal variability of Newton's gravitational constant, and modified dispersion relations of gravitational waves. Many of these constraints, however, are not yet competitive with constraints obtained, for example, through Solar System observations or binary pulsar observations. In this paper, we study the degree to which theoretical physics inferences drawn from gravitational wave observations will strengthen with detections from future detectors. We consider future ground-based detectors, such as the LIGO-class expansions A + , Voyager, Cosmic Explorer and the Einstein Telescope, as well as space-based detectors, such as various configurations of eLISA and the recently proposed LISA mission. We find that space-based detectors will place constraints on general relativity up to 12 orders of magnitude more stringently than current aLIGO bounds, but these space-based constraints are comparable to those obtained with the ground-based Cosmic Explorer or the Einstein Telescope (A + and Voyager only lead to modest improvements in constraints). We also generically find that improvements in the instrument sensitivity band at low frequencies lead to large improvements in certain classes of constraints, while sensitivity improvements at high frequencies lead to more modest gains. These results strengthen the case for the development of future detectors, while providing additional information that could be useful in

  11. Electrostatic Electron Cyclotron Waves Observed by the Plasma Wave Instrument on Board Polar

    Science.gov (United States)

    Menietti, J. D.; Pickett, J. S.; Gurnett, D. A.; Scudder, J. D.

    2001-01-01

    We report the results of an investigation of waves observed by the Polar spacecraft at high altitudes and latitudes and at frequencies just above the cyclotron frequency. These observations are made frequently when the spacecraft is over the polar cap as well as near the dayside cusp and near the nightside auroral region, and observations are made for ratios of plasma frequency to cyclotron frequency, f(sub p)/f(sub c) = 1. Using the six-channel high-frequency waveform receiver (HFWR) on board the spacecraft, which can provide three-axis electric and three-axis magnetic field measurements, we attempt to identify the wavemode of these emissions and investigate possible source mechanisms including low-energy electron beams. We further observe electromagnetic emission associated with upper hybrid waves near and within the plasmasphere. This emission is consistent with both Z and O modes.

  12. Observations of Running Penumbral Waves Emerging in a Sunspot

    Science.gov (United States)

    Priya, T. G.; Wenda, Cao; Jiangtao, Su; Jie, Chen; Xinjie, Mao; Yuanyong, Deng; Robert, Erdélyi

    2018-01-01

    We present results from the investigation of 5 minute umbral oscillations in a single-polarity sunspot of active region NOAA 12132. The spectra of TiO, Hα, and 304 Å are used for corresponding atmospheric heights from the photosphere to lower corona. Power spectrum analysis at the formation height of Hα – 0.6 Å to the Hα center resulted in the detection of 5 minute oscillation signals in intensity interpreted as running waves outside the umbral center, mostly with vertical magnetic field inclination >15°. A phase-speed filter is used to extract the running wave signals with speed v ph > 4 km s‑1, from the time series of Hα – 0.4 Å images, and found twenty-four 3 minute umbral oscillatory events in a duration of one hour. Interestingly, the initial emergence of the 3 minute umbral oscillatory events are noticed closer to or at umbral boundaries. These 3 minute umbral oscillatory events are observed for the first time as propagating from a fraction of preceding running penumbral waves (RPWs). These fractional wavefronts rapidly separate from RPWs and move toward the umbral center, wherein they expand radially outwards suggesting the beginning of a new umbral oscillatory event. We found that most of these umbral oscillatory events develop further into RPWs. We speculate that the waveguides of running waves are twisted in spiral structures and hence the wavefronts are first seen at high latitudes of umbral boundaries and later at lower latitudes of the umbral center.

  13. Observations and Simulations of the Impact of Wave-Current Interaction on Wave Direction in the Surf Zone

    Science.gov (United States)

    Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt

    2017-04-01

    Accurately characterizing the interaction of waves and currents can improve predictions of wave propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, waves propagate across strong tidal currents as they shoal, providing an ideal environment for investigating wave-current interaction. Wave directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. Wave directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the wave field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates waves and currents over the observed bathymetry. Model simulations with and without wave-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the wave field primarily are caused by wave-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated wave conditions using a range of tidal currents and offshore wave fields indicate that the modulation of the wave field at Martha's Vineyard can impact the direction of wave-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident wave field. As such, the observations and model simulations suggest the importance of wave-current interaction to tidally averaged transport in mixed-energy wave-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.

  14. Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations

    Science.gov (United States)

    Hirsch, Michael

    During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and

  15. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    Energy Technology Data Exchange (ETDEWEB)

    Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Wei, H. Y.; Russell, C. T. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 (United States); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching (Germany); Omidi, N. [Solana Scientific Inc., Solana Beach, CA 92075 (United States); Isenberg, P. A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 (United States); Goldstein, M. L.; Figueroa-Viñas, A. [Heliophysics Science Division, NASA Goddard Space Flight Center, MD 20771 (United States); Blanco-Cano, X., E-mail: lan.jian@nasa.gov [Instituto de Geofisica, Universidad Nacional Autónoma de México, Coyoacán D.F. (Mexico)

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  16. A superconducting tunnel junction receiver for submillimeter astronomy, and analysis of observations of post-AGB star molecular envelopes. [AGB (asymptotic giant branch)

    Energy Technology Data Exchange (ETDEWEB)

    Jaminet, P.A.

    1992-01-01

    A heterodyne receiver designed for astronomical use between 450 and 520 GHz has been constructed. Very low capacitance (C [approximately] 5-10 fF) Superconductor-Insulator-Superconductor (SIS) junctions have been fabricated as the detectors; these junctions lie on the edges of niobium thin films and form Nb-Al-Al[sub 2]O[sub 3]-Al-Nb sandwiches. The double sideband (DSB) receiver noise temperature is between 400 K and 800 K throughout the 70 GHz band. In addition, detailed modelling and analysis of astronomical observations of two post-AGB (Asymptotic Giant Branch) stars was performed. The observations were made with an SIS receiver designed for 345 GHz. CO observations and modelling of the young planetary nebula NGC 7027 provided the best determination yet of its AGB mass loss rate, the first direct evidence for bipolarity in its AGB mass loss, evidence for close hydrodynamic coupling between the planetary nebula and the relic AGB wind, and evidence for evolution in the metallicity of the stellar wind. Observations of the proto-planetary nebula CRL 2688 found evidence for spatially extended fast wind emission with a non-bipolar morphology, and evidence for evolution is elemental abundances in the stellar wind.

  17. Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations

    Science.gov (United States)

    Vinas, A.F.; Gurgiolo, C.; Nieves-Chinchilla, T.; Gary, S. P.; Goldstein, M. L.

    2010-01-01

    Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high temperature anisotropy (T(perpindicular)/T(parallell) approximately > 2). This anisotropy is shown to be an important free energy source for the excitation of high frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron velocity distributions in the solar wind through pitch-angle scattering

  18. OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, C. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom)

    2015-06-20

    We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGWs) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on two-dimensional hydrodynamical simulations of IGWs in a differentially rotating massive star and the observed spectra. We also show that the velocity spectra caused by IGWs may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright, slowly and rapidly rotating OB-type stars in the scientific program of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGWs for various masses and ages.

  19. Analysis of plasma waves observed in the inner Saturn magnetosphere

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2008-09-01

    Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 RS outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T⊥/T||>1 of the warmer plasma population.

  20. Analysis of plasma waves observed in the inner Saturn magnetosphere

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2008-09-01

    Full Text Available Plasma waves observed in the Saturn magnetosphere provide an indication of the plasma population present in the rotationally dominated inner magnetosphere. Electrostatic cyclotron emissions often with harmonics and whistler mode emission are a common feature of Saturn's inner magnetosphere. The electron observations for a region near 5 RS outside and near a plasma injection region indicate a cooler low-energy (<100 eV, nearly isotropic plasma, and a much warmer (E>1000 eV more pancake or butterfly distribution. We model the electron plasma distributions to conduct a linear dispersion analysis of the wave modes. The results suggest that the electrostatic electron cyclotron emissions can be generated by phase space density gradients associated with a loss cone that may be up to 20° wide. This loss cone is sometimes, but not always, observed because the field of view of the electron detectors does not include the magnetic field line at the time of the observations. The whistler mode emission can be generated by the pancake-like distribution and temperature anisotropy (T/T||>1 of the warmer plasma population.

  1. ULF Wave Modeling Challenge -Modeling Results and Application to Observations

    Science.gov (United States)

    Rastaetter, L.; Kuznetsova, M. M.; Claudepierre, S. G.; Guild, T. B.; Hartinger, M.; Welling, D. T.; Glocer, A.; Honkonen, I. J.; Raeder, J.

    2015-12-01

    The GEM Metrics and Validation Focus Group has been conducting an Ultra-Low-Frequency (ULF) wave modeling challenge using monochromatic and white-noise solar wind pressure drivers. Using methodology similar to Claudepierre et al. (2010), MHD simulations performed by the SWMF, OpenGGCM and GUMICS models at the Community Coordinated Modeling Center (CCMC) are presented in comparison to LFM model outputs used in the publication and performed at the CCMC. We discuss the effect of inner (near-Earth) boundary conditions on the model results. Event simulations compared to ground-based and in-situ observations will eventually decide which boundary conditions are most realistic.

  2. Practical performance evaluation of the Wave Glider in geophysical observations

    Science.gov (United States)

    Sugioka, Hiroko; Hamano, Yozo

    2016-04-01

    The Wave Glider (WG), manufactured by Liquid Robotics Inc. of California, USA, is the first wave and solar powered autonomous sea surface vehicle. It has led the way to make ocean data collection and communications easier and safer, lower risk and cost, and real-time. By analyzing data from a long-term deployment of the WG in the sea to investigate the feasibility, an assessment of operating characteristics informs the potential utility of the WG to identify the parameters for a seafloor experiment designed the WG as a station-keeping gateway. We apply the WG in the following two observation systems that we have been developing. First, after the 2011 Tohoku earthquake tsunami, we have developed a real-time offshore tsunami monitoring system using a new type of seafloor tsunami sensor called Vector TsunaMeter (VTM) able to directly estimate the tsunami propagation vector based on the electromagnetic induction theory to provide early and reliable information at the coastal area. The WG equipped with both an acoustic modem and a satellite communication modem is used in the system as a relay platform for data transfer and communications between the sea bottom observatory and the land station. We had some experiments beginning with newly developing of the VTM in November 2012 to complete as a real-time monitoring system using the WG in March 2014. During the last experiment, we succeeded in detecting the micro-tsunami associated with the 2014 Iquique, Chile earthquake with Mw 8.2 on April 1 to confirm the practical utility of the WG. Second, since the Nishinoshima volcano of the Bonin Islands erupted in November 2013, we have been developing an isolated volcanic activity monitoring system using the unmanned WG vehicle. In this system the WG plays roles not only in a relay station with a satellite communication modem but also in a multi-purpose observatory platform with microphone for detecting acoustic waves in the air due to eruptions, with hydrophones for detecting

  3. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    Science.gov (United States)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  4. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  5. LISA and LISA Pathfinder: Gravitational Wave Observation in Space

    Science.gov (United States)

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1 mHz--100 mHz. This observation band is inaccessible to ground-based detectors due to fluctuations in the Earth gravitational field. Gravitational wave sources for LISA include galactic binaries, mergers of supermassive black-hole binaries, extreme-mass-ratio inspirals, and cosmology backgrounds and bursts. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset of 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such as spacecraft control with micronewton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. A detailed description of the two missions and an overview of current investigations conducted by the community will be discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented.

  6. Observation of Electron Bernstein Wave Heating in the RFP

    Science.gov (United States)

    Seltzman, Andrew; Anderson, Jay; Goetz, John; Forest, Cary

    2017-10-01

    The first observation of RF heating in a reversed field pinch (RFP) using the electron Bernstein wave (EBW) has been demonstrated on MST. Efficient mode conversion of an outboard-launched X mode wave at 5.5 GHz leads to Doppler-shifted resonant absorption (ωrf = nωce-k||v||) for a broad range (n =1-7) of harmonics. The dynamics of EBW-heated electrons are measured using a spatial distribution of solid targets with diametrically opposed x-ray detectors. EBW heating produces a clear supra-thermal electron tail in MST. Radial deposition of the EBW is controlled with |B|and is measured using the HXR flux emitted from an insertable probe. In the thick-shelled MST RFP, the radial accessibility of EBW is limited to r/a >0.8 ( 10cm) by magnetic field error induced by the porthole necessary for the antenna. Experimental measurements show EBW propagation inward through a stochastic magnetic field. EBW-heated test electrons are used as a direct probe of edge (r/a >0.9) radial transport, showing a modest transition from `standard' to reduced-tearing RFP operation. Electron loss is too fast for collisional effects and implies a large non-collisional radial diffusivity. EBW heating has been demonstrated in reduced magnetic stochasticity plasmas with β = 15-20%. Work supported by USDOE.

  7. Laboratory observations and numerical simulations of shoaling surface gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Becq, F. [Electricite de France, (France). Maritime Hydraulics Section; Benoit, M. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique; Forget, Ph. [Toulon Univ., 83 - La Garde (France)

    1997-09-01

    An investigation is presented of some of the processes affecting shoaling waves in shallow water, with particular attention paid to the non-linear interactions between triplets of waves (triad interactions) and depth-induced breaking. Four mono-dimensional non-linear wave models (two phase-resolving and two phase-averaged spectral models) have been implemented and compared to laboratory experiments performed in a wave flume of the National Hydraulics Laboratory (NHL). Tests were realised in breaking and non-breaking wave conditions. The non-linear mechanisms associated with the models are found to satisfactorily reproduce, both qualitatively and quantitatively, the wave spectra evolution along the bathymetric profile. The non-linear coupling effects are characterised by strong energy transfers between the interacting components of the wave field, and for some test-cases, by an important decay of wave energy. (author) 16 refs.

  8. Quadrature Observations of Wave and Non-wave Components and their Decoupling in an Extreme-ultraviolet Wave Event

    Science.gov (United States)

    Dai, Y.; Ding, M. D.; Chen, P. F.; Zhang, J.

    2012-11-01

    We report quadrature observations of an extreme-ultraviolet (EUV) wave event on 2011 January 27 obtained by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory, and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Two components are revealed in the EUV wave event. A primary front is launched with an initial speed of ~440 km s-1. It appears that significant emission enhancement occurs in the hotter channel while deep emission reduction occurs in the cooler channel. When the primary front encounters a large coronal loop system and slows down, a secondary, much fainter, front emanates from the primary front with a relatively higher starting speed of ~550 km s-1. Afterward, the two fronts propagate independently with increasing separation. The primary front finally stops at a magnetic separatrix, while the secondary front travels farther until it fades out. In addition, upon the arrival of the secondary front, transverse oscillations of a prominence are triggered. We suggest that the two components are of different natures. The primary front belongs to a non-wave coronal mass ejection (CME) component, which can be reasonably explained with the field-line stretching model. The multi-temperature behavior may be caused by considerable heating due to nonlinear adiabatic compression on the CME frontal loop. As for the secondary front, it is most likely a linear fast-mode magnetohydrodynamic wave that propagates through a medium of the typical coronal temperature. X-ray and radio data provide us with complementary evidence in support of the above scenario.

  9. Polar cap electron densities from DE 1 plasma wave observations

    Science.gov (United States)

    Persoon, A. M.; Gurnett, D. A.; Shawhan, S. D.

    1983-01-01

    Electric-field-spectum measurements from the plasma-wave instrument on the Dynamics Explorer 1 spacecraft are used to study the local electron density at high altitudes in the northern polar-cap region. The electron density is determined from the upper cutoff of whistler-mode radiation at the electron plasma frequency. Median density values over the polar cap at L greater than 10 are found to vary from 35.2 + or - 8.5 cu cm at 2.1 earth radii to 0.99 + or - 0.51 cu cm at 4.66 earth radii. The steady-state radial-outflow model is examined for consistency with the observed density profile. A power-law fit to the radial variation of the electron density yields an exponent of - 3.85 + or - 0.32, which for the radial-outflow model implies a flow velocity increasing nearly linearly with incresing radial distance. Comparison of the observed electron densities with theoretical polar-wind densities yields consistent results up to 2.8 earth radii. A comparison of the observed electron densities with low-altitude density profiles from the Alouette II and ISIS 1 spacecraft illustrates transitions in the slope of the profile at 1.16 earth radii and between 1.55 and 2.0 earth radii. The changes in the density profile suggest that changes occur in the basic radial-transport processes at these altitudes.

  10. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data

    Science.gov (United States)

    Kaifler, N.; Kaifler, B.; Ehard, B.; Gisinger, S.; Dörnbrack, A.; Rapp, M.; Kivi, R.; Kozlovsky, A.; Lester, M.; Liley, B.

    2017-09-01

    Two Rayleigh lidars were employed at a southern-hemisphere mid-latitude site in New Zealand (45°S) and a northern-hemisphere high-latitude site in Finland (67°N) in order to observe gravity waves between 30 and 85 km altitude under wintertime conditions. Two-dimensional wavelet analysis is used to analyze temperature perturbations caused by gravity waves and to determine their vertical wavelengths and phase progression. In both datasets, upward phase progression waves occur frequently between 30 and 85 km altitude. Six cases of large-amplitude wave packets are selected which exhibit upward phase progression in the stratosphere and/or mesosphere. We argue that these wave packets propagate downward and we discuss possible wave generation mechanisms. Spectral analysis reveals that superpositions of two or three wave packets are common. Furthermore, their characteristics often match those of upward-propagating waves which are observed at the same time or earlier. In the dataset means, the contribution of upward phase progression waves to the potential energy density Ep is largest in the lower stratosphere above Finland. There, Ep of upward and downward phase progression waves is comparable. At 85 km one third of the potential energy carried by propagating waves is attributed to upward phase progression waves. In some cases Ep of upward phase progression waves far exceeds Ep of downward phase progression waves. The downward-propagating waves might be generated in situ in the middle atmosphere or arise from reflection of upward-propagating waves.

  11. VizieR Online Data Catalog: Sub-millimeter spectra of 2-hydroxyacetonitrile (Margules+, 2017)

    Science.gov (United States)

    Margules, L.; McGuire, B. A.; Senent, M. L.; Motiyenko, R. A.; Remijan, A.; Guillemin, J. C.

    2017-02-01

    Measured frequencies and residuals from the global fit of the submillimeter-wave data for 2-hydroxyacetonitrile and files used for SPFIT. Detailled explanations on SPFIT could be found at https://www.astro.uni-koeln.de/cdms/pickett (4 data files).

  12. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  13. Active Millimeter and Submillimeter Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The workshop will have three main objectives. The first will be to inventory the signatures and measurements that are desirable to make using submillimeter active...

  14. THE CM-, MM-, AND SUB-MM-WAVE SPECTRUM OF ALLYL ISOCYANIDE AND RADIOASTRONOMICAL OBSERVATIONS IN ORION KL AND THE SgrB2 LINE SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Haykal, I.; Margulès, L.; Huet, T. R.; Motyienko, R. A. [Laboratoire de Physique des Lasers, Atomes, et Molécules, UMR CNRS 8523, Université de Lille 1, F-59655 Villeneuve d' Ascq Cédex (France); Écija, P.; Cocinero, E. J.; Basterretxea, F.; Fernández, J. A.; Castaño, F. [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena s/n, E-48940 Leioa (Spain); Lesarri, A. [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain); Guillemin, J. C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Allèe de Beaulieu, CS 50837, F-35708 Rennes Cedex 7 (France); Tercero, B.; Cernicharo, J., E-mail: laurent.margules@univ-lille1.fr [Centro de Astrobiología (CSIC-INTA), Laboratory of Molecular Astrophysics, Department of Astrophysics, Ctra. De Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain)

    2013-11-10

    Organic isocyanides have an interesting astrochemistry and some of these molecules have been detected in the interstellar medium (ISM). However, rotational spectral data for this class of compounds are still scarce. We provide laboratory spectra of the four-carbon allyl isocyanide covering the full microwave region, thus allowing a potential astrophysical identification in the ISM. We assigned the rotational spectrum of the two cis (synperiplanar) and gauche (anticlinal) conformations of allyl isocyanide in the centimeter-wave region (4-18 GHz), resolved its {sup 14}N nuclear quadrupole coupling (NQC) hyperfine structure, and extended the measurements into the millimeter and submillimeter-wave (150-900 GHz) ranges for the title compound. Rotational constants for all the monosubstituted {sup 13}C and {sup 15}N isotopologues are additionally provided. Laboratory observations are supplemented with initial radioastronomical observations. Following analysis of an extensive dataset (>11000 rotational transitions), accurate ground-state molecular parameters are reported for the cis and gauche conformations of the molecule, including rotational constants, NQC parameters, and centrifugal distortion terms up to octic contributions. Molecular parameters have also been obtained for the two first excited states of the cis conformation, with a dataset of more than 3300 lines. The isotopic data allowed determining substitution and effective structures for the title compound. We did not detect allyl isocyanide either in the IRAM 30 m line survey of Orion KL or in the PRIMOS survey toward SgrB2. Nevertheless, we provided an upper limit to its column density in Orion KL.

  15. 76 FR 62777 - Forum-Trends and Causes of Observed Changes in Heat Waves, Cold Waves, Floods and Drought

    Science.gov (United States)

    2011-10-11

    ... National Oceanic and Atmospheric Administration Forum--Trends and Causes of Observed Changes in Heat Waves, Cold Waves, Floods and Drought AGENCY: National Environmental Satellite, Data, and Information Service....com/a/noaa.gov/heatwaves-coldwaves-floods-drought/ . FOR FURTHER INFORMATION CONTACT: Brooke Stewart...

  16. Wave attenuation in mangroves; a quantitative approach to field observations

    NARCIS (Netherlands)

    Horstman, Erik; Dohmen-Janssen, Catarine M.; Narra, P.M.F.; van den Berg, N.J.F.; Siemerink, M.; Hulscher, Suzanne J.M.H.

    2014-01-01

    Coastal mangroves, dwelling at the interface between land and sea, provide an important contribution to reducing risk from coastal hazards by attenuating incident waves and by trapping and stabilizing sediments. This paper focusses on relations between vegetation densities, wave attenuation rates,

  17. Observing gravitational-wave transient GW150914 with minimal assumptions

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwa, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. C.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brocki, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. R.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritsche, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; de Haas, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijhunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, R.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mende, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prolchorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shithriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlhruch, H.; Vajente, G.; Valdes, G.; Van Bakel, N.; Van Beuzekom, Martin; Van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, R. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be

  18. Testing Gravitational Physics with Space-based Gravitational-wave Observations

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    Gravitational wave observations provide exceptional and unique opportunities for precision tests of gravitational physics, as predicted by general relativity (GR). Space-based gravitational wave measurements, with high signal-to-noise ratios and large numbers of observed events may provide the best-suited gravitational-wave observations for testing GR with unprecedented precision. These observations will be especially useful in testing the properties of gravitational waves and strong-field aspects of the theory which are less relevant in other observations. We review the proposed GR test based on observations of massive black hole mergers, extreme mass ratio inspirals, and galactic binary systems.

  19. Plasma waves in the polar cusp - Observations from Hawkeye 1

    Science.gov (United States)

    Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Based on data from the Hawkeye 1 spacecraft in the polar-cusp vicinity, the characteristics of plasma waves are studied. Four types of plasma waves are identified: (1) a band of ULF-ELF magnetic noise, (2) broadband electrostatic emissions with maximum intensities at 10-50 Hz, (3) electrostatic electron cyclotron waves near electron gyrofrequency, and (4) whistler mode auroral hiss emissions. Only ULF-ELF noise is a reliable index of the polar cusp region. Since ULF-ELF magnetic noise extends only to the local electron gyrofrequency, it is suggested that the noise consists of whistler-mode electromagnetic waves. Possible mechanisms for this noise include the whistler-mode cyclotron-resonance, Kelvin-Helmholtz, and drift-wave instabilities. It is felt that a current-driven electrostatic instability causes the broadband electrostatic noise.

  20. The observations of high energy electrons and associated waves by DSP satellites during substorm

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jinbin [Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, 100080 (China); Yang Junying; Yan Chunxiao [Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, 100080 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li Liyuan [Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, 100080 (China)

    2007-04-15

    Double Star Program (DSP) is a CNSA-ESA cooperation mission. DSP consists of two satellites: Equatorial satellite (TC-1) and Polar satellite (TC-2). This paper presents important observations of long duration loss of high energetic electrons and relevant waves in the recovery phase of substorm, that are made by LFEW and HEED of the polar satellite of DSP (TC-2). The HEED of TC-2 observed a loss event of high energetic electrons which lasted about 4 minute. At the same time, the LFEW of TC-2 observed a wave burst. The wave burst began 1 minute earlier than the loss event of energetic electrons. The frequency of waves ranges form 600 Hz to over 10 kHz. The analyses of wave characteristics indicate that the wave was whistler-mode. Thus it is very possible that the loss of high energy electrons was caused by wave activities through wave-particle interactions.

  1. EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes

    Science.gov (United States)

    Blum, L. W.; Bonnell, J. W.; Agapitov, O.; Paulson, K.; Kletzing, C.

    2017-02-01

    Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013-2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types—waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often localized but can persist many hours. These investigations give insight into the nature of EMIC wave generation and support more accurate quantification of their effects on the ring current and outer radiation belt.

  2. Cluster observations and theoretical identification of broadband waves in the auroral region

    Directory of Open Access Journals (Sweden)

    M. Backrud-Ivgren

    2005-12-01

    Full Text Available Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves, while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.

  3. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  4. AGILE Observations of the Gravitational-wave Source GW170104

    Science.gov (United States)

    Verrecchia, F.; Tavani, M.; Ursi, A.; Argan, A.; Pittori, C.; Donnarumma, I.; Bulgarelli, A.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Evangelista, Y.; Minervini, G.; Giuliani, A.; Cardillo, M.; Longo, F.; Lucarelli, F.; Munar-Adrover, P.; Piano, G.; Pilia, M.; Fioretti, V.; Parmiggiani, N.; Trois, A.; Del Monte, E.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Colafrancesco, S.; Costa, E.; D'Amico, F.; Feroci, M.; Ferrari, A.; Morselli, A.; Pacciani, L.; Paoletti, F.; Pellizzoni, A.; Picozza, P.; Rappoldi, A.; Vercellone, S.

    2017-10-01

    The LIGO/Virgo Collaboration (LVC) detected on 2017 January 4 a significant gravitational-wave (GW) event (now named GW170104). We report in this Letter the main results obtained from the analysis of hard X-ray and gamma-ray data of the AGILE mission that repeatedly observed the GW170104 localization region (LR). At the LVC detection time T 0 AGILE observed about 36% of the LR. The gamma-ray imaging detector did not reveal any significant emission in the energy range 50 MeV-30 GeV. Furthermore, no significant gamma-ray transients were detected in the LR that was repeatedly exposed over timescales of minutes, hours, and days. We also searched for transient emission using data near T 0 of the omnidirectional detector MCAL operating in the energy band 0.4-100 MeV. A refined analysis of MCAL data shows the existence of a weak event (that we call “E2”) with a signal-to-noise ratio of 4.4σ lasting about 32 ms and occurring 0.46 ± 0.05 s before T 0. A study of the MCAL background and of the false-alarm rate of E2 leads to the determination of a post-trial significance between 2.4σ and 2.7σ for a temporal coincidence with GW170104. We note that E2 has characteristics similar to those detected from the weak precursor of GRB 090510. The candidate event E2 is worth consideration for simultaneous detection by other satellites. If associated with GW170104, it shows emission in the MeV band of a short burst preceding the final coalescence by 0.46 s and involving ˜10-7 of the total rest mass energy of the system.

  5. AGILE Observations of the Gravitational-wave Source GW170104

    Energy Technology Data Exchange (ETDEWEB)

    Verrecchia, F.; Pittori, C.; Lucarelli, F. [ASI Space Science Data Center (SSDC), via del Politecnico, I-00133 Roma (Italy); Tavani, M.; Ursi, A.; Argan, A.; Evangelista, Y.; Minervini, G.; Cardillo, M.; Piano, G. [INAF-IAPS, via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Donnarumma, I. [ASI, via del Politecnico snc, I-00133 Roma (Italy); Bulgarelli, A.; Fuschino, F.; Labanti, C.; Fioretti, V. [INAF-IASF-Bologna, via Gobetti 101, I-40129 Bologna (Italy); Marisaldi, M. [Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen (Norway); Giuliani, A. [INAF-IASF Milano, via E.Bassini 15, I-20133 Milano (Italy); Longo, F. [Dipartimento di Fisica, Università di Trieste and INFN, via Valerio 2, I-34127 Trieste (Italy); Munar-Adrover, P. [Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Pilia, M. [INAF, Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy); and others

    2017-10-01

    The LIGO/Virgo Collaboration (LVC) detected on 2017 January 4 a significant gravitational-wave (GW) event (now named GW170104). We report in this Letter the main results obtained from the analysis of hard X-ray and gamma-ray data of the AGILE mission that repeatedly observed the GW170104 localization region (LR). At the LVC detection time T {sub 0} AGILE observed about 36% of the LR. The gamma-ray imaging detector did not reveal any significant emission in the energy range 50 MeV–30 GeV. Furthermore, no significant gamma-ray transients were detected in the LR that was repeatedly exposed over timescales of minutes, hours, and days. We also searched for transient emission using data near T {sub 0} of the omnidirectional detector MCAL operating in the energy band 0.4–100 MeV. A refined analysis of MCAL data shows the existence of a weak event (that we call “E2”) with a signal-to-noise ratio of 4.4 σ lasting about 32 ms and occurring 0.46 ± 0.05 s before T {sub 0}. A study of the MCAL background and of the false-alarm rate of E2 leads to the determination of a post-trial significance between 2.4σ and 2.7σ for a temporal coincidence with GW170104. We note that E2 has characteristics similar to those detected from the weak precursor of GRB 090510. The candidate event E2 is worth consideration for simultaneous detection by other satellites. If associated with GW170104, it shows emission in the MeV band of a short burst preceding the final coalescence by 0.46 s and involving ∼10{sup −7} of the total rest mass energy of the system.

  6. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    Science.gov (United States)

    Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.

    1994-01-01

    Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.

  7. Infrared observations of gravitational-wave sources in Advanced LIGO's second observing run

    Science.gov (United States)

    Pound Singer, Leo; Kasliwal, Mansi; Lau, Ryan; Cenko, Bradley; Global Relay of Observatories Watching Transients Happen (GROWTH)

    2018-01-01

    Advanced LIGO observed gravitational waves (GWs) from a binary black hole merger in its first observing run (O1) in September 2015. It is anticipated that LIGO and Virgo will soon detect the first binary neutron star mergers. The most promising electromagnetic counterparts to such events are kilonovae: fast, faint transients powered by the radioactive decay of the r-process ejecta. Joint gravitational-wave and electromagnetic observations of such transients hold the key to many longstanding problems, from the nature of short GRBS to the cosmic production sites of the r-process elements to "standard siren" cosmology. Due to the large LIGO/Virgo error regions of 100 deg2, synoptic survey telescopes have dominated the search for LIGO counterparts. Due to the paucity of infrared instruments with multi-deg2 fields of view, infrared observations have been lacking. Near-infrared emission should not only be a more robust signature of kilonovae than optical emission (independent of viewing angle), but should also be several magnitudes brighter and be detectable for much longer, weeks after merger rather than days. In Advanced LIGO's second observing run, we used the FLAMINGOS-2 instrument on Gemini-South to hunt for the near-infrared emission from GW sources by targeted imaging of the most massive galaxies in the LIGO/Virgo localization volumes. We present the results of this campaign, rates, and interpretation of our near-infrared imaging and spectroscopy. We show that leveraging large-scale structure and targeted imaging of the most massive ~10 galaxies in a LIGO/Virgo localization volume may be a surprisingly effective strategy to find the electromagnetic counterpart.

  8. Maven Observations of Electron-Induced Whistler Mode Waves in the Martian Magnetosphere

    Science.gov (United States)

    Harada, Y.; Andersson, L.; Fowler, C. M.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C.; Espley, J.; DiBraccio, G. A.; McFadden, J. P.; Brian, D. A.; hide

    2016-01-01

    We report on narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in the Martian induced magnetosphere. The peaked electric field wave spectra below the electron cyclotron frequency were first observed by Phobos-2 in the Martian magnetosphere, but the lack of magnetic field wave data prevented definitive identification of the wave mode and their generation mechanisms remain unclear. Analysis of electric and magnetic field wave spectra obtained by MAVEN demonstrates that the observed narrowband waves have properties consistent with the whistler mode. Linear growth rates computed from the measured electron velocity distributions suggest that these whistler mode waves can be generated by cyclotron resonance with anisotropic electrons. Large electron anisotropy in the Martian magnetosphere is caused by absorption of parallel electrons by the collisional atmosphere. The narrowband whistler mode waves and anisotropic electrons are observed on both open and closed field lines and have similar spatial distributions in MSO and planetary coordinates. Some of the waves on closed field lines exhibit complex frequency-time structures such as discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. These MAVEN observations indicate that whistler mode waves driven by anisotropic electrons, which are commonly observed in intrinsic magnetospheres and at unmagnetized airless bodies, are also present at Mars. The wave-induced electron precipitation into the Martian atmosphere should be evaluated in future studies.

  9. Bounding the Speed of Gravity with Gravitational Wave Observations

    Science.gov (United States)

    Cornish, Neil; Blas, Diego; Nardini, Germano

    2017-10-01

    The time delay between gravitational wave signals arriving at widely separated detectors can be used to place upper and lower bounds on the speed of gravitational wave propagation. Using a Bayesian approach that combines the first three gravitational wave detections reported by the LIGO Scientific and Virgo Collaborations we constrain the gravitational waves propagation speed cgw to the 90% credible interval 0.55 c light in vacuum. These bounds will improve as more detections are made and as more detectors join the worldwide network. Of order 20 detections by the two LIGO detectors will constrain the speed of gravity to within 20% of the speed of light, while just five detections by the LIGO-Virgo-Kagra network will constrain the speed of gravity to within 1% of the speed of light.

  10. Directional Properties of Surface Waves Observed With HF Radar

    National Research Council Canada - National Science Library

    Wyatt, Lucy

    2003-01-01

    The goal of the work at Sheffield is to demonstrate that wave measurements obtained using HF radars are of sufficient accuracy and availability for them to contribute to the investigation of changes...

  11. A monochromatic gravity wave observed by the Flatland Atmospheric Observatory

    Science.gov (United States)

    Vanzandt, T. E.; Chun, Hye-Yeong; Clark, W. L.; Einaudi, F.; Nastrom, G. D.; Riddle, A. C.; Warnock, J. M.

    1993-01-01

    On 21 December 1991 from approximately 1300 to approximately 1600 UTC a monochromatic wave train with an 8.2-min period was observed by the suite of instruments at the Flatland Atmospheric Observatory (FAO), located in very flat terrain near Champaign-Urbana, Illinois. A 915-MHz radar measured the vertical wind velocity w every 60 s from 0.55 km MSL (0.34 km AGL) to approximately 3 km with 250-m range gates, and a 50-MHz radar measured the oblique wind in four directions, as well as w, every 130 s from 2.75 to approximately 7.25 km with 750-m range gates. A meteorological ground station measured the surface pressure P, wind speed vector u and azimuth alpha, temperature, solar insolation, etc., every 30 s. P was also measured every 120 s by six digital barograph stations within 30 km of Flatland. Using the hodograph of surface vector u and alpha and the impedance relation, we estimated the azimuthal direction of propagation phi to be 45 deg +/- 15 deg clockwise from north, the intrinsic and apparent horizontal phase speeds C(sub i) and C(sub o), respectively, (which are about equal since the direction of propagation is about normal to the mean wind) to be 21 +/- 5 m/s, and the horizontal wavelength lambda to be 10.0 +/- 2.5 km. The peak-to-peak surface horizontal perturbation velocity varied from approximately 2 to 5 m/s from cycle to cycle.

  12. Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au

    Science.gov (United States)

    Argall, Matthew R.; Hollick, Sophia J.; Pine, Zackary B.; Smith, Charles W.; Joyce, Colin J.; Isenberg, Philip A.; Vasquez, Bernard J.; Schwadron, Nathan A.; Sokół, Justyna M.; Bzowski, Maciej; Burlaga, Leonard F.

    2017-11-01

    We report two observations of magnetic waves due to He+ pickup ions observed by the Voyager 2 spacecraft in mid-1989 to demonstrate that such waves occur as far out as ∼30 au from the Sun. The observations are sufficiently far from planets, interplanetary shocks, and other possible sources of energetic particles to make newborn interstellar He+ the only likely explanation for the source of the waves. Additionally, the low-frequency waves that might be expected for a variety of cometary pickup species are not seen. The events studied here were picked from a preliminary list of ∼300 events that were discovered based on polarization signatures in daily spectrograms of the magnetic field between 1977 and 1990. Analysis of those observations is ongoing. We present an analysis of these two observations using the same techniques we have employed for recently reported observations closer to the Sun.

  13. Observation of Wave Energy Evolution in Coastal Areas Using HF Radar

    Science.gov (United States)

    2009-09-01

    model of wave propagation (shoaling and refraction) based on wave ray theory ( Dean and Dalrymple 1991). Because no wave directional information...along the North Carolina shelf observed with a high-frequency ra- dar. J. Geophys. Res., 107, 3222, doi:10.1029/2002JC001320. Dean , R. G., and R. A... Dalrymple , 1991: Water Wave Mechanics for Engineers and Scientists. 2nd ed. World Scientific, 353 pp. Donelan, M. A., 1987: The effect of swell on the

  14. Resonance Vibrations of the Ross Ice Shelf and Observations of Persistent Atmospheric Waves

    Science.gov (United States)

    Zabotin, N. A.; Godin, O. A.

    2016-12-01

    Recently reported lidar observations at McMurdo have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at mid- and low-latitude locations [Chen et al., JGR Space Physics, 2016]. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 hours. Here, we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vector of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity.

  15. Wave Observations from Central California: SeaSonde Systems and In Situ Wave Buoys

    Directory of Open Access Journals (Sweden)

    Regan M. Long

    2011-01-01

    Full Text Available Wave data from five 12-13 MHz SeaSondes radars along the central California coast were analyzed to evaluate the utility of operational wave parameters, including significant wave height, period, and direction. Data from four in situ wave buoys served to verify SeaSonde data and independently corroborate wave variability. Hourly averaged measurements spanned distance is 150 km alongshore × 45 km offshore. Individual SeaSondes showed statistically insignificant variation over 27 km in range. Wave height inter-comparisons between regional buoys exhibit strong correlations, approximately 0.93, and RMS differences less than 50 cm over the region. SeaSonde-derived wave data were compared to nearby buoys over timescales from 15 to 26 months, and revealed wave height correlations =0.85−0.91 and mean RMS difference of 53 cm. Results showed that height RMS differences are a percentage of significant wave height, rather than being constant independent of sea state. Period and directions compared favorably among radars, buoys, and the CDIP model. Results presented here suggest that SeaSondes are a reliable source of wave information. Supported by buoy data, they also reveal minimal spatial variation in significant wave height, period, and direction in coastal waters from ~45 km × ~150 km in this region of the central California coast. Small differences are explained by sheltering from coastal promontories, and cutoff boundaries in the case of the radars.

  16. A Submillimeter HCN Laser in IRC +10216.

    Science.gov (United States)

    Schilke; Mehringer; Menten

    2000-01-01

    We report the detection of a strong submillimeter-wavelength HCN laser line at a frequency near 805 GHz toward the carbon star IRC +10216. This line, the J=9-8 rotational transition within the (0400) vibrationally excited state, is one of a series of HCN laser lines that were first detected in the laboratory in the early days of laser spectroscopy. Since its lower energy level is 4200 K above the ground state, the laser emission must arise from the innermost part of IRC +10216's circumstellar envelope. To better characterize this environment, we observed other, thermally emitting, vibrationally excited HCN lines and found that they, like the laser line, arise in a region of temperature approximately 1000 K that is located within the dust formation radius; this conclusion is supported by the line width of the laser. The (0400), J=9-8 laser might be chemically pumped and may be the only known laser (or maser) that is excited both in the laboratory and in space by a similar mechanism.

  17. Black Holes and Sub-millimeter Dimensions

    CERN Document Server

    Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John

    1998-01-01

    Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...

  18. LISA Pathfinder: First steps to observing gravitational waves from space

    Science.gov (United States)

    LISA Pathfinder Collaboration

    2017-05-01

    LISA Pathfinder, the European Space Agency’s technology demonstrator mission for future spaceborne gravitational wave observatories, was launched on 3 December 2015, from the European space port of Kourou, French Guiana. After a short duration transfer to the final science orbit, the mission has been gathering science data since. This data has allowed the science community to validate the critical technologies and measurement principle for low frequency gravitational wave detection and thereby confirming the readiness to start the next generation gravitational wave observatories, such as LISA. This paper will briefly describe the mission, followed by a description of the science operations highlighting the performance achieved. Details of the various experiments performed during the nominal science operations phase can be found in accompanying papers in this volume.

  19. Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging

    Science.gov (United States)

    Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.

    2011-01-01

    Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter-wave

  20. Observation of two-dimensional Faraday waves in extremely shallow depth.

    Science.gov (United States)

    Li, Xiaochen; Yu, Zhengyue; Liao, Shijun

    2015-09-01

    A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics.

  1. EXPLORING THE RELATION BETWEEN (SUB-)MILLIMETER RADIATION AND {gamma}-RAY EMISSION IN BLAZARS WITH PLANCK AND FERMI

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Tavares, J.; Tornikoski, M.; Laehteenmaeki, A. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FIN-02540 Kylmaelae (Finland); Valtaoja, E. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 20100 Turku (Finland); Giommi, P.; Polenta, G.; Gasparrini, D.; Cutini, S., E-mail: leon@kurp.hut.fi [ASI Science Data Center, ASDC c/o ESRIN, via G. Galilei, 00044 Frascati (Italy)

    2012-07-20

    The coexistence of Planck and Fermi satellites in orbit has enabled the exploration of the connection between the (sub-)millimeter and {gamma}-ray emission in a large sample of blazars. We find that the {gamma}-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude, L{sub {gamma}}{proportional_to}L{sub (sub-)mm}. However, this correlation is not significant at some frequency bands when simultaneous observations are considered. The most significant statistical correlations, on the other hand, arise when observations are quasi-simultaneous within two months. Moreover, we find that sources with an approximate spectral turnover in the middle of the mm-wave regime are more likely to be strong {gamma}-ray emitters. These results suggest a physical relation between the newly injected plasma components in the jet and the high levels of {gamma}-ray emission.

  2. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    Science.gov (United States)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  3. Examination of Bursty Electromagnetic Waves Observed During Intervals of Turbulent Magnetosheath Reconnection

    Science.gov (United States)

    Adrian, Mark L.; Wendel, D. E.

    2011-01-01

    We investigate observations of intense bursts of electromagnetic waves in association with magnetic reconnection in the turbulent magnetosheath. These structured, broadband bursts occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed at local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic waves and quantify their proximity to X- and O-nulls.

  4. Experimental observation of strong mixing due to internal wave focusing over sloping terrain

    NARCIS (Netherlands)

    Swart, A.; Manders, A.; Harlander, U.; Maas, L.R.M.

    2010-01-01

    This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were

  5. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hamilton-Ayers, M.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was

  6. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    Science.gov (United States)

    2013-09-30

    lifetime of whitecap foaming depends on the water temperature (Miyake and Abe, 1948). As temperature drops, the lifetime increases. Such trends were...P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature 417, 58-63 Miyake, Y. and T. Abe, 1948: A study on the foaming ofthe...Lett., 6 (1), 77–81 Wang, R. and H.H. Shen, 2010. Gravity waves propagating into an ice-covered ocean: A viscoelastic model. J. Geophys. Res., 115

  7. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave Climate and Wave Mixing in the Marginal Ice Zones of... Australia phone: +61-3-9214-8033 fax: +61-3-9214-8264 email: ababanin@swin.edu.au Ian R. Young The Australian National University Canberra, ACT 2000... Australia phone: +61-2-6125-2510 fax: +61-2-6257-3292 email: ir.young@anu.edu.au S. Zieger Swinburne University of Technology PO Box 218 (H38

  8. Waves associated to COMPLEX EVENTS observed by STEREO

    Science.gov (United States)

    Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.

    2012-12-01

    Complex Events are formed by two or more large-scale solar wind structures which interact in space. Typical cases are interactions of: (i) a Magnetic Cloud/Interplanetary Coronal Mass Ejection (MC/ICME) with another MC/ICME transient; and (ii) an ICME followed by a Stream Interaction Region (SIR). Complex Events are of importance for space weather studies and studying them can enhance our understanding of collisionless plasma physics. Some of these structures can produce or enhance southward magnetic fields, a key factor in geomagnetic storm generation. Using data from the STEREO mission during the years 2006-2011, we found 17 Complex Events preceded by a shock wave. We use magnetic field and plasma data to study the micro-scale structure of the shocks, and the waves associated to these shocks and within Complex Events structures. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also use PLASTIC WAP protons data to study foreshock extensions and the relationship between Complex Regions and particle acceleration to suprathermal energies.

  9. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  10. Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow

    Directory of Open Access Journals (Sweden)

    D. B. Simkhada

    2009-08-01

    Full Text Available Short-period gravity waves of especially-small horizontal scale have been observed in the Maui, Hawaii airglow. Typical small-scale gravity wave events have been investigated, and intrinsic wave propagation characteristics have been calculated from simultaneous meteor radar wind measurements. Here we report specific cases where wave structure is significantly determined by the local wind structure, and where wave characteristics are consistent with ducted or evanescent waves throughout the mesopause region. Two of the documented events, exhibiting similar airglow signatures but dramatically different propagation conditions, are selected for simple numerical modeling case studies. First, a Doppler-ducted wave trapped within relatively weak wind flow is examined. Model results confirm that the wave is propagating in the 85–95 km region, trapped weakly by evanescence above and below. Second, an evanescent wave in strong wind flow is examined. Model results suggest an opposite case from the first case study, where the wave is instead trapped above or below the mesopause region, with strong evanescence arising in the 85–95 km airglow region. Distinct differences between the characteristics of these visibly-similar wave events demonstrate the need for simultaneous observations of mesopause winds to properly assess local propagation conditions.

  11. Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction

    Science.gov (United States)

    Hoeke, R.; Storlazzi, C.; Ridd, P.

    2011-01-01

    This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.

  12. Characteristics of mesospheric gravity waves over Antarctica observed by Antarctic Gravity Wave Instrument Network imagers using 3-D spectral analyses

    Science.gov (United States)

    Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K.; Tsutsumi, Masaki; Tomikawa, Yoshihiro; Taylor, Michael J.; Zhao, Yucheng; Pautet, P.-Dominique; Murphy, Damian J.; Moffat-Griffin, Tracy

    2017-09-01

    We have obtained horizontal phase velocity distributions of the gravity waves around 90 km from four Antarctic airglow imagers, which belong to an international airglow imager/instrument network known as ANGWIN (Antarctic Gravity Wave Instrument Network). Results from the airglow imagers at Syowa (69°S, 40°E), Halley (76°S, 27°W), Davis (69°S, 78°E), and McMurdo (78°S, 167°E) were compared, using a new statistical analysis method based on 3-D Fourier transform (Matsuda et al., 2014) for the observation period between 7 April and 21 May 2013. Significant day-to-day and site-to-site differences were found. The averaged phase velocity spectrum during the observation period showed preferential westward direction at Syowa, McMurdo, and Halley, but no preferential direction at Davis. Gravity wave energy estimated by I'/I was 5 times larger at Davis and Syowa than at McMurdo and Halley. We also compared the phase velocity spectrum at Syowa and Davis with the background wind field and found that the directionality only over Syowa could be explained by critical level filtering of the waves. This suggests that the eastward propagating gravity waves over Davis could have been generated above the polar night jet. Comparison of nighttime variations of the phase velocity spectra with background wind measurements suggested that the effect of critical level filtering could not explain the temporal variation of gravity wave directionality well, and other reasons such as variation of wave sources should be taken into account. Directionality was determined to be dependent on the gravity wave periods.

  13. Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex events

    Science.gov (United States)

    Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua

    2017-07-01

    We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.

  14. Observation of mesospheric gravity waves at Comandante Ferraz Antarctica Station (62° S

    Directory of Open Access Journals (Sweden)

    P. B. Souza

    2009-06-01

    Full Text Available An airglow all-sky imager was operated at Comandante Ferraz Antarctica Station (62.1° S, 58.4° W, between April and October of 2007. Mesospheric gravity waves were observed using the OH airglow layer during 43 nights with good weather conditions. The waves presented horizontal wavelengths between 10 and 60 km and observed periods mainly distributed between 5 and 20 min. The observed phase speeds range between 5 m/s and 115 m/s; the majority of the wave velocities were between 10 and 60 m/s. The waves showed a preferential propagation direction towards the southwest in winter (May to July, while during spring (August to October there was an anisotropy with a preferential propagation direction towards the northwest. Unusual mesospheric fronts were also observed. The most probable wave source could be associated to orographic forcing, cold fronts or strong cyclonic activity in the Antarctica Peninsula.

  15. Observation of Broad d -Wave Feshbach Resonances with a Triplet Structure

    Science.gov (United States)

    Cui, Yue; Shen, Chuyang; Deng, Min; Dong, Shen; Chen, Cheng; Lü, Rong; Gao, Bo; Tey, Meng Khoon; You, Li

    2017-11-01

    High partial-wave (l ≥2 ) Feshbach resonance (FR) in an ultracold mixture of Rb 85 -Rb 87 atoms is investigated experimentally aided by a partial-wave insensitive analytic multichannel quantum-defect theory. Two "broad" resonances from coupling between d waves in both the open and closed channels are observed and characterized. One of them shows a fully resolved triplet structure with a splitting ratio well explained by the perturbation to the closed channel due to interatomic spin-spin interaction. These tunable "broad" d -wave resonances, especially the one in the lowest-energy open channel, could find important applications in simulating d -wave coupling dominated many-body systems. In addition, we find that there is generally a time and temperature requirement, associated with tunneling through the angular momentum barrier, to establish and observe resonant coupling in nonzero partial waves.

  16. Charged particle behavior in localized ultralow frequency waves: Theory and observations

    Science.gov (United States)

    Li, Li; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rankin, Robert; Zou, Hong; Liu, Ying; Chen, Xing-Ran; Hao, Yi-Xin

    2017-06-01

    The formation and variability of the Van Allen radiation belts are highly influenced by charged particles accelerated via drift-resonant interactions with ultralow frequency (ULF) waves. In the prevailing theory of drift resonance, the ULF wave amplitude is assumed independent of magnetic longitude. This assumption is not generally valid in Earth's magnetosphere, as supported by numerous observations that point to the localized nature of ULF waves. Here we introduce a longitude dependence of the ULF wave amplitude, achieved via a von Mises function, into the theoretical framework of ULF wave-particle drift resonance. To validate the revised theory, the predicted particle signatures are compared with observational data through a best fit procedure. It is demonstrated that incorporation of nonlocal effects in drift-resonance theory provides an improved understanding of charged particle behavior in the inner magnetosphere through the intermediary of ULF waves.

  17. MMS observations of wave-particle interactions in a kinetic-scale Alfvén-branch wave

    Science.gov (United States)

    Gershman, D. J.; Dorelli, J.; Vinas, A. F.; Boardsen, S. A.; Avanov, L. A.; Bellan, P. M.; Schwartz, S. J.; Lavraud, B.; Coffey, V. N.; Chandler, M. O.; Saito, Y.; Paterson, W. R.; Fuselier, S. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C.; Torbert, R. B.; Burch, J. L.

    2016-12-01

    High-resolution particle and field measurements from NASA's Magnetospheric Multiscale mission provide an unprecedented look at fundamental plasma physics phenomena. Here we present MMS observations of a nearly monochromatic kinetic-scale Alfvén-branch wave packet observed in a reconnection exhaust near the dayside magnetopause. From multi-spacecraft spectral analysis techniques, the wave packet was found to propagate obliquely at an angle of 100o with respect to the magnetic field with parallel wavespeed VA, frequency ω/ωci 0.6, and scale k-ρi 1.3. The particle current and electric field inferred from the electron pressure tensor are found to be 90o out of phase with one another, leading to instantaneous J-·E' ≠ 0, providing the first direct observation of the energy-exchange between a kinetic Alfvén wave field and particles. The wave-averaged J-·E' and fluctuations in parallel electron temperature are equal to zero, suggesting that the measured wave was in a marginally stable state. Fluctuations in the perpendicular electron temperature, however, indicate net plasma heating and are unexpected from traditional KAW theory. Examination of the velocity distribution function of electrons in the wave packet reveals a population of suprathermal electrons with 90o magnetic pitch-angles that account for these increased perpendicular temperatures. These trapped electrons contribute 50% to the density fluctuations within the KAW and are confined within magnetic minima by a combination of the magnetic mirror force and the wave's parallel electric field.

  18. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be gravitational waves. Copyright © 2015, American Association for the Advancement of Science.

  19. Theory and observations of horizontal and vertical structure of gravity wave perturbations in the middle atmosphere

    Science.gov (United States)

    Hostetler, Chris Alan

    Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations are derived by assuming that both saturated and unsaturated waves obey the polarization and dispersion relations and that the joint (m,w) spectrum is separable. The models show that the joint (k,l,m) and (k,l,w) spectra are not separable. The one-dimensional horizontal wave number spectra models are consistent with existing observations of horizontal wave number spectra in the lower stratosphere and upper mesosphere. The gravity wave models are used to analyze the effects of Doppler shifting caused by the mean wind field on the separability of gravity wave spectra. If the intrinsic joint (m,w) spectrum is separable, Doppler effects associated with even small mean winds will destroy separability of the observed joint (m,w(sub o)) spectrum, particularly at high vertical wave numbers. Vertical and horizontal wave number spectra of density perturbations in the upper stratosphere (25-40 km) and the upper mesosphere (approximately 80-105 km) measured during the ALOHA-90 campaign are presented. The spectra were inferred from approximately 45 h of airborne Na/Rayleigh lidar observations in the vicinity of Hawaii. Density variances, vertical shear variances, Richardson's numbers, characteristic vertical and horizontal wave numbers, and power law slopes of the vertical and horizontal wave number spectra are computed and discussed. The observed m-spectra contradict the predictions of the linear instability theory of Dewan and Good, and the scale-dependent diffusive filtering theory of Gardner, and appear to be compatible with the Doppler spreading theory of Hines, the scale-dependent diffusion theory of Weinstock, the scale-independent diffusive filtering theory of Gardner, and the similitude model of Dewan. In the stratosphere, the m-spectra exhibit significant energy at low wave numbers less than the values expected for m(sub *). The source of this energy is believed

  20. Polarization properties of Gendrin mode waves observed in the Earth's magnetosphere: observations and theory

    Directory of Open Access Journals (Sweden)

    O. P. Verkhoglyadova

    2009-12-01

    Full Text Available We show a case of an outer zone magnetospheric electromagnetic wave propagating at the Gendrin angle, within uncertainty of the measurements. The chorus event occurred in a "minimum B pocket". For the illustrated example, the measured angle of wave propagation relative to the ambient magnetic field θkB was 58°±4°. For this event the theoretical Gendrin angle was 62°. Cold plasma model is used to demonstrate that Gendrin mode waves are right-hand circularly polarized, in excellent agreement with the observations.

  1. ULF wave activity during the 2003 Halloween superstorm: multipoint observations from CHAMP, Cluster and Geotail missions

    Science.gov (United States)

    Balasis, G.; Daglis, I. A.; Zesta, E.; Papadimitriou, C.; Georgiou, M.; Haagmans, R.; Tsinganos, K.

    2012-12-01

    We examine data from a topside ionosphere and two magnetospheric missions (CHAMP, Cluster and Geotail) for signatures of ultra low frequency (ULF) waves during the exceptional 2003 Halloween geospace magnetic storm, when Dst reached ~-380 nT. We use a suite of wavelet-based algorithms, which are a subset of a tool that is being developed for the analysis of multi-instrument multi-satellite and ground-based observations to identify ULF waves and investigate their properties. Starting from the region of topside ionosphere, we first present three clear and strong signatures of Pc3 ULF wave activity (frequency 15-100 mHz) in CHAMP tracks. We then expand these three time intervals for purposes of comparison between CHAMP, Cluster and Geotail Pc3 observations but also to be able to search for Pc4-5 wave signatures (frequency 1-10 mHz) into Cluster and Geotail measurements in order to have a more complete picture of the ULF wave occurrence during the storm. Due to the fast motion through field lines in a low Earth orbit (LEO) we are able to reliably detect Pc3 (but not Pc4-5) waves from CHAMP. This is the first time, to our knowledge, that ULF wave observations from a topside ionosphere mission are compared to ULF wave observations from magnetospheric missions. Our study provides evidence for the occurrence of a number of prominent ULF wave events in the Pc3 and Pc4-5 bands during the storm and offers a platform to study the wave evolution from high altitudes to LEO. The ULF wave analysis methods presented here can be applied to observations from the upcoming Swarm multi-satellite mission of ESA, which is anticipated to enable joint studies with the Cluster mission.

  2. ULF wave activity during the 2003 Halloween superstorm: multipoint observations from CHAMP, Cluster and Geotail missions

    Directory of Open Access Journals (Sweden)

    G. Balasis

    2012-12-01

    Full Text Available We examine data from a topside ionosphere and two magnetospheric missions (CHAMP, Cluster and Geotail for signatures of ultra low frequency (ULF waves during the exceptional 2003 Halloween geospace magnetic storm, when Dst reached ~−380 nT. We use a suite of wavelet-based algorithms, which are a subset of a tool that is being developed for the analysis of multi-instrument multi-satellite and ground-based observations to identify ULF waves and investigate their properties. Starting from the region of topside ionosphere, we first present three clear and strong signatures of Pc3 ULF wave activity (frequency 15–100 mHz in CHAMP tracks. We then expand these three time intervals for purposes of comparison between CHAMP, Cluster and Geotail Pc3 observations but also to be able to search for Pc4–5 wave signatures (frequency 1–10 mHz into Cluster and Geotail measurements in order to have a more complete picture of the ULF wave occurrence during the storm. Due to the fast motion through field lines in a low Earth orbit (LEO we are able to reliably detect Pc3 (but not Pc4–5 waves from CHAMP. This is the first time, to our knowledge, that ULF wave observations from a topside ionosphere mission are compared to ULF wave observations from magnetospheric missions. Our study provides evidence for the occurrence of a number of prominent ULF wave events in the Pc3 and Pc4–5 bands during the storm and offers a platform to study the wave evolution from high altitudes to LEO. The ULF wave analysis methods presented here can be applied to observations from the upcoming Swarm multi-satellite mission of ESA, which is anticipated to enable joint studies with the Cluster mission.

  3. Waves in the Southern Ocean as observed by Sentinel1 synthetic aperture radars

    Science.gov (United States)

    Stopa, Justin E.; Sutherland, Peter; Ardhuin, Fabrice

    2017-04-01

    Sea ice plays an important role in the Earth system by regulating air-sea fluxes and moderating the global temperatures. These fluxes can be enhanced by the presence of waves, especially through the breaking of ice into floes which depends on the waves propagating across the ice. The paucity of adequate in-situ wave observations in ice covered seas limits our ability to understand wave-ice interactions. Synthetic Aperture Radar (SAR) imagery over sea ice appears consistent with a dominant modulation of the radar backscatter by velocity bunching (Ardhuin et al. GRL 2015). Because the presence of sea ice generally removes the blurring effects of short wave components, the SAR transformation is more simple than in the open ocean. This property makes it possible to retrieve phase-resolved maps of wave orbital velocities and wave spectra (Ardhuin et al., 2017 RSE). We can thus now use SAR imagery for scientific applications to wave-ice interactions. With the all-weather capabilities and extensive space-time coverage, the Sentinel1 constellation composed of two satellites (S1A & S1B) both equipped with SARs provides the opportunity to extract valuable wave observations in polar regions. Through the high resolution acquisition modes of S1A and S1B which cover the Southern Ocean in 20x20 km images with 4 m spatial resolution we are able to extract an large sample of wave observations. We analyzed more than 35,000 images in the Southern Ocean. Nearly 28% of the images contain wave features and 6% of the images contain well-imaged single wave systems (>2000 wave spectra), with a narrow directional distribution. This dataset of more than 2000 wave spectra is unique in the fact we cover the entire Southern Ocean sea ice with an unprecedented amount of observations. These observations support the idea that the attenuation of waves with periods longer than 10 s is dominated by dissipation processes with a limited effect of scattering. Dissipation rates are estimated from pairs

  4. CLUMPY AND EXTENDED STARBURSTS IN THE BRIGHTEST UNLENSED SUBMILLIMETER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Iono, Daisuke; Hatsukade, Bunyo; Kawabe, Ryohei; Matsuda, Yuichi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Yun, Min S.; Wilson, Grant [University of Massachusetts, Department of Astronomy, 710 North Pleasant Street, Amherst, MA 01003 (United States); Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Ikarashi, Soh [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV Groningen (Netherlands); Izumi, Takuma; Kohno, Kotaro; Tamura, Yoichi; Umehata, Hideki [Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Lee, Minju; Saito, Toshiki [Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Ueda, Junko [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Michiyama, Tomonari; Ando, Misaki, E-mail: d.iono@nao.ac.jp [SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-09-20

    The central structure in three of the brightest unlensed z = 3–4 submillimeter galaxies is investigated through 0.″015–0.″05 (120–360 pc) 860 μ m continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ∼200 pc clumps. AzTEC4 consists of two sources that are separated by ∼1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ∼300–3000 M {sub ⊙} yr{sup −1} kpc{sup −2}, suggesting regions with extreme star formation near the Eddington limit. By comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%–90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (∼200 pc) clumps in the extended 3–4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μ m continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.

  5. Detection of Circular Polarization from Sagittarius A* at Submillimeter Wavelengths

    Science.gov (United States)

    Munoz, Diego; Marrone, D.; Moran, J.

    2009-05-01

    We report the detection of circularly polarized (CP) emission from the compact radio source Sagittarius A* at a level of 1.5% at a frequency of 235 GHz (1.4 mm). Sgr A* is associated with the supermassive black hole (SMBH) in the Galactic Center. The observations, taken with the Submillimeter Array (SMA) on 03/31/2007, also show a linearly polarized (LP) component of 7%. The snr of our detection of CP is about 14. Before our measurements, CP had only been detected at frequencies between 1.4 and 15 GHz (21 and 2 cm) at levels Faraday rotation in the stationary screen (constant RM)acts on a time variable background source. A cold, optically thin plasma screen cannot be responsible for both a constant RM and Faraday conversion from LP to CP, therefore the observed amounts of CP are likely to be originated close to the central source. Sgr A* shows a flat-to-inverted radio spectrum and a submillimeter excess referred to as the "submillimeter bump". This excess it thought to come from the closest regions to the SMBH. In such a scenario, millimeter wavelength data is associated with regions in which the material is likely to be relativistic and the magnetic field ordered. We have carried out polarized radiative transfer calculations exploring different combinations of ordered and stochastic magnetic fields looking for a favored scenario that can explain the apparent constant increase of CP with frequency as well as the sudden jump in LP between 40 and 80 GHz.

  6. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.; Bailung, H., E-mail: hbailung@yahoo.com [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035 (India)

    2016-05-15

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and the spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.

  7. Observational evidence for temporary planetary wave forcing of the MLT during fall equinox

    CERN Document Server

    Stray, Nora H; Espy, Patrick J; Hibbins, Robert E

    2016-01-01

    We present direct observations of zonal wave numbers 1 and 2 planetary wave activity in the mesopause region derived from a longitudinal chain of high-latitude Northern Hemisphere (51-66$^{\\circ}$N) Super Dual Auroral Radar Network radars. Over a 9 year period (2000-2008), the planetary wave activity observed shows a consistent increase around the fall equinox. This is shown to be coincident with a minimum in the magnitude of the stratospheric winds and consequently a minimum in the stratospheric gravity wave filtering and the subsequent momentum deposition in the mesopause region. Despite this, the observed meridional winds are shown to be perturbed poleward and mesopause temperatures rise temporarily, suggesting that westward momentum deposition from planetary waves temporarily becomes the dominant forcing on the mesopause region each fall equinox.

  8. HF Radar Observation of Velocity Fields Induced by Tsunami Waves in the Kii Channel, Japan

    OpenAIRE

    日向, 博文; 藤, 良太郎; 藤井, 智史; 藤田, 裕一; 花土, 弘; 片岡, 智哉; 水谷, 雅裕; 高橋, 智幸

    2012-01-01

    High frequency ocean surface radar observation reveals the velocity fields of propagating tsunami waves and subsequent 30-40 minute period natural oscillation in the Kii Channel, Japan induced by the March 11, 2011 moment magnitude 9.0 Tohoku-Oki earthquake. Technical issues of the ocean surface radar sysytem concerning the detection of tsunami waves and natural oscillation velocities are also discussed.

  9. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, C. D.; Blair, R. M.; Bloernen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Coila, A.; Collette, C. G.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etze, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Garnrnaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keite, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kirmo, J.; Kina, K.; Kim, Namjun; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; MaIlga, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'De, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Sillgh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bake, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizigl, J.

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the

  10. Effects of anisotropy on the frequency spectrum of gravity waves observed by MST radar

    Science.gov (United States)

    Liu, C. H.

    1986-01-01

    In the investigation of gravity waves using mesosphere-stratosphere-troposphere radar data, model gravity-wave spectra have been used. In these model spectra, one usually assumes azimuthal symmetry. The effect of spectral anisotropy on the observed spectrum is studied here. It is shown that for a general Garrett-Munk-type spectrum, the anisotropy does not affect the frequency spectrum observed by the vertically beamed radar. For the oblique beam, however, the observed frequency spectrum is changed. A general gravity wave spectrum including azimuthal anisotropy is considered.

  11. Transient eastward-propagating long-period waves observed over the South Pole

    Directory of Open Access Journals (Sweden)

    S. E. Palo

    Full Text Available Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.

    Key words. Meteorology and atmospheric

  12. Transient eastward-propagating long-period waves observed over the South Pole

    Directory of Open Access Journals (Sweden)

    S. E. Palo

    1998-11-01

    Full Text Available Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.Key words. Meteorology and atmospheric dynamics (Middle

  13. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.

    Science.gov (United States)

    Luo, J; Badiey, M; Karjadi, E A; Katsnelson, B; Tskhoidze, A; Lynch, J F; Moum, J N

    2008-09-01

    Fluctuations of the low frequency sound field in the presence of an internal solitary wave packet during the Shallow Water '06 experiment are analyzed. Acoustic, environmental, and on-board ship radar image data were collected simultaneously before, during, and after a strong internal solitary wave packet passed through the acoustic track. Preliminary analysis of the acoustic wave temporal intensity fluctuations agrees with previously observed phenomena and the existing theory of the horizontal refraction mechanism, which causes focusing and defocusing when the acoustic track is nearly parallel to the front of the internal waves [J. Acoust. Soc. Am., 122(2), pp. 747-760 (2007)].

  14. Observation of the traveling component of an x-ray standing wave field

    Energy Technology Data Exchange (ETDEWEB)

    Lai, B.; Yun, W.B.; Chrzas, J.; Viccaro, P.J.

    1994-03-01

    We present the first systematic experimental study of the traveling component of a standing wave field, formed by interference of an incident beam with its specularly reflected part from a plane interface. The traveling component of the standing wave field propagates parallel to the interface and its existence manifests the dynamical aspect of the standing wave field. In our experiment, a multilayer structure was used to aid in the observation of the traveling wave component. The data measured are explained using a finite thickness diffraction grating model.

  15. Cluster observations of high-frequency waves in the exterior cusp

    Directory of Open Access Journals (Sweden)

    Y. Khotyaintsev

    2004-07-01

    Full Text Available We study wave emissions, in the frequency range from above the lower hybrid frequency up to the plasma frequency, observed during one of the Cluster crossings of a high-beta exterior cusp region on 4 March 2003. Waves are localized near narrow current sheets with a thickness a few times the ion inertial length; currents are strong, of the order of 0.1-0.5μA/m2 (0.1-0.5mA/m2 when mapped to ionosphere. The high frequency part of the waves, frequencies above the electron-cyclotron frequency, is analyzed in more detail. These high frequency waves can be broad-band, can have spectral peaks at the plasma frequency or spectral peaks at frequencies below the plasma frequency. The strongest wave emissions usually have a spectral peak near the plasma frequency. The wave emission intensity and spectral character change on a very short time scale, of the order of 1s. The wave emissions with strong spectral peaks near the plasma frequency are usually seen on the edges of the narrow current sheets. The most probable generation mechanism of high frequency waves are electron beams via bump-on-tail or electron two-stream instability. Buneman and ion-acoustic instability can be excluded as a possible generation mechanism of waves. We suggest that high frequency waves are generated by electron beams propagating along the separatrices of the reconnection region.

  16. Contemporaneous EMIC and whistler mode waves: Observations and consequences for MeV electron loss

    Science.gov (United States)

    Zhang, X.-J.; Mourenas, D.; Artemyev, A. V.; Angelopoulos, V.; Thorne, R. M.

    2017-08-01

    The high variability of relativistic (MeV) electron fluxes in the Earth's radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the contemporaneous presence of EMIC and whistler mode waves in the same L shell, albeit at different local times, determining the distribution of wave and plasma parameters as a function of L, Kp, and AE. We derive electron lifetimes from observations and provide the first statistics of combined effects of EMIC and whistler mode wave scattering on MeV electrons as a function of L and geomagnetic activity. We show that MeV electron lifetimes are often strongly reduced by such combined scattering.

  17. Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations

    Science.gov (United States)

    Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu

    2017-09-01

    Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.

  18. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-03-01

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα ,Θ(f )Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  19. Study of equatorial Kelvin waves using the MST radar and radiosonde observations

    Directory of Open Access Journals (Sweden)

    P. Kishore

    2005-06-01

    Full Text Available In this paper an attempt has been made to study equatorial Kelvin waves using a high power coherent VHF radar located at Gadanki (13.5° N, 79.2° E, a tropical station in the Indian sub-continent. Simultaneous radiosonde observations taken from a nearby meteorological station located in Chennai (13.04° N, 80.17° E were also used to see the coherence in the observed structures. These data sets were analyzed to study the mean winds and equatorial waves in the troposphere and lower stratosphere. Equatorial waves with different periodicities were identified. In the present study, particular attention has been given to the fast Kelvin wave (6.5-day and slow Kelvin wave (16-day. Mean zonal wind structures were similar at both locations. The fast Kelvin wave amplitudes were somewhat similar in both observations and the maximum amplitude is about 8m/s. The phase profiles indicated a slow downward progression. The slow Kelvin wave (16-day amplitudes shown by the radiosonde measurements are a little larger than the radar derived amplitudes. The phase profiles showed downward phase progression and it translates into a vertical wavelength of ~10-12km. The radar and radiosonde derived amplitudes of fast and slow Kelvin waves are larger at altitudes near the tropopause (15-17km, where the mean wind attains westward maximum.

  20. Advanced spectral analysis of ionospheric waves observed with sparse arrays

    CERN Document Server

    Helmboldt, Joseph

    2014-01-01

    This paper presents a case study from a single, six-hour observing period to illustrate the application of techniques developed for interferometric radio telescopes to the spectral analysis of observations of ionospheric fluctuations with sparse arrays. We have adapted the deconvolution methods used for making high dynamic range images of cosmic sources with radio arrays to making comparably high dynamic range maps of spectral power of wavelike ionospheric phenomena. In the example presented here, we have used observations of the total electron content (TEC) gradient derived from Very Large Array (VLA) observations of synchrotron emission from two galaxy clusters at 330 MHz as well as GPS-based TEC measurements from a sparse array of 33 receivers located within New Mexico near the VLA. We show that these techniques provide a significant improvement in signal to noise (S/N) of detected wavelike structures by correcting for both measurement inaccuracies and wavefront distortions. This is especially true for the...

  1. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory; Miyoski, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [NOAA, BOULDER; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

    2008-01-01

    We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  2. Antarctic NAT PSC Belt of June 2003: Observational Validation of the Mountain Wave Seeding Hypothesis

    Science.gov (United States)

    Eckermann, S. D.; Hoffmann, L.; Hoepfner, M.; Wu, D. L.; Alexander, M. J.

    2009-01-01

    Satellite observations of polar stratospheric clouds (PSCs) over Antarctica in June 2003 revealed small nitric acid trihydrate (NAT) particles forming suddenly along the vortex edge. Models suggest the trigger was mountain waves over the Antarctic Peninsula (AP) forming ice for NAT nucleation. We test this hypothesis by analyzing perturbations in stratospheric radiances from the Atmospheric Infrared Sounder (AIRS). AIRS data show mountain waves over the AP on 10-14 June, with no resolved wave activity before or after. Peak wave temperature amplitudes derived from independent 40 hPa channels all return values of 10-12 K, in agreement with values used to model this NAT event. These observations support a NAT wake from a small region of mountain wave activity over the AP as the source of this circumpolar NAT outbreak.

  3. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    Science.gov (United States)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  4. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    Science.gov (United States)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  5. Observational evidence of mixed rossby gravity waves at the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.; Mohankumar, K.; Sijikumar, S.; Sivakumar, K.U.; Mathew, T.

    observed. The asymmetric bifurcation of warm surface water by the subsurface cold water off Sumatra generate asymmetric convective regimes in the vicinity of the equator probably triggered convection with periodicity similar to MRG waves. The intermittent...

  6. Multi-spacecraft observations of ULF waves during the Halloween storm

    Science.gov (United States)

    Daglis, I. A.; Balasis, G.; Zesta, E.; Papadimitriou, C.; Georgiou, M.; Horne, R. B.; Khotyaintsev, Y. V.; Mann, I. R.; Santolik, O.; Turner, D. L.

    2012-12-01

    The "Halloween" storm (on 29 - 31 October 2003) has attracted considerable interest as it offers a great opportunity of understanding the response of the magnetosphere-ionosphere system to strong and continuous solar wind driving through the analysis of combined ground and space data. In this paper, we first present the overall ULF wave activity throughout the three-day interval as observed by Cluster, Geotail, and CHAMP in the variations of the observed magnetic field. We also look at three specific intervals during different phases of the storm when at least two of the spacecraft are in good local time conjunction. We examine separately the Pc3 and Pc4-5 ULF wave activity and its concurrence in the different regions of the magnetosphere and down to the topside ionosphere. We find that the wave content in the magnetosphere is higher due to the storm. The wave power in the topside ionosphere, which is sensitive to ionospheric currents, is directly correlated with Dst. In the magnetosphere, on the other hand, Pc5 wave power exhibits a stronger correlation to Dst, while the Pc3 power exhibits more of an overall linear increase with time from storm onset. At the topside ionosphere the Pc3 wave power - Dst correlation is more prominent than it is in the magnetosphere. Geotail is in the upstream solar wind at the initial main phase of the storm and observes significantly enhanced ULF wave power with the approach of the CME and storm-time conditions. It appears that much of the wave power dynamics observed inside the magnetosphere and ionosphere may be directly driven by wave dynamics inside the solar wind. Local time conjunctions of any satellite combination demonstrate that the dynamic development of the wave power of either Pc3 or Pc4-5 waves is well correlated between the different regions of the magnetosphere and from the magnetosphere to the ionosphere. Correlations between spacecraft in different local time sectors are more generic in terms of the occurrence of

  7. Ultra low frequency waves at Venus: Observations by the Venus Express spacecraft

    Science.gov (United States)

    Fränz, M.; Echer, E.; Marques de Souza, A.; Dubinin, E.; Zhang, T. L.

    2017-10-01

    The generation of waves with low frequencies (below 100 mHz) has been observed in the environment of most bodies in the solar system and well studied at Earth. These waves can be generated either upstream of the body in the solar wind by ionization of planetary exospheres or ions reflected from a bow shock or in the magnetosheath closer to the magnetic barrier. For Mars and Venus the waves may have special importance since they can contribute to the erosion of the ionopause and by that enhance atmospheric escape. While over the past years many case studies on wave phenomena observed at Venus have been published most statistical studies have been based on magnetic observations only. On the other hand the generation mechanisms and transport of these waves through the magnetosphere can only be quantified using both magnetic and particle observations. We use the long time observations of Venus Express (2006-2014) to determine the predominant processes and transport parameters. First we demonstrate the analysis methods in four case studies, then we present a statistical analysis by determining transport ratios from the complete Venus Express dataset. We find that Alfvenic waves are very dominant (>80%) in the solar wind and in the core magnetosheath. Fast waves are observed mainly at the bow shock (around 40%) but also at the magnetic barrier where they may be most important for the energy transfer into the ionosphere. Their occurrence in the magnetotail may be an artifact of the detection of individual plasma jets in this region. Slow mode waves are rarely dominating but occur with probability of about 10% at the bow shock and in the pile-up-region. Mirror mode waves have probability <20% in the magnetosheath slightly increasing towards the pile-up-boundary.

  8. Observations of Equatorial Kelvin Wave Modes in FORMOSAT-3/COSMIC GPS RO Temperature Profiles

    Directory of Open Access Journals (Sweden)

    Potula Sree Brahmanandam

    2010-01-01

    Full Text Available In this study, we analyze FORMOSAT-3/COSMIC (F3/C GPS radio occultation (RO derived temperature components for the period September 2006 to February 2008. Results show the presence of slow Kelvin waves (wave period > 10 days with higher zonal wavenumbers (either one or two in the upper troposphere and lower stratosphere (UTLS. The vertical wavelengths of these waves are found to be in the range of 5 - 12 km. The predominant Kelvin waves observed in the temperature fluctuations are in the altitude range between 15 and 28 km and centered on the tropical tropopause. The downward phase progression of these waves suggests that the derived waves are propagating upward, with the source region located at lower altitudes possibly due to tropical convective heating. The zonal winds retrieved using radiosonde observations over Singapore (1¢XN, 104¢XE during this period show a periodicity of ~24 - 26 months in the stratosphere, and quasi-biennial oscillation (QBO characteristics with eastward zonal winds from March 2006 to May 2007 and westward winds from June 2007 to July 2008 respectively. Our results further show that the Kelvin wave characteristics are enhanced during the westward phase of QBO and diminish during the eastward phase, in line with the previous reported results. Furthermore, an examination of outgoing longwave radiation (OLR data shows that deep convection activity is developed episodically over the Indonesian archipelago during the observation period, thereby indicating that the Kelvin wave events observed in temperature fluctuations are either driven by convective activity (convectively coupled waves or by a broad spectrum of convective variability (free waves over the Indonesian region.

  9. Binary Black Hole Late Inspiral: Simulations for Gravitational Wave Observations

    Science.gov (United States)

    Baker, John G.; vanMeter, James R.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael

    2006-01-01

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the spacebased interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for approximately 1200M through approximately 7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass approximately 14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to PN calculations for the earlier parts of the inspiral provides a combined waveform with less than half a cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR 2 10 for some IMBBHs out to z approximately equals 1, and that LISA can see MBBHs in the range 3 x 10(exp 4) approximately 100 out to the earliest epochs of structure formation at z > 15.

  10. EMIC waves covering wide L shells: MMS and Van Allen Probes observations

    Science.gov (United States)

    Yu, Xiongdong; Yuan, Zhigang; Huang, Shiyong; Wang, Dedong; Li, Haimeng; Qiao, Zheng; Yao, Fei

    2017-07-01

    During 04:45:00-08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6-9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC waves are observed over wide L shells after three continuous magnetic storms, which suggests that these waves might obtain their free energy from those energetic ions injected during storm times. These EMIC waves should be included in radiation belt modeling, especially during continuous magnetic storms. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. It is suggested that multiband-structured EMIC waves can be used to trace the coupling between solar wind and the magnetosphere.tract type="synopsis">le type="main">Plain Language SummaryThe spatial distribution of EMIC waves is an opening question. With combined observations of MMS and Van Allen Probes, this paper has reported EMIC waves covering wide L shells. Moreover, two-band structures separated in frequencies by local He2+ gyrofrequencies were observed in large L shells (L > 6), implying sufficiently rich solar wind origin He2+ likely in the outer ring current. The result is helpful to revealing the spatial distribution and role of He2+ in excitation of EMIC waves.

  11. Structured Antireflective Coating for Silicon at Submillimeter Frequencies

    Science.gov (United States)

    Padilla, Estefania

    2018-01-01

    Observations at millimeter and submillimeter wavelengths are useful for many astronomical studies, such as the polarization of the cosmic microwave background or the formation and evolution of galaxy clusters. In order to allow observations over a broad spectral bandwidth (approximatively from 70 to 420 GHz), innovative broadband anti-reflective (AR) optics must be utilized in submillimeter telescopes. Due to its low loss and high refractive index, silicon is a fine optical material at these frequencies, but an AR coating with multiple layers is required to maximize its transmission over a wide bandwidth. Structured multilayer AR coatings for silicon are currently being developed at Caltech and JPL. The development process includes the design of the structured layers with commercial electromagnetic simulation software, the fabrication by using deep reactive ion etching, and the test of the transmission and reflection of the patterned wafers. Geometrical 3D patterns have successfully been etched at the surface of the silicon wafers creating up to 2 layers with different effective refractive indices. The transmission and reflection of single AR layer wafers, measured between 75 and 330 GHz, are close to the simulation predictions. These results allow the development of new designs with 5 or 6 AR layers in order to improve the bandwidth and transmission of the silicon AR coatings.

  12. Conjugate Observations of EMIC Waves and Precipitation of Relativistic Electrons by GOES and NOAA POES Satellite

    Science.gov (United States)

    Wang, D.

    2016-12-01

    Electromagnetic Ion Cyclotron (EMIC) waves are believed to be able to pitch-angle scatter ring current ions and relativistic electrons leading to the precipitation of them. Utilizing data from GOES and NOAA Polar Orbiting Environmental Satellites (POES), a conjugate observation of EMIC waves and precipitation of ring current ions and relativistic electrons is found. This event took place under quiet geomagnetic conditions. During this interval, GOES satellite observed EMIC waves at geosynchronous orbit in dusk MLT sector. Conjugately, during this interval, low-altitude NOAA POES satellite observed precipitation of ring current ions and relativistic electrons. To our knowledge, this is the best conjugated observation by satellites to illustrate EMIC wave-driven Relativistic Electron Precipitation (REP) in the Magnetic Local Time (MLT) dusk sector. The REP was observed by NOAA POES at the same L and MLT as where EMIC wave was observed by GOES, and the projections of GOES and NOAA POES on the Earth along the geomagnetic field line are nearly at the same geomagnetic latitude and longitude (△MLAT 0.7°, △MLong 0.6°). This event suggests that, during the quiet geomagnetic conditions, EMIC waves can also cause the loss of ring current ions and relativistic electrons through pitch-angle scattering in the dusk sector.

  13. Body and Surface Wave Modeling of Observed Seismic Events

    Science.gov (United States)

    1980-09-01

    period WSS (30,90) instrument at Golden, Colorado. Figure 2. Three component observation of the San Fernando earthquake recorded at ALQ, Nev Mexico ...Planet. tat., 13, 85-96. . . . . . -, .. _ . 101 Console, R. (1976). ?%ccanismo focal* del terremoto del Friuli del 6 Maggio 1976, Ann. di Geof., 9

  14. Imaging of surface wave phase velocities from array phase observations

    Science.gov (United States)

    Weidle, Christian; Maupin, Valerie

    2010-05-01

    While temporary deployments some 10 years ago were largely based on short-period seismometers, the availability of broadband instruments in instrument pools increased strongly in recent years and as such modern temporary deployments for passive seismological recordings often consist to a large extent, if not exclusively, of broadband instruments. This opens for new analysis approaches as the broadband seismic wavefield is obtained at a relatively high spatial sampling relative to the wavelength. In an attempt to infer surface wave phase velocity anomalies beneath Southern Norway based on data from a temporary network of 41 broadband instruments, we present a new approach to overcome the limitations of two-station phase measurements (on the great circle with the source) and instead exploit the two-dimensional nature of the wavefield by taking into account phase measurements at all stations of the array from a single event. This is based on the assumption that the wavefield is at least piecewise linear within the study region. By triangulation of the network region and linear estimation of the phase gradient in each triangle we get without further a priori assumptions a coarse image of the phase velocity variations within our network. The image can be significantly refined for a single event recording by stacking multiple images based on arbitrary subsets of the available data. Phase velocity anomalies measured from single event recordings can be biased and blurred by non-plane arriving wavefield, reflections and diffractions of heterogeneities. Therefore, by averaging over velocity fields from different events with varying backazimuths, artefacts are reduced and the recovered image significantly improved. Another way to improve the recovered structures is to take into account the spatial variation of the amplitude field. However, while the phase between two neighboring stations may be (at least close to) linear, the amplitude may not, hence estimation of the second

  15. Submillimeter solar images from the JCMT

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, G.; Lindsey, C.

    1992-01-01

    We present nearly full-disk, diffraction-limited solar images made at 350 and 850 [mu]m and at 1.3 mm from the 15 m James Clerk Maxwell Telescope on Mauna Kea. These wavelengths sample the thermal structure of the solar chromosphere at altitude from 500 to about 1500 km, providing a height-dependent diagnostic of the atmosphere. Filament channels and neutral lines are apparent in the submillimeter images, although filaments themselves are not clearly visible. The submillimeter images show plage approximately 20% brigher than the surrounding quiet Sun, while sunspot intensities are comparable to the quiet Sun. Circumfacules,' dark are similar to those seen in Ca 8542; comparison with Ca H and K may give estimates of the temperature and filing factor of the hot gas present in these probably bifurcated regions.

  16. The Hawaii SCUBA-2 Lensing Cluster Survey: Are Low-luminosity Submillimeter Galaxies Detected in the Rest-frame UV?

    Science.gov (United States)

    Hsu, Li-Yen; Cowie, Lennox L.; Barger, Amy J.; Wang, Wei-Hao

    2017-12-01

    In this third paper of the Hawaii SCUBA-2 Lensing Cluster Survey series, we present Submillimeter Array (SMA) detections of six intrinsically faint 850 μm sources detected in SCUBA-2 images of the lensing cluster fields, A1689, A2390, A370, MACS J0717.5+3745, and MACS J1423.8+2404. Two of the SCUBA-2 sources split into doublets, yielding a total of eight SMA detections. The intrinsic 870 μm flux densities of these submillimeter galaxies (SMGs) are ∼1 mJy. Five of the eight SMGs are not detected in optical or near-infrared (NIR) images. The NIR-to-submillimeter flux ratios of these faint SMGs suggest that most of them are extremely dusty and/or are at very high redshifts. By combining these SMGs and several other samples from the literature, we find a bimodal distribution for the faint sources in the space of submillimeter flux versus NIR-to-submillimeter flux ratio. While most of the SMA-detected lensed sources are very obscured, the other SMGs with similar flux densities are mostly bright in the NIR. Future Atacama Large Millimeter/submillimeter Array observations of a large sample of SCUBA-2 sources in cluster fields will allow us to decide whether or not the bimodality we observe here really exists.

  17. Experimental observation of electron-acoustic wave propagation in laboratory plasma

    Science.gov (United States)

    Chowdhury, Satyajit; Biswas, Subir; Chakrabarti, Nikhil; Pal, Rabindranath

    2017-06-01

    In the field of fundamental plasma waves, the direct observation of electron-acoustic wave (EAW) propagation in laboratory plasmas remains a challenging problem, mainly because of heavy damping. In the Magnetized Plasma Linear Experimental device, the wave is observed and seen to propagate with the phase velocity ˜ 1.8 times the electron thermal velocity. A small amount of cold, drifting electrons, with the moderate bulk to cold temperature ratio ( ≈ 2 - 3), is present in the device. It plays a crucial role in reducing the damping. Our calculation reveals that the drift relaxes the stringent condition on the temperature ratio for wave destabilization. Growth rate becomes positive above a certain drift velocity even if the temperature ratio is moderate. The observed phase velocity agrees well with the theoretical estimate. Experimental realization of the mode may open up a new avenue in the EAW research.

  18. The Anatomy of the Observed Shoreline Response to Extreme Wave Events: Ipan, Guam

    Science.gov (United States)

    Becker, J. M.; Merrifield, M. A.; Reyns, J.; O'Grady, J.; Hoeke, R. K.; Mcinnes, K. L.

    2016-12-01

    Wave-driven inundation of reef-fringed coastlines is of growing societal concern as sea level is predicted to rise, and the potential for more energetic storms increases. To assess coastal hazards due to storm generated waves, observations from an ongoing field campaign at Ipan, Guam of wave-driven water levels from a series of energetic typhoons during the recent El Nino event are presented. Incident conditions that produce the observed extreme shoreline water levels are assessed, and the behavior of the shoreline response to prior history is determined using analytical and numerical models. The largest observed shoreline response occurred during typhoon Dolphin and is shown to be due in part to the sustained, large breaking wave setup that provided a significant contribution to the shoreline water level.

  19. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  20. Spatio-temporal evolutions of non-orthogonal equatorial wave modes derived from observations

    Science.gov (United States)

    Barton, Cory

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCFs), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. The non-orthogonality of wave modes has yet posed a problem when attempting to separate data into wave fields where the waves project onto the same structure functions. We propose the development and application of a new methodology for equatorial wave expansion of instantaneous flows using the full equatorial wave spectrum. By creating a mapping from the meridional structure function amplitudes to the equatorial wave class amplitudes, we are able to diagnose instantaneous wave fields and determine their evolution. Because all meridional modes are shared by some subset of the wave classes, we require constraints on the wave class amplitudes to yield a closed system with a unique solution for all waves' spatial structures, including IG waves. A synthetic field is analyzed using this method to determine its accuracy for data of a single vertical mode. The wave class spectra diagnosed using this method successfully match the correct dispersion curves even if the incorrect depth is chosen for the spatial decomposition. In the case of more than one depth scale, waves with varying equivalent depth may be similarly identified using the dispersion curves. The primary vertical mode is the 200 m equivalent depth mode, which is that of the peak projection response. A distinct spectral power peak along the Kelvin wave dispersion curve for this value validates our choice of equivalent depth, although the possibility of depth varying with time and height is explored. The wave class spectra diagnosed assuming this depth scale mostly match their expected dispersion curves

  1. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  2. Nonlinear features of equatorial baroclinic Rossby waves detected in Topex altimeter observations

    Directory of Open Access Journals (Sweden)

    R. E. Glazman

    1996-01-01

    Full Text Available Using a recently proposed technique for statistical analysis of non-gridded satellite altimeter data, regime of long equatorially-trapped baroclinic Rossby waves is studied. One-dimensional spatial and spatiotemporal autocorrelation functions of sea surface height (SSH variations yield a broad spectrum of baroclinic Rossby waves and permit determination of their propagation speed. The 1-d wavenumber spectrum of zonal variations is given by a power-law k-2 on scales from about 103 km to 104 km. We demonstrate that the observed wave regime exhibits features of soliton turbulence developing in the long baroclinic Rossby waves. However, being limited to second statistical moments, the present analysis does not allow us to rule out a possibility of weak wave turbulence.

  3. A new millimeter-wave camera for CMB observations

    Science.gov (United States)

    Aboobaker, Asad Marfani

    Studies of the Cosmic Microwave Background (CMB), driven by advances in detector and telescope technology, have transformed cosmology into a precise science. In this thesis we present a means of observing the CMB with a new class of detectors. Specifically, we present a description of the Column CAMera (CCAM), a prototype instrument for the Atacama Cosmology Telescope (ACT). ACT is designed to measure the CMB anisotropy up to l ~ 10, 000 and perform a galaxy cluster survey using the Sunyaev-Zel'dovich effect. The CCAM instrument tests many of the technologies that will be used in the ACT receiver. We describe aspects of the design of CCAM's cryogenic systems, optics, detector array, and housekeeping system. CCAM observed the sky from Princeton in December, 2005. We measure the noise effective power (NEP) of the CCAM detectors on the sky to be ~ 1.3 × 10 - 17 -- 3 × 10 -17 W/[radical]Hz, comparable to what we expect from ACT. We measure the main beam profile using an astronomical point source using a simple model of the primary aperture intensity distribution. We investigate the sidelobes of the telescope response using the moon as a source and the same beam model as used for the main beam. Last, we examine the pixel-to-pixel covariance of the receiver at various steps during the mapmaking process and find that the cleaned data streams are not highly-correlated. The correlation properties of a point source map agree with the measured beam.

  4. Sunward propagating Pc5 waves observed on the post-midnight magnetospheric flank

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson

    2008-06-01

    Full Text Available The overall focus on the driver of toroidal Pc5 waves has been on processes located at or acting on the dayside magnetopause and dayside flanks of the magnetosphere. These processes can generate waves that propagate tailward in the magnetosphere. However, an increasing number of studies, both theoretical and experimental, have looked at waves propagating sunward and that are caused by processes in the magnetotail. Here we present an ultra low frequency (ULF wave observed in the post-midnight/morning sector of the magnetosphere at L=16 RE. The wave has a toroidal mode polarization. We estimate the azimuthal wave number to m=3, consistent with a toroidal mode type pulsation. The positive sign indicates that the wave is propagating sunward and this is confirmed by looking at the Poynting flux of the wave. The frequency of the wave is not constant with time but shows a small increase in the beginning of the event up to over 2.0 mHz. Then the frequency decreases to 1.0 mHz. This decrease coincides with a drop in the total magnetic field strength and we speculate if this is related to an observed reversal of the sign of the interplanetary magnetic field (IMF By-component. This event occurs during relatively quiet magnetospheric conditions with a solar wind speed of approximately 400 km/s. Thus this event is highly likely to be driven by a source in the magnetotail and the change in frequency is an excellent example that the frequency of an ULF wave may be modulated by changes of the plasma parameters on the resonant field line.

  5. An alma survey of submillimeter galaxies in the extended Chandra deep field-south: The agn fraction and X-ray properties of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. X.; Brandt, W. N.; Luo, B. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Smail, I.; Alexander, D. M.; Danielson, A. L. R.; Karim, A.; Simpson, J. M.; Swinbank, A. M. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hodge, J. A.; Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Wardlow, J. L. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Xue, Y. Q. [Key Laboratory for Research in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Coppin, K. E. K. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dannerbauer, H. [Universität Wien, Institute für Astrophysik, Türkenschanzstraße 17, 1180 Wien (Austria); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße 2, D-85748 Garching (Germany); Menten, K. M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Van der Werf, P., E-mail: xxw131@psu.edu, E-mail: niel@astro.psu.edu [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands)

    2013-12-01

    The large gas and dust reservoirs of submillimeter galaxies (SMGs) could potentially provide ample fuel to trigger an active galactic nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with Atacama Large Millimeter/submillimeter Array (ALMA) and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submillimeter-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey. We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which eight were identified as AGNs using several techniques that enable cross-checking. The other two X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by their star formation activity. Six of the eight SMG-AGNs are moderately/highly absorbed, with N {sub H} > 10{sup 23} cm{sup –2}. An analysis of the AGN fraction, taking into account the spatial variation of X-ray sensitivity, yields an AGN fraction of 17{sub −6}{sup +16}% for AGNs with rest-frame 0.5-8 keV absorption-corrected luminosity ≥7.8 × 10{sup 42} erg s{sup –1}; we provide estimated AGN fractions as a function of X-ray flux and luminosity. ALMA's high angular resolution also enables direct X-ray stacking at the precise positions of SMGs for the first time, and we found four potential SMG-AGNs in our stacking sample.

  6. Global Observations of Magnetospheric High-m Poloidal Waves During the 22 June 2015 Magnetic Storm

    Science.gov (United States)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.; hide

    2017-01-01

    We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m approximately 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

  7. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    Science.gov (United States)

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  8. Fibre Inflation: Observable Gravity Waves from IIB String Compactifications

    CERN Document Server

    Cicoli, M; Quevedo, Fernando

    2009-01-01

    We introduce a simple string model of inflation, in which the inflaton field can take trans-Planckian values while driving a period of slow-roll inflation. This leads naturally to a realisation of large field inflation, inasmuch as the inflationary epoch is well described by the single-field scalar potential V = V_0 (3 - 4 exp{-phi/\\sqrt{3}}). Remarkably, for a broad class of vacua all adjustable parameters enter only through the overall coefficient V_0, and in particular do not enter into the slow-roll parameters. Predictions for observables are therefore completely determined by the number of e-foldings (and so are correlated with the post-inflationary reheat temperature, T_r). If the reheat temperature is T_r = 1, 100, 10^{10} or 10^{15} GeV, then N_e = 23, 28, 46 and 58 e-foldings of inflation are required after horizon exit, corresponding to a scalar spectral index n_s = 0.924, 0.937, 0.961 and 0.968, while the ratio of tensor to scalar perturbations becomes r = 0.0264, 0.0189, 0.00797 and 0.00528, withi...

  9. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Amariutei, D V; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Boschi, V; Bose, S; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, N; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Pereira, R; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepanczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; van den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  10. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    Directory of Open Access Journals (Sweden)

    Benjamin P. Abbott

    2016-02-01

    Full Text Available We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg^2 to 20 deg^2 will require at least three detectors of sensitivity within a factor of ~2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  11. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    Science.gov (United States)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  12. Statistical Study of Langmuir Waves Observed Inside the Electron Foreshock of Saturn

    Science.gov (United States)

    Pisa, D.; Santolik, O.; Gurnett, D. A.; Hospodarsky, G. B.; Soucek, J.; Wahlund, J.; Crary, F. J.

    2013-12-01

    The electron foreshock is the region in which electrons reflected from the bow shock compose upstream electron beams. These electron beams can generate electrostatic Langmuir waves at the frequencies close to the local plasma frequency. However, observed spectra often have a form of a superposition of two spectral peaks close to the plasma frequency. A low frequency component at a frequency difference of these two peaks is also often observed. A possible explanation of this signature suggests nonlinear three-wave interactions. The foreshock of Saturn has different parameters compared to the terrestrial foreshock but it is not well documented yet. We present statistical study using data of the Cassini spacecraft. We analyze all foreshock crossings from 2004 to 2012. We use data from the Radio and Plasma Wave Science (RPWS) and Cassini Plasma Science (CAPS) instruments. The nonlinear wave interaction is studied using high-order spectral methods. Our study shows phase coupling of Langmuir waves with the low frequency ion acoustic waves. The validity of the results is tested using simulated signals. The properties of the Langmuir waves along the satellite path through the foreshock are also discussed.

  13. Possibility of measuring gravity-wave momentum flux by single beam observation of MST radar

    Science.gov (United States)

    Liu, C. H.

    1986-01-01

    Vincent and Reid (1983) proposed a technique to measure gravity-wave momentum fluxes in the atmosphere by mesosphere-stratosphere-troposphere (MST) radars using two or more radar beams. Since the vertical momentum fluxes are assumed to be due to gravity waves, it appears possible to make use of the dispersion and polarization relations for gravity waves in extracting useful information from the radar data. In particular, for an oblique radar beam, information about both the vertical and the horizontal velocities associated with the waves are contained in the measured Doppler data. Therefore, it should be possible to extract both V sub Z and V sub h from a single beam observational configuration. A procedure is proposed to perform such an analysis. The basic assumptions are: the measured velocity fluctuations are due to gravity waves and a separable model gravity-wave spectrum of the Garrett-Munk type that is statistically homogeneous in the horizontal plane. Analytical expressions can be derived that relate the observed velocity fluctuations to the wave momentum flux at each range gate. In practice, the uncertainties related to the model parameters and measurement accuracy will affect the results. A MST radar configuration is considered.

  14. Observations of up- and downward propagating gravity waves in the strato- and mesosphere.

    Science.gov (United States)

    Strelnikova, Irina; Baumgarten, Gerd; Lübken, Franz-Josef; Hildebrand, Jens; Höffner, Josef; Stober, Gunter

    2017-04-01

    Experimental and modeling efforts show that small-scale gravity waves (GW) essentially affect large-scale circulations, thermal states, and dynamics from the surface to the middle atmosphere. In climate modeling and weather-forecasting applications the gravity-wave drag and its interaction with large-scale dynamics are referred to as sub-gridscale, i.e. unresolved processes and are the most uncertain aspect of these models. Advances in lidar measurement techniques allow for experimental studies of GWs at very small spatial and temporal scales, which are not accessible by other means. The state of the art Doppler lidars and radars at the ALOMAR research station located in Northern Norway (69°N, 16°E) provide an observational database of GWs at the edge of the polar vortex connected to global dynamics of the Earth atmosphere. Doppler Rayleigh Iodine System (DoRIS) provides horizontal wind measurements in addition to the temperature observation. The altitude coverage is extended from 30 to 110 km by using the temperature observed by mobile Fe lidar with wind observations taken from meteor radar system. This give us unique possibility to obtain wave propagation direction, intrinsic frequency and horizontal wavelength from the single station. Making use of the advantage of this system, we derive wave parameters more precisely, and under some conditions we observe waves with downward propagating energy. In this paper we will present results of analyses of the GW observations by lidars and radars and discuss implications on atmospheric dynamics.

  15. Density waves in Saturn's rings probed by radio and optical occultation - Observational tests of theory

    Science.gov (United States)

    Brophy, Thomas G.; Rosen, Paul A.

    1992-01-01

    A parallel examination is conducted of Voyager radio and photopolarimeter occultation observations of the Saturn A ring's density waves. The radio instrument waves exhibit an average -90 deg offset from the dynamical phase. A warping height of about 100-m amplitude can qualtitatively reproduce this phase shift, while preserving the overall model wave shape. These results may be profoundly relevant for satellite-ring torque calculations in Saturn's rings, given the deposition of all of the net torque of the standard model in the first wavelength.

  16. Nonlinear Interaction of Langmuir and Whistler Waves Observed with Incoherent Scatter Radar

    Science.gov (United States)

    Akbari, H.; Semeter, J. L.

    2016-12-01

    High-latitude ionosphere is characterized by particle precipitations of different origins. Among these are electron precipitation caused by quasi-static parallel electric fields and Alfven wave-particle interactions. In-situ measurements of fields and particles have commonly detected various plasma modes, such as Langmuir and whistler, enhanced by these precipitating electrons. The waves have been shown to undergo various nonlinear wave-wave and wave-particle interaction including parametric type instabilities. Detecting such processes with in-situ instruments however is not always straightforward and certain processes may remain undetected. We present new incoherent scatter radar data from the auroral F-region where strong echoes simultaneously appear in the ion- and both up- and down-shifted plasma lines channels. While aspects of these observations have been previously discussed in detail in terms of electron beam-generated Langmuir turbulence, some new aspects, namely the presence of two peaks separated by 300 kHz in both the up- and down-shifted plasma line channels are discussed in this paper. The unique and asymmetric displacement of the peaks with respect to the radar transmitting frequency suggests that the anomalous spectra are produced as a result of the existence of non-resonant waves generated by nonlinear beating between intense Langmuir and whistler modes. The results suggest that such nonlinear interactions contribute to the appearance of wave activities close to the plasma frequency as observed by in-situ electric field spectral measurements and that not all these wave activities are directly generated by the initial electron beam. The anomalous plasma lines spectra are often observed just above the altitude where Langmuir turbulence is observed. This altitudinal morphology and its implications are also discussed is this paper.

  17. Cosmological inference using only gravitational wave observations of binary neutron stars

    Science.gov (United States)

    Del Pozzo, Walter; Li, Tjonnie G. F.; Messenger, Chris

    2017-02-01

    Gravitational waves emitted during the coalescence of binary neutron star systems are self-calibrating signals. As such, they can provide a direct measurement of the luminosity distance to a source without the need for a cross-calibrated cosmic distance-scale ladder. In general, however, the corresponding redshift measurement needs to be obtained via electromagnetic observations since it is totally degenerate with the total mass of the system. Nevertheless, Fisher matrix studies have shown that, if information about the equation of state of the neutron stars is available, it is possible to extract redshift information from the gravitational wave signal alone. Therefore, measuring the cosmological parameters in pure gravitational-wave fashion is possible. Furthermore, the huge number of sources potentially observable by the Einstein Telescope has led to speculations that the gravitational wave measurement is potentially competitive with traditional methods. The Einstein Telescope is a conceptual study for a third generation gravitational wave detector which is designed to yield 1 03- 1 07 detections of binary neutron star systems per year. This study presents the first Bayesian investigation of the accuracy with which the cosmological parameters can be measured using information coming only from the gravitational wave observations of binary neutron star systems by the Einstein Telescope. We find, by direct simulation of 1 03 detections of binary neutron stars, that, within our simplifying assumptions, H0 , Ωm , ΩΛ , w0 and w1 can be measured at the 95% level with an accuracy of ˜8 % , 65%, 39%, 80% and 90%, respectively. We also find, by extrapolation, that a measurement accuracy comparable with current measurements by Planck is possible if the number of gravitational wave events observed is O (1 06 - 7) . We conclude that, while not competitive with electromagnetic missions in terms of significant digits, gravitational waves alone are capable of providing a

  18. Moored Observations of Internal Waves in Luzon Strait: 3-D Structure, Dissipation, and Evolution

    Science.gov (United States)

    2016-03-01

    resolution model ouput that will help to put the mooring observations in context. A model snapshot (Figure 7) shows a lee wave and turbulence...Kuroshio, can be used to estimate the amplitude and phase of the linear semidiurnal and diurnal internal waves in this energetic region, particularly in...bathymetry, and if they propagated though an ocean without mesoscale or large-scale structure (or a time invariant structure), the amplitude and

  19. Interdisciplinary oceanographic observations: the wave of the future

    Directory of Open Access Journals (Sweden)

    Tommy D. Dickey

    2005-06-01

    Full Text Available Oceanographic measurements, though difficult and expensive, are essential for effective study, stewardship, preservation, and management of our oceanic and atmospheric systems. Ocean sciences have been driven by technologiesenabling new observations, discoveries, and modelling of diverse interdisciplinary phenomena. Despite rapid advances inocean sampling capabilities, the numbers of disciplinary variables that are necessary to solve oceanographic problems arelarge and increasing. In addition, the time and space scales of key processes span over ten orders of magnitude; presently, there remain major spectral gaps in our sampling. Thus, undersampling presents the main limitation to our understanding of global climate change; variability in fish biomass and regime shifts; and episodic and extreme events. Fortunately, recentadvances in ocean platforms and in situ autonomous sampling systems and satellite sensors are enabling unprecedented rates of data acquisition as well as the expansion of temporal and spatial coverage. Consequently, improved sampling strategies will lead to a reduction in ocean forecasting error for predictions of a multitude of atmospheric and oceanic processes. Nonetheless, major challenges remain to massively increase the variety and quantity of ocean measurements and to effectively coordinate, synthesize, and distribute oceanographic data sets. In particular, numbers of measurements are limited by the costs of instruments and their deployment as well as data processing and production of useful data products and visualizations. Looking forward, many novel and innovative technologies involving computing, nanotechnology, robotics, information and telemetry technologies, space sciences, and molecular biology are being developed at a fast pace for numerous applications (Kaku, 1997; Kurzweil, 1999. It is anticipated that several of these can and will be transitioned to the ocean sciences and will prove to be extremely beneficial

  20. Simultaneous Antarctic Gravity Wave Observations in PMCs from the AIM Satellite and PMSE Observations from PANSY Radar

    Science.gov (United States)

    Buzanowicz, M. E.; Yue, J.; Russell, J. M., III; Sato, K.; Kohma, M.; Nakamura, T.

    2015-12-01

    Polar mesospheric clouds (PMCs) are high-altitude ice clouds that form in the cold summer mesopause region due to adiabatic cooling caused by an upwelling induced by the global meridional circulation, which is driven by gravity wave dissipation and forcing. Polar mesospheric summer echoes (PMSEs) are strong coherent echoes also observed in the polar summer mesosphere and are considered to be related to ionization and the small-scale structure associated with PMCs, with their origins thought to be strongly related. The peak PMSE height can be located slightly below the summer mesopause temperature minimum but above the PMC altitude. Upward propagating atmospheric gravity waves (AGWs) are usually considered to be the cause of the wave patterns seen in PMCs. Monitoring PMCs and PMSEs will provide important tools in detecting climate change in the upper atmosphere and a better understanding of the earth-climate system. The science goal I plan to accomplish is to investigate the possibility of a connection between gravity wave perturbation characteristics in PMCs from the AIM (Aeronomy of Ice in the Mesosphere) satellite and PMSE structures observed by PANSY (program of the Antarctic Syowa MST/IS radar). Data from the CIPS instrument onboard AIM, PANSY, and AIRS (Atmospheric Infrared Sounder) will be used. AIM provides a two-dimensional horizontal view of the atmosphere dynamics embedded in PMCs, while PANSY provides a vertical view of PMSEs and gravity waves with high temporal resolution. The combination of AIM and PANSY will provide a three-dimensional view of the atmosphere, AGWs, PMCs and PMSEs. AIRS provides information about AGWs in the stratosphere. Wave analysis of the Fast Fourier Transform or a wavelet analysis will be used to complete the science goal. AIRS will be used to examine how lower atmosphere meteorology may impact the PMC and PMSE structures.

  1. Pc 5 ULF waves observed simultaneously by GOES 7 and the CANOPUS magnetometer array

    Energy Technology Data Exchange (ETDEWEB)

    Ziesolleck, C.W.S.; Feng, Q.; McDiarmid, D.R. [National Research Council of Canada, Ottawa, Ontario (Canada)

    1996-03-01

    The authors have looked at a months worth of data from the CANOPUS magnetometer array (Canadian Auroral Network for the OPEN Program Unified Study) in conjunction with satellite observations from GOES 7 taken in March 1990. Applying filtering techniques they extract Pc 5 type event signatures from this data, and find several events clearly observable in both data sets. The satellite indicated dominantly compressional type events associated with field line resonances. The ground system allows the observation of polarization characteristics, in addition to being able to infer points of origin for the wave events. They then correlate the satellite observations versus relative position from the wave origin. This study shows daily variations in the signals and implies an origin for these compressional waves near local noon.

  2. Estimations of model parameters for gravity wave spectra observed by MST radar

    Science.gov (United States)

    Scheffler, A. O.; Liu, C. H.; Franke, S. J.

    1989-01-01

    The general theory of MST radar observations of gravity wave spectra is developed. This effort extends the previous results to include anisotropy and Doppler effects for the spectra, as well as the consequences for the multibeam configuration. The relationships between the observed one- or two-dimensional spectra for the line-of-sight velocity in the gravity wave spectra are derived. Expressions for cross spectra, as well as covariances between velocities observed on different beams, are computed. Using these results, studies are carried out to show how model parameters for gravity wave spectra can be estimated from the observed quantities. Model parameters include the variance, power law indices, anisotropy parameters, Doppler parameters, mean scale sizes, etc. Cases with different numbers of beams are investigated.

  3. Modulations of MLT turbulence by waves observed during the WADIS sounding rocket project.

    Science.gov (United States)

    Strelnikov, Boris; Latteck, Ralph; Strelnikova, Irina; Lübken, Franz-Josef; Baumgarten, Gerd; Rapp, Markus

    2017-04-01

    The WADIS project (WAve propagation and DISsipation in the middle atmosphere) aimed at studying waves, their dissipation, and effects on trace constituents. Among other things, it addressed the question of the variability of MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar in Tromsø. The project comprised two sounding rocket campaigns conducted at the Andøya Space Center (69 °N, 16 °E). One sounding rocket was launched in summer 2013 and one in winter 2015. The joint in-situ and ground-based observations showed horizontal variability of the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate varied in space in a wave-like manner both horizontally and in the vertical direction. This wave-like modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that vertical mean value of radar turbulence observations reveals wave-like modulation in time domain. This time variability results in up to two orders of magnitude change of the energy dissipation values with periods of 24 h. It also shows 12 h and shorter ( hours) modulations resulting in one decade variation. In this paper we present recent measurement results of turbulence-mean flow interaction and discuss possible reasons of the observed modulations.

  4. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  5. Observations and modelling of the wave mode evolution of an impulse-driven 3 mHz ULF wave

    Directory of Open Access Journals (Sweden)

    J. D. Borderick

    2010-09-01

    Full Text Available A combination of an HF Doppler sounder, a network of ground magnetometers, upstream solar wind monitors and a numerical model is used to examine the temporal evolution of an Ultra Low Frequency (ULF wave. The event occurred on 16 April 1998 and followed a solar wind density and pressure increase seen in the upstream ACE spacecraft data. The magnetometer and HF Doppler sounder data show that the event develops into a low-m (−6 field line resonance. HF signals that propagate via the ionosphere exhibit Doppler shifts due to a number of processes that give rise to a time-dependent phase path. The ULF electric and magnetic fields are calculated by a one-dimensional model which calculates the wave propagation from the magnetosphere, through the ionosphere to the ground with an oblique magnetic field. These values are then used to determine a model HF Doppler shift which is subsequently compared to HF Doppler observations. The ULF magnetic field at the ground and Doppler observations are then used to provide model inputs at various points throughout the event. We find evidence that the wave mode evolved from a mixture of fast and Alfvén modes at the beginning of the event to an almost purely shear Alfvénic mode after 6 wavecycles (33 min.

  6. The observed relationship between wave conditions and beach response, Ocean Beach, San Francisco, CA

    Science.gov (United States)

    Hansen, J.E.; Barnard, P.L.

    2009-01-01

    Understanding how sandy beaches respond to storms is critical for effective sediment management and developing successful erosion mitigation efforts. However, only limited progress has been made in relating observed beach changes to wave conditions, with one of the major limiting factors being the lack of temporally dense beach topography and nearshore wave data in most studies. This study uses temporally dense beach topographic and offshore wave data to directly link beach response and wave forcing with generally good results. Ocean Beach is an open coast high-energy sandy beach located in San Francisco, CA, USA. From April 2004 through the end of 2008, 60 three-dimensional topographic beach surveys were conducted on approximately a monthly basis, with more frequent “short-term surveys during the winters of 2005-06 and 2006-07. Shoreline position data from the short-term surveys show good correlation with offshore wave height, period, and direction averaged over several days prior to the survey (mean R*=0.54 for entire beach). There is, however, considerable alongshore variation in model performance, with R- values ranging from 0.81 to 0.19 for individual sections of the beach. After wave height, the direction of wave approach was the most important factor in determining the response of the shoreline, followed by wave period. Our results indicate that an empirical predictive model of beach response to wave conditions at Ocean Beach is possible with frequent beach mapping and wave data, and that such a model could be useful to coastal managers. 

  7. Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves

    Science.gov (United States)

    Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, Hyomin

    2018-01-01

    Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (˜10 mHz) were also observed in the energy (W) range 50-300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ˜-200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ˜ 120 keV. This feature is explained by drift-bounce resonance (mωd ˜ ωb) of ˜120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density (FH+) exhibits a bump-on-tail structure with ∂FH+/∂W>0 occurring in the 1-10 keV energy range. This FH+ is unstable and can excite P2 waves through bounce resonance (ω ˜ ωb), where ω is the wave frequency.

  8. Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2004-01-01

    Full Text Available We report on recent measurements of solitary waves made by the Wideband Plasma Wave Receiver located on each of the four Cluster spacecraft at 4.5-6.5RE (well above the auroral acceleration region as they cross field lines that map to the auroral zones. These solitary waves are observed in the Wideband data as isolated bipolar and tripolar waveforms. Examples of the two types of pulses are provided. The time durations of the majority of both types of solitary waves observed in this region range from about 0.3 up to 5ms. Their peak-to-peak amplitudes range from about 0.05 up to 20mV/m, with a few reaching up to almost 70mV/m. There is essentially no potential change across the bipolar pulses. There appears to be a small, measurable potential change, up to 0.5V, across the tripolar pulses, which is consistent with weak or hybrid double layers. A limited cross-spacecraft correlation study was carried out in order to identify the same solitary wave on more than one spacecraft. We found no convincing correlations of the bipolar solitary waves. In the two cases of possible correlation of the tripolar pulses, we found that the solitary waves are propagating at several hundred to a few thousand km/s and that they are possibly evolving (growing, decaying as they propagate from one spacecraft to the next. Further, they have a perpendicular (to the magnetic field width of 50km or greater and a parallel width of about 2-5km. We conclude, in general, however, that the Cluster spacecraft at separations along and perpendicular to the local magnetic field direction of tens of km and greater are too large to obtain positive correlations in this region. Looking at the macroscale of the auroral zone at 4.5-6.5RE, we find that the onsets of the broadband electrostatic noise associated with the solitary waves observed in the spectrograms of the WBD data are generally consistent with propagation of the solitary waves up the field lines (away from Earth, or with

  9. Nontropospheric excitation of a ring-like gravity wave observed by several instruments operating at Cerro Pachon, Chile.

    Science.gov (United States)

    Vargas, F.; Swenson, G. R.; Liu, A. Z.; Pautet, P. D.

    2016-12-01

    The occurrence of a single ring-like gravity wave event has been observed at the OH and O(1S) nightglow layers. The event is associated with a secondary wave generation source localized at the upper stratosphere-mesosphere altitude range and represents rare case a nontropospheric wave excitation. In this paper we will present data from several instruments that registered the event simultaneously, discuss the secondary wave generation process, and review other nontropospheric gravity wave excitation sources.

  10. The observational signature of modelled torsional waves and comparison to geomagnetic jerks

    Science.gov (United States)

    Cox, G. A.; Livermore, P. W.; Mound, J. E.

    2016-06-01

    Torsional Alfvén waves involve the interaction of zonal fluid flow and the ambient magnetic field in the core. Consequently, they perturb the background magnetic field and induce a secondary magnetic field. Using a steady background magnetic field from observationally constrained field models and azimuthal velocities from torsional wave forward models, we solve an induction equation for the wave-induced secular variation (SV). We construct time series and maps of wave-induced SV and investigate how previously identified propagation characteristics manifest in the magnetic signals, and whether our modelled travelling torsional waves are capable of producing signals that resemble jerks in terms of amplitude and timescale. Fast torsional waves with amplitudes and timescales consistent with a recent study of the 6 yr Δ LOD signal induce very rapid, small (maximum ∼ 2 nT/yr at Earth's surface) SV signals that would likely be difficult to be resolve in observations of Earth's SV. Slow torsional waves with amplitudes and timescales consistent with other studies produce larger SV signals that reach amplitudes of ∼ 20 nT/yr at Earth's surface. We applied a two-part linear regression jerk detection method to the SV induced by slow torsional waves, using the same parameters as used on real SV, which identified several synthetic jerk events. As the local magnetic field morphology dictates which regions are sensitive to zonal core flow, and not all regions are sensitive at the same time, the modelled waves generally produce synthetic jerks that are observed on regional scales and occur in a single SV component. However, high wave amplitudes during reflection from the stress-free CMB induce large-scale SV signals in all components, which results in a global contemporaneous jerk event such as that observed in 1969. In general, the identified events are periodic due to waves passing beneath locations at fixed intervals and the SV signals are smoothly varying. These smooth

  11. The vertical gradient of gravity wave momentum flux in global observations and modeling

    Science.gov (United States)

    Preusse, Peter; Trinh, Thai; Chen, Dan; Ern, Manfred; Krisch, Isabell; Nogai, Karlheinz; Riese, Martin; Strube, Cornelia

    2017-04-01

    In their recent review paper Geller et al. (2013) compared climatologies of gravity wave momentum flux (GWMF) from various global models with GWMF inferred from different observation techniques. They find a generally good agreement in the global distributions in the lower stratosphere, but a strong difference in the vertical gradient of GWMF profiles: observations from various satellite data sets show a strong decrease of GWMF with a scale height of 9-12km while parametrized GWMF in ECHAM decreases only slowly with a scale height of 24km. The authors hint that this may be caused by the fact that observations see only part of the wave spectrum. In particular, gravity waves (GWs) with short horizontal scales are not seen by the infrared limb sounders. Is the horizontal scale the major reason? Are there other effects responsible for the different vertical gradients? We here consider this question using the GROGRAT ray-tracing model and GWs that are, in principle, visible to infrared limb sounding instruments. For this we analyze GWs in high resolution ECMWF analysis fields at 25km altitude and determine wave amplitudes and the 3D wave vector. The horizontal distribution of GWMF from these ECMWF-resolved waves matches observed distributions well. The inferred wave parameters are used as launch parameters and the GWs are propagated upward with GROGRAT up to 90km altitude. GROGRAT is here used as a 3D ray-tracer with wave action flux conservation and a Fritts and Rastogi saturation scheme, i.e. it is similar to a GW parametrization but can handle 3D propagation in addition. The GROGRAT results also display a very weak decrease of GWMF in the stratosphere and lower mesosphere, similar as the GW parametrization, and are thus an interesting test-bed for searching reasons for the difference between observed and modeled vertical gradients as they were seen in Geller et al. (2013). Using the GROGRAT simulations we investigate the following potential reasons for the difference

  12. Multi-method observation and analysis of an impulse wave and tsunami caused by glacier calving

    Science.gov (United States)

    Lüthi, M. P.; Vieli, A.

    2015-11-01

    Glacier calving can cause violent impulse waves which, upon landfall, can lead to destructive tsunami-like waves. Here we present data acquired during a calving event from Eqip Sermia, an ocean-terminating glacier in West Greenland. During an exceptionally well documented event, the collapse of 9 × 105 m3 ice from a 200 m high ice cliff caused an impulse wave of 50 m height, traveling at a speed of 25-30 m s-1. This wave was filmed from a tour boat in 800 m distance from the calving face, and simultaneously measured with a terrestrial radar interferometer and a tide gauge. Tsunami wave run-up height on the steep opposite shore in 4 km distance was 10-15 m, destroying infrastructure and eroding old vegetation. These observations indicate that such high tsunami waves are a recent phenomenon in the history of this glacier. Analysis of the data shows that only moderately bigger tsunami waves are to be expected in the future, even under rather extreme scenarios.

  13. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Mayu [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tokumaru, Munetoshi; Shiota, Daikou [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 484-8601 (Japan); Isobe, Hiroaki; Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Häusler, Bernd [Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg (Germany); Pätzold, Martin [Rheinisches Institut für Umweltforschung, Department Planetenforschung, Universität zu Köln, Aachener Str. 209, D-50931 Köln (Germany); Nabatov, Alexander [The Institute of Radio Astronomy, National Academy of Science of Ukraine, Chervonoprapornaya, Str. 4, Kharkov 61002 (Ukraine)

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  14. Plasma/Radio Wave Observations at Mercury by the Bepicolombo MMO Spacecraft

    Science.gov (United States)

    Matsumoto, H.; Bougeret, J.-L.; Blomberg, L. G.; Kojima, H.; Yagitan, S.; Omura, Y.; Moncuquet, M.; Chanteur, G.; Kasaba, Y.; Trotignon, J.-G.; Kasahara, Y.; MMO Team; PWI Team; BepiColombo Team

    The BepiColombo Mercury Magnetospheric Orbiter (MMO) spacecraft comprises the plasma and radio wave observation system called Plasma Wave Investigation (PWI). The PWI is designed and developed in collaboration between Japanese and European scientists. Since plasma/radio wave receivers were not installed in the former spacecraft, Mariner 10, which observed the planet Mercury, the PWI onboard the MMO spacecraft will provide the first plasma/radio wave data from Mercury orbit. It will give important information for studies of energy exchange processes in the unique magnetosphere of Mercury characterized by the interaction between the relatively large planet without ionosphere and the solar wind with high dynamic pressure. The PWI consists of three sets of receivers (EWO, SORBET, and AM2P), connected to two sets of electric field sensors (MEFISTO and WPT) and two kinds of magnetic field sensors (LF-SC and DB-SC). The PWI will observe both waveforms and frequency spectra in the frequency range from DC to 10 MHz for the electric field and from 0.1 Hz to 640 kHz for the magnetic field. In the present paper, we demonstrate the scientific objectives of plasma/radio wave observation around Mercury. Further, we introduce the PWI system, which is designed to meet the scientific objectives in the BepiColombo MMO mission.

  15. First direct observation of runaway electron-driven whistler waves in tokamaks

    Science.gov (United States)

    Spong, Donald A.

    2017-10-01

    Whistlers are electromagnetic waves that can be driven unstable by energetic electrons and are observed in natural plasmas, such as the ionosphere and Van Allen belts. Recent DIII-D experiments at low density demonstrate the first direct observation of whistlers in tokamaks, with 100-200 MHz waves excited by runaway electrons (REs) in the multi-MeV range. Whistler activity is correlated with RE intensity and the frequencies scale with magnetic field strength and electron density consistent with a whistler dispersion relation. Fluctuations occur in discrete frequency bands, and not a continuum as would be expected from plane wave analysis, suggesting the important role of toroidicity. An MHD model including the bounded/periodic nature of the plasma identifies multiple eigenmode branches. For a toroidal mode number n = 10, the predicted frequencies and spacing are similar to observations. The instabilities are stabilized with increasing magnetic field, as expected from the anomalous Doppler resonance. The whistler amplitudes show intermittent time variations. Predator-prey cycles with electron cyclotron emission (ECE) signals are observed, which can be interpreted as wave-induced pitch angle scattering of moderate energy REs. Such nonlinear dynamics are supported by quasi-linear simulations indicating that REs are scattered both by whistlers and high frequency magnetized plasma waves. The whistler wave predominantly scatters the high energy REs, while the magnetized plasma wave scatters the low energy REs, abruptly enhancing the ECE signal. Amplitude variations are also associated with sawtooth activity, indicating that the REs sample the q = 1 surface. These features of the RE-driven whistler have connections to ionospheric plasmas and open up new directions for the modeling and active control of tokamak REs. Work supported by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-07ER54917, DE-SC00-16268, and DE-AC05-00OR22725.

  16. Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere

    Science.gov (United States)

    Usanova, M.; Malaspina, D.; Jaynes, A. N.; Bruder, R.; Mann, I. R.; Wygant, J. R.; Ergun, R.

    2016-12-01

    Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on November 1, 2012 and March 17, 2013 and associated dropouts of few MeV electron fluxes. They are electromagnetic, in the frequency range 0.5 - several Hz, and amplitude 0.1- a few nT in magnetic and 0.1- a few mV/m in electric field, with both the wave velocity and the Poynting vector directed almost parallel to the background magnetic field. These properties are very similar to those of electromagnetic ion cyclotron (EMIC) waves, which are believed to contribute to loss of ring current ions and radiation belt electrons and therefore can be also important for inner magnetosphere dynamics.

  17. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-05-25

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.

  18. An alma survey of sub-millimeter galaxies in the extended Chandra deep field south: Sub-millimeter properties of color-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, R.; Walter, F.; Hodge, J. A.; Rix, H.-W.; Schinnerer, E. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Smail, I.; Swinbank, A. M.; Karim, A.; Simpson, J. M. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Chapman, S. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Coppin, K. E. K. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cox, P. [IRAM, 300 rue de la piscine, F-38406 Saint-Martin d' Hères (France); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türenschanzstrasse 17, A-1180 Wien (Austria); Greve, T. R. [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K.; Lindroos, L. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, Onsala SE-439 92 (Sweden); Van der Werf, P. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Weiß, A., E-mail: decarli@mpia.de [Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    We study the sub-millimeter properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-millimeter wavelengths. We base our study on 344 GHz ALMA continuum observations of ∼20''-wide fields centered on 86 sub-millimeter sources detected in the LABOCA Extended Chandra Deep Field South (ECDFS) Sub-millimeter Survey. We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects, and distant red galaxies) according to their optical/near-infrared fluxes. We find clear, >10σ detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust spectral energy distribution of these galaxies. We find that their dust emission is well described by a modified blackbody with T {sub dust} ≈ 30 K and β = 1.6 and infrared luminosities of (5-11) × 10{sup 11} L {sub ☉} or implied star formation rates of 75-140 M {sub ☉} yr{sup –1}. We compare our results with those of previous studies based on single-dish observations at 870 μm and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4 GHz observations of the whole ECDFS. Hence, we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.

  19. Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions

    Science.gov (United States)

    Kaufman, Michael J.; Wolfire, Mark G.; Hollenbach, David J.; Luhman, Michael L.

    1999-12-01

    Photodissociation region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates, which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=101-107 cm-3 and for incident far-ultraviolet radiation fields over the range G0=10-0.5-106.5 (where G0 is the far-ultravioliet [FUV] flux in units of the local interstellar value), for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 μm, [O I] 63 μm and 145 μm, [C I] 370 μm and 609 μm, CO J=1-0, J=2-1, J=3-2, J=6-5, and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far-infrared and submillimeter spectra observable with the Infrared Space Observatory (ISO), the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Wave Astronomy Satellite, the Far Infrared and Submillimeter Telescope, and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground-based observations of M82, NGC 278, and the Large Magellanic Cloud. Our comparison of the conditions in M82 and NGC 278 show that both the gas density and FUV flux are enhanced in the starburst nucleus of M82 compared with those in the normal spiral NGC 278. We model the high [C II]/CO ratio observed in the 30 Doradus region of the LMC and find that it can be

  20. Magneto-acoustic wave energy from numerical simulations of an observed sunspot umbra

    OpenAIRE

    Felipe, T.; Khomenko, E.; Collados, M.

    2011-01-01

    We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through 3D MHD numerical simulations. A magneto-static sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere introducing the fluctuations measured with the \\SiI\\ $\\lambda$ 10827 \\AA\\ line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the \\HeI\\ $\\lambda...

  1. SUBMILLIMETER FOLLOW-UP OF WISE-SELECTED HYPERLUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwen; Eisenhardt, Peter R. M.; Stern, Daniel; Assef, Roberto [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Tsai, Chao-Wei; Cutri, Roc; Griffith, Roger; Jarrett, Thomas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Sayers, Jack; Bridge, Carrie [Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Benford, Dominic [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, LE1 7RH Leicester (United Kingdom); Petty, Sara; Lake, Sean [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Bussmann, Shane [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS78, Cambridge, MA 02138 (United States); Comerford, Julia M.; Evans, Neal J. II [Department of Astronomy, University of Texas, Austin, TX 78731 (United States); Lonsdale, Carol [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Rho, Jeonghee [SETI Institute, 189 BERNARDO Avenue, Mountain View, CA 94043 (United States); Stanford, S. Adam, E-mail: jingwen.wu@jpl.nasa.gov [Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616 (United States); and others

    2012-09-01

    We have used the Caltech Submillimeter Observatory (CSO) to follow-up a sample of Wide-field Infrared Survey Explorer (WISE) selected, hyperluminous galaxies, the so-called W1W2-dropout galaxies. This is a rare ({approx}1000 all-sky) population of galaxies at high redshift (peaks at z = 2-3), which are faint or undetected by WISE at 3.4 and 4.6 {mu}m, yet are clearly detected at 12 and 22 {mu}m. The optical spectra of most of these galaxies show significant active galactic nucleus activity. We observed 14 high-redshift (z > 1.7) W1W2-dropout galaxies with SHARC-II at 350-850 {mu}m, with nine detections, and observed 18 with Bolocam at 1.1 mm, with five detections. Warm Spitzer follow-up of 25 targets at 3.6 and 4.5 {mu}m, as well as optical spectra of 12 targets, are also presented in the paper. Combining WISE data with observations from warm Spitzer and CSO, we constructed their mid-IR to millimeter spectral energy distributions (SEDs). These SEDs have a consistent shape, showing significantly higher mid-IR to submillimeter ratios than other galaxy templates, suggesting a hotter dust temperature. We estimate their dust temperatures to be 60-120 K using a single-temperature model. Their infrared luminosities are well over 10{sup 13} L{sub Sun }. These SEDs are not well fitted with existing galaxy templates, suggesting they are a new population with very high luminosity and hot dust. They are likely among the most luminous galaxies in the universe. We argue that they are extreme cases of luminous, hot dust-obscured galaxies (DOGs), possibly representing a short evolutionary phase during galaxy merging and evolution. A better understanding of their long-wavelength properties needs ALMA as well as Herschel data.

  2. Multipoint observations of Pc1-2 waves associated with a cold plasma density enhancement

    Science.gov (United States)

    Ables, S. T.; Morley, S. K.; Sciffer, M. D.; Fraser, B. J.

    2008-12-01

    During mid-September 2003 the Geostationary Operational Environmental Satellite GOES-9 observed a number of Pc1-2 (0.1-1 Hz) emissions in the dusk sector, in association with the impact of a high-speed solar wind stream. Localized enhancements in the equatorial cold plasma density were measured by the LANL MPA instrument. For one of these observations, a Defense Meteorological Satellite Program (DMSP) spacecraft, F-13, intersected the same magnetic field-line as GOES-9. We present combined observations from GOES-9 at geostationary orbit, DMSP F-13 in the topside ionosphere, and the magnetic observatory at Chokurdakh (CHD). All three observations show evidence of Pc1-2 band wave activity across a limited region. The left-hand polarization of the waves indicates that these are electromagnetic ion-cyclotron (EMIC) waves. In the region of field-line conjunction DMSP also observed high-energy ion precipitation. Using a variety of instruments and a 2.5 dimension MHD model we present a scenario for the generation of these waves and their propagation from geosynchronous orbit, through the ionosphere, to the ground.

  3. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    Science.gov (United States)

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-11-01

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

  4. Millimeter- and submillimeter-wave surveys of Orion A emission lines in the ranges 200.7-202.3, 203.7-205.3, and 330-360 GHz

    Science.gov (United States)

    Jewell, P. R.; Hollis, J. M.; Lovas, F. J.; Snyder, L. E.

    1989-01-01

    A continuous spectral line survey of the Orion A position from 330.5 to 360.1 GHz was carried out. This survey covers nearly the entire 870 micron atmospheric window accessible from ground-based observations. Approximately 160 distinct spectral features composed of about 180 lines were detected, 29 of which could not be readily identified. In addition, Orion A from 200.7 to 202.3 GHz and from 203.7 to 205.3 GHz and 42 distinct new spectral lines were detected, including four that are unidentified at present. These data sets are the first thorough survey results in these spectral regions. The new interstellar lines in the survey bands are tabulated and displayed graphically. Moreover, the data are being made available to the Astronomical Data Center at the Goddard Space Flight Center for distribution by request to the astronomical community.

  5. Multipass millimeter/submillimeter spectrometer to probe dissociative reaction dynamics.

    Science.gov (United States)

    Laas, Jacob C; Hays, Brian M; Widicus Weaver, Susanna L

    2013-10-03

    We present here the instrument design and first experimental results from a multipass millimeter/submillimeter spectrometer designed to probe dissociative reaction dynamics. This work focuses on benchmarking the instrument performance through detection of the CH3O and H2CO products from methanol dissociation induced by a high-voltage plasma discharge. Multiple rotational lines from CH3O and H2CO were observed when this plasma discharge was applied to a sample of methanol vapor seeded in an argon supersonic expansion. The rotational temperature of the dissociation products and their abundance with respect to methanol were determined using a Boltzmann analysis. The minimum detectable absorption coefficient for this instrument was determined to be αmin ≤ 5 × 10(-9) cm(-1). We discuss these results in the context of future applications of this instrument to the study of photodissociation branching ratios for small organic molecules that are important in complex interstellar chemistry.

  6. Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere

    Science.gov (United States)

    Barbosa, D. D.

    1993-01-01

    High-resolution Voyager 1 magnetic field observations of Saturn's inner magnetosphere are examined for the presence of ULF waves. Quasi-circular left-hand polarized transverse oscillations are found in the near-equatorial region of 5-7 Rs with a wave period about 10 s and peak amplitude of about 2 nT. The wave is identified as the electromagnetic oxygen cyclotron mode occurring at a frequency just below the O(+) ion cyclotron frequency. A theoretical model of wave excitation based on gyroresonant coupling through a temperature anisotropy of O(+) pickup ions is developed which accounts for the principal features of the wave spectrum. It is hypothesized that wave-particle interactions provide a level of scattering commensurate with the weak pitch angle diffusion regime but nonetheless one that regulates and maintains a constant thermal anisotropy of ions along the magnetic field. Arguments are also presented that O(+) was the dominant thermal ion of the Dione-Tethys plasma torus at the time of the Pioneer 11 encounter the year previous to the Voyager 1 measurements.

  7. Direct observation of generation and propagation of magnetosonic waves following substorm injection

    Science.gov (United States)

    Su, Zhenpeng; Wang, Geng; Liu, Nigang; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2017-08-01

    Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magnetosonic waves following substorm injections. At higher L shells with significant substorm injections, the discrete magnetosonic emission lines started approximately at the proton gyrofrequency harmonics, qualitatively consistent with the prediction of linear proton Bernstein mode instability. In the frequency-time spectrograms, these emission lines exhibited a clear rising tone characteristic with a long duration of 15-25 min, implying the additional contribution of other undiscovered mechanisms. Nearly at the same time, the magnetosonic waves arose at lower L shells without substorm injections. The wave signals at two different locations, separated by ΔL up to 2.0 and by ΔMLT up to 4.2, displayed the consistent frequency-time structures, strongly supporting the hypothesis about the radial and azimuthal propagation of magnetosonic waves.

  8. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8}    erg cm^{-2} s^{-1} Hz^{-1}(f/25  Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8}  sr^{-1}(f/25  Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5,  and  7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  9. Observation and simulation of wave breaking in the southern hemispheric stratosphere during VORCORE

    Science.gov (United States)

    Moustaoui, M.; Teitelbaum, H.; Mahalov, A.

    2013-04-01

    An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the vortex, except the one launched on 28 October 2005. In this case, the balloon was caught within a tongue of high potential vorticity (PV), and was ejected from the polar vortex. The evolution of this event is studied for the period between 19 and 25 November 2005. It is found that at the beginning of this period, the polar vortex experienced distortions due to the presence of Rossby waves. Then, these waves break and a tongue of high PV develops. On 25 November, the tongue became separated from the vortex and the balloon was ejected into the surf zone. Lagrangian simulations demonstrate that the air masses surrounding the balloon after its ejection were originating from the vortex edge. The wave breaking and the development of the tongue are confined within a region where a planetary Quasi-Stationary Wave 1 (QSW1) induces wind speeds with weaker values. The QSW1 causes asymmetry in the wind speed and the horizontal PV gradient along the edge of the polar vortex, resulting in a localized jet. Rossby waves with smaller scales propagating on top of this jet amplify as they enter the jet exit region and then break. The role of the QSW1 on the formation of the weak flow conditions that caused the non-linear wave breaking observed near the vortex edge is confirmed by three-dimensional numerical simulations using forcing with and without the contribution of the QSW1.

  10. Observation and simulation of wave breaking in the southern hemispheric stratosphere during VORCORE

    Directory of Open Access Journals (Sweden)

    M. Moustaoui

    2013-04-01

    Full Text Available An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the vortex, except the one launched on 28 October 2005. In this case, the balloon was caught within a tongue of high potential vorticity (PV, and was ejected from the polar vortex. The evolution of this event is studied for the period between 19 and 25 November 2005. It is found that at the beginning of this period, the polar vortex experienced distortions due to the presence of Rossby waves. Then, these waves break and a tongue of high PV develops. On 25 November, the tongue became separated from the vortex and the balloon was ejected into the surf zone. Lagrangian simulations demonstrate that the air masses surrounding the balloon after its ejection were originating from the vortex edge. The wave breaking and the development of the tongue are confined within a region where a planetary Quasi-Stationary Wave 1 (QSW1 induces wind speeds with weaker values. The QSW1 causes asymmetry in the wind speed and the horizontal PV gradient along the edge of the polar vortex, resulting in a localized jet. Rossby waves with smaller scales propagating on top of this jet amplify as they enter the jet exit region and then break. The role of the QSW1 on the formation of the weak flow conditions that caused the non-linear wave breaking observed near the vortex edge is confirmed by three-dimensional numerical simulations using forcing with and without the contribution of the QSW1.

  11. Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - I. Cowling approximation

    Science.gov (United States)

    Torres-Forné, Alejandro; Cerdá-Durán, Pablo; Passamonti, Andrea; Font, José A.

    2018-03-01

    Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS-shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a background physical system, with information from the gravitational-wave spectrum of the corresponding non-linear, core-collapse simulation. Using results from the simulation of the collapse of a 35 M⊙ pre-supernova progenitor we show that both types of spectra are indeed related and we are able to identify the modes of oscillation of the PNS, namely g-modes, p-modes, hybrid modes, and standing accretion shock instability (SASI) modes, obtaining a remarkably close correspondence with the time-frequency distribution of the gravitational-wave modes. The analysis presented in this paper provides a proof of concept that asteroseismology is indeed possible in the core-collapse scenario, and it may serve as a basis for future work on PNS parameter inference based on gravitational-wave observations.

  12. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

  13. Analysis of MMS observations of Ion Cyclotron Waves in the Magnetosheath

    Science.gov (United States)

    Boardsen, S. A.; Vinas, A. F.; Gershman, D. J.; Dorelli, J.; Bellan, P. M.; Wendel, D. E.; Avanov, L. A.; Barrie, A. C.; Giles, B. L.; Moore, T. E.; Paterson, W. R.; Pollock, C.; Le, G.; Russell, C. T.; Fuselier, S. A.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2016-12-01

    We will analyze magnetosheath ion cyclotron waves observed by the Magnetospheric Multiscale (MMS) Spacecraft. One such event occurred on October 7, 2016, in which strong ion cyclotron waves were observed in the magnetosheath, near the bowshock, lasting for 1 hour. We will perform a detailed wave analysis of this and similar events, comparing and contrasting single spacecraft and multi-spacecraft analysis techniques. The later will consist of a) Balikhin's phase difference method, b) Bellan's k-spectral plasma current method, and c) k-Filtering multi-spacecraft technique. For the identified wave mode based on these techniques, the self-consistency between the ion/electron fluctuations and the electric and magnetic field fluctuations of these waves will be explored. No Fast Plasma Investigation burst mode data exists for these events, so trigger data, which is at the same temporal resolution as that of the burst mode will be used to compare the ion/electron fluctuations with that of the electric and magnetic fields

  14. Observations of wind and waves in the central Bay of Bengal during ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 2. Observations of wind ... Some of the available statistical predictive methods for the determination of MLD by forced mixing are utilized to test the extent of mechanical mixing within the top layer of water by the local wind and wave activity. The same is ...

  15. Instability observations associated with wave breaking in the stable-stratified deep-ocean

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    High-resolution temperature observations above underwater topography in the deep, stably stratified ocean have revealed two distinctive turbulence processes. These processes are associated with different phases of a large-scale (here tidal) internal gravity wave: (i) highly nonlinear turbulent bores

  16. Observation of depolarized guided acoustic-wave Brillouin scattering in partially uncoated optical fibers

    Science.gov (United States)

    Hayashi, Neisei; Set, Sze Yun; Yamashita, Shinji

    2018-02-01

    We observed the depolarized guided acoustic-wave Brillouin scattering (GAWBS) spectrum in a highly nonlinear fiber with a partially side-stripped polymer coat. The linewidth of the GAWBS spectral line at 941 MHz was measured to be 6.4 MHz, which was 0.9 times that of a coated fiber.

  17. Body and Surface Wave Modeling of Observed Seismic Events Part 3.

    Science.gov (United States)

    1987-05-13

    American Records, Annals di Geofisica , vol. 10, pp. 1-28, 1957 Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge...Valdner, N. Observations of L.and R. Waves from the Black Sea Basin Earthquakes, Annali do Geofisica , vol. 13, pp. 129-134, 1960. Schwab, F., Kausel, E

  18. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality.

    Science.gov (United States)

    Zhang, Kai; Chen, Yeh-Hsin; Schwartz, Joel D; Rood, Richard B; O'Neill, Marie S

    2014-09-01

    Heat wave and health warning systems are activated based on forecasts of health-threatening hot weather. We estimated heat-mortality associations based on forecast and observed weather data in Detroit, Michigan, and compared the accuracy of forecast products for predicting heat waves. We derived and compared apparent temperature (AT) and heat wave days (with heat waves defined as ≥ 2 days of daily mean AT ≥ 95th percentile of warm-season average) from weather observations and six different forecast products. We used Poisson regression with and without adjustment for ozone and/or PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) to estimate and compare associations of daily all-cause mortality with observed and predicted AT and heat wave days. The 1-day-ahead forecast of a local operational product, Revised Digital Forecast, had about half the number of false positives compared with all other forecasts. On average, controlling for heat waves, days with observed AT = 25.3°C were associated with 3.5% higher mortality (95% CI: -1.6, 8.8%) than days with AT = 8.5°C. Observed heat wave days were associated with 6.2% higher mortality (95% CI: -0.4, 13.2%) than non-heat wave days. The accuracy of predictions varied, but associations between mortality and forecast heat generally tended to overestimate heat effects, whereas associations with forecast heat waves tended to underestimate heat wave effects, relative to associations based on observed weather metrics. Our findings suggest that incorporating knowledge of local conditions may improve the accuracy of predictions used to activate heat wave and health warning systems.

  19. Survey of ELF-VLF plasma waves in outer radiation belt observed by Cluster STAFF-SA experiment

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2008-10-01

    Full Text Available Various types of plasma waves have profound effects on acceleration and scattering of radiation belt particles. For the purposes of radiation belt modeling it is necessary to know statistical distributions of plasma wave parameters. This paper analyzes four years of plasma wave observations in the Earth's outer radiation belt obtained by the STAFF-SA experiment on board Cluster spacecraft. Statistical distributions of spectral density of different plasma waves observed in ELF-VLF range (chorus, plasmaspheric hiss, magnetosonic waves are presented as a function of magnetospheric coordinates and geomagnetic activity indices. Comparison with other spacecraft studies supports some earlier conclusions about the distribution of chorus and hiss waves and helps to remove the long-term controversy regarding the distribution of equatorial magnetosonic waves. This study represents a step towards the development of multi-spacecraft database of plasma wave activity in radiation belts.

  20. Observation of Electron Bernstein Wave Heating in a Reversed Field Pinch

    Science.gov (United States)

    Seltzman, A. H.; Anderson, J. K.; Diem, S. J.; Goetz, J. A.; Forest, C. B.

    2017-11-01

    The first observation of rf heating in a reversed field pinch (RFP) using the electron Bernstein wave (EBW) is demonstrated on the Madison Symmetric Torus. Propagation across and heating in a stochastic magnetic field is observed. Novel techniques are required to measure the suprathermal electron tail generated by EBW heating in the presence of intense Ohmic heating. rf-heated electrons directly probe the edge transport properties in the RFP; measured loss rates imply a large noncollisional radial diffusivity.

  1. Observation of self-excited dust acoustic wave in dusty plasma with nanometer size dust grains

    Science.gov (United States)

    Deka, Tonuj; Boruah, A.; Sharma, S. K.; Bailung, H.

    2017-09-01

    Dusty plasma with a nanometer size dust grain is produced by externally injecting carbon nanopowder into a radio frequency discharge argon plasma. A self-excited dust acoustic wave with a characteristic frequency of ˜100 Hz is observed in the dust cloud. The average dust charge is estimated from the Orbital Motion Limited theory using experimentally measured parameters. The measured wave parameters are used to determine dusty plasma parameters such as dust density and average inter particle distance. The screening parameter and the coupling strength of the dusty plasma indicate that the system is very close to the strongly coupled state.

  2. The distant bow shock and magnetotail of Venus - Magnetic field and plasma wave observations

    Science.gov (United States)

    Russell, C. T.; Luhmann, J. G.; Elphic, R. C.; Scarf, F. L.

    1981-01-01

    An examination of the magnetic field and plasma wave data obtained by the Pioneer Venus orbiter in the wake region behind Venus discloses a well developed bow shock whose location is similar to that observed on previous missions in contrast to the dayside bow shock. Venus also has a well developed magnetotail in which the field strenght is enhanced over magnetosheath values and in which the magnetic field is aligned approximately with the solar wind direction. The boundary between magnetosheath and magnetotail is also marked by a change in the plasma wave spectrum.

  3. Trapped planetary (Rossby waves observed in the Indian Ocean by satellite borne altimeters

    Directory of Open Access Journals (Sweden)

    Y. De-Leon

    2017-06-01

    Full Text Available Using 20 years of accurately calibrated, high-resolution observations of sea surface height anomalies (SSHAs by satellite borne altimeters, we show that in the Indian Ocean south of the Australian coast the low-frequency variations of SSHAs are dominated by westward propagating, trapped, i.e., non-harmonic, Rossby (Planetary waves. Our results demonstrate that the meridional-dependent amplitudes of the SSHAs are large only within a few degrees of latitude next to the southern Australian coast while farther in the ocean they are uniformly small. This meridional variation of the SSHA signal is typical of the amplitude structure in the trapped wave theory. The westward propagation speed of the SSHA signal is analyzed by employing three different methods of estimation. Each one of these methods yields speed estimates that can vary widely between adjacent latitudes but the combination of at least two of the three methods yields much smoother variation. The estimates obtained in this manner show that the observed phase speeds at different latitudes exceed the phase speeds of harmonic Rossby (planetary waves by 140 to 200 % (which was also reported in previous studies. In contrast, the theory of trapped Rossby (planetary waves in a domain bounded by a wall on its equatorward side yields phase speeds that approximate more closely the observed phase speeds in the study area.

  4. WINDII airglow observations of wave superposition and the possible association with historical "bright nights"

    Science.gov (United States)

    Shepherd, G. G.; Cho, Y.-M.

    2017-07-01

    Longitudinal variations of airglow emission rate are prominent in all midlatitude nighttime O(1S) lower thermospheric data obtained with the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS). The pattern generally appears as a combination of zonal waves 1, 2, 3, and 4 whose phases propagate at different rates. Sudden localized enhancements of 2 to 4 days duration are sometimes evident, reaching vertically integrated emission rates of 400 R, a factor of 10 higher than minimum values for the same day. These are found to occur when the four wave components come into the same phase at one longitude. It is shown that these highly localized longitudinal maxima are consistent with the historical phenomena known as "bright nights" in which the surroundings of human dark night observers were seen to be illuminated by this enhanced airglow.Plain Language SummaryFor centuries, going back to the Roman era, people have recorded experiences of brightened skies during the night, called "bright nights." Currently, scientists study airglow, an emission of light from the high atmosphere, 100 km above us. Satellite observations of a green airglow have shown that it consists of waves 1, 2, 3, and 4 around the earth. It happens that when the peaks of the different waves coincide there is an airglow brightening, and this article demonstrates that this event produces a bright night. The modern data are shown to be entirely consistent with the historical observations.

  5. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics and Dept. of Physics and Astronomy.; Edgell, D. H. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.; Henchen, R. J. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.; Hu, S. X. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.; Katz, J. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.; Michel, D. T. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.; Myatt, J. F. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.; Shaw, J. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.; Froula, D. H. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics and Dept. of Physics and Astronomy.

    2015-03-26

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.

  6. Crustal velocity structure of the Deccan Volcanic Province, Indian Peninsula, from observed surface wave dispersion

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh

    2014-08-01

    Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.

  7. An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation

    KAUST Repository

    Asiri, Sharefa M.

    2015-08-31

    Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.

  8. The characteristics of mountain waves observed by radar near the west coast of Wales

    Directory of Open Access Journals (Sweden)

    I. T. Prichard

    1995-07-01

    Full Text Available Radar observations at 46.5 MHz of vertical-velocity perturbations at Aberystwyth (52.4°N, 4.1°W have been used to examine the incidence of mountain waves and their dependence on local topography and the wind vector at low heights. A contrast is drawn between the effects of easterly winds passing over major topographical features to the east of the radar site and those of westerly winds crossing low coastal topographical features to the west. Estimates are made of the vertical flux of horizontal momentum associated with mountain waves, and the general influence of mountain-wave activity on vertical-velocity measurements at the site is assessed.

  9. Prediction and near-field observation of skull-guided acoustic waves

    CERN Document Server

    Estrada, Héctor; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  10. Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations

    Science.gov (United States)

    Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.

    1994-01-01

    Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.

  11. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    1998-10-01

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  12. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

    Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  13. Shear wave splitting observations and implications on stress regimes in the Los Angeles basin, California

    Science.gov (United States)

    Li, Yong-Gang

    1996-06-01

    A systematic analysis of three-component seismograms recorded at 15 stations from earthquakes occurring at depths of 5 to 18 km beneath the Los Angeles basin and adjacent areas during the period between 1988 and 1994 shows 20 to 160 ms shear wave splitting. Shallow events exhibit little splitting, while deeper events show progressively greater splitting with depth. The preferred polarization direction of the fast shear wave is nearly N-S, consistent with the direction of the regional maximum horizontal compressive stress but independent of the azimuth between the event and station. We interpret that the shear wave splitting is caused by fluid-filled crustal microcracks and macrofractures aligned in the N-S direction. The shear wave splitting observations of 2.8 to 7.8 ms/km can be explained in terms of an anisotropic crust containing vertical cracks with the apparent crack density of 0.023-0.08. On a regional basis, the crack density may vary from station to station, but we find that the apparent crack density in the strike-slip region of the Newport-Inglewood fault and the Whittier fault is higher than in the reverse-thrusting Santa Monica Mountains and Palos Verdes Hills. No systematic change of shear wave splitting in the Los Angeles basin is found in this study.

  14. Upper mantle anisotropy in western Iran: observations from quasi-Love surface wave scattering

    Science.gov (United States)

    Sadeghi-Bagherabadi, Amir; Margheriti, Lucia; Aoudia, Abdelkrim; Sobouti, Farhad; Lucente, Francesco Pio; Baccheschi, Paola

    2017-04-01

    The Iranian plateau is made up of different tectonic and structural provinces such as the Zagros and Alborz orogenic belts, the Sanandaj-Sirjan and Urumieh-Dokhtar magmatic arcs, and the active subduction zone of Makran. We use data from a temporary seismic network in western Iran. The network was deployed in 2013 and 2014 and consisted of 63 broadband seismometers installed along three parallel profiles that crossed the Zagros Mountains, central Iran and the Alborz Mountains. Diverse patterns of upper mantle anisotropy in these regions are revealed by recent studies on shear wave splitting of core-refracted phases. Observation of quasi-Love surface waves is a proxy for the lateral gradients of anisotropy. We quantitatively analyzed the relative presence or absence of coupled Love and Rayleigh waves recorded by the temporary seismic stations. The records were filtered between 70 s and 200 s which are sensitive to structures deeper than 100 km. Assuming a horizontal anisotropic symmetry axis, Love to Rayleigh scattering is expected to be maximized when the incoming surface wave direction is at a 45 orientation to the fast anisotropy axis. The presence of quasi-Love is predicted by the geometric relation between the fast axis as inferred from shear wave splitting measurements, and the surface wave back-azimuths. Our coherent observations of SKS measurements and Love-to-Rayleigh scattering suggest a deep origin of anisotropy and allow us to argue for the existence of an upper mantle anisotropic structure with laterally-variable horizontal symmetry axis. The anisotropic pattern so found puts new constraints on the geodynamic models of the Iranian region of Arabia-Eurasia collision zone.

  15. Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations

    Directory of Open Access Journals (Sweden)

    K. Sauer

    2010-06-01

    Full Text Available Isotropic electron beams are considered to explain the excitation of whistler waves which have been observed by the STEREO satellite in the Earth's radiation belt. Aside from their large amplitudes (~240 mV/m, another main signature is the strongly inclined propagation direction relative to the ambient magnetic field. Electron temperature anisotropy with Te⊥>Te||, which preferentially generates parallel propagating whistler waves, can be excluded as a free energy source. The instability arises due to the interaction of the Doppler-shifted cyclotron mode ω=−Ωe+kVbcosθ with the whistler mode in the wave number range of kc/ωe≤1 (θ is the propagation angle with respect to the background magnetic field direction, ωe is the electron plasma frequency and Ωe the electron cyclotron frequency. Fluid and kinetic dispersion analysis have been used to calculate the growth rate of the beam-excited whistlers including the most important parameter dependencies. One is the beam velocity (Vb which, for instability, has to be larger than about 2VAe, where VAe is the electron Alfvén speed. With increasing VAe the propagation angle (θ of the fastest growing whistler waves shifts from θ~20° for Vb=2VAe to θ~80° for Vb=5VAe. The growth rate is reduced by finite electron temperatures and disappears if the electron plasma beta (βe exceeds βe~0.2. In addition, Gendrin modes (kc/ωe≈1 are analyzed to determine the conditions under which stationary nonlinear waves (whistler oscillitons can exist. The corresponding spatial wave profiles are calculated using the full nonlinear fluid approach. The results are compared with the STEREO satellite observations.

  16. Bulk submillimeter-wave mixers: Strain and superlattices

    Science.gov (United States)

    Litvak, M. M.; Pickett, H. M.

    1980-01-01

    Strained germanium crystals, doped with gallium, were used as heterodyne mixers at THz frequencies, with infrared bandwidths approaching a GHz. The mixer performance (conversion loss and mixer noise) was analyzed in terms of nonlinearities associated with acceptor levels and with relaxation rates of free holes. Comparison was made with similar mixers employing low lying donor levels in high purity GaAs and with hot electron InSb mixers.

  17. Measurement of plasma conductivity using faraday rotation of submillimeter waves

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, P.J.; Self, S.A.

    1983-03-01

    This paper examines the application of Faraday rotation to the measurement of electron combustion MHD plasmas. Details on the design of a working system are given, including the selection of operating wavelength. A theoretical comparison between the Faraday rotation technique and two-path interferometry shows Faraday rotation in its simplest form to be somewhat less sensitive to changes in electron concentration. This deficit can be balanced against greater immunity to vibration and thermal drift. Improved techniques of measuring the rotation angle promise greater sensitivity. A preliminary experiment has verified the technique.

  18. New technologies for the detection of millimeter and submillimeter waves

    Energy Technology Data Exchange (ETDEWEB)

    Richards, P.L.; Clarke, J.; Gildemeister, J.M.; Lanting, T.; Lee, A.T.; Myers, M.J.; Schwan, D.; Skidmore, J.T.; Spieler, H.G.; Yoon, Jongsoo

    2001-09-20

    Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID readout multiplexer.

  19. Millimeter and submillimeter spectrum of propylene oxide

    Science.gov (United States)

    Mesko, A. J.; Zou, Luyao; Carroll, P. Brandon; Widicus Weaver, Susanna L.

    2017-05-01

    The spectrum of propylene oxide was collected from 70 GHz to 1 THz using direct absorption millimeter and submillimeter spectroscopy. Analysis of the spectrum was performed using the SPFIT/SPCAT programs for the A state. A full internal rotor analysis was performed using the XIAM program. The barrier to internal rotation of the methyl group was determined to be 893 cm-1. The precision of the rotation constants, centrifugal distortion constants, and internal rotor parameters was increased over the results reported by previous low-frequency studies. The results of this laboratory study and the associated analysis, as well as a spectral prediction for the ground vibrational state of propylene oxide, are presented.

  20. Photon caliper to achieve submillimeter positioning accuracy

    Science.gov (United States)

    Gallagher, Kyle J.; Wong, Jennifer; Zhang, Junan

    2017-09-01

    The purpose of this study was to demonstrate the feasibility of using a commercial two-dimensional (2D) detector array with an inherent detector spacing of 5 mm to achieve submillimeter accuracy in localizing the radiation isocenter. This was accomplished by delivering the Vernier ‘dose’ caliper to a 2D detector array where the nominal scale was the 2D detector array and the non-nominal Vernier scale was the radiation dose strips produced by the high-definition (HD) multileaf collimators (MLCs) of the linear accelerator. Because the HD MLC sequence was similar to the picket fence test, we called this procedure the Vernier picket fence (VPF) test. We confirmed the accuracy of the VPF test by offsetting the HD MLC bank by known increments and comparing the known offset with the VPF test result. The VPF test was able to determine the known offset within 0.02 mm. We also cross-validated the accuracy of the VPF test in an evaluation of couch hysteresis. This was done by using both the VPF test and the ExacTrac optical tracking system to evaluate the couch position. We showed that the VPF test was in agreement with the ExacTrac optical tracking system within a root-mean-square value of 0.07 mm for both the lateral and longitudinal directions. In conclusion, we demonstrated the VPF test can determine the offset between a 2D detector array and the radiation isocenter with submillimeter accuracy. Until now, no method to locate the radiation isocenter using a 2D detector array has been able to achieve such accuracy.

  1. Prediction and near-field observation of skull-guided acoustic waves

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  2. Host redshifts from gravitational-wave observations of binary neutron star mergers

    CERN Document Server

    Messenger, Chris; Gossan, Sarah; Rezzolla, Luciano; Sathyaprakash, B S

    2013-01-01

    Inspiralling compact binaries as standard sirens will soon become an invaluable tool for cosmology when advanced interferometric gravitational-wave detectors begin their observations in the coming years. However, a degeneracy in the information carried by gravitational waves between the total rest-frame mass $M$ and the redshift $z$ of the source implies that neither can be directly extracted from the signal, but only the combination $M(1+z)$, the redshifted mass. Recent work has shown that for binary neutron star systems, a tidal correction to the gravitational-wave phase in the late-inspiral signal that depends on the rest-frame source mass could be used to break the mass-redshift degeneracy. We propose here to use the signature encoded in the post-merger signal to deduce the redshift to the source. This will allow an accurate extraction of the intrinsic rest-frame mass of the source, in turn permitting the determination of source redshift and luminosity distance solely from gravitational-wave observations....

  3. Atmospheric Waves and Dynamics Beneath Jupiters Clouds from Radio Wavelength Observations

    Science.gov (United States)

    Cosentino, Richard G.; Butler, Bryan; Sault, Bob; Morales-Juberias, Raul; Simon, Amy; De Pater, Imke

    2017-01-01

    We observed Jupiter at wavelengths near 2 cm with the Karl G. Jansky Very Large Array (VLA) in February 2015. These frequencies are mostly sensitive to variations in ammonia abundance and probe between approx. 0.5- 2.0 bars of pressure in Jupiters atmosphere; within and below the visible cloud deck which has its base near 0.7 bars. The resultant observed data were projected into a cylindrical map of the planet with spatial resolution of approx. 1500 km at the equator. We have examined the data for atmospheric waves and observed a prominent bright belt of radio hotspot features near 10 N, likely connected to the same equatorial wave associated with the 5-m hotspots. We conducted a passive tracer power spectral wave analysis for the entire map and latitude regions corresponding to eastward and westward jets and compare our results to previous studies. The power spectra analysis revealed that the atmosphere sampled in our observation (excluding the NEB region) is in a 2-D turbulent regime and its dynamics are predominately governed by the shallow water equations. The Great Red Spot (GRS) is also very prominent and has a noticeable meridional asymmetry and we compare it, and nearby storms, with optical images. We find that the meridional radio profile has a global north-south hemisphere distinction and find correlations of it to optical intensity banding and to shear zones of the zonal wind profile over select regions of latitude. Amateur optical images taken before and after our observation complemented the radio wave- length map to investigate dynamics of the equatorial region in Jupiters atmosphere. We find that two radio hotspots at 2 cm are well correlated with optical plumes in the NEB, additionally revealing they are not the same 5 m hotspot features correlated with optical dark patches between adjacent plumes. This analysis exploits the VLAs upgraded sensitivity and explores the opportunities now possible when studying gas giants, especially atmospheric

  4. Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2008-01-01

    An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiometer observations is developed. The algorithm involves the use of physical models to simulate cloud radar and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor content, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The algorithm performance is assessed by comparing the retrievals with the reference variables used in synthesizing the observations. The synthetic observation experiment indicates good performance of the retrieval algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm to data from the field experiment yields snow estimates that are consistent with both the cloud radar and radiometer observations.

  5. Observation of multi-component spatial vector solitons of four-wave mixing.

    Science.gov (United States)

    Wang, Ruimin; Wu, Zhenkun; Zhang, Yiqi; Zhang, Zhaoyang; Yuan, Chenzhi; Zheng, Huaibin; Li, Yuanyuan; Zhang, Jinhai; Zhang, Yanpeng

    2012-06-18

    We report the observation of multi-component dipole and vortex vector solitons composed of eight coexisting four-wave mixing (FWM) signals in two-level atomic system. The formation and stability of the multi-component dipole and vortex vector solitons are observed via changing the experiment parameters, including the frequency detuning, powers, and spatial configuration of the involved beams and the temperature of the medium. The transformation between modulated vortex solitons and rotating dipole solitons is observed at different frequency detunings. The interaction forces between different components of vector solitons are also investigated.

  6. Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background.

    Science.gov (United States)

    Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S

    2017-04-14

    The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.

  7. The Status of MUSIC: A Multicolor Sub/millimeter MKID Instrument

    Science.gov (United States)

    Schlaerth, J. A.; Czakon, N. G.; Day, P. K.; Downes, T. P.; Duan, R.; Glenn, J.; Golwala, S. R.; Hollister, M. I.; LeDuc, H. G.; Maloney, P. R.; Mazin, B. A.; Nguyen, H. T.; Noroozian, O.; Sayers, J.; Siegel, S.; Zmuidzinas, J.

    2012-05-01

    We report on the recent progress of the Multicolor Submillimeter (kinetic) Inductance Camera, or MUSIC. MUSIC will use antenna-coupled Microwave Kinetic Inductance Detectors to observe in four colors (150 GHz, 230 GHz, 290 GHz and 350 GHz) with 2304 detectors, 576 per band, at the Caltech Submillimeter Observatory. It will deploy in 2012. Here we provide an overview of the instrument, focusing on the array design. We have also used a pathfinder demonstration instrument, DemoCam, to identify problems in advance of the deployment of MUSIC. In particular, we identified two major limiters of our sensitivity: out-of-band light directly coupling to the detectors (i.e. not through the antenna), effectively an excess load, and a large 1/f contribution from our amplifiers and electronics. We discuss the steps taken to mitigate these effects to reach background-limited performance (BLIP) in observation.

  8. Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study.

    Science.gov (United States)

    Cattell, C A; Breneman, A W; Thaller, S A; Wygant, J R; Kletzing, C A; Kurth, W S

    2015-09-28

    We show the first evidence for locally excited chorus at frequencies below 0.1  f ce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5  f ce and f / f ce decreases rapidly, often to frequencies well below 0.1  f ce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

  9. Plasma flow channels with ULF waves observed by Cluster and Double Star

    Directory of Open Access Journals (Sweden)

    M. Volwerk

    2005-11-01

    Full Text Available On 14 August 2004 a large-scale magnetic structure was observed by Double Star TC-1 in the southern lobe and by Cluster in the northern lobe of the magnetotail. The structure has the signature of a (localized dipolarization, decreasing Bx accompanied by an increasing Bz and a strong earthward flow. The propagation direction of this structure, however, seems to be more in the dawnward direction than earthward. The structure is accompanied by ULF waves with a period of ~5 min, which are simultaneously observed by the ground magnetometer station DIK, at the magnetic footpoints of the spacecraft. We interprete these waves as modes driven by the plasma flow and propagating in the flow channel.

  10. Plasma flow channels with ULF waves observed by Cluster and Double Star

    Directory of Open Access Journals (Sweden)

    M. Volwerk

    2005-11-01

    Full Text Available On 14 August 2004 a large-scale magnetic structure was observed by Double Star TC-1 in the southern lobe and by Cluster in the northern lobe of the magnetotail. The structure has the signature of a (localized dipolarization, decreasing Bx accompanied by an increasing Bz and a strong earthward flow. The propagation direction of this structure, however, seems to be more in the dawnward direction than earthward. The structure is accompanied by ULF waves with a period of ~5 min, which are simultaneously observed by the ground magnetometer station DIK, at the magnetic footpoints of the spacecraft. We interprete these waves as modes driven by the plasma flow and propagating in the flow channel.

  11. Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992

    Science.gov (United States)

    Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.

    2000-01-01

    Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.

  12. Characteristics of Atmospheric Waves Observed From Airglow Measurements in the Northern High-Latitude

    Directory of Open Access Journals (Sweden)

    Young-In Won

    2004-06-01

    Full Text Available The terrestrial nightglow emission in near infrared region were obtained using a Fourier Transform Spectrometer (FTS at Esrange, Sweden (67.90°N, 21.10°E and the OH(4-2 bands were used to derive temperature and airglow emission rate of the upper mesosphere. For this study, we analyzed data taken during winter of 2001/2002 and performed spectral analysis to retrieve wave information. From the Lomb-Scargle spectral analysis to the measured temperatures, dominant oscillations at various periods near tidal frequency are found. Most commonly observed waves are 4, 6, and 8 hour oscillations. Because of periods and persistence, the observed oscillations are most likely of tidal origin, i.e. zonally symmetric tides which are known to have their maximum amplitudes at the pole.

  13. Polar Plasma Wave Observations in the Auroral Region and Polar Cap

    Science.gov (United States)

    Menietti, J. D.; Averkamp, T. F.; Kirchner, D. L.; Pickett, J. S.; Persoon, A. M.; Gurnett, D. A.

    1998-01-01

    Auroral kilometric radiation (AKR), sometimes associated with auroral myriametric radiation (AMR), has been observed by the plasma wave instrument on board Polar on almost every northern hemisphere pass. High spectral resolution plots of the AKR obtained by the wide-band receiver of the plasma wave instrument on board the spacecraft often show discrete, negative-slope striations each extending over a period of several seconds. A preliminary survey of over 4000 spectrograms (each for 48 seconds of data) indicates that the striations are seen in the northern hemisphere near apogee about 5% of the time. The frequency range is 40 kHz less than f less than 100 kHz, but a few observations of signatures have been made at higher frequency (f less than 225 khz. The frequency drift rates R, are similar ranging from -9.0 kHz/sec less than R less than -1.0 kHz/sec. No data is currently available for perigee (southern hemisphere) passes. The paucity of positive-slope features may be due to the location of the satellite at altitudes well above the AKR source region. Past studies have suggested these features are due to AKR wave growth stimulated by the propagation of electromagnetic ion cyclotron waves travelling up (-R) or down (+R) the field line, through the source region. High-resolution waveform data from both Polar and FAST show the presence of solitary waves in the auroral region which may also be a source of these striations. AMR is seen as diffuse emission associated with, but at lower frequency than the lower AKR. Direction finding of these emissions is not conclusive, but for one case, they have a source region distinct from the magnetic field line containing the AKR source, but possibly associated with the auroral cavity density gradient.

  14. Picture of the global field of quasi-monochromatic gravity waves observed by stratospheric balloons and MST radars

    Science.gov (United States)

    Yamanaka, M. D.

    1989-01-01

    In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.

  15. THE OBSERVABILITY OF MULTIPLY REFLECTED P WAVES Michel Foundotos, Guust Nolet Geosciences Azur, University of Nice Sophia Antipolis, France

    Science.gov (United States)

    Foundotos, M.; Nolet, G.

    2009-12-01

    In order to constrain the shallow structure of the Earth in global tomography, Love and Rayleigh waves are often used. However these waves are mostly sensitive to the S wave velocity structure. P-wave energy is either evanescent, or leaking away at every surface reflection that generates an S wave which travels much deeper into the mantle. For that reason, to study the shallow P velocity structure of the Earth, we need to study P-waves at regional distances if a good seismic station coverage is available. Otherwise we can use multiple P reflections at teleseismic distance when regional data are not available (as in the oceans for instance). The major aim of this work was first of all to ensure that these multiply reflected P waves can adequately be observed in real data and also to investigate how many reflections at the surface these reflected waves can still be seen and to investigate how strongly the amplitude of multiply reflected P diminishes because of energy loss into S waves. For this study we are comparing the synthetic predictions computed with a Spectral Element Method for a spherically symmetric earth (Nissen-Meyer et al, 2007) with observed data. We used 150 events recorded (26575 seismograms) from the dense network of US ARRAY, which allows us to make a very large number of observations. Our study shows that three times reflected PPP waves are very well observed for epicentral distances > 60 degrees and for events with Mw 90 degrees.

  16. Differences in Brain Waves of Normal Persons and Stroke Patients during Action Observation and Motor Imagery.

    Science.gov (United States)

    Kim, Junghee; Lee, Byounghee; Lee, Hyun Suk; Shin, Kil Ho; Kim, Min Ju; Son, Esther

    2014-02-01

    [Purpose] The purpose of this study was to examine the changes in brain waves between action observation and motor imagery of stroke patients and normal subjects, and to compare them. [Methods] Twelve stroke patients and twelve normal persons participated in this research. Each group executed action observation and the motor imagery training for 3 minutes, and before and during each intervention the brain waves were measured for 3 minutes, and the relative alpha power and relative beta power analyzed. [Results] Both normal persons and stroke patients showed significant differences in relative alpha power during action observation, but no significant difference in relative alpha power was found during motor imagery. The relative beta power increased similarly in both groups but it was more significantly different during action observation than during motor imagery. [Conclusion] Both action observation and motor imagery can be used as a therapeutic method for motor learning. However, action observation induces stronger cognitive activity, so for the stroke patients who have difficulty with fine motor representation, action observation might be a more effective therapy.

  17. Observed Change in Sahel Rainfall, Circulations, African Easterly Waves, and Atlantic Hurricanes Since 1979

    OpenAIRE

    Shih-Yu Wang; Gillies, Robert R.

    2011-01-01

    Here, we examine the dynamic properties associated with the recent increase in the Sahel rainfall using an ensemble of five global reanalysis datasets (1979–2010). The rainfall that has been observed to be increasing over the Sahel is accounted for by enhancements in both the tropical easterly jet and the African easterly jet, both of which are known to induce wet anomalies. Moreover, positional shifts in the African easterly jet and African easterly waves (AEWs) accompanied the northward m...

  18. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    Science.gov (United States)

    2015-10-08

    airglow emission and the ionosphere. This would greatly enhance our ability to detect tsunamis in the ionosphere. RELATED PROJECTS Not at this time. ...Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input

  19. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5(sigma). The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(+0.7/-0.9) x 10(exp -22). The inferred source-frame initial black hole masses are 14.2(+8.3/-3.7 Stellar Mass and 7.5(+2.3/-2.3) Stellar Mass, and the final black hole mass is 20.8(+6.1/-1.7) Stellar Mass. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(+180/-190) Mpc corresponding to a redshift of 0.090(+.030/-0.04). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  20. Structured waves near the plasma frequency observed in three auroral rocket flights

    Directory of Open Access Journals (Sweden)

    M. Samara

    2006-11-01

    Full Text Available We present observations of waves at and just above the plasma frequency (fpe from three high frequency electric field experiments on three recent rockets launched to altitudes of 300–900 km in active aurora. The predominant observed HF waves just above fpe are narrowband, short-lived emissions with amplitudes ranging from <1 mV/m to 20 mV/m, often associated with structured electron density. The nature of these HF waves, as determined from frequency-time spectrograms, is highly variable: in some cases, the frequency decreases monotonically with time as in the "HF-chirps" previously reported (McAdams and LaBelle, 1999, but in other cases rising frequencies are observed, or features which alternately rise and fall in frequency. They exhibit two timescales of amplitude variation: a short timescale, typically 50–100 ms, associated with individual discrete features, and a longer timescale associated with the general decrease in the amplitudes of the emissions as the rocket moves away from where the condition f~fpe holds. The latter timescale ranges from 0.6 to 6.0 s, corresponding to distances of 2–7 km, assuming the phenomenon to be stationary and using the rocket velocity to convert time to distance.

  1. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pant, V.; Tiwari, A.; Banerjee, D. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Yuan, D. [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518000 (China)

    2017-09-20

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations are very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s{sup −1}. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.

  2. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  3. Numerical simulation of convectively generated gravity waves in West Africa and comparisons with observations

    Science.gov (United States)

    Heinrich, P.; Blanc, E.

    2012-04-01

    Convective clouds in the ITCZ (Intertropical Convergence Zone) are a major source of nonstationary gravity waves, that propagate to the stratosphere and result in upward displacements at low levels, which induces new convection. Simulations of wind fields are performed by the mesoscale meteorological model WRF (Advanced Research Weather Research and Forecasting) over a period of 2 days during active thunderstorm days. Simulations are carried out in a domain covering the ITCZ in West Africa using 2 nested grids with horizontal grid spacing of 27 and 9 km respectively. Simulations are driven by ECMWF winds (defined by 91 levels from surface to 80 km), using 100 levels from surface to 50 Pa and a sponge layer above 45 km. The waves characteristics are compared to observations at the CTBT (Comprehensive Test Ban Treaty) infrasound station in Ivory Coast. The aim of this study is to further understand the mechanisms of wave generation by deep convection and propagation to the stratosphere. In a second part, we also study the effects of gravity waves on the dynamics of the tropical atmosphere and perform sensitivity simulations to the top height of the model.

  4. Submillimeter Spectroscopy of the R Coronae Australis Molecular Cloud Region

    Science.gov (United States)

    Dunn, Marina Madeline; Walker, Christopher K.; Pat, Terrance; Sirsi, Siddhartha; Swift, Brandon J.; Peters, William L.

    2018-01-01

    The Interstellar Medium is comprised of large amounts of gas and dust which coalesce to form stars. Observing in the Terahertz regime of the electromagnetic spectrum, approximately 0.3 -300 microns, allows astronomers to study the ISM in unprecedented detail. Using the high spectral resolution imaging system of the SuperCam receiver, a 64-pixel array previously installed on the Submillimeter Telescope on Mt. Graham, AZ, we have begun a 500 square degree survey of the galactic plane. This instrument was designed to do a complete survey of the Milky Way from the ground, with the main focus being to observe two specific transitions of the carbon monoxide molecule, 12CO(3-2) and 13CO(3-2), at 345 GHz. In this work, we present results from these observations for the R Coronae Australis (R Cr A) complex, a region in the southern hemisphere of the sky, using spectroscopic data from a portion of the survey to gain better insight into the life cycle of the ISM. The majority of stars being formed here are similar to the stellar class of the Sun, making it an excellent area of observing interest. Using these results, we attempt to better ascertain the large-scale structure and kinematics inside of the molecular cloud.

  5. Statistical characteristics of gravity waves observed by an all-sky airglow imager at Maui, HI and Cerro Pachon, Chile

    Science.gov (United States)

    Cao, Bing; Liu, Alan Z.

    2016-07-01

    Many long-term observations, such as airglow imaging, have shown that gravity waves exist in the mesopause region most of the time. These waves deposit momentum and energy into the background atmosphere when dissipating, and thus exert strong influence to the atmosphere. In this study, we focus on (1) the climatology of gravity waves characteristics, (2) the intermittency of gravity wave momentum flux and (3) the duration/lifespan of gravity wave events. These properties have important implications for gravity wave parameterizations. This study is based on multi-year all sky OH airglow observations obtained at Maui, HI (20.7° N, 156.3° W) and the Andes Lidar Observatory in Chile (30.3° S, 70.7° W). The statistical distribution of intrinsic wave parameters and the momentum flux are analyzed. The probability density functions of gravity wave momentum flux and duration can be described by simple functions and are related to the gravity wave intermittency. The probability distributions of the two sites have some similarity but with noticeable differences, indicating different effects of the background flow and wave source on the gravity wave intermittency in the mesopause region.

  6. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  7. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  8. Rocket-borne wave, field, and plasma observations in unstable polar cap E-region

    Science.gov (United States)

    Olesen, J. K.; Primdahl, F.; Spangslev, F.; Ungstrup, E.; Bahnsen, A.; Fahleson, U.; Falthammar, C.-G.; Pedersen, A.

    1976-01-01

    This paper presents initial results from the first comprehensively instrumented rocket flown through a Farley-unstable polar cap E-region. Ground-based ionosondes and magnetometers at two locations and HF radar backscatter at the launch site were used to determine the presence of a geographically widespread ionospheric plasma instability. The observed wave direction, electric field, and current density fit the predictions of the linear theory of the Farley instability, whereas the gradient-drift instability seems to be excluded by the geometry of the observations.

  9. Observation of nuclear spin waves in spin-polarized atomic hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Johson, B.R.; Denker, J.S.; Bigelow, N.; Levy, L.P.; Freed, J.H.; Lee, D.M.

    1984-04-23

    We have observed narrow, distinct resonances in the NMR spectrum of dilute spin-polarized atomic hydrogen gas (nroughly-equal10/sup 16/ atoms/cm/sup 3/). The dependence of the observed spectra on temperature, density, polarization, and magnetic field gradient is consistent with theoretical predictions for spin-wave excitations damped by diffusion. We have measured the parameter ..mu.., which is a measure of the importance of exchange effects in spin transport processes, and the diffusion coefficient D/sub 0/, both of which are in reasonable agreement with theory.

  10. Source Redshifts from Gravitational-Wave Observations of Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    C. Messenger

    2014-10-01

    Full Text Available Inspiraling compact binaries as standard sirens will become an invaluable tool for cosmology when we enter the gravitational-wave detection era. However, a degeneracy in the information carried by gravitational waves between the total rest-frame mass M and the redshift z of the source implies that neither can be directly extracted from the signal; only the combination M(1+z, the redshifted mass, can be directly extracted from the signal. Recent work has shown that for third-generation detectors, a tidal correction to the gravitational-wave phase in the late-inspiral signal of binary neutron star systems can be used to break the mass-redshift degeneracy. Here, we propose to use the signature encoded in the postmerger signal allowing the accurate extraction of the intrinsic rest-frame mass of the source, in turn permitting the determination of source redshift and luminosity distance. The entirety of this analysis method and any subsequent cosmological inference derived from it would be obtained solely from gravitational-wave observations and, hence, would be independent of the cosmological distance ladder. Using numerical simulations of binary neutron star mergers of different mass, we model gravitational-wave signals at different redshifts and use a Bayesian parameter estimation to determine the accuracy with which the redshift and mass can be extracted. We find that for a known illustrative neutron star equation of state and using the Einstein telescope, the median of the 1σ confidence regions in redshift corresponds to ∼10%–20% uncertainties at redshifts of z<0.04.

  11. STEREO and Wind Observations of Intense Cyclotron Harmonic Waves at the Earth's Bow Shock and Inside the Magnetosheath

    Science.gov (United States)

    Breneman, A. W.; Cattell, C.

    2013-01-01

    We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.

  12. Efficacy observation on multiple wave length laser for diabetic retinopathy and central retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Tao Tian

    2014-07-01

    Full Text Available AIM:To observe the efficacy of the multiple wave length laser in treating diabetic retinopathy combined with central retinal vein occlusion. METHODS:Totally 95 cases(100 eyeswith diabetic retinopathy combined with central retinal vein occlusion were treated by multiple wave length laser. Krypton yellow laser was used for macular edema in focal photocoagulation and diffuse photocoagulation. For peripheral retina, krypton green or krypton red laser were used. Visual acuity, slit-lamp biomicroscopy, ophthalmoscopy and fundus fluorescein angiography were performed preoperatively and postoperatively. The patients were followed up for 12 to 48wk. In this study, change in visual acuity and macular edema were observed in both groups, and statistical analysis was performed. RESULTS:The effective rate was 61.2% in diffuse macular edema group and 86.3% in focal macular edema group. The general effective rate of later was higher than the former, while the treatment effect had significant statistical difference(PCONCLUSION: Multiple wave length laser is an effective and safe way to treat diabetic macular edema of diabetic retinopathy combined with central retinal vein occlusion,which is worth widely applying in clinical practice.

  13. Atmospheric Gravity Waves and Turbulent Processes in the Mesopause Region Based on PMSE MAARSY Observations

    Science.gov (United States)

    Gudadze, N.; Chau, J. L.; Stober, G.; Latteck, R.

    2016-12-01

    Mesosphere-lower-thermosphere (MLT) polar dynamics are interesting and important subject for study in atmospheric physic. It is considered that mesopause region is where the main part of the Atmospheric gravity waves breaks and/or dissipates. However this region is difficult to observe. Continuous Observations of the polar summer mesosphere with the Middle Atmosphere Alomar Radar System (MAARSY) and its predecessor the ALOMAR-Wind-Radar (ALWIN) (before 2010), have been used to investigate dynamical structures of well-known phenomenon - Polar Mesosphere Summer Echoes (PMSE) which is an important tracer in the summer polar mesopause region. Signal to Noise Ratio (SNR) and Doppler radial velocity from the PMSE are used to investigate the wave-like motions with periods larger than 5 minutes. Such oscillations are studied in terms of atmospheric gravity waves (AGWs). Processes also connected with AGWs as PMSE layering, are studied in connection with the background conditions of the neutral atmosphere as well. Background winds are obtained from collocated meteor radar (MR). We used local enhancement method for the processing of altitude-time SNR images to detect layers in the PMSEs and characterised them. Our preliminary results indicate that PMSE strength and behaviour is correlated with the meridional wind. Furthermore we found that the spectral width (SW), which is a proxy of turbulence, is most of the time weakly dependent on SNR strength. However, there are some events where SW is highly dependent on SNR intensity indicating that they could be associated to turbulent-dominated events.

  14. A survey of Galileo plasma wave instrument observations of Jovian whistler-mode chorus

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2008-07-01

    Full Text Available A survey of plasma wave observations at Jupiter obtained by the plasma wave instrument on board the Galileo spacecraft is presented. The observations indicate that chorus emissions are observed commonly in the Jovian magnetosphere near the magnetic equator in the approximate radial range 6observations. The orbit of Galileo is also restricted to ±3° of the Jovigraphic equator, but the tilt of the magnetic field permits coverage of a range of magnetic latitudes of −13°<λmag<+13°. The similarities of chorus emissions to terrestrial observations are a good reason to speculate that Jovian chorus emission may play a significant role in the stochastic acceleration of electrons in the radial range 6–10 RJ as recent studies indicate. These electrons may then be transported inward by radial diffusion where they are additionally accelerated to form the synchrotron radiation belt source.

  15. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  16. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves

    CERN Document Server

    Krupa, Katarzyna; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parame...

  17. Interactions of Cavitation Bubbles Observed by High-Speed Imaging in Shock Wave Lithotripsy

    Science.gov (United States)

    Pishchalnikov, Yuri A.; Sapozhnikov, Oleg A.; Bailey, Michael R.; McAteer, James A.; Williams, James C.; Evan, Andrew P.; Cleveland, Robin O.; Crum, Lawrence A.

    2006-05-01

    A multi-frame high-speed photography was used to investigate the dynamics of cavitation bubbles induced by a passage of a lithotripter shock wave in a water tank. Solitary bubbles in the free field each radiated a shock wave upon collapse, and typically emitted a micro-jet on the rebound following initial collapse. For bubbles in clouds, emitted jets were directed toward neighboring bubbles and could break the spherical symmetry of the neighboring bubbles before they in turn collapsed. Bubbles at the periphery of a cluster underwent collapse before the bubbles at the center. Observations with high-speed imaging confirm previous predictions that bubbles in a cavitation cloud do not cycle independently of one another but instead interact as a dynamic bubble cluster.

  18. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    Science.gov (United States)

    Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt

    2016-01-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  19. A nonlinear interaction event between a 16-day wave and a diurnal tide from meteor radar observations

    Directory of Open Access Journals (Sweden)

    K. M. Huang

    2013-11-01

    Full Text Available Relative to extensive studies of interactions between the quasi 2-day wave and tides, nonlinear interaction of the 16-day wave with tides was reported less, in particular interaction with the diurnal tide. We present an observational study of a possible nonlinear interaction event between the 16-day wave and the diurnal tide based on meteor radar measurement at Maui. An obvious 16-day wave can be observed from raw wind data. Its maximum meridional wind amplitude can attain 18.0 m s−1 at a height of 92 km during the time of our attention, which is larger than that in previous reports. Sum and difference interactions between the 16-day wave and the diurnal tide are observed to have rather different intensities. Because sum nonlinear interaction is very intense, the secondary sum wave with a period of 22.59 h is stronger than the diurnal tide. However, weak spectrum of the secondary difference wave is hardly identified. The beat of the diurnal tide with the secondary sum wave leads to substantial modulation of the diurnal tide at a period of 16 days. Moreover, this strong secondary sum wave further interacts with the 16-day wave to generate a new secondary wave with a period of 21.33 h. Such an interaction may be also regarded as a third-order nonlinear interaction between the 16-day wave and the diurnal tide with two-step interaction. Hence, the third-order nonlinear interaction between planetary waves and tides may occur significantly in the MLT region.

  20. Laboratory permittivity measurements of icy planetary analogs in the millimeter and submillimeter domains, in relation with JUICE mission.

    Science.gov (United States)

    Brouet, Y.; Jacob, K.; Murk, A.; Poch, O.; Pommerol, A.; Thomas, N.; Levasseur-Regourd, A. C.

    2015-12-01

    The European Space Agency's JUpiter ICy moons Explorer (JUICE) spacecraft is planned for launch in 2022 and arrival at Jupiter in 2030. It will observe the planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa. One instrument on the JUICE spacecraft is the Sub-millimeter Wave Instrument (SWI), which will measure brightness temperatures from Jupiter's stratosphere and troposphere, and from subsurfaces of Jupiter's icy moons. In the baseline configuration SWI consists of two tunable sub-millimeter wave receivers operating from 530 to 625 GHz. As an alternative one of the receivers could cover the range of 1080 and 1275 GHz. Inversion models are strongly dependent on the knowledge of the complex relative permittivity (hereafter permittivity) of the target material to retrieve the physical properties of the subsurface (e.g. [1][2]). We set up a laboratory experiment allowing us to perform reproducible measurements of the complex scattering parameters S11 and S21 in the ranges of 70 to 110 GHz, of 100 to 160 GHz, of 140 to 220 GHz, of 140 to 220 GHz and of 510 to 715 GHz. These scattering parameters can be used to retrieve the permittivity of icy analogs of the surfaces and subsurfaces of Jupiter's icy moons in order to prepare the data interpretation of SWI [3]. The measurements are performed under laboratory conditions with a quasi-optical bench (Institute of Applied Physics, University of Bern). The icy analogs that we prepare in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy, Physics Institute, University of Bern), include two different porous water ice samples composed of fine-grained ice particles with a size range of 4 to 6 microns and ice particles with a size range of 50 to 100 microns [4][5]; and possibly CO2 ice. We will present the general experimental set-up and the first results in the context to prepare the data interpretation of SWI. [1] Ulaby, F. T., Long, D. G., 2014. Microwave radar and radiometric remote

  1. Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica

    Science.gov (United States)

    Chen, Cao; Chu, Xinzhao

    2017-09-01

    Waves in the atmosphere and ocean are inherently intermittent, with amplitudes, frequencies, or wavelengths varying in time and space. Most waves exhibit wave packet-like properties, propagate at oblique angles, and are often observed in two-dimensional (2-D) datasets. These features make the wavelet transforms, especially the 2-D wavelet approach, more appealing than the traditional windowed Fourier analysis, because the former allows adaptive time-frequency window width (i.e., automatically narrowing window size at high frequencies and widening at low frequencies), while the latter uses a fixed envelope function. This study establishes the mathematical formalism of modified 1-D and 2-D Morlet wavelet transforms, ensuring that the power of the wavelet transform in the frequency/wavenumber domain is equivalent to the mean power of its counterpart in the time/space domain. Consequently, the modified wavelet transforms eliminate the bias against high-frequency/small-scale waves in the conventional wavelet methods and many existing codes. Based on the modified 2-D Morlet wavelet transform, we put forward a wave recognition methodology that automatically identifies and extracts 2-D quasi-monochromatic wave packets and then derives their wave properties including wave periods, wavelengths, phase speeds, and time/space spans. A step-by-step demonstration of this methodology is given on analyzing the lidar data taken during 28-30 June 2014 at McMurdo, Antarctica. The newly developed wave recognition methodology is then applied to two more lidar observations in May and July 2014, to analyze the recently discovered persistent gravity waves in Antarctica. The decomposed inertia-gravity wave characteristics are consistent with the conclusion in Chen et al. (2016a) that the 3-10 h waves are persistent and dominant, and exhibit lifetimes of multiple days. They have vertical wavelengths of 20-30 km, vertical phase speeds of 0.5-2 m/s, and horizontal wavelengths up to several

  2. Influence of the Observation Geometry on the Estimation of Gravity Wave Amplitudes using TIMED-SABER, NDMC and Radiosonde Measurements and Conclusions concerning Wave Characteristics

    Science.gov (United States)

    Wüst, S.; Wendt, V.; Schmidt, C.; Yee, J. H.; Mlynczak, M. G.; Russell, J. M., III; Bittner, M.

    2014-12-01

    Gravity wave parameters can be derived by means of different instrumental techniques. Due to instrumental-specific limitations, information about the waves' amplitudes is averaged individually in time and space; this leads to an underestimation of amplitudes depending on wavelengths and periods, respectively. Global TIMED-SABER temperature data from 2002 to 2013 are analysed with respect to gravity wave activity in the strato- and mesosphere as well as in the mesopause region. Depending on geographical position significant differences for the ascending and descending part of the orbit can be observed when gravity wave activity is averaged over one yaw cycle. Due to the specific orientation of the fields-of-view at polar latitudes the result might be explained by a preferred horizontal wave orientation. Analyses of radiosondes released at ALOMAR, Northern Norway in late winter / early spring 2012 confirm a preferred orientation of wave fronts which is parallel to the mountain ridge. The analysis is repeated for Oberpfaffenhofen, Southern Germany in the vicinity of the Alps. The underestimation of amplitudes by SABER is quantified for both locations on a statistical base. Finally, gravity wave activity in the mesopause is derived from NDMC (Network for the Detection of Mesospheric Change) data including amongst others the stations at ALOMAR and Oberpfaffenhofen. The effects of the size and orientation of the different fields-of-view are discussed. Conclusions how to make use of the different instrumental averaging effects in terms of gravity wave characterization - especially for polar latitudes - are drawn.

  3. Infrared/submillimeter optical properties data base

    Science.gov (United States)

    Alley, Phillip W.

    1989-01-01

    The general goal was to build a data base containing optical properties, such as reflectance, transmittance, refractive index, in the far infrared to submillimeter wavelength region. This data base would be limited to selected crystalline materials and temperature between 300 and 2 K. The selected materials were: lithium, lead, and strontium; the bromides of potassium and thallium; the carbides of silicone and tungsten; and the materials of KRS5, KRS6, diamond, and sapphire. Last summer, barium fluoride was selected as prototype material for building the data base. This summer the literature search, preparation of the data for barium fluoride was completed. In addition the literature search for data related to the compounds mentioned was completed. The current status is that barium fluoride is in a form suitable for a NASA internal publication. The papers containing the data on the other materials were xeroxed and they are ready to be reduced. On the reverse side, the top figure is a sample combination of data for the index of refraction at 300 K. The lower figure shows the transmittance vs wavelength at 300 and 80 K. These figures are a sample of many which were developed. Since barium fluoride was studied more than most of the materials listed above, it is clear that additional measurements should be made to fill in the gaps present on both temperature and wavelength data.

  4. Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, J. R.; Long, J. W.; Stockdon, H. F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  5. Registering parameters and granules of wave observations: IMAGE RPI success story

    Science.gov (United States)

    Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.

    2015-12-01

    Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science

  6. Modeling and Observing the Role of Wind-Waves in Titan's Hydrocarbon Seas

    Science.gov (United States)

    Hayes, A. G., Jr.; Soderblom, J. M.; Donelan, M. A.; Barnes, J. W.; Lorenz, R. D.

    2016-12-01

    Oceanography is no longer just an Earth Science. Standing bodies of liquid that interact with both atmospheric and surface reservoirs are known to exist on Titan and are thought to have existed on early Mars. The exchange of heat, moisture, and momentum between lakes/seas and the atmosphere are of fundamental importance to the hydrologic systems of all three bodies. On Earth, surface liquids are almost always disturbed by some form of wave activity. On Titan, however, Cassini observations through the end of the Equinox Mission (12/2010) showed no indication of surface waves. This was intriguing given the predominance of aeolian features at equatorial latitudes and has been attributed to the light winds predicted during the Titan winter. More recently, the previous series of upper limits and non-detections have given way to indications that the expected freshening of winds in northern summer is causing sporadic ruffling of sea surfaces. Specifically, apparent sunglints offset from the geometric specular point have become a common observation by VIMS and transient radar signatures have been observed over the surfaces of both Ligeia Mare and Kraken Mare. SAR images also reveal morphologies consistent with secondary coastlines, most notably Ontario Lacus and Ligeia Mare. This presentation will review Cassini observations of transient surface activity on Titan's Mare and quantitatively describe the implied constraints on sea surface roughness. Assuming that the transient activity is due to wind waves, we can turn the Cassini spacecraft into an anemometer by coupling roughness constraints to a physics-based model of wave generation and propagation in the Titan environment. By determining the fraction of the lake surface that is oriented in a specific geometry, which can be obtained from either nadir RADAR backscatter or VIMS specular reflection measurements, we can determine the driving wind speeds that best match the observations by matching the fraction of the

  7. Magnetic Cyclotron Waves near the Proton Cyclotron Frequency in the Solar Wind: Wind and ACE Observations in 2005

    Science.gov (United States)

    Broiles, T. W.; Jian, L.; Stevens, M. L.; Gary, S. P.; Lepri, S. T.; Vinas, A. F.; Moya, P. S.; Alexander, R.

    2016-12-01

    Strong narrow-band electromagnetic waves near the proton cyclotron frequency (fpc) have been observed extensively in the solar wind throughout the inner heliosphere. They are transverse and near-circularly polarized, and propagate in directions quasi-parallel or anti-parallel to the magnetic field. Their frequency is a few times of fpc in the spacecraft frame and a fraction of fpc in the plasma frame after removing the Doppler shift effect. These waves are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with otherwise similar characteristics except LH ones appear more often and have higher wave power. Intrinsically they can be LH polarized Alfven-cyclotron waves or RH polarized magnetosonic waves. Through the assistance of audification, we have studied the long-lasting wave events near fpc in 2005 using the high-cadence magnetic field data and well-calibrated plasma data from the Wind mission. A mixture of temperature anisotropies for core protons, beam protons, and alpha particles, as well as proton beam drift are often found for selected events of extensive waves. The wave dispersion analysis using these ion moments indicate these waves are likely to be associated with unstable Alfven-cyclotron anisotropy instability or ion beam instability, and suggest there is a mixture of Alfven-cyclotron waves and magnetosonic waves in the solar wind. Using the conjunction of Wind and ACE spacecraft when they were within 50 Earth radii of each other, we study how often the two spacecraft observe the same waves and whether there is noticeable heating for heavy ions associated with these waves.

  8. Mooring observations of the near-inertial wave wake of Hurricane Ida (2009)

    Science.gov (United States)

    Pallàs-Sanz, Enric; Candela, Julio; Sheinbaum, Julio; Ochoa, José

    2016-12-01

    The near-inertial wave wake of Hurricane Ida is examined of the basis of horizontal velocity observations acquired from 7 moorings instrumented with acoustic Doppler current profilers deployed across the shelf break, slope, and at the abyssal plain of the Yucatan Peninsula, from 130 m to ∼3300 m. During the forced stage, background mean-flow consisted on a dominant cyclonic circulation of ∼100 km of diameter intensified toward the Yucatan's shelf (topographic constraint) and bounded by anticyclonic vorticity northeastward (north 25° N). In the low frequency band, subinertial signals of ∈ [5.5-7.5] day period propagating along the Yucatan shelf break. After the passage of Hurricane Ida, energetic near-inertial oscillations spread away from the storm's track over cyclonic vorticity. The wave's Eulerian frequency increases shoreward and toward the Yucatan's shelf. After Ida's passage, mooring data show a contrasting velocity response: semi-diurnal and diurnal tides are enhanced at the shelf break of the Yucatan Peninsula and near-inertial oscillations at the slope and abyssal plain. The near-inertial kinetic energy is largest to the right of the storm track because of the asymmetric wind-stress and amplified due to vorticity trapping near z =-500 m, which is a proxy of the base of the mesoscale structure and where the mean-flow is nearly zero. The blue frequency shifted wave wake propagates downward at ∼57-70 m day-1 and horizontally at 23-28 km day-1 leading a downward vertical energy flux of [1.3-1.6] × 10-2 W m-2. This represents a 7-9% of the total wind power input to near-inertial oscillations that, ultimately, became available for interior ocean mixing. The results suggest that the most energetic wave packet propagated poleward and downward from a broad upwelling region located near the Hurricane's track. The vertical structure of the near-inertial kinetic energy is described as a sum of the first 12 standing vertical modes and as vertically

  9. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    CERN Document Server

    Yu, Hao; Huang, Fa Peng; Wang, Yong-Qiang; Meng, Xin-He; Liu, Yu-Xiao

    2016-01-01

    The gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along the null geodesics in our four-dimensional space-time. But when one considers that there exists the fifth dimension and only the GW can propagate freely in the bulk, the causal propagations of the GW and electromagnetic wave (EMW) are in general different. In this paper, we compute the null geodesics of the GW and EMW in a five-dimensional anti-de Sitter space-time and our four-dimensional universe in the present of the curvature of universe $k$, respectively. We show that for general cases the horizon radius of the GW is longer than the EMW within the equal time. Taking the GW 150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the X-ray event detected by the Fermi Gamma-ray Burst Mo...

  10. Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events

    CERN Document Server

    Stray, N H; Espy, P J; Limpasuvan, V; Hibbins, R E

    2016-01-01

    This study investigates the effect of stratospheric sudden warmings (SSWs) on planetary wave (PW) activity in the mesosphere-lower thermosphere (MLT). PW activity near 95 km is derived from meteor wind data using a chain of eight SuperDARN radars at high northern latitudes that span longitudes from 150$^{\\circ}$ W to 25$^{\\circ}$ E and latitudes from 51 to 66$^{\\circ}$ N. Zonal wave number 1 and 2 components were extracted from the meridional wind for the years 2000-2008. The observed wintertime PW activity shows common features associated with the stratospheric wind reversals and the accompanying stratospheric warming events. Onset dates for seven SSW events accompanied by an elevated stratopause (ES) were identified during this time period using the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM). For the seven events, a significant enhancement in wave number 1 and 2 PW amplitudes near 95 km was found to occur after the wind reversed at 50 km, with amplitudes maximizing approximately ...

  11. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  12. Large Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations

    Science.gov (United States)

    Cattell, Cynthia; Breneman, A.; Goetz, K.; Kellogg, P.; Kersten, K.; Wygant, J.; Wilson, L. B., III; Looper, Mark D.; Blake, J. Bernard; Roth, I.

    2012-01-01

    One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large amplitude whistler-mode waves. These observations have provided strong evidence that large amplitude (100s mV/m) whistler-mode waves are common during magnetically active periods. The large amplitude whistlers have characteristics that are different from typical chorus. They are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in energization by many MeV and/or scattering by large angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.

  13. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    detected using a cryogenic amplifier and subsequent homodyne mixing at room temperature. In an array of MKIDs, all the resonators are coupled to a shared feedline and are tuned to slightly different frequencies. They can be read out simultaneously using a comb of frequencies generated and measured using digital techniques. This thesis documents an effort to demonstrate the basic operation of ˜ 256 pixel arrays of lumped-element MKIDs made from superconducting TiN x on silicon. The resonators are designed and simulated for optimum operation. Various properties of the resonators and arrays are measured and compared to theoretical expectations. A particularly exciting observation is the extremely high quality factors (˜ 3 x 107) of our TiNx resonators which is essential for ultra-high sensitivity. The arrays are tightly packed both in space and in frequency which is desirable for larger full-size arrays. However, this can cause a serious problem in terms of microwave crosstalk between neighboring pixels. We show that by properly designing the resonator geometry, crosstalk can be eliminated; this is supported by our measurement results. We also tackle the problem of excess frequency noise in MKIDs. Intrinsic noise in the form of an excess resonance frequency jitter exists in planar superconducting resonators that are made on dielectric substrates. We conclusively show that this noise is due to fluctuations of the resonator capacitance. In turn, the capacitance fluctuations are thought to be driven by two-level system (TLS) fluctuators in a thin layer on the surface of the device. With a modified resonator design we demonstrate with measurements that this noise can be substantially reduced. An optimized version of this resonator was designed for the multiwavelength submillimeter kinetic inductance camera (MUSIC) instrument for the Caltech Submillimeter Observatory.

  14. Case study of stratospheric gravity waves of convective origin over Arctic Scandinavia. VHF radar observations and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Rechou, A. [La Reunion Univ., St. Denis Messag, Ile de La Reunion (France). Lab. de l' Atmosphere et des Cyclones; Arnault, J.; Dalin, P.; Kirkwood, S. [Swedish Institute of Space Physics, Kiruna (Sweden)

    2013-03-01

    Orography is a well-known source of gravity and inertia-gravity waves in the atmosphere. Other sources, such as convection, are also known to be potentially important but the large amplitude of orographic waves over Scandinavia has generally precluded the possibility to study such other sources experimentally in this region. In order to better understand the origin of stratospheric gravity waves observed by the VHF radar ESRAD (Esrange MST radar) over Kiruna, in Arctic Sweden (67.88 N, 21.10 E), observations have been compared to simulations made using the Weather Research and Forecasting model (WRF) with and without the effects of orography and clouds. This case study concerns gravity waves observed from 00:00 UTC on 18 February to 12:00 UTC on 20 February 2007. We focus on the wave signatures in the static stability field and vertical wind deduced from the simulations and from the observations as these are the parameters which are provided by the observations with the best height coverage. As is common at this site, orographic gravity waves were produced over the Scandinavian mountains and observed by the radar. However, at the same time, southward propagation of fronts in the Barents Sea created short-period waves which propagated into the stratosphere and were transported, embedded in the cyclonic winds, over the radar site. (orig.)

  15. PROSPECTS FOR JOINT GRAVITATIONAL WAVE AND SHORT GAMMA-RAY BURST OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.; Evans, H.; Fairhurst, S.; Harry, I. W.; Macdonald, E.; Macleod, D.; Sutton, P. J.; Williamson, A. R. [School of Physics and Astronomy, Cardiff University, Cardiff (United Kingdom)

    2015-08-10

    We present a detailed evaluation of the expected rate of joint gravitational-wave (GW) and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the GW search that arises from using the GRB observation to restrict the time and sky location of the source. We argue that this gives a 25% increase in sensitivity when compared to an all-sky, all-time search, corresponding to more than double the number of detectable GW signals associated with GRBs. Using this, we present the expected rate of joint observations with the advanced LIGO and Virgo instruments, taking into account the expected evolution of the GW detector network. We show that in the early advanced GW detector observing runs, from 2015 to 2017, there is only a small chance of a joint observation. However, as the detectors approach their design sensitivities, there is a good chance of joint observations, provided wide field GRB satellites, such as Fermi and the Inter planetary Network, continue operation. The rate will also depend critically upon the nature of the progenitor, with neutron star-black hole systems observable to greater distances than double neutron star systems. The relative rate of binary mergers and GRBs will depend upon the jet opening angle of GRBs. Consequently, joint observations, as well as accurate measurement of both the GRB rate and binary merger rates, will allow for an improved estimation of the opening angle of GRBs.

  16. Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration

    Science.gov (United States)

    Díaz, M. C.; Macri, L. M.; Garcia Lambas, D.; Mendes de Oliveira, C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell, W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz, M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Castillo, M.; Chavushyan, V.; Coelho, P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; DePoy, D. L.; Domínguez Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.; Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.; Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Marshall, J. L.; Melia, R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones, C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.; Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.; Torres-Flores, S.; Tornatore, M.; Zadrożny, A.

    2017-10-01

    We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration. We detected highly significant dimming in the light curves of the counterpart ({{Δ }}g=0.17+/- 0.03 mag, {{Δ }}r=0.14+/- 0.02 mag, {{Δ }}I=0.10+/- 0.03 mag) over the course of only 80 minutes of observations obtained ˜35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ˜59 hr after the event with the EABA 1.5 m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a “blue kilonova” relatively free of lanthanides.

  17. Bursty, Broadband Electromagnetic Waves Associated with Three-Dimensional Nulls Observed in Turbulent Magnetosheath Reconnection

    Science.gov (United States)

    Adrian, Mark L.; Wendel, D. E.

    2012-01-01

    We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.

  18. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    Science.gov (United States)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  19. VLF plasma waves observed during the xenon gas releases on the active satellite

    Science.gov (United States)

    Klos, Z.; Gdalevich, G. L.; Mikhailov, J.; Gousheva, M.; Bankov, L.

    During the ACTIVE satellite mission in 1989/90, neutral xenon gas was released from the satellite. The release, 50g/sec, with velocity 250m/sec quasiperpendicular to the geomagnetic field occurred at different ionospheric altitudes. Parallel with the release process the VLF plasma waves (20Hz-20kHz) were recorded. The very high level of VLF emission during the release was registered and observed for some frequencies to extend some seconds beyond the release. It suggests for creation of expanding plasma cloud close to the satellite. It is difficult to use these observation for a clear CIV test because of incomplete darkness experimental conditions. This paper presents the observed VLF emission characteristics.

  20. Experimental observation of the blob-generation mechanism from interchange waves in a plasma.

    Science.gov (United States)

    Furno, I; Labit, B; Podestà, M; Fasoli, A; Müller, S H; Poli, F M; Ricci, P; Theiler, C; Brunner, S; Diallo, A; Graves, J

    2008-02-08

    The mechanism for blob generation in a toroidal magnetized plasma is investigated using time-resolved measurements of two-dimensional structures of electron density, temperature, and plasma potential. The blobs are observed to form from a radially elongated structure that is sheared off by the E x B flow. The structure is generated by an interchange wave that increases in amplitude and extends radially in response to a decrease of the radial pressure scale length. The dependence of the blob amplitude upon the pressure radial scale length is discussed.

  1. Similar Data Retrieval from Enormous Datasets on ELF/VLF Wave Spectrum Observed by Akebono

    Directory of Open Access Journals (Sweden)

    Y Kasahara

    2010-02-01

    Full Text Available As the total amount of data measured by scientific spacecraft is drastically increasing, it is necessary for researchers to develop new computation methods for efficient analysis of these enormous datasets. In the present study, we propose a new algorithm for similar data retrieval. We first discuss key descriptors that represent characteristics of the VLF/ELF waves observed by the Akebono spacecraft. Second, an algorithm for similar data retrieval is introduced. Finally, we demonstrate that the developed algorithm works well for the retrieval of the VLF spectrum with a small amount of CPU load.

  2. Observation of a New Type of Low Frequency Waves at Comet 67P/Churyumov-Gerasimenko

    CERN Document Server

    Richter, I; Auster, H -U; Fruehauff, D; Goetz, C; Heinisch, P; Perschke, C; Motschmann, U; Stoll, B; Altwegg, K; Burch, J; Carr, C; Cupido, E; Eriksson, A; Henri, P; Goldstein, R; Lebreton, J -P; Mokashi, P; Nemeth, Z; Nilsson, H; Rubin, M; Szegoe, K; Tsurutani, B T; Vallat, C; Volwerk, M; Glassmeier, K -H

    2015-01-01

    We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low activity state. Quasi-coherent, large-amplitude ($\\delta B/B \\sim 2$), compressional magnetic field oscillations at $\\sim$ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied comet-interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pick-up ion driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.

  3. Experimental observation of blood erythrocyte structure in the field of standing surface acoustic waves

    Science.gov (United States)

    Makalkin, D. I.; Korshak, B. A.; Brysev, A. P.

    2017-09-01

    The paper presents experimental results of observing the structurization effect for one of the formed elements of blood—erythrocytes—in the field of standing surface acoustic waves. Characteristic images of the striated structures formed by erythrocytes on the surface of lithium niobate as result of ultrasound action have been obtained. The results on the ultrasound structurization of erythrocytes in a blood sample and of calcium carbonate particles in an aqueous colloid solution have been comparatively analyzed. It has been noted that the achieved effect agrees qualitatively with the theoretical model of the behavior of colloid particle ensembles in an acoustic field developed by O.V. Rudenko et al.

  4. EVIDENCE FOR ENVIRONMENTAL CHANGES IN THE SUBMILLIMETER DUST OPACITY

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter G.; Roy, Arabindo; Miville-Deschenes, Marc-Antoine [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Bontemps, Sylvain [Observatoire de Bordeaux, BP 89, F-33270 Floirac (France); Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip [Department of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA (United Kingdom); Bock, James J. [Jet Propulsion Laboratory, Pasadena, CA 91109-8099 (United States); Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Carol Gables, FL 33146 (United States); Hughes, David H. [Instituto Nacional de Astrofisica Optica y Electronica (INAOE), Aptdo. Postal 51 y 72000 Puebla (Mexico); Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Olmi, Luca [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 (Italy); Patanchon, Guillaume [Laboratoire APC, 10, rue Alice Domon et Leonie Duquet F-75205 Paris (France); and others

    2012-05-20

    The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 {mu}m and one IRAS band at 100 {mu}m. The proxy is the near-infrared color excess, E(J - K{sub s}), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity {sigma}{sub e}(1200) at 1200 GHz or 250 {mu}m can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N{sub H} > 10{sup 22} cm{sup -2}) and small enough to ensure a uniform dust temperature. We find {sigma}{sub e}(1200) is typically (2-4) Multiplication-Sign 10{sup -25} cm{sup 2} H{sup -1} and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing {sigma}{sub e}(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity

  5. Tomographic retrieval approach for mesoscale gravity wave observations by the PREMIER Infrared Limb-Sounder

    Directory of Open Access Journals (Sweden)

    J. Ungermann

    2010-03-01

    Full Text Available PREMIER is one of three candidates for ESA's 7th Earth Explorer mission that are currently undergoing feasibility studies. The main mission objective of PREMIER is to quantify processes controlling atmospheric composition in the mid/upper troposphere and lower stratosphere, a region of particular importance for climate change. To achieve this objective, PREMIER will employ the first satellite Fourier transform infrared limb-imager with a 2-D detector array combined with a millimetre-wave limb-sounder. The infrared limb-imager can be operated in a high spatial resolution mode ("dynamics mode" for observations of small-scale structures in atmospheric temperatures and trace gas fields with unprecedented 3-D sampling (0.5 km in the vertical direction, 50 km along track, 25 km across track. In this paper, a fast tomographic retrieval scheme is presented, which is designed to fully exploit the high-resolution radiance observations of the dynamics mode. Based on a detailed analysis of the "observational filter", we show that the dynamics mode provides unique information on global distributions of gravity waves (GW. The achievable vertical resolution for GW observations has values between the vertical sampling (0.5 km of the dynamics mode and the vertical field of view (about 0.75 km. The horizontal across track resolution corresponds to the horizontal across track sampling of 25 km. Since the achievable along track horizontal resolution is about 70 km, the dynamics mode will provide GW limb-observations with a horizontal resolution comparable to nadir sounders. Compared to previous observations, PREMIER will therefore considerably extend the range of detectable GWs in terms of horizontal and vertical wavelength.

  6. Predicting observational signatures of coronal heating by Alfvén waves and Nanoflares

    Science.gov (United States)

    Antolin, Patrick

    2009-09-01

    The subject of this thesis is the coronal heating problem, a long standing problem not only in solar physics but in astrophysics, since it is addressed to all stars that possess a corona. The Sun, a middle aged main sequence star of class G2V, has been unveiling many mysteries to us in the last century, especially since the advent of the space era. More than 70 years ago a very hot temperature component in the corona was discovered, reaching temperatures as high as a few million degrees. Such a hot corona came as a surprise to astrophysicists, since it seemed to contradict the second law of thermodynamics being 200 times hotter than the underlying photosphere, the source of its energy. Since then the coronal heating problem has spawned an active research community in solar physics that aims to unveil yet another mystery. This thesis has as purpose to shed some light into the fascinating subject of coronal heating. In the first chapter we give an introduction to the field, in which we discuss the main heating candidate mechanisms: Alfvén wave heating and nanoflare-reconnection heating. Predicting unique observational signatures of each heating mechanism which would allow their distinction during observations is the main purpose of this thesis and the subject of the second chapter. In this chapter we investigate the thermodynamic properties of a corona in a magnetic flux tube obtained, separately, with the two heating mechanisms. We derive a series of observational features which may allow the clear distinction between the two heating mechanisms during observations. In chapter 3 we further investigate the role of Alfvén wave heating in the solar atmosphere. We concentrate our study on magnetic flux tubes (loops), which are closed magnetic structures which populate the solar atmosphere. In the considered model Alfvén waves are generated at the footpoints of a loop and can dissipate their energy mainly through the mode conversion mechanism. A parameter survey is

  7. Determining the Concentrations and Temperatures of Products in a CF_4/CHF_3/N_2 Plasma via Submillimeter Absorption Spectroscopy

    Science.gov (United States)

    Helal, Yaser H.; Neese, Christopher F.; De Lucia, Frank C.; Ewing, Paul R.; Agarwal, Ankur; Craver, Barry; Stout, Phillip J.; Armacost, Michael D.

    2017-06-01

    Plasmas used for the manufacturing of semiconductor devices are similar in pressure and temperature to those used in the laboratory for the study of astrophysical species in the submillimeter (SMM) spectral region. The methods and technology developed in the SMM for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied and their spectra have been cataloged or are in the literature. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500-750 GHz radiation through a commercial inductively coupled plasma chamber. The measurement of transmission spectra was simultaneously fit for background and absorption signal. The measured absorption was used to calculate absolute densities and temperatures of polar species. Measurements for CHF_3, CF_2, FCN, HCN, and CN made in a CF_4/CHF_3/N_2 plasma will be presented. Temperature equilibrium among species will be shown and the common temperature is leveraged to obtain accurate density measurements for simultaneously observed species. The densities and temperatures of plasma species are studied as a function of plasma parameters, including flow rate, pressure, and discharge power.

  8. Observations of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using ACE, Ulysses, and Voyager Data

    Science.gov (United States)

    Smith, Charles W.; Aggarwal, Poornima; Argall, Matthew R.; Burlaga, Leonard F.; Bzowski, Maciej; Cannon, Bradford E.; Gary, S. Peter; Fisher, Meghan K.; Gilbert, Jason A.; Hollick, Sophia J.; Isenberg, Philip A.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.; Pine, Zackary B.; Richardson, John D.; Schwadron, Nathan A.; Skoug, Ruth M.; Sokół, Justyna M.; Taylor, David K.; Vasquez, Bernard J.

    2017-09-01

    Wave excitation by newborn interstellar pickup ions (PUIs) plays a significant role in theories that attempt to describe IBEX and Voyager observations in the solar wind and heliosheath. The same dynamic processes can be far-reaching and extend into the inner heliosphere to at least 1AU and likely to smaller heliocentric distances. While the high-resolution magnetic field measurements required to study these waves are not yet available in the heliosheath, we have studied a range of available observations and found evidence of waves due to interstellar PUIs using ACE (1998-2015 at 1 AU), Ulysses (1996-2006 at 2 to 5 AU, high and low latitudes) and Voyager (1978-1979 and 2 to 6 AU) observations. Efforts to extend the Voyager observations to 35 AU are ongoing. We have examined these data sets and report on observations of low-frequency waves that result from newborn interstellar pickup H+ and He+ ions. Although not as common as theory originally predicted, we presently have identified 524 independent occurrences. Our conclusion from studying these waves is that they are seen only when the ambient turbulence is sufficiently weak. The instability that generates these waves requires a slow accumulation of wave energy over several to tens of hours to achieve observable wave amplitudes. In regions where the turbulence is moderate to strong, the turbulence absorbs the wave energy before it can reach observable levels and transports the energy to the dissipation scales where it heats the background thermal particles. Only intervals with the weakest turbulence will permit energy accumulation over this time scale. These conditions are most often, but not exclusively, achieved in solar wind rarefaction regions.

  9. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    Science.gov (United States)

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  10. Observations of wind and waves in the central Bay of Bengal during ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    during its transmission in the surface duct. The present analysis aiming for estimation .... 20minute period is used for computing the signif- icant wave height (Hs) and period (Ts) .... Variations of wind speed, significant wave height, significant wave period and mixed-layer depth in the central. Bay of Bengal. swell waves from ...

  11. Understanding the role of Whistler waves at the Bow shock of Earth: MMS observations and dispersion analysis

    Science.gov (United States)

    Wei, H.; Russell, C.; Schwartz, S. J.; An, X.; Strangeway, R. J.

    2016-12-01

    Abundant wave activity is generated at the bow shock of the Earth, that plays an important role in heating the electrons and ions and dissipating the excess energy of supercritical shocks. The Magnetospheric Multiscale (MMS) spacecrafts, with their state-of-the-art plasma and field instruments onboard, allow us to study these waves and better understand the role they play at the bow shock. We have find broad-band waves up to the electron cyclotron frequency across the shock ramp and slightly downstream of it, with large propagation angles with respect to the background magnetic field direction. Simultaneously, the electrons have quite disturbed velocities and are anisotropic in velocity space. In the same region, narrow-band waves at a few hundred Hertz are also observed with durations under a second. These waves are right-handed circularly polarized and propagate along the magnetic field lines. Both wave types are likely to be whistler mode, probably associated with electron streams in the shock ramp. We perform wave analysis of the magnetic and electric fields observed by MMS and carry out dispersion analysis with the guidance of the plasma observations to understand the wave generation and their effects on the shock and magnetosheath plasmas.

  12. Plasma Waves Observed in the Cusp Turbulent Boundary Layer: An Analysis of High Time Resolution Wave and Particle Measurements from the Polar Spacecraft

    Science.gov (United States)

    Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.

    2001-01-01

    The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.

  13. Lidar observations of wind- and wave-driven morphological evolution of coastal foredunes

    Science.gov (United States)

    Spore, N.; Brodie, K. L.; Kershner, C. M.

    2016-02-01

    Coastal foredunes are continually evolving geomorphic features that are slowly built up by wind-blown sand and rapidly eroded during storms by large waves and swash. Landward aeolian transport removes sediment from the active beach and surf-zone, trapping it in the dune, where as coastal erosion both removes sediment from the dune and can decrease the overall fetch and sediment supply available to the dune. Understanding how wave and wind-driven process interact with each other and the dune-beach system itself is a critical component of improving predictions of coastal evolution. To investigate these processes, two 50 m alongshore by 25 m cross-shore patches of dune along an open coast beach fronting the Atlantic Ocean in Duck, NC were scanned with a high resolution terrestrial lidar scanner ( 5000 points per m^2) every three weeks over the last year to observe detailed morphological evolution of the dune and upper beach. Sequential scans were co-registered to each other using fixed objects in the field of view, significantly increasing precision and accuracy of the observations. The north study site featured a 7.5 m tall scarped foredune system, where as the southern study site featured a 6 m tall, hummocky, prograding foredune. Initial analyses show large accretion events on the southern prograding site. For example, during one three week period in February, portions of the site accreted over 40 cm. In contrast, during the same three week period at the northern site (less than 1 km away), response was alongshore variable with erosion and accretion of roughly 10 cm on the foredune face. Further analysis will focus on separating wind vs. wave driven evolution of these sites. Funded by the USACE Coastal Inlets Research Program.

  14. 50 MHz continuous wave interferometer observations of the unstable mid-latitude E-region ionosphere

    Directory of Open Access Journals (Sweden)

    C. Haldoupis

    Full Text Available In this paper we describe the conversion of SESCAT (Sporadic-E SCATter experiment, a bistatic 50 MHz continuous wave (CW Doppler radar located on the island of Crete, Greece, to a single (east-west baseline interferometer. The first results show that SESCAT, which provides high quality Doppler spectra and excellent temporal resolution, has its measurement capabilities enhanced significantly when operated as an interferometer, as it can also study short-term dynamics of localized scattering regions within mid-latitude sporadic E-layers. The interferometric observations reveal that the aspect sensitive area viewed by the radar often contains a few zonally located backscatter regions, presumably blobs or patches of unstable metallic ion plasma, which drift across the radar field-of-view with the neutral wind. On average, these active regions of backscatter have mean zonal scales ranging from a few kilometers to several tens of kilometers and drift with westward speeds from ~ 20 m/s to 100 m/s, and occasionally up to 150 m/s. The cross-spectral analysis shows that mid-latitude type 1 echoes occur much more frequently than has been previously assumed and they originate in single and rather localized areas of elevated electric fields. On the other hand, typical bursts of type 2 echoes are often found to result from two adjacent regions in azimuth undergoing the same bulk motion westwards but producing scatter of opposite Doppler polarity, a fact that contradicts the notion of isotropic turbulence to which type 2 echoes are attributed. Finally, quasi-periodic (QP echoes are observed simply to be due to sequential unstable plasma patches or blobs which traverse across the radar field-of-view, sometimes in a wave-like fashion.

    Key words. Ionosphere (ionospheric irregularities; mid-latitude ionosphere; plasma waves and instabilities

  15. A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E China

    Directory of Open Access Journals (Sweden)

    S. D. Zhang

    2005-03-01

    Full Text Available Several works concerning the dynamical and thermal structures and inertial gravity wave activities in the troposphere and lower stratosphere (TLS from the radiosonde observation have been reported before, but these works were concentrated on either equatorial or polar regions. In this paper, background atmosphere and gravity wave activities in the TLS over Wuhan (30° N, 114° E (a medium latitudinal region were statistically studied by using the data from radiosonde observations on a twice daily basis at 08:00 and 20:00 LT in the period between 2000 and 2002. The monthly-averaged temperature and horizontal winds exhibit the essential dynamic and thermal structures of the background atmosphere. For avoiding the extreme values of background winds and temperature in the height range of 11-18km, we studied gravity waves, respectively, in two separate height regions, one is from ground surface to 10km (lower part, and the other is within 18-25km (upper part. In total, 791 and 1165 quasi-monochromatic inertial gravity waves were extracted from our data set for the lower and upper parts, respectively. The gravity wave parameters (intrinsic frequencies, amplitudes, wavelengths, intrinsic phase velocities and wave energies are calculated and statistically studied. The statistical results revealed that in the lower part, there were 49.4% of gravity waves propagating upward, and the percentage was 76.4% in the upper part. Moreover, the average wave amplitudes and energies are less than those at the lower latitudinal regions, which indicates that the gravity wave parameters have a latitudinal dependence. The correlated temporal evolution of the monthly-averaged wave energies in the lower and upper parts and a subsequent quantitative analysis strongly suggested that at the observation site, dynamical instability (strong wind shear induced by the tropospheric jet is the main excitation source of inertial gravity waves in the TLS.

  16. Deciphering Debris Disk Structure with the Submillimeter Array

    Science.gov (United States)

    MacGregor, Meredith Ann

    2018-01-01

    More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.

  17. Submillimeter Imaging of Dust Around Main Sequence Stars

    Science.gov (United States)

    Jewitt, David

    1998-01-01

    This grant was to image circumstellar dust disks surrounding main-sequence stars. The delivery of the SCUBA detector we had planned to use for this work was delayed repeatedly, leading us to undertake a majority of the observations with the UKT14 submillimeter detector at the JCMT (James Clerk Maxwell Telescope) and optical imagers and a coronagraph at the University of Hawaii 2.2-m telescope. Major findings under this grant include: (1) We discovered 5 asymmetries in the beta Pictoris regenerated dust disk. The discovery of these asymmetries was a surprise, since smearing due to Keplerian shear should eliminate most such features on timescales of a few thousand years. One exception is the "wing tilt" asymmetry, which we interpret as due to the scattering phase function of dust disk particles. From the wing tilt and a model of the phase function, we find a disk plane inclination to the line of sight of JCMT). It is possible, for instance, that the main 850 micro-m blob is merely a galaxy or other high-z source projected onto the beta Pic mid-plane.

  18. Extending the Millimeter-Submillimeter Spectrum of Protonated Formaldehyde

    Science.gov (United States)

    Roenitz, Kevin; Zou, Luyao; Widicus Weaver, Susanna L.

    2017-06-01

    Protonated formaldehyde has been detected in the interstellar medium, where it participates in the formation and destruction of methanol. The rotational spectrum for protonated formaldehyde has been previously recorded by Amano and coworkers from 120-385 GHz using a hollow cathode discharge source for ion production. Additionally, protonated formaldehyde was produced in a supersonic expansion discharge source by Duncan and coworkers, but it was detected using time-of-flight mass spectrometry. Higher frequency spectra would help to guide additional observational studies of protonated formaldehyde using instruments such as the ALMA and SOFIA observatories. As such, we have used a supersonic expansion discharge source to produce protonated formaldehyde, and recorded its spectrum using millimeter-submillimeter direct absorption spectroscopy. The rotational spectrum was recorded from 350-1000 GHz. Here we will present the experimental design, specifically focusing on the optimization of the source for production of organic ions. We will also present the spectroscopic results for protonated formaldehyde and a spectral analysis with associated prediction that can be extended to frequencies above 1 THz.

  19. Direct observation of nonlinear coupling in wave turbulence at the surface of water and relevance of approximate resonances

    Science.gov (United States)

    Aubourg, Quentin; Mordant, Nicolas

    2016-04-01

    energy cascade is clearly observed consistently with previous measurements. A large amount of data permits us to use higher order statistical tools to investigate directly the resonant interactions. We observe a strong presence of triadic interactions in our system, confirming the foundations of the weak wave turbulence theory. A significant part of these interactions are non-local and enable coupling between capillary and gravity waves. We also emphasize the role of approximate resonances that are made possible by the nonlinear spectral widening. The quasi-resonances increase significantly the number of wave interactions and in particular open the possibility of observing 3-wave coupling among gravity waves although 3-wave exact resonances are prohibited. These effects are being currently investigated in a larger size experiment using a 13m in diameter wave flume. Our observation raise the question of the importance of these approximate resonances of gravity waves in energy transfers both in the theory and in the ocean.

  20. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean

    CSIR Research Space (South Africa)

    Schmidt, KM

    2017-12-01

    Full Text Available Wave Glider (WG) deployments in the Southern Ocean with the intent to determine which blended satellite or reanalysis product best represents the magnitude and variability of the observed wind field. Results show that the ECMWF reanalysis product...

  1. Lower frequency companions for the Advanced LIGO gravitational wave interferometric detectors: an observational opportunity?

    Energy Technology Data Exchange (ETDEWEB)

    DeSalvo, Riccardo [California Institute of Technology, LIGO Project, Pasadena, CA 91125 (United States)

    2004-03-07

    Recent x-ray and optical observations provide evidence for a population of intermediate mass black holes with masses of tens to thousands of solar masses. Dynamical braking in high stellar density regions may 'catalyze' the inspiral of heavy mass objects down to the million-year time scale. Black-hole binaries, with the masses implied by the observations, will plunge below 100 Hz. It may be technologically possible to build ground-based low frequency gravitational wave interferometric detectors optimized to detect these events and install them next to Advanced LIGO (AdL), within the existing LIGO facilities. This additional interferometer, operated coherently with AdL and Virgo, would greatly enhance the effectiveness of the existing interferometers by generating a wealth of triggers for potentially frequent but otherwise undetectable heavy mass inspirals. AdL would study, at higher frequency, the triggered, ultra-relativistic phases (merging and ringdown) of these inspirals. Comparisons are made between the expected detection performances of AdL in its proposed wide band tuning, as well as AdL in its best low frequency tuning, with a low frequency gravitational wave interferometric detector that is mechanically and optically optimized for operation at the lowest possible frequency. Finally, the synergies of tandem operation of AdL and the proposed low frequency interferometer have been considered.

  2. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, A; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J

    2017-10-06

    On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5_{-3.0}^{+5.7}M_{⊙} and 25.3_{-4.2}^{+2.8}M_{⊙} (at the 90% credible level). The luminosity distance of the source is 540_{-210}^{+130}  Mpc, corresponding to a redshift of z=0.11_{-0.04}^{+0.03}. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160   deg^{2} using only the two LIGO detectors to 60  deg^{2} using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

  3. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-10-01

    On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30. 5-3.0+5.7M⊙ and 25 .3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 54 0-210+130 Mpc , corresponding to a redshift of z =0.1 1-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

  4. Atmospheric waves and dynamics beneath Jupiter's clouds from radio wavelength observations

    Science.gov (United States)

    Cosentino, Richard G.; Butler, Bryan; Sault, Bob; Morales-Juberías, Raúl; Simon, Amy; de Pater, Imke

    2017-08-01

    We observed Jupiter at wavelengths near 2 cm with the Karl G. Jansky Very Large Array (VLA) in February 2015. These frequencies are mostly sensitive to variations in ammonia abundance and probe between ∼ 0.5 - 2.0 bars of pressure in Jupiter's atmosphere; within and below the visible cloud deck which has its base near 0.7 bars. The resultant observed data were projected into a cylindrical map of the planet with spatial resolution of ∼1500 km at the equator. We have examined the data for atmospheric waves and observed a prominent bright belt of radio hotspot features near 10°N, likely connected to the same equatorial wave associated with the 5-μm hotspots. We conducted a passive tracer power spectral wave analysis for the entire map and latitude regions corresponding to eastward and westward jets and compare our results to previous studies. The power spectra analysis revealed that the atmosphere sampled in our observation (excluding the NEB region) is in a 2-D turbulent regime and its dynamics are predominately governed by the shallow water equations. The Great Red Spot (GRS) is also very prominent and has a noticeable meridional asymmetry and we compare it, and nearby storms, with optical images. We find that the meridional radio profile has a global north-south hemisphere distinction and find correlations of it to optical intensity banding and to shear zones of the zonal wind profile over select regions of latitude. Amateur optical images taken before and after our observation complemented the radio wavelength map to investigate dynamics of the equatorial region in Jupiter's atmosphere. We find that two radio hotspots at 2 cm are well correlated with optical plumes in the NEB, additionally revealing they are not the same 5 μm hotspot features correlated with optical dark patches between adjacent plumes. This analysis exploits the VLA's upgraded sensitivity and explores the opportunities now possible when studying gas giants, especially atmospheric dynamics

  5. Characteristics of cyclone generated gravity waves observed using assimilated WRF model simulations over Bay of Bengal

    Science.gov (United States)

    Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Kesarkar, Amit; Naidu, C. V.

    2016-11-01

    Characteristics of gravity waves (GWs) generated due to tropical cyclone (TC) Phailin (2013) that occurred over Bay of Bengal are investigated using the Weather Research and Forecast (WRF) model simulations from its depression stage to weakening stage (10-14 October 2013). Two types of numerical experiments are conducted with and without assimilating conventional and satellite observations using the 3-Dimentional Variational (3DVAR) technique. The results show that the experiment without assimilating any observations (control) has produced a large difference in terms of track and intensity with observed best track estimates of IMD. Similar features are noticed also in winds, reflectivity and independent GPS Radio Occultation (temperature) and radiosonde (temperature and winds) profiles. The experiment with assimilation significantly reduced the observed differences in all the above mentioned parameters. A close match of the assimilated outputs with observations prompted us to use it to identify the TC generated GW characteristics. GW perturbation components are extracted from the three day mean (4-7 October 2013) calm background atmosphere prior to the formation of depression. When compared to the control run, assimilated outputs show a clear increase in all the gravity wave parameters except the amplitudes where control run wave amplitudes are found to be stronger than the assimilated outputs. Fast Fourier transform (FFT) analysis in the time domain revealed dominance of GWs with periods of 2-4 h. Band pass filtered vertical velocity perturbations for these periods showed clear downward phase propagation (0.05-0.07 ms- 1) in the upper troposphere and lower stratosphere (UTLS) at different latitude/longitude positions away from the centre of the TC revealing an upward energy propagation of generated GWs. Interestingly, an increase in GW activity during the landfall of the TC is found. FFT in the vertical domain revealed vertical wavelengths ranging from 3 to 8 km

  6. Application of Local Time Dependent Ion Composition to Observations, Modeling, and Effects of Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Lee, J. H.; Angelopoulos, V.; Chen, L.; Thorne, R. M.

    2014-12-01

    Numerous global magnetospheric studies on electromagnetic ion cyclotron (EMIC) waves have revealed the typical wave properties observed throughout the Earth's magnetosphere. The observed trends in the wave properties at various geocentric distances and local time sectors, although in general agreement, elude satisfactory explanation without further details on the ambient plasma properties, the low-energy (few to ~100 eV) ions in particular. Recent studies also described techniques to deduce the presence and properties of low-energy ions and the application of such a technique to THEMIS (Time History of Events and Macroscale Interactions during Substorms) data has revealed the typical low-energy ion compositional properties throughout the Earth's ma